Sample records for circular cylindrical shell

  1. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  2. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  3. Further Results in Bend-Buckling Analysis of Ring Stiffened Cylindrical Shells.

    DTIC Science & Technology

    1986-08-01

    Submerged Shell Targets, NSWC TR 84-380, Dec 1984. 2. Moussouros, M., "Finite Element Modeling Techniques for Buckling Analysis of Cylindrical Shells...KCR, MBR , M0 , F0 , and I, R is the mean radius as given by R0 ) R0 - Mean radius of circular cylindrical shell (perfect shell or radius of

  4. Stress concentration factors for circular, reinforced penetrations in pressurized cylindrical shells. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.

    1975-01-01

    The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.

  5. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    NASA Astrophysics Data System (ADS)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  6. Stress concentration in a cylindrical shell containing a circular hole.

    NASA Technical Reports Server (NTRS)

    Adams, N. J. I.

    1971-01-01

    The state of stress in a cylindrical shell containing a circular cutout was determined for axial tension, torsion, and internal pressure loading. The solution was obtained for the shallow shell equations by a variational method. The results were expressed in terms of a nondimensional curvature parameter which was a function of shell radius, shell thickness, and hole radius. The function chosen for the solution was such that when the radius of the cylindrical shell approaches infinity, the flat-plate solution was obtained. The results are compared with solutions obtained by more rigorous analytical methods, and with some experimental results. For small values of the curvature parameter, the agreement is good. For higher values of the curvature parameter, the present solutions indicate a limiting value of stress concentration, which is in contrast to previous results.

  7. Free vibrations of a multilayered non-circular cylindrical shell

    NASA Astrophysics Data System (ADS)

    Zelinskaya, Anna V.

    2018-05-01

    Free vibrations of an elastic non-circular cylindrical shell of intermediate length are considered. The shell is assumed heterogeneous in the thickness direction, in its part it may be multilayered. In order to derive the equations of stability, we use the Timoshenko-Reissner model. According to it, a shell that is heterogeneous can be replaced by a homogeneous shell with the equivalent bending and transversal shear stiffness. We obtain the approximate asymptotic formula for a frequency that takes into account an influence of a transversal shear and a variability of a directrix curvature. As an example, a three-layer elliptical shell with hinged edges and a soft middle layer is analyzed.

  8. Calculation of load distribution in stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Ebner, H; Koller, H

    1938-01-01

    Thin-walled shells with strong longitudinal and transverse stiffening (for example, stressed-skin fuselages and wings) may, under certain simplifying assumptions, be treated as static systems with finite redundancies. In this report the underlying basis for this method of treatment of the problem is presented and a computation procedure for stiffened cylindrical shells with curved sheet panels indicated. A detailed discussion of the force distribution due to applied concentrated forces is given, and the discussion illustrated by numerical examples which refer to an experimentally determined circular cylindrical shell.

  9. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  10. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  11. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    NASA Astrophysics Data System (ADS)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  12. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  13. An Accurate Theory and Simple Fourth Order Governing Equations for Orthotropic and Composite Cylindrical Shells.

    DTIC Science & Technology

    1983-10-01

    following basic equations can be deduced for orthotropic circular cylindrical shells. Let a be the radius of the midsurface of the shell, x, y, z the...axial, circumferential and radial coordinates and a, a the dimensionless midsurface coordinates along lines of curvatures (a - , a - . The threea a...8217The components of strain at an arbitrary point of the shell are related to the midsurface displacements by [8,15,16] e ( 1 v , 3 2w e a a a ,2)- 0 a

  14. Load Tests on a Stiffened Circular Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Schapitz, E; Krumling, G

    1938-01-01

    The present report describes tests in which the stress distribution may be determined in a stiffened circular cylindrical shell loaded longitudinally at four symmetrically situated points. As being of particular importance are the cases investigated of groups of bending and arching or convexing forces, respectively. From the stress measurements on the longitudinal stiffeners, the shear stresses and the bulkhead ring stresses in the skin could be evaluated. These measurements showed that the "simple shear field" used in theoretical computations in which all normal stresses in the skin are neglected, must be extended by the addition of the transverse or circumferential stresses if the bulkhead rings are not riveted to the skin.

  15. Experiments on shells under base excitation

    NASA Astrophysics Data System (ADS)

    Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo

    2016-05-01

    The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.

  16. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi University of Science and Technology, China (Grant No. 12Z09), and the Development Project of the Key Laboratory of Guangxi Zhuang Autonomous Region, China (Grant No. 1404544).

  17. Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami

    NASA Astrophysics Data System (ADS)

    Nojima, Taketoshi

    This paper describes folding methods of thin flat sheets as well as cylindrical shells by modelling folding patterns through Japanese traditional Origami technique. New folding patterns have been devised in thin flat squared or circular membrane by modifying so called Miura-Ori in Japan (one node with 4 folding lines). Some folding patterns in cylindrical shells have newly been developed including spiral configurations. Devised foldable cylindrical shells were made by using polymer sheets, and it has been assured that they can be folded quite well. The devised models will make it possible to construct foldable/deployable space structures as well as to manufacture foldable industrial products and living goods, e. g., bottles for soft drinks.

  18. Response of moderately thick laminated cross-ply composite shells subjected to random excitation

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu

    1989-01-01

    This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).

  19. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  20. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  1. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  2. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOEpatents

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  3. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.

    PubMed

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C Q

    2016-09-14

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson's ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  4. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  5. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    PubMed Central

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-01-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering. PMID:27624892

  6. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  7. Plastic buckling. [post-bifurcation and imperfection sensitivity

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. W.

    1974-01-01

    The present article is concerned mainly with the post-bifurcation and imperfection-sensitivity aspects of plastic buckling. A simple two-degree-of-freedom model is used to introduce post-bifurcation behavior and a second model illustrates features of the behavior of continuous solids and structures. Hill's bifurcation criterion for a class of three-dimensional solids is applied to the Donnell-Mushtari-Vlasov (DMV) theory of plates and shells. A general treatment of the initial post-bifurcation behavior of plates and shells is given within the context of the DMV theory. This is illustrated by problems involving columns and circular plates under radial compression. Numerical results are given for a column under axial compression, a circular plate under radial compression, and spherical and cylindrical shells.

  8. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  9. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  10. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    NASA Astrophysics Data System (ADS)

    Sabri, Farhad

    Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.

  11. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  12. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  13. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  14. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  15. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  16. Analysis of different techniques to improve sound transmission loss in cylindrical shells

    NASA Astrophysics Data System (ADS)

    Oliazadeh, Pouria; Farshidianfar, Anooshiravan

    2017-02-01

    In this study, sound transmission through double- and triple-walled shells is investigated. The structure-acoustic equations based on Donnell's shell theory are presented and transmission losses calculated by this approach are compared with the transmission losses obtained according to Love's theory. An experimental set-up is also constructed to compare natural frequencies obtained from Donnell and Love's theories with experimental results in the high frequency region. Both comparisons show that Donnell's theory predicts the sound transmission characteristics and vibrational behavior better than Love's theory in the high frequency region. The transmission losses of the double- and triple-walled construction are then presented for various radii and thicknesses. Then the effects of air gap size as an important design parameter are studied. Sound transmission characteristics through a circular cylindrical shell are also computed along with consideration of the effects of material damping. Modest absorption is shown to greatly reduce the sound transmission at ring frequency and coincidence frequency. Also the effects of five common gases that are used for filling the gap are investigated.

  17. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  18. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  19. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  20. Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Starnes, J. H., Jr.

    1984-01-01

    The results of an experimental and analytical study of the effects of circular holes on the postbuckling behavior of graphite-epoxy cylindrical panels loaded in axial compression are presented. The STAGSC-1 general shell analysis computer code is used to determine the buckling and postbuckling response of the panels. The loaded, curved ends of the specimens were clamped by fixtures and the unloaded, straight edges were simply supported by knife-edge restraints. The panels are loaded by uniform end shortening to several times the end shortening at buckling. The unstable equilibrium path of the postbuckling response is obtained analytically by using a method based on controlling an equilibrium-path-arc-length parameter instead of the traditional load parameter. The effects of hole diameter, panel radius, and panel thickness on postbuckling response are considered in the study. Experimental results are compared with the analytical results and the failure characteristics of the graphite-epoxy panels are described.

  1. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  2. Experimental Approach on the Behavior of Composite Laminated Shell under Transverse Impact Loading

    NASA Astrophysics Data System (ADS)

    Kim, Y. N.; Im, K. H.; Lee, K. S.; Cho, Y. J.; Kim, S. H.; Yang, I. Y.

    2005-04-01

    Composites are to be considered for many structural applications structural weight. These materials have high strength-to-weight and stiffness-to-weight ratios. However, they are susceptible to impact loading because they are laminar systems with weak interfaces. Matrix cracking and delamination are the most common damage mechanisms of low velocity impact and are dependent on each other. This paper is to study the behavior of composite shell under transverse impact loading. In this study, carbon-epoxy composite laminates with various curvatures was used. Low velocity impact tests were performed using a drop weight testing machine. The 100mm×100mm shells were clamped in order to produce a central circular area (φ=80mm). An hemispherical impactor (m=0.1kg and φ=10mm) was used and the tests were done with velocities ranging from 2.8 to 4.8 m/s. The real curve force/time was registered in order to obtain the maximum contact force and contact time. And then, we know that contact force and delamination area of flat-plate is higher than cylindrical shell panel in the same kinetic energy level, and flat-plate is easily penetrated than cylindrical shell panel. And contact force, deflection and delamination area decrease as the curvature increase.

  3. The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund

    2012-01-01

    Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.

  4. Eddy current heating in magnetic refrigerators

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.

  5. Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation

    NASA Astrophysics Data System (ADS)

    Guo, Wenjie; Li, Tianyun; Zhu, Xiang; Miao, Yuyue

    2018-05-01

    The sound-structure coupling problem of a cylindrical shell submerged in a quarter water domain is studied. A semi-analytical method based on the double wave reflection method and the Graf's addition theorem is proposed to solve the vibration and acoustic radiation of an infinite cylindrical shell excited by an axially uniform harmonic line force, in which the acoustic boundary conditions consist of a free surface and a vertical rigid surface. The influences of the complex acoustic boundary conditions on the vibration and acoustic radiation of the cylindrical shell are discussed. It is found that the complex acoustic boundary has crucial influence on the vibration of the cylindrical shell when the cylindrical shell approaches the boundary, and the influence tends to vanish when the distances between the cylindrical shell and the boundaries exceed certain values. However, the influence of the complex acoustic boundary on the far-field sound pressure of the cylindrical shell cannot be ignored. The far-field acoustic directivity of the cylindrical shell varies with the distances between the cylindrical shell and the boundaries, besides the driving frequency. The work provides more understanding on the vibration and acoustic radiation behaviors of cylindrical shells with complex acoustic boundary conditions.

  6. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  7. Scattering From the Finite-Length, Dielectric Circular Cylinder. Part 2 - On the Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band

    DTIC Science & Technology

    2015-09-01

    accuracy of an analytical solution for characterizing the backscattering responses of circular cylindrical tree trunks located above a dielectric ground...Figures iv 1. Introduction 1 2. Analytical Solution 2 3. Validation with Full-Wave Solution 4 3.1 Untapered Circular Cylindrical Trunk 5 3.2...Linearly Tapered Circular Cylindrical Trunk 13 3.3 Nonlinearly Tapered Circular Cylindrical Trunk 18 4. Conclusions 22 5. References 23 Appendix

  8. A Stress Analysis of Circular Cylindrical Shell Intersections, Including the Influences of Reinforcement, Cyclic Plasticity and Fatigue.

    DTIC Science & Technology

    1980-12-01

    Professor Paul M. Naghdi National Academy of Sciences University of California National Research Council Department of Mechanical Engineering Ship Hull...Angeles, California 90024 Department of Mechanical Engineering Washington, D.C. 20064 Professor Burt Paul University of Pennsylvania Dr. Samuel B...78u4 74 -6 19 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania

  9. Catalytic converter for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, A.; Oya, H.

    1980-06-24

    A catalytic converter for purifying the exhaust gases of internal combustion engines is comprised of a cylindrical shell comprising a pair of half shells which form an inlet chamber, a catalyst chamber, and an outlet chamber, a catalyst element provided in the catalyst chamber, a cylindrical sealing member provided in the inlet chamber, and a damper member provided between the cylindrical shell and the sealing member. The sealing member engages to the cylindrical shell for sealing the gap between the cylindrical shell and the catalyst element.

  10. Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Herr, R. W.; Sewall, J. L.

    1980-01-01

    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks.

  11. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  12. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  13. Experimental Stress Analysis of Stiffened Cylinders with Cutouts : Pure Bending

    NASA Technical Reports Server (NTRS)

    Schlechte, Floyd R; Rosecrans, Richard

    1954-01-01

    Bending tests were made on a cylindrical semimonocoque shell of circular cross section. The cylinder was tested without a cutout and then with a rectangular cutout which was successively enlarged through six sizes varying from 30 degrees to 130 degrees in circumference and from 1 to 2 bays in length. Strain measurements were made with resistance-type wire strain gages near the cutout on the stringers, the skin, and the rings for each size of cutout, and the stresses obtained are presented in tables. (author)

  14. Focusing of concentric piecewise vector Bessel-Gaussian beam

    NASA Astrophysics Data System (ADS)

    Li, Jinsong; Fang, Ying; Zhou, Shenghua; Ye, Youxiang

    2010-12-01

    The focusing properties of a concentric piecewise vector Bessel-Gaussian beam are investigated in this paper. The beam consists of three portions: the center circular portion and outer annular portion are radially polarized, while the inner annular portion is generalized polarized with tunable polarized angle. Numerical simulations show that the evolution of focal pattern is altered considerably with different Bessel parameters in the Bessel term of the vector Bessel-Gaussian beam. The polarized angle also affects the focal pattern remarkably. Some interesting focal patterns may appear, such as two-peak, dark hollow focus; ring focus; spherical shell focus; cylindrical shell focus; and multi-ring-peak focus, and transverse focal switch occurs with increasing polarized angle of the inner annular portion, which may be used in optical manipulation.

  15. A cylindrical shell with a stress-free end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Yahsi, O. S.

    1985-01-01

    The interaction problem of a through or a part through crack with a stress free boundary in a semi-infinite cylindrical shell is considered. It is assumed that the crack lies in a meridional plane which is a plane of symmetry with respect to the external loads as well as the geometry. The circular boundary of the semi-infinite cylinder is assumed to be stress free. By using a transverse shear theory the problem is formulated in terms of a system of singular integral equations. The line spring model is used to treat the part through crack problem. In the case of a through crack the interaction between the perturbed stress fields due to the crack and the free boundary is quite strong and there is a considerable increase in the stress intensity factors caused by the interaction. On the other hand in the problem of a surface crack the interaction appears to be much weaker and consequently the magnification in the stress intensity factors is much less significant.

  16. A cylindrical shell with a stress-free end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Yahsi, O. S.

    1983-01-01

    The interaction problem of a through or a part through crack with a stress free boundary in a semi-infinite cylindrical shell is considered. It is assumed that the crack lies in a meridional plane which is a plane of symmetry with respect to the external loads as well as the geometry. The circular boundary of the semi-infinite cylinder is assumed to be stress free. By using a transverse shear theory the problem is formulated in terms of a system of singular integral equations. The line spring model is used to treat the part through crack problem. In the case of a through crack the interaction between the perturbed stress fields due to the crack and the free boundary is quite strong and there is a considerable increase in the stress intensity factors caused by the interaction. On the other hand in the problem of a surface crack the interaction appears to be much weaker and consequently the magnification in the stress intensity factors is much less significant.

  17. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  18. Holographic measurement of wave propagation in axi-symmetric shells

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.

    1972-01-01

    The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.

  19. Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells

    NASA Astrophysics Data System (ADS)

    Saemi, J.; Sedighi, M.; Shariati, M.

    2015-09-01

    The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.

  20. Software For Design And Analysis Of Tanks And Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Graham, Jerry B.

    1995-01-01

    Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.

  1. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  2. Compression strength of composite primary structural components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1994-01-01

    The linear elastic response is determined for an internally pressurized, long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity of this configuration permits the analysis of a portion of the shell wall centered over a generic stringer-ring joint; i.e., a unit cell model. The stiffeners are modeled as discrete beams, and the stringer is assumed to have a symmetrical cross section and the ring an asymmetrical section. Asymmetery causes out-of-plane bending and torsion of the ring. Displacements are assumed as truncated double Fourier series plus simple terms in the axial coordinate to account for the closed and pressure vessel effect (a non-periodic effect). The interacting line loads between the stiffeners and the inside shell wall are Lagrange multipliers in the formulation, and they are also assumed as truncated Fourier series. Displacement continuity constraints between the stiffeners and shell along the contact lines are satisfied point-wise. Equilibrium is imposed by the principle of virtual work. A composite material crown panel from the fuselage of a large transport aircraft is the numerical example. The distributions of the interacting line loads, and the out-of-plane bending moment and torque in the ring, are strongly dependent on modeling the deformations due to transverse shear and cross-sectional warping of the ring in torsion. This paper contains the results from the semiannual report on research on 'Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell'. The results of the new work are illustrated in the included appendix.

  3. Modes of elastic plates and shells in water driven by modulated radiation pressure of focused ultrasound

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars

    2015-11-01

    The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.

  4. Load transfer in the stiffener-to-skin joints of a pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Rastogi, Naveen

    1995-01-01

    Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.

  5. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  6. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  7. Fluid-structure interaction in fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Mitra, A. A.; Manik, D. N.; Chellapandi, P. A.

    2004-05-01

    A finite element model for the seismic analysis of a scaled down model of Fast breeder reactor (FBR) main vessel is proposed to be established. The reactor vessel, which is a large shell structure with a relatively thin wall, contains a large volume of sodium coolant. Therefore, the fluid structure interaction effects must be taken into account in the seismic design. As part of studying fluid-structure interaction, the fundamental frequency of vibration of a circular cylindrical shell partially filled with a liquid has been estimated using Rayleigh's method. The bulging and sloshing frequencies of the first four modes of the aforementioned system have been estimated using the Rayleigh-Ritz method. The finite element formulation of the axisymmetric fluid element with Fourier option (required due to seismic loading) is also presented.

  8. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  9. Low-frequency vibrations of a cylindrical shell rotating on rollers

    NASA Astrophysics Data System (ADS)

    Filippov, S. B.

    2018-05-01

    Small free low-frequency vibrations of a rotating closed cylindrical shell which is in a contact with rigid cylindrical rollers are considered. Assumptions of semi-momentless shell theory are used. By means of the expansion of solutions in truncated Fourier series in circumference coordinate the system of the algebraic equations for the approximate calculation of the vibration frequencies and the mode shapes is obtained. The algorithm for the evaluation of frequencies and vibration modes based on analytical solution is developed. In particular, the lowest frequencies of thin cylindrical shell, representing greatest interest for applications, were found. Approximate results are compared with results of numerical calculations carried out by the Finite Elements Analysis. It is shown that the semi-momentless theory can be used for the evaluation of the low frequencies of a cylindrical shell rotating on rollers.

  10. A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Batdorf, S B

    1947-01-01

    This paper develops a new method for determining the buckling stresses of cylindrical shells under various loading conditions. In part I, the equation for the equilibrium of cylindrical shells introduced by Donnell in NACA report no. 479 to find the critical stresses of cylinders in torsion is applied to find critical stresses for cylinders with simply supported edges under other loading conditions. In part II, a modified form of Donnell's equation for the equilibrium of thin cylindrical shells is derived which is equivalent to Donnell's equation but has certain advantages in physical interpretation and in ease of solution, particularly in the case of shells having clamped edges. The question of implicit boundary conditions is also considered.

  11. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    NASA Astrophysics Data System (ADS)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  12. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  13. Pathologies of van Stockum dust/Tipler's time machine

    NASA Astrophysics Data System (ADS)

    Lindsay, David S.

