Sample records for circular restricted problem

  1. Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Antoniadou, Kyriaki I.; Libert, Anne-Sophie

    2018-06-01

    We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.

  2. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  3. A study of the influence of the sun on optimal two-impulse Earth-to-Moon trajectories with moderate time of flight in the three-body and four-body models

    NASA Astrophysics Data System (ADS)

    Filho, Luiz Arthur Gagg; da Silva Fernandes, Sandro

    2017-05-01

    In this work, a study about the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories for interior transfers with moderate time of flight is presented considering the three-body and the four-body models. The optimization criterion is the total characteristic velocity which represents the fuel consumption of an infinite thrust propulsion system. The optimization problem has been formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP), and, it consists of transferring a spacecraft from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption. The Sequential Gradient Restoration Algorithm (SGRA) is applied to determine the optimal solutions. Numerical results are presented for several final altitudes of a clockwise or a counterclockwise circular low Moon orbit considering a specified altitude of a counterclockwise circular low Earth orbit. Two types of analysis are performed: in the first one, the initial position of the Sun is taken as a parameter and the major parameters describing the optimal trajectories are obtained by solving an optimization problem of one degree of freedom. In the second analysis, an optimization problem with two degrees of freedom is considered and the initial position of the Sun is taken as an additional unknown.

  4. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  5. Application of wave mechanics theory to fluid dynamics problems: Boundary layer on a circular cylinder including turbulence

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.

  6. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  7. Resonance transition periodic orbits in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo

    2018-04-01

    This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.

  8. Post-Newtonian Circular Restricted 3-Body Problem: Schwarzschild primaries

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, G. A.

    2017-07-01

    The restricted three-body problem (RTBP) has been extensively studied to investigate the stability of the solar system, extra-solar subsystems, asteroid capture, and the dynamics of two massive black holes orbited by a sun. In the present work, we study the stability of the planar circular restricted three-body problem in the context of post-Newtonian approximations. First of all, we review the results obtained from the post-Newtonian equations of motion calculated in the framework of the Einstein-Infeld-Hoffmann formalism (EIH). Therefore, using the Fodor-Hoenselers-Perjes formalism (FHP), we have performed an expansion of the gravitational potential for two primaries, deriving a new system of equations of motion, which unlike the EIH-approach, preserves the Jacobian integral of motion. Additionally, we have obtained approximate expressions for the Lagrange points in terms of a mass parameter μ, where it is found that the deviations from the classical regime are larger for the FHP than for the EIH equations.

  9. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    NASA Technical Reports Server (NTRS)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  10. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  11. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  12. Space Instrument Optimization by Implementing of Generic Three Bodies Circular Restricted Problem

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2011-01-01

    In this study, the main discussion emphasizes on the spacecraft operation with a concentration on stationary points in space. To achieve these objectives, the circular restricted problem was solved for selected approaches. The equations of motion of three body restricted problem was demonstrated to apply in cases other than Lagrange's (1736-1813 A.D.) achievements, by means of the purposed CN (Cyrus Nejat) theorem along with appropriate comments. In addition to five Lagrange, two other points, CN1 and CN2 were found to be in unstable equilibrium points in a very large distance respect to Lagrange points, but stable at infinity. A very interesting simulation of Milky Way Galaxy and Andromeda Galaxy were created to find the Lagrange points, CN points (Cyrus Nejat Points), and CN lines (Cyrus Nejat Lines). The equations of motion were rearranged such a way that the transfer trajectory would be conical, by means of decoupling concept. The main objective was to make a halo orbit transfer about CN lines. The author purposes therefore that all of the corresponding sizing design that they must be developed by optimization techniques would be considered in future approaches. The optimization techniques are sufficient procedures to search for the most ideal response of a system.

  13. Research in the Restricted Problems of Three and Four Bodies Final Scientific Report

    NASA Technical Reports Server (NTRS)

    Richards, Paul B.; Bernstein, Irwin S.; Chai, Winchung A.; Cronin, Jane; Ellis, Jordan; Fine, William E.; Kass, Sheldon; Musa, Samuel A.; Russell, Lawrence H.

    1968-01-01

    Seven studies have been conducted on research in the existence and nature of solutions of the restricted problems of three and four bodies. The details and results of five of these research investigations have already been published, and the latest two studies will be published shortly. A complete bibliography of publications is included in this report. This research has been primarily qualitative and has yielded new information on the behavior of trajectories near the libration points in the Earth-Moon-Sun and Sun-Jupiter-Saturn systems, and on the existence of periodic trajectories about the libration points of the circular and elliptical restricted four-body models. We have also implemented Birkhoff's normalization process for conservative and nonconservative Hamiltonian systems with equilibrium points. This makes available a technique for analyzing stability properties of certain nonlinear dynamical systems, and we have applied this technique to the circular and elliptical restricted three-body models. A related study was also conducted to determine the feasibility of using cislunar periodic trajectories for various space missions. Preliminary results suggest that this concept is attractive for space flight safety operations in cislunar space. Results of this research will be of interest to mathematicians, particularly those working in ordinary differential equations, dynamical systems and celestial mechanics; to astronomers; and to space guidance and mission analysts.

  14. Radiation Pressure, Poynting-Robertson Drag, and Solar Wind Drag in the Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Jackson, A. A.

    1995-01-01

    In this paper, we examine the effects of radiation pressure, Poynting-Robertson (PR) drag, and solar wind drag on dust grains trapped in mean motion resonances with the Sun and Jupiter in the restricted (negligible dust mass) three-body Problem. We especially examine the evolution of dust grains in the 1:1 resonance. As a first step, the Sun and Jupiter are idealized to both be in circular orbit about a common center of mass (circular restricted three-body problem). From the equation of motion of the dust particle in the rotating reference frame, the drag-induced time rate of change of its Jacobi "constant," C, is then derived and expressed in spherical coordinates. This new mathematical expression in spherical coordinates shows that C, in the 1:1 resonance, both oscillates and secularly increases with increasing time. The new expression gives rise to an easy understanding of how an orbit evolves when the radiation force and solar wind drag are included. All dust grain orbits are unstable in time when PR and solar wind drag are included in the Sun-Jupiter-dust system. Tadpole orbits evolve into horseshoe orbits; and these orbits continuously expand in size to lead to close encounters with Jupiter. Permanent trapping is impossible. Orbital evolutions of a dust grain trapped in the 1:1 resonance in the planar circular, an inclined case, an eccentric case, and the actual Sun-Jupiter case are numerically simulated and compared with each other and show grossly similar time behavior. Resonances other than 1:1 are also explored with the new expression. Stable exterior resonance trapping may be possible under certain conditions. One necessary condition for such a trap is derived. Trapping in interior resonances is shown to be always unstable.

  15. Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations

    NASA Astrophysics Data System (ADS)

    Poleshchikov, S. M.

    2018-03-01

    Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.

  16. Satellite capture as a restricted 2 + 2 body problem

    NASA Astrophysics Data System (ADS)

    Kanaan, Wafaa; Farrelly, David; Lanchares, Víctor

    2018-04-01

    A restricted 2 + 2 body problem is proposed as a possible mechanism to explain the capture of small bodies by a planet. In particular, we consider two primaries revolving in a circular mutual orbit and two small bodies of equal mass, neither of which affects the motion of the primaries. If the small bodies are temporarily captured in the Hill sphere of the smaller primary, they may get close enough to each other to exchange energy in such a way that one of them becomes permanently captured. Numerical simulations show that capture is possible for both prograde and retrograde orbits.

  17. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  18. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  19. On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-05-01

    In the present paper, using the first-order approximation of the n-body Lagrangian (derived on the basis of the post-Newtonian gravitational theory of Einstein, Infeld, and Hoffman), we explicitly write down the equations of motion for the planar circular restricted three-body problem in the Solar system. Additionally, with some simplified assumptions, we obtain two formulas for estimating the values of the mass-distance and velocity-speed of light ratios appropriate for a given post-Newtonian approximation. We show that the formulas derived in the present study, lead to good numerical accuracy in the conservation of the Jacobi constant and almost allow for an equivalence between the Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Accordingly, the dynamics of the system is analyzed in terms of the Poincaré sections method and Lyapunov exponents, finding that for specific values of the Jacobi constant the dynamics can be either chaotic or regular. Our results suggest that the chaoticity of the post-Newtonian system is slightly increased in comparison with its Newtonian counterpart.

  20. Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Guzzo, Massimiliano; Lega, Elena

    2018-06-01

    The circular restricted three-body problem has five relative equilibria L1 ,L2, . . . ,L5. The invariant stable-unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1 ,L2 have been identified as the separatrices for the motions which transit between the regions of the phase-space which are internal or external with respect to the two massive bodies. While the stable and unstable manifolds of the planar problem have been extensively studied both theoretically and numerically, the spatial case has not been as deeply investigated. This paper is devoted to the global computation of these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo-Stiefel variables may introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply approximate the stable and unstable manifolds of the center manifolds of L1 ,L2. We illustrate the method for the Sun-Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and three-dimensional representations.

  1. Continuation of periodic orbits in the Sun-Mercury elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Bai, Xiaoli; Xu, Shijie

    2017-06-01

    Starting from resonant Halo orbits in the Circular Restricted Three-Body Problem (CRTBP), Multi-revolution Elliptic Halo (ME-Halo) orbits around L1 and L2 points in the Sun-Mercury Elliptic Restricted Three-Body Problem (ERTBP) are generated systematically. Three pairs of resonant parameters M5N2, M7N3 and M9N4 are tested. The first pair shows special features and is investigated in detail. Three separated characteristic curves of periodic orbit around each libration point are obtained, showing the eccentricity varies non-monotonically along these curves. The eccentricity of the Sun-Mercury system can be achieved by continuation method in just a few cases. The stability analysis shows that these orbits are all unstable and the complex instability occurs with certain parameters. This paper shows new periodic orbits in both the CRTBP and the ERTBP. Totally four periodic orbits with parameters M5N2 around each libration points are extracted in the Sun-Mercury ERTBP.

  2. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  3. Suitable configurations for triangular formation flying about collinear libration points under the circular and elliptic restricted three-body problems

    NASA Astrophysics Data System (ADS)

    Ferrari, Fabio; Lavagna, Michèle

    2018-06-01

    The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.

  4. L^1 -optimality conditions for the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Chen, Zheng

    2016-11-01

    In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.

  5. PLASMAP: an interactive computational tool for storage, retrieval and device-independent graphic display of conventional restriction maps.

    PubMed Central

    Stone, B N; Griesinger, G L; Modelevsky, J L

    1984-01-01

    We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096

  6. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels

    PubMed Central

    2012-01-01

    Background The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open. PMID:23281630

  7. Combined effect of oblateness, radiation and a circular cluster of material points on the stability of triangular liberation points in the R3BP

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Taura, Joel John

    2014-06-01

    This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0< μ< μ c and unstable for , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.

  8. On the period of the periodic orbits of the restricted three body problem

    NASA Astrophysics Data System (ADS)

    Perdomo, Oscar

    2017-09-01

    We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, 2 T=kπ +\\int _Ω g where k is an integer, Ω is the region enclosed by the periodic orbit and g:R^2→ R is a function that only depends on the constant C known as the Jacobian constant; it does not depend on Ω . This theorem has a Keplerian flavor in the sense that it relates the period with the space "swept" by the orbit. As an application we prove that there is a neighborhood around L_4 such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for L_5.

  9. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  10. Distribución superficial de impactos en Iapetus originada por el remanente de una colisión

    NASA Astrophysics Data System (ADS)

    Zoppetti, F. A.; Leiva, A. M.; Briozzo, C. B.

    2015-08-01

    By means of Circular Restricted Three Body Problem Saturn--Iapetus, we analize potential impact distributions on the surface of Iapetus, originated from considering a low-energy population generated as remnants of a collisional event occurred in the past on the surface of this satellite. The results are analized in order to offer a new approach to explain the origin of the albedo dichotomy observed on Iapetus.

  11. Connecting orbits and invariant manifolds in the spatial restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Gómez, G.; Koon, W. S.; Lo, M. W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2004-09-01

    The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. This work extends the results to the three-dimensional case. Besides providing a full description of different kinds of libration motions in a large vicinity of these points, this paper numerically demonstrates the existence of heteroclinic connections between pairs of libration orbits, one around the libration point L1 and the other around L2. Since these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one libration point orbit to the other. A knowledge of these orbits can be very useful in the design of missions such as the Genesis Discovery Mission, and may provide the backbone for other interesting orbits in the future.

  12. Artificial equilibrium points for a generalized sail in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Aliasi, Generoso; Mengali, Giovanni; Quarta, Alessandro A.

    2012-10-01

    Different types of propulsion systems with continuous and purely radial thrust, whose modulus depends on the distance from a massive body, may be conveniently described within a single mathematical model by means of the concept of generalized sail. This paper discusses the existence and stability of artificial equilibrium points maintained by a generalized sail within an elliptic restricted three-body problem. Similar to the classical case in the absence of thrust, a generalized sail guarantees the existence of equilibrium points belonging only to the orbital plane of the two primaries. The geometrical loci of existing artificial equilibrium points are shown to coincide with those obtained for the circular three body problem when a non-uniformly rotating and pulsating coordinate system is chosen to describe the spacecraft motion. However, the generalized sail has to provide a periodically variable acceleration to maintain a given artificial equilibrium point. A linear stability analysis of the artificial equilibrium points is provided by means of the Floquet theory.

  13. Stability of flow of a thermoviscoelastic fluid between rotating coaxial circular cylinders

    NASA Technical Reports Server (NTRS)

    Ghandour, N. N.; Narasimhan, M. N. L.

    1976-01-01

    The stability problem of thermoviscoelastic fluid flow between rotating coaxial cylinders is investigated using nonlinear thermoviscoelastic constitutive equations due to Eringen and Koh. The velocity field is found to be identical with that of the classical viscous case and the case of the viscoelastic fluid, but the temperature and pressure fields are found to be different. By imposing some physically reasonable mechanical and geometrical restrictions on the flow, and by a suitable mathematical analysis, the problem is reduced to a characteristic value problem. The resulting problem is solved and stability criteria are obtained in terms of critical Taylor numbers. In general, it is found that thermoviscoelastic fluids are more stable than classical viscous fluids and viscoinelastic fluids under similar conditions.

  14. Calculation of orbit chaoticity indicators based on the tangent vectors: application to the restricted three-body problem. (Russian Title: Вычисление показателей хаотичности орбит, основанных на касательных векторах: применение к ограниченной задаче трех тел)

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.; Koksin, A. M.

    2013-07-01

    A comparison of several known fast chaos indicators is implemented on the examples of studying dynamics in the planar circular restricted three-body problem. In order to identify periodic orbits we introduce a new characteristic quantity called the orthogonal MEGNO-index.

  15. A Comparison of Averaged and Full Models to Study the Third-Body Perturbation

    PubMed Central

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made. PMID:24319348

  16. A comparison of averaged and full models to study the third-body perturbation.

    PubMed

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.

  17. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  18. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  19. Orbit period modulation for relative motion using continuous low thrust in the two-body and restricted three-body problems

    NASA Astrophysics Data System (ADS)

    Arnot, C. S.; McInnes, C. R.; McKay, R. J.; Macdonald, M.; Biggs, J.

    2018-02-01

    This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.

  20. Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.

    2003-01-01

    NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the hub relative to L2. In this paper, the differential equations are developed through second order in the distance of the hub from the libration point. A modified Lindstedt-Poincad perturbation method is employed to construct the solution of these differential equations through that same order of magnitude. In the course of the solution process, relationships are determined between the initial conditions of the telescopes, selected in order to avoid resonance excitation. As the differential equations include the hub position, it is necessary to simultaneously develop the solution for the hub. As has been done in past analyses of the circular restricted problem, the hub position is written in a power series formulation in terms of its distance from L2. Then, in order to be included in the telescope equations, the hub solution is cast in terms of the nonlinear frequency of the relative telescope motion. In the course of the analysis, it is determined that the hub should also maintain a halo orbit - about L2. Additionally, relationships are formed between the initial conditions of the telescopes and the hub. These relationships may be used to associate sets of initial conditions with particular orientations of the telescope plane. The accuracy of the analytical solution is verified through various simulations and comparison to numerical integration of the differential equations. The results of the simulations are presented, along with a graphical representation of the relationships between the initial conditions of the telescopes and hub.

  1. Comparison of Low-Energy Lunar Transfer Trajectories to Invariant Manifolds

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Parker, Jeffrey S.

    2011-01-01

    In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants are computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.

  2. Spacecraft Orbit Design in the Circular Restricted Three-Body Problem Using Higher-Dimensional Poincare Maps

    DTIC Science & Technology

    2013-12-01

    the plane of the primary bodies. That is, motion is possible only in the x and y directions. For example, in the ...Earth-Moon planar CR3BP, the S/C path remains in the same plane as the Moon’s orbit about the Earth—more precisely, the orbit of both the Earth and...travels out of the plane of the massive primaries, in the z direction as well. Importantly, there is added complexity in the spatial

  3. Energy analysis in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-07-01

    The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  4. Energy Analysis in the Elliptic Restricted Three-body Problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  5. A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.

    PubMed

    Razvi, F; Gargiulo, G; Worcel, A

    1983-08-01

    Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.

  6. Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermawan, B., E-mail: budider@as.itb.ac.id; Hidayat, T., E-mail: taufiq@as.itb.ac.id; Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id

    2015-09-30

    By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move inmore » nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.« less

  7. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control

    NASA Astrophysics Data System (ADS)

    Pérez-Palau, Daniel; Epenoy, Richard

    2018-02-01

    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  8. Minimum impulse three-body trajectories.

    NASA Technical Reports Server (NTRS)

    D'Amario, L.; Edelbaum, T. N.

    1973-01-01

    A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.

  9. Heteroclinic, Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations

    NASA Technical Reports Server (NTRS)

    Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.

    2013-01-01

    Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.

  10. Connection between three-body configuration and four-body configuration of the Sitnikov problem when one of the masses approaches zero: circular case

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-09-01

    In this manuscript we have established averaged equation of motion of the Sitnikov restricted three- body and four-body problem when all the primaries are point masses, by applying the Van der Pol transformation and averaging technique of J. Guckenheimer and P. Holmes (in Nonlinear Oscillations, Dynamical System Bifurcations of Vector Fields, Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2 n/3, n=4, ω is the angular velocity of the coordinate system. Further we established the Series solution of the three-body and four-body problem in the sense of Sitnikov. Lastly the periodicities of the solutions have been examined by the Poincare section and four-body and three-body problem have been compared by different comparative graphs and surfaces.

  11. Temporary Flight Restrictions (TFRs)

    DOT National Transportation Integrated Search

    1997-02-28

    This advisory circular (AC) describes conditions under which the Federal : Aviation Administration (FAA) may impose a temporary flight restriction (TFR). : This AC explalins which FAA elements have been authorized, by the Administrator, : to issue TF...

  12. Research on periodic orbits in the three problem

    NASA Astrophysics Data System (ADS)

    Fernández, S.; Gámez, J.

    In order to investigate the possible existence of small planets in extrasolar systems, a restricted, circular and plane three body problem is used. One of the two primaries has a mass similar to the Sun and the other one has a mass greater than Jupiter. Periodic and quasi-periodic orbits for the third body with different values of the Jacobi constant (C) are found by numerical methods. One of the three cases studied is fictitious, the others resemble two real systems of ext rasolar planets. The Everhart method is used and the results show the existence of periodic and quasi-periodic orbits for the lesser value of C. Irregular orbits appear for the other values of C, specially on the exterior zone of the secondary body.

  13. Completed Beltrami-Michell formulation for analyzing mixed boundary value problems in elasticity

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Kaljevic, Igor; Hopkins, Dale A.; Saigal, Sunil

    1995-01-01

    In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the Beltrami-Michell formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the more prevalent displacement of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force formulation, has been termed the completed Beltrami-Michell formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational functional of the integrated force method. In the CBMF, stresses for kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the variational functional of the integrated force method. Several examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value problems under thermomechanical loads. Selected example problems include a cylindrical shell wherein membrane and bending responses are coupled, and a composite circular plate.

  14. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  15. Transport and Capture of Comets

    NASA Astrophysics Data System (ADS)

    Ross, S. D.; Koon, W. S.; Lo, M. W.; Marsden, J. E.

    2001-11-01

    The dynamics of comets and other solar system objects which have a three-body energy close to that of the collinear libration points are known to exhibit a complicated array of behaviors such as rapid transition between the interior and exterior Hill's regions, temporary capture, and collision. The invariant manifold structures of the collinear libration points for the restricted three-body problem, which exist for a range of energies, provide the framework for understanding these transport phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold "tubes" associated to libration point orbits are the phase space conduits transporting material to and from the smaller primary body (e.g., Jupiter), and between primary bodies for separate three-body systems (e.g., Saturn and Jupiter). This point of view has worked well in describing the planar circular restricted three-body problem. The current work seeks to extend the results to three degrees of freedom. This work was supported by the National Science Foundation Grant No. KDI/ATM-9873133 under a contract with the Jet Propulsion Laboratory, NASA.

  16. 2 CFR 220.15 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved COST PRINCIPLES FOR EDUCATIONAL INSTITUTIONS (OMB CIRCULAR A-21) § 220.15 Policy. The principles in this part are designed to provide that the... accounting principles, except where restricted or prohibited by law. Agencies are not expected to place...

  17. Libration of arguments of circumbinary-planet orbits at resonance

    NASA Astrophysics Data System (ADS)

    Schubart, Joachim

    2017-06-01

    The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.

  18. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  19. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  20. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  1. Orbital dynamics in the post-Newtonian planar circular restricted Sun-Jupiter system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, F. L.

    The theory of the post-Newtonian (PN) planar circular restricted three-body problem is used for numerically investigating the orbital dynamics of a test particle (e.g. a comet, asteroid, meteor or spacecraft) in the planar Sun-Jupiter system with a scattering region around Jupiter. For determining the orbital properties of the test particle, we classify large sets of initial conditions of orbits for several values of the Jacobi constant in all possible Hill region configurations. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. In order to get a spherical view of the dynamics of the system, the grids of the initial conditions of the orbits are defined on different types of two-dimensional planes. We locate the different types of basins and we also relate them with the corresponding spatial distributions of the escape and collision time. Our thorough analysis exposes the high complexity of the orbital dynamics and exhibits an appreciable difference between the final states of the orbits in the classical and PN approaches. Furthermore, our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant, along with a remarkable presence of fractal basin boundaries. Our outcomes are compared with the earlier ones regarding other planetary systems.

  2. Automated generation and optimization of ballistic lunar capture transfer trajectories

    NASA Astrophysics Data System (ADS)

    Griesemer, Paul Ricord

    The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.

  3. Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Luquette, Richard; Segerman, A. M.; Zedd, M. F.

    2005-01-01

    NASA is planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed system of telescope spacecraft, configured in a plane about a hub. Several sets of differential equations are written for the formation flight of such telescopes relative to the hub, with varying levels of fidelity. Effects are cast as additive perturbations to the circular restricted three-body problem, expanded in terms of the system distanced, to an accuracy of 10-20 m. These include Earth's orbital eccentricity, lunar motion, solar radiation pressure, and small thrusting forces. Simulations validating the expanded differential equations are presented.

  4. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  5. Primer-optimized results and trends for circular phasing and other circle-to-circle impulsive coplanar rendezvous

    NASA Astrophysics Data System (ADS)

    Sandrik, Suzannah

    Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.

  6. Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method

    NASA Astrophysics Data System (ADS)

    Wang, Shoucheng; Huang, Guoqing; Wu, Xin

    2018-02-01

    In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.

  7. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  8. φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis

    PubMed Central

    Siegel, Jeff E. D.; Hayashi, Masaki

    1969-01-01

    Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type. PMID:5823229

  9. Inclined asymmetric librations in exterior resonances

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  10. The effect of wall interference upon the aerodynamic characteristics of an airfoil spanning a closed-throat circular wind tunnel

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Graham, Donald J

    1946-01-01

    The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.

  11. Evaluating the interpersonal content of the MMPI-2-RF Interpersonal Scales.

    PubMed

    Ayearst, Lindsay E; Sellbom, Martin; Trobst, Krista K; Bagby, R Michael

    2013-01-01

    Convergence between the MMPI-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) interpersonal scales and 2 interpersonal circumplex (IPC) measures was examined. University students (N = 405) completed the MMPI-2 and 2 IPC measures, the Interpersonal Adjectives Scales Revised Big Five Version (IASR-B5; Trapnell & Wiggins, 1990) and the Inventory of Interpersonal Problems Circumplex (IIP-C; Horowitz, Alden, Wiggins, & Pincus, 2000). Internal consistency was adequate for 3 of the 6 scales investigated. The majority of scales were located in their hypothesized locations, although magnitude of correlations was somewhat weaker than anticipated, partly owing to restricted range from using a healthy sample. The expected pattern of correlations that defines a circular matrix was demonstrated, lending support for the convergent and discriminant validity of the MMPI-2-RF interpersonal scales with respect to the assessment of interpersonal traits and problems.

  12. Automatic differentiation for Fourier series and the radii polynomial approach

    NASA Astrophysics Data System (ADS)

    Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian

    2016-11-01

    In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).

  13. Coupled orbit-attitude mission design in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide

    Trajectory design increasingly leverages multi-body dynamical structures that are based on an understanding of various types of orbits in the Circular Restricted Three-Body Problem (CR3BP). Given the more complex dynamical environment, mission applications may also benefit from deeper insight into the attitude motion. In this investigation, the attitude dynamics are coupled with the trajectories in the CR3BP. In a highly sensitive dynamical model, such as the orbit-attitude CR3BP, periodic solutions allow delineation of the fundamental dynamical structures. Periodic solutions are also a subset of motions that are bounded over an infinite time-span (assuming no perturbing factors), without the necessity to integrate over an infinite time interval. Euler equations of motion and quaternion kinematics describe the rotational behavior of the spacecraft, whereas the translation of the center of mass is modeled in the CR3BP equations. A multiple shooting and continuation procedure are employed to target orbit-attitude periodic solutions in this model. Application of Floquet theory, Poincare mapping, and grid search to identify initial guesses for the targeting algorithm is described. In the Earth-Moon system, representative scenarios are explored for axisymmetric vehicles with various inertia characteristics, assuming that the vehicles move along Lyapunov, halo as well as distant retrograde orbits. A rich structure of possible periodic behaviors appears to pervade the solution space in the coupled problem. The stability analysis of the attitude dynamics for the selected families is included. Among the computed solutions, marginally stable and slowly diverging rotational behaviors exist and may offer interesting mission applications. Additionally, the solar radiation pressure is included and a fully coupled orbit-attitude model is developed. With specific application to solar sails, various guidance algorithms are explored to direct the spacecraft along a desired path, when the mutual interaction between orbit and attitude dynamics is considered. Each strategy implements a different form of control input, ranging from instantaneous reorientation of the sail pointing direction to the application of control torques, and it is demonstrated within a simple station keeping scenario.

  14. Alternative transfer to the Earth-Moon Lagrangian points L4 and L5 using lunar gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    2014-02-01

    Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon's sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon's gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.

  15. Asymptotic theory of circular polarization memory.

    PubMed

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  16. From star-disc encounters to numerical solutions for a subset of the restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Breslau, Andreas; Vincke, Kirsten; Pfalzner, Susanne

    2017-03-01

    Various astrophysical processes exist, where the fly-by of a massive object affects matter that is initially supported against gravity by rotation. Examples are perturbations of galaxies, protoplanetary discs, or planetary systems. We approximate such events as a subset of the restricted three-body problem by considering only perturbations of non-interacting low-mass objects that are initially on circular Keplerian orbits. In this paper, we present a new parametrisation of the initial conditions of this problem. Under certain conditions, the initial positions of the low-mass objects can be specified as being largely independent of the initial position of the perturber. In addition, exploiting the known scalings of the problem reduces the parameter space of initial conditions for one specific perturbation to two dimensions. To this two-dimensional initial condition space, we have related the final properties of the perturbed trajectories of the low-mass objects from our numerical simulations. In this way, maps showing the effect of the perturbation on the low-mass objects were created, which provide a new view on the perturbation process. Comparing the maps for different mass-ratios reveals that the perturbations by low- and high-mass perturbers are dominated by different physical processes. The equal-mass case is a complicated mixture of the other two cases. Since the final properties of trajectories with similar initial conditions are also usually similar, the results of the limited number of integrated trajectories can be generalised to the full presented parameter space by interpolation. Since our results are also unique within the accuracy strived for, they constitute general numerical solutions for this subset of the restricted three-body problem. As such, they can be used to predict the evolution of real physical problems by simple transformations, such as scaling, without further simulations. Possible applications are the perturbation of protoplanetary discs or planetary systems by the fly-by of another star. Here, the maps enable us, for example, to quantify the portion of unbound material for any periastron distance without the need for further simulations.

  17. Exploration of bounded motion near binary systems comprised of small irregular bodies

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic; Howell, Kathleen C.

    2015-10-01

    To investigate the behavior of a spacecraft near a pair of irregular bodies, consider a three-body configuration (one massless). Two massive bodies, P_1 and P_2, form the primary system; each primary is modeled as a sphere or an ellipsoid. Two primary configurations are addressed: `synchronous' and `non-synchronous'. Concepts and tools similar to those applied in the circular restricted three-body problem are exploited to construct periodic trajectories for a third body in synchronous systems. In non-synchronous systems, however, the search for third body periodic orbits is complicated by several factors. The mathematical model for the third-body motion is now time-variant and the motion of P_2 is not trivial.

  18. Earth-Moon Libration Point Orbit Stationkeeping: Theory, Modeling and Operations

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.; Woodard, Mark A.

    2013-01-01

    Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincare maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.

  19. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  20. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    NASA Astrophysics Data System (ADS)

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the ``interior'' and ``exterior'' Hill's regions and other resonant phenomena.

  1. Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu

    1989-01-01

    A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.

  2. Symbolic computation of the Birkhoff normal form in the problem of stability of the triangular libration points

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. I.

    2008-05-01

    The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.

  3. Practical sliced configuration spaces for curved planar pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, E.

    1999-01-01

    In this article, the author presents a practical configuration-space computation algorithm for pairs of curved planar parts, based on the general algorithm developed by Bajaj and the author. The general algorithm advances the theoretical understanding of configuration-space computation, but is too slow and fragile for some applications. The new algorithm solves these problems by restricting the analysis to parts bounded by line segments and circular arcs, whereas the general algorithm handles rational parametric curves. The trade-off is worthwhile, because the restricted class handles most robotics and mechanical engineering applications. The algorithm reduces run time by a factor of 60 onmore » nine representative engineering pairs, and by a factor of 9 on two human-knee pairs. It also handles common special pairs by specialized methods. A survey of 2,500 mechanisms shows that these methods cover 90% of pairs and yield an additional factor of 10 reduction in average run time. The theme of this article is that application requirements, as well as intrinsic theoretical interest, should drive configuration-space research.« less

  4. Supermarkets and unhealthy food marketing: An international comparison of the content of supermarket catalogues/circulars.

    PubMed

    Charlton, Emma L; Kähkönen, Laila A; Sacks, Gary; Cameron, Adrian J

    2015-12-01

    Supermarket marketing activities have a major influence on consumer food purchases. This study aimed to assess and compare the contents of supermarket marketing circulars from a range of countries worldwide from an obesity prevention perspective. The contents of supermarket circulars from major supermarket chains in 12 non-random countries were collected and analysed over an eight week period from July to September 2014 (n=89 circulars with 12,563 food products). Circulars were largely English language and from countries representing most continents. Food products in 25 sub-categories were categorised as discretionary or non-discretionary (core) food or drinks based on the Australian Guide to Healthy Eating. The total number of products in each subcategory in the whole circular, and on front covers only, was calculated. Circulars from most countries advertised a high proportion of discretionary foods. The only exceptions were circulars from the Philippines (no discretionary foods) and India (11% discretionary food). Circulars from six countries advertised more discretionary foods than core foods. Front covers tended to include a much greater proportion of healthy products than the circulars overall. Supermarket circulars in most of the countries examined include a high percentage of discretionary foods, and therefore promote unhealthy eating behaviours that contribute to the global obesity epidemic. A clear opportunity exists for supermarket circulars to promote rather than undermine healthy eating behaviours of populations. Governments need to ensure that supermarket marketing is included as part of broader efforts to restrict unhealthy food marketing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  6. Molecular cloning and physical mapping of the genome of fish lymphocystis disease virus.

    PubMed

    Darai, G; Delius, H; Clarke, J; Apfel, H; Schnitzler, P; Flügel, R M

    1985-10-30

    A defined and complete gene library of the fish lymphocystis disease virus (FLDV) genome was established. FLDV DNA was cleaved with EcoRI, BamHI, EcoRI/BamHI and EcoRI/HindIII and the resulting fragments were inserted into the corresponding sites of the pACYC184 or pAT153 plasmid vectors using T4 DNA ligase. Since FLDV DNA is highly methylated at CpG sequences (Darai et al., 1983; Wagner et al., 1985), an Escherichia coli GC-3 strain was required to amplify the recombinant plasmids harboring the FLDV DNA fragments. Bacterial colonies harboring recombinant plasmids were selected. All cloned fragments were individually identified by digestion of the recombinant plasmid DNA with different restriction enzymes and screened by hybridization of recombinant plasmid DNA to viral DNA. This analysis revealed that sequences representing 100% of the viral genome were cloned. Using these recombinant plasmids, the physical maps of the genome were constructed for BamHI, EcoRI, BestEII, and PstI restriction endonucleases. Although the FLDV genome is linear, due to circular permutation the restriction maps are circular.

  7. Effect of interfacial stresses in an elastic body with a nanoinclusion

    NASA Astrophysics Data System (ADS)

    Vakaeva, Aleksandra B.; Grekov, Mikhail A.

    2018-05-01

    The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.

  8. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    NASA Astrophysics Data System (ADS)

    Feng, Jinglang; Hou, Xiyun

    2017-07-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  9. Market fallacies in health economics.

    PubMed

    Grant, R J

    1991-12-07

    Serious methodological errors that plague studies in health economics are examined with the focus on misconceptions about the nature and functions of markets. The belief that market economics do not apply to the medical marketplace involves circular reasoning that treats man-made laws and regulations as though they were unchangeable laws of nature. Arguments against the market provision of health care are questioned and the 'information gap' problem is shown to be aggravated, if not caused, by regulations that prevent normal information flows in the market. Similarly, the contention that health care insurance pushes up costs is criticised on the basis of both theory and empirical evidence. The apparent failure to contain costs may be blamed on legal restrictions, government spending and pressure from medical associations. Confusion between normative theory and positive theory is also examined.

  10. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  11. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  12. On the restricted four-body problem with the effect of small perturbations in the Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Suraj, Md Sanam; Aggarwal, Rajiv; Arora, Monika

    2017-09-01

    We have studied the restricted four-body problem (R4BP) with the effect of the small perturbation in the Coriolis and centrifugal forces on the libration points and zero velocity curves (ZVCs). Further, we have supposed that all the primaries are set in an equilateral triangle configuration, moving in the circular orbits around their common centre of mass. We have observed that the effect of the small perturbation in centrifugal force has a substantial effect on the location of libration points but a small perturbation in the Coriolis force has no impact on the location of libration points. But the stability of the libration points is highly influenced by the effect of the small perturbation in the Coriolis force. It is observed that as the Coriolis parameter increases, the libration points become stable. Further, it is found that the effect of the small perturbation in the centrifugal force has a substantial influence on the regions of possible motion. Also, when the effect of small perturbation in the centrifugal force increases the forbidden region decreases; here the motion is not possible for the infinitesimal mass. It is observed when the value of the Jacobian constant decreases, the regions of possible motion increase. In addition, we have also discussed how small perturbations in the Coriolis and centrifugal forces influence the Newton-Raphson basins of convergence.

  13. 50 CFR 665.245 - Gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...

  14. 50 CFR 665.245 - Gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...

  15. 50 CFR 665.245 - Gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...

  16. Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert

    NASA Astrophysics Data System (ADS)

    Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.

    2018-05-01

    The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.

  17. A note on the modelling of circular smallholder migration.

    PubMed

    Bigsten, A

    1988-01-01

    "It is argued that circular migration [in Africa] should be seen as an optimization problem, where the household allocates its labour resources across activities, including work which requires migration, so as to maximize the joint family utility function. The migration problem is illustrated in a simple diagram, which makes it possible to analyse economic aspects of migration." excerpt

  18. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.

    PubMed

    Takizawa, Ken; Beaucamp, Anthony

    2017-09-18

    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  19. THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Fabian; Rezzolla, Luciano; Barausse, Enrico

    2016-07-10

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formulamore » is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.« less

  20. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes

    PubMed Central

    Simons, Michelle; Szczelkun, Mark D.

    2011-01-01

    The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed. PMID:21712244

  1. Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions

    NASA Astrophysics Data System (ADS)

    Salmin, Vadim V.

    2017-01-01

    Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.

  2. Time-optimal control of the spacecraft trajectories in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Starinova, O. L.; Fain, M. K.; Materova, I. L.

    2017-01-01

    This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.

  3. Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System

    NASA Technical Reports Server (NTRS)

    Hou, Xi-yun; Tang, Jing-shi; Liu, Lin

    2007-01-01

    The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed.

  4. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  5. The solution space of sorting by DCJ.

    PubMed

    Braga, Marília D V; Stoye, Jens

    2010-09-01

    In genome rearrangements, the double cut and join (DCJ) operation, introduced by Yancopoulos et al. in 2005, allows one to represent most rearrangement events that could happen in multichromosomal genomes, such as inversions, translocations, fusions, and fissions. No restriction on the genome structure considering linear and circular chromosomes is imposed. An advantage of this general model is that it leads to considerable algorithmic simplifications compared to other genome rearrangement models. Recently, several works concerning the DCJ operation have been published, and in particular, an algorithm was proposed to find an optimal DCJ sequence for sorting one genome into another one. Here we study the solution space of this problem and give an easy-to-compute formula that corresponds to the exact number of optimal DCJ sorting sequences for a particular subset of instances of the problem. We also give an algorithm to count the number of optimal sorting sequences for any instance of the problem. Another interesting result is the demonstration of the possibility of obtaining one optimal sorting sequence by properly replacing any pair of consecutive operations in another optimal sequence. As a consequence, any optimal sorting sequence can be obtained from one other by applying such replacements successively, but the problem of finding the shortest number of replacements between two sorting sequences is still open.

  6. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    PubMed

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    PubMed Central

    Rector, Annabel; Tachezy, Ruth; Van Ranst, Marc

    2004-01-01

    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 104-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information. PMID:15113879

  8. [Research on problem of exogenous pollution of Chinese medicine resources from perspective of circular economy].

    PubMed

    Yang, Yi; Tian, Kan; Tian, Hong

    2016-08-01

    Based on the in-depth analysis of the current situation of the exogenous pollution of Chinese medicine resources, this research mainly discusses the intrinsic link and practical significance between the development of circular economy in Chinese medicine resources and the control of the problem of the exogenous pollution from the perspective of circular economy, and proposes some suggestions to develop the recycling economy of Chinese medicine resources from the establishment of legal system, mechanism of development, production norms, industry standards and regulatory system of the recycling of Chinese medicine resources. Copyright© by the Chinese Pharmaceutical Association.

  9. Mechanism for circularization of linear DNAs: circular parvovirus MVM DNA is formed by a "noose" sliding in a "lasso"-like DNA structure.

    PubMed

    Bratosin, S; Laub, O; Tal, J; Aloni, Y

    1979-09-01

    During an electron-microscopic survey with the aim of identifying the parvovirus MVM transcription template, we observed previously unidentified structures of MVM DNA in lysates of virus-infected cells. These included double-stranded "lasso"-like structures and relaxed circles. Both structures were of unit length MVM DNA, indicating that they were not intermediates formed during replication; they each represented about 5% of the total nuclear MVM DNA. The proportion of these structures was unchanged after digestion with sodium dodecyl sulfate/Pronase and RNase and after mild denaturation treatment. Cleavage of the "lasso" structures with EcoRI restriction endonuclease indicated that the "noose" part of the "lasso" structure is located on the 5' side of the genomic single-stranded MVM DNA. A model is presented for the molecular nature of the circularization process of MVM DNA in which the "lasso" structures are identified as intermediates during circle formation. This model proposes a mechanism for circularization of linear DNAs.

  10. 7 CFR 3015.120 - Closeout.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... audits (See Attachment L, Circular A-102 and Attachment K of Circular A-110) are not a required part of... are problems with a grant or subgrant that require audit attention. If a USDA agency considers a final...

  11. 7 CFR 3015.120 - Closeout.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... audits (See Attachment L, Circular A-102 and Attachment K of Circular A-110) are not a required part of... are problems with a grant or subgrant that require audit attention. If a USDA agency considers a final...

  12. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  13. Rapid step-gradient purification of mitochondrial DNA.

    PubMed

    Welter, C; Meese, E; Blin, N

    1988-01-01

    A convenient modification of the step gradient (CsCl/ethidium bomide) procedure is described. This rapid method allows isolation of covalently closed circular DNA separated from contaminating proteins, RNA and chromosomal DNA in ca. 5 h. Large scale preparations can be performed for circular DNA from eukaryotic organelles (mitochondria). The protocol uses organelle pelleting/NaCl-sarcosyl incubation steps for mitochondria followed by a CsCl step gradient and exhibits yields equal to the conventional procedures. It results in DNA sufficiently pure to be used for restriction endonuclease analysis, subcloning, 5'-end labeling, gel retention assays, and various types of hybridization.

  14. Livestock Waste Management in a Quality Environment. Circular 1074.

    ERIC Educational Resources Information Center

    Jedele, D. G., Ed.

    This circular provides information to assist in assessing the pollution potential of livestock operations. It discusses a systematic approach to resolving problems through feedlot runoff control, liquid manure handling, hauling and lagooning, and ditching. (CS)

  15. The 3D elliptic restricted three-body problem: periodic orbits which bifurcate from limiting restricted problems. Complex instability

    NASA Astrophysics Data System (ADS)

    Ollé, Mercè; Pacha, Joan R.

    1999-11-01

    In the present work we use certain isolated symmetric periodic orbits found in some limiting Restricted Three-Body Problems to obtain, by numerical continuation, families of symmetric periodic orbits of the more general Spatial Elliptic Restricted Three Body Problem. In particular, the Planar Isosceles Restricted Three Body Problem, the Sitnikov Problem and the MacMillan problem are considered. A stability study for the periodic orbits of the families obtained - specially focused to detect transitions to complex instability - is also made.

  16. Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1987-01-01

    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.

  17. Large-scale additive manufacturing with bioinspired cellulosic materials.

    PubMed

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  18. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-06-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  19. Fully Numerical Methods for Continuing Families of Quasi-Periodic Invariant Tori in Astrodynamics

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Olikara, Zubin P.; Scheeres, Daniel J.

    2018-01-01

    Quasi-periodic invariant tori are of great interest in astrodynamics because of their capability to further expand the design space of satellite missions. However, there is no general consent on what is the best methodology for computing these dynamical structures. This paper compares the performance of four different approaches available in the literature. The first two methods compute invariant tori of flows by solving a system of partial differential equations via either central differences or Fourier techniques. In contrast, the other two strategies calculate invariant curves of maps via shooting algorithms: one using surfaces of section, and one using a stroboscopic map. All of the numerical procedures are tested in the co-rotating frame of the Earth as well as in the planar circular restricted three-body problem. The results of our numerical simulations show which of the reviewed procedures should be preferred for future studies of astrodynamics systems.

  20. Disposal of Liquid Wastes from Parlors and Milkhouses. Special Circular 154.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides information to assist in assessing the pollution potential of liquid wastes from parlors and milkhouses. Approaches to resolving problems through stabilization lagoons, irrigation, and tank collection as mandated in statutory authority are discussed. (CS)

  1. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, A. M.; Boria, V. E.; Gimeno, B.

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also beenmore » explored.« less

  2. 75 FR 15597 - Ensuring Enforcement and Implementation of Abortion Restrictions in the Patient Protection and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... generally accepted accounting principles, OMB funds management circulars, and accounting guidance provided... exchanges that will be operational in 2014. The Act also imposes strict payment and accounting requirements... Federal financial assistance. The guidelines shall also offer technical information that States should...

  3. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.

    2018-07-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  4. Two-Body Approximations in the Design of Low-Energy Transfers Between Galilean Moons

    NASA Astrophysics Data System (ADS)

    Fantino, Elena; Castelli, Roberto

    Over the past two decades, the robotic exploration of the Solar System has reached the moons of the giant planets. In the case of Jupiter, a strong scientific interest towards its icy moons has motivated important space missions (e.g., ESAs' JUICE and NASA's Europa Mission). A major issue in this context is the design of efficient trajectories enabling satellite tours, i.e., visiting the several moons in succession. Concepts like the Petit Grand Tour and the Multi-Moon Orbiter have been developed to this purpose, and the literature on the subject is quite rich. The models adopted are the two-body problem (with the patched conics approximation and gravity assists) and the three-body problem (giving rise to the so-called low-energy transfers, LETs). In this contribution, we deal with the connection between two moons, Europa and Ganymede, and we investigate a two-body approximation of trajectories originating from the stable/unstable invariant manifolds of the two circular restricted three body problems, i.e., Jupiter-Ganymede and Jupiter-Europa. We develop ad-hoc algorithms to determine the intersections of the resulting elliptical arcs, and the magnitude of the maneuver at the intersections. We provide a means to perform very fast and accurate evaluations of the minimum-cost trajectories between the two moons. Eventually, we validate the methodology by comparison with numerical integrations in the three-body problem.

  5. Black plastics: Linear and circular economies, hazardous additives and marine pollution.

    PubMed

    Turner, Andrew

    2018-08-01

    Black products constitute about 15% of the domestic plastic waste stream, of which the majority is single-use packaging and trays for food. This material is not, however, readily recycled owing to the low sensitivity of black pigments to near infrared radiation used in conventional plastic sorting facilities. Accordingly, there is mounting evidence that the demand for black plastics in consumer products is partly met by sourcing material from the plastic housings of end-of-life waste electronic and electrical equipment (WEEE). Inefficiently sorted WEEE plastic has the potential to introduce restricted and hazardous substances into the recyclate, including brominated flame retardants (BFRs), Sb, a flame retardant synergist, and the heavy metals, Cd, Cr, Hg and Pb. The current paper examines the life cycles of single-use black food packaging and black plastic WEEE in the context of current international regulations and directives and best practices for sorting, disposal and recycling. The discussion is supported by published and unpublished measurements of restricted substances (including Br as a proxy for BFRs) in food packaging, EEE plastic goods and non-EEE plastic products. Specifically, measurements confirm the linear economy of plastic food packaging and demonstrate a complex quasi-circular economy for WEEE plastic that results in significant and widespread contamination of black consumer goods ranging from thermos cups and cutlery to tool handles and grips, and from toys and games to spectacle frames and jewellery. The environmental impacts and human exposure routes arising from WEEE plastic recycling and contamination of consumer goods are described, including those associated with marine pollution. Regarding the latter, a compilation of elemental data on black plastic litter collected from beaches of southwest England reveals a similar chemical signature to that of contaminated consumer goods and blended plastic WEEE recyclate, exemplifying the pervasiveness of the problem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism.

    PubMed

    Muto, Shunsuke; Rusz, Ján; Tatsumi, Kazuyoshi; Adam, Roman; Arai, Shigeo; Kocevski, Vancho; Oppeneer, Peