Development of an orthotropic hole element
NASA Technical Reports Server (NTRS)
Smith, C. V.; Markham, J. W.; Kelley, J. W.; Kathiresan, K.
1981-01-01
A finite element was developed which adequately represents the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This was achieved with a complementary virtual work formulation of the stiffness and stress matrices for a square element with center circular hole. The assumed stress state provides zero shearing stress on the hole boundary, so the element is suitable for problems involving load transfer without friction. The element has been implemented in the NASTRAN computer program, and sample problem results are presented.
The axisymmetric elasticity problem for a laminated plate containing a circular hole
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
The elasticity problem for a laminated thick plate which consists of two bonded dissimilar layers and which contains a circular hole is considered. The problem is formulated for arbitrary axisymmetric tractions on the hole surface by using the Love strain function. Through the expansion of the boundary conditions into Fourier series the problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Of particular interest in the problem are the stresses along the interface as they relate to the question of delamination failure of the composite plate. These stresses are calculated and are observed to become unbounded at the hole boundary. An approximate treatment of the singular behavior of the stress state is presented and the stress intensity factors are calculated.
Stress and strain concentration at a circular hole in an infinite plate
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z
1950-01-01
The theory of elasticity shows that the maximum stress at a circular hole in an infinite plate in tension is three times the applied stress when the material remains elastic. The effect of plasticity of the material is to lower this ratio. This paper considers the theoretical problem of the stress distribution in an infinitely large sheet with a circular hole for the general case where the material may have any stress-strain curve. The plate is assumed to be under uniform tension at a large distance from the hole. The material is taken to be isotropic and incompressible. (author)
SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.M.; Fowler, J.K.
The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)
Three-dimensional elasticity solution of an infinite plate with a circular hole
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The elasticity problem for a thick plate with a circular hole is formulated in a systematic fashion by using the z-component of the Galerkin vector and that of Muki's harmonic vector function. The problem was originally solved by Alblas. The reasons for reconsidering it are to develop a technique which may be used in solving the elasticity problem for a multilayered plate and to verify and extend the results given by Alblas. The problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Various stress components are tabulated as functions of a/h, z/h, r/a, and nu, a and 2h being the radius of the hole and the plate thickness and nu, the Poisson's ratio. The significant effect of the Poisson's ratio on the behavior and the magnitude of the stresses is discussed.
Stress-intensity factors for cracks emanating from the loaded fastener hole
NASA Technical Reports Server (NTRS)
Shivakumar, V.; Hsu, Y. C.
1977-01-01
Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.
1981-09-01
brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t
Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole
NASA Astrophysics Data System (ADS)
Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.
2017-11-01
Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.
Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu
2017-03-21
Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.
Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui
2016-01-01
Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765
Advanced hole patterning technology using soft spacer materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Jong Keun; Hustad, Phillip D.; Aqad, Emad; Valeri, David; Wagner, Mike D.; Li, Mingqi
2017-03-01
A continuing goal in integrated circuit industry is to increase density of features within patterned masks. One pathway being used by the device manufacturers for patterning beyond the 80nm pitch limitation of 193 immersion lithography is the self-aligned spacer double patterning (SADP). Two orthogonal line space patterns with subsequent SADP can be used for contact holes multiplication. However, a combination of two immersion exposures, two spacer deposition processes, and two etch processes to reach the desired dimensions makes this process expensive and complicated. One alternative technique for contact hole multiplication is the use of an array of pillar patterns. Pillars, imaged with 193 immersion photolithography, can be uniformly deposited with spacer materials until a hole is formed in the center of 4 pillars. Selective removal of the pillar core gives a reversal of phases, a contact hole where there was once a pillar. However, the highly conformal nature of conventional spacer materials causes a problem with this application. The new holes, formed between 4 pillars, by this method have a tendency to be imperfect and not circular. To improve the contact hole circularity, this paper presents the use of both conventional spacer material and soft spacer materials. Application of soft spacer materials can be achieved by an existing coating track without additional cost burden to the device manufacturers.
Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging
NASA Astrophysics Data System (ADS)
Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun
2014-11-01
With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.
Visualization of vortex flow field around a flat plate with noncircular hole
NASA Astrophysics Data System (ADS)
Manigandan, S.; Gunasekar, P.; Sruthisree, N.; Aich, Kaushali; Sathya, K.; Selvan, Alice; Nithya, S.
2018-02-01
In this paper we study the numerical three dimensional simulation of laminar incompressible viscous flow over a flat plate with circular and noncircular hole. The hole is located at the center of the plate. The aim of this paper is to visualize the steady and unsteady vortex dynamics using immersed boundary method. This method takes three variables, viz. velocity, vortices and the pressure to solve the flow field over a specimen. The plate considered is of 0.01 m length and the air is used as the flow medium and hole is made of same area. The analysis are done both circular hole plate and non-circular hole to examine the difference in the force and wake at the trailing part of the flat plate. In this study we measure the magnitude of vortices behind a flat plate and we also study the physical backdrop of how vortex strength is depend on the inner profile of the body. From the results it is evident that the reverse flow is stronger in non circular profile however the strength of vortex is higher in circular holed plate. It’s also found that velocity is inversely proportional to strength of vortices in flat plate with noncircular hole.
Bourgeois, Peter M.; Reger, Robert J.
1996-01-01
A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.
Bourgeois, P.M.; Reger, R.J.
1996-02-20
A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.
2015-07-01
circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the
Failure mechanisms of uni-ply composite plates with a circular hole under static compressive loading
NASA Technical Reports Server (NTRS)
Khamseh, A. R.; Waas, A. M.
1992-01-01
The objective of the study was to identify and study the failure mechanisms associated with compressive-loaded uniply graphite/epoxy square plates with a central circular hole. It is found that the type of compressive failure depends on the hole size. For large holes with the diameter/width ratio exceeding 0.062, fiber buckling/kinking initiated at the hole is found to be the dominant failure mechanism. In plates with smaller hole sizes, failure initiates away from the hole edge or complete global failure occurs. Critical buckle wavelengths at failure are presented as a function of the normalized hole diameter.
Off-equatorial circular orbits in magnetic fields of compact objects
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Kovář, Jiří; Karas, Vladimír
2009-04-01
We present results of investigation of the off-equatorial circular orbits existence in the vicinity of neutron stars, Schwarzschild black holes with plasma ring, and near Kerr-Newman black holes and naked singularities.
An exact solution for a rotating black hole in modified gravity
NASA Astrophysics Data System (ADS)
Filippini, Francesco; Tasinato, Gianmassimo
2018-01-01
Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor theories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
NASA Astrophysics Data System (ADS)
Wang, Zuowei; Biwa, Shiro
2018-03-01
A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.
NASA Astrophysics Data System (ADS)
Hadi, Bambang K.; Rofa, Bima K.
2018-04-01
The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.
Microchannel cross load array with dense parallel input
Swierkowski, Stefan P.
2004-04-06
An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.
Bifurcation from stable holes to replicating holes in vibrated dense suspensions.
Ebata, H; Sano, M
2013-11-01
In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.
Compression failure mechanisms of uni-ply composite plates with a circular cutout
NASA Technical Reports Server (NTRS)
Khamseh, A. R.; Waas, A. M.
1992-01-01
The effect of circular-hole size on the failure mode of uniply graphite-epoxy composite plates is investigated experimentally and analytically for uniaxial compressive loading. The test specimens are sandwiched between polyetherimide plastic for nondestructive evaluations of the uniply failure mechanisms associated with a range of hole sizes. Finite-element modeling based on classical lamination theory is conducted for the corresponding materials and geometries to reproduce the experimental results analytically. The type of compressive failure is found to be a function of hole size, with fiber buckling/kinking at the hole being the dominant failure mechanism for hole diam/plate width ratios exceeding 0.062. The results of the finite-element analysis supported the experimental data for these failure mechanisms and for those corresponding to smaller hole sizes.
Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages
NASA Technical Reports Server (NTRS)
Dulikravich, George S.
1992-01-01
During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.
Post-Newtonian Circular Restricted 3-Body Problem: Schwarzschild primaries
NASA Astrophysics Data System (ADS)
Dubeibe, F. L.; Lora-Clavijo, F. D.; González, G. A.
2017-07-01
The restricted three-body problem (RTBP) has been extensively studied to investigate the stability of the solar system, extra-solar subsystems, asteroid capture, and the dynamics of two massive black holes orbited by a sun. In the present work, we study the stability of the planar circular restricted three-body problem in the context of post-Newtonian approximations. First of all, we review the results obtained from the post-Newtonian equations of motion calculated in the framework of the Einstein-Infeld-Hoffmann formalism (EIH). Therefore, using the Fodor-Hoenselers-Perjes formalism (FHP), we have performed an expansion of the gravitational potential for two primaries, deriving a new system of equations of motion, which unlike the EIH-approach, preserves the Jacobian integral of motion. Additionally, we have obtained approximate expressions for the Lagrange points in terms of a mass parameter μ, where it is found that the deviations from the classical regime are larger for the FHP than for the EIH equations.
A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow
NASA Astrophysics Data System (ADS)
Yang, Dong; Morgans, Aimee S.
2016-12-01
The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated plates, screens, liners and many other engineering applications. A widely used analytical model [M.S. Howe. "Onthe theory of unsteady high Reynolds number flow through a circular aperture", Proc. of the Royal Soc. A. 366, 1725 (1979), 205-223] which assumes an infinitesimally short hole was recently shown to be insufficient for predicting the impedance of holes with a finite length. In the present work, an analytical model based on Green's function method is developed to take the hole length into consideration for "short" holes. The importance of capturing the modified vortex noise accurately is shown. The vortices shed at the hole inlet edge are convected to the hole outlet and further downstream to form a vortex sheet. This couples with the acoustic waves and this coupling has the potential to generate as well as absorb acoustic energy in the low frequency region. The impedance predicted by this model shows the importance of capturing the path of the shed vortex. When the vortex path is captured accurately, the impedance predictions agree well with previous experimental and CFD results, for example predicting the potential for generation of acoustic energy at higher frequencies. For "long" holes, a simplified model which combines Howe's model with plane acoustic waves within the hole is developed. It is shown that the most important effect in this case is the acoustic non-compactness of the hole.
More on accreting black hole spacetime in equatorial plane
NASA Astrophysics Data System (ADS)
Salahshoor, K.; Nozari, K.; Khesali, A. R.
2017-02-01
Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size
Wang, Qiang; Zhang, Wei; Jiang, Shan
2015-01-01
Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Investigation of air stream from combustor-liner air entry holes, 3
NASA Technical Reports Server (NTRS)
Aiba, T.; Nakano, T.
1979-01-01
Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.
2018-07-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Simplified computational methods for elastic and elastic-plastic fracture problems
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
Tepic, Jovan; Kostelac, Milan
2013-01-01
The problem of elastic stability of plates with square, rectangular, and circular holes as well as slotted holes was discussed. The existence of the hole reduces the deformation energy of the plate and it affects the redistribution of stress flow in comparison to a uniform plate which causes a change of the external operation of compressive forces. The distribution of compressive force is defined as the approximate model of plane state of stress. The significant parameters of elastic stability compared to the uniform plate, including the dominant role of the shape, size, and orientation of the hole were identified. Comparative analysis of the shape of the hole was carried out on the data from the literature, which are based on different approaches and methods. Qualitative and quantitative accordance of the results has been found out and it verifies exposed methodology as applicable in the study of the phenomenon of elastic stability. Sensitivity factor is defined that is proportional to the reciprocal value of the buckling coefficient and it is a measure of sensitivity of plate to the existence of the hole. Mechanism of loss of stability is interpreted through the absorption of the external operation, induced by the shape of the hole. PMID:24453821
Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at Room and Elevated Temperature
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Sharpe, William N., Jr.; Beheim, Glenn M.; Evans, Laura J.; Jadaan, Osama M.
2007-01-01
Three shapes of tensile specimens were tested--curved with a very low stress concentration factor and straight with either a circular hole or an elliptical hole. The nominal thickness was 125 micron with a net section 100 micron wide; the overall length of these microspecimens was 3.1 mm. They were fabricated by an improved version of deep reactive ion etching, which produced specimens with smooth sidewalls and cross-sections having a slightly trapezoidal shape that was exaggerated inside the holes. The novel test setup used a vertical load train extending into a resistance furnace. The specimens had wedge-shaped ends which fit into ceramic grips. The fixed grip was mounted on a ceramic post, and the movable grip was connected to a load cell and actuator outside the furnace with a ceramic-encased nichrome wire. The same arrangement was used for tests at 24 and at 1000 C. The strengths of the curved specimens for two batches of material (made with slightly different processes) were 0.66+/-0.12 GPa and 0.45+/-0.20 GPa respectively at 24 C with identical values at 1000 C. The fracture strengths of the circular-hole and elliptical-hole specimens (computed from the stress concentration factors and measured loads at failure) were approximately 1.2 GPa with slight decreases at the higher temperature. Fractographic examinations showed failures initiating on the surface--primarily at corners. Weibull predictions of fracture strengths for the hole specimens based on the properties of the curved specimens were reasonably effective for the circular holes, but not for the elliptical holes.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1999-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Martin, Mikulas M., Jr.; Sumpter, Rod
2000-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1997-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
Innermost stable circular orbit of spinning particle in charged spinning black hole background
NASA Astrophysics Data System (ADS)
Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao
2018-04-01
In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.
Jannes, G; Piquet, R; Maïssa, P; Mathis, C; Rousseaux, G
2011-05-01
We provide an experimental demonstration that the circular hydraulic jump represents a hydrodynamic white hole or gravitational fountain (the time reverse of a black hole) by measuring the angle of the Mach cone created by an object in the "supersonic" inner flow region. We emphasize the general character of this gravitational analogy by showing theoretically that the white hole horizon constitutes a stationary and spatial saddle-node bifurcation within dynamical-systems theory. We also demonstrate that the inner region has a "superluminal" dispersion relation, that is, that the group velocity of the surface waves increases with frequency, and discuss some possible consequences with respect to the robustness of Hawking radiation. Finally, we point out that our experiment shows a concrete example of a possible "trans-Planckian distortion" of black or white holes. © 2011 American Physical Society
Natural circular dichroism in non-resonant x-ray emission
NASA Astrophysics Data System (ADS)
Vahtras, Olav; Ågren, Hans; Carravetta, Vincenzo
1997-03-01
The possibility of observing natural circular dichroism in non-resonant x-ray emission spectroscopy is investigated by means of simulations of the chiral molecules twisted ethylene, propylene oxide and trans-1, 2-dimethylcyclopropane, in a two-step model and at the SCF level, with or without relaxation of the core-hole states. We observe both a chemical and an element dependence of the phenomenon and also an effect of electron relaxation. However, the latter is much less crucial than for circular dichroism in x-ray absorption. The calculations indicate that, at least for the decay of the carbon core-hole states, the effect could be detectable with the present or soon to be available experimental equipment.
The compressive failure of graphite/epoxy plates with circular holes
NASA Technical Reports Server (NTRS)
Knauss, J. F.; Starnes, J. H., Jr.; Henneke, E. G., II
1978-01-01
The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations.
2015-08-01
primarily concerned with the results of a three-dimensional elasto– plastic finite element contact analysis of a typical aluminium fatigue test coupon...determine the nonlinear three-dimensional elasto–plastic contact stress distributions around a circular hole in an aluminium plate that is fitted...Australian Air Force (RAAF) airframes. An aluminium -alloy fatigue test coupon (see Figure 1) has been designed and applied in support of the validation of
NASA Astrophysics Data System (ADS)
Wang, Fengwen; Jensen, Jakob S.; Sigmund, Ole
2012-10-01
Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to ng = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed.
NASA Technical Reports Server (NTRS)
Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.
2018-04-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Modeling of viscous damping of perforated planar microstructures. Applications in acoustics
NASA Astrophysics Data System (ADS)
Homentcovschi, Dorel; Miles, Ronald N.
2004-11-01
The paper contains an analysis of the viscous damping in perforated planar microstructures that often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the holes' resistances. The optimum number of holes is determined which minimizes the total viscous damping for a given percentage of open area. Graphs and formulas are provided for designing these devices. In the case the open area is higher than 15% the numerical results show that the influence of the holes' geometry (circular or oval) has a slight influence on viscous damping. As the planar structures containing oval holes assure a better protection against dust particles and water drops, they should be preferred in designing protective surfaces for microphones working in a natural environment. The obtained results also can be applied in designing other MEMS devices that use capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable microoptical interferometers. .
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.
2005-01-01
Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.
Particle motion around magnetized black holes: Preston-Poisson space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplya, R. A.
We analyze the motion of massless and massive particles around black holes immersed in an asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides the magnetic field. The space-time is described by the Preston-Poisson metric, which is the generalization of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure. The Hamilton-Jacobi equations allow the separation of variables in the equatorial plane. The presence of a tidal force from the surroundings considerably changes the parameters of the test particle motion: it increases the radius of circular orbits of particles and increases the bindingmore » energy of massive particles going from a given circular orbit to the innermost stable orbit near the black hole. In addition, it increases the distance of the minimal approach, time delay, and bending angle for a ray of light propagating near the black hole.« less
The initial value problem as it relates to numerical relativity.
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
The initial value problem as it relates to numerical relativity
NASA Astrophysics Data System (ADS)
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs
NASA Astrophysics Data System (ADS)
Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi
2016-10-01
Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).
Experimental Analysis of Spatial Learning in Goldfish
ERIC Educational Resources Information Center
Saito, Kotaro; Watanabe, Shigeru
2005-01-01
The present study examined spatial learning in goldfish using a new apparatus that was an open-field circular pool with latticed holes. The subjects were motivated to reach the baited hole. We examined gustatory cues, intramaze cues, the possibility that the subject could see the food, etc. In Experiment 1, the position of the baited hole was…
Are eikonal quasinormal modes linked to the unstable circular null geodesics?
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Stuchlík, Z.
2017-08-01
In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of the frequency and instability timescale of the circular null geodesics respectively. We shall consider asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both phenomena shows that the expected link between the null geodesics and quasinormal modes is violated in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and here we formulate its actual limits.
The structure and stability of orbits in Hoag-like ring systems
NASA Astrophysics Data System (ADS)
Bannikova, Elena Yu
2018-05-01
Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.
THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Fabian; Rezzolla, Luciano; Barausse, Enrico
2016-07-10
We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formulamore » is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.« less
C. B. Smith
1944-01-01
This is a mathematical analysis of the stress distribution existing near a hole in a wood or plywood plate subjected to tension, as, for example, near holes in the tension flanges of wood box beams. It is assumed that the strains are small and remain within the proportional limit. In this analysis a large, rectangular, orthotropic plate with a small elliptic hole at...
NASA Astrophysics Data System (ADS)
Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea
2018-04-01
Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.
Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2011-04-15
We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.
Kerley, P.L.
1959-01-01
A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.
NASA Astrophysics Data System (ADS)
Kuzmenko, Alexey B.
We measure broadband far-infrared magneto-optical conductivity spectra of pure bismuth separately for left- and right-handed circular polarizations in magnetic fields up to 7 T that allows us to obtain the magnetic circular dichroism (MCD). Thanks to a high spectral resolution we distinguish the Landau level (LL) transitions in the Dirac-like electron and the parabolic hole bands. The hole transitions exhibit a full (100%) MCD as is indeed expected for a circular cyclotron orbit. However, the MCD for electron-pocket transitions is reduced to only 13 +/-1%. This strong suppression can be attributed to the huge effective-mass anisotropy ( 200) in the electron pockets and can be generally interpreted as a signature of the mismatch between the spatial metric experienced by the photons and the electrons. An important consequence of this observation is that the magneto-absorption in bismuth is highly valley sensitive, which paves the way to future valleytronic applications in materials with a strong effective-mass anisotropy.
Gravitational Waves From the Kerr/CFT Correspondence
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas
Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.
Moment distributions around holes in symmetric composite laminates subjected to bending moments
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Shuart, M. J.
1989-01-01
An analytical investigation of the effects of holes on the moment distribution of symmetric composite laminates subjected to bending moments is described. A general, closed-form solution for the moment distribution of an infinite anisotropic plate is derived, and this solution is used to determine stress distributions both on the hole boundary and throughout the plate. Results are presented for several composite laminates that have holes and are subjected to either pure bending or cylindrical bending. Laminates with a circular hole or with an elliptical hole are studied. Laminate moment distributions are discussed, and ply stresses are described.
Layup Configuration Effect on Notch Residual Strength in Composite Laminates
Santhanakrishnan Balakrishnan, Venkateswaran; Seidlitz, Holger
2018-01-01
The current trend shows an increasing demand for composites due to their high stiffness to weight ratio and the recent progress in manufacturing and cost reduction of composites. To combine high strength and stiffness in a cost-effective way, composites are often joined with steel or aluminum. However, joining of thermoset composite materials is challenging because circular holes are often used to join them with their metal counterparts. These design based circular holes induce high stress concentration around the hole. The purpose of this paper is to focus on layup configuration and its impact on notch stress distribution. To ensure high quality and uniformity, the holes were machined by a 5 kW continuous wave (cw) CO2 laser. The stress distribution was evaluated and compared by using finite element analysis and Lekhnitskii’s equations. For further understanding, the notch strength of the laminates was compared and strain distributions were analyzed using the digital image correlation technique. PMID:29461492
Particle motion and Penrose processes around rotating regular black hole
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon
2016-07-01
The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.
NASA Astrophysics Data System (ADS)
Poisson, Eric
1996-11-01
Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ, the mass of the orbiting star, M, the mass of the central black hole, and J, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. For concreteness we consider a typical system consisting of a 10Msolar black hole orbiting a nonrotating black hole of mass 106Msolar, whose gravitational waves are monitored during an entire year before the orbiting mass reaches the innermost stable circular orbit. Defining χ≡cJ/GM2 and η≡μ/M, we find Δχ~=5×10-2/ρ, Δη/η~=6×10-2/ρ, and ΔM/M~=2×10-3/ρ. Here, ρ denotes the signal-to-noise ratio associated with the signal and its measurement. That these uncertainties are all much smaller than 1/ρ, the signal-to-noise ratio level, is due to the large number of wave cycles received by the detector in the course of one year. These are the main results of this paper. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.
Feng, Daolun; Zhao, Jie; Liu, Tian
2016-01-01
The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, X. L.; Meng, Q. X.; Yuan, C. X.
The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers aremore » particularly desirable for various potential applications including the solar energy absorber.« less
Dynamic laser piercing of thick section metals
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.
2018-01-01
Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.
Pulsed plasma thruster by applied a high current hollow cathode discharge
NASA Astrophysics Data System (ADS)
Watanabe, Masayuki; N. Nogera Team; T. Kamada Team
2013-09-01
The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.
Bed Net Durability Assessments: Exploring a Composite Measure of Net Damage
Vanden Eng, Jodi L.; Chan, Adeline; Abílio, Ana Paula; Wolkon, Adam; Ponce de Leon, Gabriel; Gimnig, John; Morgan, Juliette
2015-01-01
Background The durability of Long Lasting Insecticidal Nets (LLINs) in field conditions is of great importance for malaria prevention and control efforts; however, the physical integrity of the net fabric is not well understood making it challenging to determine overall effectiveness of nets as they age. The 2011 World Health Organization Pesticide Evaluation Scheme (WHOPES) guidelines provide a simple, standardized method using a proportional hole index (PHI) for assessing net damage with the intent to provide national malaria control programs with guidelines to assess the useful life of LLINS and estimate the rate of replacement. Methods We evaluated the utility of the PHI measure using 409 LLINs collected over three years in Nampula Province, Mozambique following a mass distribution campaign in 2008. For each LLIN the diameter and distance from the bottom of the net were recorded for every hole. Holes were classified into four size categories and a PHI was calculated following WHOPES guidelines. We investigate how the size, shape, and location of holes influence the PHI. The areas of the WHOPES defined categories were compared to circular and elliptical areas based on approximate shape and actual measured axes of each hole and the PHI was compared to cumulative damaged surface area of the LLIN. Results The damaged area of small, medium, large, and extra-large holes was overestimated using the WHOPES categories compared to elliptical areas using the actual measured axes. Similar results were found when comparing to circular areas except for extra-large holes which were underestimated. (Wilcoxon signed rank test of differences p< 0.0001 for all sizes). Approximating holes as circular overestimated hole surface area by 1.5 to 2 times or more. There was a significant difference in the mean number of holes < 0.5 cm by brand and there were more holes of all sizes on the bottom of nets than the top. For a range of hypothetical PHI thresholds used to designate a “failed LLIN”, roughly 75 to 80% of failed LLINs were detected by considering large and extra-large holes alone, but sensitivity varied by brand. Conclusions Future studies may refine the PHI to better approximate overall damaged surface area. Furthermore, research is needed to identify whether or not appropriate PHI thresholds can be used to deem a net no longer protective. Once a cutoff is selected, simpler methods of determining the effective lifespan of LLINs can help guide replacement strategies for malaria control programs. PMID:26047494
Bed Net Durability Assessments: Exploring a Composite Measure of Net Damage.
Vanden Eng, Jodi L; Chan, Adeline; Abílio, Ana Paula; Wolkon, Adam; Ponce de Leon, Gabriel; Gimnig, John; Morgan, Juliette
2015-01-01
The durability of Long Lasting Insecticidal Nets (LLINs) in field conditions is of great importance for malaria prevention and control efforts; however, the physical integrity of the net fabric is not well understood making it challenging to determine overall effectiveness of nets as they age. The 2011 World Health Organization Pesticide Evaluation Scheme (WHOPES) guidelines provide a simple, standardized method using a proportional hole index (PHI) for assessing net damage with the intent to provide national malaria control programs with guidelines to assess the useful life of LLINS and estimate the rate of replacement. We evaluated the utility of the PHI measure using 409 LLINs collected over three years in Nampula Province, Mozambique following a mass distribution campaign in 2008. For each LLIN the diameter and distance from the bottom of the net were recorded for every hole. Holes were classified into four size categories and a PHI was calculated following WHOPES guidelines. We investigate how the size, shape, and location of holes influence the PHI. The areas of the WHOPES defined categories were compared to circular and elliptical areas based on approximate shape and actual measured axes of each hole and the PHI was compared to cumulative damaged surface area of the LLIN. The damaged area of small, medium, large, and extra-large holes was overestimated using the WHOPES categories compared to elliptical areas using the actual measured axes. Similar results were found when comparing to circular areas except for extra-large holes which were underestimated. (Wilcoxon signed rank test of differences p< 0.0001 for all sizes). Approximating holes as circular overestimated hole surface area by 1.5 to 2 times or more. There was a significant difference in the mean number of holes < 0.5 cm by brand and there were more holes of all sizes on the bottom of nets than the top. For a range of hypothetical PHI thresholds used to designate a "failed LLIN", roughly 75 to 80% of failed LLINs were detected by considering large and extra-large holes alone, but sensitivity varied by brand. Future studies may refine the PHI to better approximate overall damaged surface area. Furthermore, research is needed to identify whether or not appropriate PHI thresholds can be used to deem a net no longer protective. Once a cutoff is selected, simpler methods of determining the effective lifespan of LLINs can help guide replacement strategies for malaria control programs.
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Buskirk, Paul D. (Inventor)
2006-01-01
An orifice plate for use in a conduit through which fluid flows is defined by a central circular region having a radius R, and a ring-shaped region surrounding the central circular region. The ring-shaped region has holes formed therethrough with those holes centered at each radius R thereof satisfying a relationship A(sub R)=al(X(sub R)V(sub R)(sup b)) where A(sub R) is a sum of areas of those holes having centers at radius R, X(sub R) is a flow coefficient at radius R, V(sub R) is a velocity of the fluid that is to flow through the conduit at radius R, b is a constant selected to make at least one process variable (associated with the fluid that is to flow through the conduit) approximately equal at each radius R, and a is a constant that is equal to (X(sub R)A(sub R)V(sub R)(sup b)) at each radius R.
Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes
NASA Technical Reports Server (NTRS)
Knight, N. F., Jr.; Starnes, J. H., Jr.
1984-01-01
The results of an experimental and analytical study of the effects of circular holes on the postbuckling behavior of graphite-epoxy cylindrical panels loaded in axial compression are presented. The STAGSC-1 general shell analysis computer code is used to determine the buckling and postbuckling response of the panels. The loaded, curved ends of the specimens were clamped by fixtures and the unloaded, straight edges were simply supported by knife-edge restraints. The panels are loaded by uniform end shortening to several times the end shortening at buckling. The unstable equilibrium path of the postbuckling response is obtained analytically by using a method based on controlling an equilibrium-path-arc-length parameter instead of the traditional load parameter. The effects of hole diameter, panel radius, and panel thickness on postbuckling response are considered in the study. Experimental results are compared with the analytical results and the failure characteristics of the graphite-epoxy panels are described.
Tensile Fracture of Ductile Materials. M.S. Thesis
NASA Technical Reports Server (NTRS)
Pai, D. M.
1984-01-01
For brittle materials, circular voids play an important role relative to fracture, intensifing both tensile and compressive stresses. A maximum intensified tensile stress failure criterion applies quite well to brittle materials. An attempt was made to explore the possibility of extending the approach to the tensile fracture of ductile materials. The three dimensional voids that exist in reality are modelled by circular holes in sheet metal. Mathematical relationships are sought between the shape and size of the hole, after the material is plastically deformed, and the amount of deformation induced. Then, the effect of hole shape, size and orientation on the mechanical properties is considered experimentally. The presence of the voids does not affect the ultimate tensile strength of the ductile materials because plastic flow wipes out the stress intensification caused by them. However, the shape and orientation of the defect is found to play an important role in affecting the strain at fracture.
NASA Astrophysics Data System (ADS)
Nagar, Alessandro; Akcay, Sarp
2012-02-01
We propose, within the effective-one-body approach, a new, resummed analytical representation of the gravitational-wave energy flux absorbed by a system of two circularized (nonspinning) black holes. This expression is such that it is well-behaved in the strong-field, fast-motion regime, notably up to the effective-one-body-defined last unstable orbit. Building conceptually upon the procedure adopted to resum the multipolar asymptotic energy flux, we introduce a multiplicative decomposition of the multipolar absorbed flux made by three factors: (i) the leading-order contribution, (ii) an “effective source” and (iii) a new residual amplitude correction (ρ˜ℓmH)2ℓ. In the test-mass limit, we use a frequency-domain perturbative approach to accurately compute numerically the horizon-absorbed fluxes along a sequence of stable and unstable circular orbits, and we extract from them the functions ρ˜ℓmH. These quantities are then fitted via rational functions. The resulting analytically represented test-mass knowledge is then suitably hybridized with lower-order analytical information that is valid for any mass ratio. This yields a resummed representation of the absorbed flux for a generic, circularized, nonspinning black-hole binary. Our result adds new information to the state-of-the-art calculation of the absorbed flux at fractional 5 post-Newtonian order [S. Taylor and E. Poisson, Phys. Rev. D 78, 084016 (2008)], which is recovered in the weak-field limit approximation by construction.
NASA Technical Reports Server (NTRS)
Hyer, Michael W.; Charette, Robert F.
1988-01-01
Further studies to determine the potential for using a curvilinear fiber format in the design of composite laminates are reported. The curvilinear format is in contrast to the current practice of having the fibers aligned parallel to each other and in a straight line. The problem of a plate with a central circular hole is used as a candidate problem for this study. The study concludes that for inplane tensile loading the curvilinear format is superior. The limited results to date on compression buckling loads indicate that the curvilinear designs are poorer in resistant buckling. However, for the curvilinear design of interest, the reduction in buckling load is minimal and so overall there is a gain in considering the curvilinear design.
Wojcik, Thaddeus A.
1978-01-01
Two abutting members are locked together by reaming a hole entirely through one member and at least partly through the other, machining a circular groove in each through hole just below the surface of the member, press fitting a dowel pin having a thin wall extension on at least one end thereof into the hole in both members, a thin wall extension extending into each through hole, crimping or snapping the thin wall extension into the grooves to positively lock the dowel pin in place and, if necessary, tack welding the end of the thin-wall extension in place.
Plunge waveforms from inspiralling binary black holes.
Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R
2001-09-17
We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.
Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2015-12-01
In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.
NASA Astrophysics Data System (ADS)
Baek, Tae Hyun
Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.
A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity
NASA Technical Reports Server (NTRS)
Yau, J. F.; Wang, S. S.; Corten, H. T.
1980-01-01
A simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems is presented. The analysis is formulated on the basis of conservation laws of elasticity and of fundamental relationships in fracture mechanics. The problem is reduced to the determination of mixed-mode stress-intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. One of the salient features of the present analysis is that the stress-intensity solutions can be determined directly by using information extracted in the far field. Several examples with solutions available in the literature are solved to examine the accuracy and other characteristics of the current approach. This method is demonstrated to be superior in its numerical simplicity and computational efficiency to other approaches. Solutions of more complicated and practical engineering fracture problems dealing with the crack emanating from a circular hole are presented also to illustrate the capacity of this method
A procedure for automating CFD simulations of an inlet-bleed problem
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1995-01-01
A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.
ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature
NASA Astrophysics Data System (ADS)
Zhou, Xinbang; Gong, Zhenfeng
2018-03-01
In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981
NASA Technical Reports Server (NTRS)
Kafie, Kurosh
1991-01-01
An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.
Veijola, Timo; Råback, Peter
2007-01-01
We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi
We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBHmore » and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.« less
ERIC Educational Resources Information Center
Wagon, Stan; Cox, Barry
2009-01-01
A technique discovered in 1939 can be used to build a device that is driven by standard circular motion (as in a drill press) and drills exact square holes. This device is quite different from the classic design by Watts, which uses a Reuleaux triangle and drills a hole that is almost, but not exactly, square. We describe the device in detail,…
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
Most people have probably heard the tale about the Moon being made out of Swiss cheese because, on Earth, the Moon looks like it is full of holes. Those holes are actually impact craters, circular depressions that formed when objects, such as rocks that orbit the Sun, smashed into the surface of the Moon. The activity described in this article,…
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
NASA Astrophysics Data System (ADS)
Khatri, Chandra B.; Sharma, Satish C.
2018-02-01
Textured surface in journal bearings is becoming an important area of investigation during the last few years. Surface textures have the shapes of micro-dimple with a small diameter and depth having order of magnitude of bearing clearance. This paper presents the influence of couple stress lubricant on the circular and non-circular hole-entry hybrid journal bearing system and reports the comparative study between the textured and non-textured circular/non-circular hybrid journal bearing system. The governing Reynolds equation has been modified for the couple stress lubricant flow in the clearance of bearing and journal. The FEM technique has been applied to solve the modified Reynolds equation together with restrictor flow equation. The numerically simulated results indicate that the influence of couple stress lubricant is significantly more in textured journal bearing than that of non-textured journal bearing. Further, it has been observed that the textured two-lobe (δ = 1.1) hybrid journal bearing lubricated with couple stress lubricant provides larger values of fluid film stiffness coefficients and stability threshold speed against other bearings studied in the present paper.
High precision and high aspect ratio laser drilling: challenges and solutions
NASA Astrophysics Data System (ADS)
Uchtmann, Hermann; He, Chao; Gillner, Arnold
2016-03-01
Laser drilling is a very versatile tool to produce high accuracy bores in small and large geometries using different technologies. In large and deep hole drilling laser drilling can be found in drilling cooling holes into turbomachinery components such as turbine blades. In micro drilling, the technology is used for the generation of nozzles and filters. However, especially in macro drilling, the process often causes microstructure changes and induces defects such as recast layers and cracks. The defects are caused by the melt dominated drilling process by using pulse durations in the range of some 100 μm up to a few ms. A solution of this problem is the use of ultrashort pulsed laser radiation with pulse durations in the range of some 100 fs up to a few ps, however with the disadvantage of long drilling times. Thus, the aim of this work is to combine the productive process by using ms pulsed fiber laser radiation with subsequent ablation of existing recast layers at the hole wall by using ultrashort pulsed laser radiation. By using fast scanning techniques the recast layer can be avoided almost completely. With a similar technology also very small hole can be produced. Using a rotating dove prism a circular oscillation of the laser spots is performed and holes are drilled at intervals in 1 mm thick stainless steel (1.4301) by ultra-short laser pulses of 7 ps at 515 nm. The formation of hole and the behavior of energy deposition differ from other drilling strategies due to the helical revolution. The temporal evolution of the hole shape is analyzed by means of SEM techniques from which three drilling phases can be distinguished.
NASA Astrophysics Data System (ADS)
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico
2017-11-01
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
NASA Technical Reports Server (NTRS)
Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.
1988-01-01
A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method.
NASA Astrophysics Data System (ADS)
Rodríguez, J. F.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have used the perturbations of the exact solutions of the Einstein equations to estimate the relativistic wave emission of a test particle orbiting around a black hole. We show how the hamiltonian equations of motion of a test particle augmented with the radiation-reaction force can establish a priori constraints on the possible phenomena occurring in the merger of compact objects. The dynamical evolution consists of a helicoidal sequence of quasi-circular orbits, induced by the radiation-reaction and the background spacetime. Near the innermost stable circular orbit the evolution is followed by a smooth transition and finally plunges geodesically into the black hole horizon. This analysis gives physical insight of the merger of two equal masses objects.
Perforated-Layer Implementation Of Radio-Frequency Lenses
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1996-01-01
Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1993-01-01
A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.
Vanden Eng, Jodi L; Mathanga, Don P; Landman, Keren; Mwandama, Dyson; Minta, Anna A; Shah, Monica; Sutcliffe, James; Chisaka, Joseph; Lindblade, Kim A; Steinhardt, Laura
2017-10-10
Measuring the physical condition of long-lasting insecticidal nets (LLINs) under field conditions is of great importance for malaria control programmes to guide decisions on how frequently to replace LLINs. Current guidelines by the World Health Organization Pesticide Evaluation Scheme (WHOPES) propose a proportionate hole index (pHI) for assessing LLIN condition by counting the number of holes the size of a thumb, fist, head, and larger than a head. However, this method does not account for irregular hole shapes or exact hole sizes which could result in inaccurate decisions about when to replace LLINs. LLINs were collected during a 2013 health facility-based malaria case control study in Machinga District, Malawi. To evaluate the accuracy of the pHI, the physical condition of 277 LLINs was estimated by the WHOPES method and then compared with two more thorough measurement methods: image analysis of digital photographs of each LLIN side; and for 10 nets, ruler measurements of the length, width, and location of each hole. Total hole counts and areas per net were estimated by each method, and detailed results of hole shapes and composite pictures of hole locations were generated using image analysis. The WHOPES method and image analysis resulted in similar estimates of total hole counts, each with a median of 10 (inter-quartile range (IQR) 4-24 and 4-23, respectively; p = 0.004); however, estimated hole areas were significantly larger using the WHOPES method (median 162 cm 2 , IQR 28-793) than image analysis (median 13 cm 2 , IQR 3-101; p < 0.0001). The WHOPES method classified fewer LLINs in 'good condition' compared to image analysis (42% vs 74%). The ruler method detected significantly more holes than image analysis did (p = 0.002) in 10 LLINs; however, total hole area was not significantly different (p = 0.16). Most holes were not circular but roughly 2-5 times longer in one direction. The lower quarter of LLIN sides was found to have the most holes. The WHOPES method overestimated total hole area, likely because holes are elongated rather than circular, suggesting further adjustments to the pHI formula may be warranted when considering LLIN replacement strategies.
Study of hole characteristics in Laser Trepan Drilling of ZTA
NASA Astrophysics Data System (ADS)
Saini, Surendra K.; Dubey, Avanish K.; Upadhyay, B. N.; Choubey, A.
2018-07-01
Zirconia Toughened Alumina ceramic is widely used for aerospace components, combustion chambers, heat exchangers, bearings and pumps mainly due to its improved mechanical and thermal properties. To make holes in thick section Zirconia Toughened Alumina ceramics is a major challenge due to its unfavorable machining characteristics. Recent researches have explored that laser machining can overcome the machining limitations of advanced materials having improved mechanical properties. In present research, authors have analyzed the effect of Laser Trepan Drilling on hole characteristics of 6.0 mm thick Zirconia Toughened Alumina. Effect of significant process parameters on hole characteristics such as hole circularity at top and bottom, hole taper, and spatter size have been studied. The optimum ranges of these parameters have been suggested on the basis of empirical modeling and optimization.
Development of a realistic stress analysis for fatigue analysis of notched composite laminates
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Rosen, B. W.
1979-01-01
A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Seshadri, Banavara R.
2005-01-01
An analysis based investigation of aluminum with metal matrix composite selectively reinforced single- and multi-hole specimens was performed and their results compared with results from geometrically comparable non-reinforced specimens. All reinforced specimens exhibited a significant increase in performance. Performance increase of up to 170 percent was achieved. Specimen failure modes were consistent with results from reinforced polymeric matrix composite specimens. Localized reinforcement application (circular) proved as effective as a broader area (strip) reinforcement. Also, selective reinforcement is an excellent method of increasing the performance of multi-hole specimens.
2011-10-01
through 0.25-in composite in about 23 s. The blade can be used with a standard handheld drill so no special equipment is needed. A firefighter was able...coated reciprocating and circular saw blades, and a drill motor with a diamond coated hole saw to use in responding to emergencies involving...American made blade of that size was not found. The hole saw measured 6 in outside diameter and could drill to a depth of 1 ⅜ in. The hole saw had a ½ in
NASA Astrophysics Data System (ADS)
Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting
2018-02-01
The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.
A firefly algorithm for optimum design of new-generation beams
NASA Astrophysics Data System (ADS)
Erdal, F.
2017-06-01
This research addresses the minimum weight design of new-generation steel beams with sinusoidal openings using a metaheuristic search technique, namely the firefly method. The proposed algorithm is also used to compare the optimum design results of sinusoidal web-expanded beams with steel castellated and cellular beams. Optimum design problems of all beams are formulated according to the design limitations stipulated by the Steel Construction Institute. The design methods adopted in these publications are consistent with BS 5950 specifications. The formulation of the design problem considering the above-mentioned limitations turns out to be a discrete programming problem. The design algorithms based on the technique select the optimum universal beam sections, dimensional properties of sinusoidal, hexagonal and circular holes, and the total number of openings along the beam as design variables. Furthermore, this selection is also carried out such that the behavioural limitations are satisfied. Numerical examples are presented, where the suggested algorithm is implemented to achieve the minimum weight design of these beams subjected to loading combinations.
NASA Astrophysics Data System (ADS)
Kawamura, Marenori; Sato, Susumu
2018-05-01
The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.
A circular polarization converter based on in-linked loop antenna frequency selective surface
NASA Astrophysics Data System (ADS)
Wang, Shen-Yun; Liu, Wei; Geyi, Wen
2018-06-01
In this paper, we report the design, fabrication and measurement of a circular polarization converter based on an in-linked loop-antenna frequency selective surface. The building unit cell is the in-linked loop-antenna module, which consists of same front and back planar loop antennas in-linked by a pair of through-via holes passing through a sandwiched perforated metal ground plane. The proposed device can achieve transmission polarization conversions from right- or left-handed circularly polarized waves to left- or right-handed ones, respectively, or vice versa. Simulation and experimental results show that it has relative conversion ratio of near unity at resonant frequency and very low Joule insertion loss in the operating frequency band. The proposed circular polarization converter may be applied to wireless systems where circular polarization diversity is needed.
Binary black hole merger dynamics and waveforms
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James
2006-01-01
We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.
Study of Laser Drilled Hole Quality of Yttria Stabilized Zirconia
NASA Astrophysics Data System (ADS)
Saini, Surendra K.; Dubey, Avanish K.; Pant, Piyush; Upadhyay, B. N.; Choubey, A.
2017-09-01
The Yttria Stabilized Zirconia ceramic is extensively used in aerospace, automotives, medical and microelectronics industries. These applications demand manufacturing of different macro and micro features with close tolerances in this material. To make miniature holes with accurate dimensions in advanced ceramics such as Yttria Stabilized Zirconia is very difficult due to its tailored attributes such as high toughness, hardness, strength, resistance to wear, corrosion and temperature. Due to inherent characteristics of laser drilling, researchers are working to fulfill the requirement of creation of micro holes in advanced ceramics. The present research investigates the laser drilling of 2 mm thick Yttria Stabilized Zirconia with the aim to achieve good micro holes with reduced geometrical inaccuracies and improved hole quality. The results show that multiple quality response comprising hole circularity, hole taper and recast layer thickness has been improved at optimally selected process parameters.
NASA Astrophysics Data System (ADS)
Malysheva, E. I.; Dorokhin, M. V.; Demina, P. B.; Zdoroveyshchev, A. V.; Rykov, A. V.; Ved', M. V.; Danilov, Yu. A.
2017-11-01
Circularly polarized luminescence of light-emitting InGaAs/GaAs structures with a delta-doped Mn layer in a GaAs barrier was studied. The structural parameters were varied by different ways, among them are homogeneous and delta-doping with acceptor impurity, and removal of donor doping from the technological process. As it was found, the magnitude and polarity of the degree of circular polarization of luminescence strongly depend on the technological mode chosen. Simultaneous modeling of wave functions of structures highlights a good agreement between the parameters of circularly polarized luminescence and spatial distribution of wave functions of heavy holes relative to the Mn delta-layer.
Prevenslik, T V
1968-10-01
Most cassegrainian mirrors supported along the central hole are designed for deflection tolerances using the theory for solid, constant thickness plates. Where tolerances are critical, the mirror is usually made thicker, thereby reducing the deflection, but also increasing the weight of the mirror. Weight can be reduced by using a honeycomb design; however, manufacturing problems result because of the inherent complexity. To circumvent the disadvantages of excessive weight in the solid, constant thickness design and the complexity of the honeycomb design, a lightweight, yet simple design would be desirable. A possible lightweight, yet simple design would be a solid mirror of linearly varying thickness, decreasing in thickness from the center to the outer edge. As mirrors of linearly varying thickness may provide the best solution under combined deflection and weight restraints, a design basis is required and found in small deflection plate theory. The work of H. Conway was extended to account for pressure loading proportional to mirror density for the case when Poisson's ratio is ?. Closed form solutions for the slope of the linearly varying thickness mirrors were obtained for fixed and simply supported boundary conditions along the central hole. Maximum deflections were obtained by numerical integration and compared with the results for comparable constant thickness mirrors.
Ji, Ran
2011-01-01
Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S. S.; Karatas, C.
2017-11-01
A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Yoong, Voo Nyuk
2015-12-28
We propose a simple structure of photonic crystal fibers (PCFs) with high birefringence and low confinement loss based on one rectangular centric ring of smaller circular air holes (CAHs) in the fiber core, and three rings of larger CAHs in the fiber cladding. This simple geometry (using all CAHs with two different air hole sizes) is capable of achieving a flexible control of the birefringence, B = 5.501 × 10{sup −3}, and ultra-low confinement loss, 7.30 × 10{sup −5 }dB/km, at an excitation wavelength of λ = 1550 nm. The birefringence value is ∼5.0 times greater than that obtained for conventional CAH PCF. This simple structure has the added advantagemore » from the view point of easy fabrication, robustness, and cost. A full-vector finite element method combined with anisotropic perfectly matched layers was used to analyze the various fiber structures. We have analyzed four cases of CAH PCFs, focusing on the core asymmetry design as opposed to the conventional approach of CAHs or elliptical air holes on the cladding and core. The robustness against manufacturing inaccuracies of the proposed structure has also been further investigated in this work.« less
Enhancement of the sensitivity of gas sensor based on microstructure optical fiber
NASA Astrophysics Data System (ADS)
Morshed, Monir; Hasan, Md. Imran; Razzak, S. M. Abdur
2015-12-01
This paper proposes the design and characterization of microstructure optical fiber for gas sensing applications. The aim is to detect toxic and colorless gases over a wide transmission band covering 0.80 µm to 2.00 µm wavelength. Numerical investigation is carried out by using the finite element method (FEM). The numerical study shows that sensitivity of the proposed sensor is moderately increased by introducing four non-circular holes around the defected core of photonic crystal fiber and the confinement loss is also reduced. Furthermore, we confirm that increasing the diameter of central air core and size of the non-circular holes can improve the relative sensitivity and the confinement loss is reduced by increasing the diameter of air holes in the cladding. The enhancement of the relative sensitivity is more than 27.58% (0.1323 to 0.1688) at the wavelength λ=1.33µm that is the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. The confinement loss of the fiber is 1.765×10-8 dB/m.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.
A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity
NASA Technical Reports Server (NTRS)
Wang, S. S.; Yau, J. F.; Corten, H. T.
1980-01-01
A very simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems in rectilinear anisotropic solids is presented. The analysis is formulated on the basis of conservation laws of anisotropic elasticity and of fundamental relationships in anisotropic fracture mechanics. The problem is reduced to a system of linear algebraic equations in mixed-mode stress intensity factors. One of the salient features of the present approach is that it can determine directly the mixed-mode stress intensity solutions from the conservation integrals evaluated along a path removed from the crack-tip region without the need of solving the corresponding complex near-field boundary value problem. Several examples with solutions available in the literature are solved to ensure the accuracy of the current analysis. This method is further demonstrated to be superior to other approaches in its numerical simplicity and computational efficiency. Solutions of more complicated and practical engineering problems dealing with the crack emanating from a circular hole in composites are presented also to illustrate the capacity of this method.
Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution
NASA Astrophysics Data System (ADS)
Kotlařík, P.; Semerák, O.; Čížek, P.
2018-04-01
Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.
Squeeze film dampers with oil hole feed
NASA Technical Reports Server (NTRS)
Chen, P. Y. P.; Hahn, E. J.
1994-01-01
To improve the damping capability of squeeze film dampers, oil hole feed rather than circumferential groove feed is a practical proposition. However, circular orbit response can no longer be assumed, significantly complicating the design analysis. This paper details a feasible transient solution procedure for such dampers, with particular emphasis on the additional difficulties due to the introduction of oil holes. It is shown how a cosine power series solution may be utilized to evaluate the oil hole pressure contributions, enabling appropriate tabular data to be compiled. The solution procedure is shown to be applicable even in the presence of flow restrictors, albeit at the expense of introducing an iteration at each time step. Though not of primary interest, the procedure is also applicable to dynamically loaded journal bearings with oil hole feed.
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
NASA Astrophysics Data System (ADS)
Kuniyal, Ravi Shankar; Uniyal, Rashmi; Biswas, Anindya; Nandan, Hemwati; Purohit, K. D.
2018-06-01
We investigate the geodesic motion of massless test particles in the background of a noncommutative geometry-inspired Schwarzschild black hole. The behavior of effective potential is analyzed in the equatorial plane and the possible motions of massless particles (i.e. photons) for different values of impact parameter are discussed accordingly. We have also calculated the frequency shift of photons in this space-time. Further, the mass parameter of a noncommutative inspired Schwarzschild black hole is computed in terms of the measurable redshift of photons emitted by massive particles moving along circular geodesics in equatorial plane. The strength of gravitational fields of noncommutative geometry-inspired Schwarzschild black hole and usual Schwarzschild black hole in General Relativity is also compared.
Stress concentration in a cylindrical shell containing a circular hole.
NASA Technical Reports Server (NTRS)
Adams, N. J. I.
1971-01-01
The state of stress in a cylindrical shell containing a circular cutout was determined for axial tension, torsion, and internal pressure loading. The solution was obtained for the shallow shell equations by a variational method. The results were expressed in terms of a nondimensional curvature parameter which was a function of shell radius, shell thickness, and hole radius. The function chosen for the solution was such that when the radius of the cylindrical shell approaches infinity, the flat-plate solution was obtained. The results are compared with solutions obtained by more rigorous analytical methods, and with some experimental results. For small values of the curvature parameter, the agreement is good. For higher values of the curvature parameter, the present solutions indicate a limiting value of stress concentration, which is in contrast to previous results.
NASA Technical Reports Server (NTRS)
Ko, William L.; Lung, Shun-Fat
2017-01-01
Non-classical stress concentration behavior in a stretched circular hyperelastic sheet (outer radius b = 10 in., thickness t = 0.0625 in.) containing a central hole (radius a = 0.5 in.) was analyzed. The hyperelastic sheet was subjected to different levels of remote radial stretchings. Nastran large-strain large-deformation analysis and the Blatz-Ko large deformation theory were used to calculate the equal-biaxial stress concentration factors K. The results show that the values of K calculated from the Blatz-Ko theory and Nastran are extremely close. Unlike the classical linear elasticity theory, which gives the constant K = 2 for the equal-biaxial stress field, the hyperelastic K values were found to increase with increased stretching and can exceed the value K = 6 at a remote radial extension ratio of 2.35. The present K-values compare fairly well with the K-values obtained by previous works. The effect of the hole-size on K-values was investigated. The values of K start to decrease from a hole radius a = 0.125 in. down to K = 1 (no stress concentration) as a shrinks to a = 0 in. (no hole). Also, the newly introduced stretch and strain magnification factors {K(sub ?),K(sub e) } are also material- and deformation-dependent, and can increase from linear levels of {1.0, 4.0} and reaching {3.07, 4.61}, respectively at a remote radial extension ratio of 2.35.
The general relativistic thin disc evolution equation
NASA Astrophysics Data System (ADS)
Balbus, Steven A.
2017-11-01
In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.
Honodel, Charles A.
1985-01-01
A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.
Honodel, C.A.
1983-06-01
A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.
Buckling behavior of compression-loaded symmetrically-laminated angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Nemeth, M. P.
1986-01-01
An approximate analysis for buckling of a rectangular specially-orthotropic plate with a central circular hole is applied to symmetrically-laminated angle-ply plates. Results obtained from finite element analyses and experiments indicate that the approximate analysis predicts accurately the buckling loads of (+/-theta sub m)s plates with integer values of m not below 6 and with hole diameters up to 50 percent of the plate width. Moreover, the results indicate that the approximate analysis can be used to predict the buckling trends of plates with hole diameters up to 70 percent of the plate width. Results of a parametric study indicate the influence of hole size, plate aspect ratio, loading conditions, boundary conditions, and orthotropy on the buckling load. Results are also presented that indicate the relationship of the bending stiffness and the prebuckling load distribution to the buckling load of a plate with a hole.
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Young, Donald L. (Technical Monitor)
1967-01-01
This report contains the results of a fifteen month analytical and experimental study of the leakage rate of the pressurant gases (N2, He) and the propellant vapors (N2O4,N2H4) through bladder structures consisting of two layers of Teflon separated by a metallic foil diffusion barrier containing microscopic or larger holes. Results were obtained for the steady state leakage rate through circular holes and long rectangular openings in the barrier for arbitrary thicknesses of the two Teflon layers. The effect of hole shape and relative hole position on the leakage rate were studied. The transient problem was analyzed and it was shown that steady state calculations are adequate for estimating the leakage rate. A computer program entitled "Diffusion Analyzer Program" was developed to calculate the leakage rate, both transient and steady state. Finally, the analytical results were compared to experimentally determined values of the leakage rate through a model laminated bladder structure. The results of the analysis are in good agreement with experiment. The experimental effort (Part II of the Bladder Permeation Program) measured the solubility, diffusion coefficient and permeability of helium, nitrogen and nitrogen tetroxide vapor through Teflon TFE and FEP membranes. Data were obtained in the temperature range of 25 to 100 C at pressures ranging from near vacuum to about 20 atmospheres. Results of the experimental effort were compared with the limited data previously reported. As a verification to the applicability of results to actual bladder systems, counter diffusion tests were performed with a laminated sample containing aluminum foil with a selected group of holes.
Development and verification of global/local analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.
1991-01-01
A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.
High Frequency QPOs due to Black Hole Spin
NASA Technical Reports Server (NTRS)
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.
There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.
NASA Astrophysics Data System (ADS)
Zhang, Hu; Zhang, Xiaoguang; Li, Hui; Deng, Yifan; Zhang, Xia; Xi, Lixia; Tang, Xianfeng; Zhang, Wenbo
2017-08-01
Based on 5 requirements which are essential for stable OAM mode transmission, we propose an OAM fiber family based on a structure of circular photonic crystal fiber (C-PCF). The proposed C-PCF in the family is made of pure silica, with a big round air hole at the center, several rings of air-hole array as the cladding, and a ring shaped silica area in between as the core where the OAM modes propagate. We also provide a design strategy with which the optimized C-PCF can be obtained with optimum number of high quality OAM modes (up to 42 OAM modes), large effective index separation for corresponding vector modes over a wide bandwidth, relative small and flat dispersion, and low nonlinear coefficient compared with a conventional single mode fiber. The designed fiber can be used in MDM communications and other OAM applications in fibers.
Non-planar microfabricated gas chromatography column
Lewis, Patrick R.; Wheeler, David R.
2007-09-25
A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Bigelow, C. A.; Bahei-El-din, Y. A.
1983-01-01
Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers.
Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de
2015-12-14
The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.
Observational signature of high spin at the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew
2018-04-01
We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.
High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz
2004-10-01
associated with the massive black hole in the center of our galaxy, Sgr A *, is slightly circularly polarized at higher frequencies (Bower et al. 1999...axy’s central massive black hole , was detected utilizing a subset of these data. This is the first detection of this source at comparable frequencies...first detection of Sagittarius A * in this frequency range. Key words: Galaxy: center — radio continuum: general — techniques: interferometric 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Joey Shapiro; Cornish, Neil J.
The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less
Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartas, G.; Zalesky, L.; Krawczynski, H.
We present a promising new technique, the g -distribution method, for measuring the inclination angle ( i ), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g -distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g -distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131–1231 ( z {sub s} = 0.658, z {sub l} = 0.295), QJmore » 0158–4325 ( z {sub s} = 1.294, z {sub l} = 0.317), and SDSS 1004+4112 ( z {sub s} = 1.734, z {sub l} = 0.68). For RX J1131−1231, our initial results indicate that r {sub ISCO} ≲ 8.5 gravitational radii ( r {sub g}) and i ≳ 55° (99% confidence level). We detect two shifted Fe lines in several observations, as predicted in our numerical simulations of caustic crossings. The current Δ E distribution of RX J1131–1231 is sparsely sampled, but further X-ray monitoring of RX J1131–1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii, and spins of the black holes of distant quasars.« less
Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.
Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou
2017-10-02
We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.
Circular polarization in a non-magnetic resonant tunneling device.
Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J
2011-01-25
We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.
Circular polarization in a non-magnetic resonant tunneling device
2011-01-01
We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613
Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)
NASA Astrophysics Data System (ADS)
de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.
2013-10-01
The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.
Collision of an innermost stable circular orbit particle around a Kerr black hole
NASA Astrophysics Data System (ADS)
Harada, Tomohiro; Kimura, Masashi
2011-01-01
We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with another particle near the horizon. It is found that the maximum value of the CM energy Ecm is given by Ecm/(2m0)≃1.40/1-a*24 for a nearly maximally rotating black hole, where m0 is the rest mass of each particle and a* is the nondimensional Kerr parameter. This coincides with the known upper bound for a particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is then given by Ecm/(2m0)≃1.77/1-a*26. In view of the astrophysical significance of the ISCO, this result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black hole spin or a*→1. On the other hand, even if we take Thorne’s bound on the spin parameter into account, highly or moderately relativistic collisions are expected to occur quite naturally, for Ecm/(2m0) takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the ISCO for a*=0.998. This implies that high-velocity collisions of compact objects are naturally expected around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating black hole are also discussed.
48. STAIRWAY TO THE SECOND FLOOR, SOUTH END OF THE ...
48. STAIRWAY TO THE SECOND FLOOR, SOUTH END OF THE EAST WING. STAIRWAY AND WOODEN DECK ADDED IN 1976. WOODEN DECK FILLS A CIRCULAR HOLE LEFT IN THE FLOOR FOR THE POSSIBLE ADDITION OF A THIRD BISCUIT AND KILN. A SMALLER HOLE WAS LEFT IN THE WEST WING FLOOR TO ALLOW CONSTRUCTION OF AN ADDITIONAL GLAZE KILN. NEITHER EXTRA KILN WAS BUILT. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
2016-05-01
Lorimer Street Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 © Commonwealth of Australia 2016 AR-016-732 May 2016...multiple through cracks in plates with and without holes (Final Report for 25 August 1997 – 31 July 2002). AFRL-VA-WP-TR-2004-3112, October 2004. 11. J...remote tension stress. UNCLASSIFIED DST-Group-RR-0437 25 UNCLASSIFIED Figure 15: Beta factors FcR for the right-hand crack of two collinear
An Intense Excitation Source for High Power (Blue-Green) Laser.
1983-11-22
mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense
NASA Astrophysics Data System (ADS)
Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav
2017-02-01
Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin ( 2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.
Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams
NASA Astrophysics Data System (ADS)
Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil
2018-05-01
Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.
Evaluation of circularity error in drilling of syntactic foam composites
NASA Astrophysics Data System (ADS)
Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak
2018-04-01
Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.
Corner-cutting mining assembly
Bradley, J.A.
1981-07-01
This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.
Particle creation in (2+1) circular dust collapse
NASA Astrophysics Data System (ADS)
Gutti, Sashideep; Singh, T. P.
2007-09-01
We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.
NASA Astrophysics Data System (ADS)
Sandrik, Suzannah
Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.
Foundations of Black Hole Accretion Disk Theory.
Abramowicz, Marek A; Fragile, P Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin; Kalbasi, Rasool; Afrand, Masoud
2018-04-01
Perforated fins effects on the heat transfer rate of a circular tube are examined experimentally. An experimental system is set up through the wind tunnel and equipped with necessary measurement tools. Hot water passes through the finned tube and heat transfers to the fin-side air created using the wind tunnel with different velocities. Two fin sets of identical weight are installed on a circular tube with different outer diameters of 22 and 26 mm. The experiments are conducted at two different mass flow rates of the hot water and six Reynolds number of external air flow. Considering the four finned tubes and one no finned tube, a total of 60 tests are conducted. Results showed that with increasing the internal or external flow rates, the effect of larger cross-sectional area is greater. By opening holes on the fins, in addition to weight loss, the maximum heat transfer rate for perforated fins increases by 8.78% and 9.23% respectively for mass flow rates of 0.05 and 0.1 kg/s at low external Reynolds number. While, at high external Reynolds number, the holes reduces heat transfer by 8.4% and 10.6% for mass flow rates of 0.05 and 0.1 kg/s, respectively.
NASA Astrophysics Data System (ADS)
Watanabe, Tsuyoshi; Taniguchi, Kazutake; Suzuki, Kouta; Iyama, Hiromasa; Kishimoto, Shuji; Sato, Takashi; Kobayashi, Hideo
2016-06-01
Fine hole and dot patterns with bit pitches (bp’s) of less than 40 nm were fabricated in the circular band area of a quartz substrate by R-θ electron beam lithography (EBL), reactive ion etching (RIE), and nanoimprinting. These patterning processes were studied to obtain minimum pitch sizes of hole and dot patterns without pattern collapse. The patterning on the circular band was aimed to apply these patterning processes to future high-density bit-patterned media (BPM) for hard disk drive (HDD) and permanent memory for the long life archiving of digital data. In hole patterning, a minimum-22-nm-bp and 8.2-nm-diameter pattern (1.3 Tbit/in.2) was obtained on a quartz substrate by optimizing the R-θ EBL and RIE processes. Dot patterns were replicated on another quartz substrate by nanoimprinting using a hole-patterned quartz substrate as a master mold followed by RIE. In dot patterning, a minimum-30-nm-bp and 18.5-nm-diameter pattern (0.7 Tbit/in.2) was obtained by introducing new descum conditions. It was observed that the minimum bp of successful patterning increased as the fabrication process proceeded, i.e., from 20 nm bp in the first EBL process to 30 nm bp in the last quartz dot patterning process. From the measured diameters of the patterns, it was revealed that pattern collapse was apt to occur when the value of average diameter plus 3 sigma of diameter was close to the bp. It was suggested that multiple fabrication processes caused the degradation of pattern quality; therefore, hole patterning is more suitable than dot patterning for future applications owing to the lower quality degradation by its simple fabrication process.
Relativistic many-body XMCD theory including core degenerate effects
NASA Astrophysics Data System (ADS)
Fujikawa, Takashi
2009-11-01
A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.
NASA Astrophysics Data System (ADS)
Nagpal, Shubhrata; Jain, Nitin Kumar; Sanyal, Shubhashis
2016-01-01
The problem of finding the stress concentration factor of a loaded rectangular plate has offered considerably analytical difficulty. The present work focused on understanding of behavior of isotropic and orthotropic plate subjected to static in-plane loading using finite element method. The complete plate model configuration has been analyzed using finite element method based software ANSYS. In the present work two parameters: thickness to width of plate (T/A) and diameter of hole to width of plate (D/A) have been varied for analysis of stress concentration factor (SCF) and its mitigation. Plates of five different materials have been considered for complete analysis to find out the sensitivity of stress concentration factor. The D/A ratio varied from 0.1 to 0.7 for analysis of SCF and varied from 0.1 to 0.5 for analyzing the mitigation of SCF. 0.01, 0.05 and 0.1 are considered as T/A ratio for all the cases. The results are presented in graphical form and discussed. The mitigation in SCF reported is very encouraging. The SCF is more sensitive to D/A ratio as compared to T/A.
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Rigby, David L.; Ameri, Ali A.
1999-01-01
A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.
Porter, Susannah M
2016-05-25
One explanation for the Early Neoproterozoic expansion of eukaryotes is the appearance of eukaryovorous predators-i.e. protists that preyed on other protists. Evidence for eukaryovory at this time, however, is indirect, based on inferences from character state reconstructions and molecular clocks, and on the presence of possible defensive structures in some protistan fossils. Here I describe 0.1-3.4 µm circular holes in seven species of organic-walled microfossils from the 780-740 million-year-old Chuar Group, Grand Canyon, Arizona, USA, that are similar to those formed today by predatory protists that perforate the walls of their prey to consume the contents inside. Although best known in the vampyrellid amoebae, this 'vampire-like' behaviour is widespread among eukaryotes, making it difficult to infer confidently the identity of the predator. Nonetheless, the identity of the prey is clear: some-and perhaps all-of the fossils are eukaryotes. These holes thus provide the oldest direct evidence for predation on eukaryotes. Larger circular and half-moon-shaped holes in vase-shaped microfossils from the upper part of the unit may also be the work of 'tiny vampires', suggesting a diversity of eukaryovorous predators lived in the ancient Chuar sea. © 2016 The Author(s).
2016-01-01
One explanation for the Early Neoproterozoic expansion of eukaryotes is the appearance of eukaryovorous predators—i.e. protists that preyed on other protists. Evidence for eukaryovory at this time, however, is indirect, based on inferences from character state reconstructions and molecular clocks, and on the presence of possible defensive structures in some protistan fossils. Here I describe 0.1–3.4 µm circular holes in seven species of organic-walled microfossils from the 780–740 million-year-old Chuar Group, Grand Canyon, Arizona, USA, that are similar to those formed today by predatory protists that perforate the walls of their prey to consume the contents inside. Although best known in the vampyrellid amoebae, this ‘vampire-like’ behaviour is widespread among eukaryotes, making it difficult to infer confidently the identity of the predator. Nonetheless, the identity of the prey is clear: some—and perhaps all—of the fossils are eukaryotes. These holes thus provide the oldest direct evidence for predation on eukaryotes. Larger circular and half-moon-shaped holes in vase-shaped microfossils from the upper part of the unit may also be the work of ‘tiny vampires’, suggesting a diversity of eukaryovorous predators lived in the ancient Chuar sea. PMID:27194696
The evolution of spatial ordering of oil drops fast spreading on a water surface
Yamamoto, Daigo; Nakajima, Chika; Shioi, Akihisa; Krafft, Marie Pierre; Yoshikawa, Kenichi
2015-01-01
The design of dynamically self-assembled systems is of high interest in science and technology. Here, we report a unique cascade in the self-ordering of droplets accompanied by a dewetting transition. The dynamic self-emergent droplets are observed when a thin liquid layer of an immiscible fluorocarbon oil (perfluorooctyl bromide, PFOB) is placed on a water surface. Due to the gradual evaporation of PFOB, a circular PFOB-free domain appears as a result of a local dewetting transition. A circular pearling structure is generated at the rim with the growth of the dewetting hole. As the next stage, linear arrays of droplets are generated in a radial manner from the centre of the hole. These one-dimensional arrangements then evolve into two-dimensional hexagonal arrays of microdroplets through collective rhythmical shrinking/expanding motions. The emergence of such dynamic patterns is discussed in terms of the nonlinear kinetics of the dewetting transition under thermodynamically dissipative conditions. PMID:25998157
Fatigue crack detection and identification by the elastic wave propagation method
NASA Astrophysics Data System (ADS)
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
The Erratic Behavior of Lesions in Burnt Bone.
Collini, Federica; Amadasi, Alberto; Mazzucchi, Alessandra; Porta, Davide; Regazzola, Valeria Luisa; Garofalo, Paola; Di Blasio, Annalisa; Cattaneo, Cristina
2015-09-01
This study analyses depressed fractures (by blunt force trauma) and circular full-thickness injuries (drill injuries and gunshot wounds) in charred bones. Fifty bovine ribs (total 104 lesions) were divided into three groups. The first group consisted in 20 depressed hammer-produced fractures; in the second one, 60 round drill-holes were produced (30 circular, 30 semicircular); in the third group, 12 fleshed and 12 skeletonized ribs were hit by 9-mm bullets. Each specimen was carbonized in an electric oven up to 800°C. Morphological and metric analyses were performed before and after: morphological features were preserved, but depressed fractures showed an increase in their dimensions (p-value<0.05); the drilled holes shrunk (p-value<0.01); the charring cycle increased the number of fractures in samples with gunshot wounds differently in fleshed and defleshed ribs. This study showed the complex behavior of charred bone, for what concerns the interpretation of trauma and how caution should be applied. © 2015 American Academy of Forensic Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amghouz, Zakariae, E-mail: amghouz.uo@uniovi.es; Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo; Espina, Aránzazu
A series of layered alkylammonium–chromium phosphates, formulated as [C{sub n}H{sub 2n+1}NH{sub 3}]Cr(OH)PO{sub 4} (n=2–6), has been synthesized under hydrothermal conditions. The interlayer spacing, increasing linearly with the increase of alkyl-chain length from 13.61 Å (n=2) to 21.20 Å (n=6), is occupied by a double sheet of packed amine molecules with a tilt angle of ca. 51° respect to the inorganic sheet. The powders are constituted by circular plates (diameter=0.5–3 µm, thickness=∼50 nm) with central holes when n=4–6, stacked in axial direction showing worm-like morphologies. The presence of holes, and some corrugated and zig-zag fashions observed on the edge of thinmore » circular plates are the most probable ways for the reduction of the steric tensions between organic and inorganic portions in these hybrid materials. The thermal and thermo-oxidative stability of selected compounds have been studied, including the determination of activation energy data for the decomposition processes. - Graphical abstract: A novel series of layered alkylammonium–chromium phosphates, [C{sub n}H{sub 2n+1}NH{sub 3}]Cr(OH)PO{sub 4} (n=2–6), was obtained and characterized. The interlayer spacing, increasing linearly with the increase of alkyl-chain length, is occupied by a double sheet of packed amine molecules. The powders are constituted by circular plates (diameter=0.5–3 µm, thickness=∼50 nm) with central holes when n=4–6, stacked in axial direction showing worm-like morphologies. - Highlights: • A series of alkylammonium–chromium phosphates has been obtained by the hydrothermal method. • The interlayer spacing increases linearly with the increase of alkyl-chain length. • The interlayer spacing is occupied by a double sheet of packed amine molecules. • The powders are constituted by stacked circular plates showing wormlike morphology. • Thermal behaviour depends on the atmosphere used and the intercalated amine.« less
Self-force as a cosmic censor in the Kerr overspinning problem
NASA Astrophysics Data System (ADS)
Colleoni, Marta; Barack, Leor; Shah, Abhay G.; van de Meent, Maarten
2015-10-01
It is known that a near-extremal Kerr black hole can be spun up beyond its extremal limit by capturing a test particle. Here we show that overspinning is always averted once backreaction from the particle's own gravity is properly taken into account. We focus on nonspinning, uncharged, massive particles thrown in along the equatorial plane and work in the first-order self-force approximation (i.e., we include all relevant corrections to the particle's acceleration through linear order in the ratio, assumed small, between the particle's energy and the black hole's mass). Our calculation is a numerical implementation of a recent analysis by two of us [Phys. Rev. D 91, 104024 (2015)], in which a necessary and sufficient "censorship" condition was formulated for the capture scenario, involving certain self-force quantities calculated on the one-parameter family of unstable circular geodesics in the extremal limit. The self-force information accounts both for radiative losses and for the finite-mass correction to the critical value of the impact parameter. Here we obtain the required self-force data and present strong evidence to suggest that captured particles never drive the black hole beyond its extremal limit. We show, however, that, within our first-order self-force approximation, it is possible to reach the extremal limit with a suitable choice of initial orbital parameters. To rule out such a possibility would require (currently unavailable) information about higher-order self-force corrections.
NASA Astrophysics Data System (ADS)
Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki
2018-04-01
An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.
Sources of magnetic fields in recurrent interplanetary streams
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.
1977-01-01
The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.
Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes
NASA Astrophysics Data System (ADS)
Jiang, Y.; Dun, Z. L.; Zhou, H. D.; Lu, Z.; Chen, K.-W.; Moon, S.; Besara, T.; Siegrist, T. M.; Baumbach, R. E.; Smirnov, D.; Jiang, Z.
2017-07-01
We report infrared magnetospectroscopy studies on thin crystals of an emerging Dirac material ZrTe5 near the intrinsic limit. The observed structure of the Landau-level transitions and zero-field infrared absorption indicate a two-dimensional Dirac-like electronic structure, similar to that in graphene but with a small relativistic mass corresponding to a 9.4-meV energy gap. Measurements with circularly polarized light reveal a significant electron-hole asymmetry, which leads to splitting of the Landau-level transitions at high magnetic fields. Our model, based on the Bernevig-Hughes-Zhang effective Hamiltonian, quantitatively explains all observed transitions, determining the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g factors.
The tidal disruption of a star by a massive black hole
NASA Technical Reports Server (NTRS)
Evans, Charles R.; Kochanek, Christopher S.
1989-01-01
Results are reported from a three-dimensional numerical calculation of the tidal disruption of a low-mass main-sequence star on a parabolic orbit around a massive black hole (Mh = 10 to the 6th stellar mass). The postdisruption evolution is followed until hydrodynamic forces becomes negligible and the liberated gas becomes ballistic. Also given is the rate at which bound mass returns to pericenter after orbiting the hole once. The processes that determine the time scale to circularize the debris orbits and allow an accretion torus to form are discussed. This time scale and the time scales for radiative cooling and accretion inflow determine the onset and duration of the subsequent flare in the AGN luminosity.
Post-Kerr black hole spectroscopy
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele
2017-09-01
One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
NASA Technical Reports Server (NTRS)
Brueggeman, W C; Mayer, M JR
1948-01-01
Axial fatigue tests at zero mean stress have been made on 0.032- and 0.064-inch 24S-T and 0.032-inch 75S-T sheet-metal specimens 1/4, 1/2, 1, and 2 inches wide without a hole and with central holes giving a range of hole diameter D to specimen width W from 0.01 to 0.95. No systematic difference was noted between the results for the 0.032-inch and the 0.064-inch specimens although the latter seemed the more consistent. In general the fatigue strength based on the minimum section dropped sharply as the ration D/W was increased from zero to about 0.25. The plain specimens showed quite a pronounced decrease in fatigue strength with increasing width. The holed specimens showed only slight and rather inconclusive evidence of this size effect. The fatigue stress-concentration factor was higher for 75S-T than for 24S-T alloy. Evidence was found that a very small hole would not cause any reduction in fatigue strength.
The circular polarization inversion in δ〈Mn〉/InGaAs/GaAs light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorokhin, M. V., E-mail: dorokhin@nifti.unn.ru; Danilov, Yu. A.; Zvonkov, B. N.
