Sample records for circular averages transform

  1. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.

    PubMed

    Huang, Yihua; Huang, Wei

    2010-12-01

    We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.

  2. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    PubMed

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  3. Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai

    2007-03-01

    We propose a piezoelectric transformer operating with thickness-shear modes of a circular cylinder and perform a theoretical analysis on the transformer. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The output voltage, input admittance, and efficiency of the transformer are determined. The basic behaviors of the transformer are shown by numerical results.

  4. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.

    PubMed

    Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego

    2010-11-01

    Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.

  5. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  6. Hough transform method for track finding in center drift chamber

    NASA Astrophysics Data System (ADS)

    Azmi, K. A. Mohammad Kamal; Wan Abdullah, W. A. T.; Ibrahim, Zainol Abidin

    2016-01-01

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.

  7. Hough transform method for track finding in center drift chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, K. A. Mohammad Kamal, E-mail: khasmidatul@siswa.um.edu.my; Wan Abdullah, W. A. T., E-mail: wat@um.edu.my; Ibrahim, Zainol Abidin

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particlesmore » in the region of CDC.« less

  8. Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.

    1997-09-01

    We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.

  9. Polarization Ratio Determination with Two Identical Linearly Polarized Antennas

    DTIC Science & Technology

    2017-01-17

    Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis

  10. Estimating non-circular motions in barred galaxies using numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.

    2015-12-01

    The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.

  11. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array

    PubMed Central

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Tao, Yuan

    2018-01-01

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%. PMID:29734742

  12. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

    PubMed

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Abu-Siada, Ahmed; Tao, Yuan

    2018-05-05

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%.

  13. Bijective transformation circular codes and nucleotide exchanging RNA transcription.

    PubMed

    Michel, Christian J; Seligmann, Hervé

    2014-04-01

    The C(3) self-complementary circular code X identified in genes of prokaryotes and eukaryotes is a set of 20 trinucleotides enabling reading frame retrieval and maintenance, i.e. a framing code (Arquès and Michel, 1996; Michel, 2012, 2013). Some mitochondrial RNAs correspond to DNA sequences when RNA transcription systematically exchanges between nucleotides (Seligmann, 2013a,b). We study here the 23 bijective transformation codes ΠX of X which may code nucleotide exchanging RNA transcription as suggested by this mitochondrial observation. The 23 bijective transformation codes ΠX are C(3) trinucleotide circular codes, seven of them are also self-complementary. Furthermore, several correlations are observed between the Reading Frame Retrieval (RFR) probability of bijective transformation codes ΠX and the different biological properties of ΠX related to their numbers of RNAs in GenBank's EST database, their polymerization rate, their number of amino acids and the chirality of amino acids they code. Results suggest that the circular code X with the functions of reading frame retrieval and maintenance in regular RNA transcription, may also have, through its bijective transformation codes ΠX, the same functions in nucleotide exchanging RNA transcription. Associations with properties such as amino acid chirality suggest that the RFR of X and its bijective transformations molded the origins of the genetic code's machinery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  15. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  16. Toward {U}(N|M) knot invariant from ABJM theory

    NASA Astrophysics Data System (ADS)

    Eynard, Bertrand; Kimura, Taro

    2017-06-01

    We study {U}(N|M) character expectation value with the supermatrix Chern-Simons theory, known as the ABJM matrix model, with emphasis on its connection to the knot invariant. This average just gives the half-BPS circular Wilson loop expectation value in ABJM theory, which shall correspond to the unknot invariant. We derive the determinantal formula, which gives {U}(N|M) character expectation values in terms of {U}(1|1) averages for a particular type of character representations. This means that the {U}(1|1) character expectation value is a building block for the {U}(N|M) averages and also, by an appropriate limit, for the {U}(N) invariants. In addition to the original model, we introduce another supermatrix model obtained through the symplectic transform, which is motivated by the torus knot Chern-Simons matrix model. We obtain the Rosso-Jones-type formula and the spectral curve for this case.

  17. Qualitative and semiquantitative Fourier transformation using a noncoherent system.

    PubMed

    Rogers, G L

    1979-09-15

    A number of authors have pointed out that a system of zone plates combined with a diffuse source, transparent input, lens, and focusing screen will display on the output screen the Fourier transform of the input. Strictly speaking, the transform normally displayed is the cosine transform, and the bipolar output is superimposed on a dc gray level to give a positive-only intensity variation. By phase-shifting one zone plate the sine transform is obtained. Temporal modulation is possible. It is also possible to redesign the system to accept a diffusely reflecting input at the cost of introducing a phase gradient in the output. Results are given of the sine and cosine transforms of a small circular aperture. As expected, the sine transform is a uniform gray. Both transforms show unwanted artifacts beyond 0.1 rad off-axis. An analysis shows this is due to unwanted circularly symmetrical moire patterns between the zone plates.

  18. Mathematics of Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  19. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  20. Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1987-01-01

    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.

  1. Application of conformal transformation to elliptic geometry for electric impedance tomography.

    PubMed

    Yilmaz, Atila; Akdoğan, Kurtuluş E; Saka, Birsen

    2008-03-01

    Electrical impedance tomography (EIT) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part. An elliptic geometry model, which defines a more general frame, ensures more accurate results in reconstruction and assessment of inhomogeneities inside. This study provides a link between the analytical solutions defined in circular and elliptical geometries on the basis of the computation of conformal mapping. The results defined as voltage distributions for the homogeneous case in elliptic and circular geometries have been compared with those obtained by the use of conformal transformation between elliptical and well-known circular geometry. The study also includes the results of the finite element method (FEM) as another approach for more complex geometries for the comparison of performance in other complex scenarios for eccentric inhomogeneities. The study emphasizes that for the elliptic case the analytical solution with conformal transformation is a reliable and useful tool for developing insight into more complex forms including eccentric inhomogeneities.

  2. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  3. Redefining a Model

    ERIC Educational Resources Information Center

    Hodges, Thomas E.

    2007-01-01

    This article describes an alternate way to utilize a circular model to represent thirds by incorporating areas of circular segments, trigonometric functions, and geometric transformations. This method is appropriate for students studying geometry and trigonometry at the high shool level. This task provides valuable learning experiences that…

  4. The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Liu, Z. J.; Wu, Y.

    2008-07-01

    Based on the Huygens-Fresnel integral, the properties of a circular flattened Gaussian beam through a stigmatic optical system in turbulent atmosphere are investigated. Analytical formulas for the average intensity are derived. As elementary examples, the average intensity distributions of a collimated circular flattened Gaussian beam and a focused circular flattened Gaussian beam through a simple optical system are studied. To see the effects of the optical system on the propagation, the average intensity distributions of the beam for direct propagation are also studied. From the analysis, comparison and numerical calculation we can see that there are many differences between the two propagations. These differences are due to the geometrical magnification of the optical system, different diffraction and different turbulence-induced spreading. Namely, an optical system not only affects the diffraction but also affects the turbulence-induced spreading.

  5. Connection between three-body configuration and four-body configuration of the Sitnikov problem when one of the masses approaches zero: circular case

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-09-01

    In this manuscript we have established averaged equation of motion of the Sitnikov restricted three- body and four-body problem when all the primaries are point masses, by applying the Van der Pol transformation and averaging technique of J. Guckenheimer and P. Holmes (in Nonlinear Oscillations, Dynamical System Bifurcations of Vector Fields, Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2 n/3, n=4, ω is the angular velocity of the coordinate system. Further we established the Series solution of the three-body and four-body problem in the sense of Sitnikov. Lastly the periodicities of the solutions have been examined by the Poincare section and four-body and three-body problem have been compared by different comparative graphs and surfaces.

  6. Generalized serial search code acquisition - The equivalent circular state diagram approach

    NASA Technical Reports Server (NTRS)

    Polydoros, A.; Simon, M. K.

    1984-01-01

    A transform-domain method for deriving the generating function of the acquisition process resulting from an arbitrary serial search strategy is presented. The method relies on equivalent circular state diagrams, uses Mason's formula from flow-graph theory, and employs a minimum number of required parameters. The transform-domain approach is briefly described and the concept of equivalent circular state diagrams is introduced and exploited to derive the generating function and resulting mean acquisition time for three particular cases of interest, the continuous/center Z search, the broken/center Z search, and the expanding window search. An optimization of the latter technique is performed whereby the number of partial windows which minimizes the mean acquisition time is determined. The numerical results satisfy certain intuitive predictions and provide useful design guidelines for such systems.

  7. Quantitative analysis of the flexibility effect of cisplatin on circular DNA

    NASA Astrophysics Data System (ADS)

    Ji, Chao; Zhang, Lingyun; Wang, Peng-Ye

    2013-10-01

    We study the effects of cisplatin on the circular configuration of DNA using atomic force microscopy (AFM) and observe that the DNA gradually transforms to a complex configuration with an intersection and interwound structures from a circlelike structure. An algorithm is developed to extract the configuration profiles of circular DNA from AFM images and the radius of gyration is used to describe the flexibility of circular DNA. The quantitative analysis of the circular DNA demonstrates that the radius of gyration gradually decreases and two processes on the change of flexibility of circular DNA are found as the cisplatin concentration increases. Furthermore, a model is proposed and discussed to explain the mechanism for understanding the complicated interaction between DNA and cisplatin.

  8. Generalized Oseen transformation for and enhancement of Bragg characteristics of electro-optic structurally chiral materials

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    2006-05-01

    The Oseen transformation is generalized to define a non-electro-optic structurally chiral material, wherein propagation along the axis of chirality is equivalent to that in an electro-optic SCM with local 4¯2m point group symmetry. This generalization shows that the exploitation of the Pockels effect amounts to an enhancement of the effective local birefringence, which in turn can enhance the characteristics of the circular Bragg phenomenon. Electro-optic SCMs can therefore serve as efficient and electrically controllable circular- and elliptical-polarization rejection filters.

  9. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj, E-mail: acnayak@iitk.ac.in, E-mail: ravindkv@iitk.ac.in, E-mail: pkjain@iitk.ac.in

    2015-07-01

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  10. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  11. Single-trial classification of auditory event-related potentials elicited by stimuli from different spatial directions.

    PubMed

    Cabrera, Alvaro Fuentes; Hoffmann, Pablo Faundez

    2010-01-01

    This study is focused on the single-trial classification of auditory event-related potentials elicited by sound stimuli from different spatial directions. Five naϊve subjects were asked to localize a sound stimulus reproduced over one of 8 loudspeakers placed in a circular array, equally spaced by 45°. The subject was seating in the center of the circular array. Due to the complexity of an eight classes classification, our approach consisted on feeding our classifier with two classes, or spatial directions, at the time. The seven chosen pairs were 0°, which was the loudspeaker directly in front of the subject, with all the other seven directions. The discrete wavelet transform was used to extract features in the time-frequency domain and a support vector machine performed the classification procedure. The average accuracy over all subjects and all pair of spatial directions was 76.5%, σ = 3.6. The results of this study provide evidence that the direction of a sound is encoded in single-trial auditory event-related potentials.

  12. Fast algorithm for computing complex number-theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  13. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  14. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  15. Circular Poetics: Cybernetics, Zen Koans, and the Art of Creative Transformative Pedagogy

    ERIC Educational Resources Information Center

    Stephenson Keeney, Hillary

    2011-01-01

    There is an expressed desire across academic disciplines to move beyond the limitations of linear, reductionist epistemologies and infuse teaching and learning with a greater recognition of relational interdependence, circular causality, patterns of connection, and generally what Gregory Bateson (1972) called the "ecology of mind" (p. xxiii). This…

  16. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    NASA Astrophysics Data System (ADS)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  17. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    PubMed

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  18. Tunable multiband polarization conversion and manipulation in vanadium dioxide-based asymmetric chiral metamaterial

    NASA Astrophysics Data System (ADS)

    Song, Shichao; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Zhang, Zuojun; Gao, Ping; Luo, Xiangang

    2018-04-01

    Tunable multiband polarization conversion and manipulation are achieved by introducing vanadium dioxide (VO2) into a planar spiral asymmetric chiral metamaterial. Numerical simulations demonstrate that when VO2 is in the insulating state, circularly polarized electromagnetic waves are emitted at two distinct resonant frequencies. When VO2 is in the metallic state, the number of resonant frequencies changes from two to four. In addition, the initial left-handed and right-handed circularly polarized transmitted waves correspondingly transform into right and left ones. Moreover, the surface current distributions are studied in order to investigate the transformation behaviors of both the insulating and metallic states.

  19. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  20. Design of efficient circularly symmetric two-dimensional variable digital FIR filters

    PubMed Central

    Bindima, Thayyil; Elias, Elizabeth

    2016-01-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  1. Three-dimensional transformation optics for arbitrary coordinate systems: transforming conductive materials and boundaries.

    PubMed

    Kazemzadeh, Mohammad-Rahim; Alighanbari, Abbas

    2018-04-16

    A three-dimensional transformation optics method, leading to homogeneous materials, applicable to any non-Cartesian coordinate systems or waveguides/objects of arbitrary cross-sections is presented. Both the conductive boundary and internal material of the desired device is determined by the proposed formulation. The method is applicable to a wide range of waveguide, radiation, and cloaking problems, and is demonstrated for circular waveguide couplers and an external cloak. An advantage of the present method is that the material properties are simplified by appropriately selecting the conductive boundaries. For instance, a right-angle circular waveguide bend is presented which uses only one homogenous material. Also, transformation of conductive materials and boundaries are studied. The conditions in which the transformed boundaries remain conductive are discussed. In addition, it is demonstrated that negative infinite conductivity can be replaced with positive conductivity, without affecting the field outside the conductive boundary. It is also observed that a negative finite conductivity can be replaced with a positive one, by accepting some small errors. The general mathematical procedure and formulation for calculating the parametric surface equations of the conductive peripheries are presented.

  2. MARD—A moving average rose diagram application for the geosciences

    NASA Astrophysics Data System (ADS)

    Munro, Mark A.; Blenkinsop, Thomas G.

    2012-12-01

    MARD 1.0 is a computer program for generating smoothed rose diagrams by using a moving average, which is designed for use across the wide range of disciplines encompassed within the Earth Sciences. Available in MATLAB®, Microsoft® Excel and GNU Octave formats, the program is fully compatible with both Microsoft® Windows and Macintosh operating systems. Each version has been implemented in a user-friendly way that requires no prior experience in programming with the software. MARD conducts a moving average smoothing, a form of signal processing low-pass filter, upon the raw circular data according to a set of pre-defined conditions selected by the user. This form of signal processing filter smoothes the angular dataset, emphasising significant circular trends whilst reducing background noise. Customisable parameters include whether the data is uni- or bi-directional, the angular range (or aperture) over which the data is averaged, and whether an unweighted or weighted moving average is to be applied. In addition to the uni- and bi-directional options, the MATLAB® and Octave versions also possess a function for plotting 2-dimensional dips/pitches in a single, lower, hemisphere. The rose diagrams from each version are exportable as one of a selection of common graphical formats. Frequently employed statistical measures that determine the vector mean, mean resultant (or length), circular standard deviation and circular variance are also included. MARD's scope is demonstrated via its application to a variety of datasets within the Earth Sciences.

  3. A genetic scale of reading frame coding.

    PubMed

    Michel, Christian J

    2014-08-21

    The reading frame coding (RFC) of codes (sets) of trinucleotides is a genetic concept which has been largely ignored during the last 50 years. A first objective is the definition of a new and simple statistical parameter PrRFC for analysing the probability (efficiency) of reading frame coding (RFC) of any trinucleotide code. A second objective is to reveal different classes and subclasses of trinucleotide codes involved in reading frame coding: the circular codes of 20 trinucleotides and the bijective genetic codes of 20 trinucleotides coding the 20 amino acids. This approach allows us to propose a genetic scale of reading frame coding which ranges from 1/3 with the random codes (RFC probability identical in the three frames) to 1 with the comma-free circular codes (RFC probability maximal in the reading frame and null in the two shifted frames). This genetic scale shows, in particular, the reading frame coding probabilities of the 12,964,440 circular codes (PrRFC=83.2% in average), the 216 C(3) self-complementary circular codes (PrRFC=84.1% in average) including the code X identified in eukaryotic and prokaryotic genes (PrRFC=81.3%) and the 339,738,624 bijective genetic codes (PrRFC=61.5% in average) including the 52 codes without permuted trinucleotides (PrRFC=66.0% in average). Otherwise, the reading frame coding probabilities of each trinucleotide code coding an amino acid with the universal genetic code are also determined. The four amino acids Gly, Lys, Phe and Pro are coded by codes (not circular) with RFC probabilities equal to 2/3, 1/2, 1/2 and 2/3, respectively. The amino acid Leu is coded by a circular code (not comma-free) with a RFC probability equal to 18/19. The 15 other amino acids are coded by comma-free circular codes, i.e. with RFC probabilities equal to 1. The identification of coding properties in some classes of trinucleotide codes studied here may bring new insights in the origin and evolution of the genetic code. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Invariant object recognition based on the generalized discrete radon transform

    NASA Astrophysics Data System (ADS)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  5. Is cepstrum averaging applicable to circularly polarized electric-field data?

    NASA Astrophysics Data System (ADS)

    Tunnell, T.

    1990-04-01

    In FY 1988 a cepstrum averaging technique was developed to eliminate the ground reflections from charged particle beam (CPB) electromagnetic pulse (EMP) data. The work was done for the Los Alamos National Laboratory Project DEWPOINT at SST-7. The technique averages the cepstra of horizontally and vertically polarized electric field data (i.e., linearly polarized electric field data). This cepstrum averaging technique was programmed into the FORTRAN codes CEP and CEPSIM. Steve Knox, the principal investigator for Project DEWPOINT, asked the authors to determine if the cepstrum averaging technique could be applied to circularly polarized electric field data. The answer is, Yes, but some modifications may be necessary. There are two aspects to this answer that we need to address, namely, the Yes and the modifications. First, regarding the Yes, the technique is applicable to elliptically polarized electric field data in general: circular polarization is a special case of elliptical polarization. Secondly, regarding the modifications, greater care may be required in computing the phase in the calculation of the complex logarithm. The calculation of the complex logarithm is the most critical step in cepstrum-based analysis. This memorandum documents these findings.

  6. Boundary Layer Control of a Circular Cylinder Using a Synthetic Jet

    DTIC Science & Technology

    2005-06-01

    Average Velocity at . 375 Hz .............................................................................65 Figure 54 Average Velocity at 0.45 Hz...Figure 53 Average Velocity at . 375 Hz Columns=0; Rows=0 Figure 54 Average Velocity at 0.45 Hz Columns=0; Rows=0 Figure 55 Average Velocity

  7. Complete Vision-Based Traffic Sign Recognition Supported by an I2V Communication System

    PubMed Central

    García-Garrido, Miguel A.; Ocaña, Manuel; Llorca, David F.; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance. PMID:22438704

  8. Complete vision-based traffic sign recognition supported by an I2V communication system.

    PubMed

    García-Garrido, Miguel A; Ocaña, Manuel; Llorca, David F; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance.

  9. Colloidal Synthesis of CH3 NH3 PbBr3 Nanoplatelets with Polarized Emission through Self-Organization.

    PubMed

    Liu, Lige; Huang, Sheng; Pan, Longfei; Shi, Li-Jie; Zou, Bingsuo; Deng, Luogen; Zhong, Haizheng

    2017-02-06

    We report a combined experimental and theoretical study of the synthesis of CH 3 NH 3 PbBr 3 nanoplatelets through self-organization. Shape transformation from spherical nanodots to square or rectangular nanoplatelets can be achieved by keeping the preformed colloidal nanocrystals at a high concentration (3.5 mg mL -1 ) for 3 days, or combining the synthesis of nanodots with self-organization. The average thickness of the resulting CH 3 NH 3 PbBr 3 nanoplatelets is similar to the size of the original nanoparticles, and we also noticed several nanoplatelets with circular or square holes, suggesting that the shape transformation experienced a self-organization process through dipole-dipole interactions along with a realignment of dipolar vectors. Additionally, the CH 3 NH 3 PbBr 3 nanoplatelets exhibit excellent polarized emissions for stretched CH 3 NH 3 PbBr 3 nanoplatelets embedded in a polymer composite film, showing advantageous photoluminescence properties for display backlights. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.

    PubMed

    Borrello, Massimiliano; Lombardi, Alessia; Pascucci, Stefano; Cembalo, Luigi

    2016-01-01

    Closed-loop agri-food supply chains have a high potential to reduce environmental and economic costs resulting from food waste disposal. This paper illustrates an alternative to the traditional supply chain of bread based on the principles of a circular economy. Six circular interactions among seven actors (grain farmers, bread producers, retailers, compostable packaging manufacturers, insect breeders, livestock farmers, consumers) of the circular filière are created in order to achieve the goal of "zero waste". In the model, two radical technological innovations are considered: insects used as animal feed and polylactic acid compostable packaging. The main challenges for the implementation of the new supply chain are identified. Finally, some recent patents related to bread sustainable production, investigated in the current paper, are considered. Recommendations are given to academics and practitioners interested in the bio-based circular economy model approach for transforming agri-food supply chains.

  11. 77 FR 38705 - Draft Specification for Airport Light Bases, Transformer Housings, Junction Boxes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ..., Transformer Housings, Junction Boxes, and Accessories Airport Design'' Advisory Circular, AC 150/5345-42G. The... necessary to carry out this subchapter and regulations to be assumed by the sponsor. Uniform design... A307-A) per Engineering Brief (EB) 83, In-Pavement Light Fixture Bolts is introduced where applicable...

  12. A FORTRAN technique for correlating a circular environmental variable with a linear physiological variable in the sugar maple.

    PubMed

    Pease, J M; Morselli, M F

    1987-01-01

    This paper deals with a computer program adapted to a statistical method for analyzing an unlimited quantity of binary recorded data of an independent circular variable (e.g. wind direction), and a linear variable (e.g. maple sap flow volume). Circular variables cannot be statistically analyzed with linear methods, unless they have been transformed. The program calculates a critical quantity, the acrophase angle (PHI, phi o). The technique is adapted from original mathematics [1] and is written in Fortran 77 for easier conversion between computer networks. Correlation analysis can be performed following the program or regression which, because of the circular nature of the independent variable, becomes periodic regression. The technique was tested on a file of approximately 4050 data pairs.

  13. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  14. Torsion analysis of cracked circular bars actuated by a piezoelectric coating

    NASA Astrophysics Data System (ADS)

    Hassani, A. R.; Faal, R. T.

    2016-12-01

    This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.

  15. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  16. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  17. Quantification of the fraction poorly deformable red blood cells using ektacytometry.

    PubMed

    Streekstra, G J; Dobbe, J G G; Hoekstra, A G

    2010-06-21

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.

  18. Retinal identification based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform.

    PubMed

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming

    2013-07-18

    Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.

  19. Retinal Identification Based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform

    PubMed Central

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming

    2013-01-01

    Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409

  20. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  1. Computational analysis of water entry of a circular section at constant velocity based on Reynold's averaged Navier-Stokes method

    NASA Astrophysics Data System (ADS)

    Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul

    2017-12-01

    With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.

  2. Identification of Scattering Mechanisms from Measured Impulse Response Signatures of Several Conducting Objects.

    DTIC Science & Technology

    1984-02-01

    conducting sphere 35 compared to inverse transform of exact solution. 4-5. Measured impulse response of a conducting 2:1 right 37 circular cylinder with...frequency domain. This is equivalent to multiplication in the time domain by the inverse transform of w(n), which is shown in Figure 3-1 for N=15. The...equivalent pulse width from 0.066 T for the rectangular window to 0.10 T for the Hanning window. The inverse transform of the Hanning window is shown

  3. A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; John, J.

    1996-01-01

    The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the phase averaging techniques. The temporal distribution of velocity and Reynolds stress components obtained in a stationary frame of reference are transformed to a spatial distribution in a relative frame of reference. Profiles of phase-averaged velocity and Reynolds stress distributions in the relative frame of reference and similarity coordinates are presented. The velocity defect and Reynolds stress distributions agree with the results of the wake development behind a stationary cylinder in the curved channel at zero streamwise pressure gradient. The phase-averaged third-order correlations, presented in the relative frame of reference and similarity coordinates, show pronounced asymmetric features.

  4. Quasi-Optical Techniques for Millimeter and Submillimeter-Wave Circuits.

    DTIC Science & Technology

    1981-03-25

    permits non-destructive measurement. The cross section of the IS guide is shown in Fig. 4. We create a notch -type grating in the dielectric strip (rl). Then...the e-igenvalue equation is solved. 1he method was modified to minAlyze .a circular patch radiatlng st ructulre. l’ht, prote dtlrc i s essentIalIv...34Hankel transform domain analysis of open circular microstrip radiating structures," IEEE Trans. Antennas and Propagation, Vol. AP-29, Jan. 1981. 19. T

  5. Polarization control of isolated high-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang

    2018-06-01

    High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

  6. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  7. A straightforward method to compute average stochastic oscillations from data samples.

    PubMed

    Júlvez, Jorge

    2015-10-19

    Many biological systems exhibit sustained stochastic oscillations in their steady state. Assessing these oscillations is usually a challenging task due to the potential variability of the amplitude and frequency of the oscillations over time. As a result of this variability, when several stochastic replications are averaged, the oscillations are flattened and can be overlooked. This can easily lead to the erroneous conclusion that the system reaches a constant steady state. This paper proposes a straightforward method to detect and asses stochastic oscillations. The basis of the method is in the use of polar coordinates for systems with two species, and cylindrical coordinates for systems with more than two species. By slightly modifying these coordinate systems, it is possible to compute the total angular distance run by the system and the average Euclidean distance to a reference point. This allows us to compute confidence intervals, both for the average angular speed and for the distance to a reference point, from a set of replications. The use of polar (or cylindrical) coordinates provides a new perspective of the system dynamics. The mean trajectory that can be obtained by averaging the usual cartesian coordinates of the samples informs about the trajectory of the center of mass of the replications. In contrast to such a mean cartesian trajectory, the mean polar trajectory can be used to compute the average circular motion of those replications, and therefore, can yield evidence about sustained steady state oscillations. Both, the coordinate transformation and the computation of confidence intervals, can be carried out efficiently. This results in an efficient method to evaluate stochastic oscillations.

  8. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860

  9. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity.

    PubMed

    Govarthanan, Muthusamy; Seo, Young-Seok; Lee, Kui-Jae; Jung, Ik-Boo; Ju, Ho-Jong; Kim, Jae Su; Cho, Min; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2016-12-01

    The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that nanoparticles are mostly circular with an average size of 10-70 nm. The results of the X-ray powder diffraction analysis (2θ = 46.2, 67.4 and 76.8) indicated the crystal nature of the AgNPs. Fourier transform infrared spectroscopy analysis indicates that proteins present in the oilcake extract could be responsible for the reduction of silver ions. The synthesized AgNPs (1-4 mm) reduced the growth rate of multi-antibiotic-resistant bacteria such as Aeromonas sp., Acinetobacter sp. and Citrobacter sp. isolated from livestock wastewater.

  10. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  11. A Comparison of Averaged and Full Models to Study the Third-Body Perturbation

    PubMed Central

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made. PMID:24319348

  12. A comparison of averaged and full models to study the third-body perturbation.

    PubMed

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.

  13. Nonlinear calculation of the m=1 internal kink instability in current carrying stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakatani, M.

    1978-02-01

    Nonlinear properties of the m=1 internal kink mode are shown in a low beta current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub eta + iota sub sigma = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub eta + iota sub sigma = 1 are not disturbed, where iota sub eta is a rotational transform due to helical magnetic fields and iota sub sigma is due to a plasma current. Many highermore » harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m=1 tearing mode similar to that in a low beta Tokamak grows and magnetic islands appear near the iota sub eta + iota sub sigma = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m=1 internal kink mode and the m=1 internal kink mode and the m=1 tearing mode, without lowering the rotational transform.« less

  14. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  15. Soil and land management in a circular economy.

    PubMed

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Generation of circular polarization in CMB radiation via nonlinear photon-photon interaction

    NASA Astrophysics Data System (ADS)

    Sadegh, Mahdi; Mohammadi, Rohoollah; Motie, Iman

    2018-01-01

    Standard cosmological models do predict a measurable amount of anisotropies in the intensity and linear polarization of the cosmic microwave background radiation (CMB) via Thomson scattering, even though these theoretical models do not predict circular polarization for CMB radiation. In other hand, the circular polarization of CMB has not been excluded in observational evidences. Here we estimate the circular polarization power spectrum ClV (S ) in CMB radiation due to Compton scattering and nonlinear photon-photon forward scattering via Euler-Heisenberg effective Lagrangian. We have estimated the average value of circular power spectrum is l (l +1 )ClV (S )/(2 π )˜10-4 (μ K) 2 for l ˜300 at present time which is smaller than recently reported data for upper limit of circular polarization (SPIDER collaboration). As a result to test our results, the ability to detect nano-Kelvin level signals of CMB circular polarization requires. We also show that the generation of B-mode polarization for CMB photons in the presence of the primordial scalar perturbation via Euler-Heisenberg interaction is possible however this contribution for B-mode polarization is not remarkable.

  17. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.

    PubMed

    Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie

    2017-02-15

    In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.

  18. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  19. Study of Topological Effects Concerning the Lowest A″ and the Three A' States for the CO2(+) Ion.

    PubMed

    Dhindhwal, Vikash; Baer, Michael; Sathyamurthy, N

    2016-05-19

    A study of the topological effects, viz., the Jahn-Teller (JT) and Renner-Teller (RT) effects, in CO2(+) has been carried out by calculating nonadiabatic coupling terms (NACTs) at the state-averaged CASSCF level using the cc-pVTZ basis set for the lowest three A' states and one A″ state along a circular contour. Using the NACTs, the privileged adiabatic-to-diabatic transformation (ADT) angles (γ12) for 1A' and 2A' states of CO2(+) have been calculated along various circular contours. Employing one of the oxygen atoms as the test particle exposed two conical intersections (ci) located on each side of the CO diatom. The main purpose of this study is to explore the possibility of forming reliable diabatic potential energy surfaces for this system. Success in achieving this goal is guaranteed by the ability to calculate quantized privileged ADT angles along closed contours covering large regions in configuration space (see, e.g., J. Phys. Chem. A 2014 , 118 , 6361 ). The calculations were carried out for two and three JT states. In most cases very nice quantization has been achieved although the calculations were frequently done, as required, for large regions in configuration space (sometimes ≥18 Å(2)). In one case, for which the quantization was not gratifying, the inclusion of the RT effect modified it considerably.

  20. Knee arthrodesis with circular external fixation.

    PubMed

    Garberina, M J; Fitch, R D; Hoffmann, E D; Hardaker, W T; Vail, T P; Scully, S P

    2001-01-01

    Knee arthrodesis can enable limb salvage in patients with disability secondary to trauma, infected total knee arthroplasty, pyarthrosis, and other complications. Historically, intramedullary nailing has resulted in the highest overall knee fusion rates. However, intramedullary nailing is relatively contraindicated in the presence of active infection. Nineteen patients who underwent knee arthrodesis with circular external fixation were studied retrospectively. Postoperative radiographs were evaluated for evidence of bony fusion, which was defined as trabecular bridging between the femur and tibia. Patients were interviewed and graded using the functional assessment portion of the Knee Society clinical rating system. Fusion was successful in 13 of 19 (68%) patients. Overall, patients spent an average of 4 months 8 days wearing the circular external fixator. Average time to radiographic and clinical evidence of arthrodesis (defined as lack of motion across the fusion site) was 4 months 18 days. No patient with successful fusion considered himself or herself housebound. All but one of these patients require some form of assistive device for ambulation. Complications occurred in 16 of 19 (84%) patients overall. Superficial pin tract infection (55%) and nonunion (32%) were the most common. Circular external fixation is an effective method for obtaining knee arthrodesis in patients who are not good candidates for intramedullary nailing.

  1. Conformal array design on arbitrary polygon surface with transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  2. Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages

    NASA Astrophysics Data System (ADS)

    Forrester, P. J.; Witte, N. S.

    2005-09-01

    In a recent work, difference equations (Laguerre-Freud equations) for the bi-orthogonal polynomials and related quantities corresponding to the weight on the unit circle w(z)=\\prod^m_{j=1}(z-z_j(t))^{\\rho_j} were derived. It is shown here that in the case m = 3, these difference equations, when applied to the calculation of the underlying U(N) average, reduce to a coupled system identifiable with that obtained by Adler and van Moerbeke, using the methods of the Toeplitz lattice and Virasoro constraints. Moreover, it is shown that this coupled system can be reduced to yield the discrete fifth Painlevé equation dPV as it occurs in the theory of the sixth Painlevé system. Methods based on affine Weyl group symmetries of Bäcklund transformations have previously yielded the dPV equation, but with different parameters for the same problem. We find an explicit mapping between the two forms. Applications of our results are made to give recurrences for the gap probabilities and moments in the circular unitary ensemble of random matrices, and to the diagonal spin-spin correlation function of the square lattice Ising model.

  3. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    NASA Astrophysics Data System (ADS)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  4. Interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Y.M.

    1998-12-31

    The interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite is investigated using the techniques of Hankel transform and multiplying factors. The boundary conditions of the problem have three different parts. The stress intensity factors at the inner and the outer crack tips are obtained in exact expressions as the products of a dimensional quantity and nondimensional functions. The presence of a penny-shaped crack is shown to have a strong effect on the magnitude of the stress intensity of the external circular crack. The crack surface displacement is also obtained and evaluated numerically formore » different values of the ratio of the inner crack radius to the external crack radius.« less

  5. Changes in stature, weight, and nutritional status with tourism-based economic development in the Yucatan.

    PubMed

    Leatherman, Thomas L; Goodman, Alan H; Stillman, Tobias

    2010-07-01

    Over the past 40 years, tourism-based economic development has transformed social and economic conditions in the Yucatan Peninsula, Mexico. We address how these changes have influenced anthropometric indicators of growth and nutritional status in Yalcoba, a Mayan farming community involved in the circular migration of labor in the tourist economy. Data are presented on stature and weight for children measured in 1938 in the Yucatan Peninsula and from 1987 to 1998 in the Mayan community of Yalcoba. In addition, stature, weight and BMI are presented for adults in Yalcoba based on clinic records. Childhood stature varied little between 1938 and 1987. Between 1987 and 1998 average male child statures increased by 2.6cm and female child statures increased by 2.7cm. Yet, 65% of children were short for their ages. Between 1987 and 1998, average child weight increased by 1.8kg. Child BMIs were similar to US reference values and 13% were considered to be above average for weight. Forty percent of adult males and 64% of females were overweight or obese. The anthropometric data from Yalcoba suggest a pattern of stunted children growing into overweight adults. This pattern is found elsewhere in the Yucatan and in much of the developing world where populations have experienced a nutrition transition toward western diets and reduced physical activity levels. 2010 Elsevier B.V. All rights reserved.

  6. An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species.

    PubMed

    Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi

    2005-01-01

    In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.

  7. Circular displays: control/display arrangements and stereotype strength with eight different display locations.

    PubMed

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Two experiments are reported that were designed to investigate control/display arrangements having high stereotype strengths when using circular displays. Eight display locations relative to the operator and control were tested with rotational and translational controls situated on different planes according to the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (2010). (Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT), Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting, 54: 1022-1026). In many cases, there was little effect of display locations, indicating the importance of the Worringham and Beringer (1998. Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics, 41(6), 864-880) Visual Field principle and an extension of this principle for rotary controls (Hoffmann and Chan (2013). The Worringham and Beringer 'visual field' principle for rotary controls. Ergonomics, 56(10), 1620-1624). The initial indicator position (12, 3, 6 and 9 o'clock) had a major effect on control/display stereotype strength for many of the six controls tested. Best display/control arrangements are listed for each of the different control types (rotational and translational) and for the planes on which they are mounted. Data have application where a circular display is used due to limited display panel space and applies to space-craft, robotics operators, hospital equipment and home appliances. Practitioner Summary: Circular displays are often used when there is limited space available on a control panel. Display/control arrangements having high stereotype strength are listed for four initial indicator positions. These arrangements are best for design purposes.

  8. Frequency-reconfigurable water antenna of circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg

    A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less

  9. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  10. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  11. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  12. Nonlinear equation of the modes in circular slab waveguides and its application.

    PubMed

    Zhu, Jianxin; Zheng, Jia

    2013-11-20

    In this paper, circularly curved inhomogeneous waveguides are transformed into straight inhomogeneous waveguides first by a conformal mapping. Then, the differential transfer matrix method is introduced and adopted to deduce the exact dispersion relation for modes. This relation itself is complex and difficult to solve, but it can be approximated by a simpler nonlinear equation in practical applications, which is close to the exact relation and quite easy to analyze. Afterward, optimized asymptotic solutions are obtained and act as initial guesses for the following Newton's iteration. Finally, very accurate solutions are achieved in the numerical experiment.

  13. Evaluation of circularity error in drilling of syntactic foam composites

    NASA Astrophysics Data System (ADS)

    Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak

    2018-04-01

    Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.

  14. The Maximal C³ Self-Complementary Trinucleotide Circular Code X in Genes of Bacteria, Archaea, Eukaryotes, Plasmids and Viruses.

    PubMed

    Michel, Christian J

    2017-04-18

    In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C 3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X . As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X . Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes.

  15. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  16. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  17. Conformational alteration in alpha-toxin from Staphylococcus aureus concomitant with the transformation of the water-soluble monomer to the membrane oligomer.

    PubMed

    Ikigai, H; Nakae, T

    1985-07-16

    The membrane-damaging alpha-toxin aggregate of Staphylococcus aureus was characterized physicochemically. The aggregate weight of the toxin formed by various methods appeared to be 6 times higher than the molecular weight of the monomer as determined by the laser light scattering technique, suggesting the presence of a hexamer in the membrane. The aggregates fluoresced 20 to 50% more than the monomer at 336 nm. Circular dichroism measurements revealed that both the monomer and the oligomer showed essentially beta-sheet structure with the maximum ellipticity about -8,400 deg.cm2.dmol-1 at 215 nm. Circular dichroism spectrum of the oligomers showed ellipticity difference of -6,600, -44 and +84 deg.cm2.dmol-1, at 200, 250 and 280 nm, respectively, compared with the monomer. All these results suggest that the conformational change in the toxin molecule occurs concomitant with the transformation of the water-soluble monomer to the membrane-embedded hexamer.

  18. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    PubMed

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  19. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive forcemore » in the cases of circularly and linearly polarized waves has been confirmed.« less

  20. Recent Advances in Laplace Transform Analytic Element Method (LT-AEM) Theory and Application to Transient Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Neuman, S. P.

    2006-12-01

    Furman and Neuman (2003) proposed a Laplace Transform Analytic Element Method (LT-AEM) for transient groundwater flow. LT-AEM applies the traditionally steady-state AEM to the Laplace transformed groundwater flow equation, and back-transforms the resulting solution to the time domain using a Fourier Series numerical inverse Laplace transform method (de Hoog, et.al., 1982). We have extended the method so it can compute hydraulic head and flow velocity distributions due to any two-dimensional combination and arrangement of point, line, circular and elliptical area sinks and sources, nested circular or elliptical regions having different hydraulic properties, and areas of specified head, flux or initial condition. The strengths of all sinks and sources, and the specified head and flux values, can all vary in both space and time in an independent and arbitrary fashion. Initial conditions may vary from one area element to another. A solution is obtained by matching heads and normal fluxes along the boundary of each element. The effect which each element has on the total flow is expressed in terms of generalized Fourier series which converge rapidly (<20 terms) in most cases. As there are more matching points than unknown Fourier terms, the matching is accomplished in Laplace space using least-squares. The method is illustrated by calculating the resulting transient head and flow velocities due to an arrangement of elements in both finite and infinite domains. The 2D LT-AEM elements already developed and implemented are currently being extended to solve the 3D groundwater flow equation.

  1. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  2. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  4. An analytical approach for the calculation of stress-intensity factors in transformation-toughened ceramics

    NASA Astrophysics Data System (ADS)

    Müller, W. H.

    1990-12-01

    Stress-induced transformation toughening in Zirconia-containing ceramics is described analytically by means of a quantitative model: A Griffith crack which interacts with a transformed, circular Zirconia inclusion. Due to its volume expansion, a ZrO2-particle compresses its flanks, whereas a particle in front of the crack opens the flanks such that the crack will be attracted and finally absorbed. Erdogan's integral equation technique is applied to calculate the dislocation functions and the stress-intensity-factors which correspond to these situations. In order to derive analytical expressions, the elastic constants of the inclusion and the matrix are assumed to be equal.

  5. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  6. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  7. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The cluster galaxy circular velocity function

    NASA Astrophysics Data System (ADS)

    Desai, V.; Dalcanton, J. J.; Mayer, L.; Reed, D.; Quinn, T.; Governato, F.

    2004-06-01

    We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~ 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ΛCDM cosmology, and for ~22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s-1.

  9. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China.

    PubMed

    Han, Wei; Gao, Guanghai; Geng, Jinyao; Li, Yao; Wang, Yingying

    2018-04-01

    Ziya Circular Economy Park is the biggest e-waste recycle park in North China before 2011, its function was then transformed in response to regulations and rules. In this paper, investigation was conducted to research the residual concentrations of 14 analytes (12 heavy metals and 2 non-metals) in the surface soil of Ziya Circular Economy Park and surrounding area. Both ecological and health assessments were evaluated using GI (geo-accumulation index) and NPI (Nemerow pollution index), and associated health risk was assessed by using USEPA model. According to the ecological risk assessment, Cu, Sb, Cd, Zn and Co were seriously enriched in the soil of the studied area. The health risk assessment proposed by USEPA indicated no significant health risks to the population. Soil properties, such as pH and organic matter, were found to correlate with the enrichment of heavy metals. Arsenic concentrations in the soil were found positively correlated to dead bacteria concentrations. Spatial distribution of heavy metals revealed that Ziya Circular Economy Park was the dominant pollution source in the studied area. Findings in this study suggest that enough attention should be payed to the heavy metal pollution in Ziya Circular Economy Park. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Tectonics and crustal structure of the Saurashtra peninsula: based on Gravity and Magnetic data

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Singh, A.; Singh, U. K.

    2016-12-01

    The Saurashtra peninsula is located at the North Western margin of the Indian shield which occurs as a horst block between the rifts namely as Kachchh, Cambay and Narmada. It is important because of occurrence of moderate earthquake and presence of mesozoic sediments below the Deccan trap. The maps of bouguer gravity anomaly and the total intensity magnetic anomalies of Saurashtra have delineated six circular gravity highs of magnitudes 40-60 mGal and 800-1000 nT respectively. In order to understand the location, structure and depth of the source body, methods like continuous wavelet transform (CWT), Euler deconvolution and power spectrum analysis have been implemented in the potential field data. The CWT and Euler deconvolution give 16-18 km average depth of volcanic plug in Junagadh and Rajula region. From the power spectrum analysis, it is found that average Moho depth in the Saurashtra is about 36-38 km. Keeping the constraints obtained from geophysical studies like borehole, deep seismic survey, receiver function analysis and geological information, combined gravity and magnetic modeling have been performed. Detailed crustal structure of the Saurashtra region has been delineated along two profiles which pass from prominent geological features Junagadh and Rajula volcanic plugs respectively.

  11. Propagation of various dark hollow beams in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; He, Sailing

    2006-02-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  12. Propagation of various dark hollow beams in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; He, Sailing

    2006-02-20

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  13. Musculature in sipunculan worms: ontogeny and ancestral states.

    PubMed

    Schulze, Anja; Rice, Mary E

    2009-01-01

    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  14. EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.

    PubMed

    Hartmann, Tom; Bernt, Matthias; Middendorf, Martin

    2018-05-30

    To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .

  15. Breathwork as a Therapeutic Modality: An Overview for Counselors

    ERIC Educational Resources Information Center

    Young, J. Scott; Cashwell, Craig S.; Giordano, Amanda L.

    2010-01-01

    Using the breath as a vehicle for accessing psychological material is a topic rarely discussed in the counseling literature, despite the use of conscious engagement with the breath by many spiritual traditions for the purpose of personal transformation. This article describes 3 types of conscious breathing (circular breathing, conscious connected…

  16. The Maximal C3 Self-Complementary Trinucleotide Circular Code X in Genes of Bacteria, Archaea, Eukaryotes, Plasmids and Viruses

    PubMed Central

    Michel, Christian J.

    2017-01-01

    In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X. As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X. Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes. PMID:28420220

  17. Circular codes revisited: a statistical approach.

    PubMed

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Propagation of a phase-locked circular dark hollow beams array in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Xu, Xiaojun; Liu, Zejin

    2010-10-01

    The propagation of phase-locked circular dark hollow beams array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on the extended Huygens-Fresnel principle. The effects of turbulence, dark parameter and beam order of the beams array on the intensity pattern are studied and analyzed. It is found that the intensity pattern of the phase-locked circular dark hollow beams array will evolve from a multiple-spot-pattern into a Gaussian beam spot under the isotropic influence of the turbulence. The intensity pattern of beam array with a larger dark parameter and beam order evolves into the Gaussian-shape faster with increasing propagation distance.

  19. Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.

    PubMed

    Sun, Wei; Yang, Fuqian

    2015-04-07

    The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.

  20. How do children learn to follow gaze, share joint attention, imitate their teachers, and use tools during social interactions?

    PubMed

    Grossberg, Stephen; Vladusich, Tony

    2010-01-01

    How does an infant learn through visual experience to imitate actions of adult teachers, despite the fact that the infant and adult view one another and the world from different perspectives? To accomplish this, an infant needs to learn how to share joint attention with adult teachers and to follow their gaze towards valued goal objects. The infant also needs to be capable of view-invariant object learning and recognition whereby it can carry out goal-directed behaviors, such as the use of tools, using different object views than the ones that its teachers use. Such capabilities are often attributed to "mirror neurons". This attribution does not, however, explain the brain processes whereby these competences arise. This article describes the CRIB (Circular Reactions for Imitative Behavior) neural model of how the brain achieves these goals through inter-personal circular reactions. Inter-personal circular reactions generalize the intra-personal circular reactions of Piaget, which clarify how infants learn from their own babbled arm movements and reactive eye movements how to carry out volitional reaches, with or without tools, towards valued goal objects. The article proposes how intra-personal circular reactions create a foundation for inter-personal circular reactions when infants and other learners interact with external teachers in space. Both types of circular reactions involve learned coordinate transformations between body-centered arm movement commands and retinotopic visual feedback, and coordination of processes within and between the What and Where cortical processing streams. Specific breakdowns of model processes generate formal symptoms similar to clinical symptoms of autism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  2. Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.

    2018-01-01

    The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.

  3. Rotation invariant features for wear particle classification

    NASA Astrophysics Data System (ADS)

    Arof, Hamzah; Deravi, Farzin

    1997-09-01

    This paper investigates the ability of a set of rotation invariant features to classify images of wear particles found in used lubricating oil of machinery. The rotation invariant attribute of the features is derived from the property of the magnitudes of Fourier transform coefficients that do not change with spatial shift of the input elements. By analyzing individual circular neighborhoods centered at every pixel in an image, local and global texture characteristics of an image can be described. A number of input sequences are formed by the intensities of pixels on concentric rings of various radii measured from the center of each neighborhood. Fourier transforming the sequences would generate coefficients whose magnitudes are invariant to rotation. Rotation invariant features extracted from these coefficients were utilized to classify wear particle images that were obtained from a number of different particles captured at different orientations. In an experiment involving images of 6 classes, the circular neighborhood features obtained a 91% recognition rate which compares favorably to a 76% rate achieved by features of a 6 by 6 co-occurrence matrix.

  4. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  6. Calculation of stability derivatives for slowly oscillating bodies of revolution at Mach 1.0

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.; Liu, D. D.

    1971-01-01

    A parabolic method for steady transonic flow is extended to bodies of revolution oscillating in a sonic flow field. A Laplace transform technique is employed to derive the dipole solution, and the Adams-Sears iterative technique is used in the stability derivative calculation. A computer program is developed to perform the stability derivative calculation for the slowly oscillating cone and parabolic ogive. Inputs for the program are body geometry thickness ratio, acceleration constant, and pitch axis location. Sample calculations were performed for the parabolic ogive and circular cone and results are compared with those obtained by using other techniques and the available experimental data for circular cones.

  7. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  8. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  9. Space Technospheres

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Steklov, A. F.; Primak, N. V.

    2000-01-01

    Two main tendencies of making the Solar System habitable are regarding nowadays: (1) making objects of the Solar System habitable; and (2) making the space of the Solar System habitable. We think that it's better to combine them. We should dezine and build settlements ('technospheres') on such objects as asteroids and comets, using their resources. That is, it is necessary to create 'space technospheres' - a long-termed human settlements in the space. To save energy resources it is necessary to use Near-Earth asteroids enriched with water ice (i. e. extinguished comets) with Near-Earth orbits. To realize listed conceptions it is necessary to decrease (up to 100 times) the cost price of the long-termed settlements. That's why even average UN country will be able to create it's own space house - artificial planet ('technosphere') and maintain life activities there. About 50-100 such artificial planets will represent the future civilization of our Solar System. At the same time Earth will stay basic, maternal planet. There is an interesting problem of correcting orbits of that objects. Orbits can be changed into circular or elongated to make them comfortable for living activities of 5000-10000 settlers, and to maintain connection with maternal planet. Technospheres with the elongated orbits are more advantageous to assimilate the Solar System. While technospheres with circular orbits suit to the industrial cycle with certain specialization. The specialization of the technosphere will depend on mine-workings and/or chosen high-technology industrial process. Because it is profitable to convert raw materials at the technosphere and then to transport finished products to the maternal planet. It worth to be mentioned that because of the low gravitation and changed life cycle technosphere settlers, new 'Columb' of the Solar System will transform into new mankind. It will happen though it is difficult to imaging this. Because long ago, when fish left the ocean, they didn't realize that began to transform into Homo Sapiens. Human's departure from the 'cradle' of the mankind - Earth - has the same value in the making new environment habitable.

  10. Dynamic perturbation effects upon the circular dichroism intensity induced in an aggregate of dye chromophores bound to biopolymers

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1980-11-01

    The dynamic perturbation effects of polarizable monomer perturbers upon the circular dichroism intensity arising from absorption transitions of an arbitrary aggregate of dye chromophores bound to a large host polymer are formulated using the linear response theory in the decorrelation approximation, where the interchromophoric retardation phase factors are eliminated by a first-order Taylor expansion which is compatible with the use of the retarded helix selection rules in the long-wavelength approximation. A space-averaged and closed-form formulation of the non-conservative circular dichroism intensity which is perturbed by intensity with the outside perturber transitions is derived in the limit of the weak dynamic perturbation where perturber—perturber interactions are negligible. The relevant formulation is applied in order to investigate the intercalation model dependence of the non-conservative circular dichroism intensity induced at the visible absorption band of proflavine molecules intercalated in either poly(A—T) or poly(G—C).

  11. A search for chiral signatures on Mars.

    PubMed

    Sparks, William B; Hough, James H; Bergeron, Louis E

    2005-12-01

    It is thought that the chiral molecules of living material can induce circular polarization in light at levels much higher than expected from abiotic processes. We therefore obtained high quality imaging circular polarimetry of the martian surface during the favorable opposition of 2003 to seek evidence of anomalous optical activity. We used two narrow-band filters covering 43% of the martian surface, 15% of it in-depth. With polarization noise levels <0.1% (4.3 upper limits 0.2-0.3%) and spatial resolution 210 km, we did not find any regions of circular polarization. When data were averaged over the observed face of the planet, we did see a small non-zero circular polarization 0.02%, which may be due to effects associated with the opposition configuration though it is at the limit of the instrumental capability. Our observations covered only a small fraction of parameter space, so although we obtained a null result, we cannot exclude the presence of optical activity at other wavelengths, in other locations, or at higher spatial resolution.

  12. The transformation of regular circular motion into straight motion according to Nasir al din al-Tusi - a genious model for the conscious preservation of a defect of Ptolemy's lunar theory (German Title: Die Umwandlung gleichförmiger Kreisbewegung in geradlinige Bewegung nach Nasir al din al-Tusi - Ein geniales Modell zur bewußten Beibehaltung eines Mangels der Ptolemäischen Mondtheorie)

    NASA Astrophysics Data System (ADS)

    Hein, Olaf; Mader, Rolf

    Nasir al din al-Tusi (1201-1274) was one of the most important universal scholars of Islam. As a convinced Aristotelian, he rejected Ptolemy's modifications of the Aristotelian dogma of uniform circular motion. He created a theory of lunar motion which is only based on uniform circular motion, and which results in the same representation of lunar motion as conceived by Ptolemy. He successfully attempted to consciously preserve, and not to correct, an error of Ptolemy's theory (the doubling of the earth-moon distance in the syzygies as compared to the quadratures). We explain the Tusi mechanism and point out its philosophical consequences (the unwanted dissolution of the difference between the extra- and intralunar world).

  13. Direction-of-arrival estimation for a uniform circular acoustic vector-sensor array mounted around a cylindrical baffle

    NASA Astrophysics Data System (ADS)

    Yang, DeSen; Zhu, ZhongRui

    2012-12-01

    This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.

  14. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  15. Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2007-01-01

    Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.

  16. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    NASA Astrophysics Data System (ADS)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  17. Basic PK/PD principles of drug effects in circular/proliferative systems for disease modelling.

    PubMed

    Jacqmin, Philippe; McFadyen, Lynn; Wade, Janet R

    2010-04-01

    Disease progression modelling can provide information about the time course and outcome of pharmacological intervention on the disease. The basic PK/PD principles of proliferative and circular systems within the context of modelling disease progression and the effect of treatment thereupon are illustrated with the goal to better understand/predict eventual clinical outcome. Circular/proliferative systems can be very complex. To facilitate the understanding of how a dosing regimen can be defined in such systems we have shown the derivation of a system parameter named the Reproduction Minimum Inhibitory Concentration (RMIC) which represents the critical concentration at which the system switches from growth to extinction. The RMIC depends on two parameters (RMIC = (R(0) - 1) x IC(50)): the basic reproductive ratio (R(0)) a fundamental parameter of the circular/proliferative system that represents the number of offspring produced by one replicating species during its lifespan, and the IC(50), the potency of the drug to inhibit the proliferation of the system. The RMIC is constant for a given system and a given drug and represents the lowest concentration that needs to be achieved for eradication of the system. When exposure is higher than the RMIC, success can be expected in the long term. Time varying inhibition of replicating species proliferation is a natural consequence of the time varying inhibitor drug concentrations and when combined with the dynamics of the circular/proliferative system makes it difficult to predict the eventual outcome. Time varying inhibition of proliferative/circular systems can be handled by calculating the equivalent effective constant concentration (ECC), the constant plasma concentration that would give rise to the average inhibition at steady state. When ECC is higher than the RMIC, eradication of the system can be expected. In addition, it is shown that scenarios that have the same steady state ECC whatever the dose, dosage schedule or PK parameters have also the same average R (0) in the presence of the inhibitor (i.e. R (0-INH)) and therefore lead to the same outcome. This allows predicting equivalent active doses and dosing schedules in circular and proliferative systems when the IC(50) and pharmacokinetic characteristics of the drugs are known. The results from the simulations performed demonstrate that, for a given system (defined by its RMIC), treatment success depends mainly on the pharmacokinetic characteristics of the drug and the dosing schedule.

  18. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puerari, Ivânio; Elmegreen, Bruce G.; Block, David L., E-mail: puerari@inaoep.mx

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as amore » function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.« less

  19. Note: Simple 100 Hz N2 laser with longitudinal discharge tube and high-voltage power supply using neon sign transformer.

    PubMed

    Uno, K; Jitsuno, T

    2017-12-01

    We developed a longitudinally excited N 2 laser with a simple driver circuit and a simple power supply. The N 2 laser consisted of a 20 cm-long glass tube with an inner diameter of 2.5 mm, a normal stable resonator formed by flat mirrors, a variable transformer, a neon sign transformer, a spark gap, and a 200 pF capacitance. The N 2 laser produced a laser pulse with an energy of 379 nJ and a pulse width of 7.5 ns at a repetition rate of 100 Hz. The laser beam was circular and had a Gaussian profile with a correlation factor of 0.992 93.

  20. Combined invariants to similarity transformation and to blur using orthogonal Zernike moments

    PubMed Central

    Beijing, Chen; Shu, Huazhong; Zhang, Hui; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis

    2011-01-01

    The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a set of invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the proposed descriptors is evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental results show that the proposed descriptors perform on the overall better. PMID:20679028

  1. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Mead, David

    2016-04-27

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  2. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.

  3. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; ...

    2015-10-19

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  4. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Mead, David

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  5. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  6. Mathieu Progressive Waves

    NASA Astrophysics Data System (ADS)

    Andrei, B. Utkin

    2011-10-01

    A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.

  7. Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations

    NASA Astrophysics Data System (ADS)

    Poleshchikov, S. M.

    2018-03-01

    Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.

  8. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  9. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    PubMed

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei D.; Chigrinov, Vladimir G.

    2014-10-01

    In order to explore electric-field-induced transformations of polarization singularities in the polarization-resolved angular (conoscopic) patterns emerging after deformed-helix ferroelectric liquid crystal (DHFLC) cells with subwavelength helix pitch, we combine the transfer matrix formalism with the results for the effective dielectric tensor of biaxial FLCs evaluated using an improved technique of averaging over distorted helical structures. Within the framework of the transfer matrix method, we deduce a number of symmetry relations and show that the symmetry axis of L lines (curves of linear polarization) is directed along the major in-plane optical axis which rotates under the action of the electric field. When the angle between this axis and the polarization plane of incident linearly polarized light is above its critical value, the C points (points of circular polarization) appear in the form of symmetrically arranged chains of densely packed star-monstar pairs. We also emphasize the role of phase singularities of a different kind and discuss the enhanced electro-optic response of DHFLCs near the exceptional point where the condition of zero-field isotropy is fulfilled.

  11. Flow field investigation in a bulb turbine diffuser

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2017-04-01

    An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.

  12. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μmmore » cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.« less

  13. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  14. Apex shift of a circular biconcave vesicle induced by osmotic pressure

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Yan, Jie; Zhong-Can, Ou-Yang

    1999-09-01

    The contribution of a small osmotic pressure into the exact circular biconcave solution (H. Naito, M. Okuda, Ou-Yang Zhong-Can, Phys. Rev. E 48 (1993) 2304; 54 (1996) 2816) of the spontaneous curvature model of Helfrich leads to a definite and new theoretical consequence, the radius of the apex of the biconcave shape can shift toward to or apart from the center depending on the increase or decrease of the osmotic pressure. This result is in agreement with the following observed phenomena: The first stage of the discocyte-echinocyte and the discocyte-spherocyte transformation induced by exposing the cells to high concentrations of certain chemical agents; and the ring-shaped torocyte formation due to the iron deficiency or thalassemia.

  15. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    PubMed

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  16. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  17. Three-dimensional polarization states of monochromatic light fields.

    PubMed

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  18. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    PubMed Central

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  19. Linear compared to circular stapler anastomosis in laparoscopic Roux-en-Y gastric bypass leads to comparable weight loss with fewer complications: a matched pair study.

    PubMed

    Schneider, Romano; Gass, Jörn-Markus; Kern, Beatrice; Peters, Thomas; Slawik, Marc; Gebhart, Martina; Peterli, Ralph

    2016-05-01

    In the course of laparoscopic Roux-en-Y gastric bypass (LRYGB), a tight gastroenterostomy (GE) may lead to higher weight loss but possibly to an increase of local complications such as strictures and ulcers. Different operative techniques for Roux-en-Y reconstruction may also influence the rate of internal hernias, a typical late complication of LRYGB. The objective of this study was to compare weight loss, rates of strictures, internal hernias, and ulcerations of linear versus circular stapler anastomosis. Retrospective analysis of prospectively collected data in a 3:1-matched pair study. A total of 228 patients with a minimal follow-up of 2 years were matched according to BMI at baseline, age, and gender. The follow-up rate was 100 % at 1 and 2 years postoperatively; the mean follow-up time was 3.8 ± 1.63 years. In group C (circular), 57 patients were operated with a 25-mm circular stapler technique (average BMI 44.7 ± 5.18 kg/m(2), age 44.1 ± 10.8 years, 80.7 % female). In group L (linear), 171 patients were operated using a linear stapler (approximately 30 mm, average BMI 43.8 ± 5.24 kg/m(2), age 43.7 ± 12.5 years, 70.8 % female). A propensity score matching and a logrank test were used for statistical analysis. The average excessive BMI loss (EBMIL) after 1 year was not statistically different (70.6 ± 20.2 % in group C vs 72.5 ± 20.4 % in group L) as well as after 2 years (71.6 ± 22.5 % in group C vs 74.6 ± 19.6 % in group L). The average operation time was 155 ± 53 min in group C and 109 ± 57 min in group L (p = 0.0001). In group L, patients had significantly lower overall stricture rates at the GE compared to group C (0 [0 %] vs. 4 [7 %], p = 0.0004), a lower rate and severity of internal hernias (10 [5.8 %] vs. 7 [12.3 %] p = 0.466), and equal local ulcerations rates (3 [1.8 %] vs. 1 [1.8 %] p = 0.912). Linear stapler anastomosis in LRYGB compared to circular anastomosis leads to equal weight loss and less strictures. The lower rate of internal hernias in linear stapler anastomosis was not significantly different.

  20. Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.

    PubMed

    Zhu, Xiushan; Jain, Ravinder K

    2006-10-30

    We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.

  1. Quantum mechanics of hyperbolic orbits in the Kepler problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauh, Alexander; Parisi, Juergen

    2011-04-15

    The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe themore » classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.« less

  2. Transforming Mean and Osculating Elements Using Numerical Methods

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2010-01-01

    Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order

  3. Optimized satellite image compression and reconstruction via evolution strategies

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael

    2009-05-01

    This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.

  4. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  5. Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts

    NASA Astrophysics Data System (ADS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2018-04-01

    Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the conductive sub-layer δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL on the circular tubes with various twisted-tape inserts were determined on the basis of numerical solutions for the swirl velocities u sw ranging from 5.23 to 21.18 m/s. Correlations between the conductive sub-layer thickness δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL for twisted-tape-induced swirl-flow heat transfer in a vertical circular tube were derived.

  6. Analysis of electroluminescence images in small-area circular CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  7. A Computer Vision Approach to Identify Einstein Rings and Arcs

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2017-03-01

    Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.

  8. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    NASA Astrophysics Data System (ADS)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  9. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  10. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  11. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  12. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-06-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  13. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 2. Large-Scale Configurational Transformation of a Naturally Curved Molecule.

    PubMed

    Matsumoto, Atsushi; Tobias, Irwin; Olson, Wilma K

    2005-01-01

    Fine structural and energetic details embedded in the DNA base sequence, such as intrinsic curvature, are important to the packaging and processing of the genetic material. Here we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair "step" parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature and the superhelical stress on the molecule and consider the normal-mode fluctuations of both the circle and the stable figure-8 configuration under conditions where the energies of the two states are similar. To extract the properties due solely to curvature, we ignore other important features of the double helix, such as the extensibility of the chain, the anisotropy of local bending, and the coupling of step parameters. We compare the computed normal modes of the curved DNA model with the corresponding dynamical features of a covalently closed duplex of the same chain length constructed from naturally straight DNA and with the theoretically predicted dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic molecules with intrinsic curvature are found to be more deformable under superhelical stress than rings formed from naturally straight DNA. As superhelical stress is accumulated in the DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the imposed stress is sufficiently large, a global configurational rearrangement of the circle to the figure-8 form takes place. We combine energy minimization with normal-mode calculations of the two states to decipher the configurational pathway between the two states. We also describe and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to characterize the motions of the minicircle as a whole from knowledge of the full set of normal modes. The remarkable agreement between computed and theoretically predicted values of the average deviation and dispersion of the writhe of the circular configuration adds to the reliability in the computational approach. Application of the new formalism to the computed modes of the figure-8 provides insights into macromolecular motions which are beyond the scope of current theoretical treatments.

  14. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  15. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.

  16. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.

  17. Visual Circular Analysis of 266 Years of Sunspot Counts.

    PubMed

    Buelens, Bart

    2016-06-01

    Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.

  18. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  19. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  20. Zernike Basis to Cartesian Transformations

    NASA Astrophysics Data System (ADS)

    Mathar, R. J.

    2009-12-01

    The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.

  1. Underexpanded Screeching Jets From Circular, Rectangular, and Elliptic Nozzles

    NASA Technical Reports Server (NTRS)

    Panda, J.; Raman, G.; Zaman, K. B. M. Q.

    2004-01-01

    The screech frequency and amplitude, the shock spacing, the hydrodynamic-acoustic standing wave spacing, and the convective velocity of large organized structures are measured in the nominal Mach number range of 1.1 less than or = Mj less that or = l0.9 for supersonic, underexpanded jets exhausting from a circular, a rectangular and an elliptic nozzle. This provides a carefully measured data set useful in comparing the importance of various physical parameters in the screech generation process. The hydrodynamic-acoustic standing wave is formed between the potential pressure field of large turbulent structures and the acoustic pressure field of the screech sound. It has been demonstrated earlier that in the currently available screech frequency prediction models replacement of the shock spacing by the standing wave spacing provides an exact expression. In view of this newly found evidence, a comparison is made between the average standing wavelength and the average shock spacing. It is found that there exists a small, yet important, difference, which is dependent on the azimuthal screech mode. For example, in the flapping modes of circular, rectangular, and elliptic jets, the standing wavelength is slightly longer than the shock spacing, while for the helical screech mode in a circular jet the opposite is true. This difference accounts for the departure of the existing models from predicting the exact screech frequency. Another important parameter, necessary in screech prediction, is the convective velocity of the large organized structures. It is demonstrated that the presence of the hydrodynamic-acoustic standing wave, even inside the jet shear layer, becomes a significant source of error in the convective velocity data obtained using the conventional methods. However, a new relationship, using the standing wavelength and screech frequency is shown to provide more accurate results.

  2. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Jeffrey M.

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less

  3. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    PubMed

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  4. High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode

    NASA Astrophysics Data System (ADS)

    Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.

    2018-03-01

    This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.

  5. Comparison of Topographic Profiles Across Venus' Coronae and Craters: Implications for Corona Origin Hypothesis

    NASA Astrophysics Data System (ADS)

    Stoddard, P. R.; Jurdy, D. M.

    2006-12-01

    Venus' surface hosts nearly 1000 unambiguous impact craters, ranging in diameter from 1.5 to 280 km. Although the majority of these are pristine, slightly less than 200 have been modified by either volcanic or tectonic activity or both. In addition, numerous researchers have identified hundreds of ring-like features of varying morphology, termed "coronae." These have typically been thought of as having a diapiric or volcanic origin. Recently, however, based on the circular to quasi-circular nature of coronae, an alternative origin - impact - has been proposed. We compare the profiles across agreed-upon craters to several coronae that have been suggested as impact sites. For each feature, 36 profiles (taken every ten degrees) are aligned and then averaged together. For Mead, Cleopatra, Meitner, and Isabella craters, the profiles display the typical rim and basin structure expected for craters, but for Klenova crater the average is more domal, with only a few of the individual profiles looking crater-like. Among the "contested" coronae, the average profiles for Eurynome, Maya, and C21 appear crater-like, albeit with more variation among the individual profiles than seen in the agreed-upon craters. Anquet has a rim-and-basin structure, but unlike typical craters, the basin is elevated above the surrounding plains. Acrea appears to be a small hill in a large depression, again with a high degree of variability among the profiles. Ninhursag is clearly domal, and cannot be taken as a crater. A summary of the variability of the profiles - where 100% correlation would indicate perfect circular symmetry - indicates that, with the exception of Klenova, those features universally agreed-upon as craters have the highest correlation percentages - all at or above 80%. The disputed features are not as circular, although C21 is close. Based on this analysis, we conclude that Klenova has been mischaracterized as an impact crater, and that C21 and some other features previously classified as coronae may indeed be of impact origin. More careful analyses will be necessary to assess the origin of similar features.

  6. A model-based approach to estimating forest area

    Treesearch

    Ronald E. McRoberts

    2006-01-01

    A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...

  7. Analysis of the structural organization and thermal stability of two spermadhesins. Calorimetric, circular dichroic and Fourier-transform infrared spectroscopic studies.

    PubMed

    Menéndez, M; Gasset, M; Laynez, J; López-Zumel, C; Usobiaga, P; Töpfer-Petersen, E; Calvete, J J

    1995-12-15

    The CUB domain is a widespread 110-amino-acid module found in functionally diverse, often developmentally regulated proteins, for which an antiparallel beta-barrel topology similar to that in immunoglobulin V domains has been predicted. Spermadhesins have been proposed as a subgroup of this protein family built up by a single CUB domain architecture. To test the proposed structural model, we have analyzed the structural organization of two members of the spermadhesin protein family, porcine seminal plasma proteins I/II (PSP-I/PSP-II) heterodimer and bovine acidic seminal fluid protein (aSFP) homodimer, using differential scanning calorimetry, far-ultraviolet circular dichroism and Fourier-transform infrared spectroscopy. Thermal unfolding of PSP-I/PSP-II and aSFP were irreversible and followed a one-step process with transition temperatures (Tm) of 60.5 degrees C and 78.6 degrees C, respectively. The calorimetric enthalpy changes (delta Hcat) of thermal denaturation were 439 kJ/mol for PSP-I/PSP-II and 660 kJ/mol for aSFP dimer. Analysis of the calorimetric curves of PSP-I/PSP-II showed that the entire dimer constituted the cooperative unfolding unit. Fourier-transform infrared spectroscopy and deconvolution of circular dichroic spectra using a convex constraint analysis indicated that beta-structure and turns are the major structural element of both PSP-I/PSP-II (53% of beta-sheet, 21% of turns) and aSFP (44% of beta-sheet, 36% of turns), and that the porcine and the bovine proteins contain little, if any, alpha-helical structure. Taken together, our results indicate that the porcine and the bovine spermadhesin molecules are probably all-beta-structure proteins, and would support a beta-barrel topology like that predicted for the CUB domain. Other beta-structure folds, such as the Greek-key pattern characteristic of many carbohydrate-binding protein domains cannot be eliminated. Finally, the same combination of biophysical techniques was used to characterize the residual secondary structure of thermally denatured forms of PSP-I/PSP-II and aSFP, and to emphasize the aggregation tendency of these forms.

  8. SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, MP

    2015-06-15

    Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less

  9. Munitions related feature extraction from LIDAR data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Barry L.

    2010-06-01

    The characterization of former military munitions ranges is critical in the identification of areas likely to contain residual unexploded ordnance (UXO). Although these ranges are large, often covering tens-of-thousands of acres, the actual target areas represent only a small fraction of the sites. The challenge is that many of these sites do not have records indicating locations of former target areas. The identification of target areas is critical in the characterization and remediation of these sites. The Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) of the DoD have been developing and implementing techniquesmore » for the efficient characterization of large munitions ranges. As part of this process, high-resolution LIDAR terrain data sets have been collected over several former ranges. These data sets have been shown to contain information relating to former munitions usage at these ranges, specifically terrain cratering due to high-explosives detonations. The location and relative intensity of crater features can provide information critical in reconstructing the usage history of a range, and indicate areas most likely to contain UXO. We have developed an automated procedure using an adaptation of the Circular Hough Transform for the identification of crater features in LIDAR terrain data. The Circular Hough Transform is highly adept at finding circular features (craters) in noisy terrain data sets. This technique has the ability to find features of a specific radius providing a means of filtering features based on expected scale and providing additional spatial characterization of the identified feature. This method of automated crater identification has been applied to several former munitions ranges with positive results.« less

  10. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    PubMed Central

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-01-01

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. PMID:29160812

  11. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    PubMed

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  12. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  13. Circular dichroism spectra of uridine derivatives: ChiraSac study.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi; Wada, Takehiko

    2014-04-24

    The experimental circular dichroism (CD) spectra of uridine and NH2-uridine that were different in the intensity and shape were studied in the light of the ChiraSac method. The theoretical CD spectra at several different conformations using the symmetry-adapted-cluster configuration-interaction (SAC-CI) theory largely depended on the conformational angle, but those of the anti-conformers and the Boltzmann average reproduced the experimentally obtained CD spectra of both uridine and NH2-uridine. The differences in the CD spectra between the two uridine derivatives were analyzed by using the angle θ between the electric transition dipole moment (ETDM) and the magnetic transition dipole moment (MTDM).

  14. LIPSS formed on the sidewalls of microholes in stainless steel trepanned by a circularly polarized femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hu, Youwang; Fan, Nannan; Lu, Yunpeng; Sun, Xiaoyan; Wang, Cong; Xia, Zhendong; Duan, Ji'an; Wang, Hua; Zhou, Jianying; Luo, Zhi; Yin, Kai

    2016-07-01

    In order to take advantage of microhole fluidynamics, laser-induced periodic surface structures (LIPSS, ripples) orientation should offer the lowest angle γ as possible with respect to hole axis. Investigations have been performed to explore the morphology of LIPSS formed on the sidewalls of microholes by circularly polarized femtosecond laser trepanning. The period of LIPSS on average was smaller than laser wavelength. The energy density of laser beam generally affected the processing effect. Experiments showed that the angle of the LIPSS decreases with increasing single pulse energy. However, increasing trepanning speed led to a decreasing in LIPSS angle.

  15. Diffusion of a new intermediate product in a simple 'classical-Schumpeterian' model.

    PubMed

    Haas, David

    2018-05-01

    This paper deals with the problem of new intermediate products within a simple model, where production is circular and goods enter into the production of other goods. It studies the process by which the new good is absorbed into the economy and the structural transformation that goes with it. By means of a long-period method the forces of structural transformation are examined, in particular the shift of existing means of production towards the innovation and the mechanism of differential growth in terms of alternative techniques and their associated systems of production. We treat two important Schumpeterian topics: the question of technological unemployment and the problem of 'forced saving' and the related problem of an involuntary reduction of real consumption per capita. It is shown that both phenomena are potential by-products of the transformation process.

  16. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    NASA Astrophysics Data System (ADS)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  17. Magnetic properties of Co/Rh (001) multilayers studied by x-ray magnetic-circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Mayo, E.; Lederman, D.; Hallin, E.; Sham, T. K.; O'brien, W. L.; Harp, G. R.

    1998-11-01

    The layer-averaged magnetic moments of Co and Rh have been measured in sputter deposited Co/Rh (001) multilayer thin films using the x-ray magnetic circular dichroism. The Rh moments were measured at both the L and M absorption edges, where we find that the Rh moment decreases as a function of increasing Rh layer thickness (tRh). The decline of the layer-averaged Rh moment is well described in terms of a simple dilution, implying that the Rh moment is confined to the interfacial region. We find that the Co moment remains largely unaffected, maintaining a bulklike value of 1.7μB in the region preceding the first antiferromagnetic coupling peak where tRh ranges from 0 to 4 Å. We also find, via application of the dichroism sum rules, that the ratio / for Co increases ~10% for this same region. Finally, we contrast the magnetic behavior of the Co/Rh (001) and Fe/Rh (001) multilayer systems.

  18. Biochemical thermodynamics: applications of Mathematica.

    PubMed

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.

  19. Linear transformer and primary low-inductance switch and capacitor modules for fast charging of PFL

    NASA Astrophysics Data System (ADS)

    Bykov, Yu A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2017-05-01

    A step-up linear pulse transformer and a modular primary powering system were developed for fast (≈350 ns) charging of a pulse forming line (PFL) of a high-current electron accelerator. The linear transformer is assembled of a set of 20 inductors with circular ferromagnetic cores and one-turn primary windings. The secondary turn is formed by housing tube walls and a voltage adder with a film-glycerol insulation installed inside of the inductors. The primary powering system assembles 10 modules, each of them is a low-inductance site of two capacitors of 0,35 µF and one gas switch mounted at the same enclosure. The total stored energy is 5.5 kJ at the charging voltage of 40 kV. According to test results, the equivalent parameters at the output of the transformer are the next: a capacity - 17.5 nF, an inductance - 2 µH, a resistance - 3.2 Ohms.

  20. Transformation of Saccharomyces cerevisiae and Schizosaccharomyces pombe with linear plasmids containing 2 micron sequences.

    PubMed Central

    Guerrini, A M; Ascenzioni, F; Tribioli, C; Donini, P

    1985-01-01

    Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids. Images Fig. 1. Fig. 2. Fig. 4. PMID:3896773

  1. The fast decoding of Reed-Solomon codes using number theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Welch, L. R.; Truong, T. K.

    1976-01-01

    It is shown that Reed-Solomon (RS) codes can be encoded and decoded by using a fast Fourier transform (FFT) algorithm over finite fields. The arithmetic utilized to perform these transforms requires only integer additions, circular shifts and a minimum number of integer multiplications. The computing time of this transform encoder-decoder for RS codes is less than the time of the standard method for RS codes. More generally, the field GF(q) is also considered, where q is a prime of the form K x 2 to the nth power + 1 and K and n are integers. GF(q) can be used to decode very long RS codes by an efficient FFT algorithm with an improvement in the number of symbols. It is shown that a radix-8 FFT algorithm over GF(q squared) can be utilized to encode and decode very long RS codes with a large number of symbols. For eight symbols in GF(q squared), this transform over GF(q squared) can be made simpler than any other known number theoretic transform with a similar capability. Of special interest is the decoding of a 16-tuple RS code with four errors.

  2. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2018-05-01

    In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.

  3. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  4. Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria.

    PubMed

    Fernández, M; Martínez-Bueno, M; Martín, M C; Valdivia, E; Maqueda, M

    2007-05-01

    Enterococcus faecalis produces a cationic and circular enterocin, AS-48, of 7149 Da, the genetic determinants of which are located within the pMB2 plasmid. We have compared enterocin AS-48 production by different enterococci species with that of other 'safe' lactic acid bacteris (LAB) (GRAS status) and looked into the subsequent application of this enterocin in food production. In an effort to exploit this system for the heterologous expression of enterocin AS-48, a number of vectors containing the as-48 cluster were constructed and used to transform several LAB strains (genera Enterococcus, Lactococcus and Lactobacillus) Heterologous production of enterocin AS-48 failed when bacteria other than those belonging to the genus Enterococcus were used as hosts, although expression of a partial level of resistance against AS-48 were always detected, ruling out the possibility of a lack of recognition of the enterococcal promoters. Our results reveal the special capacity of species from the genus Enterococcus to produce AS-48, an enterocin that requires a post-transcriptional modification to generate a circular peptide with a wide range of inhibitory activity against pathogenic and spoilage bacteria. Preliminary experiments in foodstuffs using nonvirulent enterococci with interesting functional properties reveal the possibility of a biotechnological application of these transformants.

  5. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  6. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  7. Dynamics of charges and solitons

    NASA Astrophysics Data System (ADS)

    Barros, Manuel; Ferrández, Ángel; Garay, Óscar J.

    2018-02-01

    We first show that trajectories traced by charges moving in rotational magnetic fields are, basically, the non-parallel geodesics of surfaces of revolution with coincident axis. Thus, people living in a surface of revolution are not able to sense the magnetic Hall effect induced by the surrounding magnetic field and perceive charges as influenced, exclusively, by the gravity action on the surface of revolution. Secondly, the extended Hasimoto transformations are introduced and then used to identify trajectories of charges moving through a Killing rotational magnetic field in terms of non-circular elastic curves. As a consequence, we see that in this case charges evolve along trajectories which are obtained as extended Hasimoto transforms of solitons of the filament equation.

  8. Shear of ordinary and elongated granular mixtures

    NASA Astrophysics Data System (ADS)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  9. Portable bacterial identification system based on elastic light scatter patterns.

    PubMed

    Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul

    2012-08-28

    Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  10. Induced synthesis of toroid-like lead sulfide nanocomposites in ethanol solution through a protein templating route

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Qin, Dezhi; Yang, Guangrui; Du, Xian; Zhang, Qiuxia; Li, Feng

    2015-09-01

    The toroid-like PbS nanocrystals have been prepared in zein ethanol solution based on self-assembly template of protein molecules. From transmission electron microscopy observation, the obtained samples were monodispersed with an average size of about 47 nm. The chemical composition and crystal structure of nanocomposites were determined by X-ray diffraction and energy-dispersive X-ray spectrum measurements. The interaction between PbS and zein was investigated through Fourier transform infrared, photoluminescence, circular dichroism (CD) spectra, and thermogravimetric analysis. The PbS nanocrystals could react with nitrogen and oxygen atoms of zein molecules through coordination and electrostatic force. The CD spectra results suggested that PbS nanocrystals induced the conformational transition of protein from α-helix to β-sheet and then self-assembled into ring or toroid nanostructure. The quenching of zein fluorescence induced by PbS nanocrystals also showed the change in the chemical microenvironments of the fluorescent amino acid residues in the protein structure. The key step of this facile, biomimetic route was the formation of self-assembly nanostructure of zein, which could regulate the nucleation and growth of toroid-like PbS nanocrystals.

  11. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    NASA Astrophysics Data System (ADS)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  12. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    PubMed

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  13. HDR video synthesis for vision systems in dynamic scenes

    NASA Astrophysics Data System (ADS)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  14. Three-dimensional unsteady lifting surface theory in the subsonic range

    NASA Technical Reports Server (NTRS)

    Kuessner, H. G.

    1985-01-01

    The methods of the unsteady lifting surface theory are surveyed. Linearized Euler's equations are simplified by means of a Galileo-Lorentz transformation and a Laplace transformation so that the time and the compressibility of the fluid are limited to two constants. The solutions to this simplified problem are represented as integrals with a differential nucleus; these results in tolerance conditions, for which any exact solution must suffice. It is shown that none of the existing three-dimensional lifting surface theories in subsonic range satisfy these conditions. An oscillating elliptic lifting surface which satisfies the tolerance conditions is calculated through the use of Lame's functions. Numerical examples are calculated for the borderline cases of infinitely stretched elliptic lifting surfaces and of circular lifting surfaces. Out of the harmonic solutions any such temporal changes of the down current are calculated through the use of an inverse Laplace transformation.

  15. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  16. Diffusion of a new intermediate product in a simple ‘classical‐Schumpeterian’ model

    PubMed Central

    2017-01-01

    Abstract This paper deals with the problem of new intermediate products within a simple model, where production is circular and goods enter into the production of other goods. It studies the process by which the new good is absorbed into the economy and the structural transformation that goes with it. By means of a long‐period method the forces of structural transformation are examined, in particular the shift of existing means of production towards the innovation and the mechanism of differential growth in terms of alternative techniques and their associated systems of production. We treat two important Schumpeterian topics: the question of technological unemployment and the problem of ‘forced saving’ and the related problem of an involuntary reduction of real consumption per capita. It is shown that both phenomena are potential by‐products of the transformation process. PMID:29695874

  17. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  18. First comparative insight into the architecture of COI mitochondrial minicircle molecules of dicyemids reveals marked inter-species variation.

    PubMed

    Catalano, Sarah R; Whittington, Ian D; Donnellan, Stephen C; Bertozzi, Terry; Gillanders, Bronwyn M

    2015-07-01

    Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31.6%) while within species diversity was lower (average net divergence = 0.2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61.1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.

  19. Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. II. Forecasts

    NASA Astrophysics Data System (ADS)

    Mishra, Abhilash; Hirata, Christopher M.

    2018-05-01

    In the first paper of this series, we showed that the CMB quadrupole at high redshifts results in a small circular polarization of the emitted 21 cm radiation. In this paper we forecast the sensitivity of future radio experiments to measure the CMB quadrupole during the era of first cosmic light (z ˜20 ). The tomographic measurement of 21 cm circular polarization allows us to construct a 3D remote quadrupole field. Measuring the B -mode component of this remote quadrupole field can be used to put bounds on the tensor-to-scalar ratio r . We make Fisher forecasts for a future Fast Fourier Transform Telescope (FFTT), consisting of an array of dipole antennas in a compact grid configuration, as a function of array size and observation time. We find that a FFTT with a side length of 100 km can achieve σ (r )˜4 ×10-3 after ten years of observation and with a sky coverage fsky˜0.7 . The forecasts are dependent on the evolution of the Lyman-α flux in the pre-reionization era, that remains observationally unconstrained. Finally, we calculate the typical order of magnitudes for circular polarization foregrounds and comment on their mitigation strategies. We conclude that detection of primordial gravitational waves with 21 cm observations is in principle possible, so long as the primordial magnetic field amplitude is small, but would require a very futuristic experiment with corresponding advances in calibration and foreground suppression techniques.

  20. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  1. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    NASA Astrophysics Data System (ADS)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  2. Further analyses of laminar flow heat transfer in circular sector ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Q.M.; Trupp, A.C.

    1989-11-01

    Heat transfer in circular sector ducts is often encountered in multipassage tubes. Certain flow characteristics of circular sector ducts for apex angles up to {pi} have been determined as documented by Shah and London (1978). Recently, Lei and Trupp (1989) have more completely analyzed the flow characteristics of fully developed laminar flow for apex angles up to 2{pi}, including the location of the maximum velocity. Heat transfer results of fully developed laminar flow in circular sector ducts are also available for certain boundary conditions. Trupp and Lau (1984) numerically determined the average Nusselt number (Nu{sub T}) for isothermal walls. Eckertmore » et al. (1958) initially derived an analytical expression for the temperature profile for the case of H1. Sparrow and Haji-angles up to {pi}. However, the above work required numerical integration (or equivalent) to obtain a value for Nu{sub H1}. Regarding the H1{sub ad} boundary condition, Date (1974) numerically obtained a limiting value of Nu{sub H1}{sub ad} for the semicircular duct from the prediction of circular tubes containing a twisted tape (straight and nonconducting tape). Hong and Bergles (1976) also reported an asymptotic value of Nu{sub H1}{sub ad} for the semicircular duct from their entrance region solution. Otherwise it appears that there are no published analytical results of Nu{sub H1}{sub ad} for circular sector ducts. The purpose of this technical note is to communicate these results. In addition, a novel series expression for Nu{sub H1} is presented together with results for apex angles up to 2{pi}.« less

  3. Foods advertised in US weekly supermarket sales circulars over one year: a content analysis.

    PubMed

    Jahns, Lisa; Payne, Collin R; Whigham, Leah D; Johnson, LuAnn K; Scheett, Angela J; Hoverson, Bonita S; Kranz, Sibylle

    2014-09-23

    The nutritional content of Americans' shopping carts is suboptimal despite federal dietary guidance, in this case, the MyPlate consumer icon which displays desired proportions of vegetables, fruits, dairy, grains and protein foods for consumption. Consumers mention print advertising-such as weekly sales circulars-frequently as influencing their grocery shopping decisions. To examine and describe the relative proportions of advertised foods aggregated into the MyPlate food grouping system, a content analysis of 9 209 foods advertised in 52 weekly supermarket newspaper sales inserts in 2009 from a local grocery chain was conducted in a Midwestern community. Overall, the protein foods group was most often represented in sales circulars (25% of total items), followed by grains (18%); dairy (10%); vegetables (8%) and fruits (7%). Less than 3% of sales advertisements were for dark green and red & orange vegetables. Over twice as much whole fruit versus 100% fruit juice was advertised (70% vs. 30%, respectively; P < 0.001). Significantly fewer protein foods and more grains than expected were advertised in the fall, and slightly more dark green vegetables were advertised in winter and spring than in summer and fall (P = 0.05). The average American diet, including underconsumption of fruits and vegetables but overconsumption of protein foods, was reflected in the relative frequency of food groups advertised in weekly sales circulars. Modifying sales circulars to represent healthier food groups may preserve retail profits (considering these groups' higher profit margin) while promoting adherence to federal dietary guidance.

  4. Circular electrodes to reduce the current variation of OTFTs with the drop-casted semiconducting layer

    NASA Astrophysics Data System (ADS)

    Dipu Kabir, H. M.; Ahmed, Zubair; Kariyadan, Remashan; Zhang, Lining; Chan, Mansun

    2018-06-01

    Circular organic thin film transistor (OTFT) structures are proposed to reduce the impact of variable grain alignment on the drive current of the polycrystalline organic thin film transistor (OTFT). As the circular structure is planar symmetric, the orientation of the grain cannot affect the drive current of the circular OTFT. Thus, circular electrodes expected to provide a lower variation. Top-gate, bottom-contact circular and conventional OTFTs with drop-casted polycrystalline 6,13-Bis(triisopropyl-silylethynyl) (TIPS)-Pentacene organic semiconducting layer (OSC) are fabricated to verify the theoretical variation reduction. The relative standard deviation (RSD), defined as the ratio of standard deviation and the average of drive current is used as the degree of variations in different structures. According to our fabrication result, circular transistors have a significantly lower variation (20% RSD), compared to the variation of conventional OTFTs (61% RSD). His research interests include Organic Electronics, VLSI Design, Embedded System, Neural Networks, and Solid-state devices. Between July 2001 and December 2002, he was a Visiting Professor at University of California at Berkeley and the Co-director of the BSIM program. He is currently still consulting on the development of the next generation compact models. He has been actively contributing to the professional community and hold many positions. He was a Board of Governor, Chair of the Education Committee, the Chair of the Region 10 subcommittee and a Distinguished lecturer of the IEEE Electron Device Society. He has also chaired many international conferences and acting as editors for a number of technical journals. In addition, he has received many awards including the UC Regents Fellowship, Golden Keys Scholarship for Academic Excellence, SRC Inventor Recognition Award, Rockwell Research Fellowship, R&D 100 award (for the BSIM3v3 project), Distinguished Teaching Award, the Shenzhen Science and Technology Innovation awards, and EDS Education Award etc. He is a Fellow of HKIE, IET and IEEE.

  5. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  6. Omniview motionless camera orientation system

    NASA Technical Reports Server (NTRS)

    Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)

    2010-01-01

    An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.

  7. Design and fabrication of engineering model fiber-optics detector

    NASA Technical Reports Server (NTRS)

    Mcsweeney, A.

    1972-01-01

    The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.

  8. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  9. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  10. A combined finite element-boundary element formulation for solution of two-dimensional problems via CGFFT

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A method for the computation of electromagnetic scattering from arbitrary two-dimensional bodies is presented. The method combines the finite element and boundary element methods leading to a system for solution via the conjugate gradient Fast Fourier Transform (FFT) algorithm. Two forms of boundaries aimed at reducing the storage requirement of the boundary integral are investigated. It is shown that the boundary integral becomes convolutional when a circular enclosure is chosen, resulting in reduced storage requirement when the system is solved via the conjugate gradient FFT method. The same holds for the ogival enclosure, except that some of the boundary integrals are not convolutional and must be carefully treated to maintain O(N) memory requirement. Results for several circular and ogival structures are presented and shown to be in excellent agreement with those obtained by traditional methods.

  11. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  12. Wide range humidity sensing of LiCl incorporated in mesoporous silica circular discs

    NASA Astrophysics Data System (ADS)

    Kunchakara, Suhasini; Shah, Jyoti; Singh, Vaishali; Kotnala, R. K.

    2017-12-01

    Lithium chloride (LiCl) incorporated MCM-41 has been synthesised by sol-gel method using tetraethyl orthosilicate as a precursor in basic medium. 5, 10, 15, 20, 25, 30 and 35 wt% of LiCl were incorporated in mesoporous silica to investigate the humidity sensing. With increasing wt% of LiCl broadening of O-H peak is observed in the Fourier Transform Infrared spectra, indicating greater adsorption of hydroxyl groups on porous silica. The surface area of the MCM-41 circular discs was determined by Brunauer-Emmett-Teller (BET). Scanning electron microscopy images suggest that incorporation of LiCl leads to coalescence of grains in mesoporous silica. 25 wt% LiCl incorporated MCM-41 showed a wide range linear response of impedance change for 11%-90% RH exhibiting 3.5-order drop in impedance at a 1 kHz frequency. The Nyquist plots for all compositions showed increased ionic conduction with increasing relative humidity.

  13. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less

  14. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential.

    PubMed

    Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  15. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential

    NASA Astrophysics Data System (ADS)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  16. Hill Problem Analytical Theory to the Order Four. Application to the Computation of Frozen Orbits around Planetary Satellites

    NASA Technical Reports Server (NTRS)

    Lara, Martin; Palacian, Jesus F.

    2007-01-01

    Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.

  17. Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average

    NASA Astrophysics Data System (ADS)

    Scarfone, A. M.; Matsuzoe, H.; Wada, T.

    2016-09-01

    We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.

  18. Effect of a rotor wake on heat transfer from a circular cylinder

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Morehouse, K. A.; Vanfossen, G. J.; Behning, F. P.

    1984-01-01

    The effect of a rotor wake on heat transfer to a downstream stator was investigated. The rotor was modeled with a spoked wheel of 24 circular pins 1.59 mm in diameter. One of the stator pins was electrically heated in the midspan region and circumferentially averaged heat transfer coefficients were obtained. The experiment was run in an annular flow wind tunnel using air at ambient temperature and pressure. Reynolds numbers based on stator cylinder diameter ranged from .001 to .00001. Rotor blade passing frequencies ranged from zero to 2500 Hz. Stationary grids were used to vary the rotor inlet turbulence from one to four percent. The rotor-stator spacings were one and two stator pin diameters. In addition to the heat transfer coefficients, turbulence spectra and ensemble averaged wake profiles were measured. At the higher Reynolds numbers, which is the primary range of interest for turbulent heat transfer, the rotor wakes increased Nusselt number from 10 to 45 percent depending on conditions. At lower Reynolds numbers the effect was as much as a factor of two.

  19. Phase retrieval of images using Gaussian radial bases.

    PubMed

    Trahan, Russell; Hyland, David

    2013-12-20

    Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern's frequency components is enough to recover the image without projective iterations. This occurs when the image is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing in a compact form where square pixels do not. The Gaussian bases are appropriate when circular apertures are used to detect the diffraction pattern because of their optical transfer functions, as discussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases from only the Fourier transform's modulus, without background constraints. A practical example is shown.

  20. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  1. Rigorous simulations of a helical core fiber by the use of transformation optics formalism.

    PubMed

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2014-09-22

    We report for the first time on rigorous numerical simulations of a helical-core fiber by using a full vectorial method based on the transformation optics formalism. We modeled the dependence of circular birefringence of the fundamental mode on the helix pitch and analyzed the effect of a birefringence increase caused by the mode displacement induced by a core twist. Furthermore, we analyzed the complex field evolution versus the helix pitch in the first order modes, including polarization and intensity distribution. Finally, we show that the use of the rigorous vectorial method allows to better predict the confinement loss of the guided modes compared to approximate methods based on equivalent in-plane bending models.

  2. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  3. Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost

    PubMed Central

    Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred

    2016-01-01

    Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895

  4. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  5. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    NASA Astrophysics Data System (ADS)

    Kibar, Ali

    2016-02-01

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750-3050 Reynolds number, with an inclination angle of 20°-40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy.

  6. Transformation of apparent ocean wave spectra observed from an aircraft sensor platform

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1976-01-01

    The problem considered was transformation of a unidirectional apparent ocean wave spectrum observed from an aircraft sensor platform into the true spectrum that would be observed from a stationary platform. Spectral transformation equations were developed in terms of the linear wave dispersion relationship and the wave group speed. An iterative solution to the equations was outlined and used to transform reference theoretical apparent spectra for several assumed values of average water depth. Results show that changing the average water depth leads to a redistribution of energy density among the various frequency bands of the transformed spectrum. This redistribution is most severe when much of the energy density is expected, a priori, to reside at relatively low true frequencies.

  7. Facile Construction of Random Gene Mutagenesis Library for Directed Evolution Without the Use of Restriction Enzyme in Escherichia coli.

    PubMed

    Kim, Jae-Eung; Huang, Rui; Chen, Hui; You, Chun; Zhang, Y-H Percival

    2016-09-01

    A foolproof protocol was developed for the construction of mutant DNA library for directed protein evolution. First, a library of linear mutant gene was generated by error-prone PCR or molecular shuffling, and a linear vector backbone was prepared by high-fidelity PCR. Second, the amplified insert and vector fragments were assembled by overlap-extension PCR with a pair of 5'-phosphorylated primers. Third, full-length linear plasmids with phosphorylated 5'-ends were self-ligated with T4 ligase, yielding circular plasmids encoding mutant variants suitable for high-efficiency transformation. Self-made competent Escherichia coli BL21(DE3) showed a transformation efficiency of 2.4 × 10(5) cfu/µg of the self-ligated circular plasmid. Using this method, three mutants of mCherry fluorescent protein were found to alter their colors and fluorescent intensities under visible and UV lights, respectively. Also, one mutant of 6-phosphorogluconate dehydrogenase from a thermophilic bacterium Moorella thermoacetica was found to show the 3.5-fold improved catalytic efficiency (kcat /Km ) on NAD(+) as compared to the wild-type. This protocol is DNA-sequence independent, and does not require restriction enzymes, special E. coli host, or labor-intensive optimization. In addition, this protocol can be used for subcloning the relatively long DNA sequences into any position of plasmids. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tandem repeats of the 5' non-transcribed spacer of Tetrahymena rDNA function as high copy number autonomous replicons in the macronucleus but do not prevent rRNA gene dosage regulation.

    PubMed Central

    Pan, W J; Blackburn, E H

    1995-01-01

    The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number. Images PMID:7784211

  9. Compact Polarimetry in a Low Frequency Spaceborne Context

    NASA Technical Reports Server (NTRS)

    Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.

    2011-01-01

    Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is proposed.

  10. Green synthesis of silver nanoparticles using Pongamia pinnata seed: Characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin.

    PubMed

    Beg, Maidul; Maji, Anukul; Mandal, Amit Kumar; Das, Somnath; Aktara, Mt Nasima; Jha, Pradeep K; Hossain, Maidul

    2017-01-01

    In recent years, green synthesized nanoparticles from plant extract have drawn a great interest due to their prospective nanomedicinal application. This study investigates a proficient, safer, and sustainable way for the preparation of AgNPs using medicinal plant Pongamia pinnata (family: Leguminoseae, species: Pinnata) seeds extract without using any external reducing and stabilizing agent. Both ultraviolet-visible spectrum at λ max  = 439 nm and energy dispersive X-ray spectra proof the formation of AgNPs. An average diameter of the AgNPs was 16.4 nm as revealed from transmission electron microscope. Hydrodynamic size (d = ~19.6 nm) was determined by dynamic light scattering (DLS). Zeta potential of AgNPs was found to be -23.7 mV, which supports its dispersion and stability. Fourier transform infrared study revealed that the O ─ H, C ═ O, and C-O-C groups were responsible for the formation of AgNPs. The antibacterial activity of the synthesized AgNPs was checked against Escherichia coli ATCC 25922. AgNPs at its LD 50 dose exhibited synergistic effect with ampicillin. Because protein-AgNPs association greatly affects its adsorption, distribution, and functionality and can also influence the functions of biomolecules. So in order to understand the adsorption and bioavailability, we investigated by fluorescence, ultraviolet-visible, and circular dichroism spectroscopic methods the interaction of synthesized AgNPs toward human serum albumin. The binding affinity and binding sites of human serum albumin toward AgNPs were measured by using the fluorescence quenching data. The circular dichroism spectroscopic results revealed that there was a negligible change of α-helical content in their native structure. Overall, these AgNPs show versatile biological activities and may be applied in the field of nanomedicine. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Compressive-sampling-based positioning in wireless body area networks.

    PubMed

    Banitalebi-Dehkordi, Mehdi; Abouei, Jamshid; Plataniotis, Konstantinos N

    2014-01-01

    Recent achievements in wireless technologies have opened up enormous opportunities for the implementation of ubiquitous health care systems in providing rich contextual information and warning mechanisms against abnormal conditions. This helps with the automatic and remote monitoring/tracking of patients in hospitals and facilitates and with the supervision of fragile, elderly people in their own domestic environment through automatic systems to handle the remote drug delivery. This paper presents a new modeling and analysis framework for the multipatient positioning in a wireless body area network (WBAN) which exploits the spatial sparsity of patients and a sparse fast Fourier transform (FFT)-based feature extraction mechanism for monitoring of patients and for reporting the movement tracking to a central database server containing patient vital information. The main goal of this paper is to achieve a high degree of accuracy and resolution in the patient localization with less computational complexity in the implementation using the compressive sensing theory. We represent the patients' positions as a sparse vector obtained by the discrete segmentation of the patient movement space in a circular grid. To estimate this vector, a compressive-sampling-based two-level FFT (CS-2FFT) feature vector is synthesized for each received signal from the biosensors embedded on the patient's body at each grid point. This feature extraction process benefits in the combination of both short-time and long-time properties of the received signals. The robustness of the proposed CS-2FFT-based algorithm in terms of the average positioning error is numerically evaluated using the realistic parameters in the IEEE 802.15.6-WBAN standard in the presence of additive white Gaussian noise. Due to the circular grid pattern and the CS-2FFT feature extraction method, the proposed scheme represents a significant reduction in the computational complexity, while improving the level of the resolution and the localization accuracy when compared to some classical CS-based positioning algorithms.

  12. Random variable transformation for generalized stochastic radiative transfer in finite participating slab media

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.

    2015-10-01

    The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.

  13. Causal impulse response for circular sources in viscous media

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2008-01-01

    The causal impulse response of the velocity potential for the Stokes wave equation is derived for calculations of transient velocity potential fields generated by circular pistons in viscous media. The causal Green’s function is numerically verified using the material impulse response function approach. The causal, lossy impulse response for a baffled circular piston is then calculated within the near field and the far field regions using expressions previously derived for the fast near field method. Transient velocity potential fields in viscous media are computed with the causal, lossy impulse response and compared to results obtained with the lossless impulse response. The numerical error in the computed velocity potential field is quantitatively analyzed for a range of viscous relaxation times and piston radii. Results show that the largest errors are generated in locations near the piston face and for large relaxation times, and errors are relatively small otherwise. Unlike previous frequency-domain methods that require numerical inverse Fourier transforms for the evaluation of the lossy impulse response, the present approach calculates the lossy impulse response directly in the time domain. The results indicate that this causal impulse response is ideal for time-domain calculations that simultaneously account for diffraction and quadratic frequency-dependent attenuation in viscous media. PMID:18397018

  14. Evaluation of handle design characteristics in a maximum screwdriving torque task.

    PubMed

    Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F

    2007-09-01

    The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.

  15. Limb lengthening in short-stature patients using monolateral and circular external fixators.

    PubMed

    Lie, Chester W H; Chow, W

    2009-08-01

    To review the results of distraction osteogenesis in short-stature patients in our centre and analyse outcomes including complications. Retrospective study. University teaching hospital, Hong Kong. Eight patients with short stature (three had achondroplasia, three constitutional short stature, and two hypochondroplasia) operated on for limb lengthening using monolateral or circular external fixators between 1995 and 2006 were reviewed. The mean age at the time of surgery was 20 years (range, 9-39 years). The fixators used were either Ilizarov or Orthofix. The average gain in length per bone segment was 5.2 cm (range, 3.2-8.0 cm), and the average percentage lengthening was 21% (range, 7.9-40%). The mean time in frame was 8 months (range, 4-14 months), and the average healing index was 48 days per cm of lengthening (18-110 days per cm). Minor complications (pin tract infection and transient joint stiffness) were common, and after excluding the latter the overall complication rate was 0.6 per bone segment. In our series, limb lengthening of up to 40% of the initial length of the bone segment can be achieved without significant long-term sequelae. However, the procedures were complex and prolonged, and required a special psychological approach directed at both parents and the patients. Complications are quite common, for which patients have to be well prepared before starting the procedures.

  16. Education in Rural and City School Systems: Some Statistical Indices for 1947-48. Circular 329.

    ERIC Educational Resources Information Center

    Smith, Rose Marie

    Nine comparative indices present both financial and non-financial statistics for rural and urban public elementary and secondary schools in 36 states and for all 36 states combined. The 1947-48 data cover the average salary of the instructional staff, instructional expenditure per pupil, total current expenditure per pupil, capital outlay per…

  17. Comparative effects of constant versus fluctuating thermal regimens on yellow perch growth, feed conversion and survival

    USDA-ARS?s Scientific Manuscript database

    The effects of fluctuating or constant thermal regimens on growth, mortality, and feed conversion were determined for juvenile yellow perch (Perca flavescens). Yellow perch averaging 156mm total length and 43g body weight were held in replicate 288L circular tanks for 129 days under: 1) a diel therm...

  18. Stricture Rate after Laparoscopic Roux-en-Y Gastric Bypass with a 21-mm Circular Stapler versus a 25-mm Linear Stapler

    PubMed Central

    Vunnamadala, Kalyan; Sakharpe, Aniket; Wilhelm, B. Jakub; Aksade, Artun

    2015-01-01

    Background: Obesity is estimated to affect more than one and a half billion adults. Laparoscopic Roux-en-Y gastric bypass (LRYGB) has become one of the preferred weight loss procedures. However, complications can occur. Strictures at the gastrojejunal anastomosis lead to clinical symptoms such as vomiting, dysphagia, and patient discomfort. The stricture rate has been correlated with the size and type of stapler used. Methods: A retrospective review of the clinical records of patients who underwent LRYGB was performed between 2003 and 2010. A comparison was made between a 21-mm circular stapler technique and a 25-mm linear stapler technique. Results: The stricture rate for the 21-mm circular stapler group was 7.12% and comparable to the national average. Using the 25-mm linear stapler, this complication rate significantly decreased to 1.09% (p<0.0004; odds ratio 6.5; [95% confidence interval 1.96–33.83]). Conclusions: Stricture after LRYGB is a serious complication. This study found that with a change in technique, this complication can be decreased considerably. PMID:25830078

  19. Stricture Rate after Laparoscopic Roux-en-Y Gastric Bypass with a 21-mm Circular Stapler versus a 25-mm Linear Stapler.

    PubMed

    Baccaro, Leopoldo M; Vunnamadala, Kalyan; Sakharpe, Aniket; Wilhelm, B Jakub; Aksade, Artun

    2015-03-01

    Background: Obesity is estimated to affect more than one and a half billion adults. Laparoscopic Roux-en-Y gastric bypass (LRYGB) has become one of the preferred weight loss procedures. However, complications can occur. Strictures at the gastrojejunal anastomosis lead to clinical symptoms such as vomiting, dysphagia, and patient discomfort. The stricture rate has been correlated with the size and type of stapler used. Methods: A retrospective review of the clinical records of patients who underwent LRYGB was performed between 2003 and 2010. A comparison was made between a 21-mm circular stapler technique and a 25-mm linear stapler technique. Results: The stricture rate for the 21-mm circular stapler group was 7.12% and comparable to the national average. Using the 25-mm linear stapler, this complication rate significantly decreased to 1.09% ( p <0.0004; odds ratio 6.5; [95% confidence interval 1.96-33.83]). Conclusions: Stricture after LRYGB is a serious complication. This study found that with a change in technique, this complication can be decreased considerably.

  20. Determination of protein-dye association by near infrared fluorescence-detected circular dichroism.

    PubMed

    Meadows, F; Narayanan, N; Patonay, G

    2000-01-10

    Near-infrared (NIR) squarylium dye spectral properties were evaluated by absorption, fluorescence, circular dichroism (CD), and fluorescence-detected circular dichroism (FDCD). Substituents of the two NN dyes differed at R(1) and R(2), located symmetrically on the chromophore. The side chains of NN525 are R(1)=hexanoic acid, R(2)=butyl sulfonate and R(1)=R(2)=ethyl for NN127. FDCD signals were first confirmed by denaturing BSA with 2-8 M urea showing a diminution of dye FDCD peaks, but no change occurred in spectral properties of the dyes in urea. This indicated that the observed cotton effects occurred by noncovalent interactions with the secondary structure of the protein. The average BSA-dye association constants found by fluorescence, absorbance, and FDCD were 1.27 x 10(6) (n=1) and 3.3 x 10(6) M(-1) (n=1) for NN127 and NN525 respectively. These values were in good agreement when calculated by the three spectroscopic methods validating the use of NIRFDCD for optical parameter calculations. These results are useful to describe NIR squarylium dye labeling of BSA.

  1. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    PubMed

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  2. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  3. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2016-12-01

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  4. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less

  5. On the computation of molecular surface correlations for protein docking using fourier techniques.

    PubMed

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  6. Space-time least-squares finite element method for convection-reaction system with transformed variables

    PubMed Central

    Nam, Jaewook

    2011-01-01

    We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752

  7. Robust averaging protects decisions from noise in neural computations

    PubMed Central

    Herce Castañón, Santiago; Solomon, Joshua A.; Vandormael, Hildward

    2017-01-01

    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making. PMID:28841644

  8. EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m

    2009-12-20

    Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less

  9. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  10. Comparison between wavelet transform and moving average as filter method of MODIS imagery to recognize paddy cropping pattern in West Java

    NASA Astrophysics Data System (ADS)

    Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi

    2017-01-01

    Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.

  11. Effects of the circularly polarized beam of linearized gravitational waves

    NASA Astrophysics Data System (ADS)

    Barker, W.

    2017-08-01

    Solutions of the linearized Einstein equations are found that describe a transversely confined beam of circularly polarized gravitational waves on a Minkowski backdrop. By evaluating the cycle-averaged stress-energy-momentum pseudotensor of Landau & Lifshitz it is found that the angular momentum density is concentrated in the ‘skin’ at the edge of the beam where the intensity falls, and that the ratio of angular momentum to energy per unit length of the beam is 2/ω , where ω is the wave frequency, as expected for a beam of spin-2 gravitons. For sharply-defined, uniform, axisymmetric beams, the induced background metric is shown to produce the gravitomagnetic field and frame-dragging effects of a gravitational solenoid, whilst the angular momentum current helically twists the space at infinite radius along the beam axis.

  12. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    PubMed

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  13. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    PubMed Central

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  14. Analysis of Near-field of Circular Aperture Antennas with Application to Study of High Intensity Radio Frequency (HIRF) Hazards to Aviation from JPL/NASA Deep Space Network Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Statman, Joseph

    2013-01-01

    This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.

  15. Normative Data for a User-friendly Paradigm for Pattern Electroretinogram Recording

    PubMed Central

    Porciatti, Vittorio; Ventura, Lori M.

    2009-01-01

    Purpose To provide normative data for a user-friendly paradigm for the pattern electroretinogram (PERG) optimized for glaucoma screening (PERGLA). Design Prospective nonrandomized case series. Participants Ninety-three normal subjects ranging in age between 22 and 85 years. Methods A circular black–white grating of 25° visual angle, reversing 16.28 times per second, was presented on a television monitor placed inside a Ganzfeld bowl. The PERG was recorded simultaneously from both eyes with undilated pupils by means of skin cup electrodes taped over the lower eyelids. Reference electrodes were taped on the ipsilateral temples. Electrophysiologic signals were conventionally amplified, filtered, and digitized. Six hundred artifact-free repetitions were averaged. The response component at the reversal frequency was isolated automatically by digital Fourier transforms and was expressed as a deviation from the age-corrected average. The procedure took approximately 4 minutes. Main Outcome Measures Pattern electroretinogram amplitude (μV) and phase (π rad); response variability (coefficient of variation [CV] = standard deviation [SD] / mean × 100) of amplitude and phase of 2 partial averages that build up the PERG waveform; amplitude (μV) of background noise waveform, obtained by multiplying alternate sweeps by +1 and −1; and interocular asymmetry (CV of amplitude and phase of the PERG of the 2 eyes). Results On average, the PERG has a signal-to-noise ratio of more than 13:1. The CVs of intrasession and intersession variabilities in amplitude and phase are lower than 10% and 2%, respectively, and do not depend on the operator. The CV of interocular asymmetries in amplitude and phase are 9.8±8.8% and 1.5±1.4%, respectively. The PERG amplitude and phase decrease with age. Residuals of linear regression lines have normal distribution, with an SD of 0.1 log units for amplitude and 0.019 log units for phase. Age-corrected confidence limits (P<0.05) are defined as ±2 SD of residuals. Conclusions The PERGLA paradigm yields responses as reliable as the best previously reported using standard protocols. The ease of execution and interpretation of results of PERGLA indicate a potential value for objective screening and follow-up of glaucoma. PMID:14711729

  16. CBF measured by Xe-CT: Approach to analysis and normal values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonas, H.; Darby, J.M.; Marks, E.C.

    1991-09-01

    Normal reference values and a practical approach to CBF analysis are needed for routine clinical analysis and interpretation of xenon-enhanced computed tomography (CT) CBF studies. The authors measured CBF in 67 normal individuals with the GE 9800 CT scanner adapted for CBF imaging with stable Xe. CBF values for vascular territories were systematically analyzed using the clustering of contiguous 2-cm circular regions of interest (ROIs) placed within the cortical mantle and basal ganglia. Mixed cortical flows averaged 51 {plus minus} 10ml.100g-1.min-1. High and low flow compartments, sampled by placing 5-mm circular ROIs in regions containing the highest and lowest flowmore » values in each hemisphere, averaged 84 {plus minus} 14 and 20 {plus minus} 5 ml.100 g-1.min-1, respectively. Mixed cortical flow values as well as values within the high flow compartment demonstrated significant decline with age; however, there were no significant age-related changes in the low flow compartment. The clustering of systematically placed cortical and subcortical ROIs has provided a normative data base for Xe-CT CBF and a flexible and uncomplicated method for the analysis of CBF maps generated by Xe-enhanced CT.« less

  17. Recombinational inactivation of the gene encoding nitrate reductase in Aspergillus parasiticus.

    PubMed Central

    Wu, T S; Linz, J E

    1993-01-01

    Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8215371

  18. Spatial Relation Between Left Atrial Anatomical Contact Areas and Circular Activation in Persistent Atrial Fibrillation.

    PubMed

    Nakahara, Shiro; Yamaguchi, Takanori; Hori, Yuichi; Anjo, Naofumi; Hayashi, Akiko; Kobayashi, Sayuki; Komatsu, Takaaki; Sakai, Yoshihiko; Fukui, Akira; Tsuchiya, Takeshi; Taguchi, Isao

    2016-05-01

    Atrial low-voltage zones (LVZs) may be related to maintenance of atrial fibrillation (AF). The influence of left atrial (LA) contact areas (CoAs) on reentrant or rotor-like sources maintaining AF has not been investigated. Forty patients with persistent AF (PsAF) were analyzed. Three representative CoA regions in the LA (ascending aorta: anterior wall; descending aorta: left inferior pulmonary vein; and vertebrae: posterior wall) were visualized by enhanced CT. Using circular catheters, the LVZs (<0.5 mV) were assessed after restoration of SR, and local activation mapping and frequency domain analyses were performed after induction of AF. Circular activation during AF was visually defined as sites with ≥2 rotations by serial electrograms encompassing >80% of the mean AF cycle length. A pivot was defined as the core of the localized circular activation. Anterior (39/40 patients, 98%), left pulmonary vein antrum (27/40, 68%), and posterior (19/40, 48%) CoAs were identified, and 80% (68/85) of those sites were overlapped by or close (<3 mm) to LVZs. Thirty-six (90%) patients demonstrated circular activation (3.1±1.7 sites/patients) along with significantly higher organized dominant frequencies (6.3 ± 0.5 Hz, regularity-index: 0.26 [0.23-0.41]) within the LA, and the average electrogram amplitude of those pivots was 0.30 mV (0.18-0.52). Of those sites, 55% (66/120) were located at or close to CoA regions. Catheter ablation including of LVZs neighboring CoAs terminated AF in 9 (23%) patients. External anatomical structures contacting the LA may be related to unique conduction properties in diseased myocardium necessary for PsAF maintenance. © 2016 Wiley Periodicals, Inc.

  19. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  20. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.

    PubMed

    von Boehn, B; Preiss, A; Imbihl, R

    2016-07-20

    Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2.

  1. Strong-field approximation in a rotating frame: High-order harmonic emission from p states in bicircular fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Jiménez-Galán, Álvaro

    2017-12-01

    High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium and a larger one in neon and argon, where the emission is carried out by p -shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the p + orbital that corotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s -shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism.

  2. Active buckling control of a beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Götz, Benedict; Platz, Roland

    2016-06-01

    Buckling of slender beam-columns subject to axial compressive loads represents a critical design constraint for light-weight structures. Active buckling control provides a possibility to stabilize slender beam-columns by active lateral forces or bending moments. In this paper, the potential of active buckling control of an axially loaded beam-column with circular solid cross-section by piezo-elastic supports is investigated experimentally. In the piezo-elastic supports, lateral forces of piezoelectric stack actuators are transformed into bending moments acting in arbitrary directions at the beam-column ends. A mathematical model of the axially loaded beam-column is derived to design an integral linear quadratic regulator (LQR) that stabilizes the system. The effectiveness of the stabilization concept is investigated in an experimental test setup and compared with the uncontrolled system. With the proposed active buckling control it is possible to stabilize the beam-column in arbitrary lateral direction for axial loads up to the theoretical critical buckling load of the system.

  3. Spin-dependent post-Newtonian parameters from EMRI computation in Kerr background

    NASA Astrophysics Data System (ADS)

    Friedman, John; Le Tiec, Alexandre; Shah, Abhay

    2013-04-01

    Because the extreme mass-ratio inspiral (EMRI) approximation is accurate to all orders in v/c, it can be used to find high order post-Newtonian parameters that are not yet analytically accessible. We report here on progress in computing spin-dependent, conservative, post-Newtonian parameters from a radiation-gauge computation for a particle in circular orbit in a family of Kerr geometries. For a particle with 4-velocity u^α= U k^α, with k^α the helical Killing vector of the perturbed spacetime, the renormalized perturbation δU, when written as a function of the particle's angular velocity, is invariant under gauge transformations generated by helically symmetric vectors. The EMRI computations are done in a modified radiation gauge. Extracted parameters are compared to previously known and newly computed spin-dependent post-Newtonian terms. This work is modeled on earlier computations by Blanchet, Detweiler, Le Tiec and Whiting of spin-independent terms for a particle in circular orbit in a Schwarzschild geometry.

  4. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  5. Optical Activity of Benzil Crystal

    NASA Astrophysics Data System (ADS)

    Říha, Jan; Vyšín, Ivo

    2003-09-01

    Optical activity of benzil as an example of optically active matter in the crystalline state only, not in solution, is studied for the wavelengths ranging from 0.320 m to 0.585 m. Previously measured experimental data are approximated by the theoretical set of formulas, which were derived by the use of the three coupled oscillators model. The earlier published formula consisting of six terms differed from the experimental data particularly in the wavelength region (0.380-0.510) m. This formula is replaced by the twelve-term formula which was computed by our specially worked computer program for the interpretation of the experimental data of optical activity based on the Marquardt-Levenberg method of the sum of least squares minimization. The possibility of molecular contribution to the resulting optical activity of benzil is mentioned. The use of Kramers-Kronig transforms for the determination of the circular dichroism curve based on the optical rotatory dispersion result is shown. The theoretically computed circular dichroism is compared with the available experimental data.

  6. Artificial plasmid labeled with 5-bromo-2'-deoxyuridine: a universal molecular system for strand break detection.

    PubMed

    Zylicz-Stachula, Agnieszka; Polska, Katarzyna; Skowron, Piotr; Rak, Janusz

    2014-07-07

    DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5-bromo-2'-deoxyuridine and to assay SBs photoinduced in the synthesized plasmid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conformation study of HA(306-318) antigenic peptide of the haemagglutinin influenza virus protein

    NASA Astrophysics Data System (ADS)

    Bertrand, A.; Brito, R. M.; Alix, A. J. P.; Lancelin, J. M.; Carvalho, R. A.; Geraldes, C. F. G. C.; Lakhdar-Ghazal, F.

    2006-11-01

    Several HLA-DR alleles present the immunodominant HA(306-318) peptide of haemagglutinin of the influenza virus to T cells. NMR data of the peptide in various water solutions exclude any α-helix or turn conformations. Circular dichroism and Fourier transform infrared spectroscopies indicate an estimated β-extended structure in water of 31% and 28%, respectively, with spectra shape similar to the ones observed for β-sheet containing proteins. The H/D amide exchange suggests a stable length-dependent interchain hydrogen-bonding. The partially β-extended conformation of HA(306-318) in solution might be close to the one found in HA(306-318)-HLA-DR1 complex. These results suggest different interconverting extended conformations of HA(306-318), depending on the microenvironment of the solution medium. This flexibility emphasizes the ability of some peptides to fit more easily the binding site of several HLA-DR molecules. Similar results were obtained on the HIV P25(263-277) peptide which has been previously shown to be a good DR1 binder. From a vibrational point of view, infrared Amide I frequencies of secondary structures in peptides were ascertained. As previously demonstrated for proteins in solution, Fourier transform infrared and circular dichroism spectroscopies appear to be valuable tools for conformational properties of peptides. Their use may contribute to the detection of peptide conformation-binding relationship which has to be further tested by biochemical and biological studies.

  8. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition

    NASA Astrophysics Data System (ADS)

    Pelt, Daniël M.; Parkinson, Dilworth Y.

    2018-03-01

    In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.

  9. A Missing Element in Migration Theories.

    PubMed

    Massey, Douglas S

    2015-09-01

    From the mid-1950s through the mid1980s, migration between Mexico and the United States constituted a stable system whose contours were shaped by social and economic conditions well-theorized by prevailing models of migration. It evolved as a mostly circular movement of male workers going to a handful of U.S. states in response to changing conditions of labor supply and demand north and south of the border, relative wages prevailing in each nation, market failures and structural economic changes in Mexico, and the expansion of migrant networks following processes specified by neoclassical economics, segmented labor market theory, the new economics of labor migration, social capital theory, world systems theory, and theoretical models of state behavior. After 1986, however, the migration system was radically transformed, with the net rate of migration increasing sharply as movement shifted from a circular flow of male workers going a limited set of destinations to a nationwide population of settled families. This transformation stemmed from a dynamic process that occurred in the public arena to bring about an unprecedented militarization of the Mexico-U.S. border, and not because of shifts in social, economic, or political factors specified in prevailing theories. In this paper I draw on earlier work to describe that dynamic process and demonstrate its consequences, underscoring the need for greater theoretical attention to the self-interested actions of politicians, pundits, and bureaucrats who benefit from the social construction and political manufacture of immigration crises when none really exist.

  10. A Missing Element in Migration Theories

    PubMed Central

    Massey, Douglas S.

    2016-01-01

    From the mid-1950s through the mid1980s, migration between Mexico and the United States constituted a stable system whose contours were shaped by social and economic conditions well-theorized by prevailing models of migration. It evolved as a mostly circular movement of male workers going to a handful of U.S. states in response to changing conditions of labor supply and demand north and south of the border, relative wages prevailing in each nation, market failures and structural economic changes in Mexico, and the expansion of migrant networks following processes specified by neoclassical economics, segmented labor market theory, the new economics of labor migration, social capital theory, world systems theory, and theoretical models of state behavior. After 1986, however, the migration system was radically transformed, with the net rate of migration increasing sharply as movement shifted from a circular flow of male workers going a limited set of destinations to a nationwide population of settled families. This transformation stemmed from a dynamic process that occurred in the public arena to bring about an unprecedented militarization of the Mexico-U.S. border, and not because of shifts in social, economic, or political factors specified in prevailing theories. In this paper I draw on earlier work to describe that dynamic process and demonstrate its consequences, underscoring the need for greater theoretical attention to the self-interested actions of politicians, pundits, and bureaucrats who benefit from the social construction and political manufacture of immigration crises when none really exist. PMID:27398085

  11. Near-limit propagation of gaseous detonations in narrow annular channels

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  12. Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks

    PubMed Central

    Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.

    2011-01-01

    Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616

  13. Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun

    2017-02-01

    This study examines the seasonality and nonstationarity in the timing of extreme precipitation obtained by annual maximum (AM) sampling and peak-over-threshold (POT) sampling techniques using circular statistics. Daily precipitation data from 728 stations with record length of at least 55 years across China were analyzed. In general, the average seasonality is subject mainly to summer season (June-July - August), which is potentially related to East Asian monsoon and Indian monsoon activities. The strength of precipitation seasonality varied across China with the highest strength being in northeast, north, and central-north China; whereas the weakest seasonality was found in southeast China. There are three seasonality types: circular uniform, reflective symmetric, and asymmetric. However, the circular uniform seasonality of extreme precipitation was not detected at stations across China. The asymmetric distribution was observed mainly in southeast China, and the reflective distribution of precipitation extremes was also identified the other regions besides the above-mentioned regions. Furthermore, a strong signal of nonstationarity in the seasonality was detected at half of the weather stations considered in the study, exhibiting a significant shift in the timing of extreme precipitation, and also significant trends in the average and strength of seasonality. Seasonal vapor flux and related delivery pathways and also tropical cyclones (TCs) are most probably the driving factors for the shifts or changes in the seasonality of extreme precipitation across China. Timing of precipitation extremes is closely related to seasonal shifts of floods and droughts and which means much for management of agricultural irrigation and water resources management. This study sheds new light on nonstationarity in timing of precipitation extremes which differs from existing ones which focused on precipitation extremes from perspective of magnitude and intensity.

  14. Small Scale Gasification Application and Perspectives in Circular Economy

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  15. Elastic interactions of a fatigue crack with a micro-defect by the mixed boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Lua, Yuan J.; Liu, Wing K.; Belytschko, Ted

    1993-01-01

    In this paper, the mixed boundary integral equation method is developed to study the elastic interactions of a fatigue crack and a micro-defect such as a void, a rigid inclusion or a transformation inclusion. The method of pseudo-tractions is employed to study the effect of a transformation inclusion. An enriched element which incorporates the mixed-mode stress intensity factors is applied to characterize the singularity at a moving crack tip. In order to evaluate the accuracy of the numerical procedure, the analysis of a crack emanating from a circular hole in a finite plate is performed and the results are compared with the available numerical solution. The effects of various micro-defects on the crack path and fatigue life are investigated. The results agree with the experimental observations.

  16. Parallel approach on sorting of genes in search of optimal solution.

    PubMed

    Kumar, Pranav; Sahoo, G

    2018-05-01

    An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A Study of Derivative Filters Using the Discrete Fourier Transform. Final Report M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.

    1980-01-01

    Important properties of derivative (difference) filters using the discrete Fourier transform are investigated. The filters are designed using the derivative theorem of Fourier analysis. Because physical data are generally degraded by noise, the derivative filter is modified to diminish the effects of the noise, especially the noise amplification which normally occurs while differencing. The basis for these modifications is the reduction of those Fourier components for which the noise most dominates the data. The various filters are tested by applying them to find differences of two-dimensional data to which various amounts of signal dependent noise, as measured by a root mean square value, have been added. The modifications, circular and square ideal low-pass filters and a cut-off pyramid filter, are all found to reduce noise in the derivative without significantly degrading the result.

  18. Numerical Aspects of Cone Beam Contour Reconstruction

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2017-12-01

    We describe a method for directly calculating the contours of a function from cone beam data. The algorithm is based on a new inversion formula for the gradient of a function presented in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005). The Radon transform of the gradient is found by using a Grangeat type of formula, reducing the inversion problem to the inversion of the Radon transform. In that way the influence of the scanning curve, vital for all exact inversion formulas for complete data, is avoided Numerical results are presented for the circular scanning geometry which neither fulfills the Tuy-Kirillov condition nor the much weaker condition given by the author in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005).

  19. Applications Guide for Propagation and Interference Analysis Computer Programs (0.1 to 20 GHz)

    DTIC Science & Technology

    1978-03-01

    146 A33 average ground . . . . . .. ....... 147 A34 good ground . . . ........ . . . .. 148 A35 sea water . ..................... 149 A36...fresh water . . . . . . . . . . . . 150 A37 smooth plains ........ ......... . 152 A38 rolling plains .................... 153 A39 hills . s...sec. 4.1), e) circular polarization [25, sec. 3.5], f) frequency and temperature variations of the complex dielectric constant of water [25, sec

  20. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  1. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  2. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  3. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Arshad, Haslina; Mandeep, J. S.; Misran, N.

    2014-01-01

    Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink. PMID:24982943

  4. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi

    2012-11-28

    This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.

  5. SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiktorowicz, Sloane J.; Nofi, Larissa A., E-mail: sloanew@ucolick.org

    From a single 3.8 hr observation of the asteroid (4) Vesta at 13.°7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ΔP = (294 ± 35) × 10{sup −6} (ppm) and time-averaged ΔP/P = 0.0575 ± 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12σ confidence and observed solelymore » in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1σ upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.« less

  6. Supraperitoneal colorectal anastomosis: hand-sewn versus circular staples--a controlled clinical trial. French Associations for Surgical Research.

    PubMed

    Fingerhut, A; Hay, J M; Elhadad, A; Lacaine, F; Flamant, Y

    1995-09-01

    Although used widely for supraperitoneal anastomoses, circular stapled anastomoses have never been proved better than hand-sewn anastomoses. In the one prospective controlled trial that studied these anastomoses specifically, the only significant difference found was that there were more clinically obvious leakages with the circular stapled variety, but not in the overall clinical and roentgenologic leakage rates. One hundred fifty-nine consecutive patients (88 men and 71 women, mean age 65.8 +/- 12.1 years) were randomized to undergo hand-sewn (n = 74) or circular stapled (n = 85) supraperitoneal colorectal anastomosis after left colectomy. Patient demographics were similar in both groups. Overall mortality was 1.3% (2 of 159; one in each group). No statistically significant difference (NS) was found in the rate of early complications, including anastomotic leakage (4 of 74 versus 6 of 85) in the hand-sewn and stapled anastomoses, respectively). Mishaps (n = 10) and hemorrhage (n = 5) occurred in the stapled group only. Stapled anastomoses took an average of 8 minutes less to perform (p < 0.001), but this time gain did not significantly influence the overall duration of operation (identical median times). The median duration of hospitalization was 13 and 14 days, respectively (NS). At 8 months there were 2 of 74 strictures in the hand-sewn group and 4 of 85 strictures in the stapled group (NS). According to these results, there seems to be no advantage of routine or regular use of stapling instruments for supraperitoneal colorectal anastomosis.

  7. A new approach to umbilical hernia repair: the circular suture technique for defects less than 2 cm.

    PubMed

    Yıldız, Ihsan; Koca, Yavuz Savas

    2017-01-01

    Umbilical hernia, unlike other abdominal wall hernias, occurs when the umbilical ring opens and expands. Its' symptoms and complications show similarities with other hernias. Although there are various repair techniques, there is not a standard technique yet. This paper investigated the outcomes of double layer circular suture technique as a new approach in the repair of umbilical hernia. A total number of 282 patients comprised of 102 males and 180 females with an age range of 18-89 whose umbilical hernias were repaired between 2002 and 2013, retrospectively studied in two groups group 1 (circular suture technique) and group 2 (open primary suture). The subjects were investigated with regards to age, sex, body mass index (BMI), accompanying disease, anesthesia method, surgical complications, hospital stay, total costs, mortality and recurrence. The study participants were 282 patients with an age average of 49, 09 ± 16, 62 including 182 patients in group 1 (male/female ratio 76/106) and 100 patients in group 2 (26/74). There was a significant difference between the groups in terms of time and recurrence. During the follow-up period, 9 patients in group 1 (4.94%) and 16 patients in group 2 (16%) had a recurrence. This result was statistically significant (p=0.014) CONCLUSION: We believe that the double layer circular suture technique is practical, inexpensive and effective in the repair of umbilical hernia defects, which are smaller than 2 cm diameter. Key words: Hernia, Repair, Umbilical hernia.

  8. PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

    DTIC Science & Technology

    2016-12-22

    23 6 Band-averaged radiance image with checkerboard is shown in the upper left. The 2-D Fourier transform of the image is...red is 1) that is multiplied by the Fourier transform of the original image. The inverse Fourier transform is then taken to get the final image with...Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IFTS Imaging Fourier Transform Spectrometer

  9. Computation of Sound Generated by Flow Over a Circular Cylinder: An Acoustic Analogy Approach

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Cox, Jared S.; Rumsey, Christopher L.; Younis, Bassam A.

    1997-01-01

    The sound generated by viscous flow past a circular cylinder is predicted via the Lighthill acoustic analogy approach. The two dimensional flow field is predicted using two unsteady Reynolds-averaged Navier-Stokes solvers. Flow field computations are made for laminar flow at three Reynolds numbers (Re = 1000, Re = 10,000, and Re = 90,000) and two different turbulent models at Re = 90,000. The unsteady surface pressures are utilized by an acoustics code that implements Farassat's formulation 1A to predict the acoustic field. The acoustic code is a 3-D code - 2-D results are found by using a long cylinder length. The 2-D predictions overpredict the acoustic amplitude; however, if correlation lengths in the range of 3 to 10 cylinder diameters are used, the predicted acoustic amplitude agrees well with experiment.

  10. Downstream migration of recently transformed sea lampreys before and after treatment of a Lake Michigan tributary with a lampricide

    USGS Publications Warehouse

    Hodges, John W.

    1972-01-01

    After the Pere Marquette River was treated with a lampricide in May 1964, the number of recently transformed sea lampreys (Petromyzon marinus) collected in the water-intake structure of a chemical plant near the mouth of the stream dropped 99.5%, from 13,913 (average for 1962-63 and 1963-64) to 76 (average for the next four migration seasons). Average length of the lampreys caught increased markedly after the treatment. In five of the six migration seasons, the catch of downstream migrants was higher in the fall than in the spring.

  11. Statistics based sampling for controller and estimator design

    NASA Astrophysics Data System (ADS)

    Tenne, Dirk

    The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.

  12. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  13. Chirality sensing with stereodynamic biphenolate zinc complexes.

    PubMed

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.

  14. The Linear Perturbation Theory of Axially Symmetric Compressible Flow with Application to the Effect of Compressibility on the Pressure Coefficient at the Surface of a Body of Revolution

    DTIC Science & Technology

    1947-07-18

    which + la constant constitute a surface vhlch say he called a streaa surface. The stream surface Is In torn Bode up of streaallnee. If a...potential and stream function would be, reapeetHely, VpX and ia ^r8. The stream awfaeoa would he right circular cylinders with axes along the x...there is a double infinity of methods. In general, !n transforming frem the compreeslhlo-flov field to the IncrwpreSBlble-flow field, streaa

  15. Unitary circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. The origin of this circular code X in genes is an open problem since its discovery in 1996. Here, we first show that the unitary circular codes (UCC), i.e. sets of one word, allow to generate unitary circular code motifs (UCC motifs), i.e. a concatenation of the same motif (simple repeats) leading to low complexity DNA. Three classes of UCC motifs are studied here: repeated dinucleotides (D + motifs), repeated trinucleotides (T + motifs) and repeated tetranucleotides (T + motifs). Thus, the D + , T + and T + motifs allow to retrieve, synchronize and maintain a frame modulo 2, modulo 3 and modulo 4, respectively, and their shifted frames (1 modulo 2; 1 and 2 modulo 3; 1, 2 and 3 modulo 4 according to the C 2 , C 3 and C 4 properties, respectively) in the DNA sequences. The statistical distribution of the D + , T + and T + motifs is analyzed in the genomes of eukaryotes. A UCC motif and its comp lementary UCC motif have the same distribution in the eukaryotic genomes. Furthermore, a UCC motif and its complementary UCC motif have increasing occurrences contrary to their number of hydrogen bonds, very significant with the T + motifs. The longest D + , T + and T + motifs in the studied eukaryotic genomes are also given. Surprisingly, a scarcity of repeated trinucleotides (T + motifs) in the large eukaryotic genomes is observed compared to the D + and T + motifs. This result has been investigated and may be explained by two outcomes. Repeated trinucleotides (T + motifs) are identified in the X motifs of low composition (cardinality less than 10) in the genomes of eukaryotes. Furthermore, identical trinucleotide pairs of the circular code X are preferentially used in the gene sequences of eukaryotes. These two results suggest that the unitary circular codes of trinucleotides may have been involved in the formation of the trinucleotide circular code X. Indeed, repeated trinucleotides in the X motifs in the genomes of eukaryotes may represent an intermediary evolution from repeated trinucleotides of cardinality 1 (T + motifs) in the genomes of eukaryotes up to the X motifs of cardinality 20 in the gene sequences of eukaryotes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  17. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  18. A Method to Overcome Space Charge at Injection

    NASA Astrophysics Data System (ADS)

    Derbenev, Ya.

    2005-06-01

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically. After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.

  19. Digital hologram transformations for RGB color holographic display with independent image magnification and translation in 3D.

    PubMed

    Makowski, Piotr L; Zaperty, Weronika; Kozacki, Tomasz

    2018-01-01

    A new framework for in-plane transformations of digital holograms (DHs) is proposed, which provides improved control over basic geometrical features of holographic images reconstructed optically in full color. The method is based on a Fourier hologram equivalent of the adaptive affine transformation technique [Opt. Express18, 8806 (2010)OPEXFF1094-408710.1364/OE.18.008806]. The solution includes four elementary geometrical transformations that can be performed independently on a full-color 3D image reconstructed from an RGB hologram: (i) transverse magnification; (ii) axial translation with minimized distortion; (iii) transverse translation; and (iv) viewing angle rotation. The independent character of transformations (i) and (ii) constitutes the main result of the work and plays a double role: (1) it simplifies synchronization of color components of the RGB image in the presence of mismatch between capture and display parameters; (2) provides improved control over position and size of the projected image, particularly the axial position, which opens new possibilities for efficient animation of holographic content. The approximate character of the operations (i) and (ii) is examined both analytically and experimentally using an RGB circular holographic display system. Additionally, a complex animation built from a single wide-aperture RGB Fourier hologram is presented to demonstrate full capabilities of the developed toolset.

  20. Reliability Analysis and Reliability-Based Design Optimization of Circular Composite Cylinders Under Axial Compression

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    2001-01-01

    This report describes the preliminary results of an investigation on component reliability analysis and reliability-based design optimization of thin-walled circular composite cylinders with average diameter and average length of 15 inches. Structural reliability is based on axial buckling strength of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered for reliability analysis with the latter incorporated into the reliability-based structural optimization problem. To improve the efficiency of reliability sensitivity analysis and design optimization solution, the buckling strength of the cylinder is estimated using a second-order response surface model. The sensitivity of the reliability index with respect to the mean and standard deviation of each random variable is calculated and compared. The reliability index is found to be extremely sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder diameter was found to have the third highest impact on the reliability index. Also the uncertainty in the applied load, captured by examining different values for its coefficient of variation, is found to have a large influence on cylinder reliability. The optimization problem for minimum weight is solved subject to a design constraint on element reliability index. The methodology, solution procedure and optimization results are included in this report.

  1. Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan

    2017-11-01

    We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.

  2. AMD-stability in the presence of first-order mean motion resonances

    NASA Astrophysics Data System (ADS)

    Petit, A. C.; Laskar, J.; Boué, G.

    2017-11-01

    The angular momentum deficit (AMD)-stability criterion allows to discriminate between a priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the AMD in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first-order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first-order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first-order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopædia.

  3. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    PubMed

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.

  4. Survey of residential 50 Hz EMF exposure from transformer stations.

    PubMed

    Szabó, Judit; Jánossy, Gábor; Thuróczy, György

    2007-01-01

    In Hungary it is typical that 10/04 kV transformer stations are being installed in multistory residential and office buildings. Magnetic fields (MFs) up to several tens of microT have been measured in apartments close to transformers. The aim of the present study was to provide systematic assessment of MF exposure of residents living above transformer stations. Out of 41 addresses provided by the electricity supplier, current load of 21 transformers and MF in 21 apartments was measured. Spot MFs at 1 m height and time weighted average 24 h MF exposure at bed height was measured. All-day personal MF exposure was measured at waist and HOME exposure was calculated. BED exposure was measured at bed height. Participants kept a time-activity diary. The time-weighted average 24 h MF exposure (3.03 microT) exceeded the usual residential exposure (<0.2 microT). The mean HOME and BED personal exposure above transformers was 0.825 and 1.033 microT, respectively. Our study provides exposure assessment of a cohort with a wider exposure range, compared to power-line epidemiological studies.

  5. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  6. Influence of non-integer-order derivatives on unsteady unidirectional motions of an Oldroyd-B fluid with generalized boundary conditions

    NASA Astrophysics Data System (ADS)

    Zafar, A. A.; Riaz, M. B.; Shah, N. A.; Imran, M. A.

    2018-03-01

    The objective of this article is to study some unsteady Couette flows of an Oldroyd-B fluid with non-integer derivatives. The fluid fills an annular region of two infinite co-axial circular cylinders. Flows are due to the motion of the outer cylinder, that rotates about its axis with an arbitrary time-dependent velocity while the inner cylinder is held fixed. Closed form solutions of dimensionless velocity field and tangential tension are obtained by means of the finite Hankel transform and the theory of Laplace transform for fractional calculus. Several results in the literature including the rotational flows through an infinite cylinder can be obtained as limiting cases of our general solutions. Finally, the control of the fractional framework on the dynamics of fluid is analyzed by numerical simulations and graphical illustrations.

  7. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  8. Potential-field sounding using Euler's homogeneity equation and Zidarov bubbling

    USGS Publications Warehouse

    Cordell, Lindrith

    1994-01-01

    Potential-field (gravity) data are transformed into a physical-property (density) distribution in a lower half-space, constrained solely by assumed upper bounds on physical-property contrast and data error. A two-step process is involved. The data are first transformed to an equivalent set of line (2-D case) or point (3-D case) sources, using Euler's homogeneity equation evaluated iteratively on the largest residual data value. Then, mass is converted to a volume-density product, constrained to an upper density bound, by 'bubbling,' which exploits circular or radial expansion to redistribute density without changing the associated gravity field. The method can be developed for gravity or magnetic data in two or three dimensions. The results can provide a beginning for interpretation of potential-field data where few independent constraints exist, or more likely, can be used to develop models and confirm or extend interpretation of other geophysical data sets.

  9. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    PubMed

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  10. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    NASA Technical Reports Server (NTRS)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  11. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  12. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  13. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  14. Design of a Lossless Image Compression System for Video Capsule Endoscopy and Its Performance in In-Vivo Trials

    PubMed Central

    Khan, Tareq H.; Wahid, Khan A.

    2014-01-01

    In this paper, a new low complexity and lossless image compression system for capsule endoscopy (CE) is presented. The compressor consists of a low-cost YEF color space converter and variable-length predictive with a combination of Golomb-Rice and unary encoding. All these components have been heavily optimized for low-power and low-cost and lossless in nature. As a result, the entire compression system does not incur any loss of image information. Unlike transform based algorithms, the compressor can be interfaced with commercial image sensors which send pixel data in raster-scan fashion that eliminates the need of having large buffer memory. The compression algorithm is capable to work with white light imaging (WLI) and narrow band imaging (NBI) with average compression ratio of 78% and 84% respectively. Finally, a complete capsule endoscopy system is developed on a single, low-power, 65-nm field programmable gate arrays (FPGA) chip. The prototype is developed using circular PCBs having a diameter of 16 mm. Several in-vivo and ex-vivo trials using pig's intestine have been conducted using the prototype to validate the performance of the proposed lossless compression algorithm. The results show that, compared with all other existing works, the proposed algorithm offers a solution to wireless capsule endoscopy with lossless and yet acceptable level of compression. PMID:25375753

  15. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    PubMed

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  16. The Impact of In Vitro Accelerated Aging, Approximating 30 and 60 Years In Vivo, on Commercially Available Zirconia Dental Implants.

    PubMed

    Monzavi, Mona; Noumbissi, Sammy; Nowzari, Hessam

    2017-04-01

    Despite increased popularity of Zirconia dental implants, concerns have been raised regarding low temperature degradation (LTD) and its effect on micro-structural integrity. This study evaluated the effect of LTD on four types of Zirconia dental implants at 0, 30, and 60 years of artificial aging. The impact of aging on t-m transformation and micro crack formation was measured. Accelerated aging at 15 and 30 hours, approximating 30 and 60 years in vivo, aged 36 Zirconia dental implants: Z systems ® (A), Straumann ® (B), Ceraroot ® (C), and Zeramex ® (D). Focused ion beam-scanning electron microscopic analysis determined the micro structural features, phase transformation, and the formation of micro cracks. At 15 hours, type A implant presented with micro cracks and t-m transformation of 0.9 µm and 3.1 µm, respectively. At 30 hours, micro cracks remained shallow (1 µm). At 15 hours, type B implant presented micro cracks (0.7 µm) and grain transformation (1.2 µm). At 30 hours, these features remained superficial at 0.6 and 1.5 µm, respectively. Type C implant presented surface micro cracks of 0.3 µm at 15 hours. The depth of t-m transformation slightly increased to 1.4 µm. At 30 hours, number of micro cracks increased at the surface to an average depth of 1.5 µm. Depth of t-m transformation increased to an average of 2.5 µm. At 15 hours, micro cracks remained superficial (0.8 µm) for type D implant and depth of t-m transformation increased to 2.3 µm. At 30 hours, the depth of micro cracks increased to an average of 1.3 µm followed by increased t-m transformation to a depth of 4.1 µm. Depth of grain transformation remained within 1-4 µm from the surface. The effect of aging was minimal for all Zirconia implants. © 2016 Wiley Periodicals, Inc.

  17. Novel utilisation of a circular multi-reflection cell applied to materials ageing experiments

    NASA Astrophysics Data System (ADS)

    Knox, D. A.; King, A. K.; McNaghten, E. D.; Brooks, S. J.; Martin, P. A.; Pimblott, S. M.

    2015-04-01

    We report on the novel utilisation of a circular multi-reflection (CMR) cell applied to materials ageing experiments. This enabled trace gas detection within a narrow interfacial region located between two sample materials and remotely interrogated with near-infrared sources combined with fibre-optic coupling. Tunable diode laser absorption spectroscopy was used to detect water vapour and carbon dioxide at wavelengths near 1,358 and 2,004 nm, respectively, with corresponding detection limits of 7 and 1,139 ppm m Hz-0.5. The minimum detectable absorption was estimated to be 2.82 × 10-3 over a 1-s average. In addition, broadband absorption spectroscopy was carried out for the detection of acetic acid, using a super-luminescent light emitting diode centred around 1,430 nm. The 69 cm measurement pathlength was limited by poor manufacturing tolerances of the spherical CMR mirrors and the consequent difficulty of collecting all the cell output light.

  18. MHD oscillations observed in the solar photosphere with the Michelson Doppler Imager

    NASA Astrophysics Data System (ADS)

    Norton, A.; Ulrich, R. K.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.

    Magnetohydrodynamic oscillations are observed in the solar photosphere with the Michelson Doppler Imager (MDI). Images of solar surface velocity and magnetic field strength with 4'' spatial resolution and a 60 second temporal resolution are analyzed. A two dimensional gaussian aperture with a FWHM of 10'' is applied to the data in regions of sunspot, plage and quiet sun and the resulting averaged signal is returned each minute. Significant power is observed in the magnetic field oscillations with periods of five minutes. The effect of misregistration between MDI's left circularly polarized (LCP) and right circularly polarized (RCP) images has been investigated and is found not to be the cause of the observed magnetic oscillations. It is assumed that the large amplitude acoustic waves with 5 minute periods are the driving mechanism behind the magnetic oscillations. The nature of the magnetohydrodynamic oscillations are characterized by their phase relations with simultaneously observed solar surface velocity oscillations.

  19. Influence of non-adiabatic wall conditions on the cross-flow around a circular cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Shafa, K.S.

    1984-02-01

    The drag and heat transfer of a finite length circular cylinder in a cross-flow have been investigated in a wind tunnel at surface-to-freestream temperature ratios from 1.0 to 2.1 for freestream Reynolds numbers of 2.2 x 10/sup 5/ and 4.4 x 10/sup 5/. The measured surface pressures were integrated to determine the effect of cylinder temperature on the drag coefficient, and the average Nusselt number was calculated from the electrical power required to heat the cylinder. For the freestream Reynolds number of 4.4 x 10/sup 5/, the experimental data show that increasing the cylinder temperature caused a reverse-transition from supercriticalmore » to subcritical flow. As a result of the increased size of the low-velocity wake region, C /SUB D/ increased by 21 percent and Nu /SUB d/ decreased by 26 percent.« less

  20. Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Xiangyin

    2010-01-01

    Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.

  1. Study of an array of two circular jets impinging on a flat surface

    NASA Astrophysics Data System (ADS)

    Simionescu, Ştefan-Mugur; Dhondoo, Nilesh; Bălan, Corneliu

    2018-02-01

    In this study, the flow characteristics of an array of two circular, laminar air jets impinging on a smooth solid wall are experimentally and numerically investigated. Direct visualizations using high speed/resolution camera are performed. The evolution of the vortical structures in the area where the jet is deflected from axial to radial direction is emphasized, as well as the interaction between the two jets. A set of CFD numerical simulations in 2D flow domains are performed by using the commercial software Fluent, in the context of Reynolds-averaged Navier-Stokes (RANS) modeling. The numerical resultsare compared and validated with the experiments. The vorticity number is computed and plotted at two different positions from the jet nozzle, and a study of its distribution gives a clue on how the jets are interacting with each other in the proximity of the solid wall.

  2. Flight Investigation at High Speeds of the Drag of Three Airfoils and a Circular Cylinder Representing Full-Scale Propeller Shanks

    NASA Technical Reports Server (NTRS)

    Barlow, William H

    1946-01-01

    Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.

  3. Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Oksana A.; Lin, Chun-Rong; Chen, Hung-Yi; Hsu, Hua-Shu; Shih, Kun-Yauh; Edelman, Irina S.; Wu, Kai-Wun; Tseng, Yaw-Teng; Ovchinnikov, Sergey G.; Lee, Jiann-Shing

    2016-06-01

    Ni0.2Zn0.8Fe2O4 spinel nanoparticles have been synthesized by combustion method. Average particles size varies from 15.5 to 50.0 nm depending on annealing temperature. Correlations between particles size and magnetic and magneto-optical properties are investigated. Magnetization dependences on temperature and external magnetic field correspond to the sum of paramagnetic and superparamagnetic response. Critical size of single-domain transition is found to be 15.9 nm. Magnetic circular dichroism (MCD) studies of nickel zinc spinel are presented here for the first time. The features in magnetic circular dichroism spectrum are assigned to the one-ion d-d transitions in Fe3+ and Ni2+ ions, as well to the intersublattice and intervalence charge transfer transitions. The MCD spectrum rearrangement was revealed with the change of the nanoparticles size.

  4. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is

  5. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    PubMed

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object.

  6. Turbulent flow computation in a circular U-Bend

    NASA Astrophysics Data System (ADS)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  7. Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map

    NASA Astrophysics Data System (ADS)

    Krueger, Wesley

    2007-10-01

    Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.

  8. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  9. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System

    PubMed Central

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-01-01

    We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962

  10. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- andmore » right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.« less

  11. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard

    2008-07-15

    Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less

  12. New Insights into Structure and Luminescence of Eu III and Sm III Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    DOE PAGES

    Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.; ...

    2015-01-21

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M IIIL] - (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu III and Sm III complexes of this ligand undergo a transformation after in situ preparation to yield complexes withmore » higher quantum yield (QY) over time. We propose that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.« less

  13. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  14. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  15. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  16. Energy from Landfill Gas as an Example of Circular Economy

    NASA Astrophysics Data System (ADS)

    Ciuła, Józef; Gaska, Krzysztof; Generowicz, Agnieszka; Hajduga, Gabriela

    2018-02-01

    Landfill biogas becomes an important factor in elimination of fossil fuels as a result of fast- growing use of renewable energy sources. The article presents an analysis of operation of the plant where landfill biogas was utilized for energy production. The average annually (gross) productions of electric energy and heat at the plant were 1217 MWh and 1,789 MW, respectively. The average calorific value of biogas was 17 MJ/m3, which corresponds to 4,8 kW/m3. According to the measurements and actual readings acquired during operation of a cogeneration unit, it can be stated that the CHP system has been working within its average operation limits and still has some power reserves to utilize. Therefore, the authors concluded that a landfill can be operated both as a producer and a supplier of prosumer energy.

  17. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  18. Synthesis and Biological Evaluation of Novel Folic Acid Receptor-Targeted, β-Cyclodextrin-Based Drug Complexes for Cancer Treatment

    PubMed Central

    Yin, Juan-Juan; Sharma, Sonali; Shumyak, Stepan P.; Wang, Zhi-Xin; Zhou, Zhi-Wei; Zhang, Yangde; Guo, Peixuan; Li, Chen-Zhong; Kanwar, Jagat R.; Yang, Tianxin; Mohapatra, Shyam S.; Liu, Wanqing; Duan, Wei; Wang, Jian-Cheng; Li, Qi; Zhang, Xueji; Tan, Jun; Jia, Lee; Liang, Jun; Wei, Ming Q.; Li, Xiaotian; Zhou, Shu-Feng

    2013-01-01

    Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant K a was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer. PMID:23658721

  19. TRREMS procedure (transanal repair of rectocele and rectal mucosectomy with one circular stapler): a prospective multicenter trial.

    PubMed

    Cruz, José Vinicius; Regadas, Francisco Sergio P; Murad-Regadas, Sthela Maria; Rodrigues, Lusmar Veras; Benicio, Fernando; Leal, Rogério; Carvalho, César G; Fernandes, Margarete; Roche, Lucimar M C; Miranda, Antônio Carlos; Câmara, Lucia; Pereira, Joaquim Costa; Parra, Antonio Mallén; Leal, Vilmar Moura

    2011-01-01

    Since anorectocele is usually associated with mucosa prolapse and/or rectal intussusceptions, it was developed a stapled surgical technique using one circular stapler. To report the results of Transanal Repair of Rectocele and Rectal Mucosectomy with one Circular Stapler (TRREMS procedure) in the treatment of anorectocele with mucosa prolapse in a prospective multicenter trial. It was conducted by 14 surgeons and included 75 female patients, mean aged 49.6 years, with symptoms of obstructed defecation due to grade 2 (26.7%) and grade 3 (73.3%) anorectocele associated with mucosa prolapse and/or rectal intussusception (52.0%) and an average validated Wexner constipation score of 16. All patients were evaluated by a proctological examination, cinedefecography, anal manometry and colonic transit time. The TRREMS procedure consists of the manual removal of the rectocele wall with circumferential rectal mucosectomy performed with a circular stapler. The mean follow-up time was 21 months. All patients presented obstructed defecation and they persisted with symptoms despite conservative treatment. The mean operative time was 42 minutes. In 13 (17.3%) patients, bleeding from the stapled line required hemostatic suture. Stapling was incomplete in 2 (2.6%). Forty-nine patients (65.3%) required 1 hospitalization day, the remainder (34.7%) 2 days. Postoperatively, 3 (4.0%) patients complained of persistent rectal pain and 7 (9.3%) developed stricture on the stapled suture subsequently treated by stricturectomy under anesthesia (n = 1), endoscopic stricturectomy with hot biopsy forceps (n = 3) and digital dilatation (n = 3). Postoperative cinedefecography showed residual grade I anorectoceles in 8 (10.6%). The mean Wexner constipation score decreased significantly from 16 to 4 (0-4: n = 68) (6: n = 6) (7: n = 1) (P<0.0001). Current trial results suggest that TRREMS procedure is a safe and effective technique for the treatment of anorectocele associated with mucosa prolapse. The stapling technique is low-cost as requires the use of a single circular stapler.

  20. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inversemore » heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.« less

  1. Does apartment's distance to an in-built transformer room predict magnetic field exposure levels?

    PubMed

    Huss, Anke; Goris, Kelly; Vermeulen, Roel; Kromhout, Hans

    2013-01-01

    It has been shown that magnetic field exposure in apartments located directly on top or adjacent to transformer rooms is higher compared with exposure in apartments located further away from the transformer rooms. It is unclear whether this also translates into exposure contrast among individuals living in these apartments. We performed spot measurements of magnetic fields in 35 apartments in 14 apartment buildings with an in-built transformer and additionally performed 24-h personal measurements in a subsample of 24 individuals. Apartments placed directly on top of or adjacent to a transformer room had on average exposures of 0.42 μT, apartments on the second floor on top of a transformer room, or sharing a corner or edge with the transformer room had 0.11 μT, and apartments located further away from the transformer room had levels of 0.06 μT. Personal exposure levels were approximately a factor 2 lower compared with apartment averages, but still showed exposure contrasts, but only for those individuals who live in the apartments directly on top or adjacent to a transformer room compared with those living further away, with 0.23 versus 0.06 μT for personal exposure when indoors, respectively. A classification of individuals into 'high' and 'low' exposed based on the location of their apartment within a building with an in-built transformer is possible and could be applied in future epidemiological studies.

  2. Linear Transformation of the Polarization Modes in Coiled Optical Spun-Fibers with Strong Unperturbed Linear Birefringence. I. Nonresonant Transformation

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.; Pozdnyakova, V. I.

    2018-03-01

    A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur in the process of linear transformation of local polarization modes, which lead to small quasi-harmonic oscillations of the birefringence integral parameters of the optical spun-fibers, which depend on their length, and the period of these oscillations is approximately equal to half of the effective period of polarization beating.

  3. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  4. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  5. Experimental study of attached splitter plate effects on the wake of a circular cylinder using finite-time Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Brooks, Seth; Green, Melissa

    2017-11-01

    Two-component planar particle image velocimetry (PIV) and surface pressure were used to investigate the effects of an attached splitter plate on the formation and shedding of vortices from a circular cylinder. The instantaneous velocity data is phase averaged using the surface pressure. One of the tools used to visualize and characterize the flow is finite-time Lyapunov exponent (FTLE). This is a Lagrangian technique that identifies local separation. Prior literature shows that the addition of an attached splitter plate alters the classic von Kármán vortex shedding and that splitter plates longer than a certain length suppress the periodic shedding. A separate study proposes that the shedding of a vortex from a circular cylinder is characterized by a hyperbolic saddle leaving the vicinity of the surface and that the shedding time can be identified in real time using a surface pressure. In this study, the effects of splitter plates on the vortex shedding will be investigated where the plate will range in length from 1.5 D to 5.5 D , where D is the diameter of the cylinder. The FTLE and wake structure results will be compared with those found in previous studies that investigated the wake of bluff bodies with and without splitter plates.

  6. The effect of a turbulent wake on the stagnation point. II - Heat transfer results

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Wilson, Dennis E.

    1992-01-01

    A phenomenological model is proposed which relates the effects of freestream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitary two-dimensional geometry, however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.

  7. Synthesis of correlation filters: a generalized space-domain approach for improved filter characteristics

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Mahalanobis, Abhijit; Sundareshan, Malur K.

    1990-12-01

    Discrete frequency domain design of Minimum Average Correlation Energy filters for optical pattern recognition introduces an implementational limitation of circular correlation. An alternative methodology which uses space domain computations to overcome this problem is presented. The technique is generalized to construct an improved synthetic discriminant function which satisfies the conflicting requirements of reduced noise variance and sharp correlation peaks to facilitate ease of detection. A quantitative evaluation of the performance characteristics of the new filter is conducted and is shown to compare favorably with the well known Minimum Variance Synthetic Discriminant Function and the space domain Minimum Average Correlation Energy filter, which are special cases of the present design.

  8. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; Lin, Qiang; Eyyuboğlu, Halil T; Baykal, Yahya

    2008-05-26

    Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence.

  9. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  10. Beamforming strategy of ULA and UCA sensor configuration in multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert

    2009-06-01

    A Beamforming Network (BN) concept of Uniform Linear Array (ULA) and Uniform Circular Array (UCA) dipole configuration designed to multistatic passive radar is considered in details. In the case of UCA configuration, computationally efficient procedure of beamspace transformation from UCA to virtual ULA configuration with omnidirectional coverage is utilized. If effect, the idea of the proposed solution is equivalent to the techniques of antenna array factor shaping dedicated to ULA structure. Finally, exemplary results from the computer software simulations of elaborated spatial filtering solutions to reference and surveillance channels are provided and discussed.

  11. Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.

    1986-01-01

    Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.

  12. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    NASA Astrophysics Data System (ADS)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  13. Extremely low frequency magnetic field measurements in buildings with transformer stations in Switzerland.

    PubMed

    Röösli, Martin; Jenni, Daniela; Kheifets, Leeka; Mezei, Gabor

    2011-08-15

    The aim of this study was to evaluate an exposure assessment method that classifies apartments in three exposure categories of extremely low frequency magnetic fields (ELF-MF) based on the location of the apartment relative to the transformer room. We completed measurements in 39 apartments in 18 buildings. In each room of the apartments ELF-MF was concurrently measured with 5 to 6 EMDEX II meters for 10 min. Measured arithmetic mean ELF-MF was 0.59 μT in 8 apartments that were fully adjacent to a transformer room, either directly above the transformer or touching the transformer room wall-to-wall. In apartments that only partly touched the transformer room at corners or edges, average ELF-MF level was 0.14 μT. Average exposure in the remaining apartments was 0.10 μT. Kappa coefficient for exposure classification was 0.64 (95%-CI: 0.45-0.82) if only fully adjacent apartments were considered as highly exposed (>0.4 μT). We found a distinct ELF-MF exposure gradient in buildings with transformer. Exposure classification based on the location of the apartment relative to the transformer room appears feasible. Such an approach considerably reduces effort for exposure assessment and may be used to eliminate selection bias in future epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks.

    PubMed

    Hewitt, Angela L; Popa, Laurentiu S; Pasalar, Siavash; Hendrix, Claudia M; Ebner, Timothy J

    2011-11-01

    Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of R(adj)(2)), followed by position (28 ± 24% of R(adj)(2)) and speed (11 ± 19% of R(adj)(2)). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower R(adj)(2) values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics.

  15. Electromagnetic pulse distortion in living tissue.

    PubMed

    Lepelaars, E S

    1996-05-01

    Insight into the distortion of electromagnetic (EM) signals in living tissue is important for optimising medical applications. To obtain this insight, field calculations have been carried out for a plane-stratified configuration of air, skin, fat, muscle and bone tissue. In this configuration, an EM field is generated by a prescribed pulsed current in a circular loop. Debye dispersion models have been developed for the description of the permittivity of the tissues. The field problem is solved analytically with the aid of a temporal Fourier transformation and a spatial Hankel transformation. The corresponding inverse transformations have been carried out numerically. To demonstrate the influences of stratification and dispersion separately, the EM fields in the stratified configuration, in a completely muscle-filled space and in vacuum are compared. Two different pulses have been considered; narrow and wide. It emerges that dispersion results in a retardation and an attenuation of the field. Stratification causes additional fluctuations of the time-dependent field. Furthermore, the conductivity of tissue at high frequencies is mainly determined by its water content. Tissues with high water content, like muscle and skin, exhibit higher conductivity at high frequencies than fat and bone. Muscle and skin tissue therefore behave as low-pass filters to EM signals.

  16. Rectification of the chordal axis transform and a new criterion for shape decomposition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Lakshman

    2004-01-01

    In an earlier work we proposed the chordal axis transform (CAT) as a more useful alternative to the medial axis transform (MAT) for obtaining skeletons of discrete shapes. Since then, the CAT has benefited various applications in 2D and 3D shape analysis. In this paper, we revisit the CAT to address its deficiencies that are an artifact of the underlying constrained Delaunay triangulation (CDT). We introduce a valuation on the internal edges of a discrete shape's CDT based on a concept of approximate co-circularity. This valuation provides a basis for suppression of the role of certain edges in the constructionmore » of the CAT skeleton. The result is a rectified CAT skeleton that has smoother branches as well as branch points of varying degrees, unlike the original CAT skeleton whose branches exhibit oscillations in tapered sections of shapes and allows only degree 3 branch points. Additionally, the valuation leads to a new criterion for parsing shapes into visually salient parts that closely resemble the empirical decompositions of shapes by human subjects as recorded in experiments by M. Singh, G. Seyranian, and D. Hoffinan.« less

  17. A Method to Overcome Space Charge at Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Ya.

    2005-06-08

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically.more » After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.« less

  18. A Method to Overcome Space Charge at Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya. Derbenev

    2005-09-29

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically.more » After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.« less

  19. A Rugged Ultra-Wideband (UWB) Circular Planar Monopole for Multichannel Radar

    DTIC Science & Technology

    2016-03-01

    DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response...number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) March 2016 2. REPORT TYPE Final 3. DATES COVERED (From...Prescribed by ANSI Std. Z39.18 Approved for public release; distribution unlimited. iii Contents List of Figures iv Acknowledgments vi 1

  20. PIV measurements of airflow past multiple cylinders

    NASA Astrophysics Data System (ADS)

    Wodziak, Waldemar; Sobczyk, Jacek

    2018-06-01

    Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.

  1. Scale-by-scale energy budgets which account for the coherent motion

    NASA Astrophysics Data System (ADS)

    F, Thiesset; L, Danaila; A, Antonia R.; T, Zhou

    2011-12-01

    Scale-by-scale energy budget equations are written for flows where coherent structures may be prominent. Both general and locally isotropic formulations are provided. In particular, the contribution to the production, diffusion and energy transfer terms associated with the coherent motion is highlighted. Preliminary results are presented in the intermediate wake of a circular cylinder for phase-averaged second-and third-order structure functions. The experimental data provide adequate support for the scale-by-scale budgets.

  2. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  3. Reproductive strategy, spawning induction, spawning temperatures and early life history of captive sicklefin chub Macrhybopsis meeki

    USGS Publications Warehouse

    Albers, Janice; Wildhaber, Mark L.

    2017-01-01

    Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.

  4. A remarkable solvent effect on the nuclearity of neutral titanium(IV)-based helicate assemblies.

    PubMed

    Weekes, David Michael; Diebold, Carine; Mobian, Pierre; Huguenard, Clarisse; Allouche, Lionel; Henry, Marc

    2014-04-22

    The spontaneous self-assembly of a neutral circular trinuclear Ti(IV) -based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n-pentane into a solution with dichloromethane. The circular helicate has been characterized by using single-crystal X-ray diffraction study, (13) C CP-MAS NMR and (1) H NMR DOSY solution spectroscopic, and positive electrospray ionization mass-spectrometric analysis. These analytical data were compared with those obtained from a previously reported double-stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double-stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double-stranded helicates was characterized by ΔH(toluene)=-30 kJ mol(-1) and ΔS(toluene)=+357 J K(-1)  mol(-1) , whereas these values were ΔH(CH2 Cl2 )=-75 kJ mol(-1) and ΔS(CH2 Cl2 )=-37 J K(-1)  mol(-1) for the ring helicate. The transformation of the ring helicate into the double-stranded helicate was a strongly endothermic process characterized by ΔH(CH2 Cl2 )=+127 kJ mol(-1) and ΔH(n-pentane)=+644 kJ mol(-1) associated with a large positive entropy change ΔS=+1115 J K(-1) ⋅mol(-1) . Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n-pentane. Suggestions for increasing the stability of the ring helicate are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    NASA Astrophysics Data System (ADS)

    Echner, G. G.; Kilby, W.; Lee, M.; Earnst, E.; Sayeh, S.; Schlaefer, A.; Rhein, B.; Dooley, J. R.; Lang, C.; Blanck, O.; Lessard, E.; Maurer, C. R., Jr.; Schlegel, W.

    2009-09-01

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris™ variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30° with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is <=0.1 mm at the lower bank, diverging to <=0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption of circular symmetry results in dose calculation errors that are <1 mm or <1% for single beams across the full range of field sizes; errors for multiple non-coplanar beam treatment plans are expected to be smaller. Treatment plans were generated for 19 cases using the Iris Collimator (12 field sizes) and also using one and three fixed collimators. The results of the treatment planning study demonstrate that the use of multiple field sizes achieves multiple plan quality improvements, including reduction of total MU, increase of target volume coverage and improvements in conformality and homogeneity compared with using a single field size for a large proportion of the cases studied. The Iris Collimator offers the potential to greatly increase the clinical application of multiple field sizes for robotic radiosurgery.

  6. The mechanism of transforming diamond nanowires to carbon nanostructures.

    PubMed

    Sorkin, Anastassia; Su, Haibin

    2014-01-24

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of {100} and {111} oriented cross-section with projected average line density between 7 and 20 atoms Å(-1) transform into carbon nanotubes (CNTs) under gradual heating up to 3500-4000 K. DNWs with projected average line density larger than 25 atoms Å(-1) transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with [Formula: see text] oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with 'nano-bookshelf' shape emerges: a number of graphene 'shelves' located inside the CNT, bonding to the CNT walls with sp(3) hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3,000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways.

  7. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    PubMed

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Spanning the scales of mechanical metamaterials using time domain simulations in transformed crystals, graphene flakes and structured soils

    NASA Astrophysics Data System (ADS)

    Aznavourian, Ronald; Puvirajesinghe, Tania M.; Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien

    2017-11-01

    We begin with a brief historical survey of discoveries of quasi-crystals and graphene, and then introduce the concept of transformation crystallography, which consists of the application of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-projection method from periodic structures in higher-dimensional space. We analyze elastic wave propagation in the transformed crystals and (Penrose-type) quasi-crystals with the finite difference time domain freeware SimSonic. We consider geometric transforms underpinning the design of seismic cloaks with square, circular, elliptical and peanut shapes in the context of honeycomb crystals that can be viewed as scaled-up versions of graphene. Interestingly, the use of morphing techniques leads to the design of cloaks with interpolated geometries reminiscent of Victor Vasarely’s artwork. Employing the case of transformed graphene-like (honeycomb) structures allows one to draw useful analogies between large-scale seismic metamaterials such as soils structured with columns of concrete or grout with soil and nanoscale biochemical metamaterials. We further identify similarities in designs of cloaks for elastodynamic and hydrodynamic waves and cloaks for diffusion (heat or mass) processes, as these are underpinned by geometric transforms. Experimental data extracted from field test analysis of soil structured with boreholes demonstrates the application of crystallography to large scale phononic crystals, coined as seismic metamaterials, as they might exhibit low frequency stop bands. This brings us to the outlook of mechanical metamaterials, with control of phonon emission in graphene through extreme anisotropy, attenuation of vibrations of suspension bridges via low frequency stop bands and the concept of transformed meta-cities. We conclude that these novel materials hold strong applications spanning different disciplines or across different scales from biophysics to geophysics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  10. Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

    DOE PAGES

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...

    2016-01-13

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  11. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides.

    PubMed

    Yang, Rui-Nan; Li, Dong-Zhen; Yu, Guangqiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun

    2017-12-01

    In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.

  12. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles.

    PubMed

    Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C

    1994-01-01

    We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.

  13. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  14. The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, Jesús; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.

    2018-03-01

    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.

  15. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience.

    PubMed

    Sikder, Shameema; Luo, Jia; Banerjee, P Pat; Luciano, Cristian; Kania, Patrick; Song, Jonathan C; Kahtani, Eman S; Edward, Deepak P; Towerki, Abdul-Elah Al

    2015-01-01

    To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA) and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia). This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up. Four variables (circularity, accuracy, fluency, and overall) were tested by the simulator and graded on a 0-100 scale. Circularity (42%), accuracy (55%), and fluency (3%) were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement) after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed. An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool.

  16. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  17. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    PubMed

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Computation of Sound Generated by Viscous Flow Over a Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Cox, Jared S.; Rumsey, Christopher L.; Brentner, Kenneth S.; Younis, Bassam A.

    1997-01-01

    The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of 10 cylinder diameters. The two-dimensional unsteady flow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar flow as well as turbulent flow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent flow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.

  19. Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Cox, Jared S.; Brentner, Kenneth S.; Rumsey, Christopher L.; Younis, Bassam A.

    1997-01-01

    The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of ten cylinder diameters. The two- dimensional unsteady ow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar ow as well as turbulent ow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent ow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.

  20. Estimation of scattering object characteristics for image reconstruction using a nonzero background.

    PubMed

    Jin, Jing; Astheimer, Jeffrey; Waag, Robert

    2010-06-01

    Two methods are described to estimate the boundary of a 2-D penetrable object and the average sound speed in the object. One method is for circular objects centered in the coordinate system of the scattering observation. This method uses an orthogonal function expansion for the scattering. The other method is for noncircular, essentially convex objects. This method uses cross correlation to obtain time differences that determine a family of parabolas whose envelope is the boundary of the object. A curve-fitting method and a phase-based method are described to estimate and correct the offset of an uncentered radial or elliptical object. A method based on the extinction theorem is described to estimate absorption in the object. The methods are applied to calculated scattering from a circular object with an offset and to measured scattering from an offset noncircular object. The results show that the estimated boundaries, sound speeds, and absorption slopes agree very well with independently measured or true values when the assumptions of the methods are reasonably satisfied.

  1. Faraday rotation measurement method and apparatus

    NASA Technical Reports Server (NTRS)

    Brockman, M. H. (Inventor)

    1981-01-01

    A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.

  2. Exact Fan-Beam Reconstruction With Arbitrary Object Translations and Truncated Projections

    NASA Astrophysics Data System (ADS)

    Hoskovec, Jan; Clackdoyle, Rolf; Desbat, Laurent; Rit, Simon

    2016-06-01

    This article proposes a new method for reconstructing two-dimensional (2D) computed tomography (CT) images from truncated and motion contaminated sinograms. The type of motion considered here is a sequence of rigid translations which are assumed to be known. The algorithm first identifies the sufficiency of angular coverage in each 2D point of the CT image to calculate the Hilbert transform from the local “virtual” trajectory which accounts for the motion and the truncation. By taking advantage of data redundancy in the full circular scan, our method expands the reconstructible region beyond the one obtained with chord-based methods. The proposed direct reconstruction algorithm is based on the Differentiated Back-Projection with Hilbert filtering (DBP-H). The motion is taken into account during backprojection which is the first step of our direct reconstruction, before taking the derivatives and inverting the finite Hilbert transform. The algorithm has been tested in a proof-of-concept study on Shepp-Logan phantom simulations with several motion cases and detector sizes.

  3. Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry

    NASA Astrophysics Data System (ADS)

    Bader, A.; Hegna, C. C.; Cianciosa, M.; Hartwell, G. J.

    2018-05-01

    The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated that vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. These results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.

  4. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    PubMed

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, P.R.; Van Dyke, J.W; McConnell, B.W.

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124 of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on ways to achieve the potential energy savings. Using survey data obtained from utilities and analyses of the economics of refurbishment versus replacement of distribution transformers that are removed from service, it is found that on average utilities are implementing reasonable decisions on refurbishment versus replacement.« less

  6. Evaluation of the operating performance of conventional versus flocculator secondary clarifiers at the Kuwahee Wastewater Treatment Plant, Knoxville, Tennessee.

    PubMed

    Moreno, Patricio A; Reed, Gregory D

    2007-05-01

    The difference in performance of three differently designed circular secondary clarifiers in the same wastewater treatment plant was analyzed in this paper. Data obtained using flocculated suspended solids and disperse suspended solids tests were analyzed using statistical tools. The conventional clarifier showed more variability in the average effluent suspended solids concentration when compared with the flocculator-clarifiers. Furthermore, a difference in performance among the two different flocculator-clarifiers was found.

  7. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer.

    PubMed

    Yao, Guoqiang; Gao, Pengfei; Zhang, Wenyi

    2016-06-20

    Bacillus coagulans HM-08 is a commercialized probiotic strain in China. Its genome contains a 3.62Mb circular chromosome with an average GC content of 46.3%. In silico analysis revealed the presence of one xyl operon as well as several other genes that are correlated to xylose utilization. The genetic information provided here may help to expand its future biotechnology potential in lactic acid production. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Optimal control of lift/drag ratios on a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  9. Soybean (Glycine max) transformation using mature cotyledonary node explants.

    PubMed

    Olhoft, Paula M; Donovan, Christopher M; Somers, David A

    2006-01-01

    Agrobacterium tumefaciens-mediated transformation of soybeans has been steadily improved since its development in 1988. Soybean transformation is now possible in a range of genotypes from different maturity groups using different explants as sources of regenerable cells, various selectable marker genes and selective agents, and different A. tumefaciens strains. The cotyledonary-node method has been extensively investigated and across a number of laboratories yields on average greater than 1% transformation efficiency (one Southern-positive, independent event per 100 cotyledonary-node explants). Continued improvements in the cotyledonary-node method concomitant with further increases in transformation efficiency will enhance broader adoption of this already productive transformation method for use in crop improvement and functional genomics research efforts.

  10. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.

    PubMed

    Marin, Diego; Gegundez-Arias, Manuel E; Suero, Angel; Bravo, Jose M

    2015-02-01

    Development of automatic retinal disease diagnosis systems based on retinal image computer analysis can provide remarkably quicker screening programs for early detection. Such systems are mainly focused on the detection of the earliest ophthalmic signs of illness and require previous identification of fundal landmark features such as optic disc (OD), fovea or blood vessels. A methodology for accurate center-position location and OD retinal region segmentation on digital fundus images is presented in this paper. The methodology performs a set of iterative opening-closing morphological operations on the original retinography intensity channel to produce a bright region-enhanced image. Taking blood vessel confluence at the OD into account, a 2-step automatic thresholding procedure is then applied to obtain a reduced region of interest, where the center and the OD pixel region are finally obtained by performing the circular Hough transform on a set of OD boundary candidates generated through the application of the Prewitt edge detector. The methodology was evaluated on 1200 and 1748 fundus images from the publicly available MESSIDOR and MESSIDOR-2 databases, acquired from diabetic patients and thus being clinical cases of interest within the framework of automated diagnosis of retinal diseases associated to diabetes mellitus. This methodology proved highly accurate in OD-center location: average Euclidean distance between the methodology-provided and actual OD-center position was 6.08, 9.22 and 9.72 pixels for retinas of 910, 1380 and 1455 pixels in size, respectively. On the other hand, OD segmentation evaluation was performed in terms of Jaccard and Dice coefficients, as well as the mean average distance between estimated and actual OD boundaries. Comparison with the results reported by other reviewed OD segmentation methodologies shows our proposal renders better overall performance. Its effectiveness and robustness make this proposed automated OD location and segmentation method a suitable tool to be integrated into a complete prescreening system for early diagnosis of retinal diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  12. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  13. Terrrestrialization of isolated habitats

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Agata; Harasymczuk, Matt; Foing, Bernard

    2017-04-01

    One of the most prominent issue for habitability of the solar system and beyond is to adjust a habitat for human life. Since the human life adapted to terrestrial environment during millions of years of evolution, terrestrialization of the base should be a natural trend strictly applied in habitat design. We discuss basic concerns about introducing biomimetic backup safety solutions such modularity, circularity, autonomy and plasticity into life support systems. Particularly we describe critical life processes such briefing, drinking, eating, homeostatic regulation, activity and sleep, in relation to symbiosis and competition with other species living together. Finally, we analyze ecological tolerance and transformation factors, which seem to be crucial in future habitability projects.

  14. Principal component analysis on a torus: Theory and application to protein dynamics.

    PubMed

    Sittel, Florian; Filk, Thomas; Stock, Gerhard

    2017-12-28

    A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib 9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.

  15. Principal component analysis on a torus: Theory and application to protein dynamics

    NASA Astrophysics Data System (ADS)

    Sittel, Florian; Filk, Thomas; Stock, Gerhard

    2017-12-01

    A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.

  16. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells

    PubMed Central

    Herrera-Valencia, E. E.; Rey, Alejandro D.

    2014-01-01

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  17. pH titration monitored by quantum cascade laser-based vibrational circular dichroism.

    PubMed

    Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen

    2014-04-10

    Vibrational circular dichroism (VCD) spectra of aqueous solutions of proline were recorded in the course of titrations from basic to acidic pH using a spectrometer equipped with a quantum cascade laser (QCL) as an infrared light source in the spectral range from 1320 to 1220 cm(-1). The pH-dependent spectra were analyzed by singular value decomposition and global fitting of a two-pK Henderson-Hasselbalch model. The analysis delivered relative fractions of the three different protonation species. Their agreement with the relative fractions obtained from performing the same analysis on pH-dependent Fourier transform infrared (FT-IR) and QCL-IR spectra validates the quantitative results from QCL-VCD. Global fitting of the pH-dependent VCD spectra of L-proline allowed for extraction of pure spectra corresponding to anionic, zwitterionic, and cationic L-proline. From a static experiment, only pure spectra of the zwitterion would be accessible in a straightforward way. A comparison to VCD spectra calculated for all three species led to assignment of vibrational modes that are characteristic for the respective protonation states. The study demonstrates the applicability of QCL-VCD both for quantitative evaluation and for qualitative interpretation of dynamic processes in aqueous solutions.

  18. A New Shape Description Method Using Angular Radial Transform

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Min; Kim, Whoi-Yul

    Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.

  19. Sampling from a Discrete Distribution While Preserving Monotonicity.

    DTIC Science & Technology

    1982-02-01

    in a table beforehand, this procedure, known as the inverse transform method, requires n storage spaces and EX comparisons on average, which may prove...limitations that deserve attention: a. In general, the alias method does not preserve a monotone relationship between U and X as does the inverse transform method...uses the inverse transform approach but with more information computed beforehand, as in the alias method. The proposed method is not new having been

  20. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    PubMed

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.

  1. The mechanism of transforming diamond nanowires to carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Sorkin, Anastassia; Su, Haibin

    2014-01-01

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of <100> and <111> oriented cross-section with projected average line density between 7 and 20 atoms Å-1 transform into carbon nanotubes (CNTs) under gradual heating up to 3500-4000 K. DNWs with projected average line density larger than 25 atoms Å-1 transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with \\langle \\bar {2}1 1\\rangle oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with ‘nano-bookshelf’ shape emerges: a number of graphene ‘shelves’ located inside the CNT, bonding to the CNT walls with sp3 hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways.

  2. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.

    PubMed

    Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent

    2018-02-01

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Image remapping strategies applied as protheses for the visually impaired

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis D.

    1993-01-01

    Maculopathy and retinitis pigmentosa (rp) are two vision defects which render the afflicted person with impaired ability to read and recognize visual patterns. For some time there has been interest and work on the use of image remapping techniques to provide a visual aid for individuals with these impairments. The basic concept is to remap an image according to some mathematical transformation such that the image is warped around a maculopathic defect (scotoma) or within the rp foveal region of retinal sensitivity. NASA/JSC has been pursuing this research using angle invariant transformations with testing of the resulting remapping using subjects and facilities of the University of Houston, College of Optometry. Testing is facilitated by use of a hardware device, the Programmable Remapper, to provide the remapping of video images. This report presents the results of studies of alternative remapping transformations with the objective of improving subject reading rates and pattern recognition. In particular a form of conformal transformation was developed which provides for a smooth warping of an image around a scotoma. In such a case it is shown that distortion of characters and lines of characters is minimized which should lead to enhanced character recognition. In addition studies were made of alternative transformations which, although not conformal, provide for similar low character distortion remapping. A second, non-conformal transformation was studied for remapping of images to aid rp impairments. In this case a transformation was investigated which allows remapping of a vision field into a circular area representing the foveal retina region. The size and spatial representation of the image are selectable. It is shown that parametric adjustments allow for a wide variation of how a visual field is presented to the sensitive retina. This study also presents some preliminary considerations of how a prosthetic device could be implemented in a practical sense, vis-a-vis, size, weight and portability.

  4. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge-transform-ridge geometry. It is suggested that, for a setting where a plume-ridge system has one or more transforms, a location-specific model with appropriate plate boundary geometry be used to assess the importance of ridge offsets on upper mantle geodynamics

  5. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.G., E-mail: helen.jones@npl.co.uk

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beammore » exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.« less

  6. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhu, Yi-Fan; Fan, Xu-Dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-02-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices.

  7. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  8. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    PubMed Central

    Gao, He; Zhu, Yi-fan; Fan, Xu-dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-01-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices. PMID:28195227

  9. Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification

    PubMed Central

    Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo

    2012-01-01

    Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397

  10. 76 FR 62148 - Title VI; Proposed Circular, Environmental Justice; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ...-0055] Title VI; Proposed Circular, Environmental Justice; Proposed Circular AGENCY: Federal Transit... the September 29, 2011, Federal Register Notices titled ``Title VI; Proposed Circular'' and... September 29, 2011, Federal Register Notices titled ``Title VI; Proposed Circular'' (76 FR 60593) and...

  11. Rising Political Consciousness: Transformational Learning in Malaysia.

    ERIC Educational Resources Information Center

    Kamis, Mazalan; Muhamad, Mazanah

    As part of a larger study (not discussed) ten educated Malaysian citizens were interviewed to find whether their rising political consciousness, over a ten year period (1988-1999), indicated that their transformation was influenced by their culture. The subjects were between 35-45 years old, married, with an average of four children. All were…

  12. Transforming PC Power Supplies into Smart Car Battery Conditioners

    ERIC Educational Resources Information Center

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  13. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  14. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    PubMed

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  15. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  16. Enantiomeric high-performance liquid chromatography resolution and absolute configuration of 6β-benzoyloxy-3α-tropanol.

    PubMed

    Muñoz, Marcelo A; González, Natalia; Joseph-Nathan, Pedro

    2016-07-01

    The absolute configuration of the naturally occurring isomers of 6β-benzoyloxy-3α-tropanol (1) has been established by the combined use of chiral high-performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)-1, prepared in two steps from racemic 6-hydroxytropinone (4), was subjected to chiral high-performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high-performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR (+)-1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100-950 cm(-1) region were compared with those of the enantiomers of esters derived from 3α,6β-tropanediol. In addition, an enantiomerically enriched sample of 4, instead of OR (±)-4, was used for the same transformation sequence, whose high-performance liquid chromatography follow-up allowed their spectroscopic correlation. All evidences lead to the OR (+)-(1S,3R,5S,6R) and OR (-)-(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR (+)-(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR (-)-(1R,3S,5R,6S) absolute configuration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Teaching a Biotechnology Unit in High School General Biology.

    ERIC Educational Resources Information Center

    Hays, Lana

    1994-01-01

    Describes a unit in biotechnology for average and below average high school students. Students developed productive team membership, used math and communication skills to solve problems, and used the scientific method to learn about biotechnology. Students separated DNA, transformed bacterial cells, interpreted DNA fingerprints, completed creative…

  18. The Analysis of Eigenstates of a Few Generalized Quantum Baker’s Maps Using Hadamard and Related Transforms

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, N.

    Application of the Hadamard and related transforms on a few generalized quantum baker’s maps have been studied. Effectiveness of the Hadamard transform and a new transform which combines the Fourier and the Hadamard transforms, for simplifying the eigenstates or resonances of the quantization of a few generalized baker’s map namely tetradic baker and lazy baker’s map when the Hilbert space dimension is power of 2 has been done by comparing the participation ratios in the transformed basis with respect to the position basis. Several special family of states based on their maximal compression in either Hadamard transform or the new transform are identified and they are related to the ubiquitous Thue-Morse and allied sequences. Evidence is provided that these special family of states as well as average over all eigenstates exhibits multifractal nature.

  19. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  20. Building versatile bipartite probes for quantum metrology

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  1. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory. PMID:26961687

  2. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  3. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  4. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.

    PubMed

    Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei

    2014-05-07

    Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.

  5. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems.

    PubMed

    Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L

    2016-01-01

    To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.

  6. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during amore » period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.« less

  7. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  8. Clinical and functional evaluation of patients with rectocele and mucosal prolapse treated with transanal repair of rectocele and rectal mucosectomy with a single circular stapler (TRREMS)

    PubMed Central

    Regadas, F. S. P.; Regadas, S. M. M.; Veras, L. R.

    2010-01-01

    Background The aim of the present study was to make a preoperative and postoperative clinical and functional evaluation of patients who underwent transanal repair of rectocele and rectal mucosectomy with a single circular stapler (TRREMS procedure) as treatment for obstructed defecation syndrome (ODS) caused by rectocele and rectal mucosal prolapse (RMP). Methods This prospective study included 35 female patients, 34 multiparous and one nulliparous, with an average age of 47.5 years (range 31–67 years), rectocele grade II (n = 13/37.1%) or grade III (n = 22/62.9%), associated with RMP. The study parameters included ODS, constipation, functional continence scores and pre- and postoperative cinedefecographic findings. Results The average preoperative ODS score, the constipation score and the functional continence score were significantly reduced after surgery from 10.63 to 2.91 (p = 0.001), 15.23 to 4.46 (p = 0.001) and 2.77 to 1.71 (p = 0.001), respectively. Between the first and the eighth postoperative day, the average visual analog scale pain score fell from 5.23 to 1.20 (p = 0.001). Satisfaction with treatment outcome was 79.97, 86.54, 87.65 and 88.06 at 1, 3, 6 and 12 months, respectively. Cinedefecography revealed average reductions in rectocele size from 19.23 ± 8.84 mm (3–42) to 6.68 ± 3.65 mm (range 0–7) at rest and from 34.89 ± 12.30 mm (range 20–70) to 10.94 ± 5.97 mm (range 0–25) during evacuation (both P = 0.001). Conclusion The TRREMS procedure is a safe and efficient technique associated with satisfactory anatomic and functional results and with a low incidence of postoperative pain and complications. PMID:20957403

  9. Unveiling signatures of interdecadal climate changes by Hilbert analysis

    NASA Astrophysics Data System (ADS)

    Zappalà, Dario; Barreiro, Marcelo; Masoller, Cristina

    2017-04-01

    A recent study demonstrated that, in a class of networks of oscillators, the optimal network reconstruction from dynamics is obtained when the similarity analysis is performed not on the original dynamical time series, but on transformed series obtained by Hilbert transform. [1] That motivated us to use Hilbert transform to study another kind of (in a broad sense) "oscillating" series, such as the series of temperature. Actually, we found that Hilbert analysis of SAT (Surface Air Temperature) time series uncovers meaningful information about climate and is therefore a promising tool for the study of other climatological variables. [2] In this work we analysed a large dataset of SAT series, performing Hilbert transform and further analysis with the goal of finding signs of climate change during the analysed period. We used the publicly available ERA-Interim dataset, containing reanalysis data. [3] In particular, we worked on daily SAT time series, from year 1979 to 2015, in 16380 points arranged over a regular grid on the Earth surface. From each SAT time series we calculate the anomaly series and also, by using the Hilbert transform, we calculate the instantaneous amplitude and instantaneous frequency series. Our first approach is to calculate the relative variation: the difference between the average value on the last 10 years and the average value on the first 10 years, divided by the average value over all the analysed period. We did this calculations on our transformed series: frequency and amplitude, both with average values and standard deviation values. Furthermore, to have a comparison with an already known analysis methods, we did these same calculations on the anomaly series. We plotted these results as maps, where the colour of each site indicates the value of its relative variation. Finally, to gain insight in the interpretation of our results over real SAT data, we generated synthetic sinusoidal series with various levels of additive noise. By applying Hilbert analysis to the synthetic data, we uncovered a clear trend between mean amplitude and mean frequency: as the noise level grows, the amplitude increases while the frequency decreases. Research funded in part by AGAUR (Generalitat de Catalunya), EU LINC project (Grant No. 289447) and Spanish MINECO (FIS2015-66503-C3-2-P).

  10. Restoration algorithms for imaging through atmospheric turbulence

    DTIC Science & Technology

    2017-02-18

    the Fourier spectrum of each frame. The reconstructed image is then obtained by taking the inverse Fourier transform of the average of all processed...with wipξq “ Gσp|Fpviqpξq|pq řM j“1Gσp|Fpvjqpξq|pq , where F denotes the Fourier transform (ξ are the frequencies) and Gσ is a Gaussian filter of...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors

  11. Reducing Noise by Repetition: Introduction to Signal Averaging

    ERIC Educational Resources Information Center

    Hassan, Umer; Anwar, Muhammad Sabieh

    2010-01-01

    This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…

  12. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transformmore » (CHT) algorithm.« less

  13. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  14. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    PubMed Central

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-01-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212

  15. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  16. Bioflumology: Microbial mat growth in flumes

    NASA Astrophysics Data System (ADS)

    Airo, A.; Weigert, S.; Beck, C.

    2014-04-01

    The emergence of oxygenic photosynthesis resulted in a transformational change of Earth's geochemical cycles and the subsequent evolution of life. However, it remains vigorously debated when this metabolic ability had evolved in cyanobacteria. This is largely because studies of Archean microfossil morphology, molecular biomarkers, and isotopic characteristics are frequently ambiguous. However, the high degree of morphological similarities between modern photosynthetic and Archean fossil mats has been interpreted to indicate phototactic microbial behavior or oxygenic photosynthesis. In order to better evaluate the relationship between mat morphology and metabolism, we here present a laboratory set-up for conducting month-long experiments in several sterilizable circular flumes designed to allow single-species cyanobacterial growth under adjustable fluid-flow conditions and protected from contamination.

  17. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    PubMed Central

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  18. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  19. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    PubMed

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  20. A DRBEM for steady infiltration from periodic semi-circular channels with two different types of roots distribution

    NASA Astrophysics Data System (ADS)

    Solekhudin, Imam; Sumardi

    2017-05-01

    In this study, problems involving steady Infiltration from periodic semicircular channels with root-water uptake function are considered. These problems are governed by Richards equation. This equation can be studied more conveniently by transforming the equation into a modified Helmholtz equation. In these problems, two different types of root-water uptake are considered. A dual reciprocity boundary element method (DRBEM) with a predictor-corrector scheme is used to solve the modified Helmholtz equation numerically. Using the solution obtained, numerical values of suction potential and root-water uptake function can be computed. In addition, amount of water absorbed by the different plant roots distribution can also be computed and compared.

  1. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  2. A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM

    NASA Astrophysics Data System (ADS)

    Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan

    2018-03-01

    In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.

  3. Regional Studies of Highland-Lowland Age Differences Across the Mars Crustal Dichotomy Boundary

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; DeSoto, G. E.; Lazrus, R. M.

    2005-01-01

    Regional differences in crater retention ages (CRAs) across the Mars dichotomy boundary are compared to the global highland-lowland age difference previously determined from visible and buried impact basins based on MOLA-derived Quasi-Circular Depressions (QCDs). Here Western Arabia (WA) is compared with Ismenius Lacus (IL). We find the buried lowlands in the two regions have total CRAs essentially identical to the global average. Even more intriguing, the WA cratered terrain appears to have a CRA like that of the adjacent buried lowlands,

  4. Numerical simulation of asphalt mixtures fracture using continuum models

    NASA Astrophysics Data System (ADS)

    Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz

    2018-01-01

    The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.

  5. The Strength of Thin-wall Cylinders of D Cross Section in Combined Pure Bending and Torsion

    NASA Technical Reports Server (NTRS)

    Sherwood, A W

    1943-01-01

    The results of tests of 56 cylinders of D cross section conducted in the Aeronautical Laboratory of the University of Maryland are presented in this report. These cylinders were subjected to pure bending and torsional moments of varying proportions to give the strength under combined loading conditions. The average buckling stress of these cylinders has been related to that of circumscribing circular cylinders for conditions of pure torsion and pure bending and the equation of the interaction curve has been determined for conditions of combined loading.

  6. Satellite Studies of Storm-Time Thermospheric Winds

    NASA Technical Reports Server (NTRS)

    Fejer, Bela G.

    2005-01-01

    In this project we have studied the climatology and storm-time dependence of longitude-averaged mid- and low-latitude thermospheric neutral winds observed by the WINDII instrument on board the UARS satellite. This satellite is in a circular, 57 deg inclination orbit at a height of 585 km; the orbit precesses at a rate of 5 deg per day. WINDII is a Michelson interferometer that measures Doppler shifts of the green line (557.7 nm) and red line (630.0 nm) airglow emissions at the Earth's limb, covering latitudes up to 72 deg.

  7. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  8. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  9. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    NASA Astrophysics Data System (ADS)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  10. Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.

    PubMed Central

    Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C

    1997-01-01

    We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus. PMID:9097439

  11. Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.

    PubMed

    Cue, D; Lam, H; Dillingham, R L; Hanson, R S; Flickinger, M C

    1997-04-01

    We report the fist genetic transformation system, shuttle vectors, and integrative vectors for the thermotolerant, methylotrophic bacterium Bacillus methanolicus. By using a polyethylene glycol-mediated transformation procedure, we have successfully transformed B. methanolicus with both integrative and multicopy plasmids. For plasmids with a single BmeTI recognition site, dam methylation of plasmid DNA (in vivo or in vitro) was found to enhance transformation efficiency from 7- to 11-fold. Two low-copy-number Escherichia coli-B, methanolicus shuttle plasmids, pDQ507 and pDQ508, are described. pDQ508 caries the replication origin cloned from a 17-kb endogenous B. methanolicus plasmid, pBM1. pDQ507 carries a cloned B. methanolicus DNA fragment, pmr-1, possibly of chromosomal origin, that supports maintenance of pDQ507 as a circular, extrachromosomal DNA molecule. Deletion analysis of pDQ507 indicated two regions required for replication, i.e., a 90-bp AT-rich segment containing a 46-bp imperfect, inverted repeat sequence and a second region 65% homologous to the B. subtilis dpp operon. We also evaluated two E. coli-B. subtilis vectors, pEN1 and pHP13, for use as E. coli-B. methanolicus shuttle vectors. The plasmids pHP13, pDQ507, and pDQ508 were segregationally and structurally stable in B. methanolicus for greater than 60 generations of growth under nonselective conditions; pEN1 was segregationally unstable. Single-stranded plasmid DNA was detected in B. methanolicus transformants carrying either pEN1, pHP13, or pDQ508, suggesting that pDQ508, like the B. subtilis plasmids, is replicated by a rolling-circle mechanism. These studies provide the basic tools for the genetic manipulation of B. methanolicus.

  12. Measurement of the Circular Dichroism of Electronic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J.C.

    2010-08-11

    This chapter describes the measurement of circular dichroism (CD) for absorption due to transitions between two distinct electronic states. This is distinguished from absorption of lower energy photons, which are associated with changes of only the vibrational modes of the absorber and from the absorption of higher energy photons, which may result in ionizations. From the instrumental viewpoint, the chapter describes the measurement of CD that can be recorded using a photomultiplier or avalanche photodiode to quantify the intensity of a light beam, a photoelastic modulator to periodically alter the beam's polarization, and a monochromator located between the light sourcemore » and the modulator. Using either criterion, the focus is on the spectral domain spanning about a decade in wavelength (photon energy) from roughly 1.2 {micro}m (1 eV {approx} 160 zJ) in the near infrared to 120 nm (10 eV {approx} 1.6 aJ) in the vacuum ultraviolet (VUV). In the near infrared, there is overlap between the domain of electronic and purely vibrational transitions, the use of photomultipliers or avalanche photodiodes versus solid state detectors and dispersive versus Fourier-transform spectrometers. There is also some overlap in the VUV with synchrotron beamlines that use arrays of magnets called 'insertion devices' to cause the emitted synchrotron radiation to be elliptically polarized. To my knowledge, no single spectrometer spans this entire spectral domain discussed here, and the vast majority of laboratory instruments come nowhere close to either the upper or lower limit. However, similar analytical approaches and types of instrumentation are employed throughout this spectral domain and thus are logically treated together. The focus in this chapter is on the measurement of CD resulting from the inherent chirality of the absorbing system. Several spectroscopic methods that are closely related in terms of science or instrumentation are treated in other chapters. These include magnetic circular dichroism (MCD), linear dichroism (LD), optical rotary dispersion (ORD), fluorescence detected circular dichroism (FDCD), and circularly polarized luminescence (CPL). A basic CD instrument of the type described here can be configured by temporary alterations of the sample compartment, an additional or repositioned detector and modified electronics to perform many of the important experiments in the visible and UV regions. These include unpolarized absorption and total fluorescence in addition to most of the experiments mentioned above. Except for absorption, such extensions of the basic technology will not be discussed here. Other reviews of instrumentation related to CD have appeared, some containing information complementary to that included here.« less

  13. Circular stapler introducer: a novel device to facilitate stapled colorectal anastomosis.

    PubMed

    Guweidhi, Ahmed; Steffen, Rudolf; Metzger, Alejandro; Teuscher, Jürg; Flückiger, Petra; Z'graggen, Kaspar

    2009-04-01

    A circular stapler introducer was developed to protect the head of the circular stapler and enable atraumatic introduction and advancement of the circular stapler without interfering with the application and safety of an anastomosis. In a Phase I prospective study, we tested the feasibility and safety of the novel circular stapler introducer device in 60 consecutive patients undergoing left-sided colorectal resections. The median distance of the anastomoses from the anal verge was 12 cm (7-20, n = 60). Total morbidity was 15 percent. No mortality was observed. Handling of the circular stapler introducer was considered nonproblematic by all surgeons who participated in the study. No interference of the circular stapler introducer with the circular stapling devices used was encountered. The advancement of the stapler into the end of the colorectal stump was always possible with the aid of the circular stapler introducer. Use of the circular stapler introducer facilitates the double-stapling technique of colorectal anastomosis. The circular stapler introducer has great potential and should be tested in larger studies.

  14. Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders

    NASA Astrophysics Data System (ADS)

    Shao, J.; Zhang, C.

    Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.

  15. Cell-type specific features of circular RNA expression.

    PubMed

    Salzman, Julia; Chen, Raymond E; Olsen, Mari N; Wang, Peter L; Brown, Patrick O

    2013-01-01

    Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.

  16. Last Mile Asset Monitoring; Low Cost Rapid Deployment Asset Monitoring

    NASA Astrophysics Data System (ADS)

    Zumr, Zdenek

    Installation and utilization of residential distribution transformers has not changed substantially over a long period of time. Utilities typically size their transformers based on a formula that takes into account broadly what types and how many dwellings will be connected. Most new residential dwellings feature 200 Amp service per household with an anticipated energy demand of under 20,000 kWh per year. Average electrical energy consumption varies from state to state but averages to 11,280 kWh per year. Energy demand is expected to fall into a typical residential load curve that shows increased demand early in the morning, then decreasing during the day and another peak early to late evening. Distribution transformers are sized at the limit of the combined evening peak with the assumption that the transformer has enough thermal mass to absorb short overloads that may occur when concurrent loading situations among multiple dwellings arise. The assumption that concurrent loading is of short duration and the transformer can cool off during the night time has been validated over the years and has become standard practice. This has worked well when dwelling loads follow an averaging scheme and low level of coincidence. With the arrival of electric vehicles (EV's) this assumption has to be reevaluated. The acquisition of an electric vehicle in a household can drive up energy demand by over 4000 kWh per year. Potentially problematic is the increased capacity of battery packs and the resulting proliferation of Level 2 chargers. The additional load of a single Level 2 charger concurring with the combined evening peak load will push even conservatively sized distribution transformers over their nameplate rating for a substantial amount of time. Additionally, unlike common household appliances of similar power requirements such as ovens or water heaters, a Level 2 battery charger will run at peak power consumption for several hours, and the current drawn by the EVs has very high levels of harmonic distortion. The excessive loading and harmonic profile can potentially result in damaging heat build-up resulting in asset degradation. In this thesis I present a device and method that monitors pole mounted distribution transformers for overheating, collect and wirelessly upload data and initiate commands to chargers to change output levels from Level 2 to Level 1 or shut down EV charging altogether until the transformer returns into safe operational range.

  17. Comparison of Various Turbulence Models for Unsteady Flow around a Finite Circular Cylinder at Re=20000

    NASA Astrophysics Data System (ADS)

    Zhang, Di

    2017-10-01

    This paper compares the performance of eight Reynolds-Averaged Navier-Stokes (RANS) two-equation turbulence models and two sub-grid scale (SGS) large eddy simulation (LES) models in the scenario of unsteady flow around a finite circular cylinder at an aspect ratio (AR) of 1.0 and a Reynolds number of Re=20000. It is found that, among all the eight RANS turbulence models considered, the K-Omega-SST model (viz. SST-V2003) developed by Menter et al. [1, 2] possesses the best overall performance (being closest to the numerical results of the two LES models considered, which can be deemed as the quasi-exact solution in view of the very fine computational mesh employed by the two LES models in this study) in terms of the mean surface pressure coefficient distribution (i.e. C p ), the mean drag coefficient (i.e. C d ), the mean streamline profiles in some characteristic planes (such as the mid-height plane and the symmetry plane of the cylinder) and the distribution of mean bed-shear-stress amplification on the bottom wall.

  18. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    PubMed

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  19. Paleomagnetic study of late Miocene through Pleistocene igneous rocks from the southwestern USA: Results from the historic collections of the U.S. Geological Survey Menlo Park laboratory

    USGS Publications Warehouse

    Mankinen, Edward A.

    2008-01-01

    Seventy sites from the southwestern United States provide paleomagnetic results that meet certain minimum criteria and can be considered for the Time‐Averaged Field Initiative (TAFI). The virtual geomagnetic poles for these 70 units are circularly distributed, and their mean is nearly coincident with the rotational axis. When other published data for the southwestern United States are included (N = 146), the virtual geomagnetic poles are again circularly distributed, but their mean is significantly displaced from the rotational axis. Whichever of these data sets is used, the mean poles for normal‐ and reversed‐polarity data differ by ∼170° and are not antipodal at greater than 95% confidence. When the data are separated into specific age groups, the 95% confidence limits about the mean poles for the Brunhes, Matuyama, combined Gauss/Gilbert, and late Miocene intervals all include the rotational axis. Angular dispersion about these four mean poles increases systematically with increasing age and is consistent with paleosecular variation Model “G.”

  20. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    NASA Astrophysics Data System (ADS)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  1. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.

  2. On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.

    PubMed

    Crumley, G C; Evans, N E; Burns, J B; Trouton, T G

    1998-12-01

    This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability.

  3. The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.

    PubMed

    Crumley, G C; Evans, N E; Scanlon, W G; Burns, J B; Trouton, T G

    2000-12-01

    This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

  4. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumail, Muhammad; Tantawi, Sami G.

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  5. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE PAGES

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-27

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  6. Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane

    DOE PAGES

    Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...

    2017-05-30

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  7. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    NASA Astrophysics Data System (ADS)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  8. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP-CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP-CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP-CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP-CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP-CCFT columns and provide critical warning information for composite structures.

  9. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus.

    PubMed

    Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang

    2017-12-01

    It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.

  10. Probe systems for static pressure and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon, J.

    1991-01-01

    A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.

  11. The IRAS radiation environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    Orbital flux integration for three selected mission altitudes and geographic instantaneous flux-mapping for nominal flight-path altitude were used to determine the external charged particle radiation predicted for the Infrared Astronomy Satellite. A current field model was used for magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions. Innovative analysis features introduced include (1) positional fluxes as a function of time and energy for the most severe pass through the South Atlantic Anomaly; (2) total positional doses as a function of time and shield thickness; (3) comparison mapping fluxes for ratios of positional intensities to orbit integrated averages; and (4) statistical exposure-time history of a trajectory as a function of energy indicating, in percent of total mission duration, the time intervals over which the instantaneous fluxes would exceed the orbit integrated averages. Results are presented in tables and graphs.

  12. Hemp (Cannabis sativa L.).

    PubMed

    Feeney, Mistianne; Punja, Zamir K

    2015-01-01

    Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.

  13. Optimal Landsat transforms for forest applications

    NASA Technical Reports Server (NTRS)

    Logan, T. L.; Strahler, A. H.

    1983-01-01

    Eleven transformations of data from four Landsat MSS channels were investigated to find if any of the transforms accentuated the separability of natural vegetation classes in regions of varying topographical relief. Attention was given to the divergence analysis and classification accuracy of information content of the eleven transforms and four channels. A useful scaling function was observed with the second eigenvector being the denominator in the divergence values obtained. The second eigenvector was found to reduce the effects of shadowing and differential illumination of vegetation signatures, thereby enhancing the divergence values. The highest accuracies in crop identification were provided by the averages of channels 4, 6, and 7 divided by the second eigenvector.

  14. Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks

    NASA Astrophysics Data System (ADS)

    Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas

    2017-03-01

    PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.

  15. Waste derived bioeconomy in India: A perspective.

    PubMed

    S, Venkata Mohan; P, Chiranjeevi; Dahiya, Shikha; A, Naresh Kumar

    2018-01-25

    Environmental and climatic change issues, population explosion, rapid urbanisation, depletion of fossil reserves, need for energy security, huge waste generation, etc. are some of the inherent issues associated with the fossil based linear economy which need greater attention. In this context, the world is gradually transforming from fossil-based economy to a sustainable circular bio-economy. The biogenic waste which is generated in enormous quanties in India can be considered as potential feedstock for structuring the bio-based economy. This communication depicts the need for developing waste derived bioeconomy in the Indian perspective. Waste is now being perceived as a resource with value and believed to supplement petroleum feedstock to a great extent if properly utilized. The necessity to introduce waste as the core element for the future economic models which also allows sustainable development is discussed. The review also establishes drivers for the bioeconomy and structures the waste derived bioeconomy in a sustainable format to address the futuristic needs, scope and opportunities envisaged in the business and economic realm. The enabling technologies/processes that can be applied for biogenic wastes valorisation are elaborated. Circularizing the economy in a waste biorefinery model for the production of biobased products including bioenergy is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  17. The crystal structure of red fluorescent protein TagRFP-T reveals the mechanism of its superior photostability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Liang, Qing-Nan; Du, Shu-Qi

    2016-08-19

    The red fluorescent protein variant TagRFP-T has greatly improved photostability over its parent molecule, TagRFP, but the underlying mechanism leading to this improvement is to date unknown. The 1.95 Å resolution crystallographic structure of TagRFP-T showed that its chromophore exists as a mixture of cis and trans coplanar isomers in roughly equal proportions. Interestingly, both isomers are able to fluoresce, a property that has never been observed in any other fluorescent protein. We propose a “circular restoration model” for TagRFP-T to explain its superior photostability: There are four co-existing chromophore states (cis/trans protonated/ionized state) that can be driven by light tomore » transform from one state into another. This model also explains how TagRPF-T essentially eliminates the temporary dark state (reversible photobleaching). - Highlights: • The 1.95 Å resolution crystal structure of TagRFP-T was determined. • The chromophore of TagRFP-T contains a mixture of cis and trans coplanar isomers. • A “circular restoration model” was proposed to explain the superior photostability. • The chromophore can reversibly convert between cis/trans protonated/ionized states. • The light-driven conversion reduce the dark state (reversible photobleaching).« less

  18. Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube

    NASA Astrophysics Data System (ADS)

    Gautam, Abhishek; Pandey, Lokesh; Singh, Satyendra

    2018-02-01

    Numerous studies has been observed in terms of enhancement of heat transfer by using passive techniques. In present work, a very unique perforated triple wing vortex generator has been used as an insert geometry, with different geometrical parameters of twist ratio (l/D = 2, 3 & 4) and Porosity (P A /T A = 0%, 10%, 20% & 30%). The experimentation has been performed for the wide range of Re (Re), varying between 3200 to 20,600, in order to investigate effect on heat transfer (Nu), friction factor (f) & thermal performance factor (η) in circular tube HEs with respect to different geometrical and flow parameters. Experimentation has been performed in 1.5 m length of test section with 68 mm diameter. Heat flux of 1000 W/m2 has been provided on the test section with the help of variable voltage transformer connected with Nicrome wire coiled heater located on the test section. There is a significant enhancement has been observed in terms of heat enhancement and pressure drop over the smooth tube. The experimental result shows 4.8 times improvement in heat transfer and 1.63 times improvement in thermal performance as compared to smooth tube HE. The statistical correlations have also been presented for Nu, f and η.

  19. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.

    PubMed

    Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F

    2017-03-21

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.

  20. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers using Frequency Domain Time-Space Decomposition

    PubMed Central

    Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.

    2013-01-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476

Top