A circular polarization converter based on in-linked loop antenna frequency selective surface
NASA Astrophysics Data System (ADS)
Wang, Shen-Yun; Liu, Wei; Geyi, Wen
2018-06-01
In this paper, we report the design, fabrication and measurement of a circular polarization converter based on an in-linked loop-antenna frequency selective surface. The building unit cell is the in-linked loop-antenna module, which consists of same front and back planar loop antennas in-linked by a pair of through-via holes passing through a sandwiched perforated metal ground plane. The proposed device can achieve transmission polarization conversions from right- or left-handed circularly polarized waves to left- or right-handed ones, respectively, or vice versa. Simulation and experimental results show that it has relative conversion ratio of near unity at resonant frequency and very low Joule insertion loss in the operating frequency band. The proposed circular polarization converter may be applied to wireless systems where circular polarization diversity is needed.
L-Band Orthogonal-Mode Crossed-Slot Antenna and VHF Crossed-Loop Antenna
DOT National Transportation Integrated Search
1972-01-01
A low-gain, circularly polarized, L-ban antenna; a low-gain, lineraly polarized, L-band antenna; and a low-gain, lineraly polarized, L-ban antenna; and a low-gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended ...
Co-simulation of a complete rectenna with a circular slot loop antenna in CPW technology
NASA Astrophysics Data System (ADS)
Rivière, Jérôme; Douyère, Alexandre; Cazour, Jonathan; Alicalapa, Frédéric; Luk, Jean-Daniel Lan Sun
2017-05-01
This study starts with the design of a planar and compact CPW antenna fabricated on Arlon AD1000 substrate, ɛr=10.35. The antenna is a coplanar waveguide (CPW) fed circular slot loop antenna matched to the standard impedance 50 Ω by two stubs. The goal is to implement this antenna with a CPW RF/DC rectifier to build an optimized low power level rectenna. The rectenna design is restricted to allow easy and fast fabrication of an array with a high reproducibility. The full rectenna is simulated and achieves 10% effciency at -20 dBm.
Isolated and coupled superquadric loop antennas for mobile communications applications
NASA Technical Reports Server (NTRS)
Jensen, Michael A.; Rahmat-Samii, Yahya
1993-01-01
This work provides an investigation of the performance of loop antennas for use in mobile communications applications. The analysis tools developed allow for high flexibility by representing the loop antenna as a superquadric curve, which includes the case of circular, elliptical, and rectangular loops. The antenna may be in an isolated environment, located above an infinite ground plane, or placed near a finite conducting plate or box. In cases where coupled loops are used, the two loops may have arbitrary relative positions and orientations. Several design examples are included to illustrate the versatility of the analysis capabilities. The performance of coupled loops arranged in a diversity scheme is also evaluated, and it is found that high diversity gain can be achieved even when the antennas are closely spaced.
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A
2017-07-05
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.
Whistler mode refraction in highly nonuniform magnetic fields
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R.
2016-12-01
In a large laboratory plasma the propagation of whistler modes is measured in highly nonuniform magnetic fields created by a current-carrying wires. Ray tracing is not applicable since the wavelength and gradient scale length are comparable. The waves are excited with a loop antenna near the wire. The antenna launches an m=1 helicon mode in a uniform plasma. The total magnetic field consists of a weak uniform background field and a nearly circular field of a straight wire across the background field. A circular loop produces 3D null points and a 2D null line. The whistler wave propagation will be shown. It is relevant to whistler mode propagation in space plasmas near magnetic null-points, small flux ropes, lunar crustal magnetic fields and active wave injection experiments.
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.
2017-01-01
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178
Helicon waves in uniform plasmas. II. High m numbers
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B0. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel ["Helicon modes in uniform plasmas. I. Low m modes," Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name "helicon" to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B0. The field lines near the axis of helicons are perpendicular to B0 and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B0. The radiation efficiency of multipole antennas has been found to decrease with m.
Antenna theory: Analysis and design
NASA Astrophysics Data System (ADS)
Balanis, C. A.
The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.
Helicon waves in uniform plasmas. II. High m numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas.more » I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.« less
Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H
2016-04-01
A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.
Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H
2017-08-01
A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.
Choice of antenna geometry for microwave power transmission from solar power satellites
NASA Technical Reports Server (NTRS)
Potter, Seth D.
1992-01-01
A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.
Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands
2015-09-01
the various techniques that can be used to improve the performance of a circularly polarized microstrip patch antenna . These adjustments include... microstrip antenna . 15. SUBJECT TERMS Patch Antenna , Circular Polarization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Frequency Structural Simulator (HFSS) has allowed engineers to create scalable multiband microstrip antennas . Several factors were taken into
Broadband Circularly Polarized Patch Antenna and Method
2016-09-16
300152 1 of 14 BROADBAND CIRCULARLY POLARIZED PATCH ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...present invention provides a method and apparatus for a broadband circularly polarized patch antenna . (2) Description of the Prior Art [0004] A...patch antenna , also referred to as a microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The
NASA Astrophysics Data System (ADS)
Ghosh, S. K.; Varshney, S. K.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.
2018-03-01
Microstrip patch antenna of semicircular geometry has been investigated in view of miniaturization of conventional circular geometry. The precise operating frequency of the semicircular microstrip patch antenna is the most significant parameter to be determined in order to design such antenna system to achieve the optimum performance. In the present investigation an improved formulation is presented for accurate determination of the resonant frequency of semicircular patch. Also, the radiation property of such patch is thoroughly investigated. Through comparisons are documented amongst the circular and semicircular patches. It is revealed that, the semicircular patch offers more better radiation performance compared to circular.
Pattern and polarization measurements of integrated-circuit spiral antennas at 10-μm wavelength
NASA Astrophysics Data System (ADS)
MacDonald, Michael E.; Grossman, Erich N.
1996-12-01
Radiation patterns are presented for planar equiangular spiral antennas at wavelengths of approximately 10 micrometers . These antennas are fabricated using integrated-circuit processes on silicon substrates and are coupled through dielectric lenses. Patterns are presented over a full 2D scan for orthogonal linear polarizations, and for left- circular (LCP) and right-circular (RCP) polarizations. The antennas respond preferentially to left-circularly polarized radiation, as expected for the left-handed sense of the spiral arms. Cross-polarization ratios as large as 10 dB in circular polarization are obtained, corresponding to an axial ratio of 1.2. No difference in response between horizontally and vertically polarized radiation is observed, as expected for circularly polarized antennas. Directivities as large as 14 dB in left-circular polarization have been obtained. The cross-polarized directivity is considerably lower than the co-polarized directivity. All patterns are approximately circularly symmetric about the (theta) equals 0 axis. The cross-polarization ratio and pattern symmetry strongly depend on the alignment of the antenna and detector response is antenna coupled, even at radiation wavelength of the same order of magnitude as the resolution limit of the optical lithography used to define the antenna geometry.
Helicon modes in uniform plasmas. III. Angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excitedmore » in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will be contrasted to the research on helicon plasma sources.« less
Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays
NASA Astrophysics Data System (ADS)
Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos
2010-01-01
Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.
NASA Astrophysics Data System (ADS)
He, Yu; Shen, Yuecheng; Feng, Xiaohua; Liu, Changjun; Wang, Lihong V.
2017-08-01
A circularly polarized antenna, providing more homogeneous illumination compared to a linearly polarized antenna, is more suitable for microwave induced thermoacoustic tomography (TAT). The conventional realization of a circular polarization is by using a helical antenna, but it suffers from low efficiency, low power capacity, and limited aperture in TAT systems. Here, we report an implementation of a circularly polarized illumination method in TAT by inserting a single-layer linear-to-circular polarizer based on frequency selective surfaces between a pyramidal horn antenna and an imaging object. The performance of the proposed method was validated by both simulations and experimental imaging of a breast tumor phantom. The results showed that a circular polarization was achieved, and the resultant thermoacoustic signal-to-noise was twice greater than that in the helical antenna case. The proposed method is more desirable in a waveguide-based TAT system than the conventional method.
2014-08-01
Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG
Cylindrical Antenna Using Near Zero Index Metamaterial
2012-07-24
circularly polarized microstrip patch antenna (SFCP-MPA). Simultaneous enhancement on antenna gain, impedance bandwidth (ZBW) and axial-ratio...K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna ...device for enhancing the directivity and port isolation of a dual-frequency dual- polarization (DFDP) microstrip antenna by using metamaterial
A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator.
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-11-03
This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30 ∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured -10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88-2.58 GHz) and 19.30% (2.06-2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed.
Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon
2018-01-01
In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured −10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68–3.97 GHz) and 70.55% (1.89–3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results. PMID:29762530
Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2018-05-15
In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Frequency-reconfigurable water antenna of circular polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Meng; Pan, Jin; Shen, Zhongxiang, E-mail: ezxshen@ntu.edu.sg
A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibitsmore » a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.« less
Antenna feed system for receiving circular polarization and transmitting linear polarization
NASA Technical Reports Server (NTRS)
Seidel, B. L.; Bathker, D. A. (Inventor)
1979-01-01
An invention is described which provides for receiving a circularly polarized signal from an antenna feed connected to orthogonally spaced antenna elements. It also provides for transmitting a linearly polarized signal through the same feed without switches, and without suffering a 3 dB polarization mismatch loss, using an arrangement of hybrid junctions. The arrangement is comprised of two dividing hybrid junctions, each connected to a different pair of antenna elements and a summing hybrid junction. In one version, a receiver is connected to the summing hybrid junction directly. A diplexer is used to connect a transmitter to only one pair of antenna elements. In another version, designated left and right circularly polarized (LCP and RCP) transmitters are connected to the summing hybrid junction by separate diplexers, and separate LCP and RCP sensitive receivers are connected to the diplexers in order to transmit linearly polarized signals using all four antenna elements while receiving circularly polarized signals as before. An orthomode junction and horn antenna may replace the two dividing hybrid junctions and antenna feed.
Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development
2016-09-01
ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2016-08-15
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less
Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz
NASA Astrophysics Data System (ADS)
Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul
2018-03-01
This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).
A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-01-01
This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization. The proposed antenna is excited using an aperture-coupled feeding technique through a narrow rectangular slot etched onto the ground plane. An antenna prototype is experimentally verified. The measured −10 dB reflection and 3 dB axial ratio (AR) bandwidths are 31.39% (1.88–2.58 GHz) and 19.30% (2.06–2.50 GHz), respectively, covering the operating bands of the following systems: UMTS-2100 (2.145 GHz), WiMAX (2.3 GHz), and Wi-Fi (2.445 GHz). A measured peak gain of 7.65 dBic at 2.225 GHz and gain variation of less than 2.70 dBic within the measured 3 dB AR bandwidth are achieved. In addition, the radiation patterns of the proposed antenna are presented and discussed. PMID:27827881
Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
NASA Technical Reports Server (NTRS)
Lightsey, Edgar Glenn (Inventor)
1999-01-01
A correction to a differential phase measurement used for vehicle attitude determination on nonaligned antenna arrays is determined by calculating a carrier phase angle of carrier signals received by each antenna, and correcting the measurement for the right-hand circular polarization effect on the nonaligned antennas. Accordingly, circular polarization effects of the carrier signals are removed from a nonaligned antenna array, allowing the nonaligned antenna array to be used for vehicle attitude determination.
Antenna Controller Replacement Software
NASA Technical Reports Server (NTRS)
Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza;
2010-01-01
The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and monitoring tracking performance.
Thin-Wire Modeling Techniques Applied to Antenna Analysis.
1974-10-11
Ol- MULT11 CRN LOOP ANTENNA ... 30 2.4.1 Balanced vs unbalanced operation ... 3 1 2.4.2 Horizontal vs vertical configuration ... 33 3.0...of the Ml A-l Mimloop ... 28 Hl; multiturn loop antenna of Ohio State University ...31 Configurations ot balanced and unbalanced MTLs ... 32...4. Evaluation of Multiturn Loop Antenna In each example the specific project is outlined and the antenna analysis problems of particular interest
Antenna array geometry optimization for a passive coherent localisation system
NASA Astrophysics Data System (ADS)
Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel
2012-11-01
Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.
Mobile satellite communications - Vehicle antenna technology update
NASA Technical Reports Server (NTRS)
Bell, D.; Naderi, F. M.
1986-01-01
This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.
Superficial heat reduction technique for a hybrid microwave-optical device.
Al-Armaghany, A; Tong, K; Leung, T S
2013-01-01
Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.
Microstrip Antenna Generates Circularly Polarized Beam
NASA Technical Reports Server (NTRS)
Huang, J.
1986-01-01
Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.
Circularly polarized antennas for active holographic imaging through barriers
McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA
2011-07-26
Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.
Design of a C- Band Circular Polarization Microstrip Antenna
NASA Astrophysics Data System (ADS)
Yohandri; Jumiah, Yusna; Tetuko Sri Sumantyo, Josaphat
2018-04-01
The development of circularly polarized microstrip antenna is an interesting topic in current research, due to its superiority in various applications. In this work, the design of a circular polarization antenna that will be operated in the C-band range will be described. The developed antenna is intended to be used for Synthetic Aperture Radar (SAR) applications. Through this application, various targets or areas on the surface of the earth, such as buildings, soil and land can be observed. To get the ideal antenna characteristic, in this research the various parameters in antenna design will be simulated. A software CST Studio will be operated in this simulation. Based on the simulation results, the optimum parameters are obtained in term of reflection coefficient, VSWR, axial ratio, and gain. The reflection coefficient of the antenna (S11) is obtained at -19.75 dB and VSWR of 1.23. Meanwhile, the axial ratio and gain of the antenna were obtained at 2.66 dB and 2.1 dBi, respectively. Based on this simulated results, antenna design is potential to be developed and fabricated for SAR sensor applications.
NASA Technical Reports Server (NTRS)
Byrnes, P. J.
1972-01-01
Using a computer program which plots beams from antennas located on synchronous satellites onto the earth's surface, several circular and elliptical reflectors were analyzed for pattern coverage. The reflectors considered were circular paraboloid and elliptical shaped.
Sun, Chao; Yang, Shiwen; Chen, Yikai; Guo, Jixin; Qu, Shiwei
2018-01-09
Electromagnetic waves carrying orbital angular momentum (OAM) in radio frequency range have drawn great attention owing to its potential applications in increasing communication capacity. In this paper, both single-pole single-throw (SPST) switches and single-pole double-throw (SPDT) switches are designed and implemented. Optimal time sequence allows four-dimensional (4-D) circular antenna array to generate multiple OAM-carrying waves as well as enhance the field intensity of each OAM-carrying wave. A novel experimental platform is developed to measure the phase distribution when the transmitting antenna and the receiving antenna operate at different frequencies. The good agreement between the measurement and simulation results demonstrate that 4-D circular antenna array is able to generate multiple OAM modes simultaneously. Furthermore, the superiority of the 4-D circular antenna array in receiving and demodulating multiple OAM-carrying signals is validated through the filter and bit error rate (BER) simulations.
A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-08-23
The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz.
Circularly-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Stanton, P. H.
1985-01-01
Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.
Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning
NASA Technical Reports Server (NTRS)
Gawronski, Wodek K.
2004-01-01
The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
A Polarization Reconfigurable Slot Antenna with a Novel Switchable Feeding Network
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang Ming
2017-12-01
A polarization reconfigurable slot antenna is proposed in this paper. The antenna consists of a microstrip line-to-slotline transition structure, two radiation slots and a switchable feeding network. The feeding network is a gradually changed ring slot with six switching diodes on it. By controlling the diodes states, the antenna can generate y-direction polarization, z-direction polarization, left-hand circular polarization and right-hand circular polarization. Detailed design considerations of the proposed antenna, simulated and measured results are presented and discussed. Measured results agree well with simulated. The results proved that the antenna can realize polarization reconfiguration effectively at 5 GHz.
NASA Technical Reports Server (NTRS)
Gawronski, W.
2004-01-01
Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.
The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array
NASA Technical Reports Server (NTRS)
Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.
1994-01-01
The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were essentially the same as that for the copper array. The measured gain of the YBCO antenna was greater than that for the room temperature copper design at temperatures below 82K, reaching a value of 3.4 dB at the lowest temperatures.
Omni-directional L-band antenna for mobile communications
NASA Technical Reports Server (NTRS)
Kim, C. S.; Moldovan, N.; Kijesky, J.
1988-01-01
The principle and design of an L-band omni-directional mobile communication antenna are discussed. The antenna is a circular wave guide aperture with hybrid circuits attached to higher order mode excitation. It produces polarized and symmetric two split beams in elevation. The circular waveguide is fed by eight probes with a 90 degree phase shift between their inputs. Radiation pattern characteristics are controlled by adjusting the aperture diameter and mode excitation. This antenna satisfies gain requirements as well as withstanding the harsh environment.
Polarization Ratio Determination with Two Identical Linearly Polarized Antennas
2017-01-17
Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis
Microstrip antenna developments at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.
Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R
2016-01-13
Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.
Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband.
Zhang, Youfei; Wang, Haogang; Liao, Dashuang; Fu, Weijie
2018-02-14
Metasurface antennas (MAs) have been proposed as innovative alternatives to conventional bulky configurations for satellite applications because of their low profile, low cost, and high gain. The general method of surface impedance modulation for designing MAs is complicated, and achieving broad operation bandwidth remains a challenge because of its high dispersion response. We propose a novel and easy technique to control cylindrical surface waves radiated by a phase-tuning metasurface. Simultaneously, this technique exhibits a considerably wide working bandwidth. A detailed analysis of the radiation mechanism is discussed. A left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna that are based on the phase-tuning metasurface are simulated and measured. The measured fractional 3-dB gain bandwidth and gain are higher than 17% and 15.57 dBi, respectively, which are consistent with the simulated results. Moreover, 30% 3-dB axial ratio is achieved for the LHCP and RHCP antennas. To the best knowledge of the authors, it is for the first time to realize a circularly polarized broadband MA by using the phase-tuning mechanism. The approach can be regarded as a new starting point for antenna design, thereby paving the way for the development of broadband and low-profile antennas for future satellite communication.
NASA Astrophysics Data System (ADS)
Lin, Baoqin; Wu, Jia-liang; Da, Xin-yu; Li, Wei; Ma, Jia-jun
2017-01-01
In this work, we propose a linear-to-circular transmission polarization converter based on a second-order band-pass frequency selective surface (FSS). The FSS is composed of a three-layer aperture-coupled-patch structure, it can be interpreted as an array of antenna-filter-antenna modules, wherein the antenna is just a circularly polarized corner-truncated square microstrip antenna. A prototype of the proposed polarization converter is analyzed, fabricated and tested. Both simulation and experimental results show that the 3-dB axial ratio relative bandwidth of the polarization converter is over 30%, and the maximum insertion loss is only 1.87 dB; in addition, it can maintain good performance over a wide angular bandwidth at TE incidence.
Comparison between electric dipole and magnetic loop antennas for emitting whistler modes
NASA Astrophysics Data System (ADS)
Stenzel, R.; Urrutia, J. M.
2016-12-01
In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.
Multi-mode horn antenna simulation
NASA Technical Reports Server (NTRS)
Dod, L. R.; Wolf, J. D.
1980-01-01
Radiation patterns were computed for a circular multimode horn antenna using waveguide electric field radiation expressions. The circular multimode horn was considered as a possible reflector feed antenna for the Large Antenna Multifrequency Microwave Radiometer (LAMMR). This horn antenna uses a summation of the TE sub 11 deg and TM sub 11 deg modes to generate far field primary radiation patterns with equal E and H plane beamwidths and low sidelobes. A computer program for the radiation field expressions using the summation of waveguide radiation modes is described. The sensitivity of the multimode horn antenna radiation patterns to phase variations between the two modes is given. Sample radiation pattern calculations for a reflector feed horn for LAMMR are shown. The multimode horn antenna provides a low noise feed suitable for radiometric applications.
Cup waveguide antenna with integrated polarizer and OMT
NASA Technical Reports Server (NTRS)
Kory, Carol (Inventor); Acosta, Roberto J. (Inventor); Lambert, Kevin M. (Inventor)
2011-01-01
A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.
Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.
Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin
2017-01-01
The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.
Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices
Bocan, Kara N.; Mickle, Marlin H.
2017-01-01
The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology. PMID:29018637
Winding a Long Coil with a Pre-Programmed Turns Density Variation
1975-05-27
turns den- sity is to follow. A machine having this capability is needed to provide a towed ELF loop antenna with the smoothly tapered sensitivity...Introduction A submarine towed ELF loop antenna vibrates longitudinally and trans- versely during towing. The vibration is driven by the fluctuating surface...in attaining the smoothly varying turns density required for the signal winding of a towed ELF loop antenna . Acknowledgments Thanks are due to John
A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting
NASA Astrophysics Data System (ADS)
Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra
2015-11-01
In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.
Input impedance of a probe-fed circular microstrip antenna with thick substrate
NASA Technical Reports Server (NTRS)
Davidovitz, M.; Lo, Y. T.
1986-01-01
A method of computing the input impedance for the probe fed circular microstrip antenna with thick dielectric substrate is presented. Utilizing the framework of the cavity model, the fields under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located probe, as well as on the cavity magnetic wall. A mode-matching technique is used to solve for the electric field at the junction between the cavity and the coaxial feed cable. The reflection coefficient of the transverse electromagnetic (TEM) mode incident in the coaxial cable is determined, from which the input impedance of the antenna is computed. Measured data are presented to verify the theoretical calculations. Results of the computation of various losses for the circular printed antenna as a function of substrate thickness are also included.
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
Wideband Microstrip Antenna-Feeding Array
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.
Inum, Reefat; Rana, Md Masud; Shushama, Kamrun Nahar; Quader, Md Anwarul
2018-01-01
A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S -parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain.