We investigated light-emitting diodes consisting of an InGaAs/GaAs quantum well adjacent to a ferromagnetic δ〈Mn〉-layer. The magnetic field-dependent circular polarization obtained from both photo- and electroluminescence shows an unusual sign inversion depending on the growth parameters that can be explained by an interplay of the Zeeman splitting and Mn-hole interaction effects. Our results can help to understand the origin and control of the spin polarization on Mn doped GaAs structures, a fundamental step for the development of Mn-based spintronic devices.
“Kerrr” black hole: The lord of the string
NASA Astrophysics Data System (ADS)
Smailagic, Anais; Spallucci, Euro
2010-04-01
Kerrr in the title is not a typo. The third “r” stands for regular, in the sense of pathology-free rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: (i) no curvature ring singularity; (ii) no “anti-gravity” universe with causality violating time-like closed world-lines; (iii) no “super-luminal” matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline de Sitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a “non-commutative geometry inspired” matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works.
Correlation between heavy-hole and light-hole Mahan Excitons in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Paul, J.; Dey, P.; Stevens, C. E.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.; D. J. Hilton Collaboration; J. L. Reno Collaboration
2015-03-01
We present the coherent two-dimensional Fourier transform (2DFT) spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NSF, Division of Materials Research under Grant Number: DMR-1409473.
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.
1990-01-01
A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.
NASA Technical Reports Server (NTRS)
Haque, A.; Ahmed, L.; Ware, T.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
The stress concentrations associated with circular notches and subjected to uniform tensile loading in woven ceramic matrix composites (CMCs) have been investigated for high-efficient turbine engine applications. The CMC's were composed of Nicalon silicon carbide woven fabric in SiNC matrix manufactured through polymer impregnation process (PIP). Several combinations of hole diameter/plate width ratios and ply orientations were considered in this study. In the first part, the stress concentrations were calculated measuring strain distributions surrounding the hole using strain gages at different locations of the specimens during the initial portion of the stress-strain curve before any microdamage developed. The stress concentration was also calculated analytically using Lekhnitskii's solution for orthotropic plates. A finite-width correction factor for anisotropic and orthotropic composite plate was considered. The stress distributions surrounding the circular hole of a CMC's plate were further studied using finite element analysis. Both solid and shell elements were considered. The experimental results were compared with both the analytical and finite element solutions. Extensive optical and scanning electron microscopic examinations were carried out for identifying the fracture behavior and failure mechanisms of both the notched and notched specimens. The stress concentration factors (SCF) determined by analytical method overpredicted the experimental results. But the numerical solution underpredicted the experimental SCF. Stress concentration factors are shown to increase with enlarged hole size and the effects of ply orientations on stress concentration factors are observed to be negligible. In all the cases, the crack initiated at the notch edge and propagated along the width towards the edge of the specimens.
Multi-Wavelength Spectroscopy of Tidal Disruption Flares: A Legacy Sample for the LSST Era
NASA Astrophysics Data System (ADS)
Cenko, Stephen
2017-08-01
When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics, TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here we propose to obtain a sequence of UV (HST) and optical (Gemini/GMOS) spectra for a sample of 5 TDFs discovered by the Zwicky Transient Facility, doubling the number of TDFs with UV spectra. Our observations will directly test models for the generation of the UV/optical emission (circularization vs reprocessing) by searching for outflows and measuring densities, temperatures, and composition as a function of time. This effort is critical to developing the framework by which we can infer black hole properties (e.g., mass) from LSST TDF discoveries.
On the buckling of an elastic holey column
Hazel, A. L.; Pihler-Puzović, D.
2017-01-01
We report the results of a numerical and theoretical study of buckling in elastic columns containing a line of holes. Buckling is a common failure mode of elastic columns under compression, found over scales ranging from metres in buildings and aircraft to tens of nanometers in DNA. This failure usually occurs through lateral buckling, described for slender columns by Euler’s theory. When the column is perforated with a regular line of holes, a new buckling mode arises, in which adjacent holes collapse in orthogonal directions. In this paper, we firstly elucidate how this alternate hole buckling mode coexists and interacts with classical Euler buckling modes, using finite-element numerical calculations with bifurcation tracking. We show how the preferred buckling mode is selected by the geometry, and discuss the roles of localized (hole-scale) and global (column-scale) buckling. Secondly, we develop a novel predictive model for the buckling of columns perforated with large holes. This model is derived without arbitrary fitting parameters, and quantitatively predicts the critical strain for buckling. We extend the model to sheets perforated with a regular array of circular holes and use it to provide quantitative predictions of their buckling. PMID:29225498
Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments
Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Niedźwiedzki, Robert
2013-01-01
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces. PMID:23505530
Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles
NASA Astrophysics Data System (ADS)
Rutkowski, Mieszko
2017-01-01
In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.
Oscillations of Static Discs around Schwarzschild Black Holes: Effect of Self-Gravitation
NASA Astrophysics Data System (ADS)
Semerák, Oldřich; Žáček, Miroslav
2000-12-01
The oscillations of accretion-disc matter about roughly circular motion may produce a quasi-periodic variation in the observed signal (Ipser 1996, AAA 65.067.047). They were studied theoretically on non-gravitating, test discs, in a pseudo-Newtonian manner as well as in general relativity, both in static and in stationary fields. The present paper shows how the radial profiles of oscillation frequencies can be modified by the self-gravity of the disc. Exact superpositions of a Schwarzschild black hole with the Lemos and Letelier (1994, AAA 61.067.077) annular discs (static thin discs obtained by inversion of the first Morgan-Morgan solution) are considered to be simple (static) models of an accretion system. Both the epicyclic and perpendicular frequencies are plotted against the Schwarzschild radius, the circumferential radius, and the proper distance from the horizon. The curves indicate that in the innermost parts more massive discs are more stable with respect to horizontal perturbations, whereas they are less stable with respect to vertical perturbations. In the case of a sequence of discs interpretable as counter-rotating particles on stable time-like circular geodesics and having their inner rims just on marginally stable circular orbits, oscillations of the inner parts get faster with increasing disc mass; the maximum of the epicyclic frequency, important for trapping of the low-frequency modes near the inner radius, moves to smaller radii and becomes somewhat higher.
Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events
NASA Astrophysics Data System (ADS)
Svirski, Gilad; Piran, Tsvi; Krolik, Julian
2017-05-01
Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
Probing the Galactic Binary Black Hole Spin with Photon Timing
NASA Technical Reports Server (NTRS)
Kazanas, Demos
2007-01-01
It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.
Probing the Galactic Binary Black Hole Spin with Photon Timing
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2007-01-01
It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.
Model Prediction Results for 2007 Ultrasonic Benchmark Problems
NASA Astrophysics Data System (ADS)
Kim, Hak-Joon; Song, Sung-Jin
2008-02-01
The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Performance limits of ion extraction systems with non-circular apertures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S.
A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at whichmore » there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.« less
Performance limits of ion extraction systems with non-circular apertures.
Shagayda, A; Madeev, S
2016-04-01
A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.
A Disk Origin for S-Stars in the Galactic Center?
NASA Astrophysics Data System (ADS)
Haislip, G.; Youdin, A. N.
2005-12-01
Young massive stars in the central 0.5" of our Galaxy probe dynamics around supermassive black holes, and challenge our understanding of star formation in extreme environments. Recent observations (Ghez et al. 2005, Eisenhauer et al. 2005) show large eccentricities and a seemingly random distribution of inclinations, which seems to contradict formation in a disk. We investigate scenarios in which the massive S-stars are born with circular, coplanar orbits and perturbed to their current relaxed state. John Chambers' MERCURY code is modified to include post-Newtonian corrections to the gravitational central force of a Schwarzchild hole and Lense-Thirring precession about a Kerr black hole. The role of resonant relaxation (Rauch & Tremaine, 1996) of angular momentum between S-stars and a background stellar halo is studied in this context.
NASA Astrophysics Data System (ADS)
Antoniadou, Kyriaki I.; Libert, Anne-Sophie
2018-06-01
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater
2006-08-24
This true-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of dust. The rock has a moderately cracked the surface. Around it is a layer of sand and pebbles. The view is reddish brown
Stresses and strains in thick perforated orthotropic plates
A. Alshaya; John Hunt; R. Rowlands
2016-01-01
Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...
Convective heat transfer from circular cylinders located within perforated cylindrical shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.
1986-01-01
The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.
Theoretical Analysis on Mechanical Deformation of Membrane-Based Photomask Blanks
NASA Astrophysics Data System (ADS)
Marumoto, Kenji; Aya, Sunao; Yabe, Hedeki; Okada, Tatsunori; Sumitani, Hiroaki
2012-04-01
Membrane-based photomask is used in proximity X-ray lithography including that in LIGA (Lithographie, Galvanoformung und Abformung) process, and near-field photolithography. In this article, out-of-plane deformation (OPD) and in-plane displacement (IPD) of membrane-based photomask blanks are theoretically analyzed to obtain the mask blanks with flat front surface and low stress absorber film. First, we derived the equations of OPD and IPD for the processing steps of membrane-based photomask such as film deposition, back-etching and bonding, using a theory of symmetrical bending of circular plates with a coaxial circular hole and that of deformation of cylinder under hydrostatic pressure. The validity of the equations was proved by comparing the calculation results with experimental ones. Using these equations, we investigated the relation between the geometry of the mask blanks and the distortions generally, and gave the criterion to attain the flat front surface. Moreover, the absorber stress-bias required to obtain zero-stress on finished mask blanks was also calculated and it has been found that only little stress-bias was required for adequate hole size of support plate.
NASA Astrophysics Data System (ADS)
Amghouz, Zakariae; Espina, Aránzazu; García, José R.
2015-01-01
A series of layered alkylammonium-chromium phosphates, formulated as [CnH2n+1NH3]Cr(OH)PO4 (n=2-6), has been synthesized under hydrothermal conditions. The interlayer spacing, increasing linearly with the increase of alkyl-chain length from 13.61 Å (n=2) to 21.20 Å (n=6), is occupied by a double sheet of packed amine molecules with a tilt angle of ca. 51° respect to the inorganic sheet. The powders are constituted by circular plates (diameter=0.5-3 μm, thickness= 50 nm) with central holes when n=4-6, stacked in axial direction showing worm-like morphologies. The presence of holes, and some corrugated and zig-zag fashions observed on the edge of thin circular plates are the most probable ways for the reduction of the steric tensions between organic and inorganic portions in these hybrid materials. The thermal and thermo-oxidative stability of selected compounds have been studied, including the determination of activation energy data for the decomposition processes.
NASA Technical Reports Server (NTRS)
Yeh, Hsien-Yang
1988-01-01
The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a composite laminated plate containing a small circular hole. This advanced composite was used to manufacture the X-29A forward-swept wing. It was found for composite material, that the anisotropic stress concentration is no longer a constant, and that the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the loading axis. The analysis showed that through the lamination process, the stress concentration factor could be reduced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and the constant strain approach were used to calculate the stress concentration factor of room temperature. The results predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the results predicted by the constant strain approach matched the testing data very well. This showed the importance of the inplane shear effect on the evaluation of the stress concentration factor for the X-29A composite plate.
Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.
Testing the magnetar scenario for superluminous supernovae with circular polarimetry
NASA Astrophysics Data System (ADS)
Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.
2018-05-01
Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.
NASA Astrophysics Data System (ADS)
Hu, Youwang; Fan, Nannan; Lu, Yunpeng; Sun, Xiaoyan; Wang, Cong; Xia, Zhendong; Duan, Ji'an; Wang, Hua; Zhou, Jianying; Luo, Zhi; Yin, Kai
2016-07-01
In order to take advantage of microhole fluidynamics, laser-induced periodic surface structures (LIPSS, ripples) orientation should offer the lowest angle γ as possible with respect to hole axis. Investigations have been performed to explore the morphology of LIPSS formed on the sidewalls of microholes by circularly polarized femtosecond laser trepanning. The period of LIPSS on average was smaller than laser wavelength. The energy density of laser beam generally affected the processing effect. Experiments showed that the angle of the LIPSS decreases with increasing single pulse energy. However, increasing trepanning speed led to a decreasing in LIPSS angle.
Asymptotic theory of circular polarization memory.
Dark, Julia P; Kim, Arnold D
2017-09-01
We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed
According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetimemore » that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.« less
Zhang, Xiaoming; Liu, Chang; Chen, Jinxiang; Zhang, Jiandong; Gu, Yueyan; Zhao, Yong
2016-12-01
The influence mechanism of processing holes on the flexural properties of fully integrated honeycomb plates (FIHPs) was analyzed using the finite element method (FEM), and the results were compared with experimental data, yielding the following findings: 1) Processing holes under tensile stress have a significant impact on the mechanical properties of FIHPs, which is particularly obvious when initial imperfections are formed during sample preparation. 2) A proposed design technique based on changing the shape of the processing holes from circular to elliptical effectively reduces the stress concentration when such holes must exist in skin or components under tension, and this method motivates a design concept for experimental tests of FIHPs bearing dynamic or fatigue loads. 3) The flexural failure modes of FIHPs were confirmed via FEM analysis, and the mechanism by which trabeculae in FIHPs can effectively prevent cracks from emerging and cause cracks to develop along certain paths was ascertained. Therefore, this paper provides a theoretical basis for the design of processing holes in bionic honeycomb plates and other similar components in practical engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Getting a Kick Out of Numerical Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Dale, Choi; Koppitz, Michael; vanMeter, James R.; Miller, M. Coleman
2005-01-01
Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation; and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. Our estimated kick is 10(exp 5) km/s with an error of less than 10%. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than or approx. equal to 10, halos with masses less than or approx. equal to 10(exp 9) Solar Mass will have difficulty retaining coalesced black holes after major mergers.
Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results
NASA Astrophysics Data System (ADS)
Coelho, R. T.; Tanikawa, S. T.
2009-11-01
High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Can we identify massless braneworld black holes by observations?
NASA Astrophysics Data System (ADS)
Kuniyasu, Masashi; Nanri, Keitaro; Sakai, Nobuyuki; Ohgami, Takayuki; Fukushige, Ryosuke; Komura, Subaru
2018-05-01
For an extension of the previous work on gravitational lensing by massless braneworld black holes, we investigate their microlensing phenomena and shadows and discuss how to distinguish them from standard Schwarzschild black holes and Ellis wormholes. Microlensing is known as the phenomenon in which luminosity amplification appears when a bright object passes behind a black hole or another massive object. We find that, for the braneworld black hole as well as for the Ellis wormhole, there appears luminosity reduction just before and after the amplification. This means that observation of such a reduction would indicate the lens object is either a braneworld black hole or a wormhole, though it is difficult to distinguish one from the other by microlensing solely. Therefore, we next analyze the optical images, or shadows of the braneworld black hole surrounded by optically thin dust, and compare them to those of the Ellis wormhole. Because the spacetime around the braneworld black hole possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime or in the wormhole spacetime. This indicates that the appearance of a bright ring does not solely confirm a braneworld black hole, a Schwarzschild, nor an Ellis wormhole. However, we find that only for the wormhole is the intensity inside the ring larger than that the outsider intensity. Therefore, with future high-resolution observations of microlensing and shadows together, we could identify the braneworld black holes if they exist.
Hole spectral functions in lightly doped quantum antiferromagnets
NASA Astrophysics Data System (ADS)
Kar, Satyaki; Manousakis, Efstratios
2011-11-01
We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.
System for producing a uniform rubble bed for in situ processes
Galloway, T.R.
1983-07-05
A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.
Binary Black Hole Mergers and Recoil Kicks
NASA Technical Reports Server (NTRS)
Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.
2006-01-01
Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.
NASA Astrophysics Data System (ADS)
Filho, Luiz Arthur Gagg; da Silva Fernandes, Sandro
2017-05-01
In this work, a study about the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories for interior transfers with moderate time of flight is presented considering the three-body and the four-body models. The optimization criterion is the total characteristic velocity which represents the fuel consumption of an infinite thrust propulsion system. The optimization problem has been formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP), and, it consists of transferring a spacecraft from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption. The Sequential Gradient Restoration Algorithm (SGRA) is applied to determine the optimal solutions. Numerical results are presented for several final altitudes of a clockwise or a counterclockwise circular low Moon orbit considering a specified altitude of a counterclockwise circular low Earth orbit. Two types of analysis are performed: in the first one, the initial position of the Sun is taken as a parameter and the major parameters describing the optimal trajectories are obtained by solving an optimization problem of one degree of freedom. In the second analysis, an optimization problem with two degrees of freedom is considered and the initial position of the Sun is taken as an additional unknown.
Remarks on non-singular black holes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
2018-01-01
We briefly discuss non-singular black hole models, with the main focus on the properties of non-singular evaporating black holes. Such black holes possess an apparent horizon, however the event horizon may be absent. In such a case, the information from the black hole interior may reach the external observer after the complete evaporation of the black hole. This model might be used for the resolution of the information loss puzzle. However, as we demonstrate, in a general case the quantum radiation emitted from the black hole interior, calculated in the given black hole background, is very large. This outburst of the radiation is exponentially large for models with the redshift function α = 1. We show that it can be suppressed by including a non-trivial redshift function. However, even this suppression is not enough to guarantee self-consistency of the model. This problem is a manifestation of a general problem, known as the "mass inflation". We briefly comment on possible ways to overcome this problem in the models of non-singular evaporating black holes.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara, A.; Aliev, F. G., E-mail: farkhad.aliev@uam.es; Dobrovolskiy, O. V.
2014-11-03
The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magneticmore » permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard
2008-07-15
Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan
2018-03-01
We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-11-01
The excellent propagation properties of square-lattice microstructured optical fibers (MOFs) have been widely recognized. We generalized our recently developed analytical field model (Sharma and Sharma, 2016), for index-guiding MOFs with square-lattice of circular air-holes in the photonic crystal cladding. Using the field model, we have studied the propagation properties of the fundamental mode of index-guiding square-lattice MOFs with different hole-to-hole spacing and the air-hole diameter. Results for the modal effective index, near and the far-field patterns and the group-velocity dispersion have been included. The evolution of the mode shape has been investigated in transition from the near to the far-field domain. We have also studied the splice losses between two identical square-lattice MOFs and also between an MOF and a traditional step-index single-mode fiber. Comparisons with available numerical simulation results, e.g., those based on the full-vector finite element method have also been included.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater False Color
2006-08-24
This false-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of reddish dust. The rock is light tan and has a moderately cracked the surface. Around it is a layer of bluish sand and pebbles
Plasma-Arc Torch For Welding Ducts In Place
NASA Technical Reports Server (NTRS)
Gangl, Kenneth J.; Bayless, Ernest; Looney, Alan
1991-01-01
Plasma-arc-welding torch redesigned, more suitable for applications in which moved in circular or other orbits about stationary cylindrical workpieces. Preserves elements of original design critical to performance and endurance, but modifies other elements to decrease overall size of torch. Electrode collet and collet nut installed and removed through hole in top; makes installation and removal easier.
NASA Astrophysics Data System (ADS)
Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole
2014-10-01
We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.
1995-01-01
Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
A no-short scalar hair theorem for rotating Kerr black holes
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-06-01
If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.
NASA Astrophysics Data System (ADS)
Gundlach, Carsten; Akcay, Sarp; Barack, Leor; Nagar, Alessandro
2012-10-01
In numerical simulations of black hole binaries, Pretorius and Khurana [Classical Quantum Gravity 24, S83 (2007)CQGRDG0264-938110.1088/0264-9381/24/12/S07] have observed critical behavior at the threshold between scattering and immediate merger. The number of orbits scales as n≃-γln|p-p*| along any one-parameter family of initial data such that the threshold is at p=p*. Hence, they conjecture that in ultrarelativistic collisions almost all the kinetic energy can be converted into gravitational waves if the impact parameter is fine-tuned to the threshold. As a toy model for the binary, they consider the geodesic motion of a test particle in a Kerr black hole spacetime, where the unstable circular geodesics play the role of critical solutions, and calculate the critical exponent γ. Here, we incorporate radiation reaction into this model using the self-force approximation. The critical solution now evolves adiabatically along a sequence of unstable circular geodesic orbits under the effect of the self-force. We confirm that almost all the initial energy and angular momentum are radiated on the critical solution. Our calculation suggests that, even for infinite initial energy, this happens over a finite number of orbits given by n∞≃0.41/η, where η is the (small) mass ratio. We derive expressions for the time spent on the critical solution, number of orbits and radiated energy as functions of the initial energy and impact parameter.
NASA Astrophysics Data System (ADS)
Moskalenko, S. A.; Podlesny, I. V.; Dumanov, E. V.; Liberman, M. A.
2015-11-01
The properties of the two-dimensional cavity polaritons subjected to the action of a strong perpendicular magnetic and electric fields, giving rise to the Landau quantization (LQ) of the 2D electrons and holes accompanied by the Rashba spin-orbit coupling, by the Zeeman splitting and by the nonparabolicity of the heavy-hole dispersion law are investigated. We use the method proposed by Rashba (1960) [1] and the obtained results are based on the exact solutions for the eigenfunctions and for the eigenvalues of the Pauli-type Hamilonians with third order chirality terms and nonparabolic dispersion law for heavy-holes and with the first order chirality terms for electrons. The selection rules of the band-to-band optical quantum transitions as well as of the quantum transitions from the ground state of the crystal to the magnetoexciton states depend essentially on the numbers ne and nh of the LQ levels of the (e-h) pair forming the magnetoexciton. It is shown that the Rabi frequency ΩR of the polariton branches and the magnetoexciton oscillator strength fosc increase with the magnetic field strength B as ΩR √{ B }, and fosc B. The optical gyrotropy effects may be revealed changing the sign of the photon circular polarization at a given sign of the wave vector longitudinal projection kz or equivalently changing the sign of kz at the same selected circular polarization.
Two-Piece Screens for Decontaminating Granular Material
NASA Technical Reports Server (NTRS)
Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis
2009-01-01
Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.
TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed
2010-07-20
According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less
Expansible apparatus for removing the surface layer from a concrete object
Allen, Charles H.
1979-01-01
A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.
Prediction of vortex shedding from circular and noncircular bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Perkins, S. C., Jr.
1984-01-01
An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
Near millimeter wave bandpass filters
NASA Technical Reports Server (NTRS)
Timusk, T.; Richards, P. L.
1981-01-01
The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.
Dynamic-Active Flow Control - Phase I
2006-10-18
effective in controlling the flow. In altering the orifice shape to one with a lower aspect ratio , for example a circular hole, the effect of the...DYNAMIC-ACTIVE FLOW CONTROL - PHASE I By ASHLEY TUCK AND JULIO SORIA 1 Laboratory for Turbulence Research...comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Post-merger evolution of a neutron star-black hole binary with neutrino transport
NASA Astrophysics Data System (ADS)
Foucart, Francois; O'Connor, Evan; Roberts, Luke; Duez, Matthew; Kidder, Lawrence; Ott, Christian; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated truncated moment formalism for neutrino transport. The moment formalism is included as a new module in the SpEC code. We describe the implementation and tests of this new module, and its use to study the formation phase of an accretion disk after a black hole-neutron star merger. We discuss differences with simpler treatments of the neutrinos, the importance of relativistic effects, and the impact of the formation phase of the disk on its expected long-term evolution. We also show that a small amount of material is ejected in the polar region during the circularization of the disk and its interactions with fallback material, and discuss its effects on potential electromagnetic counterparts to the merger.
NASA Astrophysics Data System (ADS)
Abuzaid, A.; Hrairi, M.; Shaik Dawood, M. S. I.
2017-03-01
In this paper, the effect of piezoelectric actuators placed above a circular hole of a rectangular plate subjected to uniform uniaxial tension is studied. The core idea is to investigate the stress (compression/tension) produced by the piezoelectric actuators on the stress distribution around the hole and along the width of the host plate. For this purpose, Finite Element Analysis (FEA) was carried out through parametric study in ANSYS software. The results demonstrated that the positive electric field would decrease and change the state of the stress distribution along the width of the host plate in contrast to the negative applied electric filed which increases the stress distribution smoothly without affecting its behaviour. The results also indicated that the reduction of the stress concentration factor increases with the decrease of the ratio (D/W) for the same applied positive electric field.
Gas turbine engine combustor can with trapped vortex cavity
Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.
2005-10-04
A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.
Shadows, signals, and stability in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Hennigar, Robie A.; Jahani Poshteh, Mohammad Bagher; Mann, Robert B.
2018-03-01
We conduct a preliminary investigation into the phenomenological implications of Einsteinian cubic gravity (ECG), a four-dimensional theory of gravity cubic in curvature of interest for its unique formulation and properties. We find an analytic approximation for a spherically symmetric black hole solution to this theory using a continued fraction ansatz. This approximate solution is valid everywhere outside of the horizon and we use it to study the orbit of massive test bodies near a black hole, specifically computing the innermost stable circular orbit. We compute constraints on the ECG coupling parameter imposed by Shapiro time delay. We then compute the shadow of an ECG black hole and find it to be larger than its Einsteinian counterpart in general relativity for the same value of the mass. Applying our results to Sgr A*, we find that departures from general relativity are small but in principle distinguishable.
Magnetic field effects in hybrid perovskite devices
NASA Astrophysics Data System (ADS)
Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.
2015-05-01
Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.
Large-area, near-infrared (IR) photonic crystals with colloidal gold nanoparticles embedding.
Shukla, Shobha; Baev, Alexander; Jee, Hongsub; Hu, Rui; Burzynski, Ryszard; Yoon, Yong-Kyu; Prasad, Paras N
2010-04-01
A polymeric composite material composed of colloidal gold nanoparticles (<10 nm) and SU8 has been utilized for the fabrication of large-area, high-definition photonic crystal. We have successfully fabricated near-infrared photonic crystal slabs from composite materials using a combination of multiple beam interference lithography and reactive ion etching processes. Doping of colloidal gold nanoparticles into the SU8 photopolymer results in a better definition of structural features and hence in the enhancement of the optical properties of the fabricated photonic crystals. A 2D air hole array of triangular symmetry with a hole-to-hole pitch of approximately 500 nm has been successfully fabricated in a large circular area of 1 cm diameter. Resonant features observed in reflectance spectra of our slabs are found to depend on the exposure time, and can be tuned over a range of near-infrared frequencies.
Predicting Failure Progression and Failure Loads in Composite Open-Hole Tension Coupons
NASA Technical Reports Server (NTRS)
Arunkumar, Satyanarayana; Przekop, Adam
2010-01-01
Failure types and failure loads in carbon-epoxy [45n/90n/-45n/0n]ms laminate coupons with central circular holes subjected to tensile load are simulated using progressive failure analysis (PFA) methodology. The progressive failure methodology is implemented using VUMAT subroutine within the ABAQUS(TradeMark)/Explicit nonlinear finite element code. The degradation model adopted in the present PFA methodology uses an instantaneous complete stress reduction (COSTR) approach to simulate damage at a material point when failure occurs. In-plane modeling parameters such as element size and shape are held constant in the finite element models, irrespective of laminate thickness and hole size, to predict failure loads and failure progression. Comparison to published test data indicates that this methodology accurately simulates brittle, pull-out and delamination failure types. The sensitivity of the failure progression and the failure load to analytical loading rates and solvers precision is demonstrated.
System for producing a uniform rubble bed for in situ processes
Galloway, Terry R.
1983-01-01
A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.
Imaging a non-singular rotating black hole at the center of the Galaxy
NASA Astrophysics Data System (ADS)
Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.
2018-06-01
We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.
Effect of interfacial stresses in an elastic body with a nanoinclusion
NASA Astrophysics Data System (ADS)
Vakaeva, Aleksandra B.; Grekov, Mikhail A.
2018-05-01
The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less
A newly designed hydroxyapatite ceramic burr-hole button
Kashimura, Hiroshi; Ogasawara, Kuniaki; Kubo, Yoshitaka; Yoshida, Kenji; Sugawara, Atsushi; Ogawa, Akira
2010-01-01
Conventional burr-hole buttons sometimes do not fit the burr hole well due to the curvature of the surrounding bone. An irregular surface at the border between the button and the surrounding skull may appear unaesthetic. The major problem is the difference between the curvature radius of the skull and the burr-hole button in contact with the skull. To solve this problem, the authors designed a button made of hydroxyapatite ceramic to snugly fit the burr hole. The specifications of this device and its clinical application are described here. PMID:20448795
A newly designed hydroxyapatite ceramic burr-hole button.
Kashimura, Hiroshi; Ogasawara, Kuniaki; Kubo, Yoshitaka; Yoshida, Kenji; Sugawara, Atsushi; Ogawa, Akira
2010-03-24
Conventional burr-hole buttons sometimes do not fit the burr hole well due to the curvature of the surrounding bone. An irregular surface at the border between the button and the surrounding skull may appear unaesthetic. The major problem is the difference between the curvature radius of the skull and the burr-hole button in contact with the skull. To solve this problem, the authors designed a button made of hydroxyapatite ceramic to snugly fit the burr hole. The specifications of this device and its clinical application are described here.
Khorshidi, Abdollah; Ashoor, Mansour
2014-05-01
This study investigates modulation transfer function (MTF) in parallel beam (PB) and fan beam (FB) collimators using the Monte Carlo method with full width at half maximum (FWHM), square and circular-shaped holes, and scatter and penetration (S + P) components. A regulation similar to the lead-to-air ratio was used for both collimators to estimate output data. The hole pattern was designed to compare FB by PB parameters. The radioactive source in air and in a water phantom placed in front of the collimators was simulated using MCNP5 code. The test results indicated that the square holes in PB (PBs) had better FWHM than did the cylindrical (PBc) holes. In contrast, the cylindrical holes in the FB (FBc) had better FWHM than the square holes. In general, the resolution of FBc was better than that of the PBc in air and scatter mediums. The S + P decreased for all collimators as the distance from the source to the collimator surface (z) increased. The FBc had a lower S + P than FBs, but PBc had a higher S + P than PBs. Of the FB and PB collimators with the identical hole shapes, PBs had a smaller S + P than FBs, and FBc had a smaller S + P than PBc. The MTF value for the FB was greater than for the PB and had increased spatial frequency; the FBc had higher MTF than the FBs and PB collimators. Estimating the FB using PB parameters and diverse hole shapes may be useful in collimator design to improve the resolution and efficiency of SPECT images.
New results on thermalization of electrons in GaAs
NASA Astrophysics Data System (ADS)
Hannak, Reinhard M.; Ruehle, Wolfgang W.
1994-05-01
The transition from a nonthermal into a thermal distribution of electrons at low densities (< 1014 cm-3) is traced on a picosecond time-scale by the time evolution of a band-to-acceptor transition in GaAs:Be. Two narrow, nonthermal electron distributions are detected during the first picoseconds originating from the heavy- and light-hole valence band, respectively. Measurements with circular polarization of excitation and luminescence confirm this assignment. The variation of their energetic peak-positions with excitation energy allows the experimental determination of the valence band dispersions for very small wave vectors near k equals 0, where only parabolic energy terms contribute to the dispersions. The results are consistent with the commonly used effective hole masses.
NASA Astrophysics Data System (ADS)
Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang
2018-02-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871
It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.
Problem of gas accretion on a gravitational center
NASA Technical Reports Server (NTRS)
Ladygin, V. A.
1980-01-01
A method of the approximated solution of the problem of accretion on a rapidly moving gravitational center is developed. This solution is obtained in the vicinity of the axis of symmetry in the region of the potential flow. The solution of the problem of stationary gas accretion on a moving gravitational center simulates the movement of a substance in interstellar space in the vicinity of a black hole. A detailed picture of gas accretion on a black hole is of interest in connection with the problem of observation of black holes.
Motion and collision of particles in a rotating linear dilaton black hole
NASA Astrophysics Data System (ADS)
González, P. A.; Olivares, Marco; Papantonopoulos, Eleftherios; Vásquez, Yerko
2018-03-01
We study the motion of particles in the background of a four-dimensional linear dilaton black hole. We solve analytically the equations of motion of the test particles, and we describe their motion. We show that the dilaton black hole acts as a particle accelerator by analyzing the energy in the center of mass frame of two colliding particles in the vicinity of its horizon. In particular, we find that there is a critical value of the angular momentum, which depends on the string coupling, and a particle with this critical angular momentum can reach the inner horizon with an arbitrarily high c.m. energy. This is known as the Bañados, Silk, and West process. We also show that the motion and collisions of particles have behavior similar to the three-dimensional Bañados-Teitelboim-Zanelli black hole. In fact, the photons can plunge into the horizon or escape to infinity, and they cannot be deflected, while for massive particles there are no confined orbits of the first kind, like planetary or circular orbits.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
Quantum states and optical responses of low-dimensional electron hole systems
NASA Astrophysics Data System (ADS)
Ogawa, Tetsuo
2004-09-01
Quantum states and their optical responses of low-dimensional electron-hole systems in photoexcited semiconductors and/or metals are reviewed from a theoretical viewpoint, stressing the electron-hole Coulomb interaction, the excitonic effects, the Fermi-surface effects and the dimensionality. Recent progress of theoretical studies is stressed and important problems to be solved are introduced. We cover not only single-exciton problems but also few-exciton and many-exciton problems, including electron-hole plasma situations. Dimensionality of the Wannier exciton is clarified in terms of its linear and nonlinear responses. We also discuss a biexciton system, exciton bosonization technique, high-density degenerate electron-hole systems, gas-liquid phase separation in an excited state and the Fermi-edge singularity due to a Mahan exciton in a low-dimensional metal.
Justification of the Shape of a Non-Circular Cross-Section for Drilling With a Roller Cutter
NASA Astrophysics Data System (ADS)
Buyalich, Gennady; Husnutdinov, Mikhail
2017-11-01
The parameters of the shape of non-circular cross-section affect not only the process of blasting, but also the design of the tool and the process of drilling as well. In the conditions of open-pit mining, it is reasonable to use a roller cutter to produce a non-circular cross-section of blasting holes. With regard to the roller cutter, the impact of the cross-section shape on the oscillations of the axial force arising upon its rotation is determined. It is determined that a polygonal shape with rounded comers of the borehole walls connections and their convex shape, which ensures a smaller range of the total axial force and the torque deflecting the bit from the axis of its rotation is the rational form of the non-circular cross-section of the borehole in terms of bit design. It has been shown that the ratio of the number of cutters to the number of borehole corners must be taken into account when justifying the shape of the cross-section, both from the point of view of the effectiveness of the explosion action and from the point of view of the rational design of the bit.
The fission yeast cytokinetic contractile ring regulates septum shape and closure
Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben
2015-01-01
ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178
The fission yeast cytokinetic contractile ring regulates septum shape and closure.
Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D; O'Shaughnessy, Ben
2015-10-01
During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. © 2015. Published by The Company of Biologists Ltd.
Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Hořava's gravity
NASA Astrophysics Data System (ADS)
Vieira, Ronaldo S. S.; Schee, Jan; Kluźniak, Włodek; Stuchlík, Zdeněk; Abramowicz, Marek
2014-07-01
We discuss photon and test-particle orbits in the Kehagias-Sfetsos (KS) metric of Hořava's gravity. For any value of the Hořava parameter ω, there are values of the gravitational mass M for which the metric describes a naked singularity, and this is always accompanied by a vacuum "antigravity sphere" on whose surface a test particle can remain at rest (in a zero angular momentum geodesic), and inside which no circular geodesics exist. The observational appearance of an accreting KS naked singularity in a binary system would be that of a quasistatic spherical fluid shell surrounded by an accretion disk, whose properties depend on the value of M, but are always very different from accretion disks familiar from the Kerr-metric solutions. The properties of the corresponding circular orbits are qualitatively similar to those of the Reissner-Nordström naked singularities. When event horizons are present, the orbits outside the Kehagias-Sfetsos black hole are qualitatively similar to those of the Schwarzschild metric.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Experiments in dilution jet mixing effects of multiple rows and non-circular orifices
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.
1985-01-01
Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.
Experiments in dilution jet mixing - Effects of multiple rows and non-circular orifices
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.
1985-01-01
Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from two-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Girgis, Morris
2002-01-01
To complement the effectiveness of ceramic materials and the applicability to turbine engine applications, a parametric study using the finite element method was carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was verified in an attempt to minimize the thermal stresses and reach an optimal rate of stress. The thermal stress profile was generated for specimens with circular and square cooling channels. Lower stresses were reported for a higher magnitude of thermal conductivity and in particular for the circular cooling channel arrangement. Contour plots for the stresses and the temperature are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.
A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.
Handling System for Iridium-192 Seeds
NASA Technical Reports Server (NTRS)
Carpenter, W.; Wodicka, D.
1973-01-01
A complete system is proposed for safe handling of iridium-192 seeds used to internally irradiate malignant growths. A vibratory hopper feeds the seeds onto a transport system for deposit in a magazine or storage area. A circular magazine consisting of segmented plastic tubing with holes in the walls to accommodate the seeds seems feasible. The magazine is indexed to stop and release a seed for calibration and deposition.
REVIEWS OF TOPICAL PROBLEMS: Birth and life of massive black holes
NASA Astrophysics Data System (ADS)
Dokuchaev, V. I.
1991-06-01
The problems of massive black holes in galactic nuclei of different types are reviewed. The dynamical evolution of compact star systems ends naturally in a gigantic concentrated mass of gas, containing an admixture of surviving stars, that unavoidably collapses into a black hole. The subsequent joint evolution of the remnant star system with a massive black hole at the center leads either to the phenomenon of a bright central source in the nuclei of active galaxies and quasars or to the opposite case of a "dead" frozen black hole in the nucleus of a normal galaxy.
A Bird and Bee Problem in House Siding
Louis F. Wilson; Henry A. Huber
1976-01-01
Plywood house siding made to simulate reverse board-and-batten design is sometimes attacked by woodpeckers because leaf-cutting bees, their prey, make nests in holes in the plywood core. The problem can be prevented by plugging the holes before nesting occurs. If nesting does occur, the nest should be destroyed and then the holes plugged.
A note on the modelling of circular smallholder migration.
Bigsten, A
1988-01-01
"It is argued that circular migration [in Africa] should be seen as an optimization problem, where the household allocates its labour resources across activities, including work which requires migration, so as to maximize the joint family utility function. The migration problem is illustrated in a simple diagram, which makes it possible to analyse economic aspects of migration." excerpt
Tidal coupling of a Schwarzschild black hole and circularly orbiting moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Hua; Lovelace, Geoffrey
2005-12-15
We describe the possibility of using the laser interferometer space antenna (LISA) 's gravitational-wave observations to study, with high precision, the response of a massive central body (e.g. a black hole or a soliton star) to the tidal gravitational pull of an orbiting, compact, small-mass object (a white dwarf, neutron star, or small-mass black hole). Motivated by this LISA application, we use first-order perturbation theory to study tidal coupling for a special, idealized case: a Schwarzschild black hole of mass M, tidally perturbed by a 'moon' with mass {mu}<
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.
Fuzzy spaces topology change as a possible solution to the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Silva, C. A. S.
2009-06-01
The black hole information loss paradox is one of the most intricate problems in modern theoretical physics. A proposal to solve this is one related with topology change. However it has found some obstacles related to unitarity and cluster decomposition (locality). In this Letter we argue that modelling the black hole's event horizon as a noncommutative manifold - the fuzzy sphere - we can solve the problems with topology change, getting a possible solution to the black hole information loss paradox.
A multi-slot surface coil for MRI of dual-rat imaging at 4 T
NASA Astrophysics Data System (ADS)
Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.
2011-06-01
A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.
It may be possible to use Microscopic Black Holes as a Propulsion Beam
NASA Astrophysics Data System (ADS)
Kriske, Richard
2017-04-01
Several years ago during the commissioning of the LHC, the question as to whether a miniature Black Hole would be formed, and what to do with it if it was, came up as a legitimate topic of discussion. It was calculated at that time that although it was possible, the possibility was extremely small, and it would evaporate quickly, and would be safely ejected into space, as its mass would be so great as to simply continue along its inertial path, out the end of the circular LHC accelerator. New improvements to the LHC are the increase in energy to about 15 TEV. Linear accelerators, such as the ILC, claim to be able to produce much higher TEV, as they collide electrons and positrons, as opposed to Protons, as does the LHC. This author has heard incredible numbers, such as 250 TEV, with a beam current of 1 Amp. With this incredible increase in Energy and Current, one could turn the Black Hole investigation around, and try to determine how one could produce a steady stream of Microscopic Black Holes. A Black Hole machine. When the Black Holes evaporate do they expand, space in space time. Would the old theory of expanding space behind a craft warp space, and enable the craft to exceed the speed of light. The warp theory was proposed before Star Trek, is it now feasible to prove?
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro
2015-09-01
Numerical analysis of three dimensional optical electro-magnetic field in a circular-truncated conical optical fiber covered by asymmetric MIM structure has been performed by a commercial finite element method package, COMSOL Multiphysics coupled with Wave Optics Module. The outermost thick metallic layer has twin nano-hole, and the waveguiding twin-hole could draw surface plasmon polaritions (SPPs) excited in the MIM structure to the surface. Finally the guided two SPPs could unite each other and may create a single bright spot. The systematic simulation is continuing, and the results will give us valuable counsel for control of surface plasmon polaritons (SPPs) appearing around the MIM structure and twin nano-hole. (1) Optimal design of the 3D FEM model for 8-core Xeon server and rational approach for the FEM analysis, (2) behavior of SPPs affected by wavelength and polarization of light travel through fiber, (3) change in excitation condition of SPPs caused by shape of the MIM structure and twin-hole, (4) effectiveness of additional nanostructures that are aimed at focusing control of two SPPs come out from the corners of twin-hole, (5) scanning ability of the MIM/twin-hole probe at nanostructured sample surface (i.e. amount of forward and backward scattering of SPPs) will be presented and discussed. Several FIBed prototypes and their characteristic of light emission will also reported.
Testing general relativity's no-hair theorem with x-ray observations of black holes
NASA Astrophysics Data System (ADS)
Hoormann, Janie K.; Beheshtipour, Banafsheh; Krawczynski, Henric
2016-02-01
Despite its success in the weak gravity regime, general relativity (GR) has yet to be verified in the regime of strong gravity. In this paper, we present the results of detailed ray-tracing simulations aiming at clarifying if the combined information from x-ray spectroscopy, timing, and polarization observations of stellar mass and supermassive black holes can be used to test GR's no-hair theorem. The latter states that stationary astrophysical black holes are described by the Kerr family of metrics, with the black hole mass and spin being the only free parameters. We use four "non-Kerr metrics," some phenomenological in nature and others motivated by alternative theories of gravity, and study the observational signatures of deviations from the Kerr metric. Particular attention is given to the case when all the metrics are set to give the same innermost stable circular orbit in quasi-Boyer-Lindquist coordinates. We give a detailed discussion of similarities and differences of the observational signatures predicted for black holes in the Kerr metric and the non-Kerr metrics. We emphasize that even though some regions of the parameter space are nearly degenerate even when combining the information from all observational channels, x-ray observations of very rapidly spinning black holes can be used to exclude large regions of the parameter space of the alternative metrics. Although it proves difficult to distinguish between the Kerr and non-Kerr metrics for some portions of the parameter space, the observations of very rapidly spinning black holes like Cyg X-1 can be used to rule out large regions for several black hole metrics.
NASA Astrophysics Data System (ADS)
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Actual Romanian research in post-newtonian dynamics
NASA Astrophysics Data System (ADS)
Mioc, V.; Stavinschi, M.
2007-05-01
We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.
The lamppost model: effects of photon trapping, the bottom lamp and disc truncation
NASA Astrophysics Data System (ADS)
Niedźwiecki, Andrzej; Zdziarski, Andrzej A.
2018-04-01
We study the lamppost model, in which the primary X-ray sources in accreting black-hole systems are located symmetrically on the rotation axis on both sides of the black hole surrounded by an accretion disc. We show the importance of the emission of the source on the opposite side to the observer. Due to gravitational light bending, its emission can increase the direct (i.e., not re-emitted by the disc) flux by as much as an order of magnitude. This happens for near to face-on observers when the disc is even moderately truncated. For truncated discs, we also consider effects of emission of the top source gravitationally bent around the black hole. We also present results for the attenuation of the observed radiation with respect to that emitted by the lamppost as functions of the lamppost height, black-hole spin and the degree of disc truncation. This attenuation, which is due to the time dilation, gravitational redshift and the loss of photons crossing the black-hole horizon, can be as severe as by several orders of magnitude for low lamppost heights. We also consider the contribution to the observed flux due to re-emission by optically-thick matter within the innermost stable circular orbit.
NASA Technical Reports Server (NTRS)
Porter, T. R.
1979-01-01
The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.
Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T
2014-08-01
It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.
Topological transitions in continuously deformed photonic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Wang, Hai-Xiao; Xu, Changqing; Lai, Yun; Jiang, Jian-Hua; John, Sajeev
2018-02-01
We demonstrate that multiple topological transitions can occur, with high sensitivity, by continuous change of the geometry of a simple two-dimensional dielectric-frame photonic crystal consisting of circular air holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin Hall insulator of electrons and have two counterpropagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with a clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
NASA Astrophysics Data System (ADS)
Koon, Daniel W.; Heřmanová, Martina; Náhlík, Josef
2015-11-01
We have undertaken the first systematic computational and experimental study of the sensitivity of charge transport measurement to local physical defects for van der Pauw circular and square cloverleafs with rounded internal corners and unclovered geometries, using copper-foil specimens. Cloverleafs with rounded internal corners are in common use and reduce sampling of the material near their boundaries, an advantage over sharp corners. We have defined two parameters for these cloverleafs, one of which, the ‘admittance’, is the best predictor of the sensitivity at the center of these specimens, with this sensitivity depending only weakly on the central ‘core’ size when its diameter is less than about 60% of the specimen’s lateral size. Resistive measurement errors in all four geometries are linear in areas for errors up to about 50% in sheet resistance, and superlinear above. An ASTM-based ‘standard’ cloverleaf geometry, in which the central core diameter of the specimen is 1/5 the overall length and the slit widths are 1/10 the overall length, narrows the effective area sampled by the resistive measurement by a factor of about 16 × in the small-hole limit and over 40 × for larger holes, relative to unclovered goemetries, whether square or circular, with a smooth transition in these numbers for geometries intermediate between the standard cloverleaf and unclovered specimens. We believe that this work will allow materials scientists to better estimate the impact of factors such as the uniformity of film thickness and of material purity on their measurements, and allow sensor designers to better choose an optimal specimen geometry.
Characterizing Operational Performance of Rotary Subwoofer Loudspeaker
2017-10-01
rotation rate of the fan blades and the amplitude of the articulation of the fan blades to maximum the amplitude on the resulting acoustic pressure...on a stationary cart relatively close to the subwoofer. The speaker was attached to a piece of plywood with a circular hole for the fan blade that...supporting technology Device Specifications Eminent Technology Rotary Subwoofer TRW-17 Blade Number: 5 (300 rpm) Amplifier Requirement: 150 watts
NASA Astrophysics Data System (ADS)
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-03-01
Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).
Enhanced Compton Backscattering in a Periodic Mirror System for Polarized Positron Beam Generation
NASA Astrophysics Data System (ADS)
Miyahara, Yoshikazu
2002-05-01
By colliding a circularly polarized high power laser beam with a high-energy electron beam, intense circularly polarized γ-rays can be generated, which in turn can be used to produce a longitudinally polarized positron beam for a linear collider. In the present paper, an optical mirror system with periodic focal points is considered to generate intense polarized γ-rays. A CO2 laser beam propagates back and forth in a series of holed mirrors in a straight line. The diffraction loss through the holes is negligibly small, so that the laser beam can be used repeatedly for the collision. The beam size is reduced to 22 μm at a minimum and kept the same in 20 unit cells, ten of which are combined in series. A 5.8 GeV electron beam is focused to 30 μm at a minimum in a series of triplets of permanent quadrupole magnets to generate γ-rays of 60 MeV at a maximum. A γ-ray yield required for a positron beam in a linear collider can be obtained by 10 laser sources with a power of 3.1 kW each, which is considerably lower than the total power assumed in a previous proposal.
Hall, David R [Provo, UT; Hall, Jr., H. Tracy
2007-07-24
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.
Yang, Yi; Tian, Kan; Tian, Hong
2016-08-01
Based on the in-depth analysis of the current situation of the exogenous pollution of Chinese medicine resources, this research mainly discusses the intrinsic link and practical significance between the development of circular economy in Chinese medicine resources and the control of the problem of the exogenous pollution from the perspective of circular economy, and proposes some suggestions to develop the recycling economy of Chinese medicine resources from the establishment of legal system, mechanism of development, production norms, industry standards and regulatory system of the recycling of Chinese medicine resources. Copyright© by the Chinese Pharmaceutical Association.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan
2017-06-01
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.
NASA Astrophysics Data System (ADS)
Wagner, Andreas; Spelsberg-Korspeter, Gottfried
2013-09-01
The finite element method is one of the most common tools for the comprehensive analysis of structures with applications reaching from static, often nonlinear stress-strain, to transient dynamic analyses. For single calculations the expense to generate an appropriate mesh is often insignificant compared to the analysis time even for complex geometries and therefore negligible. However, this is not the case for certain other applications, most notably structural optimization procedures, where the (re-)meshing effort is very important with respect to the total runtime of the procedure. Thus it is desirable to find methods to efficiently generate mass and stiffness matrices allowing to reduce this effort, especially for structures with modifications of minor complexity, e.g. panels with cutouts. Therefore, a modeling approach referred to as Energy Modification Method is proposed in this paper. The underlying idea is to model and discretize the basis structure, e.g. a plate, and the modifications, e.g. holes, separately. The discretized energy expressions of the modifications are then subtracted from (or added to) the energy expressions of the basis structure and the coordinates are related to each other by kinematical constraints leading to the mass and stiffness matrices of the complete structure. This approach will be demonstrated by two simple examples, a rod with varying material properties and a rectangular plate with a rectangular or circular hole, using a finite element discretization as basis. Convergence studies of the method based on the latter example follow demonstrating the rapid convergence and efficiency of the method. Finally, the Energy Modification Method is successfully used in the structural optimization of a circular plate with holes, with the objective to split all its double eigenfrequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy
2018-04-01
The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.
Angular-momentum-dependent splitting of light through metal nanohole
NASA Astrophysics Data System (ADS)
Hu, Dejiao; Liu, Yu; Zhang, ZhiYou; Xiao, Xiao; Du, JingLei
2014-11-01
We numerically study the splitting of light beam which carries orbital angular momentum (OAM) through single metal nano-scale hole. A light beam carrying with OAM has a helical phase distribution in the transverse plane, where the electric field has the form: E(r,θ)=E0exp(lθ), and l is the topological charge which denotes the value of OAM. The circular polarization state is corresponding to the spin angular momentum (SAM), where s=+1 represents the left-handed polarization and s=-1 the right-handed polarization. Simulation results show l dependent splitting of beam through nano metal hole. When l is odd, the transmitted far field splits while no splitting happens when l is even. This phenomenon is attributed to the interaction between OAM beam and plasmonic mode of metal nano-hole. It is revealed that different OAM beam can excite different transverse mode in the metal cavity, which means the interaction should obey an OAM section rule. We show that even l can excite transverse mode with zero total AM and odd l can excite transverse mode with non-zero total AM within the hole. Orbital-spin conversion is also revealed in the free wave/plasmon interaction.
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Applications and Engineering Analysis of Lotus Roots under External Water Pressure
Wang, Chang Jiang; Mynors, Diane
2016-01-01
Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228
Code of Federal Regulations, 2010 CFR
2010-01-01
... audits (See Attachment L, Circular A-102 and Attachment K of Circular A-110) are not a required part of... are problems with a grant or subgrant that require audit attention. If a USDA agency considers a final...
Code of Federal Regulations, 2011 CFR
2011-01-01
... audits (See Attachment L, Circular A-102 and Attachment K of Circular A-110) are not a required part of... are problems with a grant or subgrant that require audit attention. If a USDA agency considers a final...
PIV measurements in the near wakes of hollow cylinders with holes
NASA Astrophysics Data System (ADS)
Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin
2017-05-01
The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.
Visual and anatomical outcome of macular hole surgery at a tertiary healthcare facility.
Kumari, Komalta; Tahir, Muhammad Ali; Cheema, Alyscia
2017-01-01
To assess visual and anatomical outcome of full thickness macular hole (FTMH) surgery with ILM peeling using brilliant blue G dye. Thirty patients who had clinically evident macular hole were selected. Pre-operative Optical Coherence Tomography (OCT) was done. In all cases vitrectomy was performed via 23guage 3 ports pars plana (3PPV) vitrectomy system and Brilliant blue G dye, 0.5ml dye was injected over macula which resulted in light blue stain of ILM and peeling was performed around hole in circular motion and after gas fluid exchange gas tamponade with SF6 was done. Final visual and anatomical outcome was measured as postoperative BCVA and postoperative OCT at three months respectively. Descriptive statistics were computed. Paired t-test was applied. P value≤0.05 were considered as significant. There were 12 male and 18 female patients. The mean age was 57.40±4.76 years. The mean size of macular hole was 452.20±242.33μm. The mean duration of symptoms was 16.73±13.49 weeks. Mean pre operative BCVA was 1.30±0.73 log MAR and post operative was 0.51±0.23 log MAR. Mean increased BCVA was found to be 0.22±0.13 log MAR. Primary closure of hole was achieved in 29(96.7%). Significant mean difference was found in pre operative and post operative BCVA. Brilliant blue G exhibits sufficient staining qualities and safety profile to peel ILM in the management of full thickness macular hole with significant visual and anatomical improvement.
An Investigation of the IMO Spread of Flame Test Method.
1992-03-01
Sensors: Medtherm Model 64-3-20 Radiation Pyrometer: Honeywell, Model 939A4 Minature Radiamatic Pyrometer. Data Acquisition: Hewlett Packard Model 7100B...radiant panel. Circular holes were cut along the dummy specimen center line at 50, 200, 350, 500 and 650 mm to accommodate the Medtherm flux sensor...char line 75 0-250 Complete black char; pieces are exploding and separating from backing; heavy smoke 120 Explosive delamination; no flame 130 300
Mathematical modeling of damage in unidirectional composites
NASA Technical Reports Server (NTRS)
Goree, J. G.; Dharani, L. R.; Jones, W. F.
1981-01-01
A review of some approximate analytical models for damaged, fiber reinforced composite materials is presented. Using the classical shear lag stress displacement assumption, solutions are presented for a unidirectional laminate containing a notch, a rectangular cut-out, and a circular hole. The models account for longitudinal matrix yielding and splitting as well as transverse matrix yielding and fiber breakage. The constraining influence of a cover sheet on the unidirectional laminate is also modeled.
An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.
Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem
2017-08-11
Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.
Internal ballistics of the detonation products of a blast-hole charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangush, S.K.; Garbunov, V.A.
1986-07-01
The authors investigate the gasdynamic flow of the detonation products of a blast-hole charge (the expansion of the detonation products in the blast hole and the gas outflow and propagation of shock airwaves into the face space). The problem is solved by means of a numerical program for integration of partial differential equations of one-dimensional gas-dynamics. A numerical model of the internal ballistics of a blast-hole charge is presented. In addition to the variation of the thermodynamic parameters in the blast hole, the formation of the shock wave in the face space is shown, which is the source of gasmore » ignition. Further development of the numerical model of the action of blast-hole charges is planned which will involve an analysis of a number of applied problems.« less
Livestock Waste Management in a Quality Environment. Circular 1074.
ERIC Educational Resources Information Center
Jedele, D. G., Ed.
This circular provides information to assist in assessing the pollution potential of livestock operations. It discusses a systematic approach to resolving problems through feedlot runoff control, liquid manure handling, hauling and lagooning, and ditching. (CS)
Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Newman, John A.; Piascik, Robert S.
2003-01-01
Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.
NASA Astrophysics Data System (ADS)
Kovalev, V. M.
2018-04-01
A two-dimensional system with two nonequivalent valleys in the field of a strong circularly polarized electromagnetic wave is considered. It is assumed that the optical selection rules for a given polarization of light allow band-to-band transitions only in valleys of one, optically active, type (two-dimensional layer based on transition metal dichalcogenides, gapped graphene, etc.). This leads to the formation of photon-coupled electron-hole pairs, or an "optical insulator" state. It is assumed that the valleys of the second type (optically inactive) are populated with an equilibrium electron gas. The relaxation of elementary excitations in this hybrid system consisting of an electron gas and a gas of electron-hole pairs caused by the Coulomb interaction between the particles is investigated.
A direct measurement of g-factors in II-VI and III-V core-shell nanocrystals
NASA Astrophysics Data System (ADS)
Fradkin, L.; Langof, L.; Lifshitz, E.; Gaponik, N.; Rogach, A.; Eychmüller, A.; Weller, H.; Micic, O. I.; Nozik, A. J.
2005-02-01
This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/Hg xCd 1-xTe(S) core-shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio ( T1/ τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor-hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.
REVIEWS OF TOPICAL PROBLEMS: Search for black holes
NASA Astrophysics Data System (ADS)
Cherepashchuk, Anatolii M.
2003-04-01
Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.
Prediction of vortex shedding from circular and noncircular bodies in subsonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.
1987-01-01
An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.
Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.
Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei
2014-12-16
We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.
High-velocity collision of particles around a rapidly rotating black hole
NASA Astrophysics Data System (ADS)
Harada, T.
2014-03-01
We have derived a general formula for the centre-of-mass (CM) energy for the near-horizon collision of two general geodesic particles around a Kerr black hole. We have found that if the angular momentum of the particle satisfies the critical condition, the CM energy can be arbitrarily high. We have then applied the formula to the collision of a particle orbiting an innermost stable circular orbit (ISCO) and another generic particle near the horizon, and found that the CM energy is arbitrarily high if we take the maximal limit of the black hole spin. In view of the astrophysical significance of the ISCO, this implies that particles can collide around a rapidly rotating black hole with a very high CM energy without any artificial fine-tuning. We have next applied the formula to the collision of general inclined geodesic particles and shown that in the direct collision scenario, the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black holes, not only at the equator but also on a belt centred at the equator between two latitudes. This is also true in the scenario through the collision of a last stable orbit particle. This strongly suggests that if signals due to high-energy collision are to be observed, such signals will be generated primarily on this belt.
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezryadin, A.; Pannetier, B.
1996-01-01
The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole the authors are able to visualise the trapped vortices. From this they determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (1) In case when the interhole distance is much larger than themore » coherence length, the filling factor averaged over many identical holes () is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. The authors claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H{sub c3}* > H{sub c2}. Below H{sub c2} such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (2) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in this case). In the resulting new state the filling factor is not any more the same for neighboring holes and its averaged value is equal to the frustration of the hole network.« less
Negative circular polarization dynamics in InP/InGaP quantum dots
NASA Astrophysics Data System (ADS)
Nekrasov, S. V.; Kusrayev, Yu G.; Akimov, I. A.; Korenev, V. L.; Langer, L.; Salewski, M.
2016-08-01
Photoluminescence (PL) negative circular polarization (NCP) dynamics of InP/InGaP quantum dots (QDs) was studied. Time resolved measurements of PL demonstrated that NCP vanishes, when transverse magnetic field is applied, while oscillations of polarization (that are typical for both low-dimensional and bulk materials) do not occur. Hole g-factor spread in the QD ensemble was supposed to be the most probable reason for such NCP magnetic field behavior. The dependence of NCP dynamics on the repetition period of excitation laser pulses was investigated. In case of fairly small repetition period (T = 13.3 ns) long living NCP (13.3 ns < t < 133 ns) was detected, what was ascribed to resident electron spin orientation, accumulated during many laser pulses. In that regime more than one luminescence polarization decay time exist.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
The research progress of perforating gun inner wall blind hole machining method
NASA Astrophysics Data System (ADS)
Wang, Zhe; Shen, Hongbing
2018-04-01
Blind hole processing method has been a concerned technical problem in oil, electronics, aviation and other fields. This paper introduces different methods for blind hole machining, focus on machining method for perforating gun inner wall blind hole processing. Besides, the advantages and disadvantages of different methods are also discussed, and the development trend of blind hole processing were introduced significantly.
Numerical Simulation of Black Holes
NASA Astrophysics Data System (ADS)
Teukolsky, Saul
2003-04-01
Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.
The Black Hole Information Problem
NASA Astrophysics Data System (ADS)
Polchinski, Joseph
The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas. Presented at the 2014-15 Jerusalem Winter School and the 2015 TASI.
Disposal of Liquid Wastes from Parlors and Milkhouses. Special Circular 154.
ERIC Educational Resources Information Center
Wooding, N. Henry
This circular provides information to assist in assessing the pollution potential of liquid wastes from parlors and milkhouses. Approaches to resolving problems through stabilization lagoons, irrigation, and tank collection as mandated in statutory authority are discussed. (CS)
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax
NASA Astrophysics Data System (ADS)
Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.
2018-04-01
We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Tsai, Meng-Hsun
2015-12-01
This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, A. M.; Boria, V. E.; Gimeno, B.
2014-08-15
Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also beenmore » explored.« less
Sensitivity of charge transport measurements to local inhomogeneities
NASA Astrophysics Data System (ADS)
Koon, Daniel; Wang, Fei; Hjorth Petersen, Dirch; Hansen, Ole
2012-02-01
We derive analytic expressions for the sensitivity of resistive and Hall measurements to local variations in a specimen's material properties in the combined linear limit of both small magnetic fields and small perturbations, presenting exact, algebraic expressions both for four-point probe measurements on an infinite plane and for symmetric, circular van der Pauw discs. We then generalize the results to obtain corrections to the sensitivities both for finite magnetic fields and for finite perturbations. Calculated functions match published results and computer simulations, and provide an intuitive, visual explanation for experimental misassignment of carrier type in n-type ZnO and agree with published experimental results for holes in a uniform material. These results simplify calculation and plotting of the sensitivities on an NxN grid from a problem of order N^5 to one of order N^3 in the arbitrary case and of order N^2 in the handful of cases that can be solved exactly, putting a powerful tool for inhomogeneity analysis in the hands of the researcher: calculation of the sensitivities requires little more than the solution of Laplace's equation on the specimen geometry.
Second order perturbations of a macroscopic string: Covariant approach
NASA Astrophysics Data System (ADS)
Larsen, A. L.; Nicolaidis, A.
2001-06-01
Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessary for a consistent computation of the energy. We also quantize the perturbations and derive the mass formula up to second order in perturbations for an observer using world-sheet time τ. The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be nondiagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.
Multi-Body Capture to Low-altitude Circular Orbits at Europa
NASA Technical Reports Server (NTRS)
Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.
2011-01-01
For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.
Two hybrid compaction algorithms for the layout optimization problem.
Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn
2007-01-01
In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.
Uniform circular motion in general relativity: existence and extendibility of the trajectories
NASA Astrophysics Data System (ADS)
de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.
2017-06-01
The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.
Circular polarization in the optical afterglow of GRB 121024A.
Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R
2014-05-08
Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
Interaction between jet flow and motion of two consecutive membranes in a pipe
NASA Astrophysics Data System (ADS)
Boudin, Olivier; Gutmark, Ephraim
1999-11-01
Pressure oscillations induced by combustion in a rocket motor generate coherent turbulence, which excites the structure of the rocket. In particular, it leads to the vibration of inhibitors, which endangers the mechanical integrity of the rocket. To model the phenomenon, the following facility has been set up: a blower followed by a settling chamber from where the flow exits into a cylindrical pipe; at the middle a membrane is inserted with a centered hole; another membrane is installed at the end of the pipe. The main purposes are to find how the shape of the membrane hole affects the nature of the outlet flow and how two consecutive membranes interact. In addition to experimental measurements, numerical simulations of the membrane influence on the flow have been performed. Unsteady and steady CFD models have been used to analyze the influence of the hole shape. A hot wire system and a laser gave experimental data that allow us to explain phenomena observed with flow visualizations. An amplification of the amplitude of the vibrations from the first to the second membrane was observed principally through visualizations. It also appears that the vibration mode of the membranes is different from one to another for the same excitation frequency. The study of oscillation amplitude performed with the laser has showed that the membrane, which vibrates less, is the one with a circular hole. It has also detected a difference in amplitude between the long and the small edges of the rectangular hole membrane. Moreover unsteady simulations run with Fluent have described the influence of hole shape on vortex time evolution.
Optical Variability Signatures from Massive Black Hole Binaries
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam
2017-01-01
The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.
Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements
NASA Astrophysics Data System (ADS)
Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine
2017-03-01
A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA) could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using a Bayesian model selection, we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of an MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Constraining stellar binary black hole formation scenarios with LISA eccentricity measurements
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Nishizawa, Atsushi; Sesana, Alberto; Klein, Antoine
2017-01-01
A space-based interferometer such as LISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where LISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the LISA band. We generate mock LISA observations, folding in measurement errors, and using Bayesian model selection we study whether LISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of a MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A five-year LISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.
NASA Astrophysics Data System (ADS)
Petrov, V. S.; Antokhina, E. A.; Cherepashchuk, A. M.
2017-05-01
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x / M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal-rotational distortion of the stellar shape can significantly increase the mass ratios q = M x / M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ≃ 0.35 M ⊙, in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they canmore » be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.« less
Minidisks in Binary Black Hole Accretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-03-01
The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.
NASA Astrophysics Data System (ADS)
Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.
2018-04-01
We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.
Bending and stretching finite element analysis of anisotropic viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Hilton, Harry H.; Yi, Sung
1990-01-01
Finite element algorithms have been developed to analyze linear anisotropic viscoelastic plates, with or without holes, subjected to mechanical (bending, tension), temperature, and hygrothermal loadings. The analysis is based on Laplace transforms rather than direct time integrations in order to improve the accuracy of the results and save on extensive computational time and storage. The time dependent displacement fields in the transverse direction for the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results compare favorably with analytical solutions, i.e. within 1.8 percent for bending and 10(exp -3) 3 percent for tension. The tension results of the present method are compared with those using the direct time integration scheme.
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.
1995-01-01
Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.
A modified hexagonal photonic crystal fiber for terahertz applications
NASA Astrophysics Data System (ADS)
Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek
2018-05-01
We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.
Observation of chiral phonons.
Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang
2018-02-02
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Golden spiral photonic crystal fiber: polarization and dispersion properties.
Agrawal, Arti; Kejalakshmy, N; Chen, J; Rahman, B M A; Grattan, K T V
2008-11-15
A golden spiral photonic crystal fiber (GS-PCF) design is presented in which air holes are arranged in a spiral pattern governed by the golden ratio, where the design has been inspired by the optimal arrangement of seeds found in nature. The birefringence and polarization properties of this fiber are analyzed using a vectorial finite-element method. The fiber that is investigated shows a large modal birefringence peak value of 0.016 at an operating wavelength of 1.55 microm and exhibits highly tuneable dispersion with multiple zero dispersion wavelengths and also large normal dispersion. The GS-PCF design has identical circular air holes that potentially simplify fabrication. In light of its properties, the GS-PCF could have application as a highly birefringent fiber and in nonlinear optics, and moreover the 2D chiral nature of the pattern could yield exotic properties.
Black hole binary inspiral: Analysis of the plunge
NASA Astrophysics Data System (ADS)
Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav
2016-02-01
Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.
Optical orientation of electrons in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokurin, I. A., E-mail: kokorinia@math.mrsu.ru; Petrov, P. V.; Averkiev, N. S.
2013-09-15
The theory of the optical orientation of charge carriers in compensated III-V semiconductors and quantum wells for the case where electrons are excited to the conduction band from Mn-charged acceptor states is presented. It is shown that, in GaAs/AlGaAs quantum wells, the degree of the spin orientation of conduction-band electrons in this excitation scheme can be as high as 85%. This spin-orientation enhancement results from an increase in the heavy-hole contribution to the acceptor state in the vicinity of the defect center rather than from level splitting caused by quantum confinement. It is shown that the degree of circular polarizationmore » of the photoluminescence emitted upon the recombination of electrons thermalized at the bottom of the band with holes occupying the acceptor ground state in a quantum well can exceed 70%.« less
Acoustooptic pulse-echo transducer system
NASA Technical Reports Server (NTRS)
Claus, R. O.; Wade, J. C.
1983-01-01
A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested.
Lasers in Materials Processing
NASA Astrophysics Data System (ADS)
Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.
Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.
Exploring the Landscape of Modern Academic Psychology: Finding and Filling the Holes
ERIC Educational Resources Information Center
Rozin, Paul
2007-01-01
Like any other domain of human activity, psychology has its fads and fashions. One consequence of fads is an overconcentration of resources on specific problems or approaches, which leaves other important problems or approaches (holes) underappreciated and understudied. This article is primarily about different factors (such as negativity bias,…
Environmental issues elimination through circular economy
NASA Astrophysics Data System (ADS)
Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.
2016-04-01
Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.
Black-Hole Binaries, Gravitational Waves, and Numerical Relativity
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.
Intracranial dual-mode IVUS and hyperthermia using circular arrays: preliminary experiments.
Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen
2013-01-01
In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer's performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm-a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas.
Intracranial Dual-Mode IVUS and Hyperthermia Using Circular Arrays: Preliminary Experiments
Patel, Vivek; Light, Edward; Herickhoff, Carl; Grant, Gerald; Britz, Gavin; Wilson, Christy; Palmeri, Mark; Smith, Stephen
2013-01-01
In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer’s performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm—a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas. PMID:23287504
A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.
2002-01-01
In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.
Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation
NASA Astrophysics Data System (ADS)
Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.
2018-01-01
The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.
An axion-like scalar field environment effect on binary black hole merger
NASA Astrophysics Data System (ADS)
Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen
2018-06-01
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.
NASA Astrophysics Data System (ADS)
Vologodskii, Alexander
2016-09-01
The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Ilya
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less
Pregalactic black holes - A new constraint
NASA Technical Reports Server (NTRS)
Barrow, J. D.; Silk, J.
1979-01-01
Pregalactic black holes accrete matter in the early universe and produce copious amounts of X radiation. By using observations of the background radiation in the X and gamma wavebands, a strong constraint is imposed upon their possible abundance. If pregalactic black holes are actually present, several outstanding problems of cosmogony can be resolved with typical pregalactic black hole masses of 100 solar masses. Significantly more massive holes cannot constitute an appreciable mass fraction of the universe and are limited by a specific mass-density bound.
Spin zero Hawking radiation for non-zero-angular momentum mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngampitipan, Tritos; Bonserm, Petarpa; Visser, Matt
2015-05-15
Black hole greybody factors carry some quantum black hole information. Studying greybody factors may lead to understanding the quantum nature of black holes. However, solving for exact greybody factors in many black hole systems is impossible. One way to deal with this problem is to place some rigorous analytic bounds on the greybody factors. In this paper, we calculate rigorous bounds on the greybody factors for spin zero hawking radiation for non-zero-angular momentum mode from the Kerr-Newman black holes.
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Mendelson, A.; Kring, J.
1973-01-01
A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.
Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks
ERIC Educational Resources Information Center
Zhang, Guyu
2013-01-01
This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…
NASA Astrophysics Data System (ADS)
Klein, Fred W.
2016-04-01
Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.
Klein, Fred W.
2016-01-01
Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.
Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, W.F.; Meyer, H.J.
1979-11-01
Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less
Spatial resolution test of a beam diagnostic system for DESIREE
NASA Astrophysics Data System (ADS)
Das, Susanta; Kallberg, A.
2010-11-01
A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).
Total ozone changes in the 1987 Antarctic ozone hole
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald
1988-01-01
The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.
2018-01-01
We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
Light Echoes in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct "bunches" separated by a roughly constant time lag of Deltat(t(sub lag))/M approx. 14, regardless of the bursts' azimuthal position. We argue that every other such "bunch" represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon "echo"). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M = 0.99 and mass of M = 10Stellar Mass the QPO is expected at a frequency of v(sub QPO) approx. 1.3 - 1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations. Subject headings: accretion, accretion disks - black hole physics - X-rays: galaxies - stars: oscillations
Experimental study on deep hole drilling of 17-4PH material
NASA Astrophysics Data System (ADS)
Uzhanfeng, LI; Uquantai, LI
2018-02-01
This paper uses 17-4PH material as the research object, according to the material characteristics of 17-4PH, designed and carried out deep hole drilling test. The purpose of the experiment is to study and discuss the three major problems of tool wear, chip shape and axial deviation of the hole in the process of deep hole drilling of 17-4PH materials. Through the deep hole drilling test of 17-4PH material, the variation of the chip shape and the deflection of the hole axis was obtained under different wear conditions.
Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole
NASA Astrophysics Data System (ADS)
van de Meent, Maarten
2017-01-01
The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the ISCO shift is further extended into the near-extremal regime (with spins up to 1 -a =10-20), revealing new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-defined extremal limit but instead continues to oscillate.
Electrically charged black hole on AdS3 : Scale invariance and the Smarr formula
NASA Astrophysics Data System (ADS)
Erices, Cristián; Fuentealba, Oscar; Riquelme, Miguel
2018-01-01
The Einstein-Maxwell theory with negative cosmological constant in three spacetime dimensions is considered. It is shown that the Smarr relation for the electrically charged Bañados-Teitelboim-Zanelli (BTZ) black hole emerges from two different approaches based on the scaling symmetry of the asymptotic behavior of the fields at infinity. In the first approach, we prove that the conservation law associated to the scale invariance of the action for a class of stationary and circularly symmetric configurations, allows to obtain the Smarr formula as long as a special set of holographic boundary conditions is satisfied. This particular set is singled out making the integrability conditions for the energy compatible with the scale invariance of the reduced action. In the second approach, it is explicitly shown that the Smarr formula is recovered through the Euler theorem for homogeneous functions, provided the same set of holographic boundary conditions is fulfilled.
Load concentration due to missing members in planar faces of a large space truss
NASA Technical Reports Server (NTRS)
Waltz, J. E.
1979-01-01
A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.
Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang
2016-08-10
We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20 dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.
Li, Chenxi; Cazzolato, Ben; Zander, Anthony
2016-01-01
The classic analytical model for the sound absorption of micro perforated materials is well developed and is based on a boundary condition where the velocity of the material is assumed to be zero, which is accurate when the material vibration is negligible. This paper develops an analytical model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary condition such that the velocity of air particles on the hole wall boundary is equal to the membrane vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies with its position, is investigated. A prediction method for the overall impedance of the holes and the combined impedance of the MPM is also provided. The experimental results for four different MPM configurations are used to validate the model and good agreement between the experimental and predicted results is achieved.
Hiding the weakness: structural robustness using origami design
NASA Astrophysics Data System (ADS)
Liu, Bin; Santangelo, Christian; Cohen, Itai
2015-03-01
A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.
Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs
NASA Astrophysics Data System (ADS)
Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane
2016-12-01
The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
Bubble coalescence in a power-law fluid
NASA Astrophysics Data System (ADS)
Kamat, Pritish; Thete, Sumeet; Basaran, Osman
2015-11-01
As two spherical gas bubbles in a liquid are slowly brought together, the liquid film or sheet between them drains and ultimately ruptures, forming a circular hole that connects them. The high curvature near the edge of the liquid sheet drives flow radially outward, causing the film to retract and the radius of the hole to increase with time. Recent experimental and theoretical work in this area has uncovered self-similarity and universal scaling regimes when two bubbles coalesce in a Newtonian fluid. Motivated by applications such as polymer and composites processing, food and drug manufacture, and aeration/deaeration systems where the liquids often exhibit deformation-rate thinning rheology, we extend the recent Newtonian studies to bubble coalescence in power-law fluids. In our work, we use a combination of thin-film theory and full 3D, axisymmetric computations to probe the dynamics in the aftermath of the singularity.
Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.
2018-06-01
Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.
NASA Technical Reports Server (NTRS)
2004-01-01
This panoramic image of the 3.1 millimeter-deep (just over one-tenth of an inch) hole ground by the Mars Exploration Rover Opportunity's rock abrasion tool in the target called 'Mojo 2' on 'Flatrock' was taken on the 44th martian day, or sol, of the mission. It will help complete the chemical analysis of the lowest layer of the outcrop in the crater where the rover now resides. After a brief brushing on sol 45, the science team plans to place Opportunity's spectrometers on the hole to collect data vital to their understanding of this impressive outcrop.
Scientists believe that the spherule or 'blueberry' in the upper right area of the circular impression was sliced in half by the rock abrasion tool. 'Blueberries' are a known obstruction to the grinding tool that cause it to terminate its sequence. Despite the stall, the rock abrasion tool abraded 'Flatrock' for one hour and five minutes, producing a cavity ripe for investigation.Symmetry and Circularization in the Damped Kepler Problem
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hamilton, Brian
2007-05-01
Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4
Solution to certain problems in the failure of composite structures
NASA Astrophysics Data System (ADS)
Goodsell, Johnathan
The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Dorofeyev, Illarion
2009-03-01
Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.
Circular on early marriage, March 1988.
1988-01-01
This Circular calls on government at all levels in Hunan, China, to summon the departments concerned thoroughly to investigate the problem of early child-bearing so that they can do a good job in managing the problems of unregistered cohabiting and of unmarried mothers. The Circular recommends that: "It is necessary to criticize and educate, and even punish by discipline, those parents who connive with their sons and daughters in practicing unregistered cohabiting." It also states the following: "It is necessary to keep a strict check on registry personnel who do not carry out their duties properly. Those who violate laws and discipline, engage in malpractices for selfish ends, and practice bribery and corruption, resulting in early marriage and child-bearing, must be dealt with strictly. Legal sanctions must be enforced against those who break the law." full text
Environmental issues elimination through circular economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.
Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition.more » Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.« less
Possible Potentials Responsible for Stable Circular Relativistic Orbits
ERIC Educational Resources Information Center
Kumar, Prashant; Bhattacharya, Kaushik
2011-01-01
Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In this paper an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic…
Influence of Cooling Channel Geometry on the Thermal Response in Silicon Nitride Plates Studied
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Baaklini, George Y.
2002-01-01
Engine manufacturers are continually attempting to improve the performance and efficiency of internal combustion engines. Usually they raise the operating temperature or reduce the cooling air requirement for the hot section turbine components. However, the success of these attempts depends on finding materials that are lightweight, are strong, and can withstand high temperatures. Ceramics are among the top candidate materials considered for such harsh applications. They hold low-density, high-temperature strength, and thermal conductivity, and they are undergoing investigation as potential materials for replacing nickel-base alloys and superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass. The long-term objectives of the High Temperature Propulsion Components (HOTPC) Project are to develop manufacturing technology, thermal and environmental barrier coatings (TBC/EBC), and the analytical modeling capability to predict thermomechanical stresses in minimally cooled silicon nitride turbine nozzle vanes under simulated engine conditions. Two- and three-dimensional finite element analyses with TBC were conducted at the NASA Glenn Research Center. Nondestructive evaluation was used to determine processing defects. The study included conducting preliminary parametric analytical runs of heat transfer and stress analyses under steady-state conditions to demonstrate the feasibility of using cooled Si3N4 parts for turbine applications. The influence of cooling-channel shapes (such as circular, square, and ascending-order cooling channels) on cooling efficiency and thermal stresses was investigated. Temperature distributions were generated for all cases considered under both cooling and no-cooling conditions, with air being the cooling medium. The table shows the magnitude of the maximum and minimum temperature obtained for the plates under air cooling. Each channel's cross-sectional shape delivered a different temperature; however, the two-dimensional analyses for circular and square or equal-side rectangular holes produced close results. Moreover, the model of the panel with ascending order cooling channels experienced the lowest temperature. A difference of near 260 C was found among the three cooling-hole configurations investigated. The ascending-order cooling channels arrangement showed superior performance by attaining the lowest temperature (1077 C) in comparison to the circular (1379 C) and square (1343 C) channels for the same cooling-hole size. This indicates that the panel with ascending-order cooling channels is the most suitable configuration regardless of the complexity involved in its manufacture. More details pertaining to this study are reported.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
Algebraically special space-time in relativity, black holes, and pulsar models
NASA Technical Reports Server (NTRS)
Adler, R. J.; Sheffield, C.
1973-01-01
The entire field of astronomy is in very rapid flux, and at the center of interest are problems relating to the very dense, rotating, neutron stars observed as pulsars. the hypothesized collapsed remains of stars known as black holes, and quasars. Degenerate metric form, or Kerr-Schild metric form, was used to study several problems related to intense gravitational fields.
Two-craft Coulomb formation study about circular orbits and libration points
NASA Astrophysics Data System (ADS)
Inampudi, Ravi Kishore
This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.
... such as ketorolac may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... if you have or have ever had ulcers, holes, or bleeding in your stomach or intestine, or ...
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.
2017-03-01
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.
Using LISA to Learn How Pairs of Black Holes Formed
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Artists impression of the European Space Agencys Laser Interferometer Space Antenna, currently planned for a 2034 launch. [NASA]How are black-hole binaries built? Observations of gravitational waves from these systems made using the European Space Agencys upcoming mission, the Laser Interferometer Space Antenna (LISA) may be able to reveal their origins.Formation ChannelsThere are two primary placeswhere stellar-mass black-hole binaries are thought to form:In isolation in the galactic field, as the components of a stellar binary independently evolve into black holes but remain bound to each other.In dense stellar environments like globular clusters, where the high density of already-formed black holes can cause a pair to dynamically interact and form a binary before being ejected from the cluster.Can we differentiate between these origins based on future detections of gravitational waves from black-hole binaries? A team of scientists led by Katelyn Breivik (CIERA, Northwestern University) thinks that we can!The gravitational-wave spectrum and how we detect it (click for a closer look!). While ground-based interferometers like LIGO detect black-hole binaries in the final moments before merger, LISAs lower frequency band will allow it to detect binaries earlier in their inspiral. [NASA Goddard SFC]Differentiation by EccentricityBreivik and collaborators believe that the key clue is the binarys eccentricity. Gravitational-wave emission will eventually circularize all black-hole binaries during their inspiral. But in the first formation scenario, binary evolution processes like tidal circularization and mass transfer will reduce the binarys eccentricity early on whereas in the second scenario, the binaries that form in globular clusters may retain eccentricity in their orbits long enough that we can detect it.Ground-based interferometers wont be up to this task; by the time the binary orbits shrink enough to evolve into the LIGO frequency band, the orbits wont have measurable eccentricity anymore. But the upcoming space-based LISA mission, which will operate in a lower frequency band, might be able to pick up this signature.To determine if LISA can pull it off, Breivik and collaborators simulate two populations of binary black holes: one evolved in isolation in galactic fields, and the other formed dynamically in globular clusters and then ejected. The authors then explore the evolution of these populations masses and eccentricities as their orbits narrow into the LISA-detectable frequency band.Eccentricity evolution tracks as a function of gravitational-wave frequency for black-hole binaries formed in dynamical scenarios (black) and in isolation (blue for those with a common-envelope episode, green for those without). Eccentricities above 10-2 are measurable for all binaries; those above 10-3 are measurable for 90%. LISAs frequency band is shown in grey. [Breivik et al. 2016]Separating PopulationsBreivik and collaborators find that LISA will be able to make several important distinctions. First, if LISA detects binary black holes with eccentricities of e 0.01 at frequencies above 10-2 Hz, we can be fairly certainthat these originated from dynamical processes in dense stellar environments.For binary black holes detected with eccentricities of e 0.01 at lower frequencies, they could either have formed in dense stellar environments or they could have formed in isolation. Based on this studys results, however, those with measurable eccentricities that formed in isolation mostlikely originated from a common-envelope formation. Measuring eccentricities of such systems in the future could provide constraints on the physics of how this formation mechanism works.Though the field of gravitational-wave astronomy is only just beginning, its future is promising! Theoretical studies like this one will help us to extracta greater understanding from the observations we can expect down the road.BonusCheck out this beautiful simulationfrom Northwestern Visualization and Carl Rodriguez (a co-author on the above study) that shows what the formation of a binary black hole in a globular cluster might look like!http://aasnova.org/wp-content/uploads/2016/11/accelerated_nbody_hd.mp4CitationKatelyn Breivik et al 2016 ApJL 830 L18. doi:10.3847/2041-8205/830/1/L18
Generic effective source for scalar self-force calculations
NASA Astrophysics Data System (ADS)
Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter
2012-05-01
A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.
Analysis of a novel non-contacting waveguide backshort
NASA Technical Reports Server (NTRS)
Weller, T. M.; Katehi, L. P. B.; Mcgrath, William R.
1992-01-01
A new non-contacting waveguide backshort has been developed for millimeter and submillimeter wave frequencies. The design consists of a metal bar with rectangular or circular holes cut into it, which is covered with a dielectric (mylar) layer to form a snug fit with the walls of a waveguide. Hole geometries are adjusted to obtain a periodic variation of the guide impedance on the correct length scale, in order to produce efficient reflection of RF power. It is a mechanically rugged design which can be easily fabricated for frequencies from 1 to 1000 GHz and is thus a sound alternative to the miniaturization of conventional non-contacting shorts. To aid in high-frequency design, a rigorous full-wave analysis has been completed, which will allow variations of the size, number and spacing of the holes to be easily analyzed. This paper will review the backshort design and the method developed for theoretical characterization, followed by a comparison of the experimental and numerical results. Low frequency models operating from 4-6 GHz are shown to demonstrate return loss of greater than -0.2 dB over a 33 percent bandwidth. The theory is in good agreement with measured data.
NASA Astrophysics Data System (ADS)
Turkova, Vera; Stepanova, Larisa
2018-03-01
For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.
High-Temperature Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2014-10-01
In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.
NASA Astrophysics Data System (ADS)
Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.
2017-10-01
Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.
Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.
Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan
2014-01-08
Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.
Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, K.; Kazanas, D.
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.
Worm, Paulo Valdeci; Ferreira, Nelson Pires; Ferreira, Marcelo Paglioli; Kraemer, Jorge Luiz; Lenhardt, Rene; Alves, Ronnie Peterson Marcondes; Wunderlich, Ricardo Castilho; Collares, Marcus Vinicius Martins
2012-05-01
Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P < 0.0001), 964 (176) HU for bone fragments, and 453 (241) HU for bone powder (P < 0.001). As expected, the density of the bone fragment graft was consistently greater than that of bone powder. Results confirm the accuracy and reproducibility of QCT, already demonstrated for bone in other locations, and suggest that it is an adequate tool to evaluate cranial reconstructions. The combination of QCT and cranial burr holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.
Valerio, Stephane; Clark, Benjamin J.; Chan, Jeremy H. M.; Frost, Carlton P.; Harris, Mark J.; Taube, Jeffrey S.
2010-01-01
Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of its directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 30 days of training. Animals in the 1-start point group reached criterion after about 6 training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when required to navigate to the escape hole from a novel starting point. This absence of flexibility while navigating upside-down was confirmed in experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks. PMID:20109566
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
NASA Astrophysics Data System (ADS)
Poljak, Nikola
2016-11-01
The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.
Geometrically derived difference formulae for the numerical integration of trajectory problems
NASA Technical Reports Server (NTRS)
Mcleod, R. J. Y.; Sanz-Serna, J. M.
1982-01-01
An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.
Revisiting the round bottom flask rainbow experiment
NASA Astrophysics Data System (ADS)
Selmke, Markus; Selmke, Sarah
2018-01-01
A popular demonstration experiment in optics uses a round-bottom flask filled with water to project a circular rainbow on a screen with a hole through which the flask is illuminated. We show how the vessel's wall shifts the first- and second-order bows towards each other and consequently reduces the width of Alexander's dark band. We address the challenge this introduces in observing Alexander's dark band, and explain the importance of a sufficient distance between the flask and the screen. The wall-effect also introduces a splitting of the bows that can easily be misinterpreted.
A NICER View of the Accretion Disk in GX 339-4
NASA Astrophysics Data System (ADS)
Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.
2018-01-01
The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.
Photothermal nanoblade for patterned cell membrane cutting
Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu
2010-01-01
We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656
Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect
NASA Astrophysics Data System (ADS)
Okawa, Hirotada; Cardoso, Vitor
2014-11-01
Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.
Production of black holes and their angular momentum distribution in models with split fermions
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-05-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
ERIC Educational Resources Information Center
Binder, Martin; Coad, Alex
2011-01-01
There is an ambiguity in Amartya Sen's capability approach as to what constitutes an individual's resources, conversion factors and valuable functionings. What we here call the "circularity problem" points to the fact that all three concepts seem to be mutually endogenous and interdependent. To econometrically account for this…
Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang
2018-01-01
Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235
NASA Astrophysics Data System (ADS)
Dorofeyev, Illarion
2008-08-01
The classical Kirchhoff theory of diffraction is extended to the case of real optical properties of a screen and its finite thickness. A spectral power density of diffracted electromagnetic fields by a hole in a thin film with real optical properties was calculated. The problem was solved by use of the vector Green theorems and related Green function of the boundary value problem. A spectral and spatial selectivity of the considered system was demonstrated. Diffracted patterns were calculated for the coherent and incoherent incident fields in case of holes array in a screen of perfect conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroemqvist, Martin H., E-mail: stromqv@kth.se
We study the problem of optimally controlling the solution of the obstacle problem in a domain perforated by small periodically distributed holes. The solution is controlled by the choice of a perforated obstacle which is to be chosen in such a fashion that the solution is close to a given profile and the obstacle is not too irregular. We prove existence, uniqueness and stability of an optimal obstacle and derive necessary and sufficient conditions for optimality. When the number of holes increase indefinitely we determine the limit of the sequence of optimal obstacles and solutions. This limit depends strongly onmore » the rate at which the size of the holes shrink.« less
Vibration and sound radiation of an electrostatic speaker based on circular diaphragm.
Chiang, Hsin-Yuan; Huang, Yu-Hsi
2015-04-01
This study investigated the lumped parameter method (LPM) and distributed parameter method (DPM) in the measurement of vibration and prediction of sound pressure levels (SPLs) produced by an electrostatic speaker with circular diaphragm. An electrostatic speaker with push-pull configuration was achieved by suspending the circular diaphragm (60 mm diameter) between two transparent conductive plates. The transparent plates included a two-dimensional array of holes to enable the visualization of vibrations and avoid acoustic distortion. LPM was used to measure the displacement amplitude at the center of the diaphragm using a scanning vibrometer with the aim of predicting symmetric modes using Helmholtz equations and SPLs using Rayleigh integral equations. DPM was used to measure the amplitude of displacement across the entire surface of the speaker and predict SPL curves. LPM results show that the prediction of SPL associated with the first three symmetric resonant modes is in good agreement with the results of DPM and acoustic measurement. Below the breakup frequency of 375 Hz, the SPL predicted by LPM and DPM are identical with the results of acoustic measurement. This study provides a rapid, accurate method with which to measure the SPL associated with the first three symmetric modes using semi-analytic LPM.
Amisaki, Masataka; Kihara, Kyoichi; Endo, Kanenori; Suzuki, Kazunori; Nakamura, Seiichi; Sawata, Takashi; Shimizu, Tetsu
2016-07-01
Laparoscopic total gastrectomy is not widely performed because of the difficulty of esophagojejunal reconstruction. This study analyzed complication rates of two different methods for reconstruction by a circular stapler after totally laparoscopic total gastrectomy (TLTG). Between 2010 and 2014, clinical data of 19 patients who underwent TLTG for gastric adenocarcinoma were collected retrospectively. There were two methods to fix the anvil of a circular stapler into the distal esophagus: In the single-stapling technique (SST) group, Endo-PSI(II) was used for purse-suturing on the distal esophagus for reconstruction, and in the hemi-double-stapling technique (hemi-DST) group, the esophagus was cut by linear stapler with the entry hole of the anvil shaft opened after inserting the anvil tail. In both groups, surgical procedures were the same, except for the reconstruction. All TLTGs were performed securely without mortality. Intracorporeal laparoscopic esophagojejunal anastomosis was performed successfully for all the patients. In the hemi-DST group, four patients experienced anastomotic stenosis, three of whom required endoscopic balloon dilation. In contrast, no stenosis was seen in the SST group (p = 0.033). Anastomosis with SST is preferred to that with hemi-DST to minimize postoperative complications.
Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2013-01-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.
A fully implicit numerical integration of the relativistic particle equation of motion
NASA Astrophysics Data System (ADS)
Pétri, J.
2017-04-01
Relativistic strongly magnetized plasmas are produced in laboratories thanks to state-of-the-art laser technology but can naturally be found around compact objects such as neutron stars and black holes. Detailed studies of the behaviour of relativistic plasmas require accurate computations able to catch the full spatial and temporal dynamics of the system. Numerical simulations of ultra-relativistic plasmas face severe restrictions due to limitations in the maximum possible Lorentz factors that current algorithms can reproduce to good accuracy. In order to circumvent this flaw and repel the limit to 9$ , we design a new fully implicit scheme to solve the relativistic particle equation of motion in an external electromagnetic field using a three-dimensional Cartesian geometry. We show some examples of numerical integrations in constant electromagnetic fields to prove the efficiency of our algorithm. The code is also able to follow the electric drift motion for high Lorentz factors. In the most general case of spatially and temporally varying electromagnetic fields, the code performs extremely well, as shown by comparison with exact analytical solutions for the relativistic electrostatic Kepler problem as well as for linearly and circularly polarized plane waves.
NASA Astrophysics Data System (ADS)
Lansey, Eli
Optical or photonic metamaterials that operate in the infrared and visible frequency regimes show tremendous promise for solving problems in renewable energy, infrared imaging, and telecommunications. However, many of the theoretical and simulation techniques used at lower frequencies are not applicable to this higher-frequency regime. Furthermore, technological and financial limitations of photonic metamaterial fabrication increases the importance of reliable theoretical models and computational techniques for predicting the optical response of photonic metamaterials. This thesis focuses on aperture array metamaterials. That is, a rectangular, circular, or other shaped cavity or hole embedded in, or penetrating through a metal film. The research in the first portion of this dissertation reflects our interest in developing a fundamental, theoretical understanding of the behavior of light's interaction with these aperture arrays, specifically regarding enhanced optical transmission. We develop an approximate boundary condition for metals at optical frequencies, and a comprehensive, analytical explanation of the physics underlying this effect. These theoretical analyses are augmented by computational techniques in the second portion of this thesis, used both for verification of the theoretical work, and solving more complicated structures. Finally, the last portion of this thesis discusses the results from designing, fabricating and characterizing a light-splitting metamaterial.
Choice of antenna geometry for microwave power transmission from solar power satellites
NASA Technical Reports Server (NTRS)
Potter, Seth D.
1992-01-01
A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.
Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound
Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.
1996-01-01
During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.
Clusters of primordial black holes and reionization problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belotsky, K. M., E-mail: k-belotsky@yandex.ru; Kirillov, A. A., E-mail: kirillov-aa@yandex.ru; Rubin, S. G., E-mail: sergeirubin@list.ru
2015-05-15
Clusters of primordial black holes may cause the formation of quasars in the early Universe. In turn, radiation from these quasars may lead to the reionization of the Universe. However, the evaporation of primordial black holes via Hawking’s mechanism may also contribute to the ionization of matter. The possibility of matter ionization via the evaporation of primordial black holes with allowance for existing constraints on their density is discussed. The contribution to ionization from the evaporation of primordial black holes characterized by their preset mass spectrum can roughly be estimated at about 10{sup −3}.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Black holes and local dark matter
NASA Technical Reports Server (NTRS)
Hegyi, D. J.; Kolb, E. W.; Olive, K. A.
1986-01-01
Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.
A note on the electromagnetic irradiation in a holed spatial region: A space-time approach
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-02-01
We study the role of the homological topological property of a space-time with holes (a multiple connected manifold) on the formal solution of the electromagnetic irradiation problem taking place on these “holed” space-times. In this paper, in addition to the main focus of study, we present as well important studies on this irradiation problem on other mathematical frameworks.
NASA Astrophysics Data System (ADS)
Carlip, S.
2014-10-01
The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.
Dielectric image line groove antennas for millimeterwaves
NASA Astrophysics Data System (ADS)
Solbach, K.; Wolff, I.
Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.
Hybrid porous core low loss dispersion flattened fiber for THz propagation
NASA Astrophysics Data System (ADS)
Ali, Sharafat; Ahmed, Nasim; Aljunid, Syed; Ahmad, Badlishah
2016-11-01
This manuscript represents a novel porous core fiber design for Terahertz (THz) propagation with low loss and near zero flat dispersion properties. In this proposed fiber a hexagonal arrangement is used as cladding structure and a hybrid core containing circular and triangular designs is used as the central porous region. The Effective Material Loss (EML), confinement loss and bending loss are investigated for the proposed fiber along with dispersion characteristics. Simulation results show a very low EML of 0.01944 cm-1 at 1 THz operating frequency with negligible confinement and bending loss. The proposed novel porous design shows 0.55 THz range near zero flat dispersion of ±0.05 ps/THz/cm at 0.95 ps/THz/cm. The reported design consists of only circular shaped air holes with proper core diameter and porosity to simplify the fabrication process. The newly proposed hybrid design in the porous core region can be considered as an improved edition in the research of THz porous core fibers.
NASA Astrophysics Data System (ADS)
Barate, P.; Liang, S. H.; Zhang, T. T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; Cadiz, F.; Garandel, T.; George, J. M.; Amand, T.; Devaux, X.; Hehn, M.; Mangin, S.; Tao, B.; Han, X. F.; Wang, Z. G.; Marie, X.; Lu, Y.; Renucci, P.
2017-11-01
We investigate the influence of the MgO growth process on the bias dependence of the electrical spin injection from a Co -Fe -B /MgO spin injector into a GaAs-based light-emitting diode (spin LED). With this aim, textured MgO tunnel barriers are fabricated either by sputtering or molecular-beam-epitaxy (MBE) methods. For the given growth parameters used for the two techniques, we observe that the circular polarization of the electroluminescence emitted by spin LEDs is rather stable as a function of the injected current or applied bias for the samples with sputtered tunnel barriers, whereas the corresponding circular polarization decreases abruptly for tunnel barriers grown by MBE. We attribute these different behaviors to the different kinetic energies of the injected carriers linked to differing amplitudes of the parasitic hole current flowing from GaAs to Co-Fe-B in both cases.
NASA Astrophysics Data System (ADS)
Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.
2018-01-01
We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.
Kinematics in the Circumnuclear Disk
NASA Astrophysics Data System (ADS)
Mills, Elisabeth; Casey-Clyde, J. Andrew; Rodriguez, Julio; Kruijssen, Diederik; Martin, Sergio; Moser, Lydia; Riquelme, Denise; Harada, Nanase; Zhao, Jun-Hui; Lu, Hauyu
2018-01-01
The Circumnuclear Disk (CND) extends from 1.5-5pc in radius around our Galaxy's central supermassive black hole, Sagittarius A*. New ALMA observations reveal that the CND is a more complex system than previously thought, containing multiple streams, filaments and other structures inconsistent with the uniform circular rotation that is typically assumed for this source. We will present position-position-velocity maps of this region using the HNC 3-2 and HCN 3-2 transitions, which reveal line of sight velocities that are highly discontinuous in several regions, suggesting the CND consists of several overlapping and possibly interacting clouds, rather than one continuous and circularized disk. In particular, we single out a uniquely linear stream on the eastern side of this region, which is continuous in both position and velocity, with a size of 3 x 0.1 pc and velocities ranging from -50 to 100 km/s. For this stream, we will also present the results of recently performed orbital fitting, establishing its 3 dimensional position in the central potential around Sagittarius A*.
White light generation using photonic crystal fiber with sub-micron circular lattice
NASA Astrophysics Data System (ADS)
Saghaei, Hamed; Ghanbari, Ashkan
2017-08-01
In this paper, we study a photonic crystal fiber (PCF) with circular lattice and engineer linear and nonlinear parameters by varying the diameter of air-holes. It helps us obtain low and high zero dispersion wavelengths in the visible and nearinfrared regions. We numerically demonstrate that by launching 100 fs input pulses of 1, 2, and 5 kW peak powers with center wavelength of 532 nm from an unamplified Ti:sapphire laser into a 100 mm length of the engineered PCF, supercontinua as wide as 290, 440 and 830 nm can be obtained, respectively. The spectral broadening is due to the combined action of self-phase modulation, stimulated Raman scattering and parametric four-wave-mixing generation of the pump pulses. The third and the widest spectrum covers the entire visible range and a part of near infrared region making it a suitable source for both white light applications and optical coherence tomography to measure retinal oxygen metabolic response to systemic oxygenation.
Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography
NASA Astrophysics Data System (ADS)
Skehan, Connor; Ai, Bin; Larson, Steven R.; Stone, Keenan M.; Dennis, William M.; Zhao, Yiping
2018-03-01
Several plasmonic compound nanohole arrays (CNAs), such as triangular nanoholes and fan-like nanoholes with multiple nanotips and nanogaps, are designed by a simple and efficient shadow sphere lithography technique by tuning the sphere mask size, the deposition and azimuthal angles, substrate temperature T S , and the number of deposition steps N. Compared with conventional circular nanohole arrays, the CNAs show more hot spots and exhibit new transmission speaks. Systematic finite-difference time-domain calculations indicate that different resonance modes excited by the various shaped and sized nanoholes are responsible for the enhanced plasmonic performances of CNAs. Compared to the CNA samples with only one circular hole in the unit cell, the Raman scattering intensity of the CNA with multiple triangular nanoholes, nanogaps, and nanotips can be enhanced up to 5-fold. These CNAs, due to the strong resonance due to the multiple structural features, are promising applications as optical filters, plasmonic sensors, and surface-enhanced spectroscopies.
Jerusalem lectures on black holes and quantum information
NASA Astrophysics Data System (ADS)
Harlow, D.
2016-01-01
These lectures give an introduction to the quantum physics of black holes, including recent developments based on quantum information theory such as the firewall paradox and its various cousins. An introduction is also given to holography and the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, focusing on those aspects which are relevant for the black hole information problem.
Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons
NASA Astrophysics Data System (ADS)
Abedi, Jahed; Dykaar, Hannah; Afshordi, Niayesh
2017-10-01
In classical general relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time delays of 8 M log M (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the "look elsewhere" effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at false detection probability of 1% (corresponding to 2.5 σ
Slow Down or Speed Up? Lowering Periapsis versus Escaping from a Circular Orbit
ERIC Educational Resources Information Center
Blanco, Philip
2017-01-01
Paul Hewitt's "Figuring Physics" in the Feb. 2016 issue asked whether it would take a larger velocity change to stop a satellite in a circular orbit or to cause it to escape. An extension of this problem asks: What "minimum" velocity change is required to crash a satellite into the planet, and how does that compare with the…
Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle
NASA Astrophysics Data System (ADS)
Nguyen, Duc Hai; Wang, Hu
2018-06-01
A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
Fuel optimal maneuvers of spacecraft about a circular orbit
NASA Technical Reports Server (NTRS)
Carter, T. E.
1982-01-01
Fuel optimal maneuvers of spacecraft relative to a body in circular orbit are investigated using a point mass model in which the magnitude of the thrust vector is bounded. All nonsingular optimal maneuvers consist of intervals of full thrust and coast and are found to contain at most seven such intervals in one period. Only four boundary conditions where singular solutions occur are possible. Computer simulation of optimal flight path shapes and switching functions are found for various boundary conditions. Emphasis is placed on the problem of soft rendezvous with a body in circular orbit.
Metal drilling with portable hand drills
NASA Technical Reports Server (NTRS)
Edmiston, W. B.; Harrison, H. W.; Morris, H. E.
1970-01-01
Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling.
Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue.
Matsumoto, K; Kohmura, E; Kato, A; Hayakawa, T
1998-10-01
Bone gaps or burr holes often result in small but undesirable scalp or skin depressions after craniotomy. Whereas a number of reports have discussed cranioplasties to avoid large bone defects, little has been written about the problem of small bone defects which, despite their minor size, could result in bothersome cosmetic problems. This study was designed to assess a simple method to repair burr hole defects and bridge bone gaps with autologous bone dust and fibrin glue. Bone dust was collected when burr holes were created or craniectomy was performed. After replacement of the bone flap, the burr holes or bone gap were filled with a mixture of bone dust and fibrin glue. The mixture of bone dust and fibrin glue was easily shaped to fit bone defects, resulting in favorable cosmetic outcomes 1 to 5 years after operation.
NASA Astrophysics Data System (ADS)
Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.
2010-02-01
The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.
2013-01-08
This re- search ignores effects on long-term durability, trafficability, temperature rebar corrosion , and other concerns that are of minimal... concrete because it can cause corrosion of steel reinforcement. However, the corrosion problem develops slowly with time; therefore, this problem has a...ER D C/ CR RE L TR -1 3- 1 Laboratory Evaluation of Expedient Low- Temperature Concrete Admixtures for Repairing Blast Holes in Cold
Black-hole production at LHC: Special features, problems, and expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, M. V., E-mail: savina@cern.ch
2011-03-15
A brief survey of the present-day status of the problem of multidimensional-black-hole production at accelerators according to models featuring large extra dimensions is given. The respective production cross section and the Hawking temperature and decay rate are estimated versus model parameters. Possible flaws and assumptions whose accurate inclusion can reduce significantly the probability of blackhole production at accelerators in relation to earlier optimistic estimates are also discussed.
Exciton States in a Gaussian Confining Potential Well
NASA Astrophysics Data System (ADS)
Xie, Wen-Fang; Gu, Juan
2003-11-01
We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
2011-01-15
The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of Blanchet and Iyer [Classical Quantum Gravity 20, 755 (2003)] to the case of spinning (nonprecessing) binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected properties: (1) it exactly reproduces the Schwarzschild ISCO in the test-mass limit, andmore » (2) it accurately approximates the recently calculated shift in the Schwarzschild ISCO frequency due to the conservative-piece of the gravitational self-force [L. Barack and N. Sago, Phys. Rev. Lett. 102, 191101 (2009)]. The generalization of this ISCO condition to spinning binaries has the property that it also exactly reproduces the Kerr ISCO in the test-mass limit (up to the order at which PN spin corrections are currently known). The shift in the ISCO due to the spin of the test-particle is also calculated. Remarkably, the gauge-invariant PN ISCO condition exactly reproduces the ISCO shift predicted by the Papapetrou equations for a fully relativistic spinning particle. It is surprising that an analysis of the stability of the standard PN equations of motion is able (without any form of 'resummation') to accurately describe strong-field effects of the Kerr spacetime. The ISCO frequency shift due to the conservative self-force in Kerr is also calculated from this new ISCO condition, as well as from the effective-one-body Hamiltonian of Barausse and Buonanno [Phys. Rev. D 81, 084024 (2010)]. These results serve as a useful point of comparison for future gravitational self-force calculations in the Kerr spacetime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lixin; Escala, Andres; Coppi, Paolo, E-mail: lixin.dai@yale.edu
We have carried out general relativistic particle simulations of stars tidally disrupted by massive black holes. When a star is disrupted in a bound orbit with moderate eccentricity instead of a parabolic orbit, the temporal behavior of the resulting stellar debris changes qualitatively. The debris is initially all bound, returning to pericenter in a short time about the original stellar orbital timescale. The resulting fallback rate can thus be much higher than the Eddington rate. Furthermore, if the star is disrupted close to the hole, in a regime where general relativity is important, the stellar and debris orbits display generalmore » relativistic precession. Apsidal precession can make the debris stream cross itself after several orbits, likely leading to fast debris energy dissipation. If the star is disrupted in an inclined orbit around a spinning hole, nodal precession reduces the probability of self-intersection, and circularization may take many dynamical timescales, delaying the onset of flare activity. An examination of the particle dynamics suggests that quasi-periodic flares with short durations, produced when the center of the tidal stream passes pericenter, may occur in the early-time light curve. The late-time light curve may still show power-law behavior which is generic to disk accretion processes. The detection triggers for future surveys should be extended to capture such 'non-standard' short-term flaring activity before the event enters the asymptotic decay phase, as this activity is likely to be more sensitive to physical parameters such as the black hole spin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotationalmore » instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.« less
A new approach to impulsive rendezvous near circular orbit
NASA Astrophysics Data System (ADS)
Carter, Thomas; Humi, Mayer
2012-04-01
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.
48 CFR 3001.301-70 - Amendment of HSAR.
Code of Federal Regulations, 2011 CFR
2011-10-01
... recommended by DHS personnel, other Government agencies, or the public. Change requests are to be submitted in... Management, Chief Procurement Officer, Washington, DC 20598. (1) Problem: Succinctly state the problem(s...) Homeland Security Acquisition Circular (HSAC). HSAC (see (HSAR) 48 Chapter 3001.301-72) will be used to...
NASA Astrophysics Data System (ADS)
Mahmood, Ehab A.; Rana, Sohel; Hussin, Abdul Ghapor; Midi, Habshah
2016-06-01
The circular regression model may contain one or more data points which appear to be peculiar or inconsistent with the main part of the model. This may be occur due to recording errors, sudden short events, sampling under abnormal conditions etc. The existence of these data points "outliers" in the data set cause lot of problems in the research results and the conclusions. Therefore, we should identify them before applying statistical analysis. In this article, we aim to propose a statistic to identify outliers in the both of the response and explanatory variables of the simple circular regression model. Our proposed statistic is robust circular distance RCDxy and it is justified by the three robust measurements such as proportion of detection outliers, masking and swamping rates.
Quantum interference of highly-dispersive surface plasmons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tokpanov, Yury S.; Fakonas, James S.; Atwater, Harry A.
2016-09-01
Previous experiments have shown that surface plasmon polaritons (SPPs) preserve their entangled state and do not cause measurable decoherence. However, essentially all of them were done using SPPs whose dispersion was in the linear "photon-like" regime. We report in this presentation on experiments showing how transition to "true-plasmon" non-linear dispersion regime, which occurs near SPP resonance frequency, will affect quantum coherent properties of light. To generate a polarization-entangled state we utilize type-I parametric down-conversion, occurring in a pair of non-linear crystals (BiBO), glued together and rotated by 90 degrees with respect to each other. For state projection measurements, we use a pair of polarizers and single-photon avalanche diode coincidence count detectors. We interpose a plasmonic hole array in the path of down-converted light before the polarizer. Without the hole array, we measure visibility V=99-100% and Bell's number S=2.81±0.03. To study geometrical effects we fabricated plasmonic hole arrays (gold on optically polished glass) with elliptical holes (axes are 190nm and 240nm) using focused ion beam. When we put this sample in our system we measured the reduction of visibility V=86±5% using entangled light. However, measurement using classical light gave exactly the same visibility; hence, this reduction is caused only by the difference in transmission coefficients of different polarizations. As samples with non-linear dispersion we fabricated two-layer (a-Si - Au) and three-layer (a-Si - Au - a-Si) structures on optically polished glass with different pitches and circular holes. The results of measurements with these samples will be discussed along with the theoretical investigations.
NASA Astrophysics Data System (ADS)
Motaman, S. A. H.; Komerla, K.; Storms, T.; Prahl, U.; Brecher, C.; Bleck, W.
2018-05-01
Today, in the automotive industry dual phase (DP) steels are extensively used in the production of various structural parts due to their superior mechanical properties. Hole-flanging of such steels due to simultaneous bending and stretching of sheet metal, is complex and associated with some issues such as strain and strain rate localization, development of micro-cracks, inhomogeneous sheet thinning, etc. In this study an attempt is made to improve the formability of DP sheets, by localized Laser heating. The Laser beam was oscillated in circular pattern rapidly around the pre-hole, blanked prior to the flanging process. In order to investigate formability of DP steel (DP1000), several uniaxial tensile tests were conducted from quasi to intermediate strain rates at different temperatures in warm regime. Additionally, experimentally acquired temperature and strain rate-dependent flow curves were fed into thermomechanical finite element (FE) simulation of the hole-flanging process using the commercial FE software ABAQUS/Explicit. Several FE simulations were performed in order to evaluate the effect of blank's initial temperature and punch speed on deformation localization, stress evolution and temperature distribution in DP1000 sheets during warm hole-flanging process. The experimental and numerical analyses revealed that prescribing a distribution of initial temperature between 300 to 400 °C to the blank and setting a punch speed that accommodates strain rate range of 1 to 5 s-1 in the blank, provides the highest strain hardening capacity in the considered rate and temperature regimes for DP1000. This is in fact largely due to the dynamic strain aging (DSA) effect which occurs due to pinning of mobile dislocations by interstitial solute atoms, particularly at elevated temperatures.
Spectral simulation of unsteady compressible flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Don, Wai-Sun; Gottlieb, David
1990-01-01
An unsteady compressible viscous wake flow past a circular cylinder was successfully simulated using spectral methods. A new approach in using the Chebyshev collocation method for periodic problems is introduced. It was further proved that the eigenvalues associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It was been shown that the solution of a model problem has exponential growth in time if improper boundary conditions are used. A characteristic boundary condition, which is based on the characteristics of the Euler equations of gas dynamics, was derived for the spectral code. The primary vortex shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80. No secondary frequency is observed in the power spectrum analysis of the pressure data.
Circular motion geometry using minimal data.
Jiang, Guang; Quan, Long; Tsui, Hung-Tat
2004-06-01
Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.
Stability issues of black hole in non-local gravity
NASA Astrophysics Data System (ADS)
Myung, Yun Soo; Park, Young-Jai
2018-04-01
We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.
Constant covariance in local vertical coordinates for near-circular orbits
NASA Technical Reports Server (NTRS)
Shepperd, Stanley W.
1991-01-01
A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.
Direct and indirect capture of near-Earth asteroids in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Tan, Minghu; McInnes, Colin; Ceriotti, Matteo
2017-09-01
Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetricmore » objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.« less
Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J. R.; Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260; Delikanli, S.
2016-06-13
We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated withmore » these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.« less
Subsurface temperature data in Jemez Mountains, New Mexico. Circular 151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, M.; Weidman, C.; Edwards, C.L.
1976-01-01
Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven of these tests were shallow auger holes (less than approximately 30m), 4 were rotary holes of intermediate depth (140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measurements were obtained in the 4 intermediate drill tests whereas only geothermal gradients were measured in the remaining tests. Potential ground-water movement, lack of good thermal conductivity control, and the shallow depth of many of the drill tests makes the heat-flow pattern in the area uncertain. Two trends appear likely: highermore » heat flows are to the western side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in approaching the margin of the Valles Caldera from the west. Both observations suggest a relatively shallow heat source located beneath the western part of the Valles Caldera.« less
Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow
NASA Astrophysics Data System (ADS)
Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy
2017-02-01
Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.
1970-12-01
a Circular Hole A.S. Kobayashi and D.E. Maiden 217 Fatigue Performance of High Strength An Effective Strain Concept for Steels as Related to Their a ...in AFLC Col. H.B. Morrison, Jr. 899 Results of Analysis, Fatigue Testing and Usage of a High Speed Aircraft Subjected to Combined Peacetime and High ...on the level of the in a recent study of the fatigue performance of some stable elastic limit that can be produced by dislocation pin- high yield
Elastic properties of suspended black phosphorus nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jia-Ying; Li, Yang; Zhen, Liang
2016-01-04
The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.
Yang, Yang; Lan, Ding; Huang, Yan; Li, Yanming; Wang, Yuren; Sun, Lianwen; Fan, Yubo
2014-06-01
Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.
Circular motion and Polish Doughnuts in NUT spacetime
NASA Astrophysics Data System (ADS)
Jefremov, Paul I.
The astrophysical relevance of the NUT spacetime(s) is a matter of debate due to pathological properties exhibited by this solution. However, if it is realised in nature, then we should look for the characteristic imprints of it on possible observations. One of the major sources of data on black hole astrophysics is the accretion process. Using a simple but fully analytical ``Polish Doughnuts'' model of accretion disk one gets both qualitative and quantitative differences from the Kerr spacetime produced by the presence of the gravitomagnetic charge. The present paper is based on our work Jefremov & Perlick (2016).
Evolving a Puncture Black Hole with Fixed Mesh Refinement
NASA Technical Reports Server (NTRS)
Imbiriba, Breno; Baker, John; Choi, Dae-II; Centrella, Joan; Fiske. David R.; Brown, J. David; vanMeter, James R.; Olson, Kevin
2004-01-01
We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.
Olea, R.A.; Luppens, J.A.; Tewalt, S.J.
2011-01-01
A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.
Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel
2018-01-01
We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.
NASA Astrophysics Data System (ADS)
Sekine, Hideki; Yoshida, Kimiaki
This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.
Vacuum polarization of the electromagnetic field near a rotating black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Zel'nikov, A.I.
1985-12-15
The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less
Black hole algorithm for determining model parameter in self-potential data
NASA Astrophysics Data System (ADS)
Sungkono; Warnana, Dwa Desa
2018-01-01
Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.
Torsion analysis of cracked circular bars actuated by a piezoelectric coating
NASA Astrophysics Data System (ADS)
Hassani, A. R.; Faal, R. T.
2016-12-01
This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark Arthur (Inventor)
1990-01-01
The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.
Kuller, L H
1999-11-01
Circular epidemiology can be defined as the continuation of specific types of epidemiologic studies beyond the point of reasonable doubt of the true existence of an important association or the absence of such an association. Circular epidemiology is an extreme example of studies of the consistency of associations. A basic problem for epidemiology is the lack of a systematic approach to acquiring new knowledge to reach a goal of improving public health and preventive medicine. For epidemiologists, research support unfortunately is biased toward the continued study of already proven hypotheses. Circular epidemiology, however, freezes at one point in the evolution of epidemiologic studies, failing to move from descriptive to analytical case-control and longitudinal studies, for example, to experimental, clinical trials. Good epidemiology journals are filled with very well-conducted epidemiologic studies that primarily repeat the obvious or are variations on the theme.
Modeling Flows Around Merging Black Hole Binaries
NASA Technical Reports Server (NTRS)
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
Thermodynamics sheds light on black hole dynamics
NASA Astrophysics Data System (ADS)
Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie
2018-06-01
We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.
Long term cavity closure in salt using a Carreau viscosity model.
NASA Astrophysics Data System (ADS)
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2017-04-01
The problem of a pressurized hole in an infinite homogenous body is one of the most classical problems in geoscience. The solution is well-known when the rheology is linear but becomes much more complicated when applied to formations such as salt that can behave nonlinearly. Defining a constitutive law for the steady state deformation of salt is already a challenge and we rely on two deformation mechanisms - dislocation creep and pressure solution - to do that. More precisely, we use a Carreau model for viscosity to take into account in a single and smooth manner a linear and a nonlinear process. We use this rheology to revisit the classical two-dimensional problem of a pressurized cylindrical hole in an infinite and homogeneous body under general far field loads. We are interested in characterizing the maximum closure velocity at the rim. We provide analytical solutions for pressure and far field pure shear loads and we give a proxy for the general case based on the two end members. Using this general approach, we show that adding pressure solution to the constitutive law is especially important when studying long term hole closure under low pressure loads or when the grain size is in the order of 0.1 mm. Only considering dislocation creep can lead to underestimating the closure velocity by several orders of magnitude. Adding far field shear stress also dramatically enhances hole closure. The stress situation in salt bodies is often considered as isotropic but some shear exists at the interface between moving salt bodies and cap rock so pressurized holes in these regions experience increased closure. The analytical approach adopted in this study enables us to better understand the influence of all the input parameters on hole closure in salt.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2017-12-01
Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.
Giant Holes and Emission Structures Around Planetary Nebulae on IRAS SkyView Images
NASA Astrophysics Data System (ADS)
Weinberger, R.
Years ago, on a POSS I print, we were attracted by a long very faint filament about 1.2 pc away from the high-galactic-latitude PN NGC 4361; if somehow connected to NGC 4361, this would correspond to the huge distance of ca. 25 pc. In addition, on high-contrast copies of the POSS of the region around this PN, we found that it appears to be located in a ``hole" of low surface brightness. This hole turned out to be visible on a 100mum IRAS SkyView map too and might thus be caused by some process that has either destroyed the (interstellar) dust or swept it away (Zanin and Weinberger 1997, Proc. IAU Symp. 180, 290). Recently, Clayton and de Marco (1997, AJ, 114, 2679) decribed an approximately circular 40' large ``evacuated" area around the PN A 58 (=V605 Aql), visible on an IRAS 100mu image; 40' would correspond to 40 pc at the assumed distance. They suppose that one sees the result of swept up ISM dust, originating from the wind from the PN progenitor star. - - Are there more examples of this new phenomenon? We have started a systematic search of areas around PNe using the IRAS SkyView (brightness scaling: ``Hist. Eq.", colour table: ``B-W linear" and ``Stern special"). Although by now we have examined only a fraction of the known PNe, we discovered several ``holes" that are, in a few cases, too well defined to be projection effects. Particularly intriguing are, in addition to NGC 4361, a distinct hole, best seen at 25mum and 20' across, perfectly centered on NGC 2899, and a huge (ca. 10^o large) hole plus filament around the close (400 pc) PN LoTr 5. We also found giant emission structures, like a 1^o large ``spot" centered on NGC 1514 at 12mum, a 1.5^o arc east of Lo 4, etc. Several examples are shown on the poster. - Models to explain the holes and the emission structures are in preparation.
2012 Problem 15: Frustrating Golf Ball
NASA Astrophysics Data System (ADS)
Huang, Shan; Zhu, Zheyuan; Gao, Wenli; Wang, Sihui
2015-10-01
This paper studies the condition for a golf ball to escape from a hole. The two determining factors are the ball's initial velocity v0 and its deviation from the center of the hole d. There is a critical escaping velocity vc for every deviation d. The ball's motion is analyzed by calculating the change of velocity whenever the ball collides with the hole. The critical conditions predicted by our theory are verified through experiment.
NASA Technical Reports Server (NTRS)
Epp, L. W.; Stanton, P. H.
1993-01-01
In order to add the capability of an X-band uplink onto the 70-m antenna, a new dichroic plate is needed to replace the Pyle-guide-shaped dichroic plate currently in use. The replacement dichroic plate must exhibit an additional passband at the new uplink frequency of 7.165 GHz, while still maintaining a passband at the existing downlink frequency of 8.425 GHz. Because of the wide frequency separation of these two passbands, conventional methods of designing air-filled dichroic plates exhibit grating lobe problems. A new method of solving this problem by using a dichroic plate with cross-shaped holes is presented and verified experimentally. Two checks of the integral equation solution are described. One is the comparison to a modal analysis for the limiting cross shape of a square hole. As a final check, a prototype dichroic plate with cross-shaped holes was built and measured.
Quantum self-gravitating collapsing matter in a quantum geometry
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge
2016-09-01
The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.
Diffraction of dust acoustic waves by a circular cylinder
NASA Astrophysics Data System (ADS)
Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.
2008-09-01
The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].
Resonance transition periodic orbits in the circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo
2018-04-01
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.
On the motion of hairy black holes in Einstein-Maxwell-dilaton theories
NASA Astrophysics Data System (ADS)
Julié, Félix-Louis
2018-01-01
Starting from the static, spherically symmetric black hole solutions in massless Einstein-Maxwell-dilaton (EMD) theories, we build a "skeleton" action, that is, we phenomenologically replace black holes by an appropriate effective point particle action, which is well suited to the formal treatment of the many-body problem in EMD theories. We find that, depending crucially on the value of their scalar cosmological environment, black holes can undergo steep "scalarization" transitions, inducing large deviations to the general relativistic two-body dynamics, as shown, for example, when computing the first post-Keplerian Lagrangian of EMD theories.
Tidal disruption of inclined or eccentric binaries by massive black holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-07-01
Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Frequency-domain algorithm for the Lorenz-gauge gravitational self-force
NASA Astrophysics Data System (ADS)
Akcay, Sarp; Warburton, Niels; Barack, Leor
2013-11-01
State-of-the-art computations of the gravitational self-force (GSF) on massive particles in black hole spacetimes involve numerical evolution of the metric perturbation equations in the time domain, which is computationally very costly. We present here a new strategy based on a frequency-domain treatment of the perturbation equations, which offers considerable computational saving. The essential ingredients of our method are (i) a Fourier-harmonic decomposition of the Lorenz-gauge metric perturbation equations and a numerical solution of the resulting coupled set of ordinary equations with suitable boundary conditions; (ii) a generalized version of the method of extended homogeneous solutions [L. Barack, A. Ori, and N. Sago, Phys. Rev. D 78, 084021 (2008)] used to circumvent the Gibbs phenomenon that would otherwise hamper the convergence of the Fourier mode sum at the particle’s location; (iii) standard mode-sum regularization, which finally yields the physical GSF as a sum over regularized modal contributions. We present a working code that implements this strategy to calculate the Lorenz-gauge GSF along eccentric geodesic orbits around a Schwarzschild black hole. The code is far more efficient than existing time-domain methods; the gain in computation speed (at a given precision) is about an order of magnitude at an eccentricity of 0.2, and up to 3 orders of magnitude for circular or nearly circular orbits. This increased efficiency was crucial in enabling the recently reported calculation of the long-term orbital evolution of an extreme mass ratio inspiral [N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago, Phys. Rev. D 85, 061501(R) (2012)]. Here we provide full technical details of our method to complement the above report.
Márquez, Cristina; Nadal, Roser; Armario, Antonio
2005-02-01
Susceptibility to some stress-induced pathologies may be strongly related to individual differences in the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to stressors. However, there have been few attempts in rodents to study the reliability of the individual differences in the responsiveness of the HPA to stressors and the relationship to resting corticosterone levels. In the present work, we used a normal population of Sprague-Dawley rats, with a within-subject design. Our objectives were to study: (a) the reliability of the ACTH and corticosterone response to three different novel environments widely used in psychopharmacology and (b) the relationship between stress levels of HPA hormones and the daily pattern of corticosterone secretion (six samples over a 24-h-period). Animals were repeatedly sampled using tail-nick procedure. The novel environments were the elevated plus-maze, the hole-board and the circular corridor. Animals were sampled just after 15 min exposure to the tests and again at 15 and 30 min after the termination of exposure to them (post-tests). The hormonal levels just after the tests indicate that the hole-board seems to be more stressful than the circular corridor and the elevated plus-maze, the latter being characterized by the lowest defecation rate. Correlational analysis revealed that daily pattern of resting plasma corticosterone levels did not correlate to HPA responsiveness to the tests, suggesting no relationship between resting and stress levels of HPA hormones. In contrast, the present study demonstrates, for the first time, a good within-subject reliability of the ACTH and corticosterone responses to the three environments, suggesting that HPA responsiveness to these kind of stressors is a consistent individual trait in adult rats, despite differences in the physical characteristics of the novel environments.
Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-04-01
Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.