    2016-09-01

    We study the internal solution, and external vacuum solution for radial cutoff, of "van Stockum dust", an infinitely long rotating pressureless dust column; its density increases with radius. This interesting but poorly explored spacetime turns out to have a number of exotic properties, especially in the external vacuum region. These solutions have been known for decades, but it seems that they have never been investigated in detail. In this paper we analyze them and describe their peculiar properties. There are three regimes of radial cutoff that are of interest: (1) If the dust column is thick enough that closed timelike loops (CTLs or "time machines") exist inside the column, then the radius of the entire "universe" is finite, and in fact does not extend much beyond the edge of the matter, even though the metric's radial parameter is unbounded. This interesting finite proper radius seems to have been missed by earlier investigators. Other exotic properties of the external vacuum in this regime: CTLs exist in cylindrical shells, alternating with shells having no circular CTLs; there are infinitely many such shells, getting closer and closer together as one gets farther from the rotation axis. Also, a separate set of infinitely many cylindrical shells exists, having what might be termed "extreme frame-dragging", within which motion is possible only in one direction; they alternate with "normal" shells allowing motion in either direction. Gravitational attraction and tides increase with distance from the matter column, and diverge at the "edge of the universe". In addition, though the radius of the universe is finite, its circumference is infinite; and its boundary is a circle, not a cylinder (the z-axis has shrunk to nothing at the edge). (2) For smaller radial cutoff, but still large enough to produce CTLs, the radius of the universe is infinite; but there are still infinitely many cylindrical shells of CTLs alternating with non-CTL shells. However, the innermost shell begins substantially outside the dust, making this solution even stranger—you have to back away from the matter to find a CTL! And, regardless of how far away you are, there are still infinitely many CTL shells beyond you, the closest only a finite distance away. (3) For radial cutoff too close to produce CTLs, the external solution is more benign; nearby it perhaps approximates that of a finite rotating rod. But "planes" of constant z approach each other at large radii, so that any two enclose a shape somewhat like two pie-pans facing each other and glued together at their edges.

  14. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  15. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  16. Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired Rayleigh-Ritz modes using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Biglar, Mojtaba; Mirdamadi, Hamid Reza; Danesh, Mohammad

    2014-02-01

    In this study, the active vibration control and configurational optimization of a cylindrical shell are analyzed by using piezoelectric transducers. The piezoelectric patches are attached to the surface of the cylindrical shell. The Rayleigh-Ritz method is used for deriving dynamic modeling of cylindrical shell and piezoelectric sensors and actuators based on the Donnel-Mushtari shell theory. The major goal of this study is to find the optimal locations and orientations of piezoelectric sensors and actuators on the cylindrical shell. The optimization procedure is designed based on desired controllability and observability of each contributed and undesired mode. Further, in order to limit spillover effects, the residual modes are taken into consideration. The optimization variables are the positions and orientations of piezoelectric patches. Genetic algorithm is utilized to evaluate the optimal configurations. In this article, for improving the maximum power and capacity of actuators for amplitude depreciation of negative velocity feedback strategy, we have proposed a new control strategy, called "Saturated Negative Velocity Feedback Rule (SNVF)". The numerical results show that the optimization procedure is effective for vibration reduction, and specifically, by locating actuators and sensors in their optimal locations and orientations, the vibrations of cylindrical shell are suppressed more quickly.

  17. PANDA2: Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels

    DTIC Science & Technology

    1986-09-01

    a flat panel or a panel that spans less than about 45 degrees of circumference. However, in PANDA2 complete cylindrical shells can be treated by the...compression and that corresponding to maximum in-plane shear. It is usually best to treat complete cylindrical shells in this way rather than try to set up a...to treat panels, not complete cylindrical shells. Therefore, it is best applied to panels. In PANDA2 the curved edges of a cylindrical panel lie in

  18. Radiative flux from a planar multiple point source within a cylindrical enclosure reaching a coaxial circular plane

    NASA Astrophysics Data System (ADS)

    Tryka, Stanislaw

    2007-04-01

    A general formula and some special integral formulas were presented for calculating radiative fluxes incident on a circular plane from a planar multiple point source within a coaxial cylindrical enclosure perpendicular to the source. These formula were obtained for radiation propagating in a homogeneous isotropic medium assuming that the lateral surface of the enclosure completely absorbs the incident radiation. Exemplary results were computed numerically and illustrated with three-dimensional surface plots. The formulas presented are suitable for determining fluxes of radiation reaching planar circular detectors, collectors or other planar circular elements from systems of laser diodes, light emitting diodes and fiber lamps within cylindrical enclosures, as well as small biological emitters (bacteria, fungi, yeast, etc.) distributed on planar bases of open nontransparent cylindrical containers.

  19. Stability of cylindrical thin shell wormholes supported by MGCG in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2018-02-01

    In the framework of f(R) modified theory of gravity, the dynamical equations of motion of a cylindrical thin shell wormholes supported by a modified generalized Chaplygin gas are constructed, using the cut and paste scheme (Darmois Israel formalism). The mechanical stability analysis of a cylindrical thin shell wormhole is discussed using a linearized radial perturbation around static solutions at the wormhole throat. The presence of stable static solutions depends on the suitable values of some parameters of dynamical shell.

  20. On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.

  1. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  2. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  3. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  4. Direction-of-arrival estimation for a uniform circular acoustic vector-sensor array mounted around a cylindrical baffle

    NASA Astrophysics Data System (ADS)

    Yang, DeSen; Zhu, ZhongRui

    2012-12-01

    This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.

  5. On the power output of some idealized source configurations with one or more characteristic dimensions

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    The calculation of power output from a (finite) linear array of equidistant point sources is investigated with allowance for a relative phase shift and particular focus on the circumstances of small/large individual source separation. A key role is played by the estimates found for a twin parameter definite integral that involves the Fejer kernel functions, where N denotes a (positive) integer; these results also permit a quantitative accounting of energy partition between the principal and secondary lobes of the array pattern. Continuously distributed sources along a finite line segment or an open ended circular cylindrical shell are considered, and estimates for the relatively lower output in the latter configuration are made explicit when the shell radius is small compared to the wave length. A systematic reduction of diverse integrals which characterize the energy output from specific line and strip sources is investigated.

  6. Quantification of Processing Effects on Filament Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    1999-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  7. Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.; Chamis, Christos C.

    2002-01-01

    A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.

  8. Probability-based methodology for buckling investigation of sandwich composite shells with and without cut-outs

    NASA Astrophysics Data System (ADS)

    Alfano, M.; Bisagni, C.

    2017-01-01

    The objective of the running EU project DESICOS (New Robust DESign Guideline for Imperfection Sensitive COmposite Launcher Structures) is to formulate an improved shell design methodology in order to meet the demand of aerospace industry for lighter structures. Within the project, this article discusses the development of a probability-based methodology developed at Politecnico di Milano. It is based on the combination of the Stress-Strength Interference Method and the Latin Hypercube Method with the aim to predict the bucking response of three sandwich composite cylindrical shells, assuming a loading condition of pure compression. The three shells are made of the same material, but have different stacking sequence and geometric dimensions. One of them presents three circular cut-outs. Different types of input imperfections, treated as random variables, are taken into account independently and in combination: variability in longitudinal Young's modulus, ply misalignment, geometric imperfections, and boundary imperfections. The methodology enables a first assessment of the structural reliability of the shells through the calculation of a probabilistic buckling factor for a specified level of probability. The factor depends highly on the reliability level, on the number of adopted samples, and on the assumptions made in modeling the input imperfections. The main advantage of the developed procedure is the versatility, as it can be applied to the buckling analysis of laminated composite shells and sandwich composite shells including different types of imperfections.

  9. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  10. Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.

    1996-01-01

    Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.

  11. Computer design synthesis of a below knee-Syme prosthesis

    NASA Technical Reports Server (NTRS)

    Elangovan, P. T.; Ghista, D. N.; Alwar, R. S.

    1979-01-01

    A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purposes, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealized as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimize the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally stressed lightweight socket shell, the panels in the neighborhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analyzed in order to recommend optimum variables in orientations and densities of reinforcing fibers.

  12. Integrated reactor and centrifugal separator and uses thereof

    DOEpatents

    Birdwell, Jr., Joseph F; Jennings, Harold L [Clinton, TN; McFarlane, Joanna [Oak Ridge, TN; Tsouris, Constantino [Oak Ridge, TN

    2012-01-17

    An apparatus for providing reaction of fluids and separation of products with increased residence time. The apparatus includes a stationary shell, a rotating hollow cylindrical component disposed in the stationary shell, a residence-time increasing device external to the stationary shell, a standpipe for introducing fluid into an interior cavity of the hollow cylindrical component from the residence-time increasing device, a first outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a less dense phase fluid, and a second outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a more dense phase fluid.

  13. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  14. Modeling mantle convection in the spherical annulus

    NASA Astrophysics Data System (ADS)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  15. Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Li, Hua; Tian, Qiang

    2018-04-01

    Polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1- x As core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.

  16. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  17. Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi

    2017-12-01

    This paper focuses on the dynamic modeling of a cylindrical shell equipped with piezoceramic sensors and actuators, as well as the design of a broad band multi-input and multi-output linear quadratic Gaussian controller for the suppression of vibrations. The optimal locations of actuators are derived by Genetic Algorithm (GA) to effectively control the specific structural modes of the cylinder. The dynamic model is derived based on the Sanders shell theory and the energy approach for both the cylinder and the piezoelectric transducers, all of which reflect the piezoelectric effect. The natural vibration characteristics of the cylindrical shell are investigated both theoretically and experimentally. The theoretical predictions are in good agreement with the experimental results. Then, the broad band multi-input and multi-output linear quadratic Gaussian controller was designed and applied to the test article. An active vibration control experiment is carried out on the cylindrical shell and the digital control system is used to implement the proposed control algorithm. The experimental results show that vibrations of the cylindrical shell can be suppressed by the piezoceramic sensors and actuators along with the proposed controller. The optimal location of the actuators makes the proposed control system more efficient than other configurations.

  18. 46 CFR 52.01-3 - Definitions of terms used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shells, attached by riveting, bolting, or welding. They generally consist of a cylindrical shell with one... plain furnace is a cylindrical shell usually made in sections joined by means of riveting or welding... longitudinal joint, the ends being attached by riveting or welding. Their purpose is to provide additional...

  19. 46 CFR 52.01-3 - Definitions of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shells, attached by riveting, bolting, or welding. They generally consist of a cylindrical shell with one... plain furnace is a cylindrical shell usually made in sections joined by means of riveting or welding... longitudinal joint, the ends being attached by riveting or welding. Their purpose is to provide additional...

  20. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    NASA Astrophysics Data System (ADS)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  1. Explosive shock damage potential in space structures

    NASA Technical Reports Server (NTRS)

    Mortimer, R. W.

    1972-01-01

    The effects of a pulse shape on the transient response of a cylindrical shell are presented. Uniaxial, membrane, and bending theories for isotropic shells were used in this study. In addition to the results of the analytical study, the preliminary results of an experimental study into the generation and measurement of shear waves in a cylindrical shell are included.

  2. Bifurcation theory applied to buckling states of a cylindrical shell

    NASA Astrophysics Data System (ADS)

    Chaskalovic, J.; Naili, S.

    1995-01-01

    Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.

  3. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  4. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  5. A technique for generating shear waves in cylindrical shells under radial impact

    NASA Technical Reports Server (NTRS)

    Blum, A.; Mortimer, R. W.; Rose, J. L.

    1974-01-01

    Experimental techniques are developed to study and measure the shear-wave velocity in an aluminum cylindrical shell subjected to a radial impact. The radial impact is obtained by exploding an electrical detonator inserted in plastic plugs mounted on the end of the shell. Strain gages, mounted on the outside surface of the shell at various axial locations, are used to obtain oscilloscope traces from which the shear-wave velocity can be calculated.

  6. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; No, You-Shin

    2017-12-01

    In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.

  7. Analysis of shear buckling of cylindrical shells. II - Effects of combined loadings

    NASA Astrophysics Data System (ADS)

    Kokubo, Kunio; Nagashima, Hideaki; Takayanagi, Masaaki; Madokoro, Manabu; Mochizuki, Akira; Ikeuchi, Hisaaki

    1992-03-01

    Cylindrical shells subjected to lateral loads buckle in shear or bending buckling modes. The effects of combined loadings are investigated by developing a special-purpose FEM program using the 8-node isoparametric shell element. Three types of loading, lateral and axial loads, and pure bending moments are considered. For short cylindrical shells, shear buckling modes are dominant, but elephant-foot bulges take place with an increase in bending moments. Effects of axial loads on shear buckling and the elephant-foot bulge are investigated. In the case of shear buckling the axial load affects the buckling mode as well as the buckling load. For bending bucklings, the axial loads have a great effect on the buckling load.

  8. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    NASA Astrophysics Data System (ADS)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  9. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  10. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  11. Visualization of the energy flow for guided forward and backward waves in and around a fluid-loaded elastic cylindrical shell via the Poynting vector field

    NASA Astrophysics Data System (ADS)

    Dean, Cleon E.; Braselton, James P.

    2004-05-01

    Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.

  12. Nonlinear Deformation and Stability of a Noncircular Cylindrical Shell Under Combined Loading with Bending and Twisting Moments

    NASA Astrophysics Data System (ADS)

    Belov, V. K.; Zheleznov, L. P.; Ognyanova, T. S.

    2018-03-01

    A previously developed technique is used to solve problems of strength and stability of discretely reinforced noncircular cylindrical shells made of a composite material with allowance for the moments and nonlinearity of their subcritical stress-strain state. Stability of a reinforced bay of the aircraft fuselage made of a composite material under combined loading with bending and twisting moments is studied. The effects of straining nonlinearity, stiffness of longitudinal ribs, and shell thickness on the critical loads that induce shell buckling are analyzed.

  13. Vibrations of a thin cylindrical shell stiffened by rings with various stiffness

    NASA Astrophysics Data System (ADS)

    Nesterchuk, G. A.

    2018-05-01

    The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.

  14. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  15. Free Vibrations of Nonthin Elliptic Cylindrical Shells of Variable Thickness

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Efimova, T. L.; Korotkikh, Yu. A.

    2017-11-01

    The problem of the free vibrations of nonthin elliptic cylindrical shells of variable thickness under various boundary conditions is solved using the refined Timoshenko-Mindlin theory. To solve the problem, an effective numerical approach based on the spline-approximation and discrete-orthogonalization methods is used. The effect of the cross-sectional shape, thickness variation law, material properties, and boundary conditions on the natural frequency spectrum of the shells is analyzed.

  16. Periodic buckling of constrained cylindrical elastic shells

    NASA Astrophysics Data System (ADS)

    Marthelot, Joel; Brun, Pierre-Thomas; Lopez Jimenez, Francisco; Reis, Pedro M.

    We revisit the classic problem of buckling of a thin cylindrical elastic shell loaded either by pneumatic depressurization or axial compression. The control of the resulting dimpled pattern is achieved by using a concentric inner rigid mandrel that constrains and stabilizes the post-buckling response. Under axial compression, a regular lattice of diamond-like dimples appears sequentially on the surface of the shell to form a robust spatially extended periodic pattern. Under pressure loading, a periodic array of ridges facets the surface of the elastic cylindrical shell. The sharpness of these ridges can be readily varied and controlled through a single scalar parameter, the applied pressure. A combination of experiments, simulations and scaling analyses is used to rationalize the combined role of geometry and mechanics in the nucleation and evolution of the diamond-like dimples and ridges networks.

  17. Frequency dependence of the acoustic radiation force acting on absorbing cylindrical shells.

    PubMed

    Mitri, Farid G

    2005-02-01

    The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.

  18. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  19. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  20. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korayem, M. H.; Khaksar, H.; Taheri, M.

    2013-11-14

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, themore » geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of cylindrical and circular crowned roller shaped micro/nanoparticles. The results of models indicate that the contact model of Hertz achieves the largest amount of deformation for the DNA nanoparticle in cylindrical form and the contact model of Heoprich achieves the largest deformation for the circular crowned roller shaped DNA. Of course, this finding is not always true for the other nanoparticles; and considering the mechanical and environmental characteristics, different results can be obtained. Also, by comparing the deformations of different types of nanoparticles, it was determined that the platelet type nanoparticles display the highest degree of deformation in all the considered models, due to their particular mechanical characteristics.« less

  1. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, K. M.; Li, Hua

    2018-07-01

    A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.

  2. Asymptotic approximations for pure bending of thin cylindrical shells

    NASA Astrophysics Data System (ADS)

    Coman, Ciprian D.

    2017-08-01

    A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel-Mushtari-Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further complemented by an alternative WKB approximation that provides comparable information with significantly less effort.

  3. Hole size, location optimization in a plate and cylindrical shell for minimum stress points interfacing ANSYS and MATLAB

    NASA Astrophysics Data System (ADS)

    Thangavel, Soundararaj

    Discontinuities in Structures are inevitable. One such discontinuity in a plate and cylindrical shell is presence of a hole / holes. In Plates they are used for mounting bolts where as in Cylinder / Pressure Vessel, they provide provision for mounting Nozzles / Instruments. Location of these holes plays a primary role in minimizing the stress acting with out any external reinforcement. In this Thesis work, Location Parameters are optimized for the presence of one or more holes in a plate and cylindrical shell interfacing ANSYS and MATLAB with boundary constraints based on the geometry. Contour plots are generated for understanding stress distribution and analytical solutions are also discussed for some of the classical problems.

  4. DE-ENTRAINMENT COLUMN

    DOEpatents

    Mooradian, A.J.

    1958-07-01

    A de-entrainnnent colunnn is described for removing substances from a stream of vapor coming from a distillation apparatus. The device comprises a hollow cylindrical body mounted with its axis vertical on a flange on the upper slde of a vaporizing vessel; two sintered metal circular discs through which all the vapor passes mounted in axially spaced relationship in the cylindrical body; and two semi-circular baffle plates mounted in spaced relationship between the discs.

  5. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  6. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  7. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    NASA Astrophysics Data System (ADS)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  9. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  10. Eigenvalue computations with the QUAD4 consistent-mass matrix

    NASA Technical Reports Server (NTRS)

    Butler, Thomas A.

    1990-01-01

    The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.

  11. Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zheng, Gangtie

    2012-07-01

    In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.

  12. Observation of Compressible Plasma Mix in Cylindrically Convergent Implosions

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Batha, Steven H.; Lanier, Nicholas E.; Magelssen, Glenn R.; Tubbs, David L.; Dunne, A. M.; Rothman, Steven R.; Youngs, David L.

    2000-10-01

    An understanding of hydrodynamic mix in convergent geometry will be of key importance in the development of a robust ignition/burn capability on NIF, LMJ and future pulsed power machines. We have made use of the OMEGA laser facility at the University of Rochester to investigate directly the mix evolution in a convergent geometry, compressible plasma regime. The experiments comprise a plastic cylindrical shell imploded by direct laser irradiation. The cylindrical shell surrounds a lower density plastic foam which provides sufficient back pressure to allow the implosion to stagnate at a sufficiently high radius to permit quantitative radiographic diagnosis of the interface evolution near turnaround. The susceptibility to mix of the shell-foam interface is varied by choosing different density material for the inner shell surface (thus varying the Atwood number). This allows the study of shock-induced Richtmyer-Meshkov growth during the coasting phase, and Rayleigh-Taylor growth during the stagnation phase. The experimental results will be described along with calculational predictions using various radiation hydrodynamics codes and turbulent mix models.

  13. Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell

    NASA Technical Reports Server (NTRS)

    Rastogi, Naveen; Johnson, Eric R.

    1994-01-01

    Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.

  14. Analysis of transient, linear wave propagation in shells by the finite difference method

    NASA Technical Reports Server (NTRS)

    Geers, T. L.; Sobel, L. H.

    1971-01-01

    The applicability of the finite difference method to propagation problems in shells, and the response of a cylindrical shell with cutouts to both longitudinal and radial transient excitations are investigated. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. The short wave length limitations of thin shell theory create significant convergence difficulties may often be overcome through proper selection of finite difference mesh dimensions and temporal or spatial smoothing of the excitation. Cutouts produce moderate changes in early and intermediate time response of a cylindrical shell to axisymmetric pulse loads applied at one end. The cutouts may facilitate the undesirable late-time transfer of load-injected extensional energy into nonaxisymmetric flexural response.

  15. A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell

    NASA Astrophysics Data System (ADS)

    Kaplunov, J.; Nobili, A.

    2017-08-01

    Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.

  16. A cylindrical shell with an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1982-01-01

    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.

  17. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  18. A Variational Method for Calculating the Natural Frequencies and Mode Shapes of a Cantilevered Open Cylindrical Shell.

    DTIC Science & Technology

    1983-12-01

    A + f( (n xNxx Nx)6u + (nxNx 9 Nee)Sv )ds (19) s w1 where n are defined as the direction cosines between the normal and the y direction. To integrate...of a specific shell shape. Thus far, Eq (27) applies to all cylindrical shells with the only assumption being the thickness, h, is small as com - pared...results. For instance, after solving Eq (32) for its eight roots, one of them must be established as X1. While this choice is com - pletely arbitrary at

  19. Thermal runaway and microwave heating in thin cylindrical domains

    NASA Astrophysics Data System (ADS)

    Ward, Michael J.

