Sample records for circular intensity differential

  1. Optically active biological particle distinguishing apparatus

    DOEpatents

    Salzman, Gary C.; Kupperman, Robert H.

    1989-01-01

    The disclosure is directed to organic particle sorting and identification. High frequency pulses of circularly polarized light, alternating between left and right, intersect a fast moving stream of organic particles. Circular intensity differential scattering and linear intensity differential scattering are monitored to uniquely identify a variety of organic particles.

  2. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn; Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysismore » of chiral molecules in biology.« less

  3. Physical Chemistry of Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Tinoco, Ignacio

    2002-10-01

    The Watson-Crick double helix of DNA was first revealed in 1953. Since then a wide range of physical chemical methods have been applied to DNA and to its more versatile relative RNA to determine their structures and functions. My major goal is to predict the folded structure of any RNA from its sequence. We have used bulk and single-molecule measurements of thermodynamics and kinetics, plus various spectroscopic methods (UV absorption, optical rotation, circular dichroism, circular intensity differential scattering, fluorescence, NMR) to approach this goal.

  4. Fun and games in Berkeley: the early years (1956-2013).

    PubMed

    Tinoco, Ignacio

    2014-01-01

    Life at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.

  5. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination.

    PubMed

    Polavarapu, Prasad L; Covington, Cody L

    2014-09-01

    For three different chiroptical spectroscopic methods, namely, vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and Raman optical activity (ROA), the measures of similarity of the experimental spectra to the corresponding spectra predicted using quantum chemical theories are summarized. In determining the absolute configuration and/or predominant conformations of chiral molecules, these similarity measures provide numerical estimates of agreement between experimental observations and theoretical predictions. Selected applications illustrating the similarity measures for absorption, circular dichroism, and corresponding dissymmetry factor (DF) spectra, in the case of VCD and ECD, and for Raman, ROA, and circular intensity differential (CID) spectra in the case of ROA, are presented. The analysis of similarity in DF or CID spectra is considered to be much more discerning and accurate than that in absorption (or Raman) and circular dichroism (or ROA) spectra, undertaken individually. © 2014 Wiley Periodicals, Inc.

  6. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2.

    PubMed

    Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin

    2017-10-24

    The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

  7. Assessment of myoblast circular RNA dynamics and its correlation with miRNA during myogenic differentiation.

    PubMed

    Zhang, Pengpeng; Xu, Haixia; Li, Rui; Wu, Wei; Chao, Zhe; Li, Cencen; Xia, Wei; Wang, Lei; Yang, Jinzeng; Xu, Yongjie

    2018-06-01

    Myoblast differentiation is a highly complex process that is regulated by proteins as well as by non-coding RNAs. Circular RNAs have been identified as an emerging new class of non-coding RNA in the modulation of skeletal muscle development, whereas their expression profiles and functional regulation in myoblast differentiation remain unknown. In the present study, we performed deep RNA-sequencing of C2C12 myoblasts during cell differentiation and uncovered 37,751 unique circular RNAs derived from 6943 hosting genes. The ensuing qRT-PCR and RNA fluorescence in situ hybridization verification were carried out to confirm the RNA-sequencing results. An unbiased analysis demonstrated dynamic circular RNA expression changes in the process of myoblast differentiation, and the circular RNA abundances were independent from their cognate linear RNAs. Gene ontology analysis showed that many down-regulated circular RNAs were exclusive to cell division and the cell cycle, whereas up-regulated circular RNAs were related to the cell development process. Furthermore, interaction networks of circular RNA-microRNA were constructed. Several microRNAs well-known for myoblast regulation, such as miR-133, miR-24 and miR-23a, were in this network. In summary, this study showed that circular RNA expression dynamics changed during myoblast differentiation. Circular RNAs play a role in regulating the myoblast cell cycle and development by acting as microRNA binding sites to facilitate their regulation of gene expression during myoblast differentiation. These findings open a new avenue for future investigation of this emerging RNA class in skeletal muscle growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Clinical measuring system for the form and position errors of circular workpieces using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Tan, Jiubin; Qiang, Xifu; Ding, Xuemei

    1991-08-01

    Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.

  9. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  10. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.

    2018-06-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  11. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  12. Dynamic perturbation effects upon the circular dichroism intensity induced in an aggregate of dye chromophores bound to biopolymers

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1980-11-01

    The dynamic perturbation effects of polarizable monomer perturbers upon the circular dichroism intensity arising from absorption transitions of an arbitrary aggregate of dye chromophores bound to a large host polymer are formulated using the linear response theory in the decorrelation approximation, where the interchromophoric retardation phase factors are eliminated by a first-order Taylor expansion which is compatible with the use of the retarded helix selection rules in the long-wavelength approximation. A space-averaged and closed-form formulation of the non-conservative circular dichroism intensity which is perturbed by intensity with the outside perturber transitions is derived in the limit of the weak dynamic perturbation where perturber—perturber interactions are negligible. The relevant formulation is applied in order to investigate the intercalation model dependence of the non-conservative circular dichroism intensity induced at the visible absorption band of proflavine molecules intercalated in either poly(A—T) or poly(G—C).

  13. Relativistic Ionization with Intense Linearly Polarized Light

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Plummer

    The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.

  14. Vector optical activity in the Weyl semimetal TaAs

    DOE PAGES

    Norman, M. R.

    2015-12-15

    Here, it is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x-rays is predicted to be comparable to that arising from linear dichroism. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed.

  15. A Theoretical Understanding of Circular Polarization Memory in Random Media

    NASA Astrophysics Data System (ADS)

    Dark, Julia

    Radiative transport theory describes the propagation of light in random media that absorb, scatter, and emit radiation. To describe the propagation of light, the full polarization state is quantified using the Stokes parameters. For the sake of mathematical convenience, the polarization state of light is often neglected leading to the scalar radiative transport equation for the intensity only. For scalar transport theory, there is a well-established body of literature on numerical and analytic approximations to the radiative transport equation. We extend the scalar theory to the vector radiative transport equation (vRTE). In particular, we are interested in the theoretical basis for a phenomena called circular polarization memory. Circular polarization memory is the physical phenomena whereby circular polarization retains its ellipticity and handedness when propagating in random media. This is in contrast to the propagation of linear polarization in random media, which depolarizes at a faster rate, and specular reflection of circular polarization, whereby the circular polarization handedness flips. We investigate two limits that are of known interest in the phenomena of circular polarization memory. The first limit we investigate is that of forward-peaked scattering, i.e. the limit where most scattering events occur in the forward or near-forward directions. The second limit we consider is that of strong scattering and weak absorption. In the forward-peaked scattering limit we approximate the vRTE by a system of partial differential equations motivated by the scalar Fokker-Planck approximation. We call the leading order approximation the vector Fokker-Planck approximation. The vector Fokker Planck approximation predicts that strongly forward-peaked media exhibit circular polarization memory where the strength of the effect can be calculated from the expansion of the scattering matrix in special functions. In addition, we find in this limit that total intensity, linear polarization, and circular polarization decouple. From this result we conclude, that in the Fokker-Planck limit the scalar approximation is an appropriate leading order approximation. In the strong scattering and weak absorbing limit the vector radiative transport equation can be analyzed using boundary layer theory. In this case, the problem of light scattering in an optically thick medium is reduced to a 1D vRTE near the boundary and a 3D diffusion equation in the interior. We develop and implement a numerical solver for the boundary layer problem by using a discrete ordinate solver in the boundary layer and a spectral method to solve the diffusion approximation in the interior. We implement the method in Fortran 95 with external dependencies on BLAS, LAPACK, and FFTW. By analyzing the spectrum of the discretized vRTE in the boundary layer, we are able to predict the presence of circular polarization memory in a given medium.

  16. Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches

    NASA Astrophysics Data System (ADS)

    Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.

    2016-04-01

    Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.

  17. Propagation of a phase-locked circular dark hollow beams array in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Xu, Xiaojun; Liu, Zejin

    2010-10-01

    The propagation of phase-locked circular dark hollow beams array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on the extended Huygens-Fresnel principle. The effects of turbulence, dark parameter and beam order of the beams array on the intensity pattern are studied and analyzed. It is found that the intensity pattern of the phase-locked circular dark hollow beams array will evolve from a multiple-spot-pattern into a Gaussian beam spot under the isotropic influence of the turbulence. The intensity pattern of beam array with a larger dark parameter and beam order evolves into the Gaussian-shape faster with increasing propagation distance.

  18. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  19. Partial differential equation-based localization of a monopole source from a circular array.

    PubMed

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  20. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  1. The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Liu, Z. J.; Wu, Y.

    2008-07-01

    Based on the Huygens-Fresnel integral, the properties of a circular flattened Gaussian beam through a stigmatic optical system in turbulent atmosphere are investigated. Analytical formulas for the average intensity are derived. As elementary examples, the average intensity distributions of a collimated circular flattened Gaussian beam and a focused circular flattened Gaussian beam through a simple optical system are studied. To see the effects of the optical system on the propagation, the average intensity distributions of the beam for direct propagation are also studied. From the analysis, comparison and numerical calculation we can see that there are many differences between the two propagations. These differences are due to the geometrical magnification of the optical system, different diffraction and different turbulence-induced spreading. Namely, an optical system not only affects the diffraction but also affects the turbulence-induced spreading.

  2. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Wavefront image sensor chip

    PubMed Central

    Cui, Xiquan; Ren, Jian; Tearney, Guillermo J.; Yang, Changhuei

    2010-01-01

    We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications. PMID:20721059

  4. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  5. Lung Cancer-Specific Circular RNAs as Biomarkers

    DTIC Science & Technology

    2017-08-01

    Award Number: W81XWH-16-1-0239 TITLE: Lung Cancer-Specific Circular RNAs as Biomarkers PRINCIPAL INVESTIGATOR: Yin-Yuan Mo CONTRACTING...Specific Circular RNAs as Biomarkers 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0239 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yin-Yuan Mo Betty...14. ABSTRACT The major goal of this application is to determine whether lung cancer cells differentially express circular RNAs such that these

  6. Differential polarization laser scanning microscopy: biological applications

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Besson, F.; Pomozi, I.; Garab, G.

    2005-09-01

    With the aid of a differential polarization (DP) apparatus, developed in our laboratory and attached to our laser scanning confocal microscope, we can measure the magnitude and spatial distribution of 8 different DP quantities: linear and circular dichroism (LD&CD), linear and circular anisotropy of the emission (R and CPL, confocal), fluorescence detected dichroisms (FDLD&FDCD, confocal), linear birefringence (LB), and the degree of polarization of fluorescence emission (P, confocal). The attachment uses high frequency modulation and subsequent demodulation, via lock-in amplifier, of the detected intensity values, and records and displays pixel-by-pixel the measured DP quantity. These microscopic DP data carry important physical information on the molecular architecture of anisotropically organized samples. Microscopic DP measurements are thought to be of particular importance in biology. In most biological samples anisotropy is difficult to determine with conventional, macroscopic DP measurements and microscopic variations are of special significance. In this paper, we describe the method of LB imaging. Using magnetically oriented isolated chloroplasts trapped in polyacrylamide gel, we demonstrate that LB can be determined with high sensitivity and good spatial resolution. Granal thylakoid membranes in edge-aligned orientation exhibited strong LB, with large variations in its sign and magnitude. In face-aligned position LB was considerably weaker, and tended to vanish when averaged for the whole image. The strong local variations are attributed to the inherent heterogeneity of the membranes, i.e. to their internal differentiation into multilamellar, stacked membranes (grana), and single thylakoids (stroma membranes). Further details and applications of our DP-LSM will be published elsewhere.

  7. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  8. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  9. Evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models.

  10. Simple circular odor chart for characterization of trace amounts of odorants discharged from thirteen odor sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshika, Y.; Nihei, Y.; Muto, G.

    1981-04-01

    A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less

  11. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  12. Propagation of various dark hollow beams in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; He, Sailing

    2006-02-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  13. Propagation of various dark hollow beams in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; He, Sailing

    2006-02-20

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  14. A biophysical investigation on the binding of proflavine with human hemoglobin: Insights from spectroscopy, thermodynamics and AFM studies.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-12-01

    Interaction of proflavine with hemoglobin (Hgb) was studied employing spectroscopy, calorimetry, and atomic force microscopy. The equilibrium constant was found to be of the order 10 4 M -1 . The quenching of Hgb fluorescence by proflavine was due to the complex formation. Calculation of the molecular distance (r) between the donor (β-Trp37 of Hgb) and acceptor (proflavine) suggested that energy can be efficiently transferred from the β-Trp37 residue at the α1β2 interface of the protein to the dye. Proflavine induced significant secondary structural changes in Hgb. Synchronous fluorescence studies showed that proflavine altered the microenvironment around the tryptophan residues to a greater extent than the tyrosine residues. Circular dichroism spectral studies showed that proflavine caused significant reduction in the α-helical content of Hgb. The esterase activity assay further complemented the circular dichroism data. The Soret band intensity of Hgb decreased upon complexation. Differential scanning calorimetry and circular dichroism melting results revealed that proflavine induced destabilization of Hgb. The binding was driven by both positive entropy and negative enthalpy. Atomic force microscopy studies revealed that the essential morphological features of hemoglobin were retained in the presence of proflavine. Overall, insights on the photophysical aspects and energetics of the binding of proflavine with Hgb are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  16. CiPerGenesis, A Mutagenesis Approach that Produces Small Libraries of Circularly Permuted Proteins Randomly Opened at a Focused Region: Testing on the Green Fluorescent Protein.

    PubMed

    Gaytán, Paul; Roldán-Salgado, Abigail; Yáñez, Jorge A; Morales-Arrieta, Sandra; Juárez-González, Víctor R

    2018-06-12

    Circularly permuted proteins (cpPs) represent a novel type of mutant proteins with original termini that are covalently linked through a peptide connector and opened at any other place of the polypeptide backbone to create new ends. cpPs are finding wide applications in biotechnology because their properties may be quite different from those of the parental protein. However, the actual challenge for the creation of successful cpPs is to identify those peptide bonds that can be broken to create new termini and ensure functional and well-folded cpPs. Herein, we describe CiPerGenesis, a combinatorial mutagenesis approach that uses two oligonucleotide libraries to amplify a circularized gene by PCR, starting and ending from a focused target region. This approach creates small libraries of circularly permuted genes that are easily cloned in the correct direction and frame using two different restriction sites encoded in the oligonucleotides. Once expressed, the protein libraries exhibit a unique sequence diversity, comprising cpPs that exhibit ordinary breakpoints between adjacent amino acids localized at the target region as well as cpPs with new termini containing user-defined truncations and repeats of some amino acids. CiPerGenesis was tested at the lid region G134-H148 of green fluorescent protein (GFP), revealing that the most fluorescent variants were those starting at Leu141 and ending at amino acids Tyr145, Tyr143, Glu142, Leu141, Lys140, and H139. Purification and biochemical characterization of some variants suggested a differential expression, solubility and maturation extent of the mutant proteins as the likely cause for the variability in fluorescence intensity observed in colonies.

  17. Circularly polarized Raman study on diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Lee, Je-Ho; Kim, Sera; Seong, Maeng-Je

    2018-01-01

    Circularly polarized Raman and/or photoluminescence (PL) analyses have recently been very important in studying physical properties of many layered materials that were either mechanically exfoliated or grown by chemical-vapor-deposition (CVD) on silicon substrates. Since silicon Raman signal is always accompanied by the circularly polarized Raman and/or PL signal from the layered materials, observation of proper circularly polarized Raman selection rules on silicon substrates would be extremely good indicator that the circularly polarized Raman and/or PL measurements on the layered materials were done properly. We have performed circularly polarized Raman measurements on silicon substrates and compared the results with the Raman intensities calculated by using Raman tensors of the diamond crystal structure. Our experimental results were in excellent agreement with the calculation. Similar circularly polarized Raman analysis done on germanium substrate also showed good agreement.

  18. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  19. Uniform circular motion in general relativity: existence and extendibility of the trajectories

    NASA Astrophysics Data System (ADS)

    de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.

    2017-06-01

    The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.

  20. An Intense Polarized Radio Flare from AR Lac

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Neff, J. E.; Bookbinder, J.; Pagano, I.

    1992-12-01

    We have detected an intense, highly circularly polarized radio flare from the close binary system AR Lacertae during a 4 day multi-wavelength observing campaign in 1991 December. The flare lasted more than 6 hours and was preceded by a strong CIV flare one day earlier. The peak circular polarization was 70%, 38%,and 39% RCP at 1.4, 4.9, and 8.4 GHz respectively, with ~ 15% LCP at 15 and 22 GHZ. The high degree of circular polarization over such a large time scale and frequency range is highly unusual compared with previously observed radio flares from RS CVn binaries. Given these unusual characteristics, it is difficult to interpret the radiation mechanism either as a result of gyrosynchrotron emission or a coherent process such as an electron cyclotron maser.

  1. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  2. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness.

    PubMed

    Shen, Zhaocun; Wang, Tianyu; Shi, Lin; Tang, Zhiyong; Liu, Minghua

    2015-07-01

    Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3 -symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines.

  3. Interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Y.M.

    1998-12-31

    The interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite is investigated using the techniques of Hankel transform and multiplying factors. The boundary conditions of the problem have three different parts. The stress intensity factors at the inner and the outer crack tips are obtained in exact expressions as the products of a dimensional quantity and nondimensional functions. The presence of a penny-shaped crack is shown to have a strong effect on the magnitude of the stress intensity of the external circular crack. The crack surface displacement is also obtained and evaluated numerically formore » different values of the ratio of the inner crack radius to the external crack radius.« less

  4. Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula.

    PubMed

    Chen, Zikuan; Calhoun, Vince D; Chang, Shengjiang

    2008-11-10

    The Feldkamp-David-Kress (FDK) algorithm is widely adopted for cone-beam reconstruction due to its one-dimensional filtered backprojection structure and parallel implementation. In a reconstruction volume, the conspicuous cone-beam artifact manifests as intensity fall-off along the longitudinal direction (the gantry rotation axis). This effect is inherent to circular cone-beam tomography due to the fact that a cone-beam dataset acquired from circular scanning fails to meet the data sufficiency condition for volume reconstruction. Upon observations of the intensity fall-off phenomenon associated with the FDK reconstruction of a ball phantom, we propose an empirical weight formula to compensate for the fall-off degradation. Specifically, a reciprocal cosine can be used to compensate the voxel values along longitudinal direction during three-dimensional backprojection reconstruction, in particular for boosting the values of voxels at positions with large cone angles. The intensity degradation within the z plane, albeit insignificant, can also be compensated by using the same weight formula through a parameter for radial distance dependence. Computer simulations and phantom experiments are presented to demonstrate the compensation effectiveness of the fall-off effect inherent in circular cone-beam tomography.

  5. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, Arturo

    2017-03-01

    We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.

  6. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  7. FUCHS-towards full circular RNA characterization using RNAseq.

    PubMed

    Metge, Franziska; Czaja-Hasse, Lisa F; Reinhardt, Richard; Dieterich, Chistoph

    2017-01-01

    Circular RNAs (circRNAs) belong to a recently re-discovered species of RNA that emerge during RNA maturation through a process called back-splicing. A downstream 5' splice site is linked to an upstream 3' splice site to form a circular transcript instead of a canonical linear transcript. Recent advances in next-generation sequencing (NGS) have brought circRNAs back into the focus of many scientists. Since then, several studies reported that circRNAs are differentially expressed across tissue types and developmental stages, implying that they are actively regulated and not merely a by-product of splicing. Though functional studies have shown that some circRNAs could act as miRNA-sponges, the function of most circRNAs remains unknown. To expand our understanding of possible roles of circular RNAs, we propose a new pipeline that could fully characterizes candidate circRNA structure from RNAseq data-FUCHS: FU ll CH aracterization of circular RNA using RNA- S equencing. Currently, most computational prediction pipelines use back-spliced reads to identify circular RNAs. FUCHS extends this concept by considering all RNA-seq information from long reads (typically >150 bp) to learn more about the exon coverage, the number of double break point fragments, the different circular isoforms arising from one host-gene, and the alternatively spliced exons within the same circRNA boundaries. This new knowledge will enable the user to carry out differential motif enrichment and miRNA seed analysis to determine potential regulators during circRNA biogenesis. FUCHS is an easy-to-use Python based pipeline that contributes a new aspect to the circRNA research.

  8. Experimental single-strain mobilomics reveals events that shape pathogen emergence

    DOE PAGES

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; ...

    2016-07-04

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less

  10. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  11. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  12. Circular RNA: New Regulatory Molecules.

    PubMed

    Belousova, E A; Filipenko, M L; Kushlinskii, N E

    2018-04-01

    Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.

  13. Circular RNAs play an important role in late-stage gastric cancer: Circular RNA expression profiles and bioinformatics analyses.

    PubMed

    Fang, Yantian; Ma, Minzhe; Wang, Jiangli; Liu, Xiaowen; Wang, Yanong

    2017-06-01

    Gastric cancer is one of the most common tumors of the digestive system. Here, analysis of the expression profiles of circular RNAs in advanced gastric adenocarcinoma and adjacent normal mucosa tissues revealed differential expression of 306 circular RNAs, among which 273 were predicted to exert regulatory effects on target microRNAs. The downstream pathway networks of circular RNA-microRNA were mapped and the node genes were identified. In particular, we found that the expression of hsa_circ_0058246 was elevated in tumor specimens of patients with poor clinical outcomes. Our collective findings indicate that circular RNAs play a critical role in gastric cancer tumorigenesis. Data from this study provide a new perspective on the molecular pathways underlying metastasis and recurrence of gastric cancer and highlight potential therapeutic targets that may contribute to more effective diagnosis and treatment of the disease.

  14. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.

    PubMed

    Yoo, SeokJae; Park, Q-Han

    2015-09-25

    We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration, and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures.

  15. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  16. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness† †Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5sc01056j Click here for additional data file.

    PubMed Central

    Shen, Zhaocun; Shi, Lin; Tang, Zhiyong

    2015-01-01

    Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3-symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines. PMID:29218194

  17. A re-evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1988-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method.

  18. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.

    PubMed

    Wei, Qingkai; Huang, Xun; Peers, Edward

    2013-06-01

    An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method.

  19. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    PubMed

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Stress-intensity factors for cracks emanating from the loaded fastener hole

    NASA Technical Reports Server (NTRS)

    Shivakumar, V.; Hsu, Y. C.

    1977-01-01

    Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.

  1. Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport-of-intensity equation.

    PubMed

    Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M

    2004-07-20

    We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.

  2. Tight focusing of radially polarized circular Airy vortex beams

    NASA Astrophysics Data System (ADS)

    Chen, Musheng; Huang, Sujuan; Shao, Wei

    2017-11-01

    Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.

  3. [The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].

    PubMed

    Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M

    2016-01-01

    Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.

  4. Morphology and ultrastructure of the esophagus during the ontogeny of the spider crab Maja brachydactyla (Decapoda, Brachyura, Majidae).

    PubMed

    Castejón, Diego; Rotllant, Guiomar; Ribes, Enric; Durfort, Mercè; Guerao, Guillermo

    2018-06-01

    The esophagus of the eucrustaceans is known as a short tube that connects the mouth with the stomach but has generally received little attention by the carcinologists, especially during the larval stages. By this reason, the present study is focused on the morphology and ultrastructure of the esophagus in the brachyuran Maja brachydactyla during the larval development and adult stage. The esophagus shows internally four longitudinal folds. The simple columnar epithelium is covered by a thick cuticle. The epithelial cells of the adults are intensively interdigitated and show abundant apical mitochondria and bundles of filamentous structures. The cuticle surface has microspines and mutually exclusive pores. Three muscle layers surrounded by the connective tissue are reported: circular muscles forming a broad continuous band, longitudinal muscle bundles adjacent to the circular muscles, and dilator muscles crossing the connective tissue vertically toward the epithelium. The connective tissue has rosette glands. The esophagus of the larvae have epithelial cells with big vesicles but poorly developed interdigitations and filamentous structures, the cuticle is formed by a procuticle without differentiated exocuticle and endocuticle, the connective layer is thin and the rosette glands are absent. The observed features can be explained by his role in the swallowing of the food. © 2018 Wiley Periodicals, Inc.

  5. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  6. Generation of circular polarization in CMB radiation via nonlinear photon-photon interaction

    NASA Astrophysics Data System (ADS)

    Sadegh, Mahdi; Mohammadi, Rohoollah; Motie, Iman

    2018-01-01

    Standard cosmological models do predict a measurable amount of anisotropies in the intensity and linear polarization of the cosmic microwave background radiation (CMB) via Thomson scattering, even though these theoretical models do not predict circular polarization for CMB radiation. In other hand, the circular polarization of CMB has not been excluded in observational evidences. Here we estimate the circular polarization power spectrum ClV (S ) in CMB radiation due to Compton scattering and nonlinear photon-photon forward scattering via Euler-Heisenberg effective Lagrangian. We have estimated the average value of circular power spectrum is l (l +1 )ClV (S )/(2 π )˜10-4 (μ K) 2 for l ˜300 at present time which is smaller than recently reported data for upper limit of circular polarization (SPIDER collaboration). As a result to test our results, the ability to detect nano-Kelvin level signals of CMB circular polarization requires. We also show that the generation of B-mode polarization for CMB photons in the presence of the primordial scalar perturbation via Euler-Heisenberg interaction is possible however this contribution for B-mode polarization is not remarkable.

  7. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.

    2016-07-15

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less

  8. Optimization of Region of Interest Drawing for Quantitative Analysis: Differentiation Between Benign and Malignant Breast Lesions on Contrast-Enhanced Sonography.

    PubMed

    Nakata, Norio; Ohta, Tomoyuki; Nishioka, Makiko; Takeyama, Hiroshi; Toriumi, Yasuo; Kato, Kumiko; Nogi, Hiroko; Kamio, Makiko; Fukuda, Kunihiko

    2015-11-01

    This study was performed to evaluate the diagnostic utility of quantitative analysis of benign and malignant breast lesions using contrast-enhanced sonography. Contrast-enhanced sonography using the perflubutane-based contrast agent Sonazoid (Daiichi Sankyo, Tokyo, Japan) was performed in 94 pathologically proven palpable breast mass lesions, which could be depicted with B-mode sonography. Quantitative analyses using the time-intensity curve on contrast-enhanced sonography were performed in 5 region of interest (ROI) types (manually traced ROI and circular ROIs of 5, 10, 15, and 20 mm in diameter). The peak signal intensity, initial slope, time to peak, positive enhancement integral, and wash-out ratio were investigated in each ROI. There were significant differences between benign and malignant lesions in the time to peak (P < .05), initial slope (P < .001), and positive enhancement integral (P < .05) for the manual ROI. Significant differences were found between benign and malignant lesions in the time to peak (P < .05) for the 5-mm ROI; the time to peak (P < .05) and initial slope (P< .05) for the 10-mm ROI; absolute values of the peak signal intensity (P< .05), time to peak (P< .01), and initial slope (P< .005) for the 15-mm ROI; and the time to peak (P < .05) and initial slope (P < .05) for the 20-mm ROI. There were no statistically significant differences in any wash-out ratio values for the 5 ROI types. Kinetic analysis using contrast-enhanced sonography is useful for differentiation between benign and malignant breast lesions. © 2015 by the American Institute of Ultrasound in Medicine.

  9. Choice of antenna geometry for microwave power transmission from solar power satellites

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  10. Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis.

    PubMed

    Pan, Ting; Sun, Xiuqiang; Liu, Yangxuan; Li, Hui; Deng, Guangbin; Lin, Honghui; Wang, Songhu

    2018-02-01

    1599 novel circRNAs and 1583 heat stress-specific circRNAs were identified in Arabidopsis. Heat stress enhanced accumulation of circRNAs remarkably. Heat stress altered the sizes of circRNAs, numbers of circularized exons and alterative circularization events. A putative circRNA-mediated ceRNA networks under heat stress was established. Heat stress retards plant growth and destabilizes crop yield. The noncoding RNAs were demonstrated to be involved in plant response to heat stress. As a newly-characterized class of noncoding RNAs, circular RNAs (circRNAs) play important roles in transcriptional and post-transcriptional regulation. A few recent investigations indicated that plant circRNAs were differentially expressed under abiotic stress. However, little is known about how heat stress mediates biogenesis of circRNAs in plants. Here, we uncovered 1599 previously-unknown circRNAs and 1583 heat-specific circRNAs, by RNA-sequencing and bioinformatic analysis. Our results indicated that much more circRNAs were expressed under heat stress than in control condition. Besides, heat stress also increased the length of circRNAs, the quantity of circularized exons, and alternative circularization events. Moreover, we observed a positive correlation between expression patterns of some circRNAs and their parental genes. The prediction of ceRNA (competing endogenous RNA) networks indicated that differentially-expressed circRNAs could influence expression of many important genes, that participate in response to heat stress, hydrogen peroxide, and phytohormone signaling pathways, by interacting with the corresponding microRNAs. Together, our observations indicated that heat stress had great impacts on the biogenesis of circRNAs. Heat-induced circRNAs might participate in plant response to heat stress through the circRNA-mediated ceRNA networks.

  11. Enhancement of fine-scale mixing for fuel-rich plume combustion

    NASA Astrophysics Data System (ADS)

    Schadow, K. C.; Gutmark, E.; Parr, T. P.; Parr, D. M.; Wilson, K. J.; Ferrell, G. B.