Rana, Md. Masud; Shushama, Kamrun Nahar; Quader, Md. Anwarul
2018-01-01
A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S-parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain. PMID:29623087
Intrasystem Analysis Program (IAP) Model Improvement.
1982-02-01
of Loop Antennas 2-117 2.11 Transmission Loss of Yagi-Uda Beam Antennas 2-120 2.12 Impedance Matching Factor of Frequency-Independent Antennas 2-121...2.16.5 Directive Gain Model for a Loop Antenna 2-181 2.16.6 Directive Gain Model for a Planer Log-Spiral Antenna 2-182 2.16.7 Directive Gain Model for...The published specifications for the antenns which meet certain standard requirements are based on measure- ments of the terminal impedance of the total
Land and Undersea Field Testing of Very Low Frequency RF Antennas and Loop Transceivers
2017-12-01
VLF RF HARDWARE: SSC PACIFIC LOOP ANTENNAS ........................................... 4 2.3 EXPERIMENTAL CONCEPT...2.3 EXPERIMENTAL CONCEPT Figure 5 shows a drawing of a typical transmit/receive scenario. Each of the WFS units and loop antennas can both transmit...kilohertz is around 20 fT/root(Hz). One femtoTesla (fT) is equal to 10-15 Tesla. Our derived value is close to the 30 fT/root(Hz) value experimentally
Performance of a modified feedback loop adaptive array with TVRO satellite signals
NASA Technical Reports Server (NTRS)
Steadman, Karl N.; Gupta, Inder J.; Walton, Eric K.
1990-01-01
Performance of an experimental adaptive antenna array system is evaluated using television receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceller with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops used two spatialy separated antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Wei; Leal, Walter S.
Pheromone-binding proteins (PBPs) are involved in the uptake of pheromones from pores on the antennae, transport through an aqueous environment surrounding the olfactory receptor neurons, and fast delivery to pheromone receptors. We tested the hypothesis that a C-terminal segment and a flexible loop are involved in the release of pheromones to membrane-bound receptors. We expressed in Escherichia coli 11 mutants of the PBP from the silkworm moth, BmorPBP, taking into consideration structural differences between the forms with high and low binding affinity. The N-terminus was truncated and His-69, His-70 and His-95 at the base of a flexible loop, and amore » cluster of acidic residues at the C-terminus were mutated. Binding assays and circular dichroism analyses support a mechanism involving protonation of acidic residues Asp-132 and Glu-141 at the C-terminus and histidines, His-70 and His-95, in the base of a loop covering the binding pocket. The former leads to the formation of a new {alpha}-helix, which competes with pheromone for the binding pocket, whereas positive charge repulsion of the histidines opens the opposite side of the binding pocket.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...
A generic set of HF antennas for use with spherical model expansions
NASA Astrophysics Data System (ADS)
Katal, Nedim
1990-03-01
An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Miranda, Felix A.
2006-01-01
In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.
Printed Multi-Turn Loop Antenna for RF Bio-Telemetry
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
In this paper, a novel printed multi-turn loop antenna for contact-less powering and RF telemetry from implantable bio- MEMS sensors at a design frequency of 300 MHz is demonstrated. In addition, computed values of input reactance, radiation resistance, skin effect resistance, and radiation efficiency for the printed multi-turn loop antenna are presented. The computed input reactance is compared with the measured values and shown to be in fair agreement. The computed radiation efficiency at the design frequency is about 24 percent.
Guo, Li; Tang, Ming-Chun; Li, Mei
2018-06-01
In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs) is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP) waves, dual-layer patch antennas capable of radiating right-hand (RH) or left-hand (LH) circularly polarized (CP) waves are achieved in terms of the different offset direction of the bottom splits of the DSSRs. Because of both the capacitive coupling to the radiator and the degenerate modes existing in the excited DSSRs, the DSSRs collaboratively result in a circularly polarized radiation, successfully converting incident LP waves into CP ones. Simulated results show that the impedance, axial ratio (AR), and gain frequency response of both proposed CP antennas are identical, with a simulated 3-dB AR bandwidth of 72 MHz covering 2.402⁻2.474 GHz and a gain enhanced by 3.9 dB. The proposed antennas were fabricated and measured, revealing an operational bandwidth of 65 MHz (2.345⁻2.41 GHz) and a peak gain up to 9 dBi. Moreover, a low profile of 0.063λ₀ is maintained. The proposed CP antennas could be as a candidate for wireless target detection applications in terms of their identical frequency response property.
Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-07-01
The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.
Pushing the limits of radiofrequency (RF) neuronal telemetry
Yousefi, Tara; Diaz, Rodolfo E.
2015-01-01
In a previous report it was shown that the channel capacity of an in vivo communication link using microscopic antennas at radiofrequency is severely limited by the requirement not to damage the tissue surrounding the antennas. For dipole-like antennas the strong electric field dissipates too much power into body tissues. Loop-type antennas have a strong magnetic near field and so dissipate much less power into the surrounding tissues but they require such a large current that the antenna temperature is raised to the thermal damage threshold of the tissue. The only solution was increasing the antenna size into hundreds of microns, which makes reporting on an individual neuron impossible. However, recently demonstrated true magnetic antennas offer an alternative not covered in the previous report. The near field of these antennas is dominated by the magnetic field yet they don’t require large currents. Thus they combine the best characteristics of dipoles and loops. By calculating the coupling between identical magnetic antennas inside a model of the body medium we show an increase in the power transfer of up to 8 orders of magnitude higher than could be realized with the loops and dipoles, making the microscopic RF in-vivo transmitting antenna possible. PMID:26035824
NASA Technical Reports Server (NTRS)
Milne, R.
1995-01-01
This paper examines the vehicle antenna requirements for mobile satellite systems. The antenna parameters are discussed in the light of the requirements and the limitations in performance imposed by the physical constraints of antenna and by vehicle geometries. Measurements of diffraction and antenna noise temperature in an operational environment are examined, as well as their effects on system margins. Mechanical versus electronic designs are compared with regards to performance, cost, reliability, and design complexity. Comparisons between open-loop and close-loop tracking systems are made and the effects of bandwidth, sidelobe levels, operational constraints, vehicle angular velocity, and acceleration are discussed. Some consideration is given to the use of hybrid systems employing both open and closed-loop tracking. Changes to antenna/terminal specifications are recommended which will provide greater design flexibility and increase the likelihood of meeting the performance and operational requirements.
Performance of a modified feedback loop adaptive array with TVRO satellite signals
NASA Technical Reports Server (NTRS)
Steadman, K.; Gupta, I. J.; Walton, E. K.
1990-01-01
The performance of an experimental adaptive antenna array system is evaluated using television-receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceler with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops use two spatially separate antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.
A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna
NASA Technical Reports Server (NTRS)
Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.
1993-01-01
A 10 GHz hybrid YBCO/GaAs microwave oscillator proximity coupled to a circular microstrip antenna has been designed, fabricated, and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBCO superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 K, increasing to a maximum of 87.4 percent at 30 K.
A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna
NASA Technical Reports Server (NTRS)
Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.
1993-01-01
A 10 GHz hybrid Y-Ba-Cu-O / GaAs microwave oscillator proximity coupled to a circular microstrip antenna was designed, fabricated and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBa2Cu3O(7-x) superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 4 increasing to a maximum of 87.4 percent at 30 K.
Omnidirectional, circularly polarized, cylindrical microstrip antenna
NASA Technical Reports Server (NTRS)
Stanton, Philip H. (Inventor)
1985-01-01
A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.
Impedance properties of circular microstrip antenna
NASA Technical Reports Server (NTRS)
Deshpande, M. D.; Bailey, M. C.
1983-01-01
A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.
Detail of base of monopole antenna element with graduated pole, ...
Detail of base of monopole antenna element with graduated pole, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor)
2005-01-01
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Kerley, P.L.
1959-01-01
A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.
A survey of various enhancement techniques for square rings antennas
NASA Astrophysics Data System (ADS)
Mumin, Abdul Rashid O.; Alias, Rozlan; Abdullah, Jiwa; Abdulhasan, Raed Abdulkareem; Ali, Jawad; Dahlan, Samsul Haimi; Awaleh, Abdisamad A.
2017-09-01
The square ring shape becomes a famous reconfiguration on antenna design. The researchers have been developed the square ring by different configurations. It has high efficiency and simple calculation method. The performance enhancement for an antenna is the main reason to use this setting. Furthermore, the multi-objectives for the antenna also are considered. In this paper, different studies of square ring shape are discussed. This shape is developed in five different techniques, which are the gain enhancement, dual band antenna, reconfigurable antenna, CSRR, and circularly polarization. Moreover, the validation between these configurations also demonstrates for square ring shapes. In particular, the square ring slot improved the gain by 4.3 dB, provide dual band resonance at 1.4 and 2.6 GHz while circular polarization at 1.54 GHz, and multi-mode antenna. However, square ring strip achieved an excellent band rejection on UWB antenna at 5.5 GHz. The square ring slot length is the most influential factor on the antenna performance, which refers to the free space wavelength. Finally, comparisons between these techniques are presented.
Linearly tapered slot antenna circular array for mobile communications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.
1993-01-01
The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.
NASA Astrophysics Data System (ADS)
Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin
2018-04-01
A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.
Circularly split-ring-resonator-based frequency-reconfigurable antenna
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.
MSAT-X phased array antenna adaptions to airborne applications
NASA Technical Reports Server (NTRS)
Sparks, C.; Chung, H. H.; Peng, S. Y.
1988-01-01
The Mobile Satellite Experiment (MSAT-X) phased array antenna is being modified to meet future requirements. The proposed system consists of two high gain antennas mounted on each side of a fuselage, and a low gain antenna mounted on top of the fuselage. Each antenna is an electronically steered phased array based on the design of the MSAT-X antenna. A beamforming network is connected to the array elements via coaxial cables. It is essential that the proposed antenna system be able to provide an adequate communication link over the required space coverage, which is 360 degrees in azimuth and from 20 degrees below the horizon to the zenith in elevation. Alternative design concepts are suggested. Both open loop and closed loop backup capabilities are discussed. Typical antenna performance data are also included.
Detail of dipole antenna element (right) and 94' lowband reflector ...
Detail of dipole antenna element (right) and 94' low-band reflector screen poles (left), note the guy wires from the antenna element, view facing north northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna.
Altaf, Amir; Jung, Jin-Woo; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2017-08-18
A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities. The antenna exhibits a measured 3 dB ARBW of 44.2% (3.35-5.25 GHz), lying within a -10 dB reflection bandwidth of 82.7% (2.44-5.88 GHz). The measured peak gain within 3 dB ARBW is found to be 5.66 dBic at 4.8 GHz. The measured results are in good agreement with the simulated results.
Investigation of the factors responsible for burns during MRI.
Dempsey, M F; Condon, B; Hadley, D M
2001-04-01
Numerous reported burn injuries have been sustained during clinical MRI procedures. The aim of this study was to investigate the possible factors that may be responsible for such burns. Experiments were performed to investigate three possible mechanisms for causing heating in copper wire during MRI: direct electromagnetic induction in a conductive loop, induction in a resonant conducting loop, and electric field resonant coupling with a wire (the antenna effect). Maximum recorded temperature rises were 0.6 degrees C for the loop, 61.1 degrees C for the resonant loop, and 63.5 degrees C for the resonant antenna. These experimental findings suggest that, contrary to common belief, it is unlikely that direct induction in a conductive loop will result in thermal injury. Burn incidents are more likely to occur due to the formation of resonant conducting loops and from extended wires forming resonant antenna. The characteristics of resonance should be considered when formulating safety guidelines.
Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L
2016-01-01
To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.
2017-08-08
Another area of the design that needs to be experimentally tested is the SMPS connectors used to attach the two beamforming stages together. In...AFRL-RY-WP-TR-2017-0104 ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20-60...Order 0003: Design of a Circularly Polarized, 20-60 GHZ Active Phased Array for Wide Angle Scanning 5a. CONTRACT NUMBER FA8650-14-D-1714-0003 5b
Antennas for mobile satellite communications
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.
Elevation of a portion of the reflector screen and antenna ...
Elevation of a portion of the reflector screen and antenna circles from the interior, view facing southeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Development of an Ultra-Wideband Circularly Polarized Multiple Layer Dielectric Rod Antenna Design
NASA Astrophysics Data System (ADS)
Wainwright, Gregory D.
This dissertations focuses on the development of a novel Ultra-Wideband (UWB) circularly polarized dielectric rod antenna (CPDRA) which yields a constant gain, pattern, and phase center. These properties are important in many applications. Within radar systems a constant phase center is desirable to avoid errors within downrange and crossrange measurements. In a reflector antenna the illumination, spillover, and phase efficiencies will remain the same over an ultra-wideband. Lastly, near field probes require smooth amplitude and phase patterns over frequency to avoid errors during the calibration process of the antenna under test. In this dissertation a novel CP feeding network has been developed for an ultra-wideband dielectric rod antenna. Circularly-polarized antennas have a major advantage over its linearly-polarized counterpart in that the polarization mismatch loss caused by misalignment between the polarizations of the incident fields and antenna can be avoided. This is important in satellite communications and broadcasts where signal propagation through the ionosphere can experience Faraday Rotation. A circularly polarized antenna is also helpful in mobile radar and communication systems where the receiving antennas orientation is not fixed. Previous research on UWB dielectric rod antenna designs has focused on Dual linear feeds. Each polarization within the dual linear feed is excited by a pair of linear launcher arms fed with a 0°-180° hybrid balun. The proposed CPDRA design does not require the 0°-180° hybrid baluns or 0°-90° hybrid for achieving CP operation. These hybrids will increase the antennas size, weight, cost, and reduce operational bandwidth. A design technique has been developed for an UWB multilayer dielectric waveguide used in a CPDRA antenna. This design technique uses near-field Electric field data from inside the waveguide, in conjunction with a genetic algorithm optimization to yield a wideband waveguide with a near field amplitude distribution that scales with frequency. A multilayered dielectric waveguide presents many fabrication challenges. The thermal expansion rates, moisture absorption rates, and vibration properties differ within the various dielectric materials used. Therefore, the development of a wideband waveguide using one material with a low dielectric constant would be advantages since 3-D printing technology can be utilized. In this dissertation novel TE01 and TM01 mode suppressors have been developed using only a single dielectric material.
Modeling and analysis of the DSS-14 antenna control system
NASA Technical Reports Server (NTRS)
Gawronski, W.; Bartos, R.
1996-01-01
An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.
A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain
NASA Astrophysics Data System (ADS)
Shuai, Chen-yang; Wang, Guang-ming
2017-12-01
A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.
Circular Microstrip Antenna with Fractal Slots for Multiband Applications
NASA Astrophysics Data System (ADS)
Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet
2017-10-01
In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.
Detail of monopole antenna element (right) an d25' highband reflector ...
Detail of monopole antenna element (right) an d25' high-band reflector screen poles (left), view facing northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Samsuzzaman, M.; Islam, M. T.; Arshad, Haslina; Mandeep, J. S.; Misran, N.
2014-01-01
Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink. PMID:24982943
Highly efficient multifunctional metasurface for high-gain lens antenna application
NASA Astrophysics Data System (ADS)
Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing
2017-07-01
In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.
Foliage Penetration Radar: History and Developed Technology
1974-05-01
26 M-FOPEN Antenna Mast with Delta- Loop Antennas 44 27 AB-577/GRC Antenna Mast Used to Extend the Range of the Man-Portable Radar 45 28 Base Station...Ground Control Unit 47 29 Base Station Tov.er with Delta- Loop Antennas 48 30 Test Configuration for the AN/fPS-5 Comparison Test and Tactical Exercise...00 UNDERGROW 1H TRANSMTTTING ANTENN . HEIG IT: 2 m 5(6- 13 m ) \\\\7 \\ Seo \\................ $A1 U, -< o\\ 31 I~ ~ A ,M\\;’ I10 31 ’•...GJ, FIGURE 3
Jacobsen, Svein; Rolfsnes, Hans Olav; Stauffer, Paul R
2005-02-01
The radiation characteristics and mode of operation of single-arm, groundplane backed, Archimedean spiral antennas are investigated by means of conformal finite difference time domain numerical analysis. It is shown that this antenna type may be categorized as a well-matched, broadband, circularly polarized traveling wave structure that can be fed directly by nonbalanced coaxial networks. The study further concentrates on relevant design and description features parameterized in terms of measures like radiation efficiency, sensing depth, directivity, and axial ratio of complementary polarizations. We document that an antenna of only 30-mm transverse size produces circularly polarized waves in a two-octave frequency span (2-8 GHz) with acceptable radiation efficiency (76%-94%) when loaded by muscle-like tissue.
Wireless OAM transmission system based on elliptical microstrip patch antenna.
Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming
2016-05-30
The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.
NASA Astrophysics Data System (ADS)
Mize, Johnnie E.
1988-03-01
A computer program is presented which calculates power density in the Fresnel region of circular parabolic reflector antennas. The aperture illumination model is the one-parameter circular distribution developed by Hansen. The program is applicable to the analysis of electrically large, center-fed (or Cassegrain) paraboloids with linearly polarized feeds. The scalar Kirchoff diffraction integral is solved numerically by Romberg integration for points both on and perpendicular to the antenna boresight. Axial results cannot be directly compared to any others obtained with this illumination model, but they are consistent with what is expected in the Fresnel region where a quadratic must be added to the linear phase term of the integral expression. Graphical results are presented for uniform illumination and for cases where the first sidelobe ratio is 20, 25, 30, and 35 dB.
Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1976-01-01
Antenna radiation patterns of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative wave amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler wave regime. The boundary effects are assumed to be negligible even for many farfield patterns. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna patterns along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation pattern.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.
1991-01-01
The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.
Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy
2016-01-01
Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361
2014-01-01
SYMBOLS Acronym Definition SPP Surface Plasmon Polaritons RHC Right-Hand Circular LHC Left-Hand Circular FIB Focused Ion Beam RHS Right-Handed Spiral CCD Charge-Coupled Detector FWHM Full Width at Half Maximum
Multibeam antenna study, phase 1
NASA Technical Reports Server (NTRS)
Bellamy, J. L.
1972-01-01
A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.
On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms
NASA Technical Reports Server (NTRS)
Rengarajan, S. R.; Rahmat-Samii, Y.
2002-01-01
In many modern communication applications there is a need for simple circularly polarized antennas for hemispherical coverage with good axial ratio or low value of cross polarization. We revisited the crooked wire antenna because of its simplicity. This paper presents results of our investigation on the crooked wire antennas and other elements.
NASA Astrophysics Data System (ADS)
Babakhani, Behrouz
Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency agility (1.17 GHz to 1.58 GHz), full polarization reconfiguration was added to the design by controlling ports excitation of circular patch using RF switches (vertical linear, horizontal linear, right-handed circular polarization (RHCP) and left-handed circular polarization (LHCP)). This deign maintains good gain and radiation efficiency over the tunable range as well as acceptable co-polarization and cross-polarization separation for different polarizations. Since many communications applications require beam steering ability, in our third design, we designed and developed a linear phased array antenna using a modified version of our frequency agile polarization reconfigurable antenna for beam steering applications. This design offers wide frequency agility (1.50 GHz to 2.40 GHz), full polarization reconfiguration (vertical linear, horizontal linear, LHCP and RHCP) as well as beam steering of +/-52° and +/-28° at 1.5 GHz and 2.4 GHz, respectively. In this 1x4 array, the excitation magnitude and phase of each element was controlled by an analog beamforming feed network (BFN) for beam steering purposes. The required excitation for each element to steer the beam toward a desired location was calculated using projection matrix method (PMM) which uses measured active element pattern (AEP) as its input. This array antenna performance for frequency agility, radiation quality for each polarization and beam steering capability was obtained in the acceptable range. In the last design, the full spherical dual null steering capability of a triple mode circular microstrip patch antenna was investigated. By combining the radiation patterns of three individual modes of microstrip circular patch antenna, two nulls have been generated. These nulls can be repositioned in the upper hemisphere by controlling excitation ratio of each mode. The modes excitation ratio to steer the nulls toward the desired positions was calculated using a derivative free hybrid optimization method. This optimization method uses particle swarm optimization (PSO) combined with pattern search (PS) to find the optimum modes excitation ratio which minimizes the received power at the null positions. The calculated coefficients were applied to the multimode antenna using an analog BFN. This design shows an independent dual null steering with null depth of around 20 dB. Discussion about the proposed antennas included detailed theoretical analysis, numerical simulation and optimizations, beam forming and null steering algorithms, fabrication of the antennas and its control/beamforming feed networks along with the associated bias networks, microcontroller units, and finally its characterization (impedance matching, gain and 2D and 3D radiation patterns). The research work was performed at the Antenna and Microwave Lab (AML) which has the required resources including full wave analysis tools, PCB milling machine, surface mount component soldering station, vector network analyzers, and far-field/spherical near-field radiation pattern measurement system.
Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial
NASA Astrophysics Data System (ADS)
Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun
2015-12-01
Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.
A new design of an S/X dual band circular slot antenna for radar applications.
Ghnimi, Said; Wali, Rawia; Gharsallh, Ali; Razban, Tchanguiz
2013-01-01
A novel design of dual-band slot antenna with a circular patch for radar applications is presented and studied. It is fed by a micro-strip line and built on a FR-4 substrate with a whole size of 18 x 30 mm2. A dual band printed antenna is created by introducing slots on the radiating element. By this, two bandwidth, covering C and X band, are achieved. In order to obtain a good fundamental antenna design, the initial studies were carried out theoretically, using CST Microwave Studio simulation software. In this case, the frequency range at return loss < 10 dB is 5.24 - 6.16 GHz for low frequency and is 7.9 -11.7 GHz for high frequency. In addition, the proposed antenna has good radiation characteristics and stable gains over the whole operating bands. A prototype of antenna is fabricated and tested. Experimental data show good agreement between simulated and measured results.
Planar microstrip YAGI antenna array
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1993-01-01
A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.
Optimum concentric circular array antenna with high gain and side lobe reduction at 5.8 GHz
NASA Astrophysics Data System (ADS)
Zaid, Mohammed; Rafiqul Islam, Md; Habaebi, Mohamed H.; Zahirul Alam, AHM; Abdullah, Khaizuran
2017-11-01
The significance of high gain directional antennas stems from the need to cope up with the everyday progressing wireless communication systems. Due to low gain of the widely used microstrip antenna, combining multiple antennas in proper geometry increases the gain with good directive property. Over other array forms, this paper uses concentric circular array configuration for its compact structure and inherent symmetry in azimuth. This proposed array is composed of 9 elements on FR-4 substrate, which is designed for WLAN applications at 5.8GHz. Antenna Magus software is used for synthesis, while CST software is used for optimization. The proposed array is designed with optimum inter-element spacing and number of elements achieving a high directional gain of 15.7 dB compared to 14.2 dB of available literature, with a high reduction in side lobe level of -17.6 dB.
Development of Novel Integrated Antennas for CubeSats
NASA Technical Reports Server (NTRS)
Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew
2015-01-01
The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.
UHF Antenna Design for AFIT Random Noise Radar
2012-03-01
relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas Electric antennas (e.g. dipoles and monopoles ) Magnetic antennas (e.g. loops) Electrically small antennas
User's manual for semi-circular compact range reflector code
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1986-01-01
A computer code was developed to analyze a semi-circular paraboloidal reflector antenna with a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the antenna or its individual components at a given distance from the center of the paraboloid. Thus, it is very effective in computing the size of the sweet spot for RCS or antenna measurement. The operation of the code is described. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.
Detail of 25' highband reflector screen poles with monopole antenna ...
Detail of 25' high-band reflector screen poles with monopole antenna elements behind, note the metal sleeve bases of the reflector screen poles and the guy wire anchors from the dipole antenna elements (left foreground), view facing north northwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.
Experimental evidence for circular inference in schizophrenia
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie
2017-01-01
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to ‘see what we expect' (through descending loops), to ‘expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ. PMID:28139642
Experimental evidence for circular inference in schizophrenia.
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie
2017-01-31
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to 'see what we expect' (through descending loops), to 'expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.
Experimental evidence for circular inference in schizophrenia
NASA Astrophysics Data System (ADS)
Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie
2017-01-01
Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.
Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna
NASA Astrophysics Data System (ADS)
Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin
2017-12-01
In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11-10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.
Vehicle antenna development for mobile satellite applications
NASA Technical Reports Server (NTRS)
Woo, K.
1988-01-01
The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
An investigation of pre-launch and in-flight STS range safety radio signal degradation and dropout
NASA Technical Reports Server (NTRS)
Mcdonald, Malcolm W.
1991-01-01
The range safety system (RSS) transmitters operate at a frequency of 416.500 MHz. The transmitting antennas transmit left circularly polarized waves, and the shuttle range safety system (SRSS) receiving antennas onboard the shuttle vehicle receive left circular polarization. Preliminary explanations are proposed for many of the observed fluctuations in signal levels. It is recommended that experiments and further investigation be performed to test the validity of certain of these explanations.
NASA Astrophysics Data System (ADS)
Ishii, Masanori; Kim, Jeong Hwan; Ji, Yu; Cho, Chi Hyun; Zhang, Tim
2018-01-01
The supplementary comparison report APMP.RF-S21.F describes the comparison of loop antennas, which was conducted between April 2013 and January 2014. The two comparison artefacts were well-characterised active loop antennas of diameter 30 cm and 60 cm respectively, which typically operate in a frequency range from 9 kHz to 30 MHz. These antennas represent the main groups of antennas which are used around the world for EMC measurements in the frequency range below 30 MHz. There are several well-known methods for calibrating the antenna factor of these devices. The calibration systems used in this comparison for the loop antennas employed the standard magnetic field method or the three-antenna method. Despite the limitations of the algorithm, which we used to derive the reference value for each case (particularly for small samples), the actual calculated reference values seem to be reasonable. As a result, the agreement between each participant was very good in all cases. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15
NASA Technical Reports Server (NTRS)
Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.
1986-01-01
The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.
Antenna dimensions of synthetic aperture radar systems on satellites
NASA Technical Reports Server (NTRS)
Richter, K. R.
1973-01-01
Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.
Imaging and modeling new VETEM data
Wright, David L.; Smith, David V.; Abraham, Jared D.; Hutton, Raymond S.; Bond, E. Kent; Cui, Tie Jun; Aydiner, Alaeddin A.; Chew, Weng Cho
2000-01-01
In previously reported work (Wright and others, 2000) we found that the very early time electromagnetic (VETEM) prototype system produced data from which high resolution images of a buried former foundry site at the Denver Federal Center were made. The soil covering the site is about 30 mS/m conductivity, and is thus relatively unfavorable for ground penetrating radar (GPR) imaging. We have surveyed portions of this site again with new electric field dipole antennas and a new receiver designed for these antennas. Comparisons of the images produced using the loop antennas to those produced using the electric field dipole antennas illustrate that for this application the loop antennas produced more useful images. The larger man-made structures can be seen more clearly because they are not masked by dispersion and/or smaller scale variations as with the electric field dipole antennas. The VETEM system now contains an array of antennas with appropriate transmitters and receivers and can be operated as a low frequency time domain GPR or as a high frequency time domain electromagnetic (EM) system with several possible antenna spacings and polarizations. We plan to examine additional configurations. Numerical modeling of the perpendicular loop antenna configuration has been done and depth estimates produced. We conclude that, as with other GPR and time domain EM systems, the best choice of operating parameters depends on the application and the environment, but the inherent flexibility of the VETEM system allows a wide range of options.
Detail of the base of dipole antenna element with graduated ...
Detail of the base of dipole antenna element with graduated pole, note the arms supporting the vertical wires away from the mast and the metal mesh covering the concrete base, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Properties of Silica-Based Aerogel Substrates and Application to C-Band Circular Patch Antenna
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Mohamed; Haraz, Osama M.; Ashraf, Nadeem; Zia, Muhammad Fakhar; Khaled, Usama; Elsahfiey, Ibrahim; Alshebeili, Saleh; Sebak, Abdel Razik
2018-03-01
Silica aerogel is a lightweight and low-permittivity dielectric material that possesses attractive features for use as an antenna substrate. In this paper, we characterize the radio frequency and microwave dielectric permittivity properties of substrates composed of silica aerogel encapsulated in polymer aerogel in the frequency range from 10 MHz to 8.5 GHz. Characterized silica-based aerogel substrates show relative permittivity values varying between 1.055 and 1.25 and loss tangent values ranging from 5.08 × 10-4 to 0.0206. Silica-based aerogel substrates thus have the potential of use in designing antennas with high gain and large bandwidth. Validation is presented by characterizing the performance of a manufactured C-band circular patch antenna on silica-based aerogel substrate. The performance is also compared to a design that uses Rogers Duroid RT5880 substrate. The results reveal that the silica aerogel substrate antenna at 7.2 GHz provides 1.5 dB increase in gain, 88% enhancement in bandwidth and 68.5% reduction in mass, in comparison with the antenna on RT5880 substrate.
NASA Astrophysics Data System (ADS)
Koyadan Koroth, Ajith; Bhattacharya, Amitabha
2017-04-01
Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve the forward gain. This antenna had the same impedance bandwidth of 10:1 while pattern bandwidth has been raised to 7:1. In antenna 3, a loop loaded bowtie antenna has been designed. This antenna do not employ any kind of resistive loading, yet achieves an impedance bandwidth of 11:1 and also a usable bandwidth of 11:1. The antenna 4 employs concentric offset loops which acts as directors to improve the directivity. This antenna achieved an impedance bandwidth and a pattern bandwidth of 13:1. All the antennas have a maximum size of about 0.3λ at lowest operating frequency. An experimental stepped frequency type GPR has been constructed to study the suitability of the fabricated antennas in detecting buried targets. Four experiments have been conducted viz. 1.) To detect a metallic pipe of 1in diameter, 2.) To detect a metallic pipe of 2in diameter 3.) To detect dry bamboo, 3.) To detect rebar in concrete. The detectability and imaging capability of GPR has been found to be improving from antenna 1 to 4.
Wearable Wireless Telemetry System for Implantable BioMEMS Sensors
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.
2008-01-01
Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.
NASA Astrophysics Data System (ADS)
Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.
2016-03-01
This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733
High Performance Circularly Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Bondyopadhyay, Probir K. (Inventor)
1997-01-01
A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.
NASA Astrophysics Data System (ADS)
Yaw, D. F.
1984-09-01
The general design and performance characteristics of transmit and receive antennas that are currently used in electronic warfare systems are reviewed. Among transmit antennas, three-to-one bandwidth, asymmetric-beam, and circularly polarized horns are discussed, as are extremely broadband monopoles and spiral antennas. In a discussion of receive antennas, attention is given to flat and conical spirals, including cavity-backed flat spirals operating over the 2.5-18 GHz range; log periodic dipoles; and biconical horns. Finally, the design configurations and performance of interferometer direction-finding systems are briefly discussed.
A comparative study of corrugated horn design by evolutionary techniques
NASA Technical Reports Server (NTRS)
Hoorfar, A.
2003-01-01
Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.
A 1 GHz Oscillator-Type Active Antenna
NASA Technical Reports Server (NTRS)
Jordan, Jennifer L.; Scardelletti, Maximilian; Ponchak, George E.
2008-01-01
Wireless sensors are desired for monitoring aircraft engines, automotive engines, industrial machinery, and many other applications. The most important requirement of sensors is that they do not interfere with the environment that they are monitoring. Therefore, wireless sensors must be small, which demands a high level of integration. Sensors that modulate an oscillator active antenna have advantages of small size, high level of integration, and lower packaging cost. Several types of oscillator active antennas have been reported. Ip et al. demonstrated a CPW line fed patch antenna with a feedback loop [1]. No degradation in performance was noticed without a ground plane. A GaAs FET was used in an amplifier/oscillator-based active antenna [2]. An oscillator based on a Cree SiC transistor was designed and characterized in [3]. This paper reports the integration of the SiC Clapp oscillator to a slotline loop antenna.
NASA Astrophysics Data System (ADS)
Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2018-03-01
This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.
Microwave scanning beam approach and landing system phased array antenna.
DOT National Transportation Integrated Search
1971-09-01
The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...
Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system
Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2000-01-01
In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.
Reindel, John
1990-01-01
A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.
Moment Method Solutions for Radiation and Scattering from Arbitrarily Shaped Surfaces.
1981-02-01
IBM -370/168. A. Monopole Antenna on a Disk The study of the monopole antenna on a circular disk is of inter- est since it leads to the understanding...34 . . ._"-", - CHAPTER V ANALYSIS OF MICRUSI- itP ANTL-NNAS This chapter will present an analysis of the microstrip antenna. Surface-patch dipole modes are used to
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.
2018-04-01
The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.
Brace, Christopher L; Laeseke, Paul F; Sampson, Lisa A; Frey, Tina M; van der Weide, Daniel W; Lee, Fred T
2007-07-01
To prospectively investigate the ability of a single generator to power multiple small-diameter antennas and create large zones of ablation in an in vivo swine liver model. Thirteen female domestic swine (mean weight, 70 kg) were used for the study as approved by the animal care and use committee. A single generator was used to simultaneously power three triaxial antennas at 55 W per antenna for 10 minutes in three groups: a control group where antennas were spaced to eliminate ablation zone overlap (n=6; 18 individual zones of ablation) and experimental groups where antennas were spaced 2.5 cm (n=7) or 3.0 cm (n=5) apart. Animals were euthanized after ablation, and ablation zones were sectioned and measured. A mixed linear model was used to test for differences in size and circularity among groups. Mean (+/-standard deviation) cross-sectional areas of multiple-antenna zones of ablation at 2.5- and 3.0-cm spacing (26.6 cm(2) +/- 9.7 and 32.2 cm(2) +/- 8.1, respectively) were significantly larger than individual ablation zones created with single antennas (6.76 cm(2) +/- 2.8, P<.001) and were 31% (2.5-cm spacing group: multiple antenna mean area, 26.6 cm(2); 3 x single antenna mean area, 20.28 cm(2)) to 59% (3.0-cm spacing group: multiple antenna mean area, 32.2 cm(2); 3 x single antenna mean area, 20.28 cm(2)) larger than 3 times the mean area of the single-antenna zones. Zones of ablation were found to be very circular, and vessels as large as 1.1 cm were completely coagulated with multiple antennas. A single generator may effectively deliver microwave power to multiple antennas. Large volumes of tissue may be ablated and large vessels coagulated with multiple-antenna ablation in the same time as single-antenna ablation. (c) RSNA, 2007.
Modeling of the EAST ICRF antenna with ICANT Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Chengming; Zhao Yanping; Colas, L.
2007-09-28
A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.
Modeling of the EAST ICRF antenna with ICANT Code
NASA Astrophysics Data System (ADS)
Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.
2007-09-01
A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.
Low-loss off-axis feeds for symmetric dual-reflector antennas
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Galindo-Israel, V.; Imbriale, W.
1986-01-01
Circularly symmetric, dual reflector, high gain antenna systems often require feeds placed off the system's axis because of the need for multiple feeds to use the reflector antenna. Also, the constraint requiring the hyperboloid or shaped subreflector to remain circularly symmetric is sometimes added. In a Cassegrainian system, the subreflector and feed may be rotated off axis around the paraboloid focus and retain main reflector focusing. However, substantial spillover results in considerable noise with a high gain/low noise temperature system. In a shaped system, the tilt of the shaped subreflector and feed together results in substantial defocusing as well as spillover noise. If the subreflector is tilted approximately one-half the angle of the feed tilt in either the Cassegrainian or the dual shaped reflector antenna, it is found that spillover and noise are substantially reduced with tolerable defocusing. An extensive numerical analysis of these effects was conducted to determine the characteristics of a planned 70-meter, dual shaped reflector versus Cassegrainian antenna and to gain some understanding of the cause of the observed effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jangid, K. G.; Kulhar, V. S.; Choudhary, N.
This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiationmore » properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.« less
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.
1992-01-01
A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.
Estimating Effects of Multipath Propagation on GPS Signals
NASA Technical Reports Server (NTRS)
Byun, Sung; Hajj, George; Young, Lawrence
2005-01-01
Multipath Simulator Taking into Account Reflection and Diffraction (MUSTARD) is a computer program that simulates effects of multipath propagation on received Global Positioning System (GPS) signals. MUSTARD is a very efficient means of estimating multipath-induced position and phase errors as functions of time, given the positions and orientations of GPS satellites, the GPS receiver, and any structures near the receiver as functions of time. MUSTARD traces each signal from a GPS satellite to the receiver, accounting for all possible paths the signal can take, including all paths that include reflection and/or diffraction from surfaces of structures near the receiver and on the satellite. Reflection and diffraction are modeled by use of the geometrical theory of diffraction. The multipath signals are added to the direct signal after accounting for the gain of the receiving antenna. Then, in a simulation of a delay-lock tracking loop in the receiver, the multipath-induced range and phase errors as measured by the receiver are estimated. All of these computations are performed for both right circular polarization and left circular polarization of both the L1 (1.57542-GHz) and L2 (1.2276-GHz) GPS signals.
NASA Astrophysics Data System (ADS)
Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto
2016-07-01
This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.
Modeling and control for vibration suppression of a flexible smart structure
NASA Technical Reports Server (NTRS)
Dosch, J.; Leo, D.; Inman, D.
1993-01-01
Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs which constitutes a smart antenna in the sense that the actuator and sensors are an integral part of the structure. The antenna exhibits closely space and repeated modes, thus multi-input multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits mode localization phenomenon and contains post buckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum order model of the antenna is synthesized from identified single-input single-output (SISO) transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback (PPF) controller that increases damping in all of the modes in the targeted frequency range. Due to the accuracy of the open loop model of the antenna, the closed loop response predicted by the identified model correlates well wtih experimental results.
Wilson loops in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Pestun, Vasily
This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.
An adaptive array antenna for mobile satellite communications
NASA Technical Reports Server (NTRS)
Milne, Robert
1990-01-01
The design of an adaptive array antenna for land vehicle operation and its performance in an operational satellite system is described. Linear and circularly polarized antenna designs are presented. The acquisition and tracking operation of a satellite is described and the effect on the communications signal is discussed. A number of system requirements are examined that have a major impact on the antenna design. The results of environmental, power handling, and RFI testing are presented and potential problems are identified.
Multilayer Patch Antenna Surrounded by a Metallic Wall
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Huang, John
2003-01-01
A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.
A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material
NASA Technical Reports Server (NTRS)
Lee, C. S.; Lee, S. W.; Justice, D. W.
1986-01-01
A circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. This device is cheaper and lighter in weight than the corrugated one.
NASA Astrophysics Data System (ADS)
Maimaiti, Maimaitirebike
Inkjet printing is an attractive patterning technology that has received tremendous interest as a mass fabrication method for a variety of electronic devices due to its manufacturing exibility and low-cost feature. However, the printing facilities that are being used, especially the inkjet printer, are very expensive. This thesis introduces an extremely cost-friendly inkjet printing method using a printer that costs less than $100. In order to verify its reliability, linearly and circularly polarized (CPd) planar and conformal microstrip antennas were fabricated using this printing method, and their measurement results were compared with copper microstrip antennas. The result shows that the printed microstrip antennas have similar performances to those of the copper antennas except for lower efficiency. The effects of the conductivity and thickness of the ink layer on the antenna properties were studied, and it is found that the conductivity is the main factor affecting the radiation efficiency, though thicker ink yields more effective antennas. This thesis also presents the detailed antenna design for a sub-payload. The sub-payload is a cylindrical structure with a diameter of six inches and a height of four inches. It has four booms coming out from the surface, which are used to measure the variations of the energy flow into the upper atmosphere in and around the aurora. The sub-payload has two types of antennas: linearly polarized (LPd) S-band antennas and right-hand circularly polarized (RHCPd) GPS antennas. Each type of antenna has various requirements to be fully functional for specific research tasks. The thesis includes the design methods of each type of antenna, challenges that were confronted, and the possible solutions that were proposed. As a practical application, the inkjet printing method was conveniently applied in validating some of the antenna designs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... craft designed for traveling on water receiving from and transmitting to fixed-satellite space stations... an electronic form using Internet or World Wide Web on-line filing forms. Equivalent diameter. When... diameter of the antenna's main reflector. When non-reflector or non-circular aperture antennas are employed...
Code of Federal Regulations, 2012 CFR
2012-10-01
... craft designed for traveling on water receiving from and transmitting to fixed-satellite space stations... an electronic form using Internet or World Wide Web on-line filing forms. Equivalent diameter. When... diameter of the antenna's main reflector. When non-reflector or non-circular aperture antennas are employed...
Code of Federal Regulations, 2010 CFR
2010-10-01
... craft designed for traveling on water receiving from and transmitting to fixed-satellite space stations... an electronic form using Internet or World Wide Web on-line filing forms. Equivalent diameter. When... diameter of the antenna's main reflector. When non-reflector or non-circular aperture antennas are employed...
A circularly polarized Ka-band stacked patch antenna with increased gain
NASA Technical Reports Server (NTRS)
Zawadzki, M.
2002-01-01
Stacking layers of microstrip patches is a technique often used to improve the bandwidth of a patch antenna, but rarely used to increase its gain. The work presented here scales the three-layer S-band work done in to Ka-band.
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
A Circular Polarizer with Beamforming Feature Based on Frequency Selective Surfaces
NASA Astrophysics Data System (ADS)
Yin, Jia Yuan; Wan, Xiang; Ren, Jian; Cui, Tie Jun
2017-01-01
We propose a circular polarizer with beamforming features based on frequency selective surface (FSS), in which a modified anchor-shaped unit cell is used to reach the circular polarizer function. The beamforming characteristic is realized by a particular design of the unit-phase distribution, which is obtained by varying the scale of the unit cell. Instead of using plane waves, a horn antenna is designed to feed the phase-variant FSS. The proposed two-layer FSS is fabricated and measured to verify the design. The measured results show that the proposed structure can convert the linearly polarized waves to circularly polarized waves. Compared with the feeding horn antenna, the transmitted beam of the FSS-added horn is 14.43° broader in one direction, while 3.77° narrower in the orthogonal direction. To our best knowledge, this is the first time to realize circular polarizer with beamforming as the extra function based on FSS, which is promising in satellite and communication systems for potential applications due to its simple design and good performance.
The Effects of Soviet Army Communications Jamming on the AIM Division Signal Battalion.
1980-06-06
Mass ". Antenna Antenn Figure 2-16 This explains why tactical line-of-site communication systems have installation difficulties when deployed in rugged...vertically polarized loop and adcock type antennas. While these antennas are especially reliable when identifing the azimuth of vertically polarized signal
Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern
NASA Technical Reports Server (NTRS)
Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio
2012-01-01
The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard bicone fs aperture increases, the gain increase becomes less until one reaches a point of diminishing returns. In order to overcome this problem, a shaped aperture is used. Rather than the standard linear bicone, a parabolic bicone was found to reduce the amount of phase variation as the aperture increases. In fact, the phase variation is half of the standard linear bicone, which leads to higher gain with smaller aperture sizes. The antenna pattern radiated from this parabolic-shaped bicone antenna has fairly high side lobes. The Juno project requested that these sidelobes be minimized. This was accomplished by adding corrugations to the parabolic shape. This corrugated-shaped bicone antenna had reasonably low sidelobes, and the appropriate gain and beamwidth to meet project requirements.
Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios
NASA Technical Reports Server (NTRS)
Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.
2017-01-01
An almost square patch and a square patch with corner truncation for circularly polarized (CP) and a stacked CP square patch are researched and developed at X-band for cognitive devices. A draft set of presentation charts are attached.
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1977-01-01
Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.
Live Site Demonstrations - Massachusetts Military Reservation
2014-09-26
from the ESTCP. It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside...It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside the Z (bottom...met if the modeled X, Y locations of the IVS seed items are within 15 centimeters (cm) of the actual locations, if the depth (Z direction ) is within
Application of adaptive antenna techniques to future commercial satellite communication
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
Effects of finite ground plane on the radiation characteristics of a circular patch antenna
NASA Astrophysics Data System (ADS)
Bhattacharyya, Arun K.
1990-02-01
An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.
Microwave switching power divider. [antenna feeds
NASA Technical Reports Server (NTRS)
Stockton, R. J.; Johnson, R. W. (Inventor)
1981-01-01
A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-band (26 GHz) 2x2 array consisting of square-shaped microstrip patch antenna elements with two truncated corners for circular polarization (CP) is presented. The array is being developed for satellite communications.
A Rotating Source Polarization Measurement Technique Using Two Circularly Polarized Antennas
2016-07-15
antenna with high polarization purity. The axial ratio of the polarization ellipse was determined from the ripple in the voltage received by the...is shown in Fig. 6. The linear phase progression has been removed from the phase measurements to show a ripple . The corresponding polarization ratio
Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial
NASA Astrophysics Data System (ADS)
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-03-01
This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.
Optical antenna gain. I - Transmitting antennas
NASA Technical Reports Server (NTRS)
Klein, B. J.; Degnan, J. J.
1974-01-01
The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.
Roll plane analysis of on-aircraft antennas
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Marhefka, R. J.; Byu, C. L.
1974-01-01
Roll plane radiation patterns of on-aircraft antennas are analyzed using high frequency solutions. Aircraft-antenna pattern performance in which the aircraft is modelled in its most basic form is presented. The fuselage is assumed to be a perfectly conducting elliptic cylinder with the antennas mounted near the top or bottom. The wings are simulated by arbitrarily many sided flat plates and the engines by circular cylinders. The patterns in each case are verified by measured results taken on simple models as well as scale models of actual aircraft.
Analysis of a microstrip reflectarray antenna for microspacecraft applications
NASA Technical Reports Server (NTRS)
Huang, J.
1995-01-01
A microstrip reflectarray is a flat reflector antenna that can be mounted conformally onto a spacecraft's outside structure without consuming a significant amount of spacecraft volume and mass. For large apertures (2 m or larger), the antenna's reflecting surface, being flat, can be more easily and reliably deployed than a curved parabolic reflector. This article presents the study results on a microstrip reflect-array with circular polarization. Its efficiency and bandwidth characteristics are analyzed. Numerous advantages of this antenna system are discussed. Three new concepts using this microstrip reflectarray are also proposed.
Antennas in matter: Fundamentals, theory, and applications
NASA Technical Reports Server (NTRS)
King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.
1981-01-01
The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reflector. When non-reflector or non-circular aperture antennas are employed, an equivalent diameter can be.... Earth Station on Vessel (“ESV”). An ESV is an earth station onboard a craft designed for traveling on... Internet or World Wide Web on-line filing forms. Equivalent diameter. When circular aperture reflector...
NASA Technical Reports Server (NTRS)
Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland
1994-01-01
A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.
The Digital Motion Control System for the Submillimeter Array Antennas
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.
2013-09-01
We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.
NASA Astrophysics Data System (ADS)
Hirtl, Rene; Schmid, Gernot
2013-09-01
A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.
NASA Astrophysics Data System (ADS)
Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru
2015-02-01
Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.
1993-01-01
This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between measurements and calculations are truly impressive. Another unique aspect of this work is the incorporation of the FFT as part of the BiCG solver by overlaying a structured triangular mesh over the unstructured mesh. The implementation of this BiCG-FFT solution algorithm is important in minimizing the CPU and storage requirements. This final report will be submitted for publication in a refereed journal.
Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops
NASA Astrophysics Data System (ADS)
Pestun, Vasily
2012-07-01
We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.
Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Hornby, Gregory S.; Rodriguez-Arroyo, Adan; Linden, Derek S.; Kraus, William F.; Seufert, Stephen E.
2003-01-01
We present an evolved X-band antenna design and flight prototype currently on schedule to be deployed on NASA s Space Technology 5 spacecraft in 2004. The mission consists of three small satellites that wall take science measurements in Earth s magnetosphere. The antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth. Two genetic algorithms were used: one allowed branching an the antenna arms and the other did not. The highest performance antennas from both algorithms were fabricated and tested. A handdesigned antenna was produced by the contractor responsible for the design and build of the mission antennas. The hand-designed antenna is a quadrifilar helix, and we present performance data for comparison to the evolved antennas. As of this writing, one of our evolved antenna prototypes is undergoing flight qualification testing. If successful, the resulting antenna would represent the first evolved hardware in space, and the first deployed evolved antenna.
Joint Services Electronics Program
NASA Astrophysics Data System (ADS)
Tinkham, Michael
1989-07-01
Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.
Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L
2014-10-01
To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Level area surrounding Facility 314 showing the planted ring that ...
Level area surrounding Facility 314 showing the planted ring that contains the radial ground wires, note the ring beneath the antenna circles is cleared of vegetation and covered with gravel, view facing southwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
UHF coplanar-slot antenna for aircraft-to-satellite data communications
NASA Technical Reports Server (NTRS)
Myhre, R. W.
1979-01-01
A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.
Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads
NASA Astrophysics Data System (ADS)
Kotzev, Miroslav; Bi, Xiaotang; Kreitlow, Matthias; Gronwald, Frank
2017-09-01
In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.
NASA Technical Reports Server (NTRS)
Laube, Samuel J. P.
1987-01-01
Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.
Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming
2018-03-01
In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.
2006-07-01
technical approach overview .............................................................................. 4 Figure 2 Magnetic field lines around a loop ...11 Figure 10 HMF (Bx) and loop (Bz) antenna comparison .............................................................. 12...Figure 26 Top view of one proposed receiver loop arrangement. ................................................ 25 Figure 27 Receiver response modeling
2006-07-01
technical approach overview .............................................................................. 4 Figure 2 Magnetic field lines around a loop ...11 Figure 10 HMF (Bx) and loop (Bz) antenna comparison .............................................................. 12 Figure...26 Top view of one proposed receiver loop arrangement. ................................................ 25 Figure 27 Receiver response modeling
Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.
Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of relevance to loop antennas in space.« less
Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.
2018-03-01
Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.
Adaptive antenna arrays for satellite communications: Design and testing
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Swarner, W. G.; Walton, E. K.
1985-01-01
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.
Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2018-01-19
A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm 2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
Ka-band monopulse antenna-pointing systems analysis and simulation
NASA Technical Reports Server (NTRS)
Lo, V. Y.
1996-01-01
NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
RFID antenna design for circular polarization in UHF band
NASA Astrophysics Data System (ADS)
Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel
2017-05-01
A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.
A multifunctional solar panel antenna for cube satellites
NASA Astrophysics Data System (ADS)
Fawole, Olutosin C.
The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a stripline, resonate at a frequency due to their original lengths, and also resonate at a lower frequency due to mutual coupling between the slots, leading to a dual-band operation. The multifunctional antenna designs presented are harmonizations and extensions of these two independent works. In the multifunctional antenna designs presented, multiple slots were etched on a 83 mm x 340 mm two-layer shallow cavity. The slots were laid out on the cavity such when the cavity was excited by a probe at a particular point, the differential radiation from the slots would combine in the far-field to yield Left-Handed Circular Polarization (LHCP). Furthermore, when the cavity was excited by another probe at an opposite point, the slots would produce Right-Handed Circular Polarization (RHCP). In addition, as forethought, these slots were laid out on the cavity such that some slots were close together enough to give Linearly Polarized (LP) dual-band operation when fed with a stripline. This antenna was designed and optimized via computer simulations, fabricated using Printed Circuit Board (PCB) technology, and characterized using a Vector Network Analyzer (VNA) and NSI Far Field Systems.
Detail of 25' highband reflector screen pole showing the horizontal ...
Detail of 25' high-band reflector screen pole showing the horizontal wood beams and vertical wires hung from ceramic insulators, note the dipole antenna element and 94' low-band reflector screen poles in background, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Hirtl, Rene; Schmid, Gernot
2013-09-21
A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.
Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L
2009-09-01
To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.
X-Antenna: A graphical interface for antenna analysis codes
NASA Technical Reports Server (NTRS)
Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.
1995-01-01
This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.
NASA Astrophysics Data System (ADS)
Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.
1992-01-01
The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.
Adaptive antenna arrays for satellite communication
NASA Technical Reports Server (NTRS)
Gupta, Inder J.
1989-01-01
The feasibility of using adaptive antenna arrays to provide interference protection in satellite communications was studied. The feedback loops as well as the sample matric inversion (SMI) algorithm for weight control were studied. Appropriate modifications in the two were made to achieve the required interference suppression. An experimental system was built to test the modified feedback loops and the modified SMI algorithm. The performance of the experimental system was evaluated using bench generated signals and signals received from TVRO geosynchronous satellites. A summary of results is given. Some suggestions for future work are also presented.
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1994-01-01
A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.
A 32 GHz microstrip array antenna for microspacecraft application
NASA Technical Reports Server (NTRS)
Huang, J.
1994-01-01
JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.
NASA Technical Reports Server (NTRS)
Smyth, P.; Mellstrom, J.
1990-01-01
Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature.
NASA Astrophysics Data System (ADS)
Kim, Ilkyu
Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which makes it suitable for HPM systems. The PSO (Particle Swarm Optimization) technique is applied to the septum design to achieve a high performance antenna design. The electric field intensity above the septum is evaluated through the simulation and its properties are compared to simple half-plane scattering phenomena.
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Theoretical and experimental studies of reentry plasmas
NASA Technical Reports Server (NTRS)
Dunn, M. G.; Kang, S.
1973-01-01
A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.
IRCI-Free MIMO-OFDM SAR Using Circularly Shifted Zadoff-Chu Sequences
NASA Astrophysics Data System (ADS)
Cao, Yun-He; Xia, Xiang-Gen
2015-05-01
Cyclic prefix (CP) based MIMO-OFDM radar has been recently proposed for distributed transmit antennas, where there is no inter-range-cell interference (IRCI). It can collect full spatial diversity and each transmitter transmits signals with the same frequency band, i.e., the range resolution is not reduced. However, it needs to transmit multiple OFDM pulses consecutively to obtain range profiles for a single swath, which may be too long in time for a reasonable swath width. In this letter, we propose a CP based MIMO-OFDM synthetic aperture radar (SAR) system, where each transmitter transmits only a single OFDM pulse to obtain range profiles for a swath and has the same frequency band, thus the range resolution is not reduced. It is IRCI free and can collect the full spatial diversity if the transmit antennas are distributed. Our main idea is to use circularly shifted Zadoff-Chu sequences as the weighting coefficients in the OFDM pulses for different transmit antennas and apply spatial filters with multiple receive antennas to divide the whole swath into multiple subswaths, and then each subswath is reconstructed/imaged using our proposed IRCI free range reconstruction method.
NASA Astrophysics Data System (ADS)
Choi, Junil; Love, David J.; Bidigare, Patrick
2014-10-01
The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-07-29
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.
NASA Technical Reports Server (NTRS)
Kempel, Leo C.
1994-01-01
The Finite Element-Boundary Integral (FE-BI) technique was used to analyze the scattering and radiation properties of cavity-backed patch antennas recessed in a metallic groundplane. A program, CAVITY3D, was written and found to yield accurate results for large arrays without the usual high memory and computational demand associated with competing formulations. Recently, the FE-BI approach was extended to cavity-backed antennas recessed in an infinite, metallic circular cylinder. EXCALIBUR is a computer program written in the Radiation Laboratory of the University of Michigan which implements this formulation. This user manual gives a brief introduction to EXCALIBUR and some hints as to its proper use. As with all computational electromagnetics programs (especially finite element programs), skilled use and best performance are only obtained through experience. However, several important aspects of the program such as portability, geometry generation, interpretation of results, and custom modification are addressed.
In-plane omnidirectional magnetic field sensor based on Giant Magneto Impedance (GMI)
NASA Astrophysics Data System (ADS)
Díaz-Rubio, Ana; García-Miquel, Héctor; García-Chocano, Víctor Manuel
2017-12-01
In this work the design and characterization of an omnidirectional in-plane magnetic field sensor are presented. The sensor is based on the Giant Magneto Impedance (GMI) effect in glass-coated amorphous microwires of composition (Fe6Co94)72.5Si12.5B15. For the first time, a circular loop made with a microwire is used for giving omnidirectional response. In order to estimate the GMI response of the circular loop we have used a theoretical model of GMI, determining the GMI response as the sum of longitudinal sections with different angles of incidence. As a consequence of the circular loop, the GMI ratio of the sensor is reduced to 15% instead of 100% for the axial GMI response of a microwire. The sensor response has been experimentally verified and the GMI response of the circular loop has been studied as function of the magnetic field, driven current, and frequency. First, we have measured the GMI response of a longitudinal microwire for different angles of incidence, covering the full range between the tangential and perpendicular directions to the microwire axis. Then, using these results, we have experimentally verified the decomposition of a microwire with circular shape as longitudinal segments with different angles of incidence. Finally, we have designed a signal conditioning circuit for the omnidirectional magnetic field sensor. The response of the sensor has been studied as a function of the amplitude of the incident magnetic field.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... antenna connection to sever, rendering the ELT ineffective and severely impacting the performance of the... AAR-11-03: The antenna cable was severed from the ELT when the ELT slipped out of the hook and loop... NTSB ID WPR10FA273: The antenna cable was severed from the ELT when the ELT slipped out of the hook and...
Embedded Meta-Material Antennas
2009-01-31
influence of the overall capacitance . Based on the tunable SRRs, we designed a tunable loop antenna with SRRs and HPTs as tuning elements. In this case, we...are those of the authors) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas, new materials
Shinohara, S; Tanikawa, T; Motomura, T
2014-09-01
A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density ne were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n(e) up to ~5 × 10(12) cm(-3) was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.
A finite element-boundary integral method for cavities in a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.
More About Lens Antenna For Mobile/Satellite Communication
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.
1990-01-01
Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.
Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop
NASA Technical Reports Server (NTRS)
Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.
2001-01-01
Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.
Loop-the-Loop: An Easy Experiment, A Challenging Explanation
NASA Astrophysics Data System (ADS)
Asavapibhop, B.; Suwonjandee, N.
2010-07-01
A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.
ERIC Educational Resources Information Center
Stagl, Thomas W.; Singh, Jai P.
Written primarily to define the area of the earth covered by a narrow-beam antenna carried on a synchronous satellite in circular, near equatorial orbits, a computer program has been developed that computes the locus of intersection of a quadric cone and a sphere. The program, which outputs a list of the longitude and latitude coordinates of the…
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
NASA Technical Reports Server (NTRS)
Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.
1986-01-01
The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.
Development of Stiff and Extendible Electromagnetic Sensors for Space Missions
NASA Astrophysics Data System (ADS)
Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.
2010-05-01
We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.
Design of broadband single polarized antenna
NASA Astrophysics Data System (ADS)
Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd
2015-05-01
In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.
Thin conformal antenna array for microwave power conversions
NASA Technical Reports Server (NTRS)
Dickinson, R. M. (Inventor)
1978-01-01
A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.
Loop-the-Loop: Bringing Theory into Practice
ERIC Educational Resources Information Center
Suwonjandee, N.; Asavapibhop, B.
2012-01-01
During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…
Final results of the Resonance spacecraft calibration effort
NASA Astrophysics Data System (ADS)
Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.
2010-05-01
We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the antenna properties significantly. The antenna directions and lengths, represented by the "effective length vector" are altered by up to 4 degree in direction and 50% in length, for the quasi-static range. High frequency analyses (up to 40 MHz) illustrate massive antenna pattern changes beyond the quasi-static frequency limit of approximately 1.5 MHz. In addition we found that the magnetic loop sensors tremendously increase the effective lengths and capacitances, depending on their placement on the booms. The antenna calibration results and loop placement findings are of great benefit to the Resonance mission. In particular, goniopolarimetry techniques like polarization analysis and direction finding depend crucially on the effective axes.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi
2014-12-01
Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.
Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Trong, Isolde; University of Washington, Box 357742, Seattle, WA 98195-7742; Chu, Vano
2013-06-01
The crystal structures of two circularly permuted streptavidins probe the role of a flexible loop in the tight binding of biotin. Molecular-dynamics calculations for one of the mutants suggests that increased fluctuations in a hydrogen bond between the protein and biotin are associated with cleavage of the binding loop. Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing themore » biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide–biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin–biotin complex.« less
Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks
Dung, Le The; Hieu, Tran Dinh; Choi, Seong-Gon; Kim, Byung-Seo; An, Beongku
2017-01-01
This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs). Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA) and uniform circular array (UCA) antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs. PMID:28346377
Analysis of resonance response performance of C-band antenna using parasitic element.
Zaman, M R; Islam, M T; Misran, N; Mandeep, J S
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4-8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Wireless communication link for capsule endoscope at 600 MHz.
Khaleghi, A; Balasingham, I
2015-01-01
Simulation of a wireless communication link for a capsule endoscopy is presented for monitoring of small intestine in humans. The realized communication link includes the transmitting capsule antenna, the outside body receiving antenna and the model of the human body. The capsule antenna is designed for operating at the frequency band of 600 MHz with an impedance bandwidth of 10 MHz and omnidirectional radiation pattern. The quality of the communication link is improved by using directive antenna outside body inside matching layer for electromagnetic wave tuning to the body. The outside body antenna has circular polarization that guaranteeing the communication link for different orientations of the capsule inside intestine. It is shown that the path loss for the capsule in 60 mm from the abdomen surface varies between 37-47 dB in relation to the antenna orientation. This link can establish high data rate wireless communications for capsule endoscopy.
Design of a Miniaturized Meandered Line Antenna for UHF RFID Tags
Islam, Mohammad Tariqul; Rowe, Wayne S. T.; Kibria, Salehin; Jit Singh, Mandeep; Misran, Norbahiah
2016-01-01
A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919–923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for ‘place and tag’ application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP). PMID:27533470
Advanced Antennas Enabled by Electromagnetic Metamaterials
2014-12-01
radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width
Ferrite core coupled slapper detonator apparatus and method
Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.
1989-01-01
Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.
Ferrite core coupled slapper detonator apparatus and method
Boberg, R.E.; Lee, R.S.; Weingart, R.C.
1989-08-01
Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.
Analysis and Design of a Speed and Position System for Maglev Vehicles
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed. PMID:23012504
Analysis and design of a speed and position system for maglev vehicles.
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, S., E-mail: sshinoha@cc.tuat.ac.jp; Tanikawa, T.; Motomura, T.
2014-09-15
A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less thanmore » 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ∼5 × 10{sup 12} cm{sup −3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.« less
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Statman, Joseph
2013-01-01
This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.
Microstrip Patch Antenna And Method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor)
2001-01-01
Method and apparatus are provided for a microstrip feeder structure for supplying properly phased signals to each radiator element in a microstrip antenna array that may be utilized for radiating circularly polarized electromagnetic waves. In one disclosed embodiment. the microstrip feeder structure includes a plurality of microstrip sections many or all of which preferably have an electrical length substantially equal to one-quarter wavelength at the antenna operating frequency. The feeder structure provides a low loss feed structure that may be duplicated multiple times through a set of rotations and translations to provide a radiating array of the desired size.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-01-01
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma
Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.
1988-01-01
A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.
Dielectric resonator antenna for coupling to NV centers in diamond
NASA Astrophysics Data System (ADS)
Kapitanova, Polina; Soshenko, Vladimir; Vorobyov, Vadim; Dobrykh, Dmitry; Bolshedvorskiih, Stepan; Sorokin, Vadim; Akimov, Alexey
2017-09-01
Here we present the design of a dielectric resonator antenna for spin manipulation of large volume ensemble of nitrogen-vacancy centers in a bulk diamond. The proposed antenna design is based on a high permittivity hollow dielectric resonator excited by a symmetric microstrip loop. We present the result of numerical simulation of the magnetic field excited at the TE01δ mode of the dielectric resonator. We analyze the uniformity of the magnetic field in volume and discuss the possibility to use the antenna for efficient excitation of nitrogen-vacancy centers in whole commercially available sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pingenot, J; Rieben, R; White, D
2005-10-31
We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less
Scanning properties of large dual-shaped offset and symmetric reflector antennas
NASA Astrophysics Data System (ADS)
Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.
1992-04-01
Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.
On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.
Crumley, G C; Evans, N E; Burns, J B; Trouton, T G
1998-12-01
This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability.
The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.
Crumley, G C; Evans, N E; Scanlon, W G; Burns, J B; Trouton, T G
2000-12-01
This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.
A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.
Residual and suppressed-carrier arraying techniques for deep-space communications
NASA Technical Reports Server (NTRS)
Shihabi, M.; Shah, B.; Hinedi, S.; Million, S.
1995-01-01
Three techniques that use carrier information from multiple antennas to enhance carrier acquisition and tracking are presented. These techniques in combination with baseband combining are analyzed and simulated for residual and suppressed-carrier modulation. It is shown that the carrier arraying using a single carrier loop technique can acquire and track the carrier even when any single antenna in the array cannot do so by itself. The carrier aiding and carrier arraying using multiple carrier loop techniques, on the other hand, are shown to lock on the carrier only when one of the array elements has sufficient margin to acquire the carrier on its own.
Setups for in vitro assessment of RFID interference on pacemakers
NASA Astrophysics Data System (ADS)
Mattei, E.; Censi, F.; Delogu, A.; Ferrara, A.; Calcagnini, G.
2013-08-01
The aim of this study is to propose setups for in vitro assessment of RFID (radiofrequency identification) interference on pacemakers (PM). The voltage induced at the input stage of the PM by low-frequency (LF) and high-frequency (HF) RFID transmitters has been used to quantify the amount of the interference. A commercial PM was modified in order to measure the voltage at its input stage when exposed to a sinusoidal signal at 125 kHz and 13.56 MHz. At both frequencies, two antennas with different dimensions (diameter = 10 cm and 30 cm, respectively) were used to generate the interfering field, and the induced voltage was measured between the lead tip and the PM case (unipolar voltage), and between the tip and ring electrodes (bipolar voltage). The typical lead configurations adopted in similar studies or proposed by international standards, as well as lead paths closer to actual physiological implants were tested. At 125 kHz, the worst-case condition differs for the two antennas: the 10 cm antenna induced the highest voltage in the two-loop spiral configuration, whereas the 30 cm antenna in the 225 cm2 loop configuration. At 13.56 MHz, the highest voltage was observed for both the antennas in the 225 cm2 loop configuration. Bipolar voltages were found to be lower than the unipolar voltages induced in the same configurations, this difference being not as high as one could expect from theoretical considerations. The worst-case scenario, in terms of the induced voltage at the PM input stage, has been identified both for LF and HF readers, and for two sizes of transmitting antennas. These findings may provide the basis for the definition of a standard implant configuration and a lead path to test the EMI effects of LF and HF RFID transmitters on active implantable devices.
A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.
Islam, M M; Faruque, M R I; Islam, M T
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.
Two-port active coupled microstrip antenna
NASA Astrophysics Data System (ADS)
Avitabile, G. F.; Maci, S.; Biffi Gentili, G.; Roselli, L.; Manes, G. F.
1992-12-01
A multilayer structure, based on a patch antenna coupled through a nonresonant slot to a pair of feeding microstrips is a versatile module which can be used as a radiating and resonating element in a number of different configurations. Direct connection to a low cost transistor in a feedback loop results in a very simple active antenna, as reported in the Letter. Different termination conditions at the four microstrip ports give rise to a number of alternative configurations for active generation/detection and multipatch arrays.
Materials and process optimization for dual-shell satellite antenna reflectors
NASA Astrophysics Data System (ADS)
Balaski, Darcy R.; van Oyen, Hans J.; Nissan, Sorin J.
A comprehensive, design-optimization test program was conducted for satellite antenna reflectors composed of two offset paraboloidal Kevlar-reinforced sandwich shells separated by a circular sandwich structure. In addition to standard mechanical properties testing, coefficient of thermal expansion and hygroscopic tests were conducted to predict reflector surface accuracy in the thermal cycling environment of orbital space. Attention was given to the relative placement of components during assembly, in view of reflector surface measurements.
Helicon modes in uniform plasmas. I. Low m modes
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances
Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504
Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.
Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E
2017-01-01
This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1994-01-01
Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.
2006-01-01
In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The wearable garment pick-up antenna and the implantable chip antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry, the relative RF magnetic near-field intensity as a function of the distance and angle, and the current density on the strip conductors, for the implantable chip antenna.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Million, S.; Shah, B.; Hinedi, S.
1994-01-01
Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.
Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element
Islam, M. T.; Misran, N.; Mandeep, J. S.
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643
A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators
Islam, M. M.; Faruque, M. R. I.; Islam, M. T.
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379
Shielded dual-loop resonator for arterial spin labeling at the neck.
Hetzer, Stefan; Mildner, Toralf; Driesel, Wolfgang; Weder, Manfred; Möller, Harald E
2009-06-01
To construct a dual-loop coil for continuous arterial spin labeling (CASL) at the human neck and characterize it using computer simulations and magnetic resonance experiments. The labeling coil was designed as a perpendicular pair of shielded-loop resonators made from coaxial cable to obtain balanced circular loops with minimal electrical interaction with the lossy tissue. Three different excitation modes depending on the phase shift, Deltapsi, of the currents driving the two circular loops were investigated including a "Maxwell mode" (Deltapsi = 0 degrees ; ie, opposite current directions in both loops), a "quadrature mode" (Deltapsi = 90 degrees ), and a "Helmholtz mode" (Deltapsi = 180 degrees ; ie, identical current directions in both loops). Simulations of the radiofrequency field distribution indicated a high inversion efficiency at the locations of the carotid and vertebral arteries. With a 7-mm-thick polypropylene insulation, a sufficient distance from tissue was achieved to guarantee robust performance at a local specific absorption rate (SAR) well below legal safety limits. Application in healthy volunteers at 3 T yielded quantitative maps of gray matter perfusion with low intersubject variability. The coil permits robust labeling with low SAR and minimal sensitivity to different loading conditions.
Ground Segment Preparation for NPSAT1
2007-09-01
39 a. Close Aiming Point...for a closed loop control scheme. The controller has the antenna follow the predicted path of NPSAT1 during an overhead pass. One drawback of the...satellite on its descending pass are said to have a “ keyhole ” in Air Force jargon because one has to turn the antenna just like a key. Figure 6 is
NASA Astrophysics Data System (ADS)
Hu, Fei; Song, Yanping; Huang, Zhirong; Liu, Wenlan; Li, Wan
2018-05-01
The tetrahedral elements that make up the large deployable reflector (LDR) are a kind of metamorphic element, which belongs to the multi-loop coupling mechanism. Firstly, the method of combining topology with screw theory is put forward. The parametric model and the constrained matrix are established to analyze the malleability of 3RR-3RRR tetrahedral element. Secondly, the kinematics expression of each motion pair is deduced by the relationship between the velocity and the motion spinor. Finally, the configuration of the metamorphic element is optimized to make the parabolic antenna fully folded, so that the antenna can meet the maximum folding ratio. The results show that the 3RR-3RRR element is a single-degree of freedom (DOF) mechanism. What's more, three new configurations 3RS-3RRR, 3SR-3RRR and 3UU-3RRR are obtained on the basis of optimization. In particular, it proves to be that the LDR which consists of the 3RS-3RRR metamorphic element can achieve the maximum folding ratio. This paper provides a theoretical basis for the computer-aided design of the truss antennas, which has an excellent applicability in the field of aerospace and other multi-loop coupling mechanism.
NASA Astrophysics Data System (ADS)
Ryan, Colan Graeme Matthew
Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates NRI-TL elements to achieve circular polarization at 2.3 GHz and 2.7 GHz, with radiation efficiencies of 70% and 78%, respectively. Optical transparency of 50% is then realized by cutting a grid through the antenna and substrate, making the device suitable for direct integration with solar panels. Therefore, this research provides several proof-of-concept devices to highlight the flexibility and multi-band properties of the G-NRI-TL which extend the capabilities of microwave transceiver systems.
Simulation and Measurement of Medium-Frequency Signals Coupling From a Line to a Loop Antenna
Damiano, Nicholas W.; Li, Jingcheng; Zhou, Chenming; Brocker, Donovan E.; Qin, Yifeng; Werner, Douglas H.; Werner, Pingjuan L.
2016-01-01
The underground-mining environment can affect radio-signal propagation in various ways. Understanding these effects is especially critical in evaluating communications systems used during normal mining operations and during mine emergencies. One of these types of communications systems relies on medium-frequency (MF) radio frequencies. This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating MF coupling between a transmission line (TL) and a loop antenna in an underground coal mine. Two different types of measurements were completed: 1) line-current distribution and 2) line-to-antenna coupling. Measurements were taken underground in an experimental coal mine and on a specially designed surface test area. The results of these tests are characterized by current along a TL and voltage induced in the loop from a line. This paper concludes with a discussion of issues for MF TLs. These include electromagnetic fields at the ends of the TL, connection of the ends of the TL, the effect of other conductors underground, and the proximity of coal or earth. These results could help operators by providing examples of these challenges that may be experienced underground and a method by which to measure voltage induced by a line. PMID:27784954
NASA Astrophysics Data System (ADS)
Joyal, Marc-Andre
Dual-gridded reflector (DGR) antennas are widely used on satellites. They consist of a cascade of two parabolic grids operating in orthogonal linear polarizations, each one having its own feed. Therefore, DGRs are actually two antennas in one structure, so they use less space on the satellite. Moreover, they provide excellent isolation between adjacent coverage areas. The disadvantage with these DGRs is that they work only in linear polarization (vertical and horizontal). In this thesis, two different solutions to design a circularly polarized (right and left hand circular polarizations) DGR are explored. The first one consists in the use of circular polarizers that are fixed on a conventional DGR. Those polarizers are surfaces that make the conversion between linear and circular polarizations. The other solution uses circular polarization selective surfaces (CPSSs) as reflectors on the DGR instead of the orthogonal grids. These CPSSs are structures that are transparent to one sense of circular polarization (say right hand circular polarization for instance), but that reflect the other sense (left hand circular polarization). The major part of this work is based on the first solution. A new circular polarizer design method is proposed. It allows a greater flexibility in the polarizer design than existing designs. The proposed technique is also modified in order to implement polarizers optimized for an oblique incidence, which is required for DGR applications. The second solution using CPSSs is only briefly explored. A new type of CPSS, implemented with a cascade of circular and linear polarizers, is proposed. This cascade CPSS has shown a broader bandwidth than those obtained with the resonant structures known so far. Also, the limitations of CPSSs are identified as to their use on DGRs. Finally, as a proof of concept, two simple prototypes of circularly polarized DGRs are presented. The first design is implemented with a circular polarizer and a metallic grid attached to a small reflector. The second prototype is similar, but the planar grid is replaced by a reflectarray that plays the same role, but increases the gain in the direction of the main beam. The satellite industry requirements between 18-20 GHz are respected with this latter implementation, but only for a very low variation in the elevation angle.
Experiments with planar inductive ion source meant for creation of H+ beams.
Vainionpaa, J H; Kalvas, T; Hahto, S K; Reijonen, J
2007-06-01
In this article the effects of different engineering parameters of rf-driven ion sources with an external spiral antenna and a quartz rf window are studied. This article consists of three main topics: the effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species, and the effect of different antenna geometries on the extracted current density. The effect of source geometry was studied using three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum (Al) and alumina (Al(2)O(3)). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. The highest measured proton fractions were measured using Al(2)O(3) plasma chamber and no multicusp confinement. For the compared ion sources the source with multicusp confinement and Al(2)O(3) plasma chamber yields the highest current densities. Multicusp confinement increased the maximum extracted current by up to a factor of 2. Plasma production with different antenna geometries were also studied. The highest current density was achieved using 4.5 loop solenoid antenna with 6.0 cm diameter. A slightly lower current density with lower pressure was achieved using a tightly wound 3 loop spiral antenna with 3.3 cm inner diameter and 6 cm outer diameter.
A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications
Mercier, Patrick P.; Bandyopadhyay, Saurav; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.
2015-01-01
This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 µm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply during energy harvesting operation. PMID:26246641
A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation.
Lopato, Przemyslaw; Herbko, Michal
2018-01-20
In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S 11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge.
Aircraft-mounted crash-activated transmitter device
NASA Technical Reports Server (NTRS)
Manoli, R.; Ulrich, B. R. (Inventor)
1976-01-01
An aircraft crash location transmitter tuned to transmit on standard emergency frequencies is reported that is shock mounted in a sealed circular case atop the tail of an aircraft by means of a shear pin designed to fail under a G loading associated with a crash situation. The antenna for the transmitter is a metallic spring blade coiled like a spiral spring around the outside of the circular case. A battery within the case for powering the transmitter is kept trickle charged from the electrical system of the aircraft through a break away connector on the case. When a crash occurs, the resultant ejection of the case from the tail due to a failure of the shear pin releases the free end of the antenna which automatically uncoils. The accompanying separation of the connector effects closing of the transmitter key and results in commencement of transmission.
A microstrip array feed for MSAT spacecraft reflector antenna
NASA Technical Reports Server (NTRS)
Huang, John
1988-01-01
An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, C C; Brunkhorst, C; Greenough, N
Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used tomore » simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.« less
Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E
2016-01-01
Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
A planar chiral meta-surface for optical vortex generation and focusing
Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang
2015-01-01
Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213
NASA Astrophysics Data System (ADS)
Ott, Felix; Herminghaus, Stephan; Huang, Kai
2017-05-01
We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.
Lee, Sang Heun; Lee, Jaebok; Yoon, Young Joong; Park, Sangbok; Cheon, Changyul; Kim, Kihyun; Nam, Sangwook
2011-06-01
This paper presents the design of a wideband spiral antenna for ingestible capsule endoscope systems and a comparison between the experimental results in a human phantom and a pig under general anesthesia. As wireless capsule endoscope systems transmit real-time internal biological image data at a high resolution to external receivers and because they operate in the human body, a small wideband antenna is required. To incorporate these properties, a thick-arm spiral structure is applied to the designed antenna. To make practical and efficient use of antennas inside the human body, which is composed of a high dielectric and lossy material, the resonance characteristics and radiation patterns were evaluated through a measurement setup using a liquid human phantom. The total height of the designed antenna is 5 mm and the diameter is 10 mm. The fractional bandwidth of the fabricated antenna is about 21% with a voltage standing-wave ratio of less than 2, and it has an isotropic radiation pattern. These characteristics are suitable for wideband capsule endoscope systems. Moreover, the received power level was measured using the proposed antenna, a circular polarized receiver antenna, and a pig under general anesthesia. Finally, endoscopic capsule images in the stomach and large intestine were captured using an on-off keying transceiver system.
Microstrip monopulse antenna for land mobile communications
NASA Technical Reports Server (NTRS)
Garcia, Q.; Martin, C.; Delvalle, J. C.; Jongejans, A.; Rinous, P.; Travers, M. N.
1993-01-01
Low cost is one of the main requirements in a communication system suitable for mass production, as it is the case for satellite land mobile communications. Microstrip technology fulfills this requirement which must be supported by a low cost tracking system design. The tradeoff led us to a prototype antenna composed of microstrip patches based on electromechanical closed-loop principle; the design and the results obtained are described.
Design and adaptation of a folded split ring resonator antenna for use in an animal-borne sensor
NASA Astrophysics Data System (ADS)
Dodson, S. C.; Wiid, P. G.; Niesler, T. R.
2018-03-01
We present the design, optimisation and practical evaluation of a folded split ring resonator (FSRR) antenna for the purpose of radio communication with an animal-borne sensor. We show that the measurements agree with the simulated results and that we are able to produce an electrically small antenna with low mismatch, high radiation efficiency and a quasi-isotropic radiation pattern. We then adapt the topology of the design from a circular to a rectangular shape, to completely fit inside the sensor enclosure. A quasi-isotropic pattern is maintained as well as low mismatch by appropriate tuning. There is a decrease in radiation efficiency which may be countered by a thinner substrate and retuning. We conclude that the adapted FSRR antenna is a suitable design for our application.
NASA Astrophysics Data System (ADS)
Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.
2016-12-01
A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.
Adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1985-01-01
The interference protection provided by adaptive antenna arrays to an Earth station or satellite receive antenna system is studied. The case where the interference is caused by the transmission from adjacent satellites or Earth stations whose signals inadverently enter the receiving system and interfere with the communication link is considered. Thus, the interfering signals are very weak. To increase the interference suppression, one can either decrease the thermal noise in the feedback loops or increase the gain of the auxiliary antennas in the interfering signal direction. Both methods are examined. It is shown that one may have to reduce the noise correlation to impractically low values and if directive auxiliary antennas are used, the auxiliary antenna size may have to be too large. One can, however, combine the two methods to achieve the specified interference suppression with reasonable requirements of noise decorrelation and auxiliary antenna size. Effects of the errors in the steering vector on the adaptive array performance are studied.
Superconducting antennas for telecommunication applications based on dual mode cross slotted patches
NASA Astrophysics Data System (ADS)
Cassinese, A.; Barra, M.; Fragalà, I.; Kusunoki, M.; Malandrino, G.; Nakagawa, T.; Perdicaro, L. M. S.; Sato, K.; Ohshima, S.; Vaglio, R.
2002-08-01
Dual mode devices based on high temperature superconducting films represent an interesting class for telecommunication applications since they combine a miniaturized size with a good power handling. Here we report on a novel compact antenna obtained by crossing a square patch with two or more slots. The proposed design has an antenna size reduction of about 40% as compared to the conventional square patch microstrip antennas. Single patch antenna both with linear (LP) and circular (CP) polarization operating in the X-band have been designed and tested at prototype level. They are realized by using double sided (YBa 2Cu 3O 7- x) YBCO and Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconducting films grown on MgO substrates and tested with a portable cryocooler. They showed at T=77 K a return loss <25 dB and a power handling of 23 dBm. Exemplary 16 elements arrays LP antennas operating in the X band have been also realized by using YBCO film grown on 2 ″ diameter MgO substrate.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Lin, Hui; Zhang, Qi
2018-01-01
The reference source system is a key factor to ensure the successful location of the satellite interference source. Currently, the traditional system used a mechanical rotating antenna which leaded to the disadvantages of slow rotation and high failure-rate, which seriously restricted the system’s positioning-timeliness and became its obvious weaknesses. In this paper, a multi-beam antenna scheme based on the horn array was proposed as a reference source for the satellite interference location, which was used as an alternative to the traditional reference source antenna. The new scheme has designed a small circularly polarized horn antenna as an element and proposed a multi-beamforming algorithm based on planar array. Moreover, the simulation analysis of horn antenna pattern, multi-beam forming algorithm and simulated satellite link cross-ambiguity calculation have been carried out respectively. Finally, cross-ambiguity calculation of the traditional reference source system has also been tested. The comparison between the results of computer simulation and the actual test results shows that the scheme is scientific and feasible, obviously superior to the traditional reference source system.
Synthesis of multiple shaped beam antenna patterns
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1973-01-01
Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.
Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1996-01-01
The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.
Quasi-Optical Techniques for Millimeter and Submillimeter-Wave Circuits.
1981-03-25
permits non-destructive measurement. The cross section of the IS guide is shown in Fig. 4. We create a notch -type grating in the dielectric strip (rl). Then...the e-igenvalue equation is solved. 1he method was modified to minAlyze .a circular patch radiatlng st ructulre. l’ht, prote dtlrc i s essentIalIv...34Hankel transform domain analysis of open circular microstrip radiating structures," IEEE Trans. Antennas and Propagation, Vol. AP-29, Jan. 1981. 19. T
Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong
2017-09-25
We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.
Ko, Dong-Sik
2017-01-01
We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband. PMID:28946658
High Rate User Ka-Band Phased Array Antenna Test Results
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)
2001-01-01
The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.
Radial microstrip slotline feed network for circular mobile communications array
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.
1994-01-01
In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.
Design study for LANDSAT-D attitude control system
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.
1977-01-01
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.
A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1987-01-01
A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.
SAR reduction using a single SRR superstrate for a dual-band antenna.
Rosaline, Imaculate; Singaravelu, Raghavan
2017-01-01
A dual-band microstrip antenna operating at GSM 900 and GSM 1800 MHz is designed initially. Then a single split ring resonator (SRR) structure is used as a superstrate for this dual-band antenna. A circular current is induced in the SRR due to the perpendicular plane wave excitation, which in turn leads to an electric excitation coupled to the magnetic resonance. It also exhibits higher order excitations at 0.9 and 1.8 GHz which ultimately resulted in specific absorption rate (SAR) reduction of human head at both the designed frequencies of the antenna. The antenna and the SRR superstrate are printed on a 1.6 mm thick FR-4 substrate of dimension 59.6 × 49.6 mm 2 . Analysis of the SRR using the classic waveguide theory approach is discussed. Radiation pattern of the antenna in the presence of SRR superstrate and human head is also discussed. Prototype of the antenna along with the SRR superstrate is fabricated and measured for return loss and radiation pattern. Measurement results fairly agree with the simulated results. A human head phantom is utilized in the calculation of SAR.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul
1990-01-01
Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.
Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.
Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N
2014-01-01
A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.
Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Misran, N.
2014-01-01
A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the −10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz–1 GHz) and at upper band is 28% (2.25 GHz–2.95 GHz). The measured maximum gains of −1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832
Panorama, section 2 of 3, note the Operations Building (Facility ...
Panorama, section 2 of 3, note the Operations Building (Facility 294) in the center of facility, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Multilayered tissues model for wave propagation loss assessment in cochlear implants
NASA Astrophysics Data System (ADS)
Paun, Maria-Alexandra; Dehollain, Catherine
2017-05-01
In this paper, a study of the power loss attenuation of the plane wave travelling through the tissue layers, from the outside to the inside of the skull within a cochlear implant, is performed. Different implantation depths of the internal antenna from 10 to 30 mm are considered. To this purpose, the gain and attenuation in dB are studied. A multilayer tissue model is developed, consisting of mainly skin, mastoid bone and brain. An s-parameter analysis is also carried out, using loop antennas and simulated head tissue. Ansoft Ansys® HFSS software is used for electro-magnetic simulations of the antennas, placed in different types of human tissues. Smith charts for antenna placed in both skin and multi-tissue model are included.
Optical Links and RF Distribution for Antenna Arrays
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Calhoun, Malcolm; Tjoelker, Robert
2006-01-01
An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.
Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun
2014-10-20
In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.
Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors
Daliri, Ali; Galehdar, Amir; Rowe, Wayne S. T.; John, Sabu; Wang, Chun H.; Ghorbani, Kamran
2014-01-01
Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection. PMID:24451457
Quality factor effect on the wireless range of microstrip patch antenna strain sensors.
Daliri, Ali; Galehdar, Amir; Rowe, Wayne S T; John, Sabu; Wang, Chun H; Ghorbani, Kamran
2014-01-02
Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.
Design of microstrip patch antennas using knowledge insertion through retraining
NASA Astrophysics Data System (ADS)
Divakar, T. V. S.; Sudhakar, A.
2018-04-01
The traditional way of analyzing/designing neural network is to collect experimental data and train neural network. Then, the trained neural network acts as global approximate function. The network is then used to calculate parameters for unknown configurations. The main drawback of this method is one does not have enough experimental data, cost of prototypes being a major factor [1-4]. Therefore, in this method the author collected training data from available approximate formulas with in full design range and trained the network with it. After successful training, the network is retrained with available measured results. This simple way inserts experimental knowledge into the network [5]. This method is tested for rectangular microstrip antenna and circular microstrip antenna.
Broad-band flared horn with low sidelobes. [applicable to cosmic background radiation measurement
NASA Technical Reports Server (NTRS)
Mather, J. C.
1981-01-01
A circular horn antenna flared like a trumpet is analyzed with the geometrical theory of diffraction and then tested experimentally. Sidelobes are found to be extremely low (-75 dB), in agreement with theory. Low sidelobe performance is predicted to be broad-band and to improve at higher frequencies. The full aperture of the tested horn is approximately 50 wavelengths. Suggestions for even better low sidelobe antennas are made. The applicability of this horn to the measurement of cosmic background radiation is noted.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation
NASA Astrophysics Data System (ADS)
Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.
2017-12-01
We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.
Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils
NASA Astrophysics Data System (ADS)
Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.
2017-09-01
In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.
Detail of 94' lowband reflector screen posts, note the concrete ...
Detail of 94' low-band reflector screen posts, note the concrete curb and vertical wires between posts, view facing north northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Microstrip Yagi Antenna with Dual Aperture-Coupled Feed
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald; Venkatesan, Jaikrishna
2008-01-01
A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.
Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios
NASA Technical Reports Server (NTRS)
Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.
2017-01-01
An almost square patch, a square patch and a stacked square patch with corner truncation for circular polarization (CP) are researched and developed at X-band for cognitive radios. Experimental results indicate, first, that the impedance bandwidth of a CP almost square patch fed from the edge by a 50 ohm line is 1.70% and second, that of a CP square patch fed from the ground plane side by a surface launch connector is 1.87%. Third, the impedance bandwidth of a CP stacked square patch fed by a surface launch connector is 2.22%. The measured center frequency for the CP square patch fed by a surface launch connector without and with an identical stacked patch is 8.45 and 8.1017 GHz, respectively. By stacking a patch, separated by a fixed air gap of 0.254 mm, the center frequency is observed to shift by as much as 348.3 MHz. The shift in center frequency, brought about by the reconfiguring of the physical layer antenna, can be exploited in a cognitive system since it expands the usable frequency spectrum for software reconfiguration in the presence of interference. In addition, varying the fixed air gap in the stacked antenna geometry by increments of 0.254 mm further expands the usable frequency spectrum.
A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation †
Herbko, Michal
2018-01-01
In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge. PMID:29361697
NASA Astrophysics Data System (ADS)
Wunderlich, S.; Welpot, M.; Gaspard, I.
2014-11-01
The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.
Experiments and Demonstrations with Soldering Guns.
ERIC Educational Resources Information Center
Henry, Dennis C.; Danielson, Sarah A.
1993-01-01
Discusses the essential electrical characteristics of a particular model of soldering gun. Presents four classroom demonstrations that utilize the soldering gun to test the following geometrics of wire loops as electromagnets: (1) the original tip; (2) a single circular loop; (3) a Helmholtz coil; and (4) the solenoid. (MDH)
T-wave loop area from a pre-implant 12-lead ECG is associated with appropriate ICD shocks
Hnatkova, Katerina; Friede, Tim; Malik, Marek; Zabel, Markus
2017-01-01
Aims In implantable cardioverter-defibrillator (ICD) patients, predictors of ICD shocks and mortality are needed to improve patient selection. Electrocardiographic (ECG) markers are simple to obtain and have been demonstrated to predict mortality. We aimed to assess the association of T-wave loop area and circularity with ICD shocks. Methods The study investigated patients with ICDs implanted between 1998 and 2010 for whom digital 12-lead ECGs (Schiller CS200 ECG-Network) of sufficient quality were obtained within 1 month prior to the implantation. T-wave loop area and circularity were calculated. Follow-up data of appropriate shocks were obtained during ICD clinic visits that included reviews of device stored electrograms. Results A total of 605 patients (82% males) were included; 68% had ischemic cardiomyopathy and 72% were treated for primary prevention. Over 3.8±1.4 years of follow-up, 114 patients (19%) experienced appropriate shock(s). Those with smaller T-wave loop area received fewer shocks (TLA, hazard ratio, HR, per increase of 1 technical unit, 0.71; [95% confidence interval, 0.53–0.94]; P = 0.02) and those with larger T-wave loop circularity (TLC) representing rounder T wave loop received more shocks (HR per 1% TLC increase 2.96; [0.85–10.36]; P = 0.09). When the quartile containing the largest TLA and TLC values, respectively, were compared to the remaining cases, TLA remained significantly associated with fewer and TLC with more frequent shocks also after multivariate adjustment for clinical variables (HR, 0.59 [0.35–0.99], P = 0.044; and 1.64 [1.08–2.49], P = 0.021, respectively). Conclusions The size and shape of the T-wave loop calculated from pre-implantation 12-lead ECGs are associated with appropriate ICD shocks. PMID:28291831
Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer
NASA Astrophysics Data System (ADS)
Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei
2018-03-01
We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.
Detail of the underground wire net mat and cable at ...
Detail of the underground wire net mat and cable at the base of a 94' low-band reflector screen pole, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Dielectric image line groove antennas for millimeterwaves
NASA Astrophysics Data System (ADS)
Solbach, K.; Wolff, I.
Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.
Dual circularly polarized broadside beam antenna based on metasurfaces
NASA Astrophysics Data System (ADS)
Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.
2018-02-01
Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.
Stripline feed for a microstrip array of patch elements with teardrop shaped probes
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1990-01-01
A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1996-01-01
A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
High Frequency Aircraft Antennas
1968-05-03
is ob- tained if the current on the loop is assunned to be a superposition of two oppositely directed uniform traveling -wave currents of equal...effect will be to slow down the traveling wave currents on the loop and thus make the loop appear larger in size. Equations (6), (7), and (IÜ...18C/NDT + 1 NTRAN3=ü L»0 CALL LINSEG<NWIRE.L»X.Y.Z.5I . SALP ,CAB.SAB) N = L NN=N+1 WR|TE(6«11) IF(N-100) 4 1,41.500 41 CONTINUE Jl = l J2
Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones
NASA Astrophysics Data System (ADS)
Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.
2016-12-01
We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.
Aperture excited dielectric antennas
NASA Technical Reports Server (NTRS)
Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.
1974-01-01
The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.
Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.
2014-01-01
A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement.
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-11-06
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.
A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement
Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376
System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems
NASA Astrophysics Data System (ADS)
Czylwik, Andreas; Dekorsy, Armin
2004-12-01
Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.
Experiments on Alfv'en waves in high beta plasmas
NASA Astrophysics Data System (ADS)
Gekelman, Walter; Pribyl, Patrick; Cooper, Chris; Vincena, Stephen
2008-11-01
The propagation of Alfv'en waves in high beta plasmas is of great interest in solar wind studies as well as in astrophysical plasmas. Alfv'en wave propagation in a high beta plasma is studied on the axis of a toroidal device at UCLA. The vacuum vessel is 30 meters in circumference, 2 meters wide and 3 meters tall. The plasma has a cross sectional area of 20 cm^2 and can be as long as 120 m which is hundreds of parallel Alfv'en wavelengths. The waves are launched using two orthogonal 5-turn , 5.7 cm diameter loops. The AC currents (10 kHz < f < 250 kHz) to the loops are as high as 2 kA p-p, producing fields of 1 kG on the axis of the antenna. The antenna coils are independently driven such that waves with arbitrary polarization can be launched. Movable three axis magnetic pickup loops detect the wave and are used to construct field maps in the machine. Wave propagation results as a function of plasma beta and input wave energy will be presented.
NASA Technical Reports Server (NTRS)
Iwasaki, R.; Dodds, J. G.; Broad, P.
1979-01-01
The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.
VizieR Online Data Catalog: 22GHz observations of VX Sgr (Murakawa+, 2003)
NASA Astrophysics Data System (ADS)
Murakawa, K.; Yates, J. A.; Richards, A. M. S.; Cohen, R. J.
2012-07-01
The 22-GHz H2O maser emission from VX Sgr was observed on 1994 26 and 1999 January 16 for 5 and 7hr, respectively, in both left and right circular polarization, using 5 antennas of MERLIN. (3 data files).
[Creation of a colostomy using a circular mechanical stapler].
Ruscalla, L; Delemont, M; Ligresti, C; Farinella, M; Rossi, R
1991-09-15
The paper describes the method used to create a preternatural anus in terminal stomas using a mechanical circular stapler (Model EEA-31). Two methods are put forward: Chung's and Burke's methods (the latter of which was used by our department). A mechanical circular stapler has been used several times (13) to perform this type of stoma, with excellent esthetic and functional results, both immediate and long-term. It was only necessary to reoperate in one case in order to suspend the affected colic loop.
Stuehlinger, Markus; Hoenig, Simon; Spuller, Karin; Koman, Christian; Stoeger, Markus; Poelzl, Gerhard; Ulmer, Hanno; Pachinger, Otmar; Steinwender, Clemens
2015-01-01
Pulmonary vein (PV) isolation is the mainstay of catheter treatment of paroxysmal atrial fibrillation (AF). The CoolLoop® cryoablation catheter (AFreeze® GmbH; Innsbruck, Austria) was developed to create wide and complete circular lesions around the PVs. In this study we evaluated feasibility and safety of this novel ablation system in humans. 10 patients (6M/4F; 57.6±7.6y) with paroxysmal AF were included in 2 referral centers. The CoolLoop® catheter was positioned at each PV antrum using a steerable transseptal sheath. Subsequently, 2-6 double-freezes over 5min were performed at each vein and PV-isolation was assessed thereafter using a circular mapping catheter. During cryoablation of the right PVs, pacing was used to monitor phrenic nerve function. The CoolLoop® catheter could be successfully positioned at each PV. A mean of 5.6±1.8 cryoablations were performed in the LSPV, 5.2±1.6 in the LIPV, 6.3±2.5 in the RSPV and 5.4±1.6 in the RIPV, respectively. Mean procedure time was 251±60min and mean fluoroscopy time was 44.0±13.2min. 6 / 10 LSPV, 6 / 10 LIPV, 5 / 10 RSPV and 6 / 10 RIPV could be isolated exclusively using the novel cryoablation system. One patient developed groin hematoma and a brief episode of ST-elevation due to air embolism was observed in another subject. No other clinical complications occurred during 3 months of follow up. PV-isolation for paroxysmal atrial fibrillation using the CoolLoop® catheter is feasible and appears safe. Clinical long term efficacy still needs to be evaluated and will be compared with established catheters used for AF ablation.
In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana
2013-02-15
To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less
Fluid forces on two circular cylinders in crossflow
NASA Astrophysics Data System (ADS)
Jendrzejczyk, J. A.; Chen, S. S.
1986-07-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit
NASA Astrophysics Data System (ADS)
Gordon, James
2018-01-01
We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
NASA Technical Reports Server (NTRS)
Zawadzki, M.
2001-01-01
Presented is a description of the single stacked element, and measured and calculated results at 2.56 GHz. Also included are measured results for the array, and calculated results of a stacked element for the required frequency-scaled version at 32 GHz.
Zivkovic, Irena; Scheffler, Klaus
2015-08-01
We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.
Remote sensing of the coastal ocean with standard geodetic GNSS-equipment
NASA Astrophysics Data System (ADS)
Löfgren, J. S.; Haas, R.; Larson, K. M.; Scherneck, H.-G.
2012-04-01
We use standard geodetic Global Navigation Satellite System (GNSS) equipment to perform remote sensing measurements of the coastal ocean. This is done by a so-called GNSS-based tide gauge that uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. Our installation is located at the Onsala Space Observatory (OSO) at the west coast of Sweden and consists of a zenith-looking Right Hand Circularly Polarized (RHCP) and a nadir-looking Left Hand Circularly Polarized (LHCP) antenna. Each antenna is connected to a standard geodetic-type GNSS-receiver. We applied two different analysis strategies to our GNSS data set. The first strategy is based on a traditional geodetic differential analysis [Löfgren et al., 2011] and makes use of the data from both receivers; connected to the zenith and the nadir looking antennae. This approach results in local sea level that is automatically corrected for land motion, meaning that the GNSS-based tide gauge can provide reliable sea-level estimates even in tectonic active regions. The second strategy focuses on the Signal-to-Noise Ratio (SNR) recorded with the receiver connected to the zenith-looking antenna [Larson et al., 2011]. The SNR is affected by multipath originating from the sea surface reflections. Analysis of the SNR data allows to determine the distance between the antenna and the reflecting surface, and thus to measure sea surface height. Results from both analysis strategies are compared to independently observed sea-level data from two stilling-well gauges operated by the Swedish Meteorological and Hydrological Institute (SMHI), which lie in a distance of several km from OSO. The root-mean-square agreement between the different time series of several month's length is on the order of 5 cm and better. These results indicate the large potential for using coastal GNSS-sites for the monitoring of the coastal ocean.
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.
A comparison of reflector antenna designs for wide-angle scanning
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmatsamii, Y.; Acosta, R. J.
1989-01-01
Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.
Eddy currents in a conducting sphere
NASA Technical Reports Server (NTRS)
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
A closed-loop time-alignment system for baseband combining
NASA Technical Reports Server (NTRS)
Feria, Y.
1994-01-01
In baseband combining, the key element is the time alignment of the baseband signals. This article describes a closed-loop time-alignment system that estimates and adjusts the relative delay between two baseband signals received from two different antennas for the signals to be coherently combined. This system automatically determines which signal is advanced and delays it accordingly with a resolution of a sample period. The performance of the loop is analyzed, and the analysis is verified through simulation. The variance of the delay estimates and the signal-to-noise ratio degradation in the simulations agree with the theoretical calculations.
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto
2016-07-01
In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on soil moisture monitoring byGlobal Navigation Satellite System Reflected signals(GNSS-R) at the Valencia Anchor Station is introduced. L-band microwaves have very good advantages in soil moisture remote sensing, for being unaffected by clouds and the atmosphere, and for the ability to penetrate vegetation. During this experimental campaign, the ESA GNSS-R Oceanpal antenna was installed on the same tower as the ESA ELBARA-II passive microwave radiometer, both measuring instruments having similar field of view. This experiment is fruitfully framed within the ESA - China Programme of Collaboration on GNSS-R. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and two down-looking antennas for receiving LHCP (left-hand circular polarisation) and RHCP (right-hand circular polarisation) reflected signals from the soil surface. We could collect data from the three different antennas through the two channels of Oceanpal and, in addition, calibration could be performed to reduce the impact from the differing channels. Reflectivity was thus measured and soil moisture could be retrieved by the L- MEB (L-band Microwave Emission of the Biosphere) model considering the effect of vegetation optical thickness and soil roughness. By contrasting GNSS-R and ELBARA-II radiometer data, a negative correlation existed between reflectivity measured by GNSS-R and brightness temperature measured by the radiometer. The two parameters represent reflection and absorption of the soil. Soil moisture retrieved by both L-band remote sensing methods shows good agreement. In addition, correspondence with in-situ measurements and rainfall is also good.
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J
2015-11-05
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 min. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η(2)=0.32)wrist;(P=0.05, η(2)=0.19)elbow;(P<0.05, η(2)=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η(2)=0.36)wrist;(P≤0.05, η(2)=0.30)elbow;(P≤0.05, η(2)=0.31)shoulder. Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J.
2015-01-01
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 minutes. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. Findings (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η2=0.32)wrist; (P=0.05, η2=0.19)elbow; (P<0.05, η2=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η2=0.36)wrist; (P≤0.05, η2=0.30)elbow; (P≤0.05, η2=0.31)shoulder. Conclusions Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. PMID:26472307
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-01-01
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. PMID:28406449
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-04-13
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Target signature modeling and bistatic scattering measurement studies
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Lee, T. H.; Rojas, R.; Marhefka, R. J.; Bensman, D.
1989-01-01
Four areas of study are summarized: bistatic scattering measurements studies for a compact range; target signature modeling for test and evaluation hardware in the loop situation; aircraft code modification study; and SATCOM antenna studies on aircraft.
Tone-activated, remote, alert communication system
NASA Technical Reports Server (NTRS)
Baker, C. D.; Couvillon, L. A.; Hubbard, W. P.; Kollar, F. J.; Postal, R. B.; Tegnelia, C. R.
1971-01-01
Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units.
Beam shaping of light sources using circular photonic crystal funnel
NASA Astrophysics Data System (ADS)
Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.
2012-10-01
A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.
Noninvasive biosignal detection radar system using circular polarization.
Lee, Jee-Hoon; Hwang, Jung Man; Choi, Dong Hyuk; Park, Seong-Ook
2009-05-01
This paper proposes an integrated hypersensitive Doppler radar system through a circular polarization characteristic. Through the idea of a reverse sense of rotation when the reflecting surface is perfectly conducting, it is shown that the detecting property of the system can be effectively improved by using antennas that have a reverse polarization. This bistatic radar system can be used in noninvasively sensing biosignals such as respiration and heart rates with the periodic movement of skin and muscle near the heart. The operating frequency of the system is in the X-band and the radar size is 95 x50 x13 mm(3).
Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Kotabová, Eva; Koník, Peter; Litvín, Radek; Prášil, Ondřej; Tichý, Josef; Vácha, František
2014-06-01
A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI. Copyright © 2014 Elsevier B.V. All rights reserved.
Radar transponder antenna pattern analysis for the space shuttle
NASA Technical Reports Server (NTRS)
Radcliff, Roger
1989-01-01
In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.
Optimization of Planar Monopole Wideband Antenna for Wireless Communication System
Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza
2016-01-01
In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2–12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz). PMID:27992466
Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.
Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza
2016-01-01
In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
NASA Astrophysics Data System (ADS)
Jernsletten, J. A.
2005-11-01
A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, using a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells sur-rounding the field area. Note also the conductive (~20-40 Ωm) clay-rich soil above the water table. During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conduc-tive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and show con-ductive highs at ~15 m depth below Station 50 (Line 15) and Station 30 (Line 14), interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps. Both of the interpretations from Rio Tinto data (Line 4, and Lines 15 & 14) were confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. Drill Site 1 was moved ~50 m based on recommendations built on data from Line 15 and Line 14 of the Fast-Turnoff TEM survey.
A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields
2007-06-01
data prior to processing in Matlab 65 5-6 Probe and sensor alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be...again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical geometry by the coordinates (r, ¢J, z), due to a circular loop of...alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
Advanced Filters and Components for Power Applications
2006-08-31
PCB with a rectangular and circular coil version on each board. The printed windings are placed in an end-tapped configuration, with the winding...of fiat circular loops of various diameters in a system without magnetic material. We have found that the most accurate prediction for this...application is that of [31]. The formula for mutual inductance of circular traces is: Mt=°T f 00 S(kr2, kri)S(ka 2 , kai)Q(kh)e-k zdk (3.2) h2ln (rf) In (az) J0
A folded waveguide ICRF antenna for PBX-M and TFTR
NASA Astrophysics Data System (ADS)
Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.
1996-02-01
The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai
2015-10-15
A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less
Roadway into Facility 314 showing the roadway cut through the ...
Roadway into Facility 314 showing the roadway cut through the slope formed by leveling the area for the CDAA, note the concrete curb on the right side of the roadway, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Comparison of CDMA and FDMA for the MobileStar(sm) system
NASA Technical Reports Server (NTRS)
Jacobs, I. M.; Gilhousen, K. S.; Weaver, L. A.; Renshaw, K.; Murphy, T.
1988-01-01
Spread-spectrum code division multiple access (CDMA) and single channel per carrier frequency division multiple access (FDMA) systems are compared for spectrum efficiency. CDMA is shown to have greater maximum throughput than FDMA for the MobileStar(sm) system which uses digital voice activated carriers and directive circularly polarized satellite antennas.
The C-patch - A small microstrip element
NASA Astrophysics Data System (ADS)
Kossiavas, G.; Papiernik, A.; Boisset, J. P.; Sauvan, M.
1989-02-01
A radiating element operating in the UHF and L-bands is presented. The element has dimensions smaller than those of conventional square or circular elements. For this type of antenna, good matching is obtained with a coaxial feed, and the omnidirectional radiation pattern is achieved using linear polarization. The bandwidth, however, remains somewhat narrow.
Tracker implementation for the orbiter Ku-band communications antenna
NASA Technical Reports Server (NTRS)
Rudnicki, J. F.; Lindsey, J. F.
1976-01-01
Possible implementations and recommendations for the Space Shuttle Ku-Band integrated communications/radar antenna tracking system were evaluated. Communication aspects involving the Tracking Data Relay Satellite (TDRS)/Orbiter Ku-Band link are emphasized. Detailed analysis of antenna sizes, gains and signal-to-noise ratios shows the desirability of using maximum size 36-inch diameter dish and a triple channel monopulse. The use of the original baselined 20 inch dish is found to result in excessive acquisition time since the despread signal would be used in the tracking loop. An evaluation of scan procedures which includes vehicle dynamics, designation error, time for acquisition and probability of acquisition shows that the conical scan is preferred since the time for lock-on for relatively slow look angle rates will be significantly shorter than the raster scan. Significant improvement in spherical coverage may be obtained by reorienting the antenna gimbal to obtain maximum blockage overlap.
Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical
NASA Technical Reports Server (NTRS)
Germain, A.
1981-01-01
The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.
Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrutia, J. M.; Stenzel, R. L.
Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less
High-efficiency broadband polarization converter based on Ω-shaped metasurface
NASA Astrophysics Data System (ADS)
Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian
2017-11-01
The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.
Synthesis of concentric circular antenna arrays using dragonfly algorithm
NASA Astrophysics Data System (ADS)
Babayigit, B.
2018-05-01
Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.
Srinivasan, A R; Yathindra, N
1977-01-01
A novel description of the conformational characteristics of all the individual nucleotides and the phosphodiesters in tRNAs is presented in the form of a circular plot. This representation furnishes information of the base sequence with the folding patterns of the polynucleotide chain as one traverses along the circumference and with the individual nucleotide and phosphodiester linkage torsions along the radii. The circular plot obtained for yeast tRNAPhe strikingly distinguishes the helical and the loop regions. The variation of the different nucleotide torsions along the entire chain length and their effect on the secondary helical and tertiary loop regions become readily apparent. PMID:339206
Radio-Frequency and Wideband Modulation Arraying
NASA Technical Reports Server (NTRS)
Brockman, M. H.
1984-01-01
Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.
Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert
2012-01-01
Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.
K-space polarimetry of bullseye plasmon antennas
Osorio, Clara I.; Mohtashami, Abbas; Koenderink, A. Femius
2015-01-01
Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas. PMID:25927570
K-space polarimetry of bullseye plasmon antennas.
Osorio, Clara I; Mohtashami, Abbas; Koenderink, A Femius
2015-04-30
Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas.
NASA Astrophysics Data System (ADS)
Hafner, D.
2015-09-01
The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.
Europa Lander Mission Concept (Artist Rendering)
2017-02-08
This artist's rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Jupiter's moon Europa. The lander is shown with a sampling arm extended, having previously excavated a small area on the surface. The circular dish on top is a dual-purpose high-gain antenna and camera mast, with stereo imaging cameras mounted on the back of the antenna. Three vertical shapes located around the top center of the lander are attachment points for cables that would lower the rover from a sky crane, which is envisioned as the landing system for this mission concept. http://photojournal.jpl.nasa.gov/catalog/PIA21048
Kulsrud, R.M.; Spitzer, L. Jr.
1961-12-12
An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)
Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes
NASA Astrophysics Data System (ADS)
Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.
2007-06-01
We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.
Identified EM Earthquake Precursors
NASA Astrophysics Data System (ADS)
Jones, Kenneth, II; Saxton, Patrick
2014-05-01
Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for recurrence, duration, and frequency response. At the Southern California field sites, one loop antenna was positioned for omni-directional reception and also detected a strong First Schumann Resonance; however, additional Schumann Resonances were absent. At the Timpson, TX field sites, loop antennae were positioned for directional reception, due to earthquake-induced, hydraulic fracturing activity currently conducted by the oil and gas industry. Two strong signals, one moderately strong signal, and approximately 6-8 weaker signals were detected in the immediate vicinity. The three stronger signals were mapped by a biangulation technique, followed by a triangulation technique for confirmation. This was the first antenna mapping technique ever performed for determining possible earthquake epicenters. Six and a half months later, Timpson experienced two M4 (M4.1 and M4.3) earthquakes on September 2, 2013 followed by a M2.4 earthquake three days later, all occurring at a depth of five kilometers. The Timpson earthquake activity now has a cyclical rate and a forecast was given to the proper authorities. As a result, the Southern California and Timpson, TX field results led to an improved design and construction of a third prototype antenna. With a loop antenna array, a viable communication system, and continuous monitoring, a full fracture cycle can be established and observed in real-time. In addition, field data could be reviewed quickly for assessment and lead to a much more improved earthquake forecasting capability. The EM precursors determined by this method appear to surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.
Low-cost passive UHF RFID tags on paper substrates
NASA Astrophysics Data System (ADS)
Sajal, Sayeed Zebaul Haque
To reduce the significant cost in the widespread deployment of UHF radio frequency identification (RFID) systems, an UHF RFID tag design is presented on paper substrates. The design is based on meander-line miniaturization techniques and open complementary split ring resonator (OCSRR) elements that reduce required conducting materials by 30%. Another passive UHF RFID tag is designed to sense the moisture based on the antenna's polarization. An inexpensive paper substrate and copper layer are used for flexibility and low-cost. The key characteristic of this design is the sensitivity of the antenna's polarization on the passive RFID tag to the moisture content in the paper substrate. In simulations, the antenna is circularly-polarized when the substrate is dry and is linearly-polarized when the substrate is wet. It was shown that the expected read-ranges and desired performance could be achieved reducing the over-all cost of the both designs.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.
1996-01-01
Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.
Three-dimensional effects for radio frequency antenna modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Stallings, D.C.
1994-10-15
Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less
Three-dimensional effects for radio frequency antenna modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Stallings, D.C.
1993-12-31
Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less
Adaptive antenna arrays for weak interfering signals. [in satellite communication
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Ksienski, A. A.
1986-01-01
It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.
NASA Astrophysics Data System (ADS)
Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady
Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).
Minimal area surfaces dual to Wilson loops and the Mathieu equation
Huang, Changyu; He, Yifei; Kruczenski, Martin
2016-08-11
The AdS/CFT correspondence relates Wilson loops in N=4 SYM to minimal area surfaces in AdS 5 × S 5 space. Recently, a new approach to study minimal area surfaces in AdS 3 c AdS 5 was discussed based on a Schroedinger equation with a periodic potential determined by the Schwarzian derivative of the shape of the Wilson loop. Here we use the Mathieu equation, a standard example of a periodic potential, to obtain a class of Wilson loops such that the area of the dual minimal area surface can be computed analytically in terms of eigenvalues of such equation. Asmore » opposed to previous examples, these minimal surfaces have an umbilical point (where the principal curvatures are equal) and are invariant under λ-deformations. In various limits they reduce to the single and multiple wound circular Wilson loop and to the regular light-like polygons studied by Alday and Maldacena. In this last limit, the periodic potential becomes a series of deep wells each related to a light-like segment. Small corrections are described by a tight-binding approximation. In the circular limit they are well approximated by an expansion developed by A. Dekel. In the particular case of no umbilical points they reduce to a previous solution proposed by J. Toledo. The construction works both in Euclidean and Minkowski signature of AdS 3.« less
Demonstration of a vectorial optical field generator with adaptive close loop control.
Chen, Jian; Kong, Lingjiang; Zhan, Qiwen
2017-12-01
We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.
Hysteresis phenomena of the intelligent driver model for traffic flow
NASA Astrophysics Data System (ADS)
Dahui, Wang; Ziqiang, Wei; Ying, Fan
2007-07-01
We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.
A comparative study of radiofrequency antennas for Helicon plasma sources
NASA Astrophysics Data System (ADS)
Melazzi, D.; Lancellotti, V.
2015-04-01
Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.
1997-07-06
The left portion of this image, taken by the Imager for Mars Pathfinder (IMP) on July 5, 1997 (Sol 2), shows a portion of the large rock nicknamed "Yogi." Portions of a petal and deflated airbag are in the foreground. The dark circular object at right is a portion of the lander's high-gain antenna. http://photojournal.jpl.nasa.gov/catalog/PIA00630
Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.
Stress strain modelling and analysis of a piezo-coated optical fibre sensor
NASA Astrophysics Data System (ADS)
Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.
2005-02-01
A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.
Hall, David R [Provo, UT; Hall, Jr., H. Tracy
2007-07-24
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.
Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation
NASA Astrophysics Data System (ADS)
Wang, Shiyi; Zhan, Qiwen
2015-03-01
We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.
Winter, Lukas; Niendorf, Thoralf
2016-06-01
This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 (+) ) and RF power deposition of dipole antenna arrays for (1)H magnetic resonance of the human brain at 1 GHz (23.5 T). Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. Our results demonstrate that transmission fields suitable for (1)H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 (+) in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.
Lubner, Meghan G.; Ziemlewicz, Tim J; Hinshaw, J. Louis; Lee, Fred T.; Sampson, Lisa J.; Brace, Chris L.
2014-01-01
Purpose To characterize modified triaxial microwave antennas configured to produce short ablation zones. Materials and Methods 50 single- and 27 paired-antenna hepatic ablations were performed in domestic swine (n=11) with 17-gauge, gas-cooled modified triaxial antennas powered at 65W from a 2.45 GHz generator. Single-antenna ablations were performed at 2 (n=16), 5 (n=21), and 10 (n=13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n=7, n=8) and 10 minutes (n=7, n=5). Mean transverse width, length and aspect ratio of sectioned ablation zones were measured and compared. Results For single antennas, mean ablation zone length was 2.9±0.45, 3.5±0.55 and 4.2±0.40 cm at 2, 5, and 10 minutes respectively. Mean width was 1.8±0.3, 2.0±0.32, 2.5±0.25 cm at 2, 5, and 10 minutes. For paired antennas, mean length at 5 min 1 and 2 cm and 10 min 1 and 2 cm spacing was 4.2±0.9, 4.4±0.9, 4.8±0.5 and 4.3±0.9 cm respectively. Mean width was 3.1±1.0, 4.0±0.8 and 3.8±0.4, 4.2±0.6 cm respectively. Paired-antenna ablations were more spherical (aspect ratios 0.72-0.79 for 5-10 min) than single-antenna ablations (0.57-0.59). For paired-antenna ablations, 1 cm spacing appeared optimal, with improved circularity and decreased clefting compared to 2 cm spacing (circ 1 cm 0.85, 2 cm 0.78). Conclusion Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension compared to single antenna ablations, with 1 cm spacing optimal for confluence of the ablation zone. PMID:25156644
Precision pointing compensation for DSN antennas with optical distance measuring sensors
NASA Technical Reports Server (NTRS)
Scheid, R. E.
1989-01-01
The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.
Washable hydrophobic smart textiles and multi-material fibers for wireless communication
NASA Astrophysics Data System (ADS)
Gorgutsa, Stepan; Bachus, Kyle; LaRochelle, Sophie; Oleschuk, Richard D.; Messaddeq, Younes
2016-11-01
This paper reports on the performance and environmental endurance of the recently presented wirelessly communicating smart textiles with integrated multi-material fiber antennas. Metal-glass-polymer fiber composites were fabricated using sub-1 mm hollow-core silica fibers and liquid state silver deposition technique. These fibers were then integrated into textiles in the form of center-fed dipole and loop antennas during standard weaving procedure. Fiber antennas performance was found to be directly comparable to classic ‘rigid’ solutions in terms of return loss, gain and radiation patterns, which allowed transmitting data through Bluetooth protocol at 2.4 GHz frequency. Applied superhydrophobic coatings (water contact angle = 152°, sliding angle = 6°) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles.
NASA Astrophysics Data System (ADS)
Del Vescovo, D.; D'Ambrogio, W.
1995-01-01
A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.
Mohri, Kohta; Takahashi, Natsuki; Nishikawa, Makiya; Kusuki, Eri; Shiomi, Tomoki; Takahashi, Yuki; Takakura, Yoshinobu
2012-11-10
The immunostimulatory activity of phosphodiester DNA containing unmethylated cytosine-guanine (CpG) dinucleotides can be increased by converting it into branched structures. These structures could be stabilized by ligating the 5'- and 3'-ends to form a closed loop with no terminal ends. To further increase the ability of branched DNA assemblies to induce cytokines, a series of tetrapod-like structured DNA, or tetrapodna, were designed using four 48-base oligodeoxynucleotides (ODNs). All these preparations were designed to have the same sequence except for the nick sites, and all the ODNs of one of the tetrapodna preparations were ligated to obtain circular tetrapodna. The nick site significantly influenced the formation of the structure and melting temperature (Tm), but hardly affected the enzymatic stability of the tetrapodna preparations. Circular tetrapodna exhibited a significantly higher Tm and was more stable in mouse serum than its non-ligated counterparts. The amounts of cytokines released from macrophage-like RAW264.7 cells or dendritic DC2.4 cells after addition of circular tetrapodna were not significantly higher than those after addition of other tetrapodna preparations under conditions when no serum was present. However, when serum was present, circular tetrapodna induced the greatest amount of tumor necrosis factor-α, indicating that circular tetrapodna is effective in inducing cytokines under conditions where DNA-degrading enzymes are present. The cellular association of tetrapodna preparations was almost unaffected by ligation of the terminal ends. These results indicate that circular tetrapodna with no terminal ends is more effective than its non-ligated counterparts in the presence of serum. Copyright © 2012 Elsevier B.V. All rights reserved.
Gill, Pooria; Ranjbar, Bijan; Saber, Reza; Khajeh, Khosro; Mohammadian, Mehdi
2011-07-01
Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.
Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.
Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco
2018-01-09
Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
A Wideband Autonomous Cognitive Radio Development and Prototyping System
2017-11-14
Gain, High Frequency , Circularly Polarized Planar Antenna Arrays for Space Applications”, NASA. 3. C. G. Christodoulou (Co-Principal Investigator...Investigator), “Cognitive Communications for SATCOM”, Space Vehicles (RV) University Grants Program, 04/26/16-04/25/17 ($150K), Air Force Research...Aerospace (Prime Contractor). 2. S. K. Jayaweera (Principal Investigator), “Cognitive Communications for SATCOM”, Space Vehicles (RV) University Grants
The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.
Borrello, Massimiliano; Lombardi, Alessia; Pascucci, Stefano; Cembalo, Luigi
2016-01-01
Closed-loop agri-food supply chains have a high potential to reduce environmental and economic costs resulting from food waste disposal. This paper illustrates an alternative to the traditional supply chain of bread based on the principles of a circular economy. Six circular interactions among seven actors (grain farmers, bread producers, retailers, compostable packaging manufacturers, insect breeders, livestock farmers, consumers) of the circular filière are created in order to achieve the goal of "zero waste". In the model, two radical technological innovations are considered: insects used as animal feed and polylactic acid compostable packaging. The main challenges for the implementation of the new supply chain are identified. Finally, some recent patents related to bread sustainable production, investigated in the current paper, are considered. Recommendations are given to academics and practitioners interested in the bio-based circular economy model approach for transforming agri-food supply chains.
Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin
2018-01-01
Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9 three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated in the pig's head and in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).
Quadrifilar Helical Antenna Array for Line-of-Sight Communications Above the Ocean Surface
2007-06-25
placing the copper-covered sheet into a mechanical plotter and using a diamond scribe to cut the edges. 5 27 (a) i (bI 900 PUTTR 180 SPTTER ANTENN 11Z...soldering of the cable to the hole and to avoid any possible radio frequency (RF) ground loops that may form. However, because it was determined that...prevent any RF ground loops that may be produced that could induce undesirable currents along the brass tube. Figure 4-9 is a closeup view of an
The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers
NASA Astrophysics Data System (ADS)
Zhao, Jun-Hui; Goss, W. M.; Diamond, P.
We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Sands, O. Scott; Huang, John; Bassily, Samir
2006-01-01
Improved surface accuracy for deployable reflectors has brought with it the possibility of Ka-band reflector antennas with extents on the order of 1000 wavelengths. Such antennas are being considered for high-rate data delivery from planetary distances. To maintain losses at reasonable levels requires a sufficiently capable Attitude Determination and Control System (ADCS) onboard the spacecraft. This paper provides an assessment of currently available ADCS strategies and performance levels. In addition to other issues, specific factors considered include: (1) use of "beaconless" or open loop tracking versus use of a beacon on the Earth side of the link, and (2) selection of fine pointing strategy (body-fixed/spacecraft pointing, reflector pointing or various forms of electronic beam steering). Capabilities of recent spacecraft are discussed.
June 2017 Ancho Canyon RF Collects: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junor, William; Layne, John Preston; Goglio, Joshua Henry
2017-09-21
We report the results from the June 8, 2017, Ancho Canyon RF collection. While bright, electromagnetic signals were seen close to the firing point, there were no detections of signals from the explosively-fired fuse (EFF) at a collection point about 600m distant on the East Mesa. The East Mesa site was unable to collect data because the uninterruptible power supply (UPS) was exhausted by the time of the shot. We did see signals from the EFF at the Bunker 57 antennas, about 123m distant from the Point 88 firing point. The strength of these signals is consistent with our limitedmore » knowledge of the collection antenna performance and the use of the standard model to predict the electric field strength. From our knowledge of the geometry of the EFF loop and the current in the loop in this test, and from measurements at the Bunker 57 site, we predict that we would have seen signals of about 50mV at 3.67MHz in a 100 kHz channel on the Rohde & Schwarz HE010 antennas at the East Mesa location. The noise oor there is about 0.113mV (based on the March 2017 collects). Thus we would have had an SNR of 53 dB from the collect, had the data collection system been running.« less
Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.
2015-12-01
Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a total system dynamic range of 180 dB in order to provide significant penetration.
The Multifrequency Siberian Radioheliograph
NASA Astrophysics Data System (ADS)
Lesovoi, S. V.; Altyntsev, A. T.; Ivanov, E. F.; Gubin, A. V.
2012-10-01
The ten-antenna prototype of the multifrequency Siberian radioheliograph is described. The prototype consists of four parts: antennas with broadband front-ends, analog back-ends, digital receivers and a correlator. The prototype antennas are mounted on the outermost stations of the Siberian Solar Radio Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom by an analog fiber optical link, laid in an underground tunnel. After mixing, all signals are digitized and processed by digital receivers before the data are transmitted to the correlator. The digital receivers and the correlator are accessible by the Local Area Network (LAN). The frequency range of the prototype is from 4 to 8 GHz. Currently the frequency switching observing mode is used. The prototype data include both circular polarizations at a number of frequencies given by a list. This prototype is the first stage of the multifrequency Siberian radioheliograph development. It is assumed that the radioheliograph will consist of 96 antennas and will occupy stations of the West-East-South subarray of the SSRT. The radioheliograph will be fully constructed in the autumn of 2012. We plan to reach the brightness temperature sensitivity of about 100 K for the snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and a polarization measurement accuracy about a few percent. First results with the ten-antenna prototype are presented of observations of solar microwave bursts. The prototype's abilities to estimate source size and locations at different frequencies are discussed.
Multiple Antenna Implementation System (MAntIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.
1993-01-01
The MAntIS code was developed as an aid to the design of radio frequency (RF) antennas for fusion applications. The code solves for the electromagnetic fields in three dimensions near the antenna structure with a realistic plasma load. Fourier analysis is used in the two dimensions that are tangential to the plasma surface and backwall. The third dimension is handled analytically in a vacuum region with a general impedance match at the plasma-vacuum interface. The impedance tensor is calculated for a slab plasma using the ORION-lD code with all three electric field components included and warm plasma corrections. The codemore » permits the modeling of complicated antenna structures by superposing currents that flow on the surfaces of rectangular parallelepipeds. Specified current elements have feeders that continuously connect the current flowing from the ends of the strap to the feeders. The elements may have an arbitrary orientation with respect to the static magnetic field. Currents are permitted to vary along the length of the current strap and feeders. Parameters that describe this current variation can be adjusted to approximately satisfy boundary conditions on the current elements. The methods used in MAntIS and results for a primary loop antenna design are presented.« less
Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams.
Bai, Xu-Dong; Liang, Xian-Ling; Sun, Yun-Tao; Hu, Peng-Cheng; Yao, Yu; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong
2017-01-10
Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.
Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun
2018-05-03
This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.
Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang
2017-01-01
Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afzal, Muhammad U., E-mail: muhammad.afzal@mq.edu.au; Esselle, Karu P.
This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results thatmore » a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency.« less
Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei
2016-01-01
Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383
Two-dimensional acousto-optic processor using circular antenna array with a Butler matrix
NASA Astrophysics Data System (ADS)
Lee, Jim P.
1992-09-01
A two-dimensional acousto-optic signal processor is shown to be useful for providing simultaneous spectrum analysis and direction finding of radar signals over an instantaneous field of view of 360 deg. A system analysis with emphasis on the direction-finding aspect of this new architecture is presented. The peak location of the optical pattern provides a direct measure of bearing, independent of signal frequency. In addition, the sidelobe levels of the pattern can be effectively reduced using amplitude weighting. Performance parameters, such as mainlobe beamwidth, peak-sidelobe level, and pointing error, are analyzed as a function of the Gaussian laser illumination profile and the number of channels. Finally, a comparison with a linear antenna array architecture is also discussed.
2004-06-01
element can be applied to achieve this goal. Résumé Ce document décrit l’étude d’une antenne imprimée à polarisation circulaire réalisée sur un...matériau LTCC (low temperature co-fired ceramic). Cette antenne est utilisée comme élément rayonnant d’un réseau à déphasage ayant une architecture de...l’analyse d’une antenne élémentaire pouvant être utilisée dans réseau à déphasage ayant une architecture de type “tuile” fonctionnant en bande EHF. La
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Udalov, S.
1974-01-01
This study investigated the configuration and integration of a wideband communication system with a Ku-band rendezvous radar system. The goal of the study was to provide as much commonality between the two systems as possible. The antenna design was described with the only change being the requirement for dual polarization (linear for the radar system and circular for the communication system).
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1996-01-01
The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.
[Simulated used of the "grasping tie" as in esophago-jejunostomy after total gastrectomy].
Picardi, Nicola
2003-01-01
Simulated test of effectiveness of the original tool grasping tie--technically already illustrated in a former paper listed in bibliography--for fixing a spongy rubber tube simulating an oesophagus on a circular stapler head axis, by tightening over it a nylon ribbon slip-knot (the tie). After connecting the head to the stapler anvil through an other spongy rubber tube simulating a jejunal loop, and the firing of the stapler, it is demonstrated the correct circular anastomosis achievable.
Integrating space geodesy and coastal sea level observations
NASA Astrophysics Data System (ADS)
Löfgren, J. S.; Haas, R.; Larson, K.; Scherneck, H.-G.
2012-04-01
The goal of the Global Geodetic Observing System (GGOS) is to monitor the Earth system, in particular with observations of the three fundamental geodetic observables: the Earth's shape, the Earth's gravity field and the Earth's rotational motion. A central part of GGOS is the network of globally distributed fundamental geodetic stations that allow the combination and integration of the different space geodetic techniques. One of these stations is the Onsala Space Observatory (OSO), on the west coast of Sweden, which operates equipment for geodetic Very Long Baseline Interferometry, Global Navigation Satellite System (GNSS), and superconducting gravimetry measurements, and additionally water vapour radiometers. The newest addition to the OSO fundamental geodetic station is a GNSS-based tide gauge (GNSS-TG). This installation integrates space geodesy with remote sensing of the local sea level. The GNSS-TG uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. This is done using a zenith-looking Right Hand Circular Polarized (RHCP) and a nadir-looking Left Hand Circular Polarized (LHCP) antenna, respectively. Each of the two antennas is connected to a standard geodetic-type GNSS-receiver. The analysis of the data received with the RHCP-antenna allows one to determine land motion, while the analysis of the data received with the LHCP-antenna allows one to determine the sea surface height. Analysing both data sets together results in local sea level that is automatically corrected for land motion, meaning that the GNSS-TG can provide reliable sea-level estimates even in tectonically active regions. Previous results from the GNSS-TG, using carrier phase data, show a Root-Mean-Square (RMS) agreement of less than 5.9 cm with stilling well gauges located 18 km and 33 km away from OSO (Löfgren et al., 2011). This is lower than the RMS agreement between the two stilling well gauges (6.1 cm). Furthermore, significant ocean tidal signals have been derived from a several months long time series. Additionally, preliminary results from analysis of the Signal-to-Noise Ratio (SNR) from the RHCP antenna show an RMS agreement of 4.5 cm with a linear combination of the previously mentioned stilling well gauges (Larson et al., 2011). We present new sea level results from the GNSS-TG data set, assessing several different analysis strategies. For example, we investigate optimal ways to analyse the carrier phase data (using observations from both antennas) and compare the results to those derived from the SNR analysis (using observations from the RHCP antenna only). Furthermore, the processing results are compared to independently derived sea level observations from co-located pressure sensor gauges.
An AC electroosmotic micropump for circular chromatographic applications.
Debesset, S; Hayden, C J; Dalton, C; Eijkel, J C T; Manz, A
2004-08-01
Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.
Three-dimensional effects for radio frequency antenna modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, M.D.; Batchelor, D.B.; Stallings, D.C.
1993-09-01
Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. Comparisons with experiments indicate that these 2-D calculations can overestimate the loading of the antenna and fail to give the correct reactive behavior. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap, conducting sidewalls,more » and finite phase velocity are considered. The plasma impedance matrix for the loading calculation is generated by use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D limit. For finite-length antennas, inductance calculations are found to be in much more reasonable agreement with experiments for 3-D modeling than for the 2-D estimates. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna sidewalls rather than in the plasma as in the 2-D model. Thus, the feeders have much more influence than the plasma on the currents that return in the sidewall. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model.« less
An automatic locating system for cloud-to-ground lightning. [which utilizes a microcomputer
NASA Technical Reports Server (NTRS)
Krider, E. P.; Pifer, A. E.; Uman, M. A.
1980-01-01
Automatic locating systems which respond to cloud to ground lightning and which discriminate against cloud discharges and background noise are described. Subsystems of the locating system, which include the direction finder and the position analyzer, are discussed. The direction finder senses the electromagnetic fields radiated by lightning on two orthogonal magnetic loop antennas and on a flat plate electric antenna. The position analyzer is a preprogrammed microcomputer system which automatically computes, maps, and records lightning locations in real time using data inputs from the direction finder. The use of the locating systems for wildfire management and fire weather forecasting is discussed.
NASA Astrophysics Data System (ADS)
Vidal, E. V. S.; Ishitsuka, J. I. I.; Koyama, K. Y.
2006-08-01
We are in the process to transform a 32m antenna in Peru, used for telecommunications, into a Radio Telescope to perform Radio Astronomy in Peru. The 32m antenna of Peru constructed by NEC was used for telecommunications with communications satellites at 6 GHz for transmission, and 4 GHz for reception. In collaboration of National Institute of Information and Communications Technology (NICT) Japan, and National Observatory of Japan we developed an Antenna Control System for the 32m antenna in Peru. It is based on the Field System FS9, software released by NASA for VLBI station, and an interface to link PC within FS9 software (PC-FS9) and Antenna Control Unit (ACU) of the 32 meters antenna. The PC-FS9 controls the antenna, commands are translated by interface into control signals compatibles with the ACU using: an I/O digital card with two 20bits ports to read azimuth and elevation angles, one 16bits port for reading status of ACU, one 24bits port to send pulses to start or stop operations of antenna, two channels are analogic outputs to drive the azimuth and elevation motors of the antenna, a LCD display to show the status of interface and error messages, and one serial port for communications with PC-FS9,. The first experiment of the control system was made with 11m parabolic antenna of Kashima Space Research Center (NICT), where we tested the right working of the routines implemented for de FS9 software, and simulations was made with looped data between output and input of the interface, both test were done successfully. With this scientific instrument we will be able to contribute with researching of astrophysics. We expect to into a near future to work at 6.7GHz to study Methanol masers, and higher frequencies with some improvements of the surface of the dish.
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.
Quasi-periodic Reversals of Radio Polarization at 17 GHz Observed in the 2002 April 21 Solar Event
NASA Astrophysics Data System (ADS)
Huang, Guangli; Lin, Jun
2006-03-01
We investigate high spatial resolution radio polarization data obtained by the Nobeyama Radioheliograph (NoRH) and high time resolution data observed with the Nobeyama Radio Polarimeters (NoRP) during the well-studied flare/CME event of 2002 April 21. A 17 GHz radio source at the loop top was seen by NoRH to move upward together with the expanding flare loops at a speed of around 10 km s-1. In the 5 minutes before the source began its upward motion, the Stokes V of the radio signals at 17 GHz showed quasi-periodic reversals between left-circular polarization (LCP) and right-circular polarization (RCP). Following this interval, the polarizations gradually turned to LCP. During this period, the polarization of the corresponding footpoint source maintained the RCP sense. The reversal of Stokes V between RCP and LCP was also detected at lower frequencies (1-2 GHz) by NoRP, without spatial resolution. The observed reversals between RCP and LCP of the radio signals from the top of the flare loop system can be taken as evidence that magnetic energy is released or energetic particles are produced at the magnetic reconnection site in a quasi-periodic fashion.
Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications
NASA Technical Reports Server (NTRS)
Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.
2004-01-01
Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.
Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan
2015-02-06
Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.
Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...
2014-12-09
Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less
The Earth rotation and revolution effect on the daily and annual variation of sporadic meteor echo
NASA Astrophysics Data System (ADS)
Ohnishi, Kouji; Hattori, Shinobu; Nishimura, Osamu; Ishikawa, Toshiyuki; Aoki, Yoshie; Iijima, Yukiko; Kobayashi, Aya; Maegawa, Kimio; Abe, Shinsuke
2001-11-01
The Earth rotation and revolution will affect the daily and annual variation of sporadic meteor echo. We try to investigate such effect using Ham-band Radio Observation (HRO). Our system is constructed with paired two-element loop antennas (F/B ratio is 10 dB) at Nagano, Japan using the beacon signals at 53.750 MHz, 50W from Sabae, Fukui, Japan. The direction of one of this paired antenna was West toward Sagae and the other was East, so that this system could be roughly detected the direction of the reflected radio echoes. Using this system, (1) The total echo rose from midnight with the peak coming at about 6:00 and decreasing to the noon. This is well known daily variation due to the Earth rotation. (2) The peak echoes time by Eastward antenna and by Westward antennas was different; Westward was at 3:00 and Eastward was at 10:00. This daily variation is interpreted as the effect of the Earth rotation and revolution and the specular reflection property of forward meteor scattering observation.
The Polar Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.
1995-01-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).
Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization
NASA Technical Reports Server (NTRS)
Greem. David; DuToit, Cornelis
2013-01-01
The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.
Litwin, Dennis C; Lengel, David J; Kamendi, Harriet W; Bialecki, Russell A
2011-01-18
A successful integration of the automated blood sampling (ABS) and telemetry (ABST) system is described. The new ABST system facilitates concomitant collection of physiological variables with blood and urine samples for determination of drug concentrations and other biochemical measures in the same rat without handling artifact. Integration was achieved by designing a 13 inch circular receiving antenna that operates as a plug-in replacement for the existing pair of DSI's orthogonal antennas which is compatible with the rotating cage and open floor design of the BASi Culex® ABS system. The circular receiving antenna's electrical configuration consists of a pair of electrically orthogonal half-toroids that reinforce reception of a dipole transmitter operating within the coil's interior while reducing both external noise pickup and interference from other adjacent dipole transmitters. For validation, measured baclofen concentration (ABST vs. satellite (μM): 69.6 ± 23.8 vs. 76.6 ± 19.5, p = NS) and mean arterial pressure (ABST vs. traditional DSI telemetry (mm Hg): 150 ± 5 vs.147 ± 4, p = NS) variables were quantitatively and qualitatively similar between rats housed in the ABST system and traditional home cage approaches. The ABST system offers unique advantages over traditional between-group study paradigms that include improved data quality and significantly reduced animal use. The superior within-group model facilitates assessment of multiple physiological and biochemical responses to test compounds in the same animal. The ABST also provides opportunities to evaluate temporal relations between parameters and to investigate anomalous outlier events because drug concentrations, physiological and biochemical measures for each animal are available for comparisons.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.
2006-01-01
Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.
[Novel Device for Creating Multiple Artificial Chordae Loops in Mitral Valve Repair].
Shimamura, Yoshiei; Maisawa, Kazuma
2017-08-01
A novel device to create multiple artificial chordae loops for mitral repair is developed. The device consists of a circular metal base with a removable central rod on one end, which can easily be attached or removed by screwing into a hole located on the base, and 51 fixed rods placed radially around the central rod at distances of 10~60 mm from the central rod. A needle with CV-4 e-polytetrafluoroethylene suture is passed through a pledget, and the suture is looped from the central rod around the fixed rod located at the desired loop length. The needle is then passed back through the pledget. The suture is tied over the pledget, bringing it in contact with the central rod. When multiple loops of various lengths are required, different fixed rods located at distances corresponding to the required loop lengths are used. Following creation of the necessary loops, the central rod is unscrewed, and the loops are released from the device. Construction of artificial chordae with this device is quick, reliable, reproducible, and increases the technical possibilities for mitral valve repair.
2000-06-30
At dawn on Launch Pad 36A, Cape Canaveral Air Force Station, an Atlas IIA/Centaur rocket is fueled for launch of NASA’s Tracking and Data Relay Satellite (TDRS-H). One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-30
At dawn on Launch Pad 36A, Cape Canaveral Air Force Station, an Atlas IIA/Centaur rocket is fueled for launch of NASA’s Tracking and Data Relay Satellite (TDRS-H). One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-30
NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-30
NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
Mercury radar imaging: evidence for polar ice.
Slade, M A; Butler, B J; Muhleman, D O
1992-10-23
The first unambiguous full-disk radar mapping of Mercury at 3.5-centimeter wavelength, with the Goldstone 70-meter antenna transmitting and 26 antennas of the Very Large Array receiving, has provided evidence for the presence of polar ice. The radar experiments, conducted on 8 and 23 August 1991, were designed to image the half of Mercury not photographed by Mariner 10. The orbital geometry allowed viewing beyond the north pole of Mercury; a highly reflective region was clearly visible on the north pole during both experiments. This polar region has areas in which the circular polarization ratio (pt) was 1.0 to 1.4; values < approximately 0.1 are typical for terrestrial planets. Such high values of have hitherto been observed in radar observations only from icy regions of Mars and icy outer planet satellites.
NASA Astrophysics Data System (ADS)
Ogino, Kota; Suzuki, Safumi; Asada, Masahiro
2017-12-01
Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.
Performance of traffic-alert collision avoidance (TCAS) antennas in the presence of scatterers
NASA Technical Reports Server (NTRS)
Sampath, K. S.; Rojas, R. G.; Burnside, W. D.
1993-01-01
The performance of two TCAS systems is studied in the presence of electromagnetic scatterers. TCAS is an aircraft mounted angle of arrival (AOA) system, which estimates the bearing of a signal transmitted from a mode-S transponder on another nearby aircraft (intruder). Two systems are studied: (1) Comparison of Relative Amplitude system (CRA), and (2) Spiral Phase Antenna (SPA). The CRA antenna receives the reply via four switched beams. The bearing is estimated by comparing the amplitudes of the received signal. The SPA is based on the phase interferometer, which utilizes the received phase via sum and difference beams. The AOA is computed by comparing the reply with similar values on a calibration table, which is generated by modeling the TCAS antenna on the bare fuselage of a Boeing 727-200. The antenna patterns for the TCAS are found via high frequency methods based on the Uniform Geometric theory of Diffraction (UTD). By minimizing the standard deviation of the bearing error in a specified angular sector, optimal locations for top and bottom mounted TCAS antennas are found on the Boeing 727-200, 737-300 and 747-200 airframes. It will be shown that the overall bearing errors of the amplitude system are consistently smaller than the spiral phase TCAS. The effect of two types of nearby scatterers--antennas, and engine inlets--is studied. The AT741 L-band blade, DMC60-1 VHF Communication antenna were chosen as being representative antenna interference examples. Models are derived for the blades via a moment method analysis followed by a least squares procedure to synthesize the scattering patterns. Studies were conducted to estimate the minimum separation between the two antennas for acceptable operation. It will be shown that the spiral phase TCAS is adversely affected by the presence of a blade antenna. The amplitude system does not suffer from this limitation, especially for the forward look angles which are of most interest here. A model to represent the inlet scattering is based on the multiple scattering method and UTD. The engine on top of the B727-200 fuselage is modeled by a terminated circular waveguide. Then, the effect of moving the antenna forward on the fuselage is studied. It is again shown that the performance of the amplitude system is superior.
Modeling the detectability of vesicoureteral reflux using microwave radiometry.
Arunachalam, Kavitha; Maccarini, Paolo F; De Luca, Valeria; Bardati, Fernando; Snow, Brent W; Stauffer, Paul R
2010-09-21
We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (f(c)), frequency band (Deltaf) and aperture radius (r(a)) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (eta). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over f(c) +/- Deltaf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (deltaT(B)) for 15-25 mL urine refluxes at 40-42 degrees C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum eta over 1.1-1.6 GHz for r(a) = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over f(c) +/- Deltaf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate deltaT(B) 0.1 K for the 15 mL urine at 40 degrees C and 35 mm depth. Higher eta and deltaT(B) were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study suggests that a radiometer with f(c) = 1.35 GHz, Deltaf = 500 MHz and detector sensitivity better than 0.1 K would be the appropriate tool to noninvasively detect VUR using the log spiral antenna.
Modeling the detectability of vesicoureteral reflux using microwave radiometry
NASA Astrophysics Data System (ADS)
Arunachalam, Kavitha; Maccarini, Paolo F.; De Luca, Valeria; Bardati, Fernando; Snow, Brent W.; Stauffer, Paul R.
2010-09-01
We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (fc), frequency band (Δf) and aperture radius (ra) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (η). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over fc ± Δf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (δTB) for 15-25 mL urine refluxes at 40-42 °C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum η over 1.1-1.6 GHz for ra = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over fc ± Δf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate δTB >= 0.1 K for the 15 mL urine at 40 °C and 35 mm depth. Higher η and δTB were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study suggests that a radiometer with fc = 1.35 GHz, Δf = 500 MHz and detector sensitivity better than 0.1 K would be the appropriate tool to noninvasively detect VUR using the log spiral antenna.
Gain and Bandwidth Enhancement of Ferrite-Loaded CBS Antenna Using Material Shaping and Positioning
NASA Astrophysics Data System (ADS)
Askarian Amiri, Mikal
Loading a cavity-backed slot (CBS) antenna with ferrite material and applying a biasing static magnetic field can be used to control its resonant frequency. Such a mechanism results in a frequency reconfigurable antenna. However, placing a lossy ferrite material inside the cavity can reduce the gain or negatively impact the impedance bandwidth. This thesis develops guidelines, based on a non-uniform applied magnetic field and non-uniform magnetic field internal to the ferrite specimen, for the design of ferrite-loaded CBS antennas which enhance their gain and tunable bandwidth by shaping the ferrite specimen and judiciously locating it within the cavity. To achieve these objectives, it is necessary to examine the influence of the shape and relative location of the ferrite material, and also the proximity of the ferrite specimen from the probe on the DC magnetic field and RF electric field distributions inside the cavity. The geometry of the probe and its impacts on figures-of-merit of the antenna is of interest as well. Two common cavity backed-slot antennas (rectangular and circular cross-section) were designed, and corresponding simulations and measurements were performed and compared. The cavities were mounted on 30 cm × 30 cm perfect electric conductor (PEC) ground planes and partially loaded with ferrite material. The ferrites were biased with an external magnetic field produced by either an electromagnet or permanent magnets. Simulations were performed using FEM-based commercial software, Ansys' Maxwell 3D and HFSS. Maxwell 3D is utilized to model the non-uniform DC applied magnetic field and non-uniform magnetic field internal to the ferrite specimen; HFSS however, is used to simulate and obtain the RF characteristics of the antenna. To validate the simulations they were compared with measurements performed in ASU's EM Anechoic Chamber. After many examinations using simulations and measurements, some optimal designs guidelines with respect to the gain, return loss and tunable impedance bandwidth, were obtained and recommended for ferrite-loaded CBS antennas.
New receiving line for the remote-steering antenna of the 140 GHz CTS diagnostics in the FTU Tokamak
NASA Astrophysics Data System (ADS)
D'Arcangelo, O.; Bin, W.; Bruschi, A.; Cappelli, M.; Fanale, F.; Gittini, G.; Pallotta, F.; Rocchi, G.; Tudisco, O.; Garavaglia, S.; Granucci, G.; Moro, A.; Tuccillo, A. A.
2018-01-01
A new receiving antenna for collecting signals of the Collective Thomson Scattering (CTS) diagnostics in FTU Tokamak has been recently installed. The squared corrugated section and the precisely defined length make it possible to receive from different directions by remotely steering the receiving mirrors. This type of Remote-Steering (RS) antennas, being studied on FTU for the DEMO Electron Cyclotron Heating (ECH) system launch, is already installed on the W7- X stellarator and will be tested in the next campaign. The transmission of the signal from the antenna in the tokamak hall to the CTS diagnostics hall will be mainly realized by means of oversized circular corrugated waveguides carrying the hybrid HE11 (quasi-gaussian) waveguide mode, with inclusion of a special smooth-waveguide section and a short run of reduced-size square-corrugated waveguide through the tokamak bio-shield. The coupling between different waveguide types is made with ellipsoidal focusing mirrors, using quasi-optical matching formulas between the gaussian-shaped beams in input and output to the waveguides. In this work, after a complete study of feasibility of the overall line, a design for the receiving line will be proposed, in order to realize an executive layout to be used as a guideline for the commissioning phase.
NASA Astrophysics Data System (ADS)
Hosaka, Ryosuke
Nowadays, medical accidents increase in Japanese patient environment. Especially, misidentification of the patients occurred in operation room of higher level hospitals. It is considered that the great deals of accidents are due to mistakes by nurse. However, the accidents are prevented by management of patients. If a suitable patient identification system is developed, the accidents are prevented. In this study, new patient identification system using battery less LF band RFID(Radio Frequency Identification) is proposed. In the method, battery less RFID tag is attached to patient. In operation room, patient is identified before operation using the proposed system. However, identification distance of RFID is small. It is important that extension of the distance. In this study, antennas of RFID tag and sensor are designed. Two types of tag are proposed. One of them is set on wristband. An antenna for the tag is designed as a circular shape with 30mm in diameter. The other one is shaped like a necklace. The antenna is also designed 220mm, 240mm and 260mm in diameter. Using necklace type new antenna, sufficient identification distance for detection of the tag in the operation room is realized. The patient identification is realized using the proposed system
The payload/shuttle-data-communication-link handbook
NASA Technical Reports Server (NTRS)
1982-01-01
Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations.
Chains of Metamaterials for Guiding and Antenna Applications
2011-04-01
Italy, April 11-15, 2011, (invited talk). C2. Y. Zhao, and A. Alù, “Broadband Circular Polarizer Formed by Stacked Plasmonic Metasurfaces ,” in...in the Homogenization of Metamaterials and Metasurfaces ,” in Proceedings of Metamaterials 2010, Karlsruhe, Germany, September 16-19, 2010, (invited...talk). C6. P. Y. Chen, and A. Alù, “Optical Metamaterials and Metasurfaces Formed by Nanoantennas Loaded by Nonlinear Materials,” in Proceedings of