    2002-04-01

    The behaviour of the solution to two nonlinear heating problems in a thin cylinder of revolution of variable cross-sectional area is analysed using asymptotic and numerical methods. The first problem is to calculate the fold point, corresponding to the onset of thermal runaway, for a steady-state nonlinear elliptic equation that arises in combustion theory. In the limit of thin cylindrical domains, it is shown that the onset of thermal runaway can be delayed when a circular cylindrical domain is perturbed into a dumbell shape. Numerical values for the fold point for different domain shapes are obtained asymptotically and numerically. The second problem that is analysed is a nonlinear parabolic equation modelling the microwave heating of a ceramic cylinder by a known electric field. The basic model in a thin circular cylindrical domain was analysed in Booty & Kriegsmann (Meth. Appl. Anal. 4 (1994) p. 403). Their analysis is extended to treat thin cylindrical domains of variable cross-section. It is shown that the steady-state and dynamic behaviours of localized regions of high temperature, called hot-spots, depend on a competition between the maxima of the electric field and the maximum deformation of the circular cylinder. For a dumbell-shaped region it is shown that two disconnected hot-spot regions can occur. Depending on the parameters in the model, these regions, ultimately, either merge as time increases or else remain as disconnected regions for all time.

  20. 46 CFR 59.15-10 - Bagged or blistered shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Bagged or blistered shell plates. 59.15-10 Section 59.15... shell plates. (a) When the shell plates of cylindrical boilers which are exposed to the radiant heat of... boiler. (b) Where the shell plate is bagged due to overheating, the Officer in Charge, Marine Inspection...

  1. 46 CFR 59.15-10 - Bagged or blistered shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Bagged or blistered shell plates. 59.15-10 Section 59.15... shell plates. (a) When the shell plates of cylindrical boilers which are exposed to the radiant heat of... boiler. (b) Where the shell plate is bagged due to overheating, the Officer in Charge, Marine Inspection...

  2. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  3. Deformation and stress response of composite laminated shells under internal pressure

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1991-01-01

    This paper presents a theoretical study of the response of filament wound composite shells under internal pressure. Each layer of the material is generally cylindrically anisotropic. By using cylindrically anisotropic elasticity field equations and Lekhnitskii's stress functions, a system of sixth-order ordinary differential equations is obtained. The general expressions for the stresses and displacements in the laminated composite shells under internal pressure are discussed. Two composite systems, graphite/epoxy and glass/epoxy, are selected to demonstrate the influence of degree of material anisotropy and fiber orientations on the axial and induced twisting deformation. Stress distributions of (45/-45)s symmetric angle-ply fiber-reinforced laminated shells are shown to illustrate the effect of radius-to-thickness ratio.

  4. Contra-rotating homopolar motor-generator for energy storage and return

    DOEpatents

    Kustom, Robert L.; Wehrle, Robert B.

    1978-01-01

    An apparatus for receiving electrical energy in amounts of the order of hundreds of megajoules, converting the electrical energy to mechanical energy for storage, and delivering the stored energy as electrical energy in times of the order of a second comprises a sequence of stacked electrically conducting cylindrical shells having a common axis. The conducting shells are free to rotate and are separated by stationary insulating cylindrical shells. Adjacent conducting shells are connected electrically by brushes at the edges and a radial magnetic field is caused to pass through the conductors. The apparatus permits the reversal in a plasma heating coil of electric currents of amplitudes up to 100,000 amperes in a time of the order of a second.

  5. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    PubMed

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  6. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    PubMed Central

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582

  7. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi

    2012-11-28

    This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.

  8. Circularly-Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  9. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  10. Circular dichroism in photoelectron images from aligned nitric oxide molecules

    DOE PAGES

    Sen, Ananya; Pratt, S. T.; Reid, K. L.

    2017-05-03

    We have used velocity map photoelectron imaging to study circular dichroism of the photoelectron angular distributions (PADs) of nitric oxide following two-color resonanceenhanced two-photon ionization via selected rotational levels of the A 2Σ +, v' = 0 state. By using a circularly polarized pump beam and a counter-propagating, circularly polarized probe beam, cylindrical symmetry is preserved in the ionization process, and the images can be reconstructed using standard algorithms. The VMI set up enables individual ion rotational states to be resolved with excellent collection efficiency, rendering the measurements considerably simpler to perform than previous measurements conducted with a conventional photoelectronmore » spectrometer. The results demonstrate that circular dichroism is observed even when cylindrical symmetry is maintained, and serve as a reminder that dichroism is a general feature of the multiphoton ionization of atoms and molecules. Furthermore, the observed PADs are in good agreement with calculations based on parameters extracted from previous experimental results obtained by using a time-offlight electron spectrometer.« less

  11. Circular dichroism in photoelectron images from aligned nitric oxide molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ananya; Pratt, S. T.; Reid, K. L.

    We have used velocity map photoelectron imaging to study circular dichroism of the photoelectron angular distributions (PADs) of nitric oxide following two-color resonanceenhanced two-photon ionization via selected rotational levels of the A 2Σ +, v' = 0 state. By using a circularly polarized pump beam and a counter-propagating, circularly polarized probe beam, cylindrical symmetry is preserved in the ionization process, and the images can be reconstructed using standard algorithms. The VMI set up enables individual ion rotational states to be resolved with excellent collection efficiency, rendering the measurements considerably simpler to perform than previous measurements conducted with a conventional photoelectronmore » spectrometer. The results demonstrate that circular dichroism is observed even when cylindrical symmetry is maintained, and serve as a reminder that dichroism is a general feature of the multiphoton ionization of atoms and molecules. Furthermore, the observed PADs are in good agreement with calculations based on parameters extracted from previous experimental results obtained by using a time-offlight electron spectrometer.« less

  12. Comparisons of Backscattering from Cylindrical Shells Described by Thin Shell and Elasticity Theories.

    DTIC Science & Technology

    1991-03-04

    term that describes inextensional motion. The first equation represents the normal stress at the midsurface of the shell, which is equal to the...that the normal velocity at the midsurface of the shell is proportional to the normal derivative of the total pressw e. The scattered pressure ps can

  13. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  14. Sound Transmission through Cylindrical Shell Structures Excited by Boundary Layer Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.

  15. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  16. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  17. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  18. Stress singularities in a model of a wood disk under sinusoidal pressure

    Treesearch

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  19. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1998-01-01

    Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

  20. A numerical algorithm of tooth profile of non-circular cylindrical gear

    NASA Astrophysics Data System (ADS)

    Wang, Xuan

    2017-08-01

    Non-circular cylindrical gear (NCCG) is a common form of non-circular gear. Different from the circular gear, the tooth profile equation of NCCG cannot be obtained. So it is necessary to use a numerical algorithm to calculate the tooth profile of NCCG. For this reason, this paper presents a simple and highly efficient numerical algorithm to obtain the tooth profile of NCCG. Firstly, the mathematical model of tooth profile envelope of NCCG is established based on the principle of gear shaping, and the tooth profile envelope of NCCG is obtained. Secondly, the polar radius and polar angle of shaper cutter tooth profile are chosen as the criterions, by which the points of NCCG tooth cogging can be screened out. Finally, the boundary of tooth cogging points is extracted by a distance criterion and correspondingly the tooth profile of NCCG is obtained.

  1. Development of X-Ray Laser Media: Measurement of Gain and Development of Cavity Resonators for Wavelengths Near 130 Angstroms.

    DTIC Science & Technology

    1985-09-30

    El recombination inversion, is much more effective. Furthermore, we have studied extensively a more advanced geometry which we predict theoretically ...to be even more effective: that of laser-imploded thin cylindrical shells. We report here on theoretical and Codes or. - .. I-. - experimental progress... theoretical analysis, as well as the actual demonstration on OMEGA of the compression of cylindrical shell targets were described in a paper entitled

  2. Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.

  3. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  4. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  5. Cryogenic line insulation made from prefabricated polyurethane shells

    NASA Technical Reports Server (NTRS)

    Lerma, G.

    1975-01-01

    Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

  6. A cylindrical shell with an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system to five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented. Previously annunced in STAR as N83-16783

  7. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  8. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  9. MHD Waves in Coronal Loops with a Shell

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Solov'ev, A. A.

    2004-04-01

    We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m = 0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m > 0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.

  10. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Graham, J.

    1993-01-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  11. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Min-Cheng; Gong, Lei; Li, Di

    2014-11-03

    Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.

  12. Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.

    2003-06-01

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  13. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.

    PubMed

    Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C

    2003-06-27

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  14. Cylindrical acoustic levitator/concentrator having non-circular cross-section

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2003-11-11

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.

  15. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  16. Missile Aerodynamics (Aerodynamique des Missiles)

    DTIC Science & Technology

    1998-11-01

    Magnus effect. effects on a spinning finned cylindrical body. Despite the large As noted above, the source, magnitude and even the direction amount of...axis, and to circular- cylindrical bodies in combination with determine directly the pressures acting on the body. triangular, rectangular, or...pressure drop in smooth cylindrical codes, as well as for testing and checking CFD-based tubes", NACA ARR L4C16, 1944. results. 6. Nielsen, J. N. and

  17. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  18. 78 FR 60763 - Clarification on Fireworks Policy Regarding Approvals or Certifications for Firework Series

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Fountain Cylindrical Fountain Illuminating Torch Mine and Shell Missile with Fin-type Rocket Roman Candle Sky Rocket/Bottle Rocket Toy Smoke Device Wire Sparkler/Dipped Sparkler Display Aerial Shell...

  19. Transverse shear effect in a circumferentially cracked cylindrical shell

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The objectives of the paper are to solve the problem of a circumferentially-cracked cylindrical shell by taking into account the effect of transverse shear, and to obtain the stress intensity factors for the bending moment as well as the membrane force as the external load. The formulation of the problem is given for a specially orthotropic material within the framework of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions as to moment and stress resultants on the crack surface. The effect of Poisson's ratio on the stress intensity factors and the nature of the out-of-plane displacement along the edges of the crack, i.e., bulging, are also studied.

  20. Photoelastic investigations of stress concentration in perforated cylindrical shells with internal pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dranchenko, B.N.; Portnov, B.B.; Seleznev, A.V.

    1994-06-01

    Cylindrical shells with regular perforation are widely used in power generating equipment and in particular in collectors 1 of the circuit of steam generators of power generating installations with water-water reactors (WWPR) The state of stress of collectors is determined by a broad spectrum of technological and operational loads, it is therefore difficult to analyze it theoretically. The aim of the present work is the experimental investigation of stresses in the cylindrical shells of collectors subjected to internal pressure, the generalization and systematization of empirical data in the form of engineering formulas and nomographs. The investigations were carried out withmore » photoelastic three-dimensional models with the use of {open_quotes}freezing{close_quotes}. The basic characteristics of the state of stress of perforated shells (in particular those used in calculations of the strength and life of collectors) are the values of the stress intensity factor K and of the stress intensification factor {gamma}{sub {bar {sigma}}}{sub me} of the mean integral stress level in the neck between neighboring holes. The presented data make it possible to establish quantitatively the regularities of change of K and {gamma}{sub {bar {sigma}}}{sub me} in dependence on the geometry of the perforated shells. These data were systematized according to a special program of multifactor regression analysis. It follows from the presented formulas and nomographs in particular that in the ranges of the geometry of the perforated shells K may change from 2.5 to 4.0, and {gamma}{sub {bar {sigma}}}{sub me} from 1.1 to 2.3. Therefore varied geometric parameters have a substantial effect on the load intensity of perforated shells, and that once again confirms how topical it is to obtain new experimental data, to generalize and systematize them.« less

  1. Dynamic Stability of a Cylindrical Shell Stiffened with a Cylinder and Longitudinal Diaphragms at External Pressure

    NASA Astrophysics Data System (ADS)

    Bakulin, V. N.; Danilkin, E. V.; Nedbai, A. Ya.

    2018-05-01

    A study has been made of the dynamic stability of a cylindrical orthotropic shell stiffened with a hollow cylinder and inhomogeneous longitudinal diaphragms under the action of axial forces and pulsating external pressure. The influence of the cylinder and diaphragms on the stability of the shell was taken account of in the form of elastic foundations whose moduli of subgrade reaction are determined from the equations of a three-dimensional theory of elasticity and the Timoshenko model respectively. A solution to the equation of motion of the shell has been found in the form of a trigonometric circumferential-coordinate series. To construct the principal region of instability of the shell, a binomial approximation was used in the obtained Mathieu-Hill equations. As a result, the problem was reduced to a system of two algebraic equations for normal displacement of the shell at diaphragm installation sites. For uniformly spaced identical diaphragms, a solution has been obtained in explicit form. The dependences of the principal region of instability of the shell on the number and rigidity of the diaphragms have been determined at different radii of the cylinder channel.

  2. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  3. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  4. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  5. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    PubMed

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1

  6. Investigation of Collapse Characteristics of Cylindrical Composite Panels with Large Cutouts

    DTIC Science & Technology

    1989-12-01

    COLLAPSE CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE CUTOUTS THESIS Scott A. Schimmels Captain, USAF AFIT/GAE/ENY/89D-33 Approved for...public release, distribution unlimited AFIT/GAE/ENY/89D-33 INVESTIGATION OF COLLAPSE * CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE...you would not be reading this. * This thesis research is part of an overall effort in composite nonlinear shell analysis sponsored by AFOSR, Dr

  7. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    NASA Technical Reports Server (NTRS)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  8. Mathieu Progressive Waves

    NASA Astrophysics Data System (ADS)

    Andrei, B. Utkin

    2011-10-01

    A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.

  9. Magnetization processes in core/shell exchange-spring structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less

  10. A numerical comparison with an exact solution for the transient response of a cylinder immersed in a fluid. [computer simulated underwater tests to determine transient response of a submerged cylindrical shell

    NASA Technical Reports Server (NTRS)

    Giltrud, M. E.; Lucas, D. S.

    1979-01-01

    The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.

  11. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    PubMed

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  12. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor

    NASA Astrophysics Data System (ADS)

    Hamouche, W.; Maurini, C.; Vidoli, S.; Vincenti, A.

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a `gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  13. Scattering of plane evanescent waves by cylindrical shells and wave vector coupling conditions for exciting flexural waves

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.

  14. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes.

    PubMed

    Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua

    2017-10-09

    Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Explosion-Induced Implosions of Cylindrical Shell Structures

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  16. Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load

    NASA Astrophysics Data System (ADS)

    Saviz, M. R.; Shakeri, M.; Yas, M. H.

    2007-10-01

    The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.

  17. Transverse shear effects on the stress-intensity factor for a circumferentially cracked, specially orthotropic cylindrical shell

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1977-01-01

    The problem of a cylindrical shell containing a circumferential through crack is considered by taking into account the effect of transverse shear deformations. The formulation is given for a specially orthotropic material within the confines of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions regarding moment and stress resultants on the crack surface. Consequently, aside from multiplicative constants representing the stress intensity factors, the membrane and bending components of the asymptotic stress fields near the crack tip are found to be identical. The stress intensity factors are calculated separately for a cylinder under a uniform membrane load, and that under a uniform bending moment. Sample results showing the nature of the out-of-plane crack surface displacement and the effect of the Poisson's ratio are presented.

  18. Tool for Torquing Circular Electrical-Connector Collars

    NASA Technical Reports Server (NTRS)

    Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ

    2006-01-01

    An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.

  19. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less

  20. Broadband Monopole Antenna

    DTIC Science & Technology

    2017-09-14

    surrounded by a series of shells 14, 16 and 18 of anisotropic dielectric material. In this embodiment, each of the shells 14, 16, or 18 is cylindrical in...static polarizability of approximately 10 Attorney Docket No. 300161 7 of 13 times that of free space, satisfying the definition of an anisotropic

  1. Modeling hardwood crown radii using circular data analysis

    Treesearch

    Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall

    2003-01-01

    Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....

  2. Route towards cylindrical cloaking at visible frequencies using an optimization algorithm

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Krüger, Benjamin; Heitmann, Detlef; Pfannkuche, Daniela; Mendach, Stefan

    2012-12-01

    We derive a model based on the Maxwell-Garnett effective-medium theory that describes a cylindrical cloaking shell composed of metal rods which are radially aligned in a dielectric host medium. We propose and demonstrate a minimization algorithm that calculates for given material parameters the optimal geometrical parameters of the cloaking shell such that its effective optical parameters fit the best to the required permittivity distribution for cylindrical cloaking. By means of sophisticated full-wave simulations we find that a cylindrical cloak with good performance using silver as the metal can be designed with our algorithm for wavelengths in the red part of the visible spectrum (623nm <λ<773nm). We also present a full-wave simulation of such a cloak at an exemplary wavelength of λ=729nm (ℏω=1.7eV) which indicates that our model is useful to find design rules of cloaks with good cloaking performance. Our calculations investigate a structure that is easy to fabricate using standard preparation techniques and therefore pave the way to a realization of guiding light around an object at visible frequencies, thus rendering it invisible.

  3. Cylindrical Antenna Using Near Zero Index Metamaterial

    DTIC Science & Technology

    2012-07-24

    circularly polarized microstrip patch antenna (SFCP-MPA). Simultaneous enhancement on antenna gain, impedance bandwidth (ZBW) and axial-ratio...K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna ...device for enhancing the directivity and port isolation of a dual-frequency dual- polarization (DFDP) microstrip antenna by using metamaterial

  4. Evaluation of radiation loading on finite cylindrical shells using the fast Fourier transform: A comparison with direct numerical integration.

    PubMed

    Liu, S X; Zou, M S

    2018-03-01

    The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.

  5. Feasibility and Practical Limits for the Use of Lightweight Prestressed Concrete (LWPC) as a Shipbuilding Material.

    DTIC Science & Technology

    1982-10-01

    centerline by stanchions. A concrete beam is provided at the ship centerline to transfer unbalanced stanchion loads longitudinally along the shell . The 01...Place Cast-in-Place Concrete Connections -- Connections betw. an precast shell elements are made using cast-in-place concrete closure pours. See Figure...buckling using the column provi sions of the ACI code. For shells , the critical radius to thickness ratio is about 200 for cylindrical shells loaded in

  6. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  7. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  8. Colloidal InP/ZnS core shell nanocrystals studied by linearly and circularly polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Langof, L.; Fradkin, L.; Ehrenfreund, E.; Lifshitz, E.; Micic, O. I.; Nozik, A. J.

    2004-02-01

    The magneto-optical properties of InP/ZnS core-shell nanocrystals (NCs) were investigated by measuring the degree of linear and circular polarization of photoluminescence (PL) spectra, in the presence of an external magnetic field under resonant or non-resonant excitation. The linearly polarized PL data strongly indicate that InP/ZnS NCs have a prolongated shape. The resonant-excited circularly polarized PL decay curves indicate that the spin relaxation time of the studied samples is shorter than the radiative lifetime of their exciton. Furthermore, the magnetic field-induced circularly polarized PL process reveals an exciton g factor ( gex) of 0.55. Thus, such studies may serve as a tool to directly estimate the NC's shape anisotropy and to determine the g-factor of charge carriers and excitons in those NCs.

  9. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  10. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  11. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE PAGES

    Velikovich, A. L.; Schmit, P. F.

    2015-12-28

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  12. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-12-01

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].

  13. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    NASA Astrophysics Data System (ADS)

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  14. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  15. Fully localized post-buckling states of cylindrical shells under axial compression

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Schneider, Tobias M.

    2017-09-01

    We compute nonlinear force equilibrium solutions for a clamped thin cylindrical shell under axial compression. The equilibrium solutions are dynamically unstable and located on the stability boundary of the unbuckled state. A fully localized single dimple deformation is identified as the edge state-the attractor for the dynamics restricted to the stability boundary. Under variation of the axial load, the single dimple undergoes homoclinic snaking in the azimuthal direction, creating states with multiple dimples arranged around the central circumference. Once the circumference is completely filled with a ring of dimples, snaking in the axial direction leads to further growth of the dimple pattern. These fully nonlinear solutions embedded in the stability boundary of the unbuckled state constitute critical shape deformations. The solutions may thus be a step towards explaining when the buckling and subsequent collapse of an axially loaded cylinder shell is triggered.

  16. Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.

    2002-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.

  17. On sound transmission through double-walled cylindrical shells lined with poroelastic material: Comparison with Zhou's results and further effect of external mean flow

    NASA Astrophysics Data System (ADS)

    Liu, Yu; He, Chuanbo

    2015-12-01

    In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.

  18. Acoustically excited surface waves on empty or fluid-filled cylindrical and spherical shells

    NASA Astrophysics Data System (ADS)

    Ahyi, A. Claude; Cao, H.; Raju, P. K.; Werby, M. F.; Bao, X. L.; Überall, H.

    2002-05-01

    A comparative study is presented of the acoustical excitation of circumferential (surface) waves on fluid-immersed cylindrical or spherical metal shells, which may be either evacuated, or filled with the same or a different fluid. The excited surface waves can manifest themselves by the resonances apparent in the sound scattering amplitude, which they cause upon phase matching following repeated circumnavigations of the target object, or by their re-radiation into the external fluid in the manner of head waves. We plot dispersion curves versus frequency of the surface waves, which for evacuated shells have a generally rising character, while the fluid filling adds an additional set of circumferential waves that descend with frequency. The resonances of these latter waves may also be interpreted as being due to phase matching, but they may alternately be interpreted as constituting the eigenfrequencies of the internal fluid contained in an elastic enclosure.

  19. Acoustic scattering from a finite cylindrical shell with evenly spaced stiffeners: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Liétard, R.; Décultot, D.; Maze, G.; Tran-van-Nhieu, M.

    2005-10-01

    The influence of evenly spaced ribs (internal rings) on the acoustic scattering from a finite cylindrical shell is examined over the dimensionless frequency range 1

  20. Body shape helps legged robots climb and turn in complex 3-D terrains

    NASA Astrophysics Data System (ADS)

    Han, Yuanfeng; Wang, Zheliang; Li, Chen

    Analogous to streamlined shapes that reduce drag in fluids, insects' ellipsoid-like rounded body shapes were recently discovered to be ``terradynamically streamlined'' and enhance locomotion in cluttered terrain by facilitating body rolling. Here, we hypothesize that there exist more terradynamic shapes that facilitate other modes of locomotion like climbing and turning in complex 3-D terrains by facilitating body pitching and yawing. To test our hypothesis, we modified the body shape of a legged robot by adding an elliptical and a rectangular shell and tested how it negotiated with circular and square vertical pillars. With a rectangular shell the robot always pitched against square pillars in an attempt to climb, whereas with an elliptical shell it always yawed and turned away from circular pillars given a small initial lateral displacement. Square / circular pillars facilitated pitching / yawing, respectively. To begin to reveal the contact physics, we developed a locomotion energy landscape model. Our model revealed that potential energy barriers to transition from pitching to yawing are high for angular locomotor and obstacle shapes (rectangular / square) but vanish for rounded shapes (elliptical / circular). Our study supports the plausibility of locomotion energy landscapes for understanding the rich locomotor transitions in complex 3-D terrains.

  1. Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.

    2015-11-01

    A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed

  2. A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem.

  3. Processing and Testing of Thermoplastic Composite Cylindrical Shells Fabricated by Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; McGowan, David M.; Grimsley, Brian W.; Johnston, Norman J.; Gordon, Gail H. (Technical Monitor)

    2001-01-01

    Two 61-cm-diameter eight-ply quasi-isotropic IM7/PEEK cylindrical shells were fabricated by automated fiber placement the NASA Langley Research Center using only infrared radiant heat to preheat the substrate and incoming composite uni-tape. The shells were characterized by ultrasonic c-scans for overall consolidation quality, and by optical microscopy and acid digestion for void content. Compression tests were also performed. Although the material used in the study was of generally poor quality due to numerous splits and dry fiber regions, the process was able to achieve a net reduction in void content in the as-placed component. Microscopy of the composite shells revealed well-consolidated, void-free interfaces. The two cylinders were then tested in uni-axial compression in a 1334 kN-capacity hydraulic test machine until buckling occurred. A geometrically nonlinear finite element analysis was conducted, and the differences between the predicted and measured values were 18.0 and 25.8%, respectively. Inclusion of measured imperfections of the cylinder into the analysis is expected to reduce these differences.

  4. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.

  5. Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair

    NASA Astrophysics Data System (ADS)

    Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail

    2017-10-01

    The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.

  6. Analysis of dry friction damping characteristics for short cylindrical shell structures

    NASA Astrophysics Data System (ADS)

    Wang, Nengmao; Wang, Yanrong

    2018-05-01

    An efficient mathematical model to describe the friction of short cylindrical shell structures with a dry friction damping sleeve is proposed. The frictional force in the circumference and axial direction is caused by the opposing bending strains at the interface. Slipping will occur at part region of the interface and the mathematic model of the slipping region is established. Ignoring the effect of contact stiffness on the vibration analysis, the friction energy dissipation capability of damping sleeve would be calculated. Structural vibration mode, positive pressure at the interface and vibration stress of the short cylindrical shell structures is analyzed as influence factors to the critical damping ratio. The results show that the circumferential friction energy dissipation is more sensitive to the number of nodal diameter, and the circumferential friction damping ratio increases rapidly with the number of nodal diameter. The slipping frictional force would increase along with the positive pressure, but the slipping region would decrease with it. The peak damping ratio keeps nearly constant. But the vibration stress corresponding to peak damping ratio would increases with the positive pressure. The dry friction damping ratio of damping sleeve contains the effect of frictional force in the circumference and axial direction, and the axial friction plays a major role.

  7. Presentation of computer code SPIRALI for incompressible, turbulent, plane and spiral grooved cylindrical and face seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.

    1994-01-01

    A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.

  8. Flow impedance in a uniform magnetically insulated transmission line

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Seidel, D. B.

    1999-12-01

    In two recent publications [C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 2, 1332 (1995), C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 3, 4207 (1996)] relativistic electron flow in cylindrical magnetically insulated transmission lines was analyzed and modeled under the assumption of negligible electron pressure. The model allows power flow in these lines to be accurately calculated under most conditions. The model was developed for coaxial right circular cylindrical electrodes. It is shown here that the model applies equally well to arbitrary cylindrical systems, i.e., systems consisting of electrodes of arbitrary cross section.

  9. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the "jet" feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.

  10. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Jeffrey M.

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less

  11. Packing of flexible 2D materials in vesicles

    NASA Astrophysics Data System (ADS)

    Zou, Guijin; Yi, Xin; Zhu, Wenpeng; Gao, Huajian

    2018-06-01

    To understand the mechanics of cellular packing of two-dimensional (2D) materials, we perform systematic molecular dynamics simulations and theoretical analysis to investigate the packing of a flexible circular sheet in a spherical vesicle and the 2D packing problem of a strip in a cylindrical vesicle. Depending on the system dimensions and the bending rigidity ratio between the confined sheet and the vesicle membrane, a variety of packing morphologies are observed, including a conical shape, a shape of three-fold symmetry, a cylindrically curved shape, an axisymmetrically buckled shape, as well as the initial circular shape. A set of buckling analyses lead to phase diagrams of the packing morphologies of the encapsulated sheets. These results may have important implications on the mechanism of intracellular packing and toxicity of 2D materials.

  12. A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields

    DTIC Science & Technology

    2007-06-01

    data prior to processing in Matlab 65 5-6 Probe and sensor alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be...again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical geometry by the coordinates (r, ¢J, z), due to a circular loop of...alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the

  13. Composite laminated shells under internal pressure

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    A theoretical study is conducted of the response of filament-wound composite shells under internal pressure; a system of sixth-order ordinary differential equations is obtained by means of the cylindrically anisotropic elasticity field equations and Lekhnitskii's (1963) stress functions. The general expressions for the stresses and displacements in the laminated composite shells under internal pressure are discussed. Attention is given to the influence of the degree of material anisotropy and fiber orientation on the axial and induced twisting deformation.

  14. Revision of the genus Cuvierina Boas, 1886 based on integrative taxonomic data, including the description of a new species from the Pacific Ocean (Gastropoda, Thecosomata)

    PubMed Central

    Burridge, Alice K.; Janssen, Arie W.; Peijnenburg, Katja T.C.A.

    2016-01-01

    Abstract Shelled pteropods (Gastropoda, Thecosomata, Euthecosomata) are a group of holoplanktonic gastropods that occur predominantly in the surface layers of the world’s oceans. Accurate species identifications are essential for tracking changes in species assemblages of planktonic gastropods, because different species are expected to have different sensitivities to ocean changes. The genus Cuvierina has a worldwide warm water distribution pattern between ~36°N and ~39°S. Based on an integrative taxonomic approach combining morphometric, genetic, and biogeographic information, the two subgenera of Cuvierina, Cuvierina s. str. and Urceolarica, are rejected. A new species is introduced: Cuvierina tsudai sp. n., which has to date been considered the same species as Cuvierina pacifica. Cuvierina tsudai sp. n. is endemic to the Pacific Ocean and is characterised by a shell height of 7.2-8.0 mm, a moderately cylindrical shell shape, the absence of micro-ornamentation and a triangular aperture. Cuvierina pacifica is restricted to the centre of the oligotrophic southern Pacific gyre, has a shell height of 6.6-8.5 mm, a more cylindrical shell shape, no micro-ornamentation and a less triangular aperture than Cuvierina tsudai sp. n. PMID:27829786

  15. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2018-05-01

    This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.

  16. Scattering of Cylindrical Electric Field Waves from an Elliptical Dielectric Cylindrical Shell.

    DTIC Science & Technology

    1982-12-01

    account for the cyber is immeasurable.. Thanks are due to my advisor, Captain Thomas W. Johnson, who was personally excited and motivated by the...DCADRE( PS4 , NU1, NU2,0. 0, 1.0r.3, ERR, IER) VXNf~(!I) - CMfPLX(V?!NR,VMrI) RMIAC - SQRT(VM M%**2 + VIINI**2) PHASE - ATAN(VffN.I/VINT) * (180.0/PI

  17. Granular Silo collapse: an experimental study

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  18. Closure system

    DOEpatents

    Hertelendy, N.A.

    1987-04-22

    A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell. 6 figs.

  19. Closure system

    DOEpatents

    Hertelendy, Nicholas A [Kennewick, WA

    1989-01-01

    A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.

  20. Closure system

    DOEpatents

    Hertelendy, Nicholas A.

    1989-04-04

    A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.

  1. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  2. Review of high convergence implosion experiments with single and double shell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, N. D.; Watt, R. G.; Varnum, W. S.

    2002-01-01

    Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.

  3. Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Nemeth, M. P.

    2007-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  4. Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Oterkus, E.; Madenci, E.

    2005-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  5. Bi-orthogonality relations for fluid-filled elastic cylindrical shells: Theory, generalisations and application to construct tailored Green's matrices

    NASA Astrophysics Data System (ADS)

    Ledet, Lasse S.; Sorokin, Sergey V.

    2018-03-01

    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-filled cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. The forced vibration problem is solved using tailored Green's matrices formulated in terms of eigenfunction expansions. The formulation of Green's matrix is based on special (bi-)orthogonality relations between the eigenfunctions, which are derived here for the fluid-filled shell. Further, the relations are generalised to any multi-modal symmetric waveguide. Using the orthogonality relations the transcendental equation system is converted into algebraic modal equations that can be solved analytically. Upon formulation of Green's matrices the solution space is studied in terms of completeness and convergence (uniformity and rate). Special features and findings exposed only through this modal decomposition method are elaborated and the physical interpretation of the bi-orthogonality relation is discussed in relation to the total energy flow which leads to derivation of simplified equations for the energy flow components.

  6. Tearing mode dynamics in the RFX-mod tokamak

    NASA Astrophysics Data System (ADS)

    Cordaro, Luigi; Zanca, Paolo; Zuin, Matteo; Auriemma, Fulvio; Martines, Emilio; Zaniol, Barbara; Pucella, Gianluca; Cavazzana, Roberto; de Masi, Gianluca; Fassina, Alessandro; Grenfell, Gustavo; Momo, Barbara; Spagnolo, Silvia; Spolaore, Monica; Vianello, Nicola

    2017-10-01

    The study of the physical mechanisms that influence the tearing mode (TM) rotation is of interest because, while in present day devices, a significant TM rotation can be induced by Neutral Beam Injection, future reactors, ITER included, are not expected to provide enough induced momentum. We present a study of tearing mode dynamics in the RFX-mod device, a Reserved Field Pinch in Padua (Italy) that can be run as low-current, circular tokamak. Magnetic, flow and kinetic measurements are integrated to characterize the (2,1) and (3,2) TMs fast rotation. We are especially interested to study the role played by the diamagnetic electron drift on the TM rotation, including the slowing down and the wall-locking phases. When the latter occurs, the radial magnetic field penetrates the shell and the TM amplitude increases at a rate given by the wall resistive time constant. This phenomenon can lead to a rapid discharge termination via a disruption. A comparison of experimental data with a two-fluid MHD cylindrical model has been used to interpret the observed TM fast rotation frequencies.

  7. Timoshenko-Type Theory in the Stability Analysis of Corrugated Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Semenyuk, N. P.; Neskhodovskaya, N. A.

    2002-06-01

    A technique is proposed for stability analysis of longitudinally corrugated shells under axial compression. The technique employs the equations of the Timoshenko-type nonlinear theory of shells. The geometrical parameters of shells are specified on discrete set of points and are approximated by segments of Fourier series. Infinite systems of homogeneous algebraic equations are derived from a variational equation written in displacements to determine the critical loads and buckling modes. Specific types of corrugated isotropic metal and fiberglass shells are considered. The calculated results are compared with those obtained within the framework of the classical theory of shells. It is shown that the Timoshenko-type theory extends significantly the possibility of exact allowance for the geometrical parameters and material properties of corrugated shells compared with Kirchhoff-Love theory.

  8. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  9. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal and inelastic properties of the individual phases can vary with temperature. The inelastic phases are presently modeled by the power-law creep model generalized to multi-directional loading (within fgmc3dq.cylindrical.f and fgmc3dq.cylindrical.transient.f for steady-state and transient thermal loading, respectively), and incremental plasticity and GVIPS unified viscoplasticity theories (within the steady-state loading versions fgmp3dq.cylindrical.f and fgmgvips3dq.cylindrical.f).

  10. Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall

    NASA Astrophysics Data System (ADS)

    Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru

    2018-07-01

    We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.

  11. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  12. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  13. Special Course on Fundamentals of Fighter Aircraft Design

    DTIC Science & Technology

    1987-10-01

    mounted centrally on a cylindrical fuselage of circular cross-section. Here the fuselage interference is shown by a calculation with an exact...M. and Schiff, L.B., "Aerodynamic Mathematical Modeling - Basic Concepts", AGARD-LS-114, 1981, Lecture 1. 30. Malcolm, G.N., "Rotary and Magnus ...thin cylindrical Intake 1.5.3. Real Intake equivalence 1.5.4. Lip thickness and auxiliary intake design 1.6. AIR INTAKE RADAR CROSS SECTION (R.C.S

  14. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    PubMed

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  15. Design Optimization and Residual Strength Assessment of a Cylindrical Composite Shell Structure

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    2000-01-01

    A summary of research conducted during the specified period is presented. The research objectives included the investigation of an efficient technique for the design optimization and residual strength assessment of a semi-monocoque cylindrical shell structure made of composite materials. The response surface methodology is used in modeling the buckling response of individual skin panels under the combined axial compression and shear loading. These models are inserted into the MSC/NASTRAN code for design optimization of the cylindrical structure under a combined bending-torsion loading condition. The comparison between the monolithic and sandwich skin design cases indicated a 35% weight saving in using sandwich skin panels. In addition, the residual strength of the optimum design was obtained by identifying the most critical region of the structure and introducing a damage in the form of skin-stringer and skin-stringer-frame detachment. The comparison between the two skin design concepts indicated that the sandwich skin design is capable of retaining a higher residual strength than its monolithic counterpart. The results of this investigation are presented and discussed in this report.

  16. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  17. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity factor and the FEA solutions are in good agreement, because the contact area is very small compared with the shell thickness.

  18. Measurements of Surfactant Squeeze-out Using Magnetically-Levitated Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Charles

    2004-01-01

    Liquid bridges: Columns of liquid supported by two solid surfaces. These are generally opposing right circular cylinders in 0g. For a cylindrical bridge of length L and diameter d, in zero g, the maximum slenderness ratio Lambda [L/d] = pi [Rayleigh]. In the presence of gravity the cylindrical shape of an axisymmetric bridge tends to deform. Fluid has a volumetric magnetic susceptibility X. Magnetic levitation has numerous applications in studies of fluids, "soft" and "hard" condensed matter physics, and biophysics

  19. Development of the Wake Behind a Circular Cylinder Impulsively Started into Rotatory and Rectilinear Motion: Intermediate Rotation Rates

    DTIC Science & Technology

    1991-01-01

    cylindre fixe ou en rotation. Effet Magnus . J. Mec. 14, 109-134. Taneda, S. 1977 Visual study of unsteady separated flows around bodies. Prog. Aero...enhancement schemes employing the Magnus effect (Swanson 1961). Rotating all or part of a body may also have applications in active or feedback control of...and yt into the governing equations in the generalized coordinate system. In this study, the body-fitted grid is simply one of cylindrical polar

  20. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  1. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  2. A collection of edge-based elements

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.

  3. GRIPPING DEVICE FOR CYLINDRICAL OBJECTS

    DOEpatents

    Pilger, J.P.

    1964-01-21

    A gripping device is designed for fragile cylindrical objects such as for drawing thin-walled tubes. The gripping is done by multiple jaw members held in position by two sets of slots, one defined by keystone-shaped extensions of the outer shell of the device and the other in a movable sleeve held slidably by the extensions. Forward movement oi the sleeve advances the jaws, thereby exerting a controlled, radial pressure on the object being gripped. (AEC)

  4. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  5. Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

    NASA Astrophysics Data System (ADS)

    Yadav, Pramod Kumar

    2018-01-01

    The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

  6. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  7. Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.

    2001-01-01

    Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.

  8. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  9. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOEpatents

    Fife, Alex Blair; Ballas, Gary J.

    1998-01-01

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

  10. Bottom head to shell junction assembly for a boiling water nuclear reactor

    DOEpatents

    Fife, A.B.; Ballas, G.J.

    1998-02-24

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.

  11. Resonant Vibrations and Vibrational Heating of Physically Nonlinear Viscoelastic Shells and Their Damping Using Piezoelectric Sensor and Actuator

    NASA Astrophysics Data System (ADS)

    Kirichok, I. F.

    2017-09-01

    Forced axisymmetric resonant vibrations and vibrational heating of viscoelastic, physically nonlinear, closed, spherical, and infinitely long cylindrical shells and ring with piezoelectric sensor and actuator are considered. The effect of physical nonlinearity of passive material on the vibration amplitude and vibrational heating temperature is studied. The possibility of active damping of vibrations by piezoelectric sensors and actuators is demonstrated.

  12. Approximate method for calculating a thickwalled cylinder with rigidly clamped ends

    NASA Astrophysics Data System (ADS)

    Andreev, Vladimir

    2018-03-01

    Numerous papers dealing with the calculations of cylindrical bodies [1 -8 and others] have shown that analytic and numerical-analytical solutions in both homogeneous and inhomogeneous thick-walled shells can be obtained quite simply, using expansions in Fourier series on trigonometric functions, if the ends are hinged movable (sliding support). It is much more difficult to solve the problem of calculating shells with builtin ends.

  13. Compensation behaviors and magnetic properties in a cylindrical ferrimagnetic nanotube with core-shell structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Ying; Gao, Zhong-yue; Zhao, Xue-ru; Yang, Yi; Yang, Sen

    2018-07-01

    Compensation temperature Tcomp and transition temperature TC have significant applications for the experimental realization of magnetic nanotube structure in the field of thermal magnetic recording. In this work, we use the Monte Carlo simulation to investigate the phase diagrams, magnetizations, susceptibilities, internal energies, specific heats and hysteresis behaviors of a cylindrical ferrimagnetic nanotube with core-shell structure. The effects of the single-ion anisotropies (DC, DS) and the exchange couplings (Jint, JS) on the magnetic and thermodynamic properties of the system are examined. A number of characteristic behaviors are discovered in the thermal variations, depending on different physical parameters. In particular, the triple hysteresis loops behavior has been found for appropriate physical parameters. These findings are qualitatively in good agreement with related experimental and the other theoretical results.

  14. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  15. Nonlinear theory for laminated and thick plates and shells including the effects of transverse shearing

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1985-01-01

    Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.

  16. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  17. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  18. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  19. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will becomemore » operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.« less

  20. Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Nemeth, Michael P.

    2010-01-01

    Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.

  1. LQR Control of Shell Vibrations Via Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.

  2. Symposium on Numerical and Physical Aspects of Aerodynamic Flows (2nd), 17-20 January 1983,

    DTIC Science & Technology

    1983-01-01

    Speeds, S.S. Stahara ,,- Navier-Stokes Computational Study of the Influence of Shell Geometry on the Magnus Effect at Supersonic Speeds, W.B. Sturek...pressure over cylindrical forebody is also depicted here for distributions with data are presented. The pitot reference purposes. This particular cross... cylindrical fuselage. juncture (y/r>0, z/r=l) than the lower juncture The conclusion is consistent to the experimental (y/rrO, z/r-l). A rapid expansion

  3. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  4. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  5. The Multidimensional Structure of Verbal Comprehension Test Items.

    ERIC Educational Resources Information Center

    Peled, Zimra

    1984-01-01

    The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…

  6. A novel method for the photographic recovery of fingermark impressions from ammunition cases using digital imaging.

    PubMed

    Porter, Glenn; Ebeyan, Robert; Crumlish, Charles; Renshaw, Adrian

    2015-03-01

    The photographic preservation of fingermark impression evidence found on ammunition cases remains problematic due to the cylindrical shape of the deposition substrate preventing complete capture of the impression in a single image. A novel method was developed for the photographic recovery of fingermarks from curved surfaces using digital imaging. The process involves the digital construction of a complete impression image made from several different images captured from multiple camera perspectives. Fingermark impressions deposited onto 9-mm and 0.22-caliber brass cartridge cases and a plastic 12-gauge shotgun shell were tested using various image parameters, including digital stitching method, number of images per 360° rotation of shell, image cropping, and overlap. The results suggest that this method may be successfully used to recover fingermark impression evidence from the surfaces of ammunition cases or other similar cylindrical surfaces. © 2014 American Academy of Forensic Sciences.

  7. A theoretical investigation of noise reduction through the cylindrical fuselage of a twin-engine, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bhat, R. B.; Mixson, J. S.

    1978-01-01

    Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.

  8. Use of principle velocity patterns in the analysis of structural acoustic optimization.

    PubMed

    Johnson, Wayne M; Cunefare, Kenneth A

    2007-02-01

    This work presents an application of principle velocity patterns in the analysis of the structural acoustic design optimization of an eight ply composite cylindrical shell. The approach consists of performing structural acoustic optimizations of a composite cylindrical shell subject to external harmonic monopole excitation. The ply angles are used as the design variables in the optimization. The results of the ply angle design variable formulation are interpreted using the singular value decomposition of the interior acoustic potential energy. The decomposition of the acoustic potential energy provides surface velocity patterns associated with lower levels of interior noise. These surface velocity patterns are shown to correspond to those from the structural acoustic optimization results. Thus, it is demonstrated that the capacity to design multi-ply composite cylinders for quiet interiors is determined by how well the cylinder be can designed to exhibit particular surface velocity patterns associated with lower noise levels.

  9. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    NASA Astrophysics Data System (ADS)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  10. High-Temperature Helical-Tube Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C. S., Jr.; Mccreight, L.

    1984-01-01

    Solar-thermal receiver used with circular parabolic concentrator to supply about 58 kW thermal power to Brayton engine or industrial process. Solar radiation focused into open end of cylindrical ceramic thermal inertial sleeve 8 in. in diameter that reradiates energy to helical heatexchanger tube surrounding sleeve.

  11. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairlymore » general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r 2 in the some of the expressions.« less

  12. Paragnomoxyala gen. nov. (Xyalidae, Monhysterida, Nematoda) from the East China Sea.

    PubMed

    Jiang, Weijun; Huang, Yong

    2015-11-05

    A new genus, Paragnomoxyala gen. nov., and a new species, Paragnomoxyala breviseta sp. nov. are described from the East China Sea. Paragnomoxyala gen. nov. is characterized by having large funnel-shaped buccal cavity with cuticularized walls and extended anteriorly; lips very high; striated cuticle; four cephalic setae, absence of outer labial setae; circular amphidial fovea; straight spicules and absence of gubernaculum; tail conico-cylindrical with three terminal setae; female monodelphic with an anterior outstretched ovary. It differs from similar genera by having a large buccal cavity unique in Xyalidae, straight spicules, lacking gubernaculum, and conico-cylindrical tail with terminal setae. Paragnomoxyala breviseta sp. nov. is characterized by having a large funnel-shaped buccal cavity, with cuticularized walls and extended anteriorly, 1.6-1.8 hd long and 63-79% cbd wide; four cephalic setae 3-4 µm long; circular amphids 6-9 µm in diameter; spicules straight but slightly bent at both ends; absence of gubernaculum and precloacal supplement.

  13. Redirection and Splitting of Sound Waves by a Periodic Chain of Thin Perforated Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Bozhko, Andrey; Sánchez-Dehesa, José; Cervera, Francisco; Krokhin, Arkadii

    2017-06-01

    The scattering of sound by finite and infinite chains of equally spaced perforated metallic cylindrical shells in an ideal (inviscid) and viscous fluid is theoretically studied using rigorous analytical and numerical approaches. Because of perforations, a chain of thin shells is practically transparent for sound within a wide range of frequencies. It is shown that strong scattering and redirection of sound by 90° may occur only for a discrete set of frequencies (Wood's anomalies) where the leaky eigenmodes are excited. The spectrum of eigenmodes consists of antisymmetric and symmetric branches with normal and anomalous dispersion, respectively. The antisymmetric eigenmode turns out to be a deaf mode, since it cannot be excited at normal incidence. However, at slightly oblique incidence, both modes can be resonantly excited at different but close frequencies. The symmetric mode, due to its anomalous dispersion, scatters sound in the "wrong" direction. This property may find an application for the splitting of the two resonant harmonics of the incoming signal into two beams propagating along the chain in the opposite directions. A chain of perforated cylinders may also be used as a passive antenna that detects the direction to the incoming signal by measuring the frequencies of the waves excited in the chain. Calculations are presented for aluminum shells in viscous air where the effects of anomalous scattering, redirection, and signal splitting are well manifested.

  14. Multicanister overpack topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.D., Fluor Daniel Hanford

    1997-03-25

    The Spent Nuclear Fuel MCO is a single-use container that consists of a cylindrical shell, five to six fuel baskets, a shield plug, and features necessary for maintaining the structural integrity of the MCO while providing criticality control and fuel processing capability.

  15. Investigation of mechanical properties and deformation behavior of single-crystal Al-Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit

    2018-06-01

    Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.

  16. BIOMECHANICS. Why the seahorse tail is square.

    PubMed

    Porter, Michael M; Adriaens, Dominique; Hatton, Ross L; Meyers, Marc A; McKittrick, Joanna

    2015-07-03

    Whereas the predominant shapes of most animal tails are cylindrical, seahorse tails are square prisms. Seahorses use their tails as flexible grasping appendages, in spite of a rigid bony armor that fully encases their bodies. We explore the mechanics of two three-dimensional-printed models that mimic either the natural (square prism) or hypothetical (cylindrical) architecture of a seahorse tail to uncover whether or not the square geometry provides any functional advantages. Our results show that the square prism is more resilient when crushed and provides a mechanism for preserving articulatory organization upon extensive bending and twisting, as compared with its cylindrical counterpart. Thus, the square architecture is better than the circular one in the context of two integrated functions: grasping ability and crushing resistance. Copyright © 2015, American Association for the Advancement of Science.

  17. Theoretical Elastic Stress Distributions Arising from Discontinuities and Edge Loads in Several Shell-Type Structures

    NASA Technical Reports Server (NTRS)

    Johns, Robert H.; Orange, Thomas W.

    1961-01-01

    The deformation and complete stress distribution are determined for each of the following edge loaded thin shells of revolution: (1) a right circular cylinder, (2) a frustum of a right circular cone, and (3) a portion of a sphere. The locations of the maximum circumferential and meridional stresses on both the inner and outer surfaces are also found. The basic equations for the above were selected from the published literature on the subject and expanded to produce to resultant-stress equations in closed from where practicable to do so. Equations are also developed for the discontinuity shear force and bending moment at each of the following junction: (1) axial change of thickness in a circular cylinder, (2) axial change of thickness in a cone, (3) change of thickness in a portion of a sphere, (4) a cylinder and a cone, (5) a cylinder and a portion of a sphere(6) a cylinder and a flat head, and (7) a cone and a portion of a sphere.

  18. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    PubMed

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  19. Line spring model and its applications to part-through crack problems in plates and shells

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Aksel, Bulent

    1988-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  20. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksel, B.

    1986-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  1. Dynamical Analysis of a Cylindrical Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    LU, P.; LEE, K. H.; LIM, S. P.

    2003-01-01

    In the present paper, the vibration of a cylindrical piezoelectric transducer induced by applied voltage, which can be used as the stator transducer of a cylindrical micromotor, is studied based on shell theory. The transducer is modelled as a thin elastic cylinder. The properties of the vibration modes of the transducer, such as mode frequencies and amplitude ratios of the mode shapes, are determined following Galerkin method. The response of the transducer under the four electric sources with 90° phase difference is then obtained by the modal summation method. With the results, the performance of the transducer under the electric sources can be estimated. The present work provides a general and precise theoretical modelling on the dynamical movement of the transducer.

  2. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  3. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-01-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  4. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    NASA Astrophysics Data System (ADS)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-08-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  5. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-04-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular tubes.

  6. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions wheremore » there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly-rectangular tubes.« less

  7. Lossless acoustic half-bipolar cylindrical cloak with negative-index metamaterial

    NASA Astrophysics Data System (ADS)

    Lee, Yong Y.; Ahn, Doyeol

    2018-05-01

    A lossless acoustic half-bipolar cylindrical cloak that has an exposed bottom is considered. Here, we show that a cloak that includes a complementary region including a negative-index medium inside of the cloaking shell works in the illumination direction independently even in the presence of the exposed bottom of the structure. This is due to the fact that the phase velocity of the wave in the normal direction can be cancelled in the presence of a boundary containing a negative-index medium that reduces scattering significantly.

  8. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  9. Mass Spectrometer Containing Multiple Fixed Collectors

    NASA Technical Reports Server (NTRS)

    Moskala, Robert; Celo, Alan; Voss, Guenter; Shaffer, Tom

    2008-01-01

    A miniature mass spectrometer that incorporates features not typically found in prior mass spectrometers is undergoing development. This mass spectrometer is designed to simultaneously measure the relative concentrations of five gases (H2, He, N2, O2, and Ar) in air, over the relative-concentration range from 10(exp -6) to 1, during a sampling time as short as 1 second. It is intended to serve as a prototype of a product line of easy-to-use, portable, lightweight, highspeed, relatively inexpensive instruments for measuring concentrations of multiple chemical species in such diverse applications as detecting explosive or toxic chemicals in air, monitoring and controlling industrial processes, measuring concentrations of deliberately introduced isotopes in medical and biological investigations, and general environmental monitoring. The heart of this mass spectrometer is an integral combination of a circular cycloidal mass analyzer, multiple fixed ion collectors, and two mass-selective ion sources. By circular cycloidal mass analyzer is meant an analyzer that includes (1) two concentric circular cylindrical electrodes for applying a radial electric field and (2) a magnet arranged to impose a magnetic flux aligned predominantly along the cylindrical axis, so that ions, once accelerated into the annulus between the electrodes, move along circular cycloidal trajectories. As in other mass analyzers, trajectory of each ion is determined by its mass-to-charge ratio, and so ions of different species can be collected simultaneously by collectors (Faraday cups) at different locations intersected by the corresponding trajectories (see figure). Unlike in other mass analyzers, the installation of additional collectors to detect additional species does not necessitate increasing the overall size of the analyzer assembly.

  10. Three-Dimensional Solution of the Free Vibration Problem for Metal-Ceramic Shells Using the Method of Sampling Surfaces

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Plotnikova, S. V.

    2017-03-01

    The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  11. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  12. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  13. The use of COD and plastic instability in crack propagation and arrest in shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  14. Testing and recommended practices to improve nurse tank safety, phase I : [research brief].

    DOT National Transportation Integrated Search

    2013-10-01

    This study focuses on determining causes and possible inspection remediation strategies to reduce the occurrence of anhydrous ammonia (NH3) nurse tank failures. Nurse tanks are cylindrical steel tank shells with hemispherical or elliptical end caps r...

  15. Deployment of Large-Size Shell Constructions by Internal Pressure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.

    2015-11-01

    A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.

  16. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  17. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  18. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  19. Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation

    NASA Astrophysics Data System (ADS)

    Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan

    2018-05-01

    A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.

  20. Buckligami: Actuation of soft structures through mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Lazarus, Arnaud; Reis, Pedro

    2013-03-01

    We present a novel mechanism for actuating soft structures, that is triggered through buckling. Our elastomeric samples are rapid-prototyped using digital fabrication and comprise of a cylindrical shell patterned with an array of voids, each of which is covered by a thin membrane. Decreasing the internal pressure of the structure induces local buckling of the ligaments of the pattern, resulting in controllable folding of the global structure. Using rigid inclusions to plug the voids in specific geometric arrangements allows us to excite a variety of different fundamental motions of the cylindrical shell, including flexure and twist. We refer to this new mechanism of buckling-induced folding as ``buckligami.'' Given that geometry, elasticity and buckling are the underlying ingredients of this local folding mechanism, the global actuation is scalable, reversible and repeatable. Characterization and rationalization of our experiments provide crucial fundamental understanding to aid the design of new scale-independent actuators, with potential implications in the field of soft robotics.

  1. Uranium 5f shell in UPd2Al3 and URu2Si2 studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Yaouanc, A.; Dalmas de Réotier, P.; van der Laan, G.; Hiess, A.; Goulon, J.; Neumann, C.; Lejay, P.; Sato, N.

    1998-10-01

    We report x-ray magnetic circular dichroism (XMCD) measurements performed at the uranium M4,5 edges in the paramagnetic phase of the heavy fermion superconductors UPd2Al3 and URu2Si2. The analysis of the spectra with the first sum rule yields the orbital moment of the 5f shell for both compounds. The shape of the dichroic spectrum at the M5 edge for the two compounds is qualitatively different: a single lobe is observed for URu2Si2 and two lobes are detected for UPd2Al3. This two lobe structure reflects the strong effect of the interaction of the uranium 5f electrons with their environment in the latter compound.

  2. Free Vibration of Fiber Composite Thin Shells in a Hot Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1995-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.

  3. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  4. Photoionization in a Numerical Simulation of a Spark Discharge in Air

    DTIC Science & Technology

    2016-09-01

    thunder , exploding thin conductors, and ignition of a fuel/air mixture in an internal combustion engine. All of these arcs have a circular cylindrical...that this arc resistance can be questioned. A detailed numerical study of an arc came from the research on thunder and lightning.4 This study is

  5. Convective heat transfer from circular cylinders located within perforated cylindrical shrouds

    NASA Technical Reports Server (NTRS)

    Daryabeigi, K.; Ash, R. L.

    1986-01-01

    The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.

  6. Instability of low viscosity elliptic jets with varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun

    2011-11-01

    In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.

  7. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  8. Crush analysis of the foam-filled bitubal circular tube under oblique impact

    NASA Astrophysics Data System (ADS)

    Djamaluddin, F.; Abdullah, S.; Arrifin, A. K.; Nopiah, Z. M.

    2018-02-01

    This paper presents crashworthiness analysis of bitubal cylindrical tubes under different impact angular. The numerical solution of double cylindrical tubes are determined by finite element analysis (FEA). Moreover, the structure was impacted by mass block as impactor respect to longitudinal direction of the tubes. The model of structure was developed by non-linear ABAQUS sofware with variations of load angle and dimensions of tube. The outcome of this study is the respons parameters such as the peak crusing force (PCF), energy absorption (EA) and specific energy absorption (SEA), thus it can be expected this tube as the great energy absorber.

  9. Buckling test of a 3-meter-diameter corrugated graphite-epoxy ring-stiffened cylinder

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1982-01-01

    A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.

  10. Three-dimensional spherical models of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.

    1989-01-01

    Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.

  11. APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.

    DTIC Science & Technology

    cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No

  12. Nonlinear control of magnetic signatures

    NASA Astrophysics Data System (ADS)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and observing frequency effects. The plant model is used in a feedback controller and simulated for different materials as a proof of concept.

  13. Efficient system for wavenumber-frequency analysis of underwater structures

    NASA Astrophysics Data System (ADS)

    Boober, Walter H.; Morton, David; Gedney, Charles; Abbot, Philip

    1998-06-01

    A watertight housing was developed to a low a scanning laser vibrometer (SLV) system to work underwater. Compared to other underwater optical measurement systems, this system offers distinct advantages, including ease of adaptation to a variety of teste, no requirement to be near tank windows, and a simplified rigging system. The system was recently sued to successfully conduct a wavenumber frequency evaluation of the vibratory response of a submerged cylindrical shell. The technical issues in developing the housing and assuring the integrity of the SLV accuracy during transition to underwater use will be discussed. Also, problems encountered in maximizing return signal strength, preparation of the shell, and the process of on-sight data transfer for quick-look wavenumber-frequency analysis while data are being acquired will be presented. The cylindrical shell was excited with 100 to 5000 Hz chirp signals by a 44 N shaker that was attached axially at the center of a bulkhead. A scan consisted of 3 columns with 64 measurement points per column. The shell was rotated 11.25 degrees and the scan repeated to collect an array of 32 by 64 equally spaced points totalling 6144 measurements. The time of data acquisition was about 11 hours. This underwater housing permitted the type of measurements that are not readily available with other systems. With most other techniques the collection time would have been significantly longer. The transfer functions between the velocities measured at each scan location and the shaker force signal were computed as functions of frequency. The transfer functions computed for the center scan columns were then transformed into the wavevector domain using a 2D FFT program. Preliminary results show that the shell response is concentrated near zero circumferential wavenumber, due to the axial symmetry of the driving force. Further, the maximum shell response is also concentrated near the ring frequency of the cylinder, at an axial wavenumber of about -20 rad/m.

  14. Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane

    DOE PAGES

    Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...

    2017-05-30

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  15. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Tatting, Brian F.; Smith, Brett H.; Stevens, Randy S.; Occhipiniti, Gina P.; Swift, Jonathan B.; Achary, David C.; Thornburgh, Robert P.

    2009-01-01

    Advanced composite shells that may offer the potential to improve the structural performance of future aircraft fuselage structures were developed under this joint NASA-industry collaborative effort. Two cylindrical shells with tailored, tow-steered layups and continuously varying fiber angle orientations were designed and built at the National Center for Advanced Manufacturing - Louisiana Partnership. The shells were fabricated from unidirectional IM7/8552 graphite-epoxy pre-preg slit tape material fiber-placed on a constant-diameter mandrel. Each shell had the same nominal 8-ply [plus or minus 45/plus or minus Theta]s layup, where the nominal fiber angle in the tow-steered plies varied continuously from 10 degrees along the crown to 45 degrees on each side, then back to 10 degrees on the keel. One shell was fabricated with all 24 tows placed during each pass of the fiber placement machine, resulting in many tow overlaps on the shell surface. The fiber placement machine's individual tow cut/restart capability was also used to manufacture a second shell with tow drops and a more uniform laminate thickness. This paper presents an overview of the detailed design and manufacturing processes for these shells, and discusses issues encountered during their fabrication and post-cure evaluation. Future plans for structural testing and analyses of the shells are also discussed.

  16. Determination of CME 3D parameters based on a new full ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2017-08-01

    In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.

  17. Analytical calculation of vibrations of electromagnetic origin in electrical machines

    NASA Astrophysics Data System (ADS)

    McCloskey, Alex; Arrasate, Xabier; Hernández, Xabier; Gómez, Iratxo; Almandoz, Gaizka

    2018-01-01

    Electrical motors are widely used and are often required to satisfy comfort specifications. Thus, vibration response estimations are necessary to reach optimum machine designs. This work presents an improved analytical model to calculate vibration response of an electrical machine. The stator and windings are modelled as a double circular cylindrical shell. As the stator is a laminated structure, orthotropic properties are applied to it. The values of those material properties are calculated according to the characteristics of the motor and the known material properties taken from previous works. Therefore, the model proposed takes into account the axial direction, so that length is considered, and also the contribution of windings, which differs from one machine to another. These aspects make the model valuable for a wide range of electrical motor types. In order to validate the analytical calculation, natural frequencies are calculated and compared to those obtained by Finite Element Method (FEM), giving relative errors below 10% for several circumferential and axial mode order combinations. It is also validated the analytical vibration calculation with acceleration measurements in a real machine. The comparison shows good agreement for the proposed model, being the most important frequency components in the same magnitude order. A simplified two dimensional model is also applied and the results obtained are not so satisfactory.

  18. Instabilities of conducting fluid flows in cylindrical shells under external forcing

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Miranda, Montserrat

    2010-11-01

    Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).

  19. Displaying CFD Solution Parameters on Arbitrary Cut Planes

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    2008-01-01

    USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.

  20. On the mechanics of elastic lines in thin shells

    NASA Astrophysics Data System (ADS)

    Benet, Eduard; Vernerey, Franck

    The deformation of soft shells in nature and engineering is often conditioned by the presence of lines whose mechanical properties are different from the shell. For instance, the deformation of tree leaves is conditioned by the presence of harder stems, and cell mitosis is driven by a stiffening line along its membrane. From an experimental standpoint, many groups have taken advantage of this feature to develop self-actuated shells with prescribed deformations. Examples include the polymerization of gels along certain lines, or the inclusion of stiffer lines via 3D printing. However, there is not yet a general continuum theory that accounts for this type of discontinuity within the membrane. Hence, we extend the general shell theory to account for the inclusion of a line that potentially induces jumps in stresses, couple stresses and moments, across its thickness. This is achieved via coupling the rod and the membrane deformations, and ensuring continuity of displacements. The model is then applied to three important problems: a constriction disc inside a shell of revolution, the induced twisting of a shell via the torsion of an embedded line, and the effect of an helicoidal line on the uni-axial deformation of a cylindrical shell. National Science Foundation CAREER award 1350090.

  1. Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.

  2. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  3. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an

    2018-04-01

    A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.

  4. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.

    2018-02-01

    The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.

  5. Unified approach to the entropy of an extremal rotating BTZ black hole: Thin shells and horizon limits

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-10-01

    Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.

  6. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  7. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...

  8. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  9. Large-scale thermal energy storage using sodium hydroxide /NaOH/

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Truscello, V. C.

    1977-01-01

    A technique employing NaOH phase change material for large-scale thermal energy storage to 900 F (482 C) is described; the concept consists of 12-foot diameter by 60-foot long cylindrical steel shell with closely spaced internal tubes similar to a shell and tube heat exchanger. The NaOH heat storage medium fills the space between the tubes and outer shell. To charge the system, superheated steam flowing through the tubes melts and raises the temperature of NaOH; for discharge, pressurized water flows through the same tube bundle. A technique for system design and cost estimation is shown. General technical and economic properties of the storage unit integrated into a solar power plant are discussed.

  10. Hierarchically assembled theranostic nanostructures for siRNA delivery and imaging applications.

    PubMed

    Shrestha, Ritu; Elsabahy, Mahmoud; Luehmann, Hannah; Samarajeewa, Sandani; Florez-Malaver, Stephanie; Lee, Nam S; Welch, Michael J; Liu, Yongjian; Wooley, Karen L

    2012-10-24

    Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.

  11. Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography.

    PubMed

    Li, Luying; Smith, David J; Dailey, Eric; Madras, Prashanth; Drucker, Jeff; McCartney, Martha R

    2011-02-09

    Hole accumulation in Ge/Si core/shell nanowires (NWs) has been observed and quantified using off-axis electron holography and other electron microscopy techniques. The epitaxial [110]-oriented Ge/Si core/shell NWs were grown on Si (111) substrates by chemical vapor deposition through the vapor-liquid-solid growth mechanism. High-angle annular-dark-field scanning transmission electron microscopy images and off-axis electron holograms were obtained from specific NWs. The excess phase shifts measured by electron holography across the NWs indicated the presence of holes inside the Ge cores. Calculations based on a simplified coaxial cylindrical model gave hole densities of (0.4 ± 0.2) /nm(3) in the core regions.

  12. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  13. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  14. Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2005-01-01

    Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.

  15. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.

  16. A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1985-01-01

    In this paper a cylindrical shell having a very stiff end plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flow which may be modeled as a part-through surface crack or through crack. The primary objective is to study the effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the mode I stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built-in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part-through crack problem is treated by using a line-spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equation of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem. Even though the problem is formulated for a general surface crack profile and arbitrary crack surface tractions, the numerical results are obtained only for a semielliptic part-through axial crack located at the inside or outside surface of the cylinder and for internal pressure acting on the cylinder. The stress intensity factors are calculated and presented for a relatively wide range of dimensionless length parameters of the problem.

  17. FASOR - A second generation shell of revolution code

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.

  18. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Guerdal, Z.

    1992-01-01

    An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.

  19. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  20. Plasma-Arc Torch For Welding Ducts In Place

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.; Bayless, Ernest; Looney, Alan

    1991-01-01

    Plasma-arc-welding torch redesigned, more suitable for applications in which moved in circular or other orbits about stationary cylindrical workpieces. Preserves elements of original design critical to performance and endurance, but modifies other elements to decrease overall size of torch. Electrode collet and collet nut installed and removed through hole in top; makes installation and removal easier.

  1. Study of nonuniformity of mechanical properties of rigid polyurethane foam in blocks obtained by free foaming. 1. Blocks with cylindrical form

    NASA Astrophysics Data System (ADS)

    Zhmud, N. P.; Solodovnik, P. I.; Yakushin, V. Ya.

    1983-05-01

    In PUF blocks with vertical walls and circular cross section (H/D=0.4-8) obtained by free foaming, a regular change in the mechanical properties in the bulk of the material is observed, which is not related to a change in density,

  2. Materials and process optimization for dual-shell satellite antenna reflectors

    NASA Astrophysics Data System (ADS)

    Balaski, Darcy R.; van Oyen, Hans J.; Nissan, Sorin J.

    A comprehensive, design-optimization test program was conducted for satellite antenna reflectors composed of two offset paraboloidal Kevlar-reinforced sandwich shells separated by a circular sandwich structure. In addition to standard mechanical properties testing, coefficient of thermal expansion and hygroscopic tests were conducted to predict reflector surface accuracy in the thermal cycling environment of orbital space. Attention was given to the relative placement of components during assembly, in view of reflector surface measurements.

  3. Generalized M-factor of hollow Gaussian beams through a hard-edge circular aperture

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei

    2005-06-01

    Based on the generalized truncated second-order moments, the generalized M-factor (MG2-factor) of three-dimensional hollow Gaussian beams (HGBs) through a hard-edge circular aperture is studied in cylindrical coordinate system analytically and numerically. The closed-form expression for the MG2-factor of the truncated HGBs, which is dependent on the truncation parameter β and the beam order n, can be simplified to that of the truncated, the untruncated Gaussian beams and the untruncated HGBs. Also, the power fraction is demonstrated analytically and numerically, which shows that the area of the dark region across the HGBs increases as n increasing.

  4. Towards a Probabilistic Preliminary Design Criterion for Buckling Critical Composite Shells

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Hilburger, Mark W.

    2003-01-01

    A probability-based analysis method for predicting buckling loads of compression-loaded laminated-composite shells is presented, and its potential as a basis for a new shell-stability design criterion is demonstrated and discussed. In particular, a database containing information about specimen geometry, material properties, and measured initial geometric imperfections for a selected group of laminated-composite cylindrical shells is used to calculate new buckling-load "knockdown factors". These knockdown factors are shown to be substantially improved, and hence much less conservative than the corresponding deterministic knockdown factors that are presently used by industry. The probability integral associated with the analysis is evaluated by using two methods; that is, by using the exact Monte Carlo method and by using an approximate First-Order Second- Moment method. A comparison of the results from these two methods indicates that the First-Order Second-Moment method yields results that are conservative for the shells considered. Furthermore, the results show that the improved, reliability-based knockdown factor presented always yields a safe estimate of the buckling load for the shells examined.

  5. The crack problem in a specially orthotropic shell with double curvature

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip. Previously announced in STAR as N83-16782

  6. The crack problem in a specially orthotropic shell with double curvature

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip.

  7. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  8. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction ofmore » MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.« less

  10. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  11. Free surface convection in a bounded cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Vrentas, J. S.; Narayanan, R.; Agrawal, S. S.

    1981-09-01

    Surface tension-driven convection and buoyancy-driven convection in a bounded cylindrical geometry with a free surface are studied for a range of aspect ratios and Nusselt numbers. The thermal convection is in a liquid layer contained in a vertical circular cylinder with a single free boundary, the top surface, which is in contact with an inviscid gas phase. A different method is also developed for analyzing free convection problems using Green's functions, reducing the problem to the solution of an integral equation. Linear theory and some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, the structure of the convective motion, the direction of flow, and the nature of the bifurcation branching.

  12. FLUID CONTACTOR APPARATUS

    DOEpatents

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  13. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  14. Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell

    NASA Astrophysics Data System (ADS)

    Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert

    2005-07-01

    We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .

  15. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.

    PubMed

    Mitri, F G; Fatemi, M

    2005-05-01

    An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.

  16. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-11-01

    Bell-Plesset effects accounting for the time dependence of the radius, velocity and acceleration of the Rayleigh-Taylor-unstable surface are ubiquitous in the instability of spherical laser targets and magnetically driven cylindrical liners. We present an analytical model that, for an ideal incompressible fluid and small perturbation amplitudes, exactly accounts for the Bell-Plesset effects in finite-thickness targets and liners through acceleration and deceleration phases. We derive the time-dependent dispersion equations determining the ``instantaneous growth rate'' and demonstrate that by integrating this growth rate over time (the WKB approximation) we accurately evaluate the number of perturbation e-foldings during the acceleration phase. In the limit of the small target/liner thickness, we obtain the exact thin-shell perturbation equations and approximate thin-shell dispersion relations, generalizing the earlier results of Harris (1962), Ott (1972) and Bud'ko et al. (1989). This research was supported by the US DOE/NNSA (A.L.V.), and in part by appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering (P.F.S.), which is part of the Laboratory Directed Research and Development (LDRD) Program, Project No. 165746, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000.

  17. -dimensional thin shell wormhole with deformed throat can be supported by normal matter

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2015-06-01

    From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies. We aim to circumvent this handicap by considering angle dependent throats in dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of and , we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions.

  18. Effect of Technological Tensioning on the Efficiency of Reinforcement of Pipelines with Composite Bands

    NASA Astrophysics Data System (ADS)

    Barkanov, E.; Beschetnikov, D.; Lvov, G.

    2015-01-01

    A mathematical model for the contact interaction of a cylindrical pipe with a composite band during its repair is constructed. A system of governing equations of the contact problem is formulated by using the Timoshenko theory of shells. An analysis of possible solutions is carried out for various combinations of geometric and elastic properties of shells. The possibility of pretension of a prepreg in order to improve the efficiency of repair is considered. The numerical results obtained allow one to establish the desired level of pretension for various repair situations.

  19. Apparatus and method for aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Williamson, John W. (Inventor); al-Darwish, Mohamad M. (Inventor); Cashen, Grant E. (Inventor)

    1993-01-01

    An apparatus for the levitation of a liquid drop by a fluid flow comprising a profile generator, a fluid flow supply means operatively connected to the profile generator. The profile generator includes an elongate cylindrical shell in which is contained a profiling means for configuring the velocity profile of the fluid flow exiting the profile generator.

  20. Contamination control device

    DOEpatents

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  1. A study of fluid-structure problems

    NASA Astrophysics Data System (ADS)

    Lam, Dennis Kang-Por

    The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.

  2. The uniqueness of the solution of cone-like inversion models for halo CMEs

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  3. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence.

    PubMed

    Cheng, Jiaji; Hao, Junjie; Liu, Haochen; Li, Jiagen; Li, Junzi; Zhu, Xi; Lin, Xiaodong; Wang, Kai; He, Tingchao

    2018-05-30

    Ligand-induced chirality in semiconductor nanocrystals (NCs) has attracted attention because of the tunable optical properties of the NCs. Induced circular dichroism (CD) has been observed in CdX (X = S, Se, Te) NCs and their hybrids, but circularly polarized luminescence (CPL) in these fluorescent nanomaterials has been seldom reported. Herein, we describe the successful preparation of l- and d-cysteine-capped CdSe-dot/CdS-rods (DRs) with tunable CD and CPL behaviors and a maximum anisotropic factor ( g lum ) of 4.66 × 10 -4 . The observed CD and CPL activities are sensitive to the relative absorption ratio of the CdS shell to the CdSe core, suggesting that the anisotropic g-factors in both CD and CPL increase to some extent for a smaller shell-to-core absorption ratio. In addition, the molar ratio of chiral cysteine to the DRs is investigated. Instead of enhancing the chiral interactions between the chiral molecules and DRs, an excess of cysteine molecules in aqueous solution inhibits both the CD and CPL activities. Such chiral and emissive NCs provide an ideal platform for the rational design of semiconductor nanomaterials with chiroptical properties.

  4. Scattering of cylindrical electric field waves from an elliptical dielectric cylindrical shell

    NASA Astrophysics Data System (ADS)

    Urbanik, E. A.

    1982-12-01

    This thesis examines the scattering of cylindrical waves by large dielectric scatterers of elliptic cross section. The solution method was the method of moments using a Galerkin approach. Sinusoidal basis and testing functions were used resulting in a higher convergence rate. The higher rate of convergence made it possible for the program to run on the Aeronautical Systems Division's CYBER computers without any special storage methods. This report includes discussion on moment methods, solution of integral equations, and the relationship between the electric field and the source region or self cell singularity. Since the program produced unacceptable run times, no results are contained herein. The importance of this work is the evaluation of the practicality of moment methods using standard techniques. The long run times for a mid-sized scatterer demonstrate the impracticality of moment methods for dielectrics using standard techniques.

  5. Breaking Monotony: A Reflective Study of Teaching Decorative Pot Making

    ERIC Educational Resources Information Center

    Nortey, Samuel; Okai, Frederick E.; Bodjawah, Edwin K.

    2013-01-01

    In art, the idea of pots being circular and cylindrical is an intuitive proposition that defines why potters have, up to the present, made wonderful decorations in the round. It is believed that potters do not want to subvert or break away from their tradition, perhaps because the art started as family craft. In this study, the authors describe…

  6. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, Terry L.

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  7. Porous expandable device for attachment to bone tissue

    DOEpatents

    Rybicki, Edmund F.; Wheeler, Kenneth Ray; Hulbert, Lewis E.; Karagianes, Manuel Tom; Hassler, Craig R.

    1977-01-01

    A device for attaching to substantially solid living bone tissue, comprising a body member having an outer surface shaped to fit approximately into an empty space in the tissue and having pores into which the tissue can grow to strengthen the bond between the device and the tissue, and adjustable means for expanding the body member against the tissue to an extent such as to provide a compressive stress capable of maintaining a snug and stable fit and of enhancing the growth of the tissue into the pores in the body member. The expanding means is adjustable to provide a stress between the tissue and the body member in the range of about 150 to 750 psi, typically 150 to 350 psi. Typically the body member comprises an expandable cylindrical portion having at least one radial slit extending longitudinally from a first end to the vicinity of the opposite (second) end thereof, at least one radial slit extending longitudinally from the second end to the vicinity of the first end thereof, and a tapered cylindrical hole extending coaxially from a wider circular opening in the first end to a narrower circular opening communicating with the second end.

  8. Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Hai; Wang, Hu

    2018-06-01

    A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.

  9. Investigation into the bistatic evolution of the acoustic scattering from a cylindrical shell using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-01-01

    The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.

  10. Method and apparatus for making superconductive magnet coils

    DOEpatents

    Borden, A.R.

    1983-11-07

    A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solidified by the use of an epoxy adhesive.

  11. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.

  12. Method and apparatus for making superconductive magnet coils

    DOEpatents

    Borden, Albert R.

    1985-01-01

    A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solified by the use of an epoxy adhesive.

  13. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  14. Asymptotic analysis of the shear strain effect on the wave characteristics of a multilayered cylindrical shell filled with fluid

    NASA Astrophysics Data System (ADS)

    Amenzade, R. Yu.; Kiiko, I. A.

    2007-06-01

    It is commonly assumed that the theory based on the Kirchhoff hypotheses describes the properties inherent in the wave processes occurring in shells filled with fluids. But there are several new effects that cannot be described by this theory (in particular, the appearance of new types of waves). In this paper, we present a linearized description of axisymmetric wave motion of a perfect incompressible fluid in a multilayered cylindrical shell with allowance for shear strain; the shell is assumed to be infinite and simply supported. This description is aimed at finding new mechanical effects and hence at estimating the influence of the multiple layers and the shear strain on the wave characteristics. In a sense, it generalizes and develops well-known studies of this type. Practice necessitates deriving equations constructed under the assumption that the physical and mechanical properties of the shell material are inhomogeneous along the thickness direction or the shell is multilayered; the development of refined theories (compared with the classical theory based on the Kirchhoff—Love straight normal hypothesis) is also inspired by practice. This is primarily related to the fact that multilayered thin-walled shells made of composite materials are used in various fields of technology. It is of interest to note that, as a result of long evolution, the phenomenon of being multilayered also predominates in living organisms. For example, this is typical of big blood vessels [1] (arteries and veins). In [2], on the basis of a three-dimensional variational principle of mixed type, the equations of motion and physical relations for elastic anisotropic shells rigidly inhomogeneous in the thickness direction are derived under the assumptions of the theory of thin shells and with shear strains taken into account. It is also noted that the case of multilayered shells can be modeled by introducing functions with integrable singularities. When studying wave propagation in deformable shells containing fluid, hydroelasticity problems arise; the solution of such problems is of both theoretical and practical importance. Of topical problems in this field, problems related to pulsating blood flow in big blood vessels [3] (the theory of pulse waves) are worth mentioning. The incentive for such studies is that they can help to understand the normal operation of the blood circulatory system, predict its reaction to variations, and propose methods for artificial intervention. Thus, diagnostics, surgery, and prosthesis are closely related to biomechanics. But the applied value of such problems is not bounded by their applications in hemodynamics. They are also very important in technology because of the wide use of systems of fluid and gas transportation through pipelines with corrosion-resistant coating.

  15. Buckling of Thin Cylindrical Shell Subject to Uniform External Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forasassi, G.; Lo Frano, R.

    2006-07-01

    The buckling of cylindrical shells under uniform external pressure loading has been widely investigated. In general, when tubes are subjected to external pressure, collapse is initiated by yielding, but interaction with instability is significant, in that imperfections associated with fabrication of shells reduce the load bearing capacity by a significant amount even when thickness is considerable. A specific buckling analysis is used to predict collapse failure of long pressure vessels and pipelines when they are subjected to external over-pressure. The problem of buckling for variable load conditions is relevant for the optimisation of several Nuclear Power Plant applications as, formore » instance, the IRIS (International Reactor Innovative and Secure) LWR integrated Steam Generator (SG) tubes. In this paper, we consider in addition to the usual assumptions of thin shell, homogeneous and isotropic material, also the tube geometric imperfections and plastic deformations that may affect the limit load. When all those conditions are considered at present, a complete theoretical analysis was not founding the literature. At Pisa University a research activity is being carried out on the buckling of thin walled metal specimen, with reference to several geometries and two different stainless steel materials. A test equipment (with the necessary data acquisition facility), suitable for carrying out many test on this issue, as well as numerical models implemented on the MARC FEM code, were set up. In this report, the results of the performed analyses of critical pressure load determination with different numerical and experimental approaches are presented. The numerical results obtained are compared with the experimental results, for the same geometry and loading conditions, showing a good agreement between these two approaches. (authors)« less

  16. Response of Olive Fruit Fly (Diptera: Tephritidae) to an Attract-and-Kill Trap in Greenhouse Cage Tests

    PubMed Central

    Yokoyama, Victoria Y.

    2014-01-01

    Abstract A novel attract-and-kill trap for olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), was constructed with yellow corrugated plastic in an inverted cylindrical pan shape formed from a disk and collar. The trap components were tested under three greenhouse temperatures and humidities of warm, hot, and very hot for attractiveness to caged young or older adults. A greater proportion of adults regardless of age were found underneath the devices including disks, cylindrical pans, and pans with pheromone lures and test units of cylindrical pans sprayed with water, insecticidal bait spray, and with lures. The effect was related to lower temperatures on the underside compared with the top and the intolerance of the pest to heat. A circular collar added to the perimeter of the disk that formed the top of the inverted cylinder made the attract-and-kill trap more attractive to adults than the disk alone. Pheromone lures or bait sprays did not increase adult attraction, so were not needed for efficacy. The cylindrical pan was especially attractive to adults when temperatures were high by providing shelter from the heat. At very high temperatures, the pan became unattractive, possibly due to heating of the construction materials. Cylindrical pans sprayed with water on the underside attracted the highest number of adults especially at high temperatures. Greenhouse tests showed that the inverted cylindrical pan design has potential as an attract-and-kill device for olive fruit fly control. PMID:25368094

  17. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    NASA Astrophysics Data System (ADS)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  18. Methods and formulas for calculating the strength of plate and shell constructions as used in airplane design

    NASA Technical Reports Server (NTRS)

    Heck, O S; Ebner, H

    1936-01-01

    This report is a compilation of previously published articles on formulas and methods of calculation for the determination of the strength and stability of plate and shell construction as employed in airplane design. In particular, it treats the problem of isotropic, orthotopic, and stiffened rectangular plates, thin curved panels, and circular cylinders under various loading conditions. The purpose of appending the pertinent literature references following the subjects discussed was to facilitate a comprehensive study of the treated problems.

  19. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  20. Chalcogenide molded freeform optics for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Yi, Allen

    2017-05-01

    High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.

  1. Extinction cross-section cancellation of a cylindrical radiating active source near a rigid corner and acoustic invisibility

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.

  2. Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru

    Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less

  3. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  4. Measurement system of the refractive power of spherical and sphero-cylindrical lenses with the magnification ellipse fitting method.

    PubMed

    Ko, Wooseok; Kim, Soohyun

    2009-11-01

    This paper proposes a new measurement system for measuring the refractive power of spherical and sphero-cylindrical lenses with a six-point light source, which is composed of a light emitting diode and a six-hole pattern aperture, and magnification ellipse fitting method. The position of the six light sources is changed into a circular or elliptical form subjected to the lens refractive power and meridian rotation angle. The magnification ellipse fitting method calculates the lens refractive power based on the ellipse equation with magnifications that are the ratios between initial diagonal lengths and measured diagonal lengths of the conjugated light sources changed by the target lens. The refractive powers of the spherical and sphero-cylindrical lenses certified in the Korea Research Institute of Standard and Science were measured to verify the measurement performance. The proposed method is estimated to have a repeatability of +/-0.01 D and an error value below 1%.

  5. Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects

    PubMed Central

    2015-01-01

    A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257

  6. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  7. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be common for all hole configurations and mixer types (circular or annular). The performance of any orifice shape (in producing minimum NOx) appears to be acceptable if the number of orifices can be freely varied in order to attain the optimum jet penetration.

  8. Analytical model for vibration prediction of two parallel tunnels in a full-space

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  9. Problems in understanding the structure and assembly of viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.

    1997-12-01

    Though viruses infect the cells of all groups of animals, plants, and microorganisms, their structures follow a limited number of general themes; spherical or cylindrical shells built of hundreds of repeated protein subunits enclosing a nucleic acid - DNA or RNA - genome. Since the 1960s it has been known that the protein shells of spherical viruses in fact conform to icosahedral symmetry or to subtle deviations from icosahedral symmetry. The construction of the shell lattices and the transformations they go through in the different stages of the viral life cycle are not fully understood. The shells contain the nucleicmore » in a highly condensed state, of unknown coiling/organization. Features of the well studied bacterial viruses will be reviewed, with examples from adenoviruses, herpesviruses, poliovirus, and HIV. The emergence of new viral disease has led to increased interest in the development of agents which interfere with virus reproduction at the level of the assembly or function of the organized particle. Recently computational approaches to the problem of virus assembly have made important contributions to clarifying shell assembly processes. 1 ref.« less

  10. Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities

    NASA Astrophysics Data System (ADS)

    Lukoshkin, V. A.; Kalevich, V. K.; Afanasiev, M. M.; Kavokin, K. V.; Hatzopoulos, Z.; Savvidis, P. G.; Sedov, E. S.; Kavokin, A. V.

    2018-05-01

    We have experimentally observed an eddy current of exciton polaritons arising in a cylindrical GaAs/AlGaAs pillar microcavity under the nonresonant optical pumping. The polariton current manifests itself in a Mach-Zehnder interferometry image as a characteristic spiral that occurs due to the interference of the light emitted by an exciton-polariton condensate with a reference spherical wave. We have experimentally observed the condensates with the topological charges m =+1 ,m =-1 , and m =-2 . The interference pattern corresponding to the m =-2 current represents the twin spiral emerging from the center of the micropillar. The switching between the current modes with different topological charges is achieved by a weak displacement of the pump spot.

  11. Study of foldable elastic tubes for large space structure applications, phase 3

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Mitchell, S. O.

    1981-01-01

    A bi-convex foldable elastic tube, suitable for use in self deploying space structures, was subjected to a series of buckling tests to deterine initial buckling loads, collapse loads, and the buckling mode. The tube is cylindrical with a cross-section that is lenticular-like with flared edges. It is capable of being flattened in the center and folded compactly, storing up strain energy in the process. Upon removal of constraint, it springs back to its original straight configuration, releasing the stored strain energy. The tests showed that this type of tube has good resistance to buckling, with the initial buckling loads all falling within or above the range of those for comparable circular cylindrical tubes.

  12. Mathematical modeling of tomographic scanning of cylindrically shaped test objects

    NASA Astrophysics Data System (ADS)

    Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.

    2018-05-01

    The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.

  13. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    DOE PAGES

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; ...

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been exploredmore » before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.« less

  14. [Accuracy of Modulation Transfer Function for Target Size and Field of View in a Circular Edge Strategy Using the CT Image Measurement Program].

    PubMed

    Fukunaga, Masaaki; Onishi, Hideo; Matsutomo, Norikazu; Yamamoto, Hiroyuki

    2016-06-01

    The purpose of this study was to evaluate the effects of target diameter and display-field of view (D-FOV) in modulation transfer function (MTF) by circular edge strategy using the computed tomography (CT) image measurement program "CTmeasure". We calculated the MTF (MTF(edge)) using the circular edge strategy applied to cylindrical phantom (200 mmφ) that inserted with cylinders have 10, 20, 30, and 40 mm diameters. The phantom images were reconstructed using filtered back projection method varied with D-FOV (240, 320, 400, and 500 mm). The study compared both MTF(edge) and MTF(wire) at MTF50% and MTF(10%) for target diameter and D-FOV, respectively. The MTF(edge) by the different of target diameter indicated in rough compatibility. However, MTF(edge) of D-FOV diameters (320, 400, and 500 mm) decreased in the high frequency range. The circular edge strategy for MTF depended on the D-FOV, however, it was little dependent on target diameter using the CT image measurement program "CTmeasure".

  15. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  16. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  17. Theoretical and experimental design studies for the Atmospheric General Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.

    1985-01-01

    The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.

  18. Mixed finite-difference scheme for free vibration analysis of noncircular cylinders

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.

  19. Compression strength of composite primary structural components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1992-01-01

    A status report of work performed during the period May 1, 1992 to October 31, 1992 is presented. Research was conducted in three areas: delamination initiation in postbuckled dropped-ply laminates; stiffener crippling initiated by delamination; and pressure pillowing of an orthogonally stiffened cylindrical shell. The geometrically nonlinear response and delamination initiation of compression-loaded dropped-ply laminates is analyzed. A computational model of the stiffener specimens that includes the capability to predict the interlaminar response at the flange free edge in postbuckling is developed. The distribution of the interacting loads between the stiffeners and the shell wall, particularly at the load transfer at the stiffener crossing point, is determined.

  20. On the Buckling of Imperfect Anisotropic Shells with Elastic Edge Supports Under Combined Loading Part I:. Pt. 1; Theory and Numerical Analysis

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Hol, J. M. A. M.; deVries, J.

    1998-01-01

    A rigorous solution is presented for the case of stiffened anisotropic cylindrical shells with general imperfections under combined loading, where the edge supports are provided by symmetrical or unsymmetrical elastic rings. The circumferential dependence is eliminated by a truncated Fourier series. The resulting nonlinear 2-point boundary value problem is solved numerically via the "Parallel Shooting Method". The changing deformation patterns resulting from the different degrees of interaction between the given initial imperfections and the specified end rings are displayed. Recommendations are made as to the minimum ring stiffnesses required for optimal load carrying configurations.

  1. Sharp focusing of laser light by multilayer cylinders with circular cross-section

    NASA Astrophysics Data System (ADS)

    Kozlova, E. S.

    2018-04-01

    In this paper, the focusing of laser light at 532 nm by dielectric cylinders with a metal shells is studied by using COMSOL Multiphysics. The analysis of cylinder design which proposed multilayered shell shows that a microcylinder with a gold-silver (or silver-gold) shell can improve the focusing process, especially in the case of TM polarization. The microcylinder with thin internal silver layer of 1 nm and outside gold layer of 9 nm focus TE-polarized light to nanojet with maximal intensity of 5.65 a.u., full width and full length at half maximum of intensity of of 0.39λ and 0.72λ, respectively.

  2. Non-Deterministic Dynamic Instability of Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2004-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.

  3. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindricalmore » coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of arbitrary shape, such as Chebyshev cylindrical particles with a small deformation, stadiums (with oval shape), or other non-circular geometries.« less

  5. The electronic structure and effective excitonic g factors of GaAs/GaMnAs core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Li, Dong-Xiao; Xiong, Wen

    2017-12-01

    We calculate the electronic structures of cylindrical GaAs/GaMnAs core-shell nanowires in the magnetic field based on the eight-band effective-mass kṡp theory, and it is found that the hole states can present strong band-crossings. The probability densities of several lowest electron states and highest hole states at the Γ point are analyzed, and strangely, the distribution of the electron states are more complex than that of the hole states. Furthermore, the components of the electron states will change substantially as the increase of the radius R, which are almost unchanged for the hole states. A very interesting phenomenon is that the effective excitonic g factors gex can be tuned from a large positive value for GaMnAs nanowires to a small negative value for GaAs nanowires, and gex of GaAs nanowires and GaMnAs nanowires will vary slightly and greatly, respectively as the increase of the magnetic field. Meanwhile, we can obtain large gex in cylindrical GaAs/GaMnAs core-shell nanowires when the small magnetic field, the large concentration of manganese ions, the small core radius and the small radius are chosen. Another important result is also found that the radiative intensities of two σ polarized lights can be separated gradually by decreasing the core radius Rc , which can be used to detect two σ polarized lights in the experiment.

  6. Analysis of nematode mechanics by piezoresistive displacement clamp

    PubMed Central

    Park, Sung-Jin; Goodman, Miriam B.; Pruitt, Beth L.

    2007-01-01

    Studying animal mechanics is critical for understanding how signals in the neuromuscular system give rise to behavior and how force-sensing organs and sensory neurons work. Few techniques exist to provide forces and displacements appropriate for such studies. To address this technological gap, we developed a metrology using piezoresistive cantilevers as force–displacement sensors coupled to a feedback system to apply and maintain defined load profiles to micrometer-scale animals. We show that this system can deliver forces between 10−8 and 10−3 N across distances of up to 100 μm with a resolution of 12 nN between 0.1 Hz and 100 kHz. We use this new metrology to show that force–displacement curves of wild-type nematodes (Caenorhabditis elegans) are linear. Because nematodes have approximately cylindrical bodies, this finding demonstrates that nematode body mechanics can be modeled as a cylindrical shell under pressure. Little is known about the relative importance of hydrostatic pressure and shell mechanics, however. We show that dissipating pressure by cuticle puncture or decreasing it by hyperosmotic shock has only a modest effect on stiffness, whereas defects in the dpy-5 and lon-2 genes, which alter body shape and cuticle proteins, decrease and increase stiffness by 25% and 50%, respectively. This initial analysis of C. elegans body mechanics suggests that shell mechanics dominates stiffness and is a first step in understanding how body mechanics affect locomotion and force sensing. PMID:17962419

  7. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  8. Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core

    NASA Astrophysics Data System (ADS)

    Fazzolari, Fiorenzo A.; Carrera, Erasmo

    2014-02-01

    In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell-Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.

  9. Stress distributions caused by three types of loading on a circular semimonocoque cylinder with flexible rings

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G , Jr

    1954-01-01

    Equations are derived for the stress distributions caused by three types of loading on infinitely long circular, semimonocoque cylinders with flexible rings. The results are given as formula for the stringer loads and shear flows in the shell due to each type of loading. For each loading case these formulas can be used to construct tables of influence coefficients giving stringer loads and shear flows in the neighborhood of the load due to a unit magnitude of the load. (author)

  10. SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.M.; Fowler, J.K.

    The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)

  11. Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks

    NASA Astrophysics Data System (ADS)

    McGee, O. G.; Kim, J. W.

    2010-02-01

    This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and segmented plates and cylinders are also reported herein as interesting special cases. A generalization of the elasticity-based Ritz analysis and findings applicable here is an arbitrarily shaped V-notched cylindrical solid, being a surface traced out by a family of generatrix, which pass through the circumference of an arbitrarily shaped V-notched directrix curve, r( θ), several of which are described for future investigations and close extensions of this work.

  12. Compression strength of composite primary structural components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1993-01-01

    Two projects are summarized. The first project is entitled 'Stiffener Crippling Inititated by Delaminations' and its objective is to develop a computational model of the stiffener specimens that includes the capability to predict the interlaminar stress response at the flange free edge in postbuckling. The second is entitled 'Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell'. A paper written on this project is included.

  13. Drilling side holes from a borehole

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

  14. The physics of sliding cylinders and curling rocks

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2001-03-01

    The lateral deflection of a rotating cylindrical shell sliding on one of its ends is considered and both theoretical and experimental results are presented. The coefficient of kinetic friction between a curling rock and an ice surface is then derived and compared with experiment. Current models of the motion of a curling rock are discussed and an alternate hypothesis is presented.

  15. HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-01-01

    Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.

  16. Investigation on imperfection sensitivity of composite cylindrical shells using the nonlinearity reduction technique and the polynomial chaos method

    NASA Astrophysics Data System (ADS)

    Liang, Ke; Sun, Qin; Liu, Xiaoran

    2018-05-01

    The theoretical buckling load of a perfect cylinder must be reduced by a knock-down factor to account for structural imperfections. The EU project DESICOS proposed a new robust design for imperfection-sensitive composite cylindrical shells using the combination of deterministic and stochastic simulations, however the high computational complexity seriously affects its wider application in aerospace structures design. In this paper, the nonlinearity reduction technique and the polynomial chaos method are implemented into the robust design process, to significantly lower computational costs. The modified Newton-type Koiter-Newton approach which largely reduces the number of degrees of freedom in the nonlinear finite element model, serves as the nonlinear buckling solver to trace the equilibrium paths of geometrically nonlinear structures efficiently. The non-intrusive polynomial chaos method provides the buckling load with an approximate chaos response surface with respect to imperfections and uses buckling solver codes as black boxes. A fast large-sample study can be applied using the approximate chaos response surface to achieve probability characteristics of buckling loads. The performance of the method in terms of reliability, accuracy and computational effort is demonstrated with an unstiffened CFRP cylinder.

  17. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts

    NASA Astrophysics Data System (ADS)

    Skotheim, J. M.; Mahadevan, L.

    2005-09-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.

  18. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  19. Investigating Plasma Motion of Magnetic Clouds at 1 AU through a Velocity-modified Cylindrical Force-free Flux Rope Model

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Liu, R.; Zhou, Z.

    2014-12-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs). Due to the very low value of Can't connect to bucket.int.confex.com:4201 (Connection refused) LWP::Protocol::http::Socket: connect: Connection refused at /usr/local/lib/perl5/site_perl/5.8.8/LWP/Protocol/http.pm line 51. in MCs, they are believed to be in a nearly force-free state and therefore are able to be modeled by a cylindrical force-free flux rope. However, the force-free state only describes the magnetic field topology but not the plasma motion of a MC. For a MC propagating in interplanetary space, the global plasma motion has three possible components: linear propagating motion of a MC away from the Sun, expanding motion and circular motion with respect to the axis of the MC. By assuming the quasi-steady evolution and self-similar expansion, we introduced the three-component motion into the cylindrical force-free flux rope model, and developed a velocity-modified model. Then we applied the model to 73 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. It is found that (1) some MCs did not propagate along the Sun-Earth line, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space, (2) the expansion speed is correlated with the radial propagation speed and 62%/17% of MCs underwent a under/over-expansion at 1 AU, and (3) the circular motion does exists though it is only on the order of 10 km s-1. These findings advance our understanding of the MC's properties at 1 AU as well as the dynamic evolution of CMEs from the Sun to interplanetary space.

  20. Structure of chromatin and the linking number of DNA.

    PubMed Central

    Worcel, A; Strogatz, S; Riley, D

    1981-01-01

    Recent observations suggest that the basic supranucleosomal structure of chromatin is a zigzag helical ribbon with a repeat unit made of two nucleosomes connected by a relaxed spacer DNA. A remarkable feature of one particular ribbon is that it solves the apparent paradox between the number of DNA turns per nucleosome and the total linking number of a nucleosome-containing closed circular DNA molecule. We show here that the repeat unit of the proposed structure, which contains two nucleosomes with -1 3/4 DNA turns per nucleosome and one spacer crossover per repeat, contributes -2 to the linking number of closed circular DNA. Space-filling models show that the cylindrical 250-A chromatin fiber can be generated by twisting the ribbon. Images PMID:6940168

  1. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  2. Wave propagation in a plate after impact by a projectile

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1987-01-01

    The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.

  3. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in; Chelvane, Arout

    2016-05-06

    Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pelletmore » revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.« less

  4. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    PubMed

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  5. Strong-field approximation in a rotating frame: High-order harmonic emission from p states in bicircular fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Jiménez-Galán, Álvaro

    2017-12-01

    High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium and a larger one in neon and argon, where the emission is carried out by p -shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the p + orbital that corotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s -shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism.

  6. Gravitational radiation from a cylindrical naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Ken-ichi; Morisawa, Yoshiyuki

    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that allmore » the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.« less

  7. Contoured tank outlets for draining of cylindrical tanks in low-gravity environment. [Lewis Research Center Zero Gravity Facility

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1979-01-01

    An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.

  8. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  9. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  10. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  11. Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.

    2018-01-01

    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.

  12. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  13. Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Adelman, H. M.

    1974-01-01

    The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.

  14. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  15. The modeling of piezoceramic patch interactions with shells, plates and beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1992-01-01

    General models describing the interactions between a pair of piezoceramic patches and elastic substructures consisting of a cylindrical shell, plate and beam are presented. In each case, the manner in which the patch loads enter both the strong and weak forms of the time-dependent structural equations of motion is described. Through force and moment balancing, these loads are then determined in terms of material properties of the patch and substructure (thickness, elastic properties, Poisson ratios), the geometry of the patch placement, and the voltages into the patches. In the case of the shell, the coupling between banding and inplane deformations, which is due to the curvature, is retained. These models are sufficiently general to allow for potentially different patch voltages which implies that they can be suitably employed when using piezoceramic patches for controlling system dynamics when both extensional and bending vibrations are present.

  16. The stresses in stiffener openings

    NASA Technical Reports Server (NTRS)

    Marguerre, K

    1942-01-01

    The present study treats as a typical example a ring the center line of which is produced by the intersection of two circular cylinders of different diameter. Three load cases are analyzed: (1) Axial and circumferential stresses in both cylinders, the cylinder stresses themselves to be in the ratio conformal to the cylinders loaded under internal pressure. (2) Pure longitudinal tension in the large cylinder. (3) Pure shear (torsion) in the large cylinder. To simplify the calculation, it is assumed that the ring, compared to the shell, is very strong, so that its deformations have no perceptible effect on the stress condition in the shell. This provides an upper limit for the ring stresses actually produced in a shell design, for, according to the theory of stressed skin statics the shells, by elastic flexibility of the ring, regroup the forces deposited on it in such a manner that the ring is relieved.

  17. Quantifying the Impact of Nanoparticle Coatings and Non-uniformities on XPS Analysis: Gold/silver Core-shell Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.

    2016-03-07

    Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less

  18. DIFFUSE: a FORTRAN program for design computation of tritium transport through thermonuclear reactor components by combined ordinary and thermal diffusion when the principal resistance to diffusion is the bulk metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, J.H.

    1977-10-01

    Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.

  19. Development of a Computer-Controlled Polishing Process for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    The future X-ray observatory missions require grazing-incidence x-ray optics with angular resolution of < 5 arcsec half-power diameter. The achievable resolution depends ultimately on the quality of polished mandrels from which the shells are replicated. With an aim to fabricate better shells, and reduce the cost/time of mandrel production, a computer-controlled polishing machine is developed for deterministic and localized polishing of mandrels. Cylindrical polishing software is also developed that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  20. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    NASA Astrophysics Data System (ADS)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  2. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  3. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  4. External combustor for gas turbine engine

    DOEpatents

    Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  5. Method of and apparatus for collecting solar radiation utilizing variable curvature cylindrical reflectors

    DOEpatents

    Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.

    1979-01-01

    A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.

  6. On the Aerodynamics of Windblast.

    DTIC Science & Technology

    1981-11-13

    streamline pattern that characterizes the cross-flow over two circular-cylindrical body segments in line contact with one another at time t = 0. That is, at...over the limbs of the ejection seat occupant. Note that MC may vary over different portions of the body that intercept the flow at different angles a...dimensional, rectilinear situation, one may estimate the kinematics of the ensuing motion of a body segment of mass Ms, subjected to the force

  7. Experimental and Numerical Analysis of Axially Compressed Circular Cylindrical Fiber-Reinforced Panels with Various Boundary Conditions.

    DTIC Science & Technology

    1981-10-01

    Numerical predictions used in the compari- sons were obtained from the energy -based, finite-difference computer proqram CLAPP. Test specimens were clamped...edges V LONGITUDINAL STIFFENERS 45 I. Introduction 45 2. Stiffener Strain Energy 46 3. Stiffener Energy in Matrix Form 47 4. Displacement Continuity 49...that theoretical bifurcation loads predicted by the energy method represent upper bounds to the classical bifurcation loads associated with the test

  8. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  9. High frequency material issues in scattering of sound by objects in water

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher

    Ray theoretic models were shown to predict scattering enhancements from laboratory scale cylindrical targets in water. Synthetic aperture sonar and acoustical holographic images were constructed from bistatic scattering. Targets of increasing complexity from material properties were investigated. Models range from simple ray optic style to corrections for transversely isotropic materials. To correctly model the complexity of anisotropic material such as fiberglass, the five independent elastic constants and the density were measured. In all of the cylindrical shells and solid targets, enhancements are observable for ka values ranging from 9 to 40 where k is the wavenumber and a is the cylinder radius. The simpler targets consist of a low sound speed fluid within a thin plastic or fiberglass shell (11 < ka < 40). Shells were taken to be sufficiently thin so that the shell dynamics could be neglected in the models. The fluid has a density near that of water with a sound speed less than water. It is straightforward to construct the location and length of bright features for the fluid filled shells. Solid finite cylinders of polystyrene (9 < ka < 23) and fiberglass (ka = 17 and 22) were found to have more structure in echoes than the fluid filled shells. Bright image features existed from longitudinal as well as shear wave propagation within the polystyrene. A model including shear and longitudinal wave components showed good agrement with experiments with respect to timing and length of features for RexoliteRTM. Fiberglass is the most complex due to the anisotropic symmetry of the material. The slowness matrix allowed for modeling of timing aspects of the solid fiberglass cylinder. For a flat polystyrene half-space there is predicted to be a prominent enhancement of the acoustic reflection for an angle of incidence near 40°. Measurements showed the existence of a related peak in the reflection from solid Rexolite cylinders with ka near 9. Related peaks in the reflection from coated cylinders were observed. The properties of sound transmitted by a stainless steel plate in water was investigated. The relevant S2b leaky Lamb waves have been previously demonstrated on spherical shells [Kaduchak et al., J. Acoust. Soc. Am. 96, 3704 (1994)]. Directional properties of guided waves excited on a stainless steel plate in water were observed. Guided waves could be excited on the plate having group and phase velocities oppositely directed and such waves could profoundly influence the transmission of sound.

  10. Blackbody Cavity for Calibrations at 200 to 273 K

    NASA Technical Reports Server (NTRS)

    Howell, Dane; Ryan, Robert; Ryan, Jim; Henderson, Doug; Clayton, Larry

    2004-01-01

    A laboratory blackbody cavity has been designed and built for calibrating infrared radiometers used to measure radiant temperatures in the range from about 200 to about 273 K. In this below-room-temperature range, scattering of background infrared radiation from room-temperature surfaces could, potentially, contribute significantly to the spectral radiance of the blackbody cavity, thereby contributing a significant error to the radiant temperature used as the calibration value. The present blackbody cavity is of an established type in which multiple reflections from a combination of conical and cylindrical black-coated walls are exploited to obtain an effective emissivity greater than the emissivity value of the coating material on a flat exposed surface. The coating material in this case is a flat black paint that has an emissivity of approximately of 0.91 in the thermal spectral range and was selected over other, higher-emissivity materials because of its ability to withstand thermal cycling. We found many black coatings cracked and flaked after thermal cycling due to differences in the coefficient of expansion differences. On the basis of theoretical calculations, the effective emissivity is expected to approach 0.999. The cylindrical/conical shell enclosing the cavity is machined from copper, which is chosen for its high thermal conductivity. In use, the shell is oriented vertically, open end facing up, and inserted in a Dewar flask filled with isopropyl alcohol/dry-ice slush. A flange at the open end of the shell is supported by a thermally insulating ring on the lip of the Dewar flask. The slush cools the shell (and thus the black-body cavity) to the desired temperature. Typically, the slush starts at a temperature of about 194 K. The slush is stirred and warmed by bubbling dry air or nitrogen through it, thereby gradually increasing the temperature through the aforementioned calibration range during an interval of several hours. The temperature of the slush is monitored by use of a precise thermocouple probe.

  11. Large Deformation Behavior of Long Shallow Cylindrical Composite Panels

    NASA Technical Reports Server (NTRS)

    Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.

    1991-01-01

    An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.

  12. A review on the solution of Grad-Shafranov equation in the cylindrical coordinates based on the Chebyshev collocation technique

    NASA Astrophysics Data System (ADS)

    Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.

    2017-03-01

    Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.

  13. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  14. The Oscillations of Coronal Loops Including the Shell

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Solov'ev, A. A.

    2005-04-01

    We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.

  15. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold

    NASA Astrophysics Data System (ADS)

    Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M.; Sibilia, C.

    2018-04-01

    We report on the extrinsic chirality behavior of GaAs-based NWs asymmetrically hybridized with Au. The samples are fabricated by a recently developed, lithography-free self-organized GaAs growth, with the addition of AlGaAs shell and GaAs supershell. The angled Au flux is then used to cover three-out-of-six sidewalls with a thin layer of Au. Oblique incidence and proper sample orientation can lead to circular dichroism. We characterize this chiral behavior at 532 {nm} and 980 {nm} by means of photo-acoustic spectroscopy, which directly measures the difference in absorption for the circularly polarized light of the opposite headedness. For the first time to our knowledge, circular dichroism is observed in both the amplitude and the phase of the photo-acoustic signal. We strongly believe that such samples can be used for chiral applications, spanning from circularly polarized light emission, to the enantioselectivity applications.

  16. Ductile fracture of cylindrical vessels containing a large flaw

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  17. Analysis and Design of Variable Stiffness Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tatting, Brian F.; Guerdal, Zafer

    1998-01-01

    An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional laminates exists through the use of curvilinear fibers, mainly due to the presence of a weak link area within the stiffness variation that limits the ultimate load that the structure can withstand. Rigorous optimization studies reveal that even though slight increases in the critical loads can be produced for designs with an arbitrary variation of the fiber orientation angle, the improvements are not significant when compared to traditional design techniques that utilize ring stiffeners and frames. The second problem that is studied involves arbitrary loading of a cylinder with a stiffness variation that changes only in the circumferential direction. The end effects of the cylinder are ignored, so that the problem takes the form of an analysis of a cross-section for a short cylinder segment. Various load cases including axial compression, pressure, torsion, bending, and transverse shear forces are investigated. It is found that the most significant improvements in load-carrying capability exist for cases which involve loads that also vary around the circumference of the shell, namely bending and shear forces. The stiffness variation of the optimal designs contribute to the increased performance in two ways: lowering the stresses in the critical areas through redistribution of the stresses; and providing a relatively stiff region that alters the buckling behavior of the structure. These results lead to an in-depth optimization study involving weight optimization of a fuselage structure subjected to typical design constraints. Comparisons of the curvilinear fiber format to traditional stiffened structures constructed of isotropic and composite materials are included. It is found that standard variable stiffness designs are quite comparable in terms of weight and load-carrying capability yet offer the added advantage of tailorability of distinct regions of the structure that experience drastically different loading conditions. The last two problems presented in this work involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that buckling behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response admirably. Thus, it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.

  18. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  19. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  20. Viscous flow computations for elliptical two-duct version of the SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, R. P.

    1986-01-01

    The objective of the effort was to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME). The numerical results were to complement both water flow and air flow experiments in the two-duct geometry performed at NASA-MSFC and Rocketdyne. The three-dimensional character of the HGM consists of two essentially different geometries. The first part of the construction is a concentric shell duct structure which channels the gases from a turbine exit into the second part comprised of two cylindrically shaped transfer ducts. The initial concentric shell portion can be further subdivided into a turnaround section and a bowl section. The turnaround duct (TAD) changes the direction of the mean flow by 180 degress from a smaller radius to a larger radius duct which discharges into the bowl. The cylindrical transfer ducts are attached to the bowl on one side thus providing a plane of symmetry midway between the two. Centerline flow distance from the TAD inlet to the transfer duct exit is approximately two feet. Details of the approach used to numerically simulate laminar or turbulent flow in the HGM geometry are presented. Computational results are presented and discussed.

  1. Completed Beltrami-Michell formulation for analyzing mixed boundary value problems in elasticity

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Kaljevic, Igor; Hopkins, Dale A.; Saigal, Sunil

    1995-01-01

    In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the Beltrami-Michell formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the more prevalent displacement of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force formulation, has been termed the completed Beltrami-Michell formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational functional of the integrated force method. In the CBMF, stresses for kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the variational functional of the integrated force method. Several examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value problems under thermomechanical loads. Selected example problems include a cylindrical shell wherein membrane and bending responses are coupled, and a composite circular plate.

  2. Crude Oil Remote Sensing, Characterization and Cleaning with ContinuousWave and Pulsed Lasers

    DTIC Science & Technology

    2015-01-23

    explained by strong pressure spikes during cavitation in liquid jets . These experiments were not directly tested for the pipe cleaning, but their results...analytical functions (like circular, elliptical and similar shapes). In our case of cylindrical symmetry of the oil film shape is defined by two...the high-pressure (50 – 100 atm) oil and water jets (with cavitations in narrow tubes) revealed a new potential for a more efficient cleaning of

  3. K-shell spectroscopy of silicon ions as diagnostic for high electric fields

    NASA Astrophysics Data System (ADS)

    Loetzsch, R.; Jäckel, O.; Höfer, S.; Kämpfer, T.; Polz, J.; Uschmann, I.; Kaluza, M. C.; Förster, E.; Stambulchik, E.; Kroupp, E.; Maron, Y.

    2012-11-01

    We developed a detection scheme, capable of measuring X-ray line shape of tracer ions in μm thick layers at the rear side of a target foil irradiated by ultra intense laser pulses. We performed simulations of the effect of strong electric fields on the K-shell emission of silicon and developed a spectrometer dedicated to record this emission. The combination of a cylindrically bent crystal in von Hámos geometry and a CCD camera with its single photon counting capability allows for a high dynamic range of the instrument and background free spectra. This approach will be used in future experiments to study electric fields of the order of TV/m at high density plasmas close to solid density.

  4. Collapse of Composite Cylinders in Bending

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Starnes, James H., Jr.; Hyer, Michael W.

    1998-01-01

    This paper summarizes the results of a numerical and experimental study of the collapse behavior of small-scale graphite-epoxy cylindrical shells subjected to overall bending loads, and in one case, an initial internal pressure. Shells with quasi-isotropic and orthotropic inplane stiffness properties are studied. Numerical results from geometrically nonlinear finite element analyses and results from experiments using a specially-built apparatus indicate that extensive stable postbuckling responses occur. Orthotropy influences the buckling values and the extent to which the bending moment decreases after buckling. Material damage is observed to initiate in the vicinity of the nodal lines of the postbuckled deflection patterns. Numerical results indicate that the magnitudes of the shear stress resultants are greatest in these nodal regions. Failure of the internally pressurized cylinder is catastrophic.

  5. Electrostatics of Nanowire Radial p-n Heterojunctions

    NASA Astrophysics Data System (ADS)

    Borblik, Vitalii

    2018-04-01

    The electrostatics of a nanowire radial heterostructure p-n junction is considered theoretically. It is shown that when the radius of the core-shell interface decreases, depletion width of the core increases, but depletion width of the shell, on the contrary, decreases. This is the consequence of cylindrical symmetry of the structure. Thereby, the relative contribution from the constituent materials into performance characteristics of the devices, which use a heterostructure p-n junction, changes substantially. Values of the depletion widths in the heterostructure p-n junction prove to be intermediate between those in radial homostructure p-n junctions made of the constituent materials at the same doping levels. An analogous situation takes place for a barrier capacitance of the radial heterostructure p-n junction.

  6. Predictor-based multivariable closed-loop system identification of the EXTRAP T2R reversed field pinch external plasma response

    NASA Astrophysics Data System (ADS)

    Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan

    2011-08-01

    The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.

  7. Development of gas-pressure bonding process for air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Meiners, K. E.

    1972-01-01

    An investigation was conducted on the application of gas-pressure bonding to the joining of components for convectively cooled turbine blades and vanes. A processing procedure was established for joining the fins of Udimet 700 and TD NiCr sheet metal airfoil shells to cast B1900 struts without the use of internal support tooling. Alternative methods employing support tooling were investigated. Testing procedures were developed and employed to determine shear strengths and internal burst pressures of flat and cylindrical bonded finned shell configurations at room temperature and 1750 F. Strength values were determined parallel and transverse to the cooling fin direction. The effect of thermal cycles from 1750 F to room temperature on strength was also investigated.

  8. The Elasto-Plastic Stability of Plates

    NASA Technical Reports Server (NTRS)

    Ilyushin, A. A.

    1947-01-01

    This article explains results developed from the following research: 'The Stability of Plates and Shells beyond the Elastic Limit.' A significant improvement is found in the derivation of the relations between the stress factors and the strains resulting from the instability of plates and shells. In a strict analysis, the problem reduces to the solution of two simultaneous nonlinear partial differential equations of the fourth order in the deflection and stress function, and in the approximate analysis to a single linear equation of the Bryan type. Solutions are given for the special cases of a rectangular plate buckling into a cylindrical form, and of an arbitrarily shaped plate under uniform compression. These solutions indicate that the accuracy obtained by the approximate method is satisfactory.

  9. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  10. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  11. Aeroperformance and Acoustics of the Nozzle with Permeable Shell

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Blankson, I. M.; Chernyshev, S. A.; Chernyshev, S. A.

    1999-01-01

    Several simple experimental acoustic tests of a spraying system were conducted at the NASA Langley Research Center. These tests have shown appreciable jet noise reduction when an additional cylindrical permeable shell was employed at the nozzle exit. Based on these results, additional acoustic tests were conducted in the anechoic chamber AK-2 at the Central Aerohydrodynamics Institute (TsAGI, Moscow) in Russia. These tests examined the influence of permeable shells on the noise from a supersonic jet exhausting from a round nozzle designed for exit Mach number, M (sub e)=2.0, with conical and Screwdriver-shaped centerbodies. The results show significant acoustic benefits of permeable shell application especially for overexpanded jets by comparison with impermeable shell application. The noise reduction in the overall pressure level was obtained up to approximately 5-8%. Numerical simulations of a jet flow exhausting from a convergent-divergent nozzle designed for exit Mach number, M (sub e)=2.0, with permeable and impermeable shells were conducted at the NASA LaRC and Hampton University. Two numerical codes were used. The first is the NASA LaRC CFL3D code for accurate calculation of jet mean flow parameters on the basis of a full Navier-Stokes solver (NSE). The second is the numerical code based on Tam's method for turbulent mixing noise (TMN) calculation. Numerical and experimental results are in good qualitative agreement.

  12. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.

    2012-10-01

    Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  14. HOTCFGM-1D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Through-Thickness Functionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    1998-01-01

    The objective of this three-year project was to develop and deliver to NASA Lewis one-dimensional and two-dimensional higher-order theories, and related computer codes, for the analysis, optimization and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, blisk blades). To satisfy this objective, a quasi one-dimensional version of the higher-order theory, HOTCFGM-1D, and four computer codes based on this theory, for the analysis, design and optimization of cylindrical structural components functionally graded in the radial direction were developed. The theory is applicable to thin multi-phased composite shell/cylinders subjected to macroscopically axisymmetric thermomechanical and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial and circumferential directions, and arbitrarily distributed in the radial direction, thereby allowing functional grading of the internal reinforcement in this direction.

  15. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  16. The Influences of Lamination Angles on the Interior Noise Levels of an Aircraft

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    The feasibility of reducing the interior noise levels of an aircraft passenger cabin through optimization of the composite lay up of the fuselage is investigated. MSC/NASTRAN, a commercially available finite element code, is used to perform the dynamic analysis and subsequent optimization of the fuselage. The numerical calculation of sensitivity of acoustic pressure to lamination angle is verified using a simple thin, cylindrical shell with point force excitations as noise sources. The thin shell used represents a geometry similar to the fuselage and analytic solutions are available for the cylindrical thin shell equations of motion. Optimization of lamination angle for the reduction of interior noise is performed using a finite element model of an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship. Point forces simulate the structure borne noise produced by the engines and are applied to the fuselage at the wing mounting locations. These forces are the noise source for the optimization problem. The acoustic pressure response is reduced at a number of points in the fuselage and over a number of frequencies. The objective function is minimized with the constraint that it be larger than the maximum sound pressure level at the response points in the passenger cabin for all excitation frequencies in the range of interest. Results from the study of the fuselage model indicate that a reduction in interior noise levels is possible over a finite frequency range through optimal configuration of the lamination angles in the fuselage. Noise reductions of roughly 4 dB were attained. For frequencies outside the optimization range, the acoustic pressure response may increase after optimization. The effects of changing lamination angle on the overall structural integrity of the airframe are not considered in this study.

  17. NRC approves spent-fuel cask for general use: Who needs Yucca Mountain?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.

    1993-07-01

    The Nuclear Regulatory Commission (NRC) on April 7, 1993, added Pacific Sierra Nuclear Associates`s (PSNA`s) VSC-24 spent-fuel container to its list of approved storage casks. Unlike previously approved designs, however, the cask was made available for use by utilities without site-specific approval. The VSC-24 (ventilated storage cask) is a 130-ton, 16-foot high vertical storage container composed of a ventilated concrete cask (VCC) housing a steel multi-assembly sealed basket (MSB). A third component, a transfer cask (MTC), shields, supports, and protects the MSB during fuel loading and VCC loading operations. The VCC is a cylindrical reinforced-concrete cask 29 inches thick, withmore » a 1.75-inch-thick A 36 steel liner. The cask contains eight vents-four on the top and four on the bottom-to provide for MSB (and fuel rod) cooling. Its concrete shell provides protection against shearing and penetration by tornado projectiles, protects the MSB in the event of a drop or tipover, and is designed to withstand internal temperatures of 350 degrees Farenheit. The VCC is closed with a bolted-down cover of 0.75-inch-thick A 36 steel. The MSB, which provides the primary boundary for 24 spent fuel rods, is a cylindrical steel shell with a thick shield plug and steel cover plates welded at each end. The shell and covers are constructed from SA 516 Grade 70 pressure vessel steel. Fuel is housed in a basket fabricated from SA 516 Grade 70 sheet steel. Penetrations in the MSB`s structural and shield lids allow for vacuum drying and backfilling with helium after fuel loading. Although its manufacturer claims a design life of 50 years, the NRC has licensed the VSC-24 cask for 20 years.« less

  18. Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.

    There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.

  19. Tunable acoustic absorbers with periodical micro-perforations having varying pore shapes

    NASA Astrophysics Data System (ADS)

    Ren, Shuwei; Liu, Xuewei; Gong, Junqing; Tang, Yufan; Xin, Fengxian; Huang, Lixi; Lu, Tian Jian

    2017-11-01

    Circular pores with sub-millimeter diameters have been widely used to construct micro-perforated panels (MPPs), the acoustical performance of which can be predicted well using the Maa theory (MAA D.-Y., J. Acoust. Soc. Am., 104 (1998) 2861). We present a tunable MPP absorber with periodically arranged cylindrical pores, with their cross-sectional shapes systematically altered around the circle while maintaining their cross-sectional areas unchanged. Numerical analyses based on the viscous-thermal coupled acoustical equations are utilized to investigate the tunable acoustic performance of the proposed absorbers and to reveal the underlying physical mechanisms. We demonstrate that pore morphology significantly affects the sound absorbption of MPPs by modifying the velocity field (and hence viscous dissipation) in the pores. Pore shapes featured as meso-scale circular pores accompanied with micro-scale bulges along the boundaries can lead to perfect sound absorption at relatively low frequencies. This work not only enriches the classical Maa theory on MPPs having circular perforations, but it also opens a new avenue for designing subwavelength acoustic metamaterials of superior sound absorption in target frequency ranges.

  20. Pattern Transitions in a Soft Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel

    2018-05-01

    Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.

Top