    1987-01-01

    The effect of enhancing small-scale turbulent structures on the combustion intensity and flame stability was studied in nonreacting and reacting flows. Hot-wire anemometry was used to map the mean and turbulent flow fields of the nonreacting flows. Reacting flows were studied in a free flame and in a ducted gas-generator fuel-rich plume using Planar Laser Induced Fluorescence, a rake of thermocouples and high speed photography. A modified circular nozzle having several backward facing steps upstream of its exit was used to introduce numerous inflection points in the initial mean velocity profiles, thus producing multiple corresponding sources of small-scale turbulence generators. Cold flow tests showed turbulence increases of up to six times the initial turbulence level relative to a circular nozzle. The ensuing result was that the flame of this nozzle was more intense with a homogeneous heat release. The fuel-rich plume was stable even in supersonic speeds, and secondary ignition was obtained under conditions that prevented sustained afterburning using the circular nozzle.

  12. [Anopexy according to Longo for hemorrhoids].

    PubMed

    Ruppert, R

    2016-11-01

    The treatment for hemorrhoids ranges from conservative management to surgical procedures. The procedures are tailored to the individual grading of hemorrhoids and the individual complaints. The standard Goligher classification of the hemorrhoids is the basis for further treatment and no differentiation is made between segmental hemorrhoids and circular hemorrhoids. In the case of advanced circular hemorrhoid disease the surgical procedure with a stapler, so-called stapler anopexy, is the procedure of choice.

  13. Identification of differentially expressed circular RNAs in human colorectal cancer.

    PubMed

    Zhang, Peili; Zuo, Zhigui; Shang, Wenjing; Wu, Aihua; Bi, Ruichun; Wu, Jianbo; Li, Shaotang; Sun, Xuecheng; Jiang, Lei

    2017-03-01

    Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p < 0.0001) and hsa_circRNA_104700 ( p = 0.0003) were significantly lower in colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p < 0.0001) and 0.616 ( p < 0.0001), respectively. In conclusion, these results suggest that hsa_circRNA_103809 and hsa_circRNA_104700 may be potentially involved in the development of colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.

  14. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test.

    PubMed

    Biagioni, Audrey Francisco; dos Anjos-Garcia, Tayllon; Ullah, Farhad; Fisher, Isaac René; Falconi-Sobrinho, Luiz Luciano; de Freitas, Renato Leonardo; Felippotti, Tatiana Tocchini; Coimbra, Norberto Cysne

    2016-02-01

    Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and MoS2

    NASA Astrophysics Data System (ADS)

    Tatsumi, Yuki; Saito, Riichiro

    2018-03-01

    Raman spectra of graphene and MoS2 are calculated for incident and scattered circularly polarized light. In the case of graphene, the well known G -band Raman spectra have a not well known property that the helicity of the incident circularly polarized light changes to another helicity in the scattered light. Using the electron-photon and electron-phonon matrix elements by first-principles calculation, we calculate resonant Raman spectra of graphene and MoS2 for circularly polarized light which are compared with recent experiments. The Raman intensity for circularly polarized light is relevant to optical valley polarization in the case of MoS2. We also discuss how the helicity-selection rule can be modified by applying stress to graphene.

  16. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  17. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Ando, Toshiaki; Miura, Shun; Kanya, Reika; Yamanouchi, Kaoru; Rathje, Tim; Paulus, Gerhard G.

    2017-05-01

    The angle-resolved photoelectron spectra of Ar are recorded using intense circularly polarized near-infrared few-cycle laser pulses, and the effect of the depletion of Ar atoms by the ionization and the effect of the Coulombic potential are examined by the classical trajectory Monte Carlo simulations. On the basis of the comparison between the experimental and theoretical photoelectron spectra, a procedure for estimating the absolute carrier-envelope phase (CEP) of the few-cycle laser pulses interacting with atoms and molecules is proposed. It is confirmed that the absolute CEP can securely be estimated without any numerical calculations once the angular distribution of the yield of photoelectrons having the kinetic energy larger than 30 eV is measured with the peak laser intensity in the range between 1 ×1014 and 5 ×1014W /c m2 .

  18. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    PubMed

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  19. Some examples of exact and approximate solutions in small particle scattering - A progress report

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The formulation of basic equations from which the scattering of radiation by a localized variation in a medium is discussed. These equations are developed in both the differential and the integral form. Primary interest is in the scattering of electromagnetic waves for which the solution of the vector wave equation with appropriate boundary conditions must be considered. Scalar scattering by an infinite homogeneous isotropic circular cylinder, and scattering of electromagnetic waves by infinite circular cylinders are treated, and the case of the finite circular cylinder is considered. A procedure is given for obtaining angular scattering distributions from spheroids.

  20. Quantification of the fraction poorly deformable red blood cells using ektacytometry.

    PubMed

    Streekstra, G J; Dobbe, J G G; Hoekstra, A G

    2010-06-21

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.

  1. Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular.

    PubMed

    Izuogu, Osagie G; Alhasan, Abd A; Mellough, Carla; Collin, Joseph; Gallon, Richard; Hyslop, Jonathon; Mastrorosa, Francesco K; Ehrmann, Ingrid; Lako, Majlinda; Elliott, David J; Santibanez-Koref, Mauro; Jackson, Michael S

    2018-04-20

    Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.

  2. An all-sky survey of circular polarisation at 200 MHz

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Murphy, Tara; Lynch, C. R.; Kaplan, D. L.; Zhang, S. N.

    2018-05-01

    We present results from the first all-sky radio survey in circular polarisation. The survey uses the Murchison Widefield Array (MWA) to cover 30 900 sq. deg., over declinations south of +30° and north of -86° centred at 200 MHz (over a 169 - 231 MHz band). We achieve a spatial resolution of ˜3' and a typical sensitivity of 3.0 mJy PSF-1 over most of the survey region. We demonstrate a new leakage mitigation technique that reduces the leakage from total intensity into circular polarisation by an order of magnitude. In a blind survey of the imaged region, we detect 14 pulsars in circular polarisation above a 6σ threshold. We also detect six transient sources associated with artificial satellites. A targeted survey of 2 376 pulsars within the surveyed region yielded 33 detections above 4σ. Looking specifically at pulsars previously detected at 200 MHz in total intensity, this represents a 35% detection rate. We also conducted a targeted survey of 2 400 known flare stars, this resulted in two tentative detections above 4σ. A similar targeted search for 1 506 known exoplanets in the field yielded no detections above 4σ. The success of the survey suggests that similar surveys at longer wavelength bands and of deeper fields are warranted.

  3. The Structure and Intensity of Emotional Experiences: Method and Context Convergence.

    ERIC Educational Resources Information Center

    Mano, Haim

    1991-01-01

    Structure and intensity of naturally occurring and induced affect were studied with 244 university students and 1 employee in 2 studies using 2 methodological paradigms (dimensionality and classification) and 2 everyday contexts (lecture and television advertising). A circular structure of feeling was experienced during the lecture (naturally…

  4. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  5. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  6. Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Vanchuliak, O.; Sakhnovskiy, M. Y.; Dubolazov, O. V.; Grygoryshyn, P.; Soltys, I. V.; Olar, O. V.; Antoniv, A.

    2017-09-01

    The theoretical background of the azimuthally stable method of polarization-interference mapping of the histological sections of the biopsy of the prostate tissue on the basis of the spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of prostate tissue histological sections are found. The objective criteria of differentiation of benign and malignant conditions of prostate tissue are determined.

  7. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    PubMed

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  8. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  9. Conformational analysis and circular dichroism of bilirubin, the yellow pigment of jaundice

    NASA Astrophysics Data System (ADS)

    Lightner, David A.; Person, Richard; Peterson, Blake; Puzicha, Gisbert; Pu, Yu-Ming; Bojadziev, Stefan

    1991-06-01

    Conformational analysis of (4Z, 15Z)-bilirubin-IX(alpha) by molecular mechanics computations reveals a global energy minimum folded conformation. Powerful added stabilization is achieved through intramolecular hydrogen bonding. Theoretical treatment of bilirubin as a molecular exciton predicts an intense bisignate circular dichroism spectrum for the folded conformation: (Delta) (epsilon) is congruent to 270 L (DOT) mole-1 (DOT) cm-1 for the $OM450 nm electronic transition(s). Synthesis of bilirubin analogs with propionic acid groups methylated at the (alpha) or (beta) position introduces an allosteric effect that allows for an optical resolution of the pigments, with enantiomers exhibiting the theoretically predicted circular dichroism.

  10. Torsion analysis of cracked circular bars actuated by a piezoelectric coating

    NASA Astrophysics Data System (ADS)

    Hassani, A. R.; Faal, R. T.

    2016-12-01

    This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.

  11. The role of transvaginal power Doppler ultrasound in the differential diagnosis of benign intrauterine focal lesions.

    PubMed

    Cogendez, Ebru; Eken, Meryem Kurek; Bakal, Nuray; Gun, Ismet; Kaygusuz, Ecmel Isik; Karateke, Ates

    2015-10-01

    The purpose of this prospective study was to assess the role of power Doppler imaging in the differential diagnosis of benign intrauterine focal lesions such as endometrial polyps and submucous myomas using the characteristics of power Doppler flow mapping. A total of 480 premenopausal patients with abnormal uterine bleeding were evaluated by transvaginal ultrasonography (TVS) searching for intrauterine pathology. Sixty-four patients with a suspicious focal endometrial lesion received saline infusion sonography (SIS) after TVS. Fifty-eight patients with focal endometrial lesions underwent power Doppler ultrasound (PDUS). Three different vascular flow patterns were defined: Single vessel pattern, multiple vessel pattern, and circular flow pattern. Finally, hysteroscopic resection was performed in all cases, and Doppler flow characteristics were then compared with the final histopathological findings. Histopathological results were as follows: endometrial polyp: 40 (69 %), submucous myoma: 18 (31 %). Of the cases with endometrial polyps, 80 % demonstrated a single vessel pattern, 7.5 % a multiple vessel pattern, and 0 % a circular pattern. Vascularization was not observed in 12.5 % of patients with polyps. Of the cases with submucousal myomas, 72.2 % demonstrated a circular flow pattern, 27.8 % a multiple vessel pattern, and none of them showed a single vessel pattern. The sensitivity, specificity, and positive and negative predictive values of the single vessel pattern in diagnosing endometrial polyps were 80, 100, 100, and 69.2 %, respectively; and for the circular pattern in diagnosing submucous myoma, these were 72.2, 100, 100, and 88.9 %, respectively. Power Doppler blood flow mapping is a useful, practical, and noninvasive diagnostic method for the differential diagnosis of benign intrauterine focal lesions. Especially in cases of recurrent abnormal uterine bleeding, recurrent abortion, and infertility, PDUS can be preferred as a first-line diagnostic method.

  12. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis.

    PubMed

    Legnini, Ivano; Di Timoteo, Gaia; Rossi, Francesca; Morlando, Mariangela; Briganti, Francesca; Sthandier, Olga; Fatica, Alessandro; Santini, Tiziana; Andronache, Adrian; Wade, Mark; Laneve, Pietro; Rajewsky, Nikolaus; Bozzoni, Irene

    2017-04-06

    Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive forcemore » in the cases of circularly and linearly polarized waves has been confirmed.« less

  14. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  15. Method for attitude determination using GPS carrier phase measurements from nonaligned antennas

    NASA Technical Reports Server (NTRS)

    Lightsey, Edgar Glenn (Inventor)

    1999-01-01

    A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.

  16. Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms

    NASA Astrophysics Data System (ADS)

    Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.

    2018-03-01

    In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.

  17. Progress towards measuring the Rydberg Constant Using Circular Rydberg Atoms in an Intensity-Modulated Optical Lattice

    NASA Astrophysics Data System (ADS)

    Ramos, Andira; Moore, Kaitlin; Raithel, Georg

    2015-05-01

    Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.

  18. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    PubMed

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  19. Concentric circular focusing reflector realized using high index contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Fei, Jiarui; Duan, Xiaofeng; Liu, Kai; Ren, Xiaomin

    2017-11-01

    A non-periodic concentric circular high index contrast grating (CC-HCG) focusing reflector on 500 nm silicon-on-insulator (SOI) platform is fabricated and experimentally demonstrated. The proposed mirror is realized with phase modulation of wave front in a high reflectivity region. The circular structure based HCG focusing reflector has a spot of high concentration at the 10.87 mm with normal incidence for radially polarization, along with the center wavelength set at 1550 nm. The FWHM spot size of the focusing beam decreases to 260 μm, and the intensity increases to 1.26 compared with the incident beam. The focusing efficiency of about 80% is observed at 1550 nm in the experimental measurement.

  20. Nuclear Resonance Scattering of Circularly Polarized SR

    NASA Astrophysics Data System (ADS)

    Szymanski, K.; Satula, D.; Dobrzynski, L.; Kalska, B.

    2004-09-01

    Results of the experiments with nuclear resonance scattering of synchrotron radiation aiming at construction of the circularly polarized beam suitable for nuclear hyperfine studies are reported. Si(4 0 0) single crystal slab, 100 μ m thick, was used as a quarter wave plate. Observed twofold reduction of the intensity in proposed geometry is due to the Si crystal itself. Hyperfine interactions are used to probe polarization state of the synchrotron beam. Too large angular beam divergence did not allow for achieving full circular polarization of photons. Consequently, further experiments are proposed to overcame beam divergence problems. A number of calculations presented in the paper show that cheap and easily available Si plate can serve as an effective desired polarizer.

  1. Blood flow problem in the presence of magnetic particles through a circular cylinder using Caputo-Fabrizio fractional derivative

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Mohamad, Mahathir; Khalid, Kamil; Abdulhammed, Mohammed; Saifullah Rusiman, Mohd; Che – Him, Norziha; Roslan, Rozaini

    2018-04-01

    In this paper, the flow of blood mixed with magnetic particles subjected to uniform transverse magnetic field and pressure gradient in an axisymmetric circular cylinder is studied by using a new trend of fractional derivative without singular kernel. The governing equations are fractional partial differential equations derived based on the Caputo-Fabrizio time-fractional derivatives NFDt. The current result agrees considerably well with that of the previous Caputo fractional derivatives UFDt.

  2. The compressive failure of graphite/epoxy plates with circular holes

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.; Starnes, J. H., Jr.; Henneke, E. G., II

    1978-01-01

    The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations.

  3. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  5. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    DOE PAGES

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; ...

    2016-05-23

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching.more » Here, we find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. Lastly, this feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.« less

  6. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  7. Characterization of elliptic dark hollow beams

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vega, Julio C.

    2008-08-01

    A dark hollow beam (DHB) is designed in general as a ringed shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties such as a helical wavefront, a center vortex singularity, doughnut-shaped transverse intensity distribution, they may carry and transfer orbital and spin angular momentum, and may also exhibit a nondiffracting behavior upon propagation. Most of the known theoretical models to describe DHBs consider axially symmetric transverse intensity distributions. However, in recent years there has been an increasing interest in developing models to describe DHBs with elliptic symmetry. DHBs with elliptic symmetry can be regarded as transition beams between circular and rectangular DHBs. For example, the high-order modes emitted from resonators with neither completely rectangular nor completely circular symmetry, but in between them, cannot be described by the known HermiteGaussian or LaguerreGaussian beams. In this work, we review the current state of research on elliptic DHBs, with particular emphasis in Mathieu and Ince-Gauss beams.

  8. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  9. Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan

    2004-01-01

    We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.

  10. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  11. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  12. Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.

  13. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  14. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  15. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing.

    PubMed

    Wang, Yu-Hong; Yu, Xu-Hui; Luo, Shan-Shun; Han, Hui

    2015-01-01

    Ageing brings about the gradual deterioration of the immune system, also known as immunosenescence. The role of non-coding circular RNA in immunosenescence is under studied. Using circular RNA microarray data, we assembled Comparison groups (C1, C2, C3 and C4) that allowed us to compare the circular RNA expression profiles between CD28(+)CD8(+) T cells and CD28(-)CD8(+) T cells isolated from healthy elderly or adult control subjects. Using a step-wise biomathematical strategy, the differentially-expressed circRNAs were identified in C1 (CD28(+)CD8(+) vs CD28(-)CD8(+)T cells in the elderly) and C4 (CD28(-)CD8(+)T cells in the elderly vs in the adult), and the commonly-expressed circRNA species from these profiles were optimized as immunosenescence biomarkers. Four overlapping upregulated circular RNAs (100550, 100783, 101328 and 102592) expressed in cross-comparison between C1 and C4 were validated using quantitative polymerase chain reaction. Of these, only circular RNA100783 exhibited significant validation. None of the down-regulated circular RNAs were expressed in the C1 and the C4 cross-comparisons. Therefore, we further predicted circular RNA100783-targeted miRNA-gene interactions using online DAVID annotation. The analysis revealed that a circular RNA100783-targeted miRNA-mRNA network may be involved in alternative splicing, the production of splice variants, and in the regulation of phosphoprotein expression. Considering the hypothesis of splicing-related biogenesis of circRNAs, we propose that circular RNA100783 may play a role in phosphoprotein-associated functions duringCD28-related CD8(+) T cell ageing. This study is the first to employ circular RNA profiling to investigate circular RNA-micro RNA interactions in ageing human CD8(+)T cell populations and the accompanying loss of CD28 expression. The overlapping expression of circular RNA100783 may represent a novel biomarker for the longitudinal tracking ofCD28-related CD8(+) T cell ageing and global immunosenescence.

  16. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  17. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    PubMed

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  18. Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans.

    PubMed

    Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan

    2017-10-01

    Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.

  19. High-intensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study.

    PubMed

    Melamed, Shlomo; Goldenfeld, Modi; Cotlear, Daniel; Skaat, Alon; Moroz, Iris

    2015-01-01

    To evaluate the safety and efficacy of the ultrasonic circular cyclo-coagulation procedure using high-intensity focused ultrasound by a miniaturized annular device containing 6 piezoceramic transducers in patients with refractory glaucoma. This was a prospective interventional noncomparative study of 20 eyes of 20 patients with refractory glaucoma. All eyes were treated with 6 activated transducers operating at 21 MHz. Ultrasound biomicroscopy and a complete ophthalmic examination were performed before the procedure and at 1 day, 1 week, and 1, 3, 6, and 12 months after the procedure. Primary outcomes were surgical success (defined as intraocular pressure (IOP) reduction from baseline ≥20% and IOP >5 mm Hg) at the last follow-up visit. Secondary outcomes were mean IOP at each follow-up visit compared to baseline, medication use, complications, and re-interventions. Intraocular pressure was significantly reduced (p<0.01) from a mean preoperative value of 36.4 ± 5.7 mm Hg to a mean postoperative value of 22.5 ± 10.3 mm Hg at 12 months. Four patients needed to be re-treated. The mean IOP reduction achieved was 38%. Surgical success was achieved in 13 of 20 eyes (65%). No major intraoperative or postoperative complications occurred. Ultrasonic circular cyclo-coagulation using high-intensity focused ultrasound delivered by a circular miniaturized device containing 6 piezoceramic transducers is an effective and well-tolerated method to reduce IOP in patients with refractory glaucoma.

  20. Differential circular RNAs expression in ovary during oviposition in honey bees.

    PubMed

    Chen, Xiao; Shi, Wei; Chen, Chao

    2018-04-27

    Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees. Copyright © 2018. Published by Elsevier Inc.

  1. An Intense Excitation Source for High Power (Blue-Green) Laser.

    DTIC Science & Technology

    1983-11-22

    mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense

  2. Tables for Supersonic Flow of Helium Around Right Circular Cones at Zero Angle of Attack

    NASA Technical Reports Server (NTRS)

    Sims, J. L.

    1973-01-01

    The results of the calculation of supersonic flow of helium about right circular cones at zero angle of attack are presented in tabular form. The calculations were performed using the Taylor-Maccoll theory. Numerical integrations were performed using a Runge-Kutta method for second-order differential equations. Results were obtained for cone angles from 2.5 to 30 degrees in regular increments of 2.5 degrees. In all calculations the desired free-stream Mach number was obtained to five or more significant figures.

  3. Circular RNA expression in basal cell carcinoma.

    PubMed

    Sand, Michael; Bechara, Falk G; Sand, Daniel; Gambichler, Thilo; Hahn, Stephan A; Bromba, Michael; Stockfleth, Eggert; Hessam, Schapoor

    2016-05-01

    Circular RNAs (circRNAs), are nonprotein coding RNAs consisting of a circular loop with multiple miRNA, binding sites called miRNA response elements (MREs), functioning as miRNA sponges. This study was performed to identify differentially expressed circRNAs and their MREs in basal cell carcinoma (BCC). Microarray circRNA expression profiles were acquired from BCC and control followed by qRT-PCR validation. Bioinformatical target prediction revealed multiple MREs. Sequence analysis was performed concerning MRE interaction potential with the BCC miRNome. We identified 23 upregulated and 48 downregulated circRNAs with 354 miRNA response elements capable of sequestering miRNA target sequences of the BCC miRNome. The present study describes a variety of circRNAs that are potentially involved in the molecular pathogenesis of BCC.

  4. Potential generated inner and outside a circular wire in its plane. Application to Saturn's ring

    NASA Astrophysics Data System (ADS)

    Najid, N.-E.; Zegoumou, M.; El Ourabi, E. H.

    2012-12-01

    In this article we derive the development of the potential generated by a homogeneous wire bent into a circular shape (Najid, Jammari & Zegoumou, 2005). We develop the potential as a power series of the distance from an appropriate origin to the test particle. The potential is expressed as a function of Legendre polynomials. We study both, the case where the test particle is inside or outside the circular wire. By Lagrangian formulation, we establish the differential equation of motion. The numerical resolution leads us to different orbits. Outside the wire we get a case where the test particle is confined between a maxima and minima of the radial position; while inner the wire the test particle is subjected to an escape case depending on the time of integration.

  5. Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Dubolazov, O. V.; Ushenko, V. O.; Trifoniuk, L.; Ushenko, Yu. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Grytsyuk, M.; Kushnerik, L.; Meglinskiy, I.

    2017-09-01

    A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular birefringence of prostate histological sections are found. The interconnections between such distributions and parameters of linear and circular birefringence of prostate tissue histological sections are defined. The comparative investigations of coordinate distributions of phase anisotropy parameters formed by fibrillar networks of prostate tissues of different pathological states (adenoma and carcinoma) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular birefringence are defined. The objective criteria of cause of Benign and malignant conditions differentiation are determined.

  6. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  7. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  8. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  9. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    NASA Astrophysics Data System (ADS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  10. Bioinspired sensory systems for local flow characterization

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  11. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  12. High-harmonic generation by two-color mixing of circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.; Kopold, R.

    2000-06-01

    Dipole selection rules prevent harmonic generation by an atom in a circularly polarized laser field. However, this is not the case for a superposition of several circularly polarized fields, such as two circularly polarized fields with frequencies ω and 2ω that corotate or counter-rotate in the same plane. Harmonic generation in this environment has been observed and, in fact, found to be very intense in the counter-rotating case [1]. In a certain frequency region, the harmonics may be stronger than those radiated in a linearly polarized field of either frequency. The selection rules dictate that the harmonics are circularly polarized with a helicity that alternates from one harmonic to the next. Besides their practical interest, these harmonics are also intriguing from a fundamental point of view: the standard simple-man picture does not apply since orbits that start with zero velocity in this field almost never return to their point of departure. In terms of quantum trajectories, we discuss the mechanism that generates these harmonics. In several interesting ways, it is complementary to the case of linear polarization. [1] H. Eichmann et al., Phys. Rev. A 51, R3414 (1995)

  13. Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Xiangyin

    2010-01-01

    Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.

  14. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  15. Interaction between a circular inclusion and an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.; Ratwani, M.

    1975-01-01

    The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.

  16. Stress intensity factors for long, deep surface flaws in plates under extensional fields

    NASA Technical Reports Server (NTRS)

    Harms, A. E.; Smith, C. W.

    1973-01-01

    Using a singular solution for a part circular crack, a Taylor Series Correction Method (TSCM) was verified for extracting stress intensity factors from photoelastic data. Photoelastic experiments were then conducted on plates with part circular and flat bottomed cracks for flaw depth to thickness ratios of 0.25, 0.50 and 0.75 and for equivalent flaw depth to equivalent ellipse length values ranging from 0.066 to 0.319. Experimental results agreed well with the Smith theory but indicated that the use of the ''equivalent'' semi-elliptical flaw results was not valid for a/2c less than 0.20. Best overall agreement for the moderate (a/t approximately 0.5) to deep flaws (a/t approximatelly 0.75) and a/2c greater than 0.15 was found with a semi-empirical theory, when compared on the basis of equivalent flaw depth and area.

  17. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  18. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will becomemore » operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.« less

  19. Visible Vertical Cavity Surface Emitting Lasers

    DTIC Science & Technology

    1993-01-01

    circular output beams are easily coupled into optical fibers, or focused or collimated with microlenslets. The VCSELs can be tested individually at the wafer...semiconductor visible VCSEL . Also shown is the DBR reflectance and reflectivity phase , as seen from the optical cavity, and the electric field intensity ...76 xv Figure page 2.32 Calculated electric field intensity for the example IR and visible VCSELs shown in Fig. 2.31 ........................... 79

  20. Experimental investigation of strong-field-ionization theories for laser fields from visible to midinfrared frequencies

    NASA Astrophysics Data System (ADS)

    Lai, Yu Hang; Xu, Junliang; Szafruga, Urszula B.; Talbert, Bradford K.; Gong, Xiaowei; Zhang, Kaikai; Fuest, Harald; Kling, Matthias F.; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2017-12-01

    Strong-field-ionization yield versus intensity is investigated for various atomic targets (Ne, Ar, Kr, Xe, Na, K, Zn, and Mg) and light polarization from visible to mid-infrared (0.4-4 μ m ), from multiphoton to tunneling regimes. The experimental findings (normalized yield vs intensity, ratio of circular to linear polarization and saturation intensities) are compared to the theoretical models of Perelomov-Popov-Terent'ev (PPT) and Ammosov-Delone-Krainov (ADK). While PPT is generally satisfactory, ADK validity is found, as expected, to be much more limited.

  1. Nonlinear equation of the modes in circular slab waveguides and its application.

    PubMed

    Zhu, Jianxin; Zheng, Jia

    2013-11-20

    In this paper, circularly curved inhomogeneous waveguides are transformed into straight inhomogeneous waveguides first by a conformal mapping. Then, the differential transfer matrix method is introduced and adopted to deduce the exact dispersion relation for modes. This relation itself is complex and difficult to solve, but it can be approximated by a simpler nonlinear equation in practical applications, which is close to the exact relation and quite easy to analyze. Afterward, optimized asymptotic solutions are obtained and act as initial guesses for the following Newton's iteration. Finally, very accurate solutions are achieved in the numerical experiment.

  2. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  3. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  4. FIBER OPTICS: Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Surin, S. Yu

    1991-01-01

    An experimental investigation was made of the spectral dependences of the modal birefringence B, of the polarization dispersion τp, and of the difference Dx-Dy between the chromatic dispersions of polarization modes in fiber waveguides with an elliptic stress-inducing cladding, a second circular buffer cladding, and a circular core. The investigation was carried out in the wavelength range 1.15-1.75 μm. The magnitude of the changes in B, τp, and Dx-Dy depended on the dimensions of the buffer cladding. The dependences obtained were explained satisfactorily by an analysis of the similarity of the distributions of the intensity of the fundamental mode and of the difference of the stresses along the optic axes of the investigated fiber waveguides.

  5. FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector.

    PubMed

    Schäfer, Dirk; Grass, Michael; van de Haar, Peter

    2011-07-01

    Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting and back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical case with a detector overlap of about 17 mm confirms these results. The BPF-type reconstructions with Katsevich differentiation are widely independent of the size of the detector overlap and give the best results with respect to RMSD and visual inspection for minimal detector overlap. The increased homogeneity will improve correct assessment of lesions in the entire field of view.

  6. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μmmore » cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.« less

  7. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  8. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor.

    PubMed

    Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V

    2018-06-07

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  9. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor

    NASA Astrophysics Data System (ADS)

    Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.

    2018-06-01

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  10. A Helicene Nanoribbon with Greatly Amplified Chirality.

    PubMed

    Schuster, Nathaniel J; Hernández Sánchez, Raúl; Bukharina, Daria; Kotov, Nicholas A; Berova, Nina; Ng, Fay; Steigerwald, Michael L; Nuckolls, Colin

    2018-05-14

    We report the synthesis and characterization of a chiral, shape-persistent, perylene-diimide-based nanoribbon. Specifically, the fusion of three perylene-diimide monomers with intervening naphthalene subunits resulted in a helical superstructure with two [6]helicene subcomponents. This π-helix-of-helicenes exhibits very intense electronic circular dichroism, including one of the largest Cotton effects ever observed in the visible range. It also displays more than an order of magnitude increase in circular dichroism for select wavelengths relative to its smaller homologue. These impressive chiroptical properties underscore the potential of this new nanoribbon architecture in the context of chiral electronic materials.

  11. Laterally coupled circular quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  12. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    PubMed

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  13. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma.

    PubMed

    Ahmed, Ikhlak; Karedath, Thasni; Andrews, Simeon S; Al-Azwani, Iman K; Mohamoud, Yasmin Ali; Querleu, Denis; Rafii, Arash; Malek, Joel A

    2016-06-14

    Recently, a class of endogenous species of RNA called circular RNA (circRNA) has been shown to regulate gene expression in mammals and their role in cellular function is just beginning to be understood. To investigate the role of circRNAs in ovarian cancer, we performed paired-end RNA sequencing of primary sites, peritoneal and lymph node metastases from three patients with stage IIIC ovarian cancer. We developed an in-house computational pipeline to identify and characterize the circRNA expression from paired-end RNA-Seq libraries. This pipeline revealed thousands of circular isoforms in Epithelial Ovarian Carcinoma (EOC). These circRNAs are enriched for potentially effective miRNA seed matches. A significantly larger number of circRNAs are differentially expressed between tumor sites than mRNAs. Circular and linear expression exhibits an inverse trend for many cancer related pathways and signaling pathways like NFkB, PI3k/AKT and TGF-β typically activated for mRNA in metastases are inhibited for circRNA expression. Further, circRNAs show a more robust expression pattern across patients than mRNA forms indicating their suitability as biomarkers in highly heterogeneous cancer transcriptomes. The consistency of circular RNA expression may offer new candidates for cancer treatment and prognosis.

  14. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma

    PubMed Central

    Ahmed, Ikhlak; Karedath, Thasni; Andrews, Simeon S.; Al, Iman K.; Mohamoud, Yasmin Ali; Querleu, Denis; Rafii, Arash; Malek, Joel A.

    2016-01-01

    Recently, a class of endogenous species of RNA called circular RNA (circRNA) has been shown to regulate gene expression in mammals and their role in cellular function is just beginning to be understood. To investigate the role of circRNAs in ovarian cancer, we performed paired-end RNA sequencing of primary sites, peritoneal and lymph node metastases from three patients with stage IIIC ovarian cancer. We developed an in-house computational pipeline to identify and characterize the circRNA expression from paired-end RNA-Seq libraries. This pipeline revealed thousands of circular isoforms in Epithelial Ovarian Carcinoma (EOC). These circRNAs are enriched for potentially effective miRNA seed matches. A significantly larger number of circRNAs are differentially expressed between tumor sites than mRNAs. Circular and linear expression exhibits an inverse trend for many cancer related pathways and signaling pathways like NFkB, PI3k/AKT and TGF-β typically activated for mRNA in metastases are inhibited for circRNA expression. Further, circRNAs show a more robust expression pattern across patients than mRNA forms indicating their suitability as biomarkers in highly heterogeneous cancer transcriptomes. The consistency of circular RNA expression may offer new candidates for cancer treatment and prognosis. PMID:27119352

  15. EIT amplitude noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Whitenack, Benjamin; Tormey, Devan; O'Leary, Shannon; Crescimanno, Michael

    2017-04-01

    EIT Noise spectroscopy is usually studied by computing a correlation statistic based on temporal intensity variations of the two (circular polarization) propagation eigenstates. Studying the intensity noise correlations that result from amplitude mixing that we perform before and after the cell allows us to recast it in terms of the underlying amplitude noise. This leads to new tests of the quantum optics theory model and suggests an approach to the use of noise spectroscopy for vector magnetometry.

  16. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID:25548918

  17. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    PubMed

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  18. Immobility time during the forced swimming test predicts sensitivity to amitriptyline, whereas traveled distance in the circular corridor indicates resistance to treatment in female Wistar rats.

    PubMed

    Flores-Serrano, Ana G; Zaldívar-Rae, Jaime; Salgado, Humberto; Pineda, Juan C

    2015-03-25

    Among the main issues in the pharmacological treatment of depression are the wide variation in response to antidepressants among individual patients and the lack of indexes that allow prediction of which drug will be effective in a particular case. We evaluated whether differential sensitivity to amitriptyline is related to dichotomous categorization of individuals on the basis of their behavioral responses to two common paradigms used to evaluate the potential of tricyclic drugs as antidepressants. Hence, we categorized a cohort of 38 female rats on the basis of their immobility time in the conditioning phase of the forced swimming test [FST; high immobility (HI) vs. low immobility (LI) rats] and their locomotor behavior in the circular corridor test [high locomotor response (HR) vs. low locomotor response (LR) rats]. We subjected the rodents to the FST while under the influence of vehicle (n=20) or amitriptyline (15 mg/kg; n=18). We found no statistical evidence of dependence between categorizations of rats on the basis of their behavior in the FST and circular corridor test. Rats categorized as HI/LI and HR/LR significantly differed in their sensitivity/resistance to amitriptyline, as evidenced by changes (or lack thereof) in their immobility time, climbing time, and swimming time during the FST. These results confirm that different behavioral styles among rats are linked to differential sensitivity/resistance to antidepressants. However, we specifically found that categorizing rats as HI/LI better reflected sensitivity to amitriptyline, whereas categorizing them as HR/LR better revealed resistance to the drug. These differential responses should be considered in experimental approaches. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  19. Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Pasqualini, Sylvio; Qin, Bo

    2014-06-01

    In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocimetry (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the increase of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensembleaveraged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation.

  20. Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole

    2014-10-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.

  1. Analysis of electroluminescence images in small-area circular CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  2. Azimuthally invariant Mueller-matrix mapping of biological optically anisotropic network

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Vanchuliak, O.; Bodnar, G. B.; Ushenko, V. O.; Grytsyuk, M.; Pavlyukovich, N.; Pavlyukovich, O. V.; Antonyuk, O.

    2017-09-01

    A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular dichroism of histological sections liver tissue of mice with different degrees of severity of diabetes are found. The interconnections between such distributions and parameters of linear and circular dichroism of liver of mice tissue histological sections are defined. The comparative investigations of coordinate distributions of parameters of amplitude anisotropy formed by Liver tissue with varying severity of diabetes (10 days and 24 days) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular dichroism are defined. The objective criteria of cause of the degree of severity of the diabetes differentiation are determined.

  3. The estimation of material and patch parameters in a PDE-based circular plate model

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.

    1995-01-01

    The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.

  4. Piezoelectric shunt damping of a circular saw blade with autonomous power supply for noise and vibration reduction

    NASA Astrophysics Data System (ADS)

    Pohl, Martin; Rose, Michael

    2016-01-01

    Circular saws are widespread tools for machining metal, wood or even ceramics. Due to the thin blade and excitation by the workpiece contact of the cutting edges, circular saws are prone to vibration and intense noise emission. Damping the blade will lower the hearing protection requirements of the users and possibly increase precision. Therefore a new damping concept for circular saw blades is presented in this paper. It is based on negative capacitance shunted piezoelectric transducers which are applied to the saw blade core. The required energy for the electronics is harvested from the rotation by a generator, so that no change of the machine tool is required. All components are integrated into an autonomous saw tool. Finally, the system is experimentally investigated without rotation, in idling and in cutting condition in a circular saw test stand in the Institute for Machine Tools and Production Engineering (IWF) at TU Braunschweig. The experimental investigation shows a good reduction of the vibration amplitude over a wide frequency range in the non-rotating condition. When rotating, the damping effect is lower and limited to some narrow frequency bands. The proposed reason for the reduced damping effect in rotating condition consists in the saturation of the electronic circuits due to the limited supply voltage capabilities.

  5. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    PubMed

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut.

    PubMed

    Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi

    2009-03-01

    Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.

  7. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  8. Azimuthal MHD stirring of metal in vessels with cross-sections of different configuration

    NASA Astrophysics Data System (ADS)

    Siraev, R. R.; Khripchenko, S. Yu

    2017-11-01

    Continuous casting of cylindrical ingots from aluminum and preparation of aluminum-based alloys and composites require intensive mixing of liquid metal phase in the crystallization area of the melt. It is evident that the topology of the flow in the liquid phase of an ingot should influence the processes occurring during crystallization. Contemporary continuous casting machines use MHD-stirrers that generate an azimuthal motion in a crystallizer with a warm top of circular cross-section in the presence of rotating magnetic field. The flow of metal in the liquid phase of an ingot is similar to its rotation in a solid state, and transport processes are most intensively carried out in the near near-wall region and near the ingot solidification front, where shear flows are essential. In this work, we consider the possibility of amplifying transport processes in the entire volume of a stirred metal by making the cross-section shape of the warm top of the crystallizer different from a circle. It has been found numerically that the total energy of the flow in a crucible of square cross-section is twice as lower as that in a crucible with circular cross-section at the same inductor current. Turbulent pulsations in the square crucible, as well as in the circular one, are concentrated mainly in the near-wall region. The energy of pulsations in the square crucible also reduces, but the time of stirring of the passive impurity introduced into the volume of the metal is less than in the circular crucible. The effect of MHD stirring on the vertical temperature distribution on the square crucible is higher than in the “round crucible”.

  9. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism.

    PubMed

    Muto, Shunsuke; Rusz, Ján; Tatsumi, Kazuyoshi; Adam, Roman; Arai, Shigeo; Kocevski, Vancho; Oppeneer, Peter M; Bürgler, Daniel E; Schneider, Claus M

    2014-01-01

    Electron magnetic circular dichroism (EMCD) allows the quantitative, element-selective determination of spin and orbital magnetic moments, similar to its well-established X-ray counterpart, X-ray magnetic circular dichroism (XMCD). As an advantage over XMCD, EMCD measurements are made using transmission electron microscopes, which are routinely operated at sub-nanometre resolution, thereby potentially allowing nanometre magnetic characterization. However, because of the low intensity of the EMCD signal, it has not yet been possible to obtain quantitative information from EMCD signals at the nanoscale. Here we demonstrate a new approach to EMCD measurements that considerably enhances the outreach of the technique. The statistical analysis introduced here yields robust quantitative EMCD signals. Moreover, we demonstrate that quantitative magnetic information can be routinely obtained using electron beams of only a few nanometres in diameter without imposing any restriction regarding the crystalline order of the specimen.

  10. Realization of multiple orbital angular momentum modes simultaneously through four-dimensional antenna arrays.

    PubMed

    Sun, Chao; Yang, Shiwen; Chen, Yikai; Guo, Jixin; Qu, Shiwei

    2018-01-09

    Electromagnetic waves carrying orbital angular momentum (OAM) in radio frequency range have drawn great attention owing to its potential applications in increasing communication capacity. In this paper, both single-pole single-throw (SPST) switches and single-pole double-throw (SPDT) switches are designed and implemented. Optimal time sequence allows four-dimensional (4-D) circular antenna array to generate multiple OAM-carrying waves as well as enhance the field intensity of each OAM-carrying wave. A novel experimental platform is developed to measure the phase distribution when the transmitting antenna and the receiving antenna operate at different frequencies. The good agreement between the measurement and simulation results demonstrate that 4-D circular antenna array is able to generate multiple OAM modes simultaneously. Furthermore, the superiority of the 4-D circular antenna array in receiving and demodulating multiple OAM-carrying signals is validated through the filter and bit error rate (BER) simulations.

  11. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  12. The multi-mode polarization modulation spectrometer: part 1: simultaneous detection of absorption, turbidity, and optical activity.

    PubMed

    Arvinte, Tudor; Bui, Tam T T; Dahab, Ali A; Demeule, Barthélemy; Drake, Alex F; Elhag, Dhia; King, Peter

    2004-09-01

    Circular dichroism (CD) is an important spectroscopic technique for monitoring chirality and biological macromolecule conformation. However, during a CD measurement, absorbance, light scattering/turbidity, and fluorescence can also be detected. The simultaneous measurement of these different spectral features for a single sample is the basis of a multi-mode optical spectrometer. This allows time-efficient gathering of complementary information and provides a scheme to ensure that CD measurements are reliable. Aspects of circular polarization differential light scattering, pH, and temperature variation of a protein (antibody) solution are described. A procedure to help ensure that CD measurements are reliable is described.

  13. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  14. Elimination of secular terms from the differential equations for the elements of perturbed two-body motion

    NASA Technical Reports Server (NTRS)

    Bond, Victor R.; Fraietta, Michael F.

    1991-01-01

    In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.

  15. Magnetization switching process in a torus nanoring with easy-plane surface anisotropy

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-11-01

    We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.

  16. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    NASA Astrophysics Data System (ADS)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  17. The solar vector magnetograph of the Okayama Astrophysical Observatory

    NASA Technical Reports Server (NTRS)

    Makita, M.; Hamana, S.; Nishi, K.

    1985-01-01

    The vector magnetograph of the Okayama Astrophysical Observatory is fed to the 65 cm solar coude telescope with a 10 m Littrow spectrograph. The polarimeter put at the telescope focus analyzes the incident polarization. Photomultipliers (PMT) at the exit of the spectrograph pick up the modulated light signals and send them to the electronic controller. The controller analyzes frequency and phase of the signal. The analyzer of the polarimeter is a combination of a single wave plate rotating at 40 Hz and a Wallaston prism. Incident linear and circular polarizations are modified at four times and twice the rotation frequency, respectively. Two compensators minimize the instrumental polarization, mainly caused by the two tilt mirrors in the optical path of the telescope. The four photomultipliers placed on the wings of the FeI 5250A line give maps of intensity, longitudinal field and transverse field. The main outputs, maps of intensity, and net linear and circular polarizations in the neighboring continuum are obtained by the other two monitor PMTs.

  18. [The problems of diagnosis and correction of autism in children (an example of Asperger's syndrome)].

    PubMed

    Iovchuk, N M; Severnyĭ, A A

    Based on the analysis of literature and own clinical experience, we discuss diagnostic issues of early autistic disorders in children. Main differential-diagnostic signs that permit to differentiate mild forms of autism in childhood diagnosed as Asperger's syndrome from childhood schizophrenia, residual organic CNS damage, circular affective disorders are described. Cases of Asperger's syndrome followed up for many years and recommendations for social and psychological adaptation of children and adolescents with Asperger's syndrome in different age periods are presented.

  19. Immunohistochemical quantification of expression of a tight junction protein, claudin-7, in human lung cancer samples using digital image analysis method.

    PubMed

    Lu, Zhe; Liu, Yi; Xu, Junfeng; Yin, Hongping; Yuan, Haiying; Gu, Jinjing; Chen, Yan-Hua; Shi, Liyun; Chen, Dan; Xie, Bin

    2018-03-01

    Tight junction proteins are correlated with cancer development. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies. We have previously reported that claudin-7 was strongly expressed in benign bronchial epithelial cells at the cell-cell junction while expression of claudin-7 was either altered with discontinued weak expression or completely absent in lung cancers. Based on these results, we continued working on the expression pattern of claudin-7 and its relationship with lung cancer development. We herein proposed a new Digital Image Classification, Fragmentation index, Morphological analysis (DICFM) method for differentiating the normal lung tissues and lung cancer tissues based on the claudin-7 immunohistochemical staining. Seventy-seven lung cancer samples were obtained from the Second Affiliated Hospital of Zhejiang University and claudin-7 immunohistochemical staining was performed. Based on C++ and Open Source Computer Vision Library (OpenCV, version 2.4.4), the DICFM processing module was developed. Intensity and fragmentation of claudin-7 expression, as well as the morphological parameters of nuclei were calculated. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. Agreement between these computational results and the results obtained by two pathologists was demonstrated. The intensity of claudin-7 expression was significantly decreased while the fragmentation was significantly increased in the lung cancer tissues compared to the normal lung tissues and the intensity was strongly positively associated with the differentiation of lung cancer cells. Moreover, the perimeters of the nuclei of lung cancer cells were significantly greater than that of the normal lung cells, while the parameters of area and circularity revealed no statistical significance. Taken together, our DICFM approach may be applied as an appropriate approach to quantify the immunohistochemical staining of claudin-7 on the cell membrane and claudin-7 may serve as a marker for identification of lung cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  1. Circular dichroism spectra of uridine derivatives: ChiraSac study.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi; Wada, Takehiko

    2014-04-24

    The experimental circular dichroism (CD) spectra of uridine and NH2-uridine that were different in the intensity and shape were studied in the light of the ChiraSac method. The theoretical CD spectra at several different conformations using the symmetry-adapted-cluster configuration-interaction (SAC-CI) theory largely depended on the conformational angle, but those of the anti-conformers and the Boltzmann average reproduced the experimentally obtained CD spectra of both uridine and NH2-uridine. The differences in the CD spectra between the two uridine derivatives were analyzed by using the angle θ between the electric transition dipole moment (ETDM) and the magnetic transition dipole moment (MTDM).

  2. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  3. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  4. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  5. Ab Initio Study of the Electric Dipole Transition Moment for the Electronic X to C Transition in Acetylene: Theoretical Predictions of the Absorption and Magnetic Circular Dichroism Intensities

    DTIC Science & Technology

    1990-12-01

    Symmetric C-C Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6. MCQ Intensities and Oscillator Strengths...chemical approach, but only at the SCF level , to predict an absorption oscillator strength of 0.072 for the (vertical) CE-X transition. An early...fact that the lower v’ levels agree better with experiment than the higher v’ levels suggests increasing inaccuracies in the Franck-Condon overlap with

  6. Long-Range Correlations Between Transmitted and Reected Fluxes of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.

    2017-12-01

    We study the long-range spatial correlations between intensity fluctuations in speckles formed by multiply scattered light. The correlation function between intensity fluctuations at the opposite boundaries of the slab are analyzed under the conditions of circular polarization memory. It shown that, until the scattered light is depolarized completely, the polarization and scalar contributions to the correlation function are of the same order of magnitude. As the slab thickness increases, their ratio falls off in inverse proportion to the thickness.

  7. World maps of predicted electron intensities for the ITOS-A/NOAA-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1972-01-01

    Maps of electron fluxes 10,000, 1 million, and 10 million particles/sq cm/sec are presented for an ITOS-A/NOAA-1 circular orbit, inclination of 79 deg, and altitude of 1463 km. The uncertainty in the flux values is about a factor of 3, and the error in contour plotting may be plus or minus 2 deg in latitude and plus or minus 3 deg in longitude. The fractional lifetime spent within the different intensity regions is graphed.

  8. Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses

    NASA Astrophysics Data System (ADS)

    Kyrazis, D. T.; Weiland, T. L.

    1990-10-01

    The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.

  9. FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Dirk; Grass, Michael; Haar, Peter van de

    2011-05-15

    Purpose: Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. Methods: The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting andmore » back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. Results: The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical case with a detector overlap of about 17 mm confirms these results. Conclusions: The BPF-type reconstructions with Katsevich differentiation are widely independent of the size of the detector overlap and give the best results with respect to RMSD and visual inspection for minimal detector overlap. The increased homogeneity will improve correct assessment of lesions in the entire field of view.« less

  10. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    PubMed

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strain-assisted optomechanical coupling of polariton condensate spin to a micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Be'er, O.; Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.

    2017-12-01

    We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically trapped spin-polarized polariton condensate in different locations on the microcavity and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.

  12. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    NASA Astrophysics Data System (ADS)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  13. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Ashitkov, S. I.; Ovchinnikov, A. V.; Kondratenko, P. S.; Agranat, M. B.

    2016-06-01

    The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  14. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- andmore » right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.« less

  15. Numerical Calculation and Experiment of Coupled Dynamics of the Differential Velocity Vane Pump Driven by the Hybrid Higher-order Fourier Non-circular Gears

    NASA Astrophysics Data System (ADS)

    Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng

    2018-06-01

    The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.

  16. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, A. H.; Wang, G.

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions formore » massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.« less

  17. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    DOE PAGES

    Tang, A. H.; Wang, G.

    2016-08-30

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions formore » massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.« less

  18. 3D chiral nanoplasmonics: fabrication, chiroptic engineering, mechanism, and application in enantioselection (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng

    2015-09-01

    Chirality does naturally exist, and the building blocks of life (e.g. DNA, proteins, peptides and sugars) are usually chiral. Chirality inherently imposes chemical/biological selectivity on functional molecules; hence the discrimination in molecular chirality from an enantiomer to the other mirror image (i.e. enantioselection) has fundamental and application significance. Enantiomers interact with left and right handed circularly polarized light in a different manner with respect to optical extinction; hence, electronic circular dichroism (ECD) has been widely used for enantioselection. However, enantiomers usually have remarkably low ECD intensity, mainly owing to the small electric transition dipole moment induced by molecular sizes compared to the ECD-active wavelength in the UV-visible-near IR region. To enhance ECD magnitude, recently it has being developed 3D chiral nanoplasmonic structures having a helical path, and the dimensions are comparable to the ECD wavelength. However, it is still ambiguous the origin of 3D chiroplasmonics, and there is a lack of studying the interaction of 3D chiroplasmoncs with enantiomers for the application of enantioselection. Herein, we will present a one-step fabrication of 3D silver nanospirals (AgNSs) via low-substrate-temperature glancing angle deposition. AgNSs can be deposited on a wide range of substrates (including transparent and flexible substrates), in an area on the order of cm2. A set of spiral dimensions (such as spiral pitches, number of turns and handedness) have been easily engineered to tune the chiroptic properties, leading to studying the chiroplasmonic principles together with finite element simulation and the LC model. At the end, it will be demonstrated that 3D chiroplasmonics can differentiate molecular chirality of enantiomers with dramatic enhancement in the anisotropy g factor. This study opens a door to sensitively discriminate enantiomer chirality.

  19. A Comparative Study of Intratesticular Ductules in the Spermatogenically Active Testes of Shortfin Mako and Thresher Sharks.

    PubMed

    McClusky, Leon Mendel; Sulikowski, James

    2016-10-01

    This comparative study of the radial testes of sexually mature thresher sharks (Alopias vulpinus) and shortfin mako sharks (Isurus oxyrinchus) describes the histology of the three-tiered network of sperm-carrying ductules in the testis and the lymphomyeloid tissue associated with it, namely the epigonal organ. In both species, a testis → epigonal gradient was evident regarding the thickness of the ductule epithelial lining and subepithelial investment of connective tissue. Ductules straddling the testis-epigonal border often displayed luminal leukocytes and various signs of regression, including the progressive thickening of the ductule epithelial lining, dissolution of the cytoplasm, and loss of normal histoarchitecture. In Isurus, large amorphous areas formed due to the fusion of neighboring regressing ductules. The epigonal organ of Alopias additionally revealed circular degenerative sperm-containing, Hassall-like bodies with either a degenerate or cellular appearance, the latter the result of cell proliferative activity (as shown by proliferating cell nuclear antigen (PCNA) immunohistochemistry) in an expanding outer border comprising cells with intensely PCNA immunoreactive slender and oblong nuclei. The latter cells exhibited a periphery-to-center transformation of their nuclei, at which stage they were PCNA-negative and most likely in a terminally differentiated state as they phagocytized the cell debris in the degenerate core. Intermediate stages of these circular bodies were a rarity. The relationship between these degenerate bodies, and the common occurrence of blind pockets in the epithelial linings and non-apoptosis-related degenerate patches in the apical cytoplasmic regions of the irregular shaped ductules in Alopias is unclear, and needs further elucidation. Anat Rec, 299:1435-1448, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  1. The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Goss, W. M.; Diamond, P.

    We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.

  2. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  3. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  4. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  5. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    PubMed Central

    Lin, Shang-Chang; Hu, Chia-Jui; Lin, Pei-Chun

    2015-01-01

    We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors. PMID:27065748

  6. A study of the differential effects of Tomm's questioning styles on therapeutic alliance.

    PubMed

    Ryan, D; Carr, A

    2001-01-01

    To replicate and extend Dozier's (1992) test of Tomm's hypothesis about the differential effects of questioning styles on therapeutic alliance, an analogue study was conducted. Twenty-eight family triads, each including a son and his parents, viewed four videotaped, simulated family therapy scenarios in which Tomm's four questioning styles were separately portrayed. Participants were asked to identify with the client whose role corresponded to theirs (that is, father, mother, or son) and, on the basis of this, to rate the client's alliance with the therapist. They were also asked to rate the overall alliance between the family and the therapist. Finally, having viewed all four scenarios, they were invited to rate comparatively the quality of the therapeutic alliance across the four questioning styles. Compared with strategic and lineal questioning styles, circular and reflexive questions led to higher ratings of therapeutic alliance on all three measures. The results of this study support Tomm's hypothesis that questioning styles based on circular assumptions lead to a better therapeutic alliance at an individual and systemic level than do questions based on lineal assumptions.

  7. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  8. The engagement of optical angular momentum in nanoscale chirality

    NASA Astrophysics Data System (ADS)

    Andrews, David L.

    2017-09-01

    Wide-ranging developments in optical angular momentum have recently led to refocused attention on issues of material chirality. The connection between optical spin and circular polarization, linking to well-known and utilized probes of chirality such as circular dichroism, has prompted studies aiming to achieve enhanced means of differentiating enantiomers - molecules or particles of opposite handedness. A number of newly devised schemes for physically separating mirror-image components by optical methods have also been gaining traction, together with a developing appreciation of how the scale of physical dimensions ultimately determines any capacity to differentially select for material chirality. The scope of such enquiries has substantially widened on recognition that suitably structured, topologically charged beams of light - often known as `twisted light' or `optical vortices' can additionally convey orbital angular momentum. A case can be made that understanding the full scope and constraints upon chiroptical interactions in the nanoscale regime involves the resolution of CPT symmetry conditions governing the fundamental interactions between matter and photons. The principles provide a sound theoretical test-bed for new methodologies.

  9. A BATSE investigation of radiation belt electrons precipitated by VLF waves

    NASA Technical Reports Server (NTRS)

    Datlowe, Dayton W.

    1995-01-01

    The Compton Observatory commonly encounters fluxes of energetic electrons which have been scattered from the inner radiation belt to the path of the satellite by resonant interactions with VLF waves from powerful man-made transmitters. The present investigation was motivated by the fact that in the Fall of 1993, the Gamma Ray Observatory was boosted from a 650 km altitude circular orbit to a 750 km altitude circular orbit. This was an opportunity, for the first time, to make observations at two different altitudes using the same instrument. We have examined DISCLA data from the Burst & Transient Source Experiment (BATSE) experiment from 1 Sep. 1993 to 29 Jan. 1994. During the period of study we identified 48 instances of the satellite encountering a cloud of energetic electrons which had been scattered by VLF transmitters. We find that boosting the altitude of the circular orbit from 650 km to 750 km increased the intensity of cyclotron resonance scattered electrons by a factor of two. To search for long term changes in the cyclotron resonance precipitation, we have compared the approx. 750 km altitude data from 106 days at the end of 1993 with data at the same altitudes and time of year in 1991. The cyclotron resonance events in 1991 were three times more frequent and 25% of those cases were more intense than any seen in the 1993 data. We attribute this difference to increased level of geomagnetic activity in 1991 near the Solar Maximum.

  10. Rotating Magnetic Structures Associated with a Quasi-circular Ribbon Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan

    We present the detection of a small eruption and the associated quasi-circular ribbon flare during the emergence of a bipole occurring on 2015 February 3. Under a fan dome, a sigmoid was rooted in a single magnetic bipole, which was encircled by negative polarity. The nonlinear force-free field extrapolation shows the presence of twisted field lines, which can represent a sigmoid structure. The rotation of the magnetic bipole may cause the twisting of magnetic field lines. An initial brightening appeared at one of the footpoints of the sigmoid, where the positive polarity slides toward a nearby negative polarity field region.more » The sigmoid displayed an ascending motion and then interacted intensively with the spine-like field. This type of null point reconnection in corona led to a violent blowout jet, and a quasi-circular flare ribbon was also produced. The magnetic emergence and rotational motion are the main contributors to the energy buildup for the flare, while the cancellation and collision might act as a trigger.« less

  11. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  12. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  13. DichroCalc: Improvements in Computing Protein Circular Dichroism Spectroscopy in the Near-Ultraviolet.

    PubMed

    Jasim, Sarah B; Li, Zhuo; Guest, Ellen E; Hirst, Jonathan D

    2017-12-16

    A fully quantitative theory connecting protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. The web server DichroCalc (http://comp.chem.nottingham.ac.uk/dichrocalc) allows one to compute from first principles the electronic circular dichroism spectrum of a (modeled or experimental) protein structure or ensemble of structures. The regular, repeating, chiral nature of secondary structure elements leads to intense bands in the far-ultraviolet (UV). The near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, realized through the consideration of the vibrational structure of the electronic transitions of aromatic side chains. The improvements have been assessed over a set of diverse proteins. We illustrate them using bovine pancreatic trypsin inhibitor and present a new, detailed analysis of the interactions which are most important in determining the near-UV circular dichroism spectrum. Copyright © 2018. Published by Elsevier Ltd.

  14. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  15. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus.

    PubMed

    Li, Xuejie; Zhao, Zhenzhou; Jian, Dongdong; Li, Wentao; Tang, Haiyu; Li, Muwei

    2017-11-01

    The purpose of this study was to identify the expression characteristics of circular RNAs in the peripheral blood of coronary artery disease patients and type 2 diabetes mellitus patients. Circular RNA in the peripheral blood from 6 control individuals, 6 coronary artery disease patients, 6 type 2 diabetes mellitus patients and 6 coronary artery disease combined with type 2 diabetes mellitus patients was collected for microarray analysis, and a further independent cohort consisting of 20 normal individuals, 20 type 2 diabetes mellitus subjects and 20 coronary artery disease subjects was used to verify the expression of five circular RNAs chosen for further analysis. The findings were then tested in a third cohort using quantitative real-time polymerase chain reaction. In total, 40 circular RNAs differentially expressed between the three experimental groups and the control group were identified by microarray analysis: 13 were upregulated in the experimental groups, while 27 were downregulated. Of the five circular RNAs chosen for further analysis, three were significantly downregulated in the experimental groups. The crude odds ratios and adjusted odds ratios of hsa-circRNA11783-2 showed significant differences in both the coronary artery disease group and type 2 diabetes mellitus group. We then verified hsa-circRNA11783-2 in the third cohort, and it remained closely related to both coronary artery disease and type 2 diabetes mellitus. Hsa-circRNA11783-2 is closely related to both coronary artery disease and type 2 diabetes mellitus.

  16. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Yi; Huang, Whitney J.; Li, Kevin; Swanson, Roy; Cheung, Brian; Lin, Vernon W.; Lee, Yu-Shang

    2015-04-01

    Objective. Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. Approach. To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). Main results. We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. Significance. These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.

  17. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ˜4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  18. On the magnetic circular dichroism of benzene. A density-functional study

    NASA Astrophysics Data System (ADS)

    Kaminský, Jakub; Kříž, Jan; Bouř, Petr

    2017-04-01

    Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.

  19. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin.

    PubMed

    Xi, Jun; He, Mengxue

    2018-02-01

    In this study, the effect of high hydrostatic pressure (HHP) on antigenicity, free sulfhydryl group (SH) content, hydrophobicity (Ho), fluorescence intensity and circular dichroism data of soybean β-conglycinin was studied. The antigenicity of soybean β-conglycinin was decreased significantly at pressures 200-400 MPa. The antigenicity inhibition rate of β-conglycinin declined from 92.72 to 55.15%, after being treated at 400 MPa for 15 min. Results indicated that free sulphydryl (SH) groups and surface Ho of β-conglycinin were significantly increased at pressures 200-400 MPa and 5-15 min, whereas these properties decreased at the treatments above 400 MPa and 15 min. The maximum fluorescence intensity was noticed at 400 MPa and 15 min. The circular dichroism data analysis revealed that the amount of β-turns and unordered structure significantly increased, while the content of α-helix1 and β-strand1 noticeably decreased. These results provide evidence that HHP-induced the structural modification of β-conglycinin and could alter the antigenicity of β-conglycinin.

  20. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    NASA Astrophysics Data System (ADS)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  1. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  2. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Jaroslaw H.

    2011-03-15

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less

  3. Energy- and k -resolved mapping of the magnetic circular dichroism in threshold photoemission from Co films on Pt(111)

    NASA Astrophysics Data System (ADS)

    Staab, Maximilian; Kutnyakhov, Dmytro; Wallauer, Robert; Chernov, Sergey; Medjanik, Katerina; Elmers, Hans Joachim; Kläui, Mathias; Schönhense, Gerd

    2017-04-01

    The magnetic circular dichroism in threshold photoemission (TPMCD) for perpendicularly magnetized fcc Co films on Pt(111) has been revisited. A complete mapping of the spectral function I (EB,kx,ky) (binding energy EB, momentum parallel to surface kx, ky) and the corresponding TPMCD asymmetry distribution AMCD(EB,kx,ky) has been performed for one-photon and two-photon photoemission using time-of-flight momentum microscopy. The experimental results allow distinguishing direct from indirect transitions. The measurements reveal clear band features of direct transitions from bulk bands that show a nontrivial asymmetry pattern. A significant homogeneous background with substantial asymmetry stemming from indirect transitions superposes direct transitions. Two-photon photoemission reveals enhanced emission intensity via an image potential state, acting as intermediate state. The image potential state enhances not only intensity but also asymmetry. The present results demonstrate that two-photon photoemission is a powerful method for mapping the spin-polarized unoccupied band structures and points out pathways for applying TPMCD as a contrast mechanism for various classes of magnetic materials.

  4. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  5. Computer-aided detection of human cone photoreceptor inner segments using multi-scale circular voting

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Dubra, Alfredo; Tam, Johnny

    2016-03-01

    Cone photoreceptors are highly specialized cells responsible for the origin of vision in the human eye. Their inner segments can be noninvasively visualized using adaptive optics scanning light ophthalmoscopes (AOSLOs) with nonconfocal split detection capabilities. Monitoring the number of cones can lead to more precise metrics for real-time diagnosis and assessment of disease progression. Cell identification in split detection AOSLO images is hindered by cell regions with heterogeneous intensity arising from shadowing effects and low contrast boundaries due to overlying blood vessels. Here, we present a multi-scale circular voting approach to overcome these challenges through the novel combination of: 1) iterative circular voting to identify candidate cells based on their circular structures, 2) a multi-scale strategy to identify the optimal circular voting response, and 3) clustering to improve robustness while removing false positives. We acquired images from three healthy subjects at various locations on the retina and manually labeled cell locations to create ground-truth for evaluating the detection accuracy. The images span a large range of cell densities. The overall recall, precision, and F1 score were 91±4%, 84±10%, and 87±7% (Mean±SD). Results showed that our method for the identification of cone photoreceptor inner segments performs well even with low contrast cell boundaries and vessel obscuration. These encouraging results demonstrate that the proposed approach can robustly and accurately identify cells in split detection AOSLO images.

  6. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    PubMed

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  7. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  8. Glaucoma Diagnostic Capabilities of Foveal Avascular Zone Parameters Using Optical Coherence Tomography Angiography According to Visual Field Defect Location.

    PubMed

    Kwon, Junki; Choi, Jaewan; Shin, Joong Won; Lee, Jiyun; Kook, Michael S

    2017-12-01

    To assess the diagnostic ability of foveal avascular zone (FAZ) parameters to discriminate glaucomatous eyes with visual field defects (VFDs) in different locations (central vs. peripheral) from normal eyes. Totally, 125 participants were separated into 3 groups: normal (n=45), glaucoma with peripheral VFD (PVFD, n=45), and glaucoma with central VFD (CVFD, n=35). The FAZ area, perimeter, and circularity and parafoveal vessel density were calculated from optical coherence tomography angiography images. The diagnostic ability of the FAZ parameters and other structural parameters was determined according to glaucomatous VFD location. Associations between the FAZ parameters and central visual function were evaluated. A larger FAZ area and longer FAZ perimeter were observed in the CVFD group than in the PVFD and normal groups. The FAZ area, perimeter, and circularity were better in differentiating glaucomatous eyes with CVFDs from normal eyes [areas under the receiver operating characteristic curves (AUC), 0.78 to 0.88] than in differentiating PVFDs from normal eyes (AUC, 0.51 to 0.64). The FAZ perimeter had a similar AUC value to the circumpapillary retinal nerve fiber layer and macular ganglion cell-inner plexiform layer thickness for differentiating eyes with CVFDs from normal eyes (all P>0.05, the DeLong test). The FAZ area was significantly correlated with central visual function (β=-112.7, P=0.035, multivariate linear regression). The FAZ perimeter had good diagnostic capability in differentiating glaucomatous eyes with CVFDs from normal eyes, and may be a potential diagnostic biomarker for detecting glaucomatous patients with CVFDs.

  9. Azimuthally invariant Mueller-matrix mapping of optically anisotropic layers of biological networks of blood plasma in the diagnosis of liver disease

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Pavlyukovich, O.; Pavlyukovich, N.; Novakovskaya, O.; Gorsky, M. P.

    2016-09-01

    The model of Mueller-matrix description of mechanisms of optical anisotropy that typical for polycrystalline layers of the histological sections of biological tissues and fluids - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis distributions quantities of linear and circular birefringence and dichroism the objective criteria of differentiation of myocardium histological sections (determining the cause of death); films of blood plasma (liver pathology); peritoneal fluid (endometriosis of tissues of women reproductive sphere); urine (kidney disease) were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller-matrix reconstruction of optical anisotropy parameters were found.

  10. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  11. The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers

    USDA-ARS?s Scientific Manuscript database

    The evolution of animal mitochondrial (mt) genomes has yielded a highly conserved structure: a single circular chromosome approximately 14 to 20 kb long. Within the last two decades, exceptions to this conserved structure have been reported in a diverse set of organisms. One such exception is the di...

  12. A data processing method based on tracking light spot for the laser differential confocal component parameters measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin

    2013-12-01

    We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.

  13. Study of LED layout in indoor visible light communication and performance analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaan; Che, Ying; Wang, Xinlan; Guo, Linyang; Li, Jing

    2017-10-01

    Light emitting diodes(LED) could provide both illumination and data communication in indoor visible light communication(VLC) that owns the modulation bandwith from several from several MHz to seneral hundreds of MHz. The layout of LED plays an important role in maintaining a steady optical power distribution over the receiving plane. The existing rectangular LED layout does not provide a full coverage on the receiving plane leaving receiving optical power outage area, which in turn affects the best performance of the VLC system. This paper design a circular layout scheme of LED in 5mX5mX3m room based on the criterion of the illumination minimum mean square deviation. The influence of the distribution of the intensity of illumination with the radius of 1m and 1.5m,for including the wall reflection and not including the wall reflection, and make a comparison with rectangular LED layout of illumination distribution, when the number of LEDs with rectangular layout as same as circular layout. Including the number of LEDs are 4 and 16.For a specific simulation parameters as following:height of receiving plane is 0.85m,a single LEDs is composed of 60X60 LED chips, the parameters of a single chip is that transmitting power is 20mW,center luminous intensity is 0.73cd.semiangle at half power is 70deg.The parameters of concentrator is that photodiode area is 1cm2,photodiode responsivity is 0.4,field of view at the receiver is 85deg.Other parameters are that reflective index of concentrator is 1.5,reflectivity of wall is 0.8.Circular layout and rectangular layout are analyzed through simulation of the received optical power distribution, signal noise ratio distribution in non line of sight(including the wall reflection) and line of sight(not including the wall reflection),when the number of the LED is different. It is clear from the results that the received optical power distribution of non line of sight is better than line of sight, when the number of the LED are same, but the signal noise ratio distribution is decreased result of the reflection of the wall. It is found that the received optical power of circular layout is better than the received optical power distribution of rectangulr layout, and circular layout is a good solution that add the received optical power at the 4 corners of room, improve the system ability of communication, when making a contrast of rectangular lyout with circular layout,at the same time,the fluctuate of circular layout's signal to noise ratio of is smller than rectangular layuot.The radius of circular layout or the location of rectangular layout is keeping, the received optical power of receiving plane is increased, by adding the number of LED,in the meantime, the interference between LED light source also increase. But the increase of the circular layout radius when the number of LED remain the same is helpful to reduce the inter symbol interference that work out between LED each other, enhance the system signal noise ratio. In this paper, the results of the reaearch provides a new idea for indoor visible light communication with non-standard room (Size of room is not 5mX5mX3m), at the same time, provides guiding significance for future setting up the indoor visible light communication links.

  14. Expression Profiling Identifies Circular RNA Signature in Hepatoblastoma.

    PubMed

    Liu, Bai-Hui; Zhang, Bin-Bin; Liu, Xiang-Qi; Zheng, Shan; Dong, Kui-Ran; Dong, Rui

    2018-01-01

    Hepatoblastoma is the most common malignant pediatric liver cancer. circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of circRNAs in hepatoblastoma is still unknown. Circular RNA microarray was conducted to identify hepatoblastoma-related circRNAs. GO analysis, pathway analysis, and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in hepatoblastoma. MTT assays, Ki67 staining, and Transwell assays were conducted to clarify the role of circRNA in hepatoblastoma in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in hepatoblastoma cell. 869 differentially expressed circRNAs were identified between hepatoblastoma and adjacent normal liver samples, including 421 up-regulated circRNAs and 448 down-regulated circRNAs. The significant enriched GO term of hepatoblastoma-related circRNAs in biological process, cellular component, and molecular function were "chromosome organization", "cytoplasm", and "organic cyclic compound binding". Tight junction signaling pathway was ranked the Top 1 potentially affected by circRNA-mediated regulatory network. circ_0015756 was significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. circ_0015756 silencing decreased hepatoblastoma cell viability, proliferation, and invasion in vitro. circ_0015756 acted as miR-1250-3p sponge to regulate hepatoblastoma cell function. circRNAs are involved in the pathogenesis of hepatoblastoma. circ_0015756 is a promising target for the prognosis, diagnosis, and treatment of hepatoblastoma. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Frequency lock-in and phase synchronization of vortex shedding behind circular cylinder due to surface waves

    NASA Astrophysics Data System (ADS)

    Gunnoo, Hans; Abcha, Nizar; Ezersky, Alexander

    2016-02-01

    The influence of harmonic surface wave on non-regular Karman Vortex Street is investigated. In our experiments, Karman Street arises behind a vertical circular cylinder in a water flow and harmonic surface waves propagating upstream. It is found that surface waves can modify regimes of shedding in Karman Street: frequency lock-in and synchronization of vortex shedding can arise. Intensive surface waves can excite symmetric vortex street instead of chess-like street, and completely suppress shedding behind the cylinder. It is shown experimentally that such effects occur if frequency of harmonic surface wave is approximately twice higher than the frequency of vortex shedding. Region of frequency lock-in is found on the plane amplitude-frequency of surface wave.

  16. Electrically controlled magnetic circular dichroism and Faraday rotation in graphene

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome

    Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.

  17. Vibrational circular dichroism of a 2,5-diketopiperazine (DKP) peptide: Evidence for dimer formation in cyclo LL or LD diphenylalanine in the solid state.

    PubMed

    Pérez-Mellor, Ariel; Zehnacker, Anne

    2017-02-01

    The diastereomer diketopiperazine (DKP) peptides built on phenylalanine, namely, cyclo diphenylalanine LPhe-LPhe and LPhe-DPhe, were studied in the solid phase by vibrational circular dichroism (VCD) coupled to quantum chemical calculations. The unit structure of cyclo LPhe-LPhe in KBr pellets is a dimer bridged by two strong NH…O hydrogen bonds. The intense bisignate signature in the CO stretch region is interpreted in terms of two contributions arising from the free COs of the dimer and the antisymmetrical combination of the bound COs. In contrast, cyclo LPhe-DPhe shows no VCD signal in relation to its symmetric nature. © 2017 Wiley Periodicals, Inc.

  18. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  19. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  20. Hundreds MeV monoenergetic proton bunch from interaction of 10{sup 20-21} W/cm{sup 2} circularly polarized laser pulse with tailored complex target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.

    A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.

  1. Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.

    2017-12-01

    The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.

  2. A Circular-Impact Sampler for Forest Litter

    Treesearch

    Stephen S. Sackett

    1971-01-01

    Sampling the forest floor to determine litter weight is a tedious, time-consuming job. A new device has been designed and tested at the Southern Forest Fire Laboratory that eliminates many of the past sampling problems. The sampler has been fabricated in two sizes (6- and 12-inch diameters), and these are comparable in accuracy and sampling intensity. This Note...

  3. An investigation of the effect of seasonal activity levels on avian censusing

    Treesearch

    C. John Ralph

    1981-01-01

    Intensive variable distance circular-plot censuses and timed activity budget data were used to compare the effects of conspicuousness upon census results. In six of ten species no correlation was found, suggesting that all birds within the "Effective Detection Distance" (EDD) were seen. In four species there were significant correlations. Multiple regression...

  4. Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn

    2005-01-01

    The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....

  5. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  6. Observation of a 3D Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, P.; Falco, M.; Guglielmino, S. L.

    2017-03-10

    We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1)more » a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″–2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.« less

  7. Circular RNA Expression Profile of Pancreatic Ductal Adenocarcinoma Revealed by Microarray.

    PubMed

    Li, Haimin; Hao, Xiaokun; Wang, Huimin; Liu, Zhengcai; He, Yong; Pu, Meng; Zhang, Hongtao; Yu, Hengchao; Duan, Juanli; Qu, Shibin

    2016-01-01

    Circular RNAs (circRNAs) are a special novel type of a stable, diverse and conserved noncoding RNA in mammalian cells. Particularly in cancer, circRNAs have been reported to be widely involved in the physiological/pathological process of life. However, it is unclear whether circRNAs are specifically involved in pancreatic ductal adenocarcinoma (PDAC). We investigated the expression profile of circRNAs in six PDAC cancer samples and paired adjacent normal tissues using microarray. A high-throughput circRNA microarray was used to identify dysregulated circular RNAs in six PDAC patients. Bioinformatic analyses were applied to study these differentially expressed circRNAs. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm these results. We revealed and confirmed that a number of circRNAs were dysregulated, which suggests a potential role in pancreatic cancer. this study demonstrates that clusters of circRNAs are aberrantly expressed in PDAC compared with normal samples and provides new potential targets for the future treatment of PDAC and novel insights into PDAC biology. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer

    PubMed Central

    Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei

    2017-01-01

    This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793

  9. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  10. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  11. Self-assembling Structures and Sol-Gel Transition of Optically Active and Racemic 12-Hydroxystearic Acids in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Takeno, Hiroyuki; Mochizuki, Tomomitsu; Yoshiba, Kazuto; Kondo, Shingo; Dobashi, Toshiaki

    Self-assembling structures and sol-gel transition in solution of optically active and racemic 12-Hydroxystearic acids (HSA) have been investigated by means of small-angle X-ray scattering (SAXS), differential scanning calorimetry and rheological measurements. Apparently two kinds of gel, transparent gel and turbid gel were obtained in different solvents or by changing concentrations in the same solvent. The melting temperature of the turbid gel is higher than that of the transparent gel. The difference can be qualitatively explained by the dissolution of the crystals (melting point depression) in non-ideal solutions. The SAXS profiles of the transparent gel composed of fibrillar structures have a similar shape at different concentrations, although the intensity is larger for the gels with higher concentrations of 12-HSA. The SAXS analysis reveals that the cross-section of fibrils have square or circular shape (no anisotropic shape) with the radius of gyration 83 Å. On the other hand, for the turbid gel structural inhomnogeneity becomes significant with concentration. The gelation properties and the structures are found to be similar in the racemic HSA gel and the optically active (D-HSA) gel.

  12. Emotion differentiation and intensity during acute tobacco abstinence: A comparison of heavy and light smokers.

    PubMed

    Sheets, Erin S; Bujarski, Spencer; Leventhal, Adam M; Ray, Lara A

    2015-08-01

    The ability to recognize and label discrete emotions, termed emotion differentiation, is particularly pertinent to overall emotion regulation abilities. Patterns of deficient emotion differentiation have been associated with mood and anxiety disorders but have yet to be examined in relation to nicotine dependence. This study employed ecological momentary assessment to examine smokers' subjective experience of discrete emotions during 24-h of forced tobacco abstinence. Thirty daily smokers rated their emotions up to 23 times over the 24-hour period, and smoking abstinence was biologically verified. From these data, we computed individual difference measures of emotion differentiation, overall emotion intensity, and emotional variability. As hypothesized, heavy smokers reported poorer negative emotion differentiation than light smokers (d=0.55), along with more intense negative emotion (d=0.97) and greater negative emotion variability (d=0.97). No differences were observed in positive emotion differentiation. Across the sample, poorer negative emotion differentiation was associated with greater endorsement of psychological motives to smoke, including negative and positive reinforcement motives, while positive emotion differentiation was not. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Multivariate system of polarization tomography of biological crystals birefringence networks

    NASA Astrophysics Data System (ADS)

    Zabolotna, N. I.; Pavlov, S. V.; Ushenko, A. G.; Sobko, O. V.; Savich, V. O.

    2014-08-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  14. Anharmonic dynamics of a mass O-spring oscillator

    NASA Astrophysics Data System (ADS)

    Filipponi, A.; Cavicchia, D. R.

    2011-07-01

    We investigate the dynamics of a one-dimensional oscillator made of a mass connected to a circular spring under uniaxial extension. The functional dependence of the elastic energy on the strain is obtained by solving the differential equations resulting from a variational formalism common to Euler's elastica problem. The calculated nonlinear force agrees with the experiment, confirming the anharmonic nature of the oscillator.

  15. Chiral detection in high-performance liquid chromatography by vibrational circular dichroism.

    PubMed

    Tran, C D; Grishko, V I; Huang, G

    1994-09-01

    A novel chiral detector for high-performance liquid chromatography has been developed. This detector is based on the measurement of circular dichroism of chiral effluents in the infrared region, i.e., vibrational circular dichroism (VCD). In this instrument, a solid-state spectral tunable (from 2.4 to 3.5 microns) F-center laser was used as the light source. The linearly polarized laser beam was converted into left circularly polarized light (LCPL) and right circularly polarized light (RCPL) at 42 kHz by means of a photoelastic modulator. The intensity of the LCPL and RCPL transmitted through the sample was measured by a liquid nitrogen cooled indium antimonide detector. Double modulation was employed to reduce the noise associated with the laser beam. Specifically, the linearly polarized laser beam, prior to being converted to CPL, was modulated at 85 Hz by a mechanical chopper. Demodulation and amplification were accomplished with the use of two lock-in amplifiers. In its present configuration, the instrument can be used to measure the VCD of O-H groups. Its sensitivity is so high that it was able, for the first time, to detect chirally (with limits of detection of micrograms) (R)- and (S)-2,2,2-trifluoro-1-(9- anthryl)ethanol and (R)- and (S)-benzoin when these compounds were chromatographically separated from the corresponding racemic mixtures by a Chiralcel-OD column. The main advantage of this chiral detector is, however, its universality; i.e., it can be used to virtually detect any chiral compounds which has O-H group (e.g, aliphatic alcohols such as 2-octanol).

  16. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  17. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  18. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  19. Optical fiber designs for beam shaping

    NASA Astrophysics Data System (ADS)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  20. Final Technical Report Project: Low-Energy Photonuclear Studies at HIGS and Lund

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Gerald

    This report summarizes a program of low-energy photonuclear studies at MAX-Lab in Lund (Sweden) and at the High Intensity Gamma Source (HIGS) at Duke University. A major emphasis has been on Compton scattering from deuterium in order to determine the electric and magnetic polarizabilities of the neutron. The studies at Lund utilized unpolarized photons at Egamma = 62-115 MeV to measure differential cross sections. The studies at HIGS utilized polarized and unpolarized photon beams (both linear and circular) at Egamma < 90 MeV. Polarization observables will be exploited to improve our understanding of the electric and magnetic polarizabilities, and inmore » particular, double-polarization observables (using polarized targets) will be measured in the future to provide new information about the spin polarizabilities of the nucleon. The MAX-Lab experiments (using unpolarized photons) focused on an approved PAC proposal for Compton scattering on the deuteron aimed at making a precise determination of the electromagnetic polarizabilities of the neutron. At MAX-Lab we had three of the largest NaI detectors in the world, each capable of ~2% energy resolution. We have completed our measurements in two separate tagged photon energy ranges which overlap each other (62-97 MeV and 90-115 MeV) and the results of these experiments have been published. The photon beam at the High Intensity Gamma Source (HIGS) has several distinct advantages that make it unique: (1) ultra-high photon flux, ultimately reaching 100 MHz, (2) 100% linearly polarized photon beam, as well as circular polarization, (3) monoenergetic beam, with ~2% energy resolution, and (4) extremely low-background beam environment. Exploiting the high flux and polarization capabilities of the HIGS photon beam is central in the series of experiments being performed at this facility. Very little data exist on Compton scattering using polarized photons. We will exploit clear sensitivities in the polarization observables to the electric and magnetic polarizabilities of the nucleon, and we will ultimately extend these studies to the investigation of the spin polarizabilities. To accomplish these objectives, a liquid hydrogen/deuterium/helium cryotarget has been constructed at HIGS, and an array of NaI detectors has been commissioned for Compton studies.« less

  1. Micro–Single-Photon Emission Computed Tomography Image Acquisition and Quantification of Sodium-Iodide Symporter–Mediated Radionuclide Accumulation in Mouse Thyroid and Salivary Glands

    PubMed Central

    Brandt, Michael P.; Kloos, Richard T.; Shen, Daniel H.; Zhang, Xiaoli; Liu, Yu-Yu

    2012-01-01

    Background Micro–single-photon emission computed tomography (SPECT) provides a noninvasive way to evaluate the effects of genetic and/or pharmacological modulation on sodium-iodide symporter (NIS)–mediated radionuclide accumulation in mouse thyroid and salivary glands. However, parameters affecting image acquisition and analysis of mouse thyroids and salivary glands have not been thoroughly investigated. In this study, we investigated the effects of region-of-interest (ROI) selection, collimation, scan time, and imaging orbit on image acquisition and quantification of thyroidal and salivary radionuclide accumulation in mice. Methods The effects of data window minima and maxima on thyroidal and salivary ROI selection using a visual boundary method were examined in SPECT images acquired from mice injected with 123I NaI. The effects of collimation, scan time, and imaging orbit on counting linearity and signal intensity were investigated using phantoms filled with various activities of 123I NaI or Tc-99m pertechnetate. Spatial resolution of target organs in whole-animal images was compared between circular orbit with parallel-hole collimation and spiral orbit with five-pinhole collimation. Lastly, the inter-experimental variability of the same mouse scanned multiple times was compared with the intra-experimental variability among different mice scanned at the same time. Results Thyroid ROI was separated from salivary glands by empirically increasing the data window maxima. Counting linearity within the range of 0.5–14.2 μCi was validated by phantom imaging using single- or multiple-pinhole collimators with circular or spiral imaging orbit. Scanning time could be shortened to 15 minutes per mouse without compromising counting linearity despite proportionally decreased signal intensity. Whole-animal imaging using a spiral orbit with five-pinhole collimators achieved a high spatial resolution and counting linearity. Finally, the extent of inter-experimental variability of NIS-mediated radionuclide accumulation in the thyroid and salivary glands by SPECT imaging in the same mouse was less than the magnitude of variability among the littermates. Conclusions The impacts of multiple variables and experimental designs on micro-SPECT imaging and quantification of radionuclide accumulation in mouse thyroid and salivary glands can be minimized. This platform will serve as an invaluable tool to screen for pharmacologic reagents that differentially modulate thyroidal and salivary radioiodine accumulation in preclinical mouse models. PMID:22540327

  2. A basis for the analysis of surface geometry of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Coy, J. J.

    1983-01-01

    Geometrical procedures helpful in the fundamental studies of the surface geometry of spiral bevel gears are summarized. These procedures are based upon: (1) fundamental gear geometry and kinematics as exposited by Buckingham, et al; (2) formulas developed from differential geometry; and (3) geometrical concepts developed in recent papers and reports on spiral bevel gear surface geometry. Procedures which characterize the geometry so that the surface parametric equations, the principal radii of curvature, and the meshing kinematics are systematically determined are emphasized. Initially, the focus in on theoretical, logarithmic spiral bevel gears as defined by Buckingham. The gears, however, are difficult to fabricate and are sometimes considered to be too straight. Circular-cut spiral bevel gears are an alternative to this. Surface characteristics of crown circular cut gears are analyzed.

  3. Spectral simulation of unsteady compressible flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Don, Wai-Sun; Gottlieb, David

    1990-01-01

    An unsteady compressible viscous wake flow past a circular cylinder was successfully simulated using spectral methods. A new approach in using the Chebyshev collocation method for periodic problems is introduced. It was further proved that the eigenvalues associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It was been shown that the solution of a model problem has exponential growth in time if improper boundary conditions are used. A characteristic boundary condition, which is based on the characteristics of the Euler equations of gas dynamics, was derived for the spectral code. The primary vortex shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80. No secondary frequency is observed in the power spectrum analysis of the pressure data.

  4. Probing topology by "heating": Quantized circular dichroism in ultracold atoms.

    PubMed

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G; Zoller, Peter; Goldman, Nathan

    2017-08-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η 0 = ν/ ℏ 2 , where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

  5. CGDV: a webtool for circular visualization of genomics and transcriptomics data.

    PubMed

    Jha, Vineet; Singh, Gulzar; Kumar, Shiva; Sonawane, Amol; Jere, Abhay; Anamika, Krishanpal

    2017-10-24

    Interpretation of large-scale data is very challenging and currently there is scarcity of web tools which support automated visualization of a variety of high throughput genomics and transcriptomics data and for a wide variety of model organisms along with user defined karyotypes. Circular plot provides holistic visualization of high throughput large scale data but it is very complex and challenging to generate as most of the available tools need informatics expertise to install and run them. We have developed CGDV (Circos for Genomics and Transcriptomics Data Visualization), a webtool based on Circos, for seamless and automated visualization of a variety of large scale genomics and transcriptomics data. CGDV takes output of analyzed genomics or transcriptomics data of different formats, such as vcf, bed, xls, tab limited matrix text file, CNVnator raw output and Gene fusion raw output, to plot circular view of the sample data. CGDV take cares of generating intermediate files required for circos. CGDV is freely available at https://cgdv-upload.persistent.co.in/cgdv/ . The circular plot for each data type is tailored to gain best biological insights into the data. The inter-relationship between data points, homologous sequences, genes involved in fusion events, differential expression pattern, sequencing depth, types and size of variations and enrichment of DNA binding proteins can be seen using CGDV. CGDV thus helps biologists and bioinformaticians to visualize a variety of genomics and transcriptomics data seamlessly.

  6. Elliptic jets, part 2. Dynamics of coherent structures: Pairing

    NASA Technical Reports Server (NTRS)

    Husain, Hyder S.; Hussain, Fazle

    1992-01-01

    The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.

  7. The axisymmetric elasticity problem for a laminated plate containing a circular hole

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The elasticity problem for a laminated thick plate which consists of two bonded dissimilar layers and which contains a circular hole is considered. The problem is formulated for arbitrary axisymmetric tractions on the hole surface by using the Love strain function. Through the expansion of the boundary conditions into Fourier series the problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Of particular interest in the problem are the stresses along the interface as they relate to the question of delamination failure of the composite plate. These stresses are calculated and are observed to become unbounded at the hole boundary. An approximate treatment of the singular behavior of the stress state is presented and the stress intensity factors are calculated.

  8. Flexible particle manipulation techniques with conical refraction-based optical tweezers

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Henderson, Robert; Carnegie, David J.; Sokolovskii, Grigorii S.; Rafailov, Edik U.; McGloin, David

    2012-10-01

    We present an optimized optical tweezers system based upon the conical refraction of circularly polarized light in a biaxial crystal. The described optical arrangement avoids distortions to the Lloyd plane rings that become apparent when working with circularly polarized light in conventional optical tweezers. We demonstrate that the intensity distribution of the conically diffracted light permits optical manipulation of high and low refractive index particles simultaneously. Such trapping is in three dimensions and not limited to the Lloyd plane rings. By removal of a quarter waveplate the system also permits the study of linearly polarized conical refraction. We show that particle position in the Raman plane is determined by beam power, and indicates that true optical tweezing is not taking place in this part of the beam.

  9. Effects of the circularly polarized beam of linearized gravitational waves

    NASA Astrophysics Data System (ADS)

    Barker, W.

    2017-08-01

    Solutions of the linearized Einstein equations are found that describe a transversely confined beam of circularly polarized gravitational waves on a Minkowski backdrop. By evaluating the cycle-averaged stress-energy-momentum pseudotensor of Landau & Lifshitz it is found that the angular momentum density is concentrated in the ‘skin’ at the edge of the beam where the intensity falls, and that the ratio of angular momentum to energy per unit length of the beam is 2/ω , where ω is the wave frequency, as expected for a beam of spin-2 gravitons. For sharply-defined, uniform, axisymmetric beams, the induced background metric is shown to produce the gravitomagnetic field and frame-dragging effects of a gravitational solenoid, whilst the angular momentum current helically twists the space at infinite radius along the beam axis.

  10. Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host.

    PubMed

    Lukishova, Svetlana G; Bissell, Luke J; Winkler, Justin; Stroud, C R

    2012-04-01

    Microcavity resonance is demonstrated in nanocrystal quantum dot fluorescence in a one-dimensional (1D) chiral photonic bandgap cholesteric-liquid crystal host under cw excitation. The resonance demonstrates coupling between quantum dot fluorescence and the cholesteric microcavity. Observed at a band edge of a photonic stop band, this resonance has circular polarization due to microcavity chirality with 4.9 times intensity enhancement in comparison with polarization of the opposite handedness. The circular-polarization dissymmetry factor g(e) of this resonance is ~1.3. We also demonstrate photon antibunching of a single quantum dot in a similar glassy cholesteric microcavity. These results are important in cholesteric-laser research, in which so far only dyes were used, as well as for room-temperature single-photon source applications.

  11. Launching focused surface plasmon in circular metallic grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pawan, E-mail: kumarpawan-30@yahoo.co.in; Tripathi, V. K.; Kumar, Ashok

    2015-01-07

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. Itmore » increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering.« less

  12. Monitoring of the ADP/ATP Ratio by Induced Circularly Polarised Europium Luminescence.

    PubMed

    Shuvaev, Sergey; Fox, Mark A; Parker, David

    2018-06-18

    A series of three europium complexes bearing picolyl amine moieties was found to possess differing binding affinities towards Zn 2+ and three nucleotides: AMP, ADP, and ATP. A large increase in the total emission intensity was observed upon binding Zn 2+ , followed by signal amplification upon the addition of nucleotides. The resulting adducts possessed strong induced circularly polarised emission, with ADP and ATP signals of opposite sign. Model DFT geometries of the adducts suggest the Δ diastereoisomer is preferred for ATP and the Λ isomer for ADP/AMP. This change in sign allows the ADP/ATP (or AMP/ATP) ratio to be assessed by monitoring changes in the emission dissymmetry factor, g em . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Two-craft Coulomb formation study about circular orbits and libration points

    NASA Astrophysics Data System (ADS)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.

  14. A novel x-ray circularly polarized ranging method

    NASA Astrophysics Data System (ADS)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese Academy of Sciences (Grant Nos. 2014PNTT01, 2014PNTT07, and 2014PNTT08).

  15. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses. PMID:23917523

  16. Fourier polarimetry of the birefringence distribution of myocardium tissue

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Dubolazov, O. V.; Ushenko, V. O.; Gorsky, M. P.; Soltys, I. V.; Olar, O. V.

    2015-11-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of causes of death due to coronary heart disease (CHD) and acute coronary insufficiency (ACI) were found.

  17. Methods and means of laser polarimetry microscopy of optically anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Olar, O. I.

    2016-09-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  18. Methods and means of Stokes-polarimetry microscopy of optically anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Sidor, M.; Prydiy, O. G.; Olar, O. I.; Lakusta, I. I.

    2016-12-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  19. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  20. The structure of polarization maps of skin histological sections in the Fourier domain for the tasks of benign and malignant formations differentiation

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Dubolazov, A. V.; Savich, V. O.; Novakovskaya, O. Y.; Olar, O. V.; Marchuk, Y. F.

    2015-02-01

    The optical model of birefringent networks of biological tissues is presented. The technique of Fourier polarimetry for selection of manifestations of linear and circular birefringence of protein fibrils is suggested. The results of investigations of statistical (statistical moments of the 1st-4th orders), correlation (dispersion and excess of autocorrelation functions) and scalar-self-similar (logarithmic dependencies of power spectra) structure of Fourier spectra of polarization azimuths distribution of laser images of skin samples are presented. The criteria of differentiation of postoperative biopsy of benign (keratoma) and malignant (adenocarcinoma) skin tumors are determined.

  1. Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Luquette, Richard; Segerman, A. M.; Zedd, M. F.

    2005-01-01

    NASA is planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed system of telescope spacecraft, configured in a plane about a hub. Several sets of differential equations are written for the formation flight of such telescopes relative to the hub, with varying levels of fidelity. Effects are cast as additive perturbations to the circular restricted three-body problem, expanded in terms of the system distanced, to an accuracy of 10-20 m. These include Earth's orbital eccentricity, lunar motion, solar radiation pressure, and small thrusting forces. Simulations validating the expanded differential equations are presented.

  2. A multi-spectroscopic and molecular docking approach to investigate the interaction of antiviral drug oseltamivir with ct-DNA.

    PubMed

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid; Golbedaghi, Reza

    2017-07-03

    The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.

  3. Plasma q -plate for generation and manipulation of intense optical vortices

    NASA Astrophysics Data System (ADS)

    Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.

    2017-11-01

    An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.

  4. Spatial and layer-controlled variability in fracture networks

    NASA Astrophysics Data System (ADS)

    Procter, Andrew; Sanderson, David J.

    2018-03-01

    Topological sampling, based on 1) node counting and 2) circular sampling areas, is used to measure fracture intensity in surface exposures of a layered limestone/shale sequence in north Somerset, UK. This method provides similar levels of precision as more traditional line samples, but is about 10 times quicker and allows characterization of the network topology. Georeferencing of photographs of the sample sites allows later analysis of trace lengths and orientations, and identification of joint set development. ANOVA tests support a complex interaction of within-layer, between-layer and between-location variability in fracture intensity, with the different layers showing anomalous intensity at different locations. This variation is not simply due to bed thickness, nor can it be related to any obvious compositional or textural variation between the limestone beds. These results are used to assess approaches to the spatial mapping of fracture intensity.

  5. Algorithm for Detecting a Bright Spot in an Image

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)

  6. Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.

    2003-01-01

    NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the hub relative to L2. In this paper, the differential equations are developed through second order in the distance of the hub from the libration point. A modified Lindstedt-Poincad perturbation method is employed to construct the solution of these differential equations through that same order of magnitude. In the course of the solution process, relationships are determined between the initial conditions of the telescopes, selected in order to avoid resonance excitation. As the differential equations include the hub position, it is necessary to simultaneously develop the solution for the hub. As has been done in past analyses of the circular restricted problem, the hub position is written in a power series formulation in terms of its distance from L2. Then, in order to be included in the telescope equations, the hub solution is cast in terms of the nonlinear frequency of the relative telescope motion. In the course of the analysis, it is determined that the hub should also maintain a halo orbit - about L2. Additionally, relationships are formed between the initial conditions of the telescopes and the hub. These relationships may be used to associate sets of initial conditions with particular orientations of the telescope plane. The accuracy of the analytical solution is verified through various simulations and comparison to numerical integration of the differential equations. The results of the simulations are presented, along with a graphical representation of the relationships between the initial conditions of the telescopes and hub.

  7. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syphers, M. J.; Chattopadhyay, S.

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less

  9. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  10. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  11. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-06-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  12. Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu A.; Sidor, M. I.; Bodnar, G. B.; Koval', G. D.

    2014-08-01

    We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time.

  13. Improved CVD Techniques for Depositing Passivation Layers of ICs

    DTIC Science & Technology

    1975-10-01

    Calculations .......................... 228 4. Precision ........... ....... ........................ 229 5. Optional Measurements of Dense Oxide and Aluminum 4...47. Typical measurements of phosphorus K. net radiation intensity as a function of the calculated phosphorus concentrations • * • 124 48. Effect of... calculated by measuring the de- formation of a substrate, usually in the form of a beam, or a circular disc. "In the beam bending method, stress is

  14. Influence of RF channels mismatch and mutual coupling phenomenon on performance of a multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Górski, Maksymilian

    2010-09-01

    In the paper we analyze the influence of RF channels mismatch and mutual coupling effect on the performance of the multistatic passive radar with Uniform Circular Array (UCA) configuration. The problem was tested intensively in numerous different scenarios with a reference virtual multistatic passive radar. Finally, exemplary results of the computer software simulations are provided and discussed.

  15. Probing large-scale magnetism with the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2018-04-01

    Prior to photon decoupling magnetic random fields of comoving intensity in the nano-Gauss range distort the temperature and the polarization anisotropies of the microwave background, potentially induce a peculiar B-mode power spectrum and may even generate a frequency-dependent circularly polarized V-mode. We critically analyze the theoretical foundations and the recent achievements of an interesting trialogue involving plasma physics, general relativity and astrophysics.

  16. Three dimensional α-tunneling in intense laser fields

    NASA Astrophysics Data System (ADS)

    Kis, Daniel P.; Szilvasi, Reka

    2018-04-01

    The width and life-time of the quasibound state of the α cluster in intense monochromatic electromagnetic (laser) field are discussed in details. The laser modified three dimensional potential barrier felt by the α particle is investigated analytically in long wave approximation and zero-order approximations with some different nuclear models: Coulomb potential with rectangular well, and with Woods-Saxon type potential. We show that the circularly polarized electromagnetic field and the special parameters of the nuclear potentials determine an enhancement of the decay probability, so the life-time of the quasibound state decreases in few times compared to the case of free field.

  17. An analytical approach for the calculation of stress-intensity factors in transformation-toughened ceramics

    NASA Astrophysics Data System (ADS)

    Müller, W. H.

    1990-12-01

    Stress-induced transformation toughening in Zirconia-containing ceramics is described analytically by means of a quantitative model: A Griffith crack which interacts with a transformed, circular Zirconia inclusion. Due to its volume expansion, a ZrO2-particle compresses its flanks, whereas a particle in front of the crack opens the flanks such that the crack will be attracted and finally absorbed. Erdogan's integral equation technique is applied to calculate the dislocation functions and the stress-intensity-factors which correspond to these situations. In order to derive analytical expressions, the elastic constants of the inclusion and the matrix are assumed to be equal.

  18. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    PubMed

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  19. Multiple-scale hydraulic characterization of a surficial clayey aquitard overlying a regional aquifer in Louisiana

    NASA Astrophysics Data System (ADS)

    Chapman, Steven W.; Cherry, John A.; Parker, Beth L.

    2018-03-01

    The vertical hydraulic conductivity (Kv) of a 30-m thick surficial clayey aquitard overlying a regional aquifer at an industrial site in the Mississippi River Valley in Louisiana was investigated via intensive hydraulic characterization using high resolution vertical hydraulic head profiles with temporal monitoring and laboratory tests. A study area was instrumented with a semi-circular array of piezometers at many depths in the aquitard at equal distance from a large capacity pumping well including replicate piezometers. Profiles showed negligible head differential to 20 m bgs, below which there was an abrupt change in vertical gradients over the lower 8-10 m of the aquitard. Hydraulic characteristics are strongly associated with depositional environment; the upper zone of minimal head differentials with depth and minimal variation over time correlates with Paleo-Mississippi River backswamp deposits, while the lower zone with large head differentials and slow but moderate head changes correlates with lacustrine deposits. The lower zone restricts groundwater flow between the surface and underlying regional aquifer, which is hydraulically connected to the Mississippi River. Lab tests on lacustrine samples show low Kv (8 × 10-11-4 × 10-9 m/s) bracketing field estimates (6 × 10-10 m/s) from 1-D model fits to piezometric data in response to large aquifer head changes. The slow response indicates absence of through-going open fractures in the lacustrine unit, consistent with geotechnical properties (high plasticity, normal consolidation), suggesting high integrity that protects the underlying aquifer from surficial contamination. The lack of vertical gradients in the overlying backswamp unit indicates abundant secondary permeability features (e.g. fractures, rootholes) consistent with depositional and weathering conditions. 2-D stylized transient flow simulations including both units supports this interpretation. Other published reports on surficial aquitards in the Gulf Coast Region pertain to Pleistocene deposits that lack laterally extensive lacustrine units and where Kv is enhanced by secondary permeability features, resulting in clayey aquitards with poor integrity.

  20. Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

    PubMed Central

    Tran, Duc Thanh; Dauphin, Alexandre; Grushin, Adolfo G.; Zoller, Peter; Goldman, Nathan

    2017-01-01

    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This “differential integrated rate” is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter. PMID:28835930

  1. Comment on “Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping”

    DOE PAGES

    Terzic, Balsa; Krafft, Geoffrey A.

    2016-09-08

    Rykovanov, Geddes, Schroeder, Esarey and Leemans [Phys. Rev. Accel. Beams 19, 030701 (2016); hereafter RGSEL] have recently reported on the analytic derivation for the laser pulse frequency modulation (chirping) which controls spectrum broadening for high laser pulse intensities. We demonstrate here that their results are the same as the exact solutions reported in Terzic, Deitrick, Hofler and Krafft [Phys. Rev. Lett. 112, 074801 (2014); hereafter TDHK]. While the two papers deal with circularly and linearly polarized laser pulses, respectively, the difference in expressions for the two is just the usual factor of 1/2 present from going from circular to linearmore » polarization. Additionally, we note the authors used an approximation to the number of subsidiary peaks in the unchirped spectrum when a better solution is given in TDHK.« less

  2. High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy.

    PubMed

    Li, Jiaxin; Lin, Haijun; Sun, Zhenrong; Kong, Guanyi; Yan, Xu; Wang, Yujiao; Wang, Xiaoxuan; Wen, Yanhua; Liu, Xiang; Zheng, Hongkun; Jia, Mei; Shi, Zhongfang; Xu, Rong; Yang, Shaohua; Yuan, Fang

    2018-01-01

    Circular RNAs (circRNAs) are a class of long noncoding RNAs with a closed loop structure that regulate gene expression as microRNA sponges. CircRNAs are more enriched in brain tissue, but knowledge of the role of circRNAs in temporal lobe epilepsy (TLE) has remained limited. This study is the first to identify the global expression profiles and characteristics of circRNAs in human temporal cortex tissue from TLE patients. Temporal cortices were collected from 17 TLE patients and 17 non-TLE patients. Total RNA was isolated, and high-throughput sequencing was used to profile the transcriptome of dysregulated circRNAs. Quantitative PCR was performed for the validation of changed circRNAs. In total, 78983 circRNAs, including 15.29% known and 84.71% novel circRNAs, were detected in this study. Intriguingly, 442 circRNAs were differentially expressed between the TLE and non-TLE groups (fold change≥2.0 and FDR≤0.05). Of these circRNAs, 188 were up-regulated, and 254 were down-regulated in the TLE patient group. Eight circRNAs were validated by real-time PCR. Remarkably, circ-EFCAB2 was intensely up-regulated, while circ-DROSHA expression was significantly lower in the TLE group than in the non-TLE group (P<0.05). Bioinformatic analysis revealed that circ-EFCAB2 binds to miR-485-5p to increase the expression level of the ion channel CLCN6, while circ-DROSHA interacts with miR-1252-5p to decrease the expression level of ATP1A2. The dysregulations of circRNAs may reflect the pathogenesis of TLE and circ-EFCAB2 and circ-DROSHA might be potential therapeutic targets and biomarkers in TLE patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Expression profile of circular RNAs in infantile hemangioma detected by RNA-Seq.

    PubMed

    Li, Jun; Li, Qian; Chen, Ling; Gao, Yanli; Li, Jingyun

    2018-05-01

    Circular RNAs (circRNAs) have emerged as a novel class of widespread non-coding RNAs, and they play crucial roles in various biological processes. However, the characterization and function of circRNAs in infantile hemangioma (IH) remain elusive. In this study, we used RNA-Seq and circRNA prediction to study and characterize the circRNAs in IH tissue and a matched normal skin control. Specific circRNAs were verified using real-time polymerase chain reaction. We found that of the 9811 identified circRNAs, 249 candidates were differentially expressed, including 124 upregulated and 125 downregulated circRNAs in the IH group compared with the matched normal skin control group. A set of differentially expressed circRNAs (in particular, hsa_circRNA001885 and hsa_circRNA006612 expression) were confirmed using qRT-PCR. Gene ontology and pathway analysis revealed that compared to matched normal skin tissues, many processes that were over-represented in IH group were related to the binding, protein binding, gap junction, and focal adhesion. Specific circRNAs were associated with several micro-RNAs (miRNAs) predicted using miRanda. Altogether, our findings highlight the potential importance of circRNAs in the biology of IH and its response to treatment.

  4. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model

    PubMed Central

    Huang, Jin-Lan; Qin, Mei-Chun; Zhou, Yan; Xu, Zhe-Hao; Yang, Si-man; Zhang, Fan; Zhong, Jing; Liang, Ming-Kun; Chen, Ben; Zhang, Wen-Yan

    2018-01-01

    Circular RNAs (circRNAs), a novel kind of non-coding RNA, have received increasing attention for their involvement in pathogenesis of Alzheimer’s disease (AD); however, few studies have reported in the characterization and function of AD associated circRNAs. Here the expression profiles of circRNAs in 5- and 10-month-old SAMP8 mice were identified using circRNA microarray and found that 85 dysregulated circRNAs were observed in 10-month-old SAMP8 versus control mice and 231 circRNAs exhibited differential expression in 10-month-old SAMP8 versus 5-month-old SAMP8. One most significantly dysregulated circRNA, mmu_circRNA_017963, was select for Gene Oncology (GO) and pathway analysis. The results showed that mmu_circRNA_017963 was strongly related with autophagosome assembly, exocytosis, apoptotic process, transport and RNA splicing and highly associated with synaptic vesicle cycle, spliceosome, glycosaminoglycan and SNARE interactions in vesicular transport pathways. Collectively, this study was the first to describe circRNAs expression in different ages of SAMP8 and will contribute to the understanding of the regulatory roles of circRNAs in AD pathogenesis and provide a valuable resource for the diagnosis and therapy of AD. PMID:29448241

  5. Cellular organization of pre-mRNA splicing factors in several tissues. Changes in the uterus by hormone action.

    PubMed

    George-Téllez, R; Segura-Valdez, M L; González-Santos, L; Jiménez-García, L F

    2002-05-01

    In the mammalian cell nucleus, splicing factors are distributed in nuclear domains known as speckles or splicing factor compartments (SFCs). In cultured cells, these domains are dynamic and reflect transcriptional and splicing activities. We used immunofluorescence and confocal microscopy to monitor whether splicing factors in differentiated cells display similar features. Speckled patterns are observed in rat hepatocytes, beta-cells, bronchial and intestine epithelia and also in three cell types of the uterus. Moreover, the number, distribution and sizes of the speckles vary among them. In addition, we studied variations in the circular form (shape) of speckles in uterine cells that are transcriptionally modified by a hormone action. During proestrus of the estral cycle, speckles are irregular in shape while in diestrus I they are circular. Experimentally, in castrated rats luminal epithelial cells show a pattern where speckles are dramatically rounded, but they recover their irregular shape rapidly after an injection of estradiol. The same results were observed in muscle and gland epithelial cells of the uterus. We concluded that different speckled patterns are present in various cells types in differentiated tissues and that these patterns change in the uterus depending upon the presence or absence of hormones such as estradiol.

  6. Construction and analysis of circular RNA molecular regulatory networks in liver cancer.

    PubMed

    Ren, Shuangchun; Xin, Zhuoyuan; Xu, Yinyan; Xu, Jianting; Wang, Guoqing

    2017-01-01

    Liver cancer is the sixth most prevalent cancer, and the third most frequent cause of cancer-related deaths. Circular RNAs (circRNAs), a kind of special endogenous ncRNAs, have been coming back to the forefront of cancer genomics research. In this study, we used a systems biology approach to construct and analyze the circRNA molecular regulatory networks in the context of liver cancer. We detected a total of 127 differentially expressed circRNAs and 3,235 differentially expressed mRNAs. We selected the top-5 upregulated circRNAs to construct a circRNA-miRNA-mRNA network. We enriched the pathways and gene ontology items and determined their participation in cancer-related pathways such as p53 signaling pathway and pathways involved in angiogenesis and cell cycle. Quantitative real-time PCR was performed to verify the top-five circRNAs. ROC analysis showed circZFR, circFUT8, circIPO11 could significantly distinguish the cancer samples, with an AUC of 0.7069, 0.7575, and 0.7103, respectively. Our results suggest the circRNA-miRNA-mRNA network may help us further understand the molecular mechanisms of tumor progression in liver cancer, and reveal novel biomarkers and therapeutic targets.

  7. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  8. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination

    PubMed Central

    So, Ji H.; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling

    2017-01-01

    Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal’s ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons. PMID:28197080

  9. Extinction efficiencies from DDA calculations solved for finite circular cylinders and disks

    NASA Technical Reports Server (NTRS)

    Withrow, J. R.; Cox, S. K.

    1993-01-01

    One of the most commonly noted uncertainties with respect to the modeling of cirrus clouds and their effect upon the planetary radiation balance is the disputed validity of the use of Mie scattering results as an approximation to the scattering results of the hexagonal plates and columns found in cirrus clouds. This approximation has historically been a kind of default, a result of the lack of an appropriate analytical solution of Maxwell's equations to particles other than infinite cylinders and spheroids. Recently, however, the use of such approximate techniques as the Discrete Dipole Approximation has made scattering solutions on such particles a computationally intensive but feasible possibility. In this study, the Discrete Dipole Approximation (DDA) developed by Flatau (1992) is used to find such solutions for homogeneous, circular cylinders and disks. This can serve to not only assess the validity of the current radiative transfer schemes which are available for the study of cirrus but also to extend the current approximation of equivalent spheres to an approximation of second order, homogeneous finite circular cylinders and disks. The results will be presented in the form of a single variable, the extinction efficiency.

  10. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    NASA Astrophysics Data System (ADS)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  11. Measuring the circular motion of small objects using laser stroboscopic images.

    PubMed

    Wang, Hairong; Fu, Y; Du, R

    2008-01-01

    Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.

  12. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    PubMed

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  13. Faraday effect on stimulated Raman scattering in the linear region

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  14. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  15. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum

    PubMed Central

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-01-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase–PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  16. Circ-UBR5: An exonic circular RNA and novel small nuclear RNA involved in RNA splicing.

    PubMed

    Qin, Meilin; Wei, Gang; Sun, Xiaomeng

    2018-06-24

    Circular RNAs (circRNAs) are class of non-coding RNAs formed by back-splicing events as loops, and could be found in all types of organisms. They play important and diverse roles in cell development, growth, and tumorigenesis, but functions of the majority of circRNAs remain enigmatic. Particularly functional phenotypes of great majority of circRNAs are not obvious. Here we randomly selected a circRNA circ-UBR5, which has no obvious functional phenotype in non-small cell lung cancer (NSCLC) cells from our previous research findings, to explore its potential function in cells. Differential expression of circ-UBR5 was detected in paired samples of tumorous tissues and adjacent nontumorous tissues from 59 patients with NSCLC by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Results showed circ-UBR5 expression was significantly downregulated in NSCLC tissues (p < 0.001) and was correlated with tumor differentiation (p = 0.00126), suggesting circ-UBR5 might serve as an index of NSCLC differentiation. Our findings indicated circ-UBR5 could bind splicing regulatory factor QKI, KH domain containing RNA binding (QKI) and NOVA alternative splicing regulator 1 (NOVA1) and U1 small nuclear RNA (snRNA) in the nucleus, revealing circ-UBR5 might be a novel snRNA involved in RNA splicing regulatory process. Moreover, we first presented a highly efficient strategy for finding specific circRNA binding proteins using Human Protein Microarray (Huprot™ Protoarray). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The amount of decrease of the background white noise intensity as a cue for differentiation training.

    PubMed

    Zieliński, K

    1981-01-01

    The course of differentiation learning, using the conditioned emotional response (CER) method, was investigated in two groups of 16 rats. The discriminative stimuli consisted of decreases in the 80 dB background white noise to either 70 dB or 60 dB. Differentiation learning was more efficient with the larger decrease of background noise intensity as the CS(+) and the smaller decrease as the CS(-) than vice versa.

  18. Wave propagation in a plate after impact by a projectile

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1987-01-01

    The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.

  19. Enhanced Compton Backscattering in a Periodic Mirror System for Polarized Positron Beam Generation

    NASA Astrophysics Data System (ADS)

    Miyahara, Yoshikazu

    2002-05-01

    By colliding a circularly polarized high power laser beam with a high-energy electron beam, intense circularly polarized γ-rays can be generated, which in turn can be used to produce a longitudinally polarized positron beam for a linear collider. In the present paper, an optical mirror system with periodic focal points is considered to generate intense polarized γ-rays. A CO2 laser beam propagates back and forth in a series of holed mirrors in a straight line. The diffraction loss through the holes is negligibly small, so that the laser beam can be used repeatedly for the collision. The beam size is reduced to 22 μm at a minimum and kept the same in 20 unit cells, ten of which are combined in series. A 5.8 GeV electron beam is focused to 30 μm at a minimum in a series of triplets of permanent quadrupole magnets to generate γ-rays of 60 MeV at a maximum. A γ-ray yield required for a positron beam in a linear collider can be obtained by 10 laser sources with a power of 3.1 kW each, which is considerably lower than the total power assumed in a previous proposal.

  20. Dynamic Fracture Properties of Rocks Subjected to Static Pre-load Using Notched Semi-circular Bend Method

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun

    2016-10-01

    A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.

  1. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    PubMed

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  2. Turbulence intensity's effect on liquid jet breakup from long circular pipes

    NASA Astrophysics Data System (ADS)

    Trettel, Ben; Ezekoye, Ofodike

    2017-11-01

    Long pipes which produce fully developed flow are frequently used as a nozzle in jet breakup research. We compiled experimental data from over 20 pipe jet studies for many breakup quantities and developed correlations for these quantities based on existing theories and our own theories. Previous experimental studies often had confounding between some variables (e.g., the Reynolds and Weber numbers), neglected important quantities (e.g., the turbulence intensity), or made apples to oranges comparisons (e.g., different nozzles). By independently tracking the Reynolds number, Weber number, density ratio, and turbulence intensity, and focusing only on pipe jets to keep other variables nearly constant, we minimize these issues. Turbulence is a cause of jet breakup, yet there is little quantitative research on this due to the difficulty of turbulence measurements in free surface flows. To avoid those difficulties, we exploited the fact that adjusting the roughness of a long pipe allows one to quantifiably control the turbulence intensity. We correlated turbulence intensity as a function of the friction factor. Data for rough pipes was used to include turbulence intensity in our study. Comparisons were made with theories for the effect of turbulence intensity on breakup.

  3. Probe systems for static pressure and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon, J.

    1991-01-01

    A recent study of total-pressure probes for use in highly turbulent streams is extended herein by developing probe systems that measure time-averaged static or ambient pressure and turbulence intensity. Arrangements of tubular probes of circular and elliptical cross section are described that measure the pressure at orifices on the sides of the probes to obtain different responses to the cross-stream velocity fluctuations. When the measured data are combined to remove the effect of the presence of the probes on the local pressure, the time-averaged static pressure and the cross-stream components of turbulence intensity can be determined. If a system of total pressure tubes, as described in an accompanying paper, is added to the static pressure group to form a single cluster, redundant measurements are obtained that permit accuracy and consistency checks.

  4. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  5. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Dunn, J.; Gao, S.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less

  6. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  7. Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushenko, Yu A; Gorskii, M P; Dubolazov, A V

    2012-08-31

    Theory of polarisation-correlation analysis of laser images of histological sections of biopsy material from cervix tissue based on spatial frequency selection of linear and circular birefringence mechanisms is formulated. Comparative results of measuring the coordinate distributions of the complex degree of mutual anisotropy (CDMA), produced by fibrillar networks formed by myosin and collagen fibres of cervix tissue in different pathological conditions, namely, pre-cancer (dysplasia) and cancer (adenocarcinoma), are presented. The values and variation ranges of statistical (moments of the first - fourth order), correlation (excess-autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences ofmore » power spectra) parameters of the CDMA coordinate distributions are studied. Objective criteria for pathology diagnostics and differentiation of its severity degree are determined. (image processing)« less

  8. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1982-01-01

    An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.

  9. Laser autofluorescence polarimetry of optically anisotropic structures of biological tissues in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.

    2015-06-01

    The results of a new physical study of polarization manifestations of laser autofluorescence of optically anisotropic structures in human female reproductive tissues are presented. A Mueller-matrix model of describing the complex anisotropy (linear and circular birefringence, linear and circular dichroism) of such biological layers is proposed. Interrelations between mechanisms of optical anisotropy and polarization manifestations of laser autofluorescence of histological layers of the uterine cervix tissue in different spectral regions are determined. Magnitudes and variation ranges of statistical moments from the first to the fourth order describing the distributions of azimuthally stable elements of Mueller matrices of autofluorescence in human female reproductive tissues in different physiological states are found. The informative value of the proposed method is determined and the differentiation of histological biopsy sections of benign (dysplasia) and malignant (adenocarcinoma) uterine cervix tumors is implemented for the first time.

  10. Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu A.; Gorskii, M. P.; Dubolazov, A. V.; Motrich, A. V.; Ushenko, V. A.; Sidor, M. I.

    2012-08-01

    Theory of polarisation-correlation analysis of laser images of histological sections of biopsy material from cervix tissue based on spatial frequency selection of linear and circular birefringence mechanisms is formulated. Comparative results of measuring the coordinate distributions of the complex degree of mutual anisotropy (CDMA), produced by fibrillar networks formed by myosin and collagen fibres of cervix tissue in different pathological conditions, namely, pre-cancer (dysplasia) and cancer (adenocarcinoma), are presented. The values and variation ranges of statistical (moments of the first — fourth order), correlation (excess-autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of the CDMA coordinate distributions are studied. Objective criteria for pathology diagnostics and differentiation of its severity degree are determined.

  11. Analysis and numerical simulation research of the heating process in the oven

    NASA Astrophysics Data System (ADS)

    Chen, Yawei; Lei, Dingyou

    2016-10-01

    How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven. For this intent, this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section. Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission, based on the idea of utilizing cellular automation to simulate heat transfer process, used ANSYS software to proceed the numerical simulation analysis to the rectangular, round-cornered rectangular, elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans. The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.

  12. Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.

    2016-07-01

    This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.

  13. Generalization of Fear to Respiratory Sensations.

    PubMed

    Schroijen, Mathias; Pappens, Meike; Schruers, Koen; Van den Bergh, Omer; Vervliet, Bram; Van Diest, Ilse

    2015-09-01

    Interoceptive fear conditioning (IFC), fear generalization and a lack of safety learning have all been hypothesized to play a role in the pathogenesis of panic disorder, but have never been examined in a single paradigm. The present study aims to investigate whether healthy participants (N=43) can learn both fear and safety to an interoceptive sensation, and whether such learning generalizes to other, similar sensations. Two intensities of inspiratory breathing impairment (induced by two pressure threshold loads of 6 and 25 cm H2O) served as interoceptive conditional stimuli (CSs) in a differential conditioning paradigm. An inspiratory occlusion was used as the unconditioned stimulus (US). Generalization was tested 24h after conditioning, using four generalization stimuli with intensities in-between CS+ and CS- (GSs: 8-10.5-14-18.5 cm H2O). Measures included US-expectancy, startle blink EMG responses, electrodermal activity and respiration. Perceptual discrimination of interoceptive CSs and GSs was explored with a discrimination task prior to acquisition and after generalization. Results indicate that differential fear learning was established for US-expectancy ratings. The group with a low intensity CS+ and a high intensity CS- showed the typical pattern of differential fear responding and a similarity-based generalization gradient. In contrast, the high intensity CS+ and low intensity CS- group showed impaired differential learning and complete generalization of fear. Our findings suggest that interoceptive fear learning and generalization are modulated by stimulus intensity and that the occurrence of discriminatory learning is closely related to fear generalization. Copyright © 2015. Published by Elsevier Ltd.

  14. Wavelet analysis of polarization maps of the myocardium tissue microscopic images in the diagnosis of the causes of death

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Boichuk, T. M.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Minzer, O. P.; Dubolazov, O. V.; Marchuk, Yu. F.; Olar, O. I.

    2015-08-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  15. Coulomb Thrusting Application Study

    DTIC Science & Technology

    2006-01-20

    Acceleration Magnitudes To study the relative motion of spacecraft in nearly circular orbits, the Clohessy - Wiltshire - Hill equations are commonly...Modeling The Clohessy - Wiltshire -Hill’s equations12–14 for one of the spacecraft in the 2-craft Coulomb tether formation is given by ẍ1 − 2nẏ1...equa- tion was obtained using the Clohessy - Wiltshire - Hill equations, while the linearized differential equations of ψ and θ were derived from the full

  16. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy.

    PubMed

    Marsh, Noelle M; Wareham, Angela; White, Bryan G; Miskiewicz, Ewa I; Landry, Jacques; MacPhee, Daniel J

    2015-05-01

    The small heat shock protein (HSP) B family of proteins are a group of molecular chaperones that enable tissues to adapt to changes in their local environments during differentiation, stress, or disease conditions. The objective of this research was to characterize the expression of HSPB8 and its cochaperone Bcl2-associated athanogene 3 (BAG3) in nonpregnant (NP) and pregnant rat myometrium during myometrial programming. Rat myometrium was collected from NP and pregnant rats as well as 1 day postpartum (PP) and samples prepared for immunoblot and immunofluorescence analysis. Immunoblot analysis determined that HSPB8 protein expression was significantly elevated at Day (D) 15, D17, and D19 compared to expression at NP and D6, while BAG3 expression was significantly elevated at D15 compared to NP, and D17 compared to NP, D6, D23, and PP time points (P < 0.05). In situ, HSPB8 and BAG3 were predominantly localized to myometrial cells throughout pregnancy, with intense cytoplasmic HSPB8 and BAG3 detection on D15 and D17 in both longitudinal and circular muscle layers. Immunoblot analysis of HSPB8 and BAG3 protein expression in myometrium from unilateral pregnancies also revealed that expression of both proteins was significantly increased at D15 in gravid compared to nongravid horns. Thus, HSPB8 and BAG3 are highly expressed during the synthetic phase of myometrial differentiation marked by initiation of uterine distension and myometrial hypertrophy. HSPB8 and BAG3 could be regulators of the protein quality control required for this process. © 2015 by the Society for the Study of Reproduction, Inc.

  17. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease -- can it differentiate bone infarcts from acute osteomyelitis?

    PubMed

    Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor

    2015-12-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.

  18. Unexpected impact of radiation friction: enhancing production of longitudinal plasma waves.

    PubMed

    Gelfer, Evgeny; Elkina, Nina; Fedotov, Alexander

    2018-04-24

    We study the penetration of ultra-intense (intensity I [Formula: see text] 10 23-24  W/cm 2 ) circularly polarized laser pulses into a thick subcritical plasma layer with accounting for radiation friction. We show that radiation pressure is enhanced due to radiation friction in the direction transverse to the laser pulse propagation, and that for stronger and longer laser pulses this mechanism dominates over the ordinary ponderomotive pressure, thus resulting in a substantionaly stronger charge separation than anticipated previously. We give estimates of the effect and compare them with the results of one and two dimensional particle-in-cell simulations. This effect can be important for laser-based acceleration schemes.

  19. Spectral control of high harmonics from relativistic plasmas using bicircular fields

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2018-04-01

    We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.

  20. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    PubMed

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  1. Sharp focusing of laser light by multilayer cylinders with circular cross-section

    NASA Astrophysics Data System (ADS)

    Kozlova, E. S.

    2018-04-01

    In this paper, the focusing of laser light at 532 nm by dielectric cylinders with a metal shells is studied by using COMSOL Multiphysics. The analysis of cylinder design which proposed multilayered shell shows that a microcylinder with a gold-silver (or silver-gold) shell can improve the focusing process, especially in the case of TM polarization. The microcylinder with thin internal silver layer of 1 nm and outside gold layer of 9 nm focus TE-polarized light to nanojet with maximal intensity of 5.65 a.u., full width and full length at half maximum of intensity of of 0.39λ and 0.72λ, respectively.

  2. Circular dichroism study of the carbohydrate-modified opioid peptides

    NASA Astrophysics Data System (ADS)

    Horvat, Štefica; Otvos, Laszlo; Urge, Laszlo; Horvat, Jaroslav; Čudić, Mare; Varga-Defterdarović, Lidija

    1999-09-01

    The conformational preferences of enkephalins and the related glycoconjugates in which free or protected carbohydrate moieties were linked to the opioid peptides through an ether, ester or amide bond were investigated by circular dichroism spectroscopy in water, trifluoroethanol and water-trifluoroethanol mixtures. The analysis of the spectra revealed that the conformation of the enkephalin molecule is very sensitive to slight changes in the peptide structure around the C-terminal region. It was found that the type II β-turn structures are populated in N-terminal tetrapeptide enkephalin fragment, while leucine-enkephalin amide feature a type I (III) β-turn structure in solution. Incorporation of the sugar moiety into opioid peptide compound did not significantly influence the overall conformation of the peptide backbone, although minor intensity changes may reflect shifts in the population of the different turn systems. These small structural alterations can be responsible for the receptor-subtype selectivity of the various carbohydrate-modified enkephalin analogs.

  3. Control of electronic transport in graphene by electromagnetic dressing

    PubMed Central

    Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2016-01-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light. PMID:26838371

  4. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    NASA Astrophysics Data System (ADS)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  5. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence

    PubMed Central

    Petoud, Stéphane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen N.; Cohen, Seth M.; Raymond, Kenneth N.

    2009-01-01

    The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, glum, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments. PMID:17199285

  6. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A novel approach of deposition for uniform diamond films on circular saw blades

    NASA Astrophysics Data System (ADS)

    Hongxiu, ZHOU; Boya, YUAN; Jilei, LYU; Nan, JIANG

    2017-11-01

    Uniform diamond films are highly desirable for cutting industries, due to their high performance and long lifetime used on cutting tools. Nevertheless, they are difficult to obtain on cutting tools with complicated shapes, greatly limiting the applications of diamond films. In this study, a novel approach of deposition for uniform diamond films is proposed, on circular saw blades made of cemented carbide using reflectors of brass sheets. Diamond films are deposited using hot filament chemical vapor deposition (HFCVD). A novel concave structure of brass sheets is designed and fabricated, improving the distribution of temperature field, and overcoming the disadvantages of the conventional HFCVD systems. This increases the energy efficiency of use without changing the structure and increasing the cost of HFCVD. The grains are refined and the intensities of diamond peaks are strengthened obviously, which is confirmed by scanning electron microscopy and Raman spectra respectively.

  8. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-04

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.

  9. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    NASA Astrophysics Data System (ADS)

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-11-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.

  10. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  11. Qualitative and semiquantitative Fourier transformation using a noncoherent system.

    PubMed

    Rogers, G L

    1979-09-15

    A number of authors have pointed out that a system of zone plates combined with a diffuse source, transparent input, lens, and focusing screen will display on the output screen the Fourier transform of the input. Strictly speaking, the transform normally displayed is the cosine transform, and the bipolar output is superimposed on a dc gray level to give a positive-only intensity variation. By phase-shifting one zone plate the sine transform is obtained. Temporal modulation is possible. It is also possible to redesign the system to accept a diffusely reflecting input at the cost of introducing a phase gradient in the output. Results are given of the sine and cosine transforms of a small circular aperture. As expected, the sine transform is a uniform gray. Both transforms show unwanted artifacts beyond 0.1 rad off-axis. An analysis shows this is due to unwanted circularly symmetrical moire patterns between the zone plates.

  12. Interaction studies of resistomycin from Streptomyces aurantiacus AAA5 with calf thymus DNA and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha

    2012-04-01

    Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.

  13. Concentric Circular Grating Generated by the Patterning Trapping of Nanoparticles in an Optofluidic Chip

    PubMed Central

    Dai, Hailang; Cao, Zhuangqi; Wang, Yuxing; Li, Honggen; Sang, Minghuang; Yuan, Wen; Chen, Fan; Chen, Xianfeng

    2016-01-01

    Due to the field enhancement effect of the hollow-core metal-cladded optical waveguide chip, massive nanoparticles in a solvent are effectively trapped via exciting ultrahigh order modes. A concentric ring structure of the trapped nanoparticles is obtained since the excited modes are omnidirectional at small incident angle. During the process of solvent evaporation, the nanoparticles remain well trapped since the excitation condition of the optical modes is still valid, and a concentric circular grating consisting of deposited nanoparticles can be produced by this approach. Experiments via scanning electron microscopy, atomic force microscopy and diffraction of a probe laser confirmed the above hypothesis. This technique provides an alternative strategy to enable effective trapping of dielectric particles with low-intensity nonfocused illumination, and a better understanding of the correlation between the guided modes in an optical waveguide and the nanoparticles in a solvent. PMID:27550743

  14. Control of electronic transport in graphene by electromagnetic dressing.

    PubMed

    Kristinsson, K; Kibis, O V; Morina, S; Shelykh, I A

    2016-02-03

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.

  15. φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis

    PubMed Central

    Siegel, Jeff E. D.; Hayashi, Masaki

    1969-01-01

    Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type. PMID:5823229

  16. Multispecies spawning sites for fishes on a low-latitude coral reef: spatial and temporal patterns.

    PubMed

    Claydon, J A B; McCormick, M I; Jones, G P

    2014-04-01

    Spawning sites used by one or more species were located by intensively searching nearshore coral reefs of Kimbe Bay (New Britain, Papua New Guinea). Once identified, the spawning sites were surveyed repeatedly within fixed 5 m radius circular areas, for  > 2000 h of observations ranging from before dawn to after dusk spanning 190 days between July 2001 and May 2004. A total of 38 spawning sites were identified on the seven study reefs distributed at an average of one site every 60 m of reef edge. Pelagic spawning was observed in 41 fish species from six families. On three intensively studied reefs, all 17 spawning sites identified were used by at least three species, with a maximum of 30 different species observed spawning at a single site. Spawning was observed during every month of the study, on all days of the lunar month, at all states of the tide and at most hours of the day studied. Nevertheless, the majority of species were observed spawning on proportionately more days from December to April, on more days around the new moon and in association with higher tides. The strongest temporal association, however, was with species-specific diel spawning times spanning < 3 h for most species. While dawn spawning, afternoon spawning and dusk spawning species were differentiated, the time of spawning for the striated surgeonfish Ctenochaetus striatus also differed significantly among sites. The large number of species spawning at the same restricted locations during predictable times suggests that these sites are extremely important on this low-latitude coral reef. © 2014 The Fisheries Society of the British Isles.

  17. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation.

    PubMed

    Rucker, Daniel Caleb; Webster Iii, Robert J

    2009-09-01

    Dexterous at small diameters, continuum robots consisting of precurved concentric tubes are well-suited for minimally invasive surgery. These active cannulas are actuated by relative translations and rotations applied at the tube bases, which create bending via elastic tube interaction. An accurate kinematic model of cannula shape is required for applications in surgical and other settings. Previous models are limited to circular tube precurvatures, and neglect torsional deformation in curved sections. Recent generalizations account for arbitrary tube preshaping and bending and torsion throughout the cannula, providing differential equations that define cannula shape. In this paper, we show how to simplify these equations using Frenet-Serret frames. An advantage of this approach is the interpretation of torsional components of the preset tube shapes as "forcing functions" on the cannula's differential equations. We also elucidate a process for numerically solving the differential equations, and use it to produce simulations illustrating the implications of torsional deformation and helical tube shapes.

  18. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  19. System of polarization correlometry of polycrystalline layers of urine in the differentiation stage of diabetes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Pashkovskaya, N. V.; Marchuk, Y. F.; Dubolazov, O. V.; Savich, V. O.

    2015-08-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Muellermatrix method of analysis of laser autofluorescence coordinate distributions of biological liquid layers. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of human urine polycrystalline layers for the sake of diagnosing and differentiating cholelithiasis with underlying chronic cholecystitis (group 1) and diabetes mellitus of degree II (group 2) are estimated.

  20. Automatic differentiation for Fourier series and the radii polynomial approach

    NASA Astrophysics Data System (ADS)

    Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian

    2016-11-01

    In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).

  1. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  2. Plasma q -plate for generation and manipulation of intense optical vortices

    DOE PAGES

    Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.

    2017-11-28

    An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less

  3. Plasma q -plate for generation and manipulation of intense optical vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.

    An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less

  4. A revised “earthquake report” questionaire

    USGS Publications Warehouse

    Stover, C.; Reagor, G.; Simon, R.

    1976-01-01

    The U.S geological Survey is responsible for conducting intensity and damage surveys following felt or destructive earthquakes in the United States. Shortly after a felt or damaging earthquake occurs, a canvass of the affected area is made. Specially developed questionnaires are mailed to volunteer observers located within the estimated felt area. These questionnaires, "Earthquake Reports," are filled out by the observers and returned to the Survey's National Earthquake Information Service, which is located in Colorado. They are then evaluated, and, based on answers to questions about physical effects seen or felt, each canvassed location is assigned to the various locations, they are plotted on an intensity distribution map. When all of the intensity data have been plotted, isoseismals can then be contoured through places where equal intensity was experienced. The completed isoseismal map yields a detailed picture of the earthquake, its effects, and its felt area. All of the data and maps are published quarterly in a U.S Geological Survey Circular series entitled "Earthquakes in the United States".  

  5. Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China based on Ground-Based Radar Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaotong; Li, Qingqing; Yu, Jinhua; Wu, Dan; Yao, Kai

    2018-05-01

    The geometric characteristics of tropical cyclone (TC) eyes before landfall in South China are examined using ground-based radar reflectivity. It is found that the median and mean eye area decrease with TC intensity, except for the severe typhoon category, and the eye size increases with height. The increasing rate of eye size is relatively greater in upper layers. Moreover, the ratio of eye size change in the vertical direction does not correlate with TC intensity. No relationship is presented between the ratio of eye size change in the vertical direction and the vertical wind shear. No relationship between the vertical change in eye size and the eye size at a certain level is found, inconsistent with other studies. No relationship exists between the vertical change in eye size and the intensity tendency. The eye roundness values range mainly from 0.5 to 0.7, and more intense TCs generally have eyes that are more circular.

  6. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect.

    PubMed

    Dobrikova, Anelia G; Várkonyi, Zsuzsanna; Krumova, Sashka B; Kovács, László; Kostov, Georgi K; Todinova, Svetla J; Busheva, Mira C; Taneva, Stefka G; Garab, Gyozo

    2003-09-30

    The thermo-optic mechanism in thylakoid membranes was earlier identified by measuring the thermal and light stabilities of pigment arrays with different levels of structural complexity [Cseh, Z., et al. (2000) Biochemistry 39, 15250-15257]. (According to the thermo-optic mechanism, fast local thermal transients, arising from the dissipation of excess, photosynthetically not used, excitation energy, induce elementary structural changes due to the "built-in" thermal instabilities of the given structural units.) The same mechanism was found to be responsible for the light-induced trimer-to-monomer transition in LHCII, the main chlorophyll a/b light-harvesting antenna of photosystem II (PSII) [Garab, G., et al. (2002) Biochemistry 41, 15121-15129]. In this paper, differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy on thylakoid membranes of barley and pea are used to correlate the thermo-optically inducible structural changes with well-discernible calorimetric transitions. The thylakoid membranes exhibited six major DSC bands, with maxima between about 43 and 87 degrees C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherm and by a successive annealing procedure; these yielded similar thermodynamic parameters, transition temperature and calorimetric enthalpy. A systematic comparison of the DSC and CD data on samples with different levels of complexity revealed that the heat-induced disassembly of chirally organized macrodomains contributes profoundly to the first endothermic event, a weak and broad DSC band between 43 and 48 degrees C. Similarly to the main macrodomain-associated CD signals, this low enthalpy band could be diminished by prolonged photoinhibitory preillumination, the extent of which depended on the temperature of preillumination. By means of nondenaturing, "green" gel electrophoresis and CD fingerprinting, it is shown that the second main endotherm, around 60 degrees C, originates to a large extent from the monomerization of LHCII trimers. The main DSC band, around 70 degrees C, which exhibits the highest enthalpy change, and another band around 75-77 degrees C relate to the dismantling of LHCII and other pigment-protein complexes, which under physiologically relevant conditions cannot be induced by light. The currently available data suggest the following sequence of events of thermo-optically inducible changes: (i) unstacking of membranes, followed by (ii) lateral disassembly of the chiral macrodomains and (iii) monomerization of LHCII trimers. We propose that thermo-optical structural reorganizations provide a structural flexibility, which is proportional to the intensity of the excess excitation, while for their localized nature, the structural stability of the system can be retained.

  7. RNA-Seq profiling of circular RNAs in human laryngeal squamous cell carcinomas.

    PubMed

    Lu, Cheng; Shi, Xi; Wang, Amanda Y; Tao, Yuan; Wang, Zhenxiao; Huang, Chaoping; Qiao, Yuehua; Hu, Hongyi; Liu, Liangfa

    2018-05-01

    Abnormal expression of non-coding circular RNAs (circRNAs) have been reported in many types of tumors. circRNA have been suggested to be an ideal candidate biomarker for diagnostic and therapeutic implications in cancers. The aim of this study was to assess the circRNA expression profile of laryngeal squamous cell carcinomas (LSCC). The biopsy samples from patients with LSCC were obtained intra-operatively. The circRNA expression was performed using secondary sequencing. Among 10 patients with LSCC, 2 were well differentiated, 3 were moderately differentiated and 5 were adjunctive samples with normal and LSCC tissues. A total of 21,444 distinct circRNA candidates were detected. Among them, we defined the statistical criteria for selecting aberrant-expressed circRNA using a q-value of < 0.001 with a fold change of > 2.0 or < 0.5. A total of 29 circRNA were upregulated and 19 circRNA were downregulated significantly in the LSCC tissues. The intersection of these dysregulated circRNAs of normal-well differentiated set and normal-moderately differentiated set was then assessed to narrow the upregulated and downregulated circRNAs down to 18 and 5 respectively. Furthermore, an association of the circRNA-miRNA-mRNA was investigated, showing that 20 dysregulated circRNA successfully predicted an interaction with several cancer-related miRNAs. Finally, a further KEGG analysis showed that PPAR, Axon guidance, Wnt and Cell cycle signaling pathway were key putative pathways in the process of LSCC. hsa_circ:chr20:31876585-31,897,648 was found to be able to differentiate most of LSCC from the matching normal tissues. This observational study demonstrated dysregulation of circRNA in LSCC, which may have an impact on development of potential biomarkers in this disease. Validation of down-regulation of hsa_circ:chr20:31876585-31,897,648 in LSCC compared to each adjunctive tissue by Q-RT-PCR, indicating that hsa_circ:chr20:31876585-31,897,648 may be a novel promising tumor suppresser in LSCC.

  8. Human sensitivity to vertical self-motion.

    PubMed

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  9. Micro-Structured Materials for Generation of Coherent Light and Optical Signal Processing

    DTIC Science & Technology

    2008-12-22

    Bliss, and D. Weyburne,, "GaAs optical parametric oscillator with circularly polarized and depolarized pump", Optics Letters, No. 18, Vol. 32, pp...Because we measure the space-charge field by propagating the intense green laser beam along the crystal c- axis, the polarization of the light is...ordinary. Most applications utilize light with extraordinary polarization to make use of the largest component of the nonlinear or electro-optic tensor

  10. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Chian, A. C.-L.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  11. An Investigation of Particulate Behavior in Solid Rocket Motors

    DTIC Science & Technology

    1981-06-01

    that in the latter only a relatively few Al203 particles (of circular cross-section) are present. The other residue appears to be from the inhibitor ...cast in the propellant (Figure 16). The presence of large amounts of inhibitor residue obviously affected the scattered-light intensity profile and the...calculations. Therefore, the quantity of inhibitor used in future experi- ments should be minimized. D. DISCUSSION OF RESULTS The volume-surface mean

  12. The two-dimensional instability of an incompressible vortex in a tube with energy-absorbent walls

    NASA Astrophysics Data System (ADS)

    Broadbent, E. G.; Moore, D. W.

    1994-07-01

    We have previously shown that a Rankine vortex in a compressible fluid is unstable to a perturbation in cross section, e.g. to a slightly eccentric ellipse. This result is surprising, because compressibility leads to a loss of energy from the perturbed vortex by acoustic radiation. An explanation, valid for small swirl Mach numbers, was provided by Kop'ev and Leont'ev. For small Mach numbers the flow in the neighborhood of the vortex can be treated as incompressible, from which it follows that the kinetic energy is greater for the circular vortex than for any other nearby shape. Thus the loss of energy by acoustic radiation will result in increasing departures from a circular cross section. We assert here that the instability is not inherently acoustic, but that any mechanism which can remove energy will result in instability. To support our contention, we examine the Rankine vortex in a concentric circular tube which has compliant walls. Linear theory first establishes that the instability exists in this case and an approximate theory for a small region of vorticity shows that the distortion increases indefinitely. This is confirmed, without the restriction on size, by a numerical solution of the integro-differential equation based on contour dynamics.

  13. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    PubMed

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  14. Analysis of Taiwanese Elementary School English Teachers' Perceptions of, Designs of, and Knowledge Constructed about Differentiated Instruction in Content

    ERIC Educational Resources Information Center

    Chien, Chin-Wen

    2015-01-01

    This study analyzed Taiwanese elementary school English teachers' perceptions of, designs on, and knowledge constructed about, differentiated instruction in content in an intensive summer course. Based on the data analysis of surveys, the document, videos, and an interview, the study had the following findings. First, before the intensive summer…

  15. Elemental analysis of tissue pellets for the differentiation of epidermal lesion and normal skin by laser-induced breakdown spectroscopy

    PubMed Central

    Moon, Youngmin; Han, Jung Hyun; Shin, Sungho; Kim, Yong-Chul; Jeong, Sungho

    2016-01-01

    By laser induced breakdown spectroscopy (LIBS) analysis of epidermal lesion and dermis tissue pellets of hairless mouse, it is shown that Ca intensity in the epidermal lesion is higher than that in dermis, whereas Na and K intensities have an opposite tendency. It is demonstrated that epidermal lesion and normal dermis can be differentiated with high selectivity either by univariate or multivariate analysis of LIBS spectra with an intensity ratio difference by factor of 8 or classification accuracy over 0.995, respectively. PMID:27231610

  16. Circular RNA Signature Predicts Gemcitabine Resistance of Pancreatic Ductal Adenocarcinoma.

    PubMed

    Shao, Feng; Huang, Mei; Meng, Futao; Huang, Qiang

    2018-01-01

    Gemcitabine resistance is currently the main problem of chemotherapy for advanced pancreatic cancer patients. The resistance is thought to be caused by altered drug metabolism or reduced apoptosis of cancer cells. However, the underlying mechanism of Gemcitabine resistance in pancreatic cancer remains unclear. In this study, we established Gemcitabine resistant PANC-1 (PANC-1-GR) cell lines and compared the circular RNAs (circRNAs) profiles between PANC-1 cells and PANC-1-GR cells by RNA sequencing. Differentially expressed circRNAs were demonstrated using scatter plot and cluster heatmap analysis. Gene ontology and pathway analysis were performed to systemically map the genes which are functionally associated to those differentially expressed circRNAs identified from our data. The expression of the differentially expressed circRNAs picked up by RNAseq in PANC-1-GR cells was further validated by qRT-PCR and two circRNAs were eventually identified as the most distinct targets. Consistently, by analyzing plasma samples form pancreatic ductal adenocarcinoma (PDAC) patients, the two circRNAs showed more significant expression in the Gemcitabine non-responsive patients than the responsive ones. In addition, we found that silencing of the two circRNAs could restore the sensitivity of PANC-1-GR cells to Gemcitabine treatment, while over-expression of them could increase the resistance of normal PANC-1 and MIA PACA-2 cells, suggesting that they might serve as drug targets for Gemcitabine resistance. Furthermore, the miRNA interaction networks were also explored based on the correlation analysis of the target microRNAs of these two circRNAs. In conclusion, we successfully established new PANC-1-GR cells, systemically characterized the circRNA and miRNA profiles, and identified two circRNAs as novel biomarkers and potential therapeutic targets for Gemcitabine non-responsive PDAC patients.

  17. An experimental study of the structure and acoustic field of a jet in a cross stream. [Ames 7-ft by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Camelier, I.; Karamcheti, K.

    1976-01-01

    The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1 + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the jet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.

  18. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer.

    PubMed

    Tiwari, Vivek; Jonas, David M

    2018-02-28

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.

  19. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    NASA Astrophysics Data System (ADS)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.

  20. Double sampling to estimate density and population trends in birds

    USGS Publications Warehouse

    Bart, Jonathan; Earnst, Susan L.

    2002-01-01

    We present a method for estimating density of nesting birds based on double sampling. The approach involves surveying a large sample of plots using a rapid method such as uncorrected point counts, variable circular plot counts, or the recently suggested double-observer method. A subsample of those plots is also surveyed using intensive methods to determine actual density. The ratio of the mean count on those plots (using the rapid method) to the mean actual density (as determined by the intensive searches) is used to adjust results from the rapid method. The approach works well when results from the rapid method are highly correlated with actual density. We illustrate the method with three years of shorebird surveys from the tundra in northern Alaska. In the rapid method, surveyors covered ~10 ha h-1 and surveyed each plot a single time. The intensive surveys involved three thorough searches, required ~3 h ha-1, and took 20% of the study effort. Surveyors using the rapid method detected an average of 79% of birds present. That detection ratio was used to convert the index obtained in the rapid method into an essentially unbiased estimate of density. Trends estimated from several years of data would also be essentially unbiased. Other advantages of double sampling are that (1) the rapid method can be changed as new methods become available, (2) domains can be compared even if detection rates differ, (3) total population size can be estimated, and (4) valuable ancillary information (e.g. nest success) can be obtained on intensive plots with little additional effort. We suggest that double sampling be used to test the assumption that rapid methods, such as variable circular plot and double-observer methods, yield density estimates that are essentially unbiased. The feasibility of implementing double sampling in a range of habitats needs to be evaluated.

  1. Differential standard deviation of log-scale intensity based optical coherence tomography angiography.

    PubMed

    Shi, Weisong; Gao, Wanrong; Chen, Chaoliang; Yang, Victor X D

    2017-12-01

    In this paper, a differential standard deviation of log-scale intensity (DSDLI) based optical coherence tomography angiography (OCTA) is presented for calculating microvascular images of human skin. The DSDLI algorithm calculates the variance in difference images of two consecutive log-scale intensity based structural images from the same position along depth direction to contrast blood flow. The en face microvascular images were then generated by calculating the standard deviation of the differential log-scale intensities within the specific depth range, resulting in an improvement in spatial resolution and SNR in microvascular images compared to speckle variance OCT and power intensity differential method. The performance of DSDLI was testified by both phantom and in vivo experiments. In in vivo experiments, a self-adaptive sub-pixel image registration algorithm was performed to remove the bulk motion noise, where 2D Fourier transform was utilized to generate new images with spatial interval equal to half of the distance between two pixels in both fast-scanning and depth directions. The SNRs of signals of flowing particles are improved by 7.3 dB and 6.8 dB on average in phantom and in vivo experiments, respectively, while the average spatial resolution of images of in vivo blood vessels is increased by 21%. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mueller-matrix mapping of optically anisotropic fluorophores of molecular biological tissues in the diagnosis of death causes

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.

    2016-09-01

    A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.

  4. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2013-09-01

    conduit (cross sections). (a) Neurofilamen (NFM) staining shows that the implanted MVSC (GFP+) formed circular structure wrapping the newly...F-actin (g–i) (nuclei were stained with DAPI) or used for qPCR to measure the gene expression of smA and Cnn1 (j–k). 18s ribosomal RnA was used to...Publishers Limited. All rights reserved. To determine whether MVSCs could differentiate into mature SMCs and turn on EGFP expression, we activated Notch

  5. Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    NASA Astrophysics Data System (ADS)

    Zheng, F. L.; Wu, S. Z.; Wu, H. C.; Zhou, C. T.; Cai, H. B.; Yu, M. Y.; Tajima, T.; Yan, X. Q.; He, X. T.

    2013-01-01

    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2° divergence can be produced by a circularly polarized laser pulse at an intensity of about 1022 W/cm2.

  6. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  7. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  8. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  9. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  10. Acoustic nonreciprocity in Coriolis mean flow systems.

    PubMed

    Naghdi, Masoud; Farzbod, Farhad

    2018-01-01

    One way to break acoustic reciprocity is to have a moving wave propagation medium. If the acoustic wave vector and the moving fluid velocity are collinear, the wave vector shift caused by the fluid flow can be used to break. In this paper, an alternative approach is investigated in which the fluid velocity enters the differential equation of the system as a cross product term with the wave vector. A circular field where the fluid velocity increases radially has a Coriolis acceleration term. In such a system, the acoustic wave enters from the central wall and exits from the perimeter wall. In this paper, the differential equation is solved numerically and the effect of fluid velocity on the nonreciprocity factor is examined.

  11. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  12. Circuit Motifs for Contrast-Adaptive Differentiation in Early Sensory Systems: The Role of Presynaptic Inhibition and Short-Term Plasticity

    PubMed Central

    Zhang, Danke; Wu, Si; Rasch, Malte J.

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems. PMID:25723493

  13. Circuit motifs for contrast-adaptive differentiation in early sensory systems: the role of presynaptic inhibition and short-term plasticity.

    PubMed

    Zhang, Danke; Wu, Si; Rasch, Malte J

    2015-01-01

    In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.

  14. Trait anxiety and attenuated negative affect differentiation: a vulnerability factor to consider?

    PubMed

    Matt, Lindsey M; Fresco, David M; Coifman, Karin G

    2016-11-01

    Describing emotional experiences using distinct terms, or affect differentiation, has been associated with emotion regulation and adaptive behavior under stress. There is little data, however, examining the association between differentiation and dispositional factors underlying psychopathology. The current study examines the association between differentiation and trait anxiety (TA) given prior evidence of cognitive biases in TA relevant to higher order processing of emotional experiences. We examined cross-sectionally, via lab-based repeated assessment, the association between differentiation of negative and positive experiences and TA. Two hundred twenty-two adults completed an emotion reactivity task including repeated assessments of affect. We hypothesized that individuals higher in trait anxiety (HTA) would have greater difficulty differentiating their experiences. HTA individuals exhibited lower levels of negative affect (NA) differentiation even when controlling for depression. Although negative emotion intensity was consistently associated with lower differentiation, this did not account for the influence of HTA on differentiation. These data suggest that HTA individuals have greater difficulty differentiating negative emotions, regardless of negative emotion intensity and depression. As HTA is common to many emotional disorders; this evidence suggests that poor differentiation may also be an important transdiagnostic consideration in models of risk and of affective disease.

  15. Radio Emission from Algol. I. Coronal Geometry and Emission Mechanisms Determined from VLBA and Green Bank Interferometer Observations

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Molnar, L. A.; Waltman, E. B.; Ghigo, F. D.

    1998-11-01

    We report dual circular polarization VLBA observations of Algol made at orbital phases 0.22-0.30 using a differential phase referencing technique. The flux density of Algol varied from 10 to 20 mJy during the observations. The radio maps show a double-lobed source separated by 1.6 mas (1.4 times the K star diameter). Although the total emission is only weakly circularly polarized, the individual lobes are strongly circularly polarized and of opposite helicity. Snapshot VLBI maps made at 3 hour intervals show variations in the flux density of both components, but no significant motions of the centroids. We also analyze Green Bank Interferometer (GBI) synoptic observations of right- and left-circularly polarized (RCP and LCP) flux densities of Algol at 2.3 and 8.3 GHz several times a day from early 1995 to mid-1997. The resulting data set, which consists of more than 2500 observations over 2 years, is by far the most comprehensive available for any stellar system. In addition, we analyzed GBI observations of the very similar (but noneclipsing) binary system HR 1099 over the same time period in order to compare the two systems. We summarize the GBI observations using several statistical descriptions. We find no phase dependence of either the radio luminosity or circular polarization for either system. The luminosity histograms for the two systems are remarkably similar. The distribution functions are not well represented by exponentials as previously suggested, but can be represented by power laws truncated at low luminosity. The cutoff occurs at 20-30 mJy and may represent emission from a slowly varying basal level that is always detected. We confirm several previous results, including the strong dependence of spectral index on luminosity, the decrease of fractional circular polarization with luminosity, and the dependence of fractional circular polarization on orbital inclination angle. We suggest that the radio emission at 8.3 GHz is x-mode gyrosynchrotron emission from optically thin emission regions containing mildly relativistic electrons in a dipolar magnetic field. There is no evidence for highly circularly polarized coherent flares at 8.3 GHz, although it is possible that such flares occasionally occur at 2.25 GHz. The lack of orbital phase dependence in the GBI light curves, combined with the significant inclination of the VLBA structure with respect to the orbital plane, is inconsistent with previous models in which the radio lobes are located in the equatorial plane. The individual lobes seen in the VLBI maps may be associated with the polar regions, with the strong circular polarization resulting from the opposed mean magnetic field vector component along the observer's line of sight in opposite hemispheres. Astrometric results from the VLBA observations are discussed in a companion paper.

  16. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

  17. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study.

    PubMed

    Aptel, Florent; Charrel, Thomas; Lafon, Cyril; Romano, Fabrice; Chapelon, Jean-Yves; Blumen-Ohana, Esther; Nordmann, Jean-Philippe; Denis, Philippe

    2011-11-11

    To evaluate the relative safety and potential efficacy of high-intensity focused ultrasound cyclocoagulation by a miniaturized annular device containing six piezoceramic transducers in patients with refractory glaucoma. This was a three-center prospective interventional pilot study. Twelve eyes of 12 patients with refractory glaucoma were insonified using a ring-shaped probe containing six miniaturized high-frequency transducers operating at 21 MHz. Ultrasound biomicroscopy (UBM) and a complete ophthalmic examination were performed before the procedure and at 1 day, 1 week, 1 month, and 3 months after the procedure. Additional visits were performed 6 and 12 months after the procedure. Intraocular pressure was significantly reduced (P < 0.01) from a mean preoperative value of 37.9 ± 10.7 mm Hg to a mean postoperative value of 27.3 ± 12.4, 25.2 ± 11.3, 25.2 ± 7.7, 24.8 ± 9.8, and 26.3 ± 5.1 mm Hg at 1 day, 1 week, 1 month, 3 months, and 6 months, respectively, and to a mean value of 24.7 ± 8.5 at the last follow-up visit. No major intraoperative or postoperative complications occurred. Minor postoperative corneal complications developed in four patients with previous corneal abnormalities: superficial punctate keratitis (n = 3) and central superficial corneal ulceration (n = 1). UBM showed cystic involution of the ciliary body in 9 of the 12 eyes and a suprachoroidal fluid space in 8 of the 12 eyes. Ultrasonic circular cyclocoagulation using high-intensity focused ultrasound delivered by a circular miniaturized device containing six piezoceramic transducers seems to be an effective and well-tolerated method to reduce intraocular pressure in patients with refractory glaucoma.

  18. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  19. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    NASA Astrophysics Data System (ADS)

    Domanski, Jaroslaw; Badziak, Jan

    2018-01-01

    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  20. Cairo, Egypt/Nile River viewed from STS-66 Atlantis

    NASA Image and Video Library

    1994-11-14

    This close-up view of the intensively cultivated Nile River flood plain near Cairo presents a sharp color contrast to the virtually non-vegetated, sandy desert, located to the west of the vegetated area. Some rectangular cultivated field patterns, as well as circular center pivot irrigation patterns, can be observed northwest of the Nile River flood plain. The world famous Giza Pyramids are located near the center of this photography (see highly reflective sand surfaces).

  1. Earthquakes in the United States

    USGS Publications Warehouse

    Stover, C.

    1977-01-01

    To supplement data in the report Preliminary Determination of Epicenters (PDE), the National earthquake Information Service (NEIS) also publishes a quarterly circular, Earthquakes in the United States. This provides information on the felt area of U.S earthquakes and their intensity. The main purpose is to describe the larger effects of these earthquakes so that they can be used in seismic risk studies, site evaluations for nuclear power plants, and answering inquiries by the general public.

  2. Facile Construction of Random Gene Mutagenesis Library for Directed Evolution Without the Use of Restriction Enzyme in Escherichia coli.

    PubMed

    Kim, Jae-Eung; Huang, Rui; Chen, Hui; You, Chun; Zhang, Y-H Percival

    2016-09-01

    A foolproof protocol was developed for the construction of mutant DNA library for directed protein evolution. First, a library of linear mutant gene was generated by error-prone PCR or molecular shuffling, and a linear vector backbone was prepared by high-fidelity PCR. Second, the amplified insert and vector fragments were assembled by overlap-extension PCR with a pair of 5'-phosphorylated primers. Third, full-length linear plasmids with phosphorylated 5'-ends were self-ligated with T4 ligase, yielding circular plasmids encoding mutant variants suitable for high-efficiency transformation. Self-made competent Escherichia coli BL21(DE3) showed a transformation efficiency of 2.4 × 10(5) cfu/µg of the self-ligated circular plasmid. Using this method, three mutants of mCherry fluorescent protein were found to alter their colors and fluorescent intensities under visible and UV lights, respectively. Also, one mutant of 6-phosphorogluconate dehydrogenase from a thermophilic bacterium Moorella thermoacetica was found to show the 3.5-fold improved catalytic efficiency (kcat /Km ) on NAD(+) as compared to the wild-type. This protocol is DNA-sequence independent, and does not require restriction enzymes, special E. coli host, or labor-intensive optimization. In addition, this protocol can be used for subcloning the relatively long DNA sequences into any position of plasmids. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Gamma-ray generation in the interaction of two tightly focused laser pulses with a low-density target composed of electrons

    NASA Astrophysics Data System (ADS)

    Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.

    2015-05-01

    With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.

  4. Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi

    2018-01-11

    Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.

  5. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  6. Demonstration of a vectorial optical field generator with adaptive close loop control.

    PubMed

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  7. Characterization of histological subtypes of clear cell renal cell carcinoma using contrast-enhanced ultrasound (CEUS).

    PubMed

    Reimann, R; Rübenthaler, J; Hristova, P; Staehler, M; Reiser, M; Clevert, D A

    2015-10-16

    The aim of this study was to analyze the histological subtypes of clear cell renal cell carcinoma (RCC) examined by means of contrast-enhanced ultrasound (CEUS) and a second generation blood pool agent (SonoVue®, Bracco, Milan, Italy) during the pre-operative phase. 29 patients with histologically proven subtypes of clear cell RCC were examined. A total of three patients were diagnosed with highly differentiated clear cell RCC, 21 out of 29 cases with moderately differentiated clear cell RCC and five out of 29 patients had insufficiently differentiated clear cell RCC. An experienced radiologist examined the patients with CEUS. The following parameters were analyzed: maximum signal intensity (PEAK), time elapsed until PEAK is reached (MTT), local blood flow (RBF), area under the time intensity curve (AUC) and the signal intensity (SI) during the course of time. For the groups all comparisons are made based on healthy renal parenchyma. In the clear cell RCC significant differences (significance level p < 0.05) between cancerous tissue and the healthy renal parenchyma were noticed in all four parameters. Therefore, the clear cell RCC stands out due to its reduced blood volume. However, it reached the PEAK reading relatively rapidly and its signal intensity was always lower than that of the healthy renal parenchyma. In the arterial phase retarded absorption of the contrast agent was observed, followed by fast washing out of the contrast agent bubbles.In all three histological subgroups no significant differences were noticed in PEAK and SI. However, the diagrams showed the possible bias, that the group of the insufficiently differentiated clear cell RCC had the highest PEAK-value and the highest signal intensity when compared with highly and moderately differentiated clear cell RCC. Our study suggests that CEUS may be an additional tool for non-invasive characterisation and differentiation of the three histological subtypes of clear cell RCC. Furthermore, it seems to have an additional diagnostic value in daily clinical.

  8. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    NASA Astrophysics Data System (ADS)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-01

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  9. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  10. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  11. Acceleration and Pickup Ring of Energetic Electrons Observed in Relativistic Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.

    2017-11-01

    Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.

  12. Effects of fluid viscosity on a moving sonoluminescing bubble.

    PubMed

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Rezaee, Nastaran; Ebrahimi, Homa

    2011-08-01

    Based on the quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence in water, adiponitrile, and N-methylformamide are calculated for various fluid viscosities. By using a complete form of the hydrodynamic force, the bubble trajectory is calculated for a moving single bubble sonoluminescence (m-SBSL). It is found that as the fluid viscosity increases, the unique circular path changes to an ellipsoidal and then linear form and along this incrementally increase of viscosity the light intensity increases. By using the Bremsstrahlung model to describe the bubble radiation, gradual increase of the viscosity results in brighter emissions. It is found that in fluids with higher viscosity the light intensity decreases as time passes.

  13. Photoinduced Chern insulating states in semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Saha, Kush

    2016-08-01

    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.

  14. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses.

    PubMed

    Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T

    2014-08-01

    It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.

  15. Mathematical modeling of tomographic scanning of cylindrically shaped test objects

    NASA Astrophysics Data System (ADS)

    Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.

    2018-05-01

    The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.

  16. Geological and hydrogeological investigation in West Malaysia

    NASA Technical Reports Server (NTRS)

    Ahmad, J. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The broad synoptic view of the images allowed easy identification of circular features and major fault traces in low lying areas. Sedimentary units were delineated in accordance with the prevailing rock types and where applicable the folding characteristics. Igneous units could easily be differentiated by tone, degree of fracturing, texture, and drainage pattern. The larger fold structures, anticlinoriums and synclinoriums, of the younger sediments on the eastern edge of the central belt could also be easily delineated.

  17. Possible methods for distinguishing icebergs from ships by aerial remote sensing

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1979-01-01

    The simplest methods for aerial remote sensing which are least affected by atmospheric opacities are summarized. Radar is preferred for targets off the flight path, and microwave radiometry for targets along the flight path. Radar methods are classified by ability to resolve targets. Techniques which do not require target resolution are preferred. Among these techniques, polarization methods appear most promising, specifically those which differentiate the expected relatively greater depolarization by icebergs from that by ships or which detect doubly-reversed circular polarization.

  18. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.

    PubMed

    Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.

  19. A numerical solution of Duffing's equations including the prediction of jump phenomena

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.; Ghasghai-Abdi, E.

    1987-01-01

    Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.

  20. Encephalomyocarditis virus in a captive Malayan tapir (Tapirus indicus)

    PubMed Central

    Vercammen, Francis; Bosseler, Leslie; Tignon, Marylène; Cay, Ann Brigitte

    2017-01-01

    A 5-month-old female captive Malayan tapir (Tapirus indicus) died suddenly without preceding symptoms. Gross necropsy revealed numerous white circular and linear foci in the myocard. Differential diagnosis all turned out negative, except for encephalomyocarditis virus. Histopathology revealed mineralisation of myocardial cells and interstitial infiltration of lymphocytes, plasma cells and less neutrophils. Encephalomyocarditis virus was detected by PCR. Although encephalomyocarditis virus occurs in many mammals, this is the first published description of this virus in a Malayan tapir. PMID:28616390

  1. Encephalomyocarditis virus in a captive Malayan tapir (Tapirus indicus).

    PubMed

    Vercammen, Francis; Bosseler, Leslie; Tignon, Marylène; Cay, Ann Brigitte

    2017-01-01

    A 5-month-old female captive Malayan tapir ( Tapirus indicus ) died suddenly without preceding symptoms. Gross necropsy revealed numerous white circular and linear foci in the myocard. Differential diagnosis all turned out negative, except for encephalomyocarditis virus. Histopathology revealed mineralisation of myocardial cells and interstitial infiltration of lymphocytes, plasma cells and less neutrophils. Encephalomyocarditis virus was detected by PCR. Although encephalomyocarditis virus occurs in many mammals, this is the first published description of this virus in a Malayan tapir.

  2. miR-ID: A novel, circularization-based platform for detection of microRNAs

    PubMed Central

    Kumar, Pavan; Johnston, Brian H.; Kazakov, Sergei A.

    2011-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and have great potential as biomarkers, prognostic indicators, and therapeutic targets. Determining the expression patterns of these molecules is essential for elucidating their biogenesis, regulation, relation to disease, and response to therapy. Although PCR-based assays are commonly used for expression profiling of miRNAs, the small size, sequence heterogeneity, and (in some cases) end modifications of miRNAs constrain the performance of existing PCR methods. Here we introduce miR-ID, a novel method that avoids these constraints while providing superior sensitivity and sequence specificity at a lower cost. It also has the unique ability to differentiate unmodified small RNAs from those carrying 2′-OMe groups at their 3′-ends while detecting both forms. miR-ID is comprised of the following steps: (1) circularization of the miRNA by a ligase; (2) reverse transcription of the circularized miRNA (RTC), producing tandem repeats of a DNA sequence complementary to the miRNA; and (3) qPCR amplification of segments of this multimeric cDNA using 5′-overlapping primers and a nonspecific dye such as SYBR Green. No chemically modified probes (e.g., TaqMan) or primers (e.g., LNA) are required. The circular RNA and multimeric cDNA templates provide unmatched flexibility in the positioning of primers, which may include straddling the boundaries between these repetitive miRNA sequences. miR-ID is based on new findings that are themselves of general interest, including reverse transcription of small RNA circles and the use of 5′-overlapping primers for detection of repetitive sequences by qPCR. PMID:21169480

  3. Indirect Self-Destructiveness and Emotional Intelligence.

    PubMed

    Tsirigotis, Konstantinos

    2016-06-01

    While emotional intelligence may have a favourable influence on the life and psychological and social functioning of the individual, indirect self-destructiveness exerts a rather negative influence. The aim of this study has been to explore possible relations between indirect self-destructiveness and emotional intelligence. A population of 260 individuals (130 females and 130 males) aged 20-30 (mean age of 24.5) was studied by using the Polish version of the chronic self-destructiveness scale and INTE, i.e., the Polish version of the assessing emotions scale. Indirect self-destructiveness has significant correlations with all variables of INTE (overall score, factor I, factor II), and these correlations are negative. The intensity of indirect self-destructiveness differentiates significantly the height of the emotional intelligence and vice versa: the height of the emotional intelligence differentiates significantly the intensity of indirect self-destructiveness. Indirect self-destructiveness has negative correlations with emotional intelligence as well as its components: the ability to recognize emotions and the ability to utilize emotions. The height of emotional intelligence differentiates the intensity of indirect self-destructiveness, and vice versa: the intensity of indirect self-destructiveness differentiates the height of emotional intelligence. It seems advisable to use emotional intelligence in the prophylactic and therapeutic work with persons with various types of disorders, especially with the syndrome of indirect self-destructiveness.

  4. Spin transport study in a Rashba spin-orbit coupling system

    PubMed Central

    Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193

  5. Screening circular RNA related to chemotherapeutic resistance in breast cancer.

    PubMed

    Gao, Danfeng; Zhang, Xiufen; Liu, Beibei; Meng, Dong; Fang, Kai; Guo, Zijian; Li, Lihua

    2017-09-01

    We aimed to identify circular RNAs (circRNAs) associated with breast cancer chemoresistance. CircRNA microarray expression profiles were obtained from Adriamycin (ADM) resistant MCF-7 breast cancer cells (MCF-7/ADM) and parental MCF-7 cells and were validated using quantitative real-time reverse transcription PCR. The expression data were analyzed bioinformatically. We detected 3093 circRNAs and identified 18 circRNAs that are differentially expressed between MCF-7/ADM and MCF-7 cells; after validating by quantitative real-time reverse transcription PCR, we predicted the possible miRNAs and potential target genes of the seven upregulated circRNAs using TargetScan and miRanda. The bioinformatics analysis revealed several target genes related to cancer-related signaling pathways. Additionally, we discovered a regulatory role of the circ_0006528-miR-7-5p-Raf1 axis in ADM-resistant breast cancer. These results revealed that circRNAs may play a role in breast cancer chemoresistance and that hsa_circ_0006528 might be a promising candidate for further functional analysis.

  6. Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone

    NASA Astrophysics Data System (ADS)

    Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.

  7. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  8. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  9. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  10. Polarization-correlation optical microscopy of anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  11. Artificial plasmid labeled with 5-bromo-2'-deoxyuridine: a universal molecular system for strand break detection.

    PubMed

    Zylicz-Stachula, Agnieszka; Polska, Katarzyna; Skowron, Piotr; Rak, Janusz

    2014-07-07

    DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5-bromo-2'-deoxyuridine and to assay SBs photoinduced in the synthesized plasmid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J.

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. Wemore » also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.« less

  13. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Deng, Na; Lee, Jeongwoo

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward andmore » then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.« less

  14. Flowability of lignocellusic biomass powders: influence of torrefaction intensity

    NASA Astrophysics Data System (ADS)

    Pachón-Morales, John; Colin, Julien; Pierre, Floran; Champavert, Thibaut; Puel, François; Perré, Patrick

    2017-06-01

    The poor flowability of powders produced from raw lignocellulosic biomass may be an economically issue for the production of second-generation biofuels. Torrefaction is a pre-treatment step of the gasification process that improves the physical characteristics of biomass by making it more coal-like. Particularly, the loss of resilience allows a reduction of the grinding energy consumption and is likely to improve the flow behaviour of woody powders. In this study, we investigated the effect of particle size and shape distribution on flow properties (unconfined yield stress and flowability factor) of powder from raw and torrefied biomass (Picea abies). Several intensities of torrefaction were tested, and its extent was quantified by the global mass loss, chosen as synthetic indicator of torrefaction intensity (its accounts for both the temperature level and the residence time). The intensity of torrefaction shifts the particle size distribution towards smaller sizes. An effect on the circularity and aspect ratio was also observed. A strong, positive correlation was obtained between the measured flowability of biomass powders at different consolidation stresses and the intensity of heat treatment. These results confirm the interest of torrefaction as a pre-treatment step and aim to provide new knowledge on rheological properties of biomass powders.

  15. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  16. Inverse Faraday effect driven by radiation friction

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Popruzhenko, S. V.; Macchi, A.

    2016-07-01

    A collective, macroscopic signature to detect radiation friction in laser-plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar ‘inverse Faraday effect’ is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities \\gt {10}23 {{{W}}{{cm}}}-2.

  17. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  18. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  19. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  20. Comments on the CASIA version 1.0 iris data set.

    PubMed

    Phillips, P Jonathon; Bowyer, Kevin W; Flynn, Patrick J

    2007-10-01

    We note that the images in the CASIA version 1.0 iris dataset have been edited so that the pupil area is replaced by a circular region of uniform intensity. We recommend that this dataset is no longer used in iris biometrics research, unless there this a compelling reason that takes into account the nature of the images. In addition, based on our experience with the Iris Challenge Evaluation (ICE) 2005 technology development project, we make recommendations for reporting results of iris recognition experiments.

  1. Interference-Free and Interference-Dominated Photoionization: Synthesis of Ultrashort and Coherent Single-Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-04-01

    Ionization of hydrogen-like ions driven by intense, short, and circularly-polarized laser pulses is considered under the scope of the relativistic strong-field approximation. We show that the energy spectra of photoelectrons can exhibit two types of structures, i.e., interference-dominated or interference-free ones. These structures are analyzed in connection to the time-dependent ponderomotive energy of electrons in the laser field. A possibility of synthesis of ultrashort single-electron pulses from those structures is also investigated.

  2. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions.

    PubMed

    Odahara, Takayuki; Ishii, Noriyuki; Ooishi, Ayako; Honda, Shinya; Uedaira, Hatsuho; Hara, Masayuki; Miyake, Jun

    2011-06-01

    Relationships between growth conditions and thermostability were examined for photosynthetic inner membranes (chromatophores) from Rhodopseudomonas viridis and Rhodospirillum rubrum of which morphology, lipid composition, and protein/lipid rate are rather mutually different. Signals observed by differential scanning calorimetry of the chromatophores were correlated with thermal state transitions of the membrane components by reference to temperature dependencies of circular dichroism and absorption spectra of the purified supramolecule comprising a photoreaction center and surrounding light-harvesting pigment-protein complexes that are the prominent proteins in both membranes. The differential scanning calorimetry curves of those chromatophores exhibited different dependencies on growth stages and environmental temperatures. The obtained result appeared to reflect the differences in the protein/lipid rate and protein-lipid specificity between the two chromatophores. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Autofluorescent polarimetry of bile films in the liver pathology differentiation

    NASA Astrophysics Data System (ADS)

    Prysyazhnyuk, V. P.; Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, A. G.; Savich, V. O.; Karachevtsev, A. O.

    2015-09-01

    A new information optical technique of diagnostics of the structure of the polycrystalline bile films is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of the polycrystalline bile films taken from patients with fatty degeneration (group 1) chronic hepatitis (group 2) of the liver were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of pathological changes was demonstrated.

  4. Circular RNA profile in gliomas revealed by identification tool UROBORUS.

    PubMed

    Song, Xiaofeng; Zhang, Naibo; Han, Ping; Moon, Byoung-San; Lai, Rose K; Wang, Kai; Lu, Wange

    2016-05-19

    Recent evidence suggests that many endogenous circular RNAs (circRNAs) may play roles in biological processes. However, the expression patterns and functions of circRNAs in human diseases are not well understood. Computationally identifying circRNAs from total RNA-seq data is a primary step in studying their expression pattern and biological roles. In this work, we have developed a computational pipeline named UROBORUS to detect circRNAs in total RNA-seq data. By applying UROBORUS to RNA-seq data from 46 gliomas and normal brain samples, we detected thousands of circRNAs supported by at least two read counts, followed by successful experimental validation on 24 circRNAs from the randomly selected 27 circRNAs. UROBORUS is an efficient tool that can detect circRNAs with low expression levels in total RNA-seq without RNase R treatment. The circRNAs expression profiling revealed more than 476 circular RNAs differentially expressed in control brain tissues and gliomas. Together with parental gene expression, we found that circRNA and its parental gene have diversified expression patterns in gliomas and control brain tissues. This study establishes an efficient and sensitive approach for predicting circRNAs using total RNA-seq data. The UROBORUS pipeline can be accessed freely for non-commercial purposes at http://uroborus.openbioinformatics.org/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Design of TIR collimating lens for ordinary differential equation of extended light source

    NASA Astrophysics Data System (ADS)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  6. An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xinlu; Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875; Huang, Shanguo, E-mail: shghuang@bupt.edu.cn

    A system of generating and receiving orbital angular momentum (OAM) radio beams, which are collectively formed by two circular array antennas (CAAs) and effectively optimized by two intensity controlled masks, is proposed and experimentally investigated. The scheme is effective in blocking of the unwanted OAM modes and enhancing the power of received radio signals, which results in the capacity gain of system and extended transmission distance of the OAM radio beams. The operation principle of the intensity controlled masks, which can be regarded as both collimator and filter, is feasible and simple to realize. Numerical simulations of intensity and phasemore » distributions at each key cross-sectional plane of the radio beams demonstrate the collimated results. The experimental results match well with the theoretical analysis and the receive distance of the OAM radio beam at radio frequency (RF) 20 GHz is extended up to 200 times of the wavelength of the RF signals, the measured distance is 5 times of the original measured distance. The presented proof-of-concept experiment demonstrates the feasibility of the system.« less

  7. CHILES Con Pol: Probing galaxy evolution, the dark Universe, and cosmic magnetism with a deep 1000 hour Jansky VLA survey

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Chiles Con Pol Collaboration

    2014-04-01

    We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.

  8. On the relative intensity of Poisson’s spot

    NASA Astrophysics Data System (ADS)

    Reisinger, T.; Leufke, P. M.; Gleiter, H.; Hahn, H.

    2017-03-01

    The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its historical significance, become relevant in a number of fields. Among them are for example fundamental tests of the super-position principle in the transition from quantum to classical physics and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis wave interference in the shadow of any spherical or circular obstacle. While the spot’s intensity is equal to the undisturbed field in the plane wave picture, its intensity in general depends on a number of factors, namely the size and wavelength of the source, the size and surface corrugation of the diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be calculated by solving the Fresnel-Kirchhoff diffraction integral numerically, which however tends to be computationally expensive. We have therefore devised an analytical model for the on-axis intensity of Poisson’s spot relative to the intensity of the undisturbed wave field and successfully validated it both using a simple light diffraction setup and numerical methods. The model will be useful for optimizing future Poisson-spot matter-wave diffraction experiments and determining under what experimental conditions the spot can be observed.

  9. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complexmore » is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.« less

  10. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    NASA Astrophysics Data System (ADS)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-01

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  11. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    PubMed

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain.

    PubMed

    Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi

    2009-10-15

    A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).

  13. Temporal correlation and correlated momentum distribution in nonsequential double ionization of Mg by circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen

    2017-07-01

    We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).

  14. Photoinduced topological phase transition and spin polarization in a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Chen, M. N.; Su, W.; Deng, M. X.; Ruan, Jiawei; Luo, W.; Shao, D. X.; Sheng, L.; Xing, D. Y.

    2016-11-01

    A great deal of attention has been paid to the topological phases engineered by photonics over the past few years. Here, we propose a topological quantum phase transition to a quantum anomalous Hall (QAH) phase induced by off-resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall phase or a trivial insulator phase. This provides an alternative method to realize the QAH effect, other than magnetic doping. The circularly polarized light effectively creates a Zeeman exchange field and a renormalized Dirac mass, which are tunable by varying the intensity of the light and drive the quantum phase transition. Both the transverse and longitudinal Hall conductivities are studied, and the former is consistent with the topological phase transition when the Fermi level lies in the band gap. A highly controllable spin-polarized longitudinal electrical current can be generated when the Fermi level is in the conduction band, which may be useful for designing topological spintronics.

  15. On vibrational circular dichroism chirality transfer in electron donor-acceptor complexes: a prediction for the quinine···BF3 system.

    PubMed

    Rode, Joanna E; Jamróz, Michał H; Dobrowolski, Jan Cz; Sadlej, Joanna

    2012-08-02

    Vibrational circular dichroism (VCD) chirality transfer occurs when an achiral molecule interacts with a chiral one and becomes VCD-active. Unlike for H-bonds, for organic electron donor-acceptor (EDA) complexes this phenomenon remains almost unknown. Here, the VCD chirality transfer from chiral quinine to achiral BF3 is studied at the B3LYP/aug-cc-pVDZ level. Accessibility of four quinine electron donor sites changes with conformation. Therefore, the quinine conformational landscape was explored and a considerable agreement between X-ray and the most stable conformer geometries was achieved. The BF3 complex through the aliphatic quinuclidine N atom is definitely dominating and is predicted to be easily recognizable in the VCD spectrum. Out of several VCD chirality transfer modes, the ν(s)(BF3) mode, the most intense in the entire VCD spectrum, satisfies the VCD mode robustness criterion and can be used for monitoring the chirality transfer phenomenon in quinine···BF3 system.

  16. Tunable Spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium

    PubMed Central

    Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya

    2016-01-01

    Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825

  17. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  18. Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography

    NASA Astrophysics Data System (ADS)

    Skehan, Connor; Ai, Bin; Larson, Steven R.; Stone, Keenan M.; Dennis, William M.; Zhao, Yiping

    2018-03-01

    Several plasmonic compound nanohole arrays (CNAs), such as triangular nanoholes and fan-like nanoholes with multiple nanotips and nanogaps, are designed by a simple and efficient shadow sphere lithography technique by tuning the sphere mask size, the deposition and azimuthal angles, substrate temperature T S , and the number of deposition steps N. Compared with conventional circular nanohole arrays, the CNAs show more hot spots and exhibit new transmission speaks. Systematic finite-difference time-domain calculations indicate that different resonance modes excited by the various shaped and sized nanoholes are responsible for the enhanced plasmonic performances of CNAs. Compared to the CNA samples with only one circular hole in the unit cell, the Raman scattering intensity of the CNA with multiple triangular nanoholes, nanogaps, and nanotips can be enhanced up to 5-fold. These CNAs, due to the strong resonance due to the multiple structural features, are promising applications as optical filters, plasmonic sensors, and surface-enhanced spectroscopies.

  19. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  20. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  1. Spatial interactions between urban areas and cause-specific mortality differentials in France.

    PubMed

    Ghosn, Walid; Kassie, Daouda; Jougla, Eric; Rican, Stéphane; Rey, Grégoire

    2013-11-01

    Spatial interactions constitute a challenging but promising approach for investigation of spatial mortality inequalities. Among spatial interactions measures, between-spatial unit migration differentials are a marker of socioeconomic imbalance, but also reflect discrepancies due to other factors. Specifically, this paper asks whether population exchange intensities measure differentials or similarities that are not captured by usual socioeconomic indicators. Urban areas were grouped pairwise by the intensity of connection estimated from a gravity model. The mortality differences for several causes of death were observed to be significantly smaller for strongly connected pairs than for weakly connected pairs even after adjustment on deprivation. © 2013 Published by Elsevier Ltd.

  2. Analysis of interlocking performances on non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Liu, Lee-Cheng

    2018-05-01

    In order to reduce energy loss in motor, applications of high-efficiency non-oriented electrical steel sheets and optimal laminating process are both important elements. The motor core loss deterioration is influenced by a number of factors, such as flux distribution, stress and strain, space harmonics, temperature, and short circuits between lamination. In conventional clamping method, steel sheets are laminated via interlocking or welding in general manner. The measured energy loss by welding was much larger than that by interlocking. Therefore, interlocking is well known and usually employed with benefit of easy conducting. The protuberance shapes affected the fastening strength. Generally, the intensity of rectangular type is stronger than the circular counterparts. However, the circular interlocking has better magnetic characteristics. To clarify the method effectiveness, interlocking performances regarding fastened strength and magnetic deterioration by lamination were investigated. The key parameters of protuberance shape and forming depth were designed. Precisely manufacturing operation was applied to avoid interlocking failure. Magnetic properties largely influenced by clamping method are crucial to minimizing the magnetic deterioration during laminating procedure. Several experiments for various processing conditions were undertaken, and the quantification results showed the rectangular interlocking had better fastened strength but worsened iron loss comparing with the circular arrangement. To acquire the comprehensive mechanical and electrical identities for electrical steel lamination, deliberate producing conditions regarding minimizing the magnetic deterioration should be adopted prudently.

  3. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.

    PubMed

    Linnanto, Juha M; Korppi-Tommola, Jouko E I

    2008-06-01

    Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435-5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q(y) transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q(y) line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.

  4. Conformational effects in photoelectron circular dichroism

    NASA Astrophysics Data System (ADS)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  5. Actin grips: circular actin-rich cytoskeletal structures that mediate the wrapping of polymeric microfibers by endothelial cells.

    PubMed

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pécot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John J; Thomas, Jessica; Cole, Sara L; Moldovan, Leni; Moldovan, Nicanor I

    2015-06-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions.

    PubMed

    Sarangapani, Prasad S; Weaver, Justin; Parupudi, Arun; Besong, Tabot M D; Adams, Gary G; Harding, Stephen E; Manikwar, Prakash; Castellanos, Maria M; Bishop, Steven M; Pathak, Jai A

    2016-12-01

    The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of "mAb1." These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature T m , respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein-protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Production of confluent hypergeometric beam by computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Chen, Jiannong; Wang, Gang; Xu, Qinfeng

    2011-02-01

    Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.

  8. Complex Pupil Masks for Aberrated Imaging of Closely Spaced Objects

    NASA Astrophysics Data System (ADS)

    Reddy, A. N. K.; Sagar, D. K.; Khonina, S. N.

    2017-12-01

    Current approach demonstrates the suppression of optical side-lobes and the contraction of the main lobe in the composite image of two object points of the optical system under the influence of defocusing effect when an asymmetric phase edges are imposed over the apodized circular aperture. The resolution of two point sources having different intensity ratio is discussed in terms of the modified Sparrow criterion, functions of the degree of coherence of the illumination, the intensity difference and the degree of asymmetric phase masking. Here we have introduced and explored the effects of focus aberration (defect-of-focus) on the two-point resolution of the optical systems. Results on the aberrated composite image of closely spaced objects with amplitude mask and asymmetric phase masks forms a significant contribution in astronomical and microscopic observations.

  9. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less

  10. Accounts of damage from historical earthquakes in the northeastern Caribbean to aid in the determination of their location and intensity magnitudes

    USGS Publications Warehouse

    Flores, Claudia H.; ten Brink, Uri S.; Bakun, William H.

    2012-01-01

    Documentation of an event in the past depended on the population and political trends of the island, and the availability of historical documents is limited by the physical resource digitization schedule and by the copyright laws of each archive. Examples of documents accessed are governors' letters, newspapers, and other circulars published within the Caribbean, North America, and Western Europe. Key words were used to search for publications that contain eyewitness accounts of various large earthquakes. Finally, this catalog provides descriptions of damage to buildings used in previous studies for the estimation of moment intensity (MI) and location of significantly damaging or felt earthquakes in Hispaniola and in the northeastern Caribbean, all of which have been described in other studies.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Influence of the layer thickness and concentration of dye molecules on the emission amplification in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Alaverdyan, R. B.; Gevorgyan, A. A.; Chilingaryan, A. D.; Chilingaryan, Yu S.

    2008-05-01

    The propagation of light through a planar layer of a cholesteric liquid crystal doped with dye molecules is considered. The features of the emission spectra of the crystal are studied both in the absence and presence of dielectric boundaries. The increase in the emission intensity is investigated for different layer thicknesses and different concentrations of dye molecules. It is shown that an anomalously strong increase in the emission intensity with the diffraction intrinsic polarisation takes place in the case of a comparatively small crystal thickness and a relatively low concentration of dye molecules. The obtained results can be used for the development of miniature lasers with the circular polarisation of the fundamental radiation mode.

  12. Neural activity to intense positive versus negative stimuli can help differentiate bipolar disorder from unipolar major depressive disorder in depressed adolescents: a pilot fMRI study.

    PubMed

    Diler, Rasim Somer; de Almeida, Jorge Renner Cardoso; Ladouceur, Cecile; Birmaher, Boris; Axelson, David; Phillips, Mary

    2013-12-30

    Failure to distinguish bipolar depression (BDd) from the unipolar depression of major depressive disorder (UDd) in adolescents has significant clinical consequences. We aimed to identify differential patterns of functional neural activity in BDd versus UDd and employed two (fearful and happy) facial expression/ gender labeling functional magnetic resonance imaging (fMRI) experiments to study emotion processing in 10 BDd (8 females, mean age=15.1 ± 1.1) compared to age- and gender-matched 10 UDd and 10 healthy control (HC) adolescents who were age- and gender-matched to the BDd group. BDd adolescents, relative to UDd, showed significantly lower activity to both intense happy (e.g., insula and temporal cortex) and intense fearful faces (e.g., frontal precentral cortex). Although the neural regions recruited in each group were not the same, both BDd and UDd adolescents, relative to HC, showed significantly lower neural activity to intense happy and mild happy faces, but elevated neural activity to mild fearful faces. Our results indicated that patterns of neural activity to intense positive and negative emotional stimuli can help differentiate BDd from UDd in adolescents. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension

    PubMed Central

    Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua

    2017-01-01

    Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings suggested that hsa_circ_0002062 and hsa_circ_0022342 may be key circRNAs for CTEPH development and that their targeted regulation may be an effective approach for treating CTEPH. PMID:28682884

  14. Venus steep-sided domes: Relationships between geological associations and possible petrogenetic models

    NASA Technical Reports Server (NTRS)

    Pavri, B.; Head, James W., III

    1992-01-01

    Venus domes are characterized by steep sides, a circular shape, and a relatively flat summit area. In addition, they are orders of magnitude larger in volume and have a lower height/diameter ratio than terrestrial silicic lava domes. The morphology of the domes is consistent with formation by lava with a high apparent viscosity. Twenty percent of the domes are located in or near tessera (highly deformed highlands), while most other (62 percent) are located in and near coronae (circular deformational features thought to represent local mantle upwelling). These geological associations provide evidence for mechanisms of petrogenesis and several of these models are found to be plausible: remelting of basaltic or evolved crust, differentiation of basaltic melts, and volatile enhancement and eruption of basaltic foams. Hess and Head have shown that the full range of magma compositions existing on the Earth is plausible under various environmental conditions on Venus. Most of the Venera and Vego lander compostional data are consistent with tholeiitic basalt; however, evidence for evolved magmas was provided by Venera 8 data consistent with a quartz monzonite composition. Pieters et al. have examined the color of the Venus surface from Venera lander images and interpret the surface there to be oxidized. Preliminary modeling of dome growth has provided some interpretations of lava rheology. Viscosity values obtained from these models range from 10(exp 14) - 10(exp 17) pa*s, and the yield strength has been calculated to be between 10(exp 4) and 10(exp 6) Pa, consistent with terrestrial silicic rocks. The apparent high viscosity of the dome lavas suggests that the domes have a silicic composition or must augment their viscosity with increased visicularity or crystal content. Sixty-two percent of the Venus domes are associated with coronae, circular features that have been proposed as sites of mantle upwelling, and 20 percent of the domes are located near tessera, relatively high areas of complex deformed terrain. We have investigated several models that are consistent with these geologic associations. The first case involves the differentiation of basalt in a magma reservoir in the crust, perhaps produced by partial melting within a mantle plume. The second case is melting at the base of thickened basaltic crust, and the final case is volatile exsolution and enhancement within a basaltic magma reservoir. The association of domes with tessera might be explained by crustal remelting, while the association with coronae may be consistent with chemical differentiation of a magma reservoir or the exsolution and concentration of volatiles in the reservoir before eruption.

  15. Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis.

    PubMed

    Zhou, Zhibin; Du, Di; Chen, Aimin; Zhu, Lei

    2018-02-20

    Osteoarthritis (OA) is a widely prevalent degenerative joint disease characterized by articular cartilage degradation and joint inflammation. The pathogenesis of OA remains unclear, leading to a lack of effective treatment. Previous studies have reported that circular RNAs (circRNAs) are involved in the development of various diseases. However, the function of circRNAs and their roles in OA is largely unknown. Therefore, we aimed to investigate changes in circRNA expression and predict their functions in OA by using bioinformatics analysis. An OA model was established in mouse articular chondrocytes (MACs) treated by interleukin-1β (IL-1β), and then the circRNA profile was screened by Next Generation Sequencing. By comparing circRNA expression in IL-1β- treated MACs and normal controls, differentially expressed circRNAs were identified during OA pathogenesis, and differential expression levels of selected circRNAs were validated by qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to predict the functions of these circRNAs. Because circRNAs can act as "miRNA sponges", we also constructed a circRNA-miRNA network to predict their functions. A total of 255 circRNAs were found to be differentially expressed in IL-1β-treated MACs (p≤0.05; fold-change≥2) from the expression of the normal controls. Among them, 119 circRNAs were significantly up-regulated, and the other 136 were down-regulated. Seven circRNAs were randomly selected to verify the reliability of these profiles by quantitative qRT-PCR. After obtaining the parental genes of differentially expressed circRNA, the top 30 enrichment GO entries and KEGG pathways were annotated. Then, two significantly differentially expressed circRNAs (mmu-circRNA-30365 and mmu-circRNA-36866) were identified and selected for further analysis, meanwhile a circRNA-miRNA regulation network was created and the top five most likely functional-related target miRNAs of the circRNAs were collected. Although the exact mechanisms and biological functions of these circRNAs in the development of OA need further exploration, our findings do suggest that the differentially expressed circRNAs were involved in the pathogenesis of OA. Thus, our study brings us closer to understanding the pathogenic mechanisms and finding new molecular targets for the clinical treatment of osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, J. T., E-mail: josetitomend@gmail.com; Vieira, J., E-mail: jorge.vieira@ist.utl.pt

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able tomore » show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.« less

  17. Sources of magnetic fields in recurrent interplanetary streams

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.

    1977-01-01

    The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.

  18. Surface plasmon resonance and polarization change properties in centrosymmetric nanoright-triangle dimer arrays

    NASA Astrophysics Data System (ADS)

    Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping

    2018-03-01

    Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.

  19. Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Tonoyan, A.; Keaveney, J.; Hughes, I. G.; Adams, C. S.; Sarkisyan, D.

    2018-03-01

    The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ-. Different intensities (probabilities) of transitions for the σ+ and σ- excitations are detected in magnetic field B 0 ≈ A hfs /μB ≈ 165 G ( A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ≫ B 0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ-. Each group is the mirror image of the other group with respect to the frequency of the 42 S 1/2-42 P 1/2 transition, which additionally proves the occurrence of the complete Paschen-Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D 1 lines of 87Rb and 23Na.

  20. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    NASA Astrophysics Data System (ADS)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  1. Spatial resolution test of a beam diagnostic system for DESIREE

    NASA Astrophysics Data System (ADS)

    Das, Susanta; Kallberg, A.

    2010-11-01

    A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).

  2. An improved high order texture features extraction method with application to pathological diagnosis of colon lesions for CT colonography

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Wang, Huafeng; Han, Fangfang; Zhu, Wei; Liang, Zhengrong

    2014-03-01

    Differentiation of colon lesions according to underlying pathology, e.g., neoplastic and non-neoplastic, is of fundamental importance for patient management. Image intensity based textural features have been recognized as a useful biomarker for the differentiation task. In this paper, we introduce high order texture features, beyond the intensity, such as gradient and curvature, for that task. Based on the Haralick texture analysis method, we introduce a virtual pathological method to explore the utility of texture features from high order differentiations, i.e., gradient and curvature, of the image intensity distribution. The texture features were validated on database consisting of 148 colon lesions, of which 35 are non-neoplastic lesions, using the random forest classifier and the merit of area under the curve (AUC) of the receiver operating characteristics. The results show that after applying the high order features, the AUC was improved from 0.8069 to 0.8544 in differentiating non-neoplastic lesion from neoplastic ones, e.g., hyperplastic polyps from tubular adenomas, tubulovillous adenomas and adenocarcinomas. The experimental results demonstrated that texture features from the higher order images can significantly improve the classification accuracy in pathological differentiation of colorectal lesions. The gain in differentiation capability shall increase the potential of computed tomography (CT) colonography for colorectal cancer screening by not only detecting polyps but also classifying them from optimal polyp management for the best outcome in personalized medicine.

  3. The Effects of Topographical Patterns and Sizes on Neural Stem Cell Behavior

    PubMed Central

    Qi, Lin; Li, Ning; Huang, Rong; Song, Qin; Wang, Long; Zhang, Qi; Su, Ruigong; Kong, Tao; Tang, Mingliang; Cheng, Guosheng

    2013-01-01

    Engineered topographical manipulation, a paralleling approach with conventional biochemical cues, has recently attracted the growing interests in utilizations to control stem cell fate. In this study, effects of topological parameters, pattern and size are emphasized on the proliferation and differentiation of adult neural stem cells (ANSCs). We fabricate micro-scale topographical Si wafers with two different feature sizes. These topographical patterns present linear micro-pattern (LMP), circular micro-pattern (CMP) and dot micro-pattern (DMP). The results show that the three topography substrates are suitable for ANSC growth, while they all depress ANSC proliferation when compared to non-patterned substrates (control). Meanwhile, LMP and CMP with two feature sizes can both significantly enhance ANSC differentiation to neurons compared to control. The smaller the feature size is, the better upregulation applies to ANSC for the differentiated neurons. The underlying mechanisms of topography-enhanced neuronal differentiation are further revealed by directing suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/Erk) signaling pathway in ANSC using U0126, known to inhibit the activation of Erk. The statistical results suggest MAPK/Erk pathway is partially involved in topography-induced differentiation. These observations provide a better understanding on the different roles of topographical cues on stem cell behavior, especially on the selective differentiation, and facilitate to advance the field of stem cell therapy. PMID:23527077

  4. Crystals in light.

    PubMed

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single molecules. Luminophores were used as guests in crystals to reveal aspects of growth mechanisms by labeling surface structures such as steps and kinks. New methods were adopted for measuring and imaging the optical rotatory power of crystals. Chiroptical anisotropies can now be compared with the results of quantum chemical calculations that have emerged in the past 10 years. The rapid determination of the optical rotation and circular dichroism tensors of molecules in crystals, and the interpretation of these anisotropies, remains a subject of future research. Polycrystalline patterns that form far from equilibrium challenged the quantitative interpretation of micrographs when heterogeneities along the optical path and obliquely angled interfaces played large roles. Resulting "artifacts" were nevertheless incisive probes of polycrystalline texture and mesoscale chemistry in simple substances grown far from equilibrium or in biopathological crystals such as Alzheimer's amyloid plaques.

  5. [Diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0T magnetic resonance imaging].

    PubMed

    Jiang, Jing; Liu, Wanhua; Ye, Yuanyuan; Wang, Rui; Li, Fengfang; Peng, Chengyu

    2014-06-17

    To investigate the diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0 T magnetic resonance imaging. A total of 152 patients with 162 confirmed histopathologically breast lesions (85 malignant and 77 benign) underwent 3.0 T diffusion-weighted magnetic resonance imaging. Four b values (0, 400, 800 and 1 000 s/mm²) were used. The signal intensity and ADC values of breast lesions were measured respectively. The signal intensity decline rate (SIDR) and apparent diffusion coefficient decline rate (ADCDR) were calculated respectively. SIDR = (signal intensity of lesions with low b value-signal intensity of lesions with high b value)/signal intensity of lesions with low b value, ADCDR = (ADC value of lesions with low b value-ADC value of lesions with high b value) /ADC value of lesions with low b value. The independent sample t-test was employed for statistical analyses and the receiver operating characteristic (ROC) curve for evaluating the diagnosis efficiency of SIDR and ADCDR values. Significant differences were observed in SIDR between benign and malignant breast lesions with b values of 0-400, 400-800 and 800-1 000 s/mm². The sensitivities of SIDR for differentiating benign and malignant breast lesions were 61.2%, 68.2% and 67.1%, the specificities 74.0%, 85.7% and 67.5%, the diagnosis accordance rates 67.3%, 76.5% and 67.3%, the positive predictive values 72.2%, 84.1% and 69.5% and the negative predictive values 63.3%, 71.0% and 65.0% respectively. Significant differences were observed in ADCDR between benign and malignant breast lesions with b values of 400-800 s/mm² and 800-1 000 s/mm². The sensitivities of SDR for differentiating benign and malignant breast lesions were 80.0% and 65.9%, the specificities 72.7% and 65.0%, the diagnostic accordance rates 76.5% and 65.4%, the positive predictive values 76.4% and 67.5% and the negative predictive values 76.7% and 63.3% respectively. The decline rate of signal intensity and apparent diffusion coefficient with different b values may be used for differentiating benign and malignant breast lesions. And the diagnostic efficiency with b values of 400-800 s/mm² is optimal.

  6. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  7. Conformal dynamics of precursors to fracture

    NASA Astrophysics Data System (ADS)

    Barra, F.; Herrera, M.; Procaccia, I.

    2003-09-01

    An exact integro-differential equation for the conformal map from the unit circle to the boundary of an evolving cavity in a stressed 2-dimensional solid is derived. This equation provides an accurate description of the dynamics of precursors to fracture when surface diffusion is important. The solution predicts the creation of sharp grooves that eventually lead to material failure via rapid fracture. Solutions of the new equation are demonstrated for the dynamics of an elliptical cavity and the stability of a circular cavity under biaxial stress, including the effects of surface stress.

  8. An Approach to Study Elastic Vibrations of Fractal Cylinders

    NASA Astrophysics Data System (ADS)

    Steinberg, Lev; Zepeda, Mario

    2016-11-01

    This paper presents our study of dynamics of fractal solids. Concepts of fractal continuum and time had been used in definitions of a fractal body deformation and motion, formulation of conservation of mass, balance of momentum, and constitutive relationships. A linearized model, which was written in terms of fractal time and spatial derivatives, has been employed to study the elastic vibrations of fractal circular cylinders. Fractal differential equations of torsional, longitudinal and transverse fractal wave equations have been obtained and solution properties such as size and time dependence have been revealed.

  9. Minimum impulse three-body trajectories.

    NASA Technical Reports Server (NTRS)

    D'Amario, L.; Edelbaum, T. N.

    1973-01-01

    A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.

  10. Foundation design for a radio telescope on the moon

    NASA Astrophysics Data System (ADS)

    Chua, Koon Meng; Johnson, Stewart W.; Yuan, Zehong

    A foundation design for a 122 m diameter dish-type radio telescope on the moon is presented. The 1.2 m wide and 43 m diameter circular strip footing was analyzed for settlement due to compaction during installation and also for total and differential settlement under in-service laods. An axisymmetrical finite element code of the uppdated Lagrangian formulation was used. Interface slip elements were also used. The nonlinear hyperbolic stress-strain model parameters for the regolith were derived from load-deflection characteristics of astronauts' bootprints and the Rover tracks.

  11. Oort's cloud evolution under the influence of the galactic field.

    NASA Astrophysics Data System (ADS)

    Kiryushenkova, N. V.; Chepurova, V. M.; Shershkina, S. L.

    By numerical integration (Everhart's method) of the differential equations of cometary movement in Oort's cloud an attempt was made to observe how the galactic gravitational field changes the orbital elements of these comets during three solar revolutions in the Galaxy. It is shown that the cometary orbits are more elongated, even the initially circular orbits become strongly elliptical, in the outer layers of Oort's cloud it is possible for comets to turn into hyperbolic orbits and to leave the solar system. The boundaries of the solar system have been precised.

  12. Quantum cybernetics: a new perspective for Nelson's stochastic theory, nonlocality, and the Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2002-04-01

    The Klein-Gordon equation is shown to be equivalent to coupled partial differential equations for a sub-quantum Brownian movement of a “particle”, which is both passively affected by, and actively affecting, a diffusion process of its generally nonlocal environment. This indicates circularly causal, or “cybernetic”, relationships between “particles” and their surroundings. Moreover, in the relativistic domain, the original stochastic theory of Nelson is shown to hold as a limiting case only, i.e., for a vanishing quantum potential.

  13. Jet-Like Flow and Thrust From a Flexible Flapping Foil in Stationary Fluid

    DTIC Science & Technology

    2009-12-29

    considered as a movable hinge point which travels over the flap region resulting in differential flap portions, pulling and pushing the fluid about this 15...Fliegenflugel und Hypothesen uber zugeordnete instationare Stromungseffekte,” J. Comp. Physiol., vol. 133, pp. 351–355, 1979. [24] Rayner, J. M. V., “A vortex...ring by giving an impulse to a circular disk and then dissolving it away,” J. App. Phys., vol. 24, no. 1, pp. 104, 1953. 17 [28] Wagner H., “ Uber die

  14. Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek

    2014-02-17

    Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less

  15. Differentiating fatty and non-fatty tissue using photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2014-03-01

    In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.

  16. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a

  17. An Intensive Look at Intensity and Language Learning

    ERIC Educational Resources Information Center

    Collins, Laura; White, Joanna

    2011-01-01

    In this longitudinal study we investigated whether different distributions of instructional time would have differential effects on the acquisition of English by young (aged 11-12 years) French-speaking learners. Eleven classes of Grade 6 students (N = 230) in two versions of a similar intensive English as a second language program were followed…

  18. Laser Stimulated Thermoluminescence

    NASA Astrophysics Data System (ADS)

    Abtahi, Abdollah

    Techniques for localized heating of semi-infinite single-layer and two-layer structures are investigated theoretically and experimentally, motivated by applications in thermoluminescence (TL) dosimetry of ionizing radiation. The heat-conduction equations are solved by the Green's function technique to obtain the transient temperature distribution caused by exposure to laser beams of Gaussian and uniform circular intensity profiles. It is shown that the spatio-temporal temperature response is readily monitored by the TL response that results when layer configuration contains a thermoluminescent phosphor. The experiments for the verification of the developed theory are performed with two specially constructed TL detection systems, one featuring a laser beam of Gaussian profile and the other a uniform circular laser beam. Measurements of the thermoluminescent emission from a number of different TL systems are performed and compared with computed responses on the basis of simple electron kinetics. We experiment exclusively with the commercial TL phosphor LiF:Mg,Ti(TLD-100, Harshaw), the most widely used material in thermoluminescence dosimetry. We study in detail localized Gaussian beam heating of it in the form of 0.9 mm thick slabs, self-supporting firms of fine-grain powder in a polyimide (Kapton) matrix, and on substrates of LiF single crystals or borosilicate glass. Thermoluminescent layers on glass substrates have been heated with Gaussian and uniform circular intensity profiles in two different modes: the laser beam impinges onto (a) the phosphor layer, and (b) the glass substrate. It is demonstrated that the optical and thermal behavior of the dosimeters can be determined by these methods and that, furthermore, the thermoluminescence response of a given configuration can be simulated as a function of a number of experimental parameters such as laser power, beam size, substrate and TL-layer thicknesses, and configuration of the dosimeters. In addition, we have investigated the dependence of the luminous efficiency (normalized thermoluminescence yield) and peak heights on heating rates in the range from 4 K/s to 5500 K/s. The efficiency values obtained are then included in the comparison of experimental and theoretical TL responses curves for various laser powers.

  19. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    PubMed

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  20. Path and site effects deduced from merged transfrontier internet macroseismic data of two recent M4 earthquakes in northwest Europe using a grid cell approach

    NASA Astrophysics Data System (ADS)

    Van Noten, Koen; Lecocq, Thomas; Sira, Christophe; Hinzen, Klaus-G.; Camelbeeck, Thierry

    2017-04-01

    The online collection of earthquake reports in Europe is strongly fragmented across numerous seismological agencies. This paper demonstrates how collecting and merging online institutional macroseismic data strongly improves the density of observations and the quality of intensity shaking maps. Instead of using ZIP code Community Internet Intensity Maps, we geocode individual response addresses for location improvement, assign intensities to grouped answers within 100 km2 grid cells, and generate intensity attenuation relations from the grid cell intensities. Grid cell intensity maps are less subjective and illustrate a more homogeneous intensity distribution than communal ZIP code intensity maps. Using grid cells for ground motion analysis offers an advanced method for exchanging transfrontier equal-area intensity data without sharing any personal information. The applicability of the method is demonstrated on the felt responses of two clearly felt earthquakes: the 8 September 2011 ML 4.3 (Mw 3.7) Goch (Germany) and the 22 May 2015 ML 4.2 (Mw 3.7) Ramsgate (UK) earthquakes. Both events resulted in a non-circular distribution of intensities which is not explained by geometrical amplitude attenuation alone but illustrates an important low-pass filtering due to the sedimentary cover above the Anglo-Brabant Massif and in the Lower Rhine Graben. Our study illustrates the effect of increasing bedrock depth on intensity attenuation and the importance of the WNW-ESE Caledonian structural axis of the Anglo-Brabant Massif for seismic wave propagation. Seismic waves are less attenuated - high Q - along the strike of a tectonic structure but are more strongly attenuated - low Q - perpendicular to this structure, particularly when they cross rheologically different seismotectonic units separated by crustal-rooted faults.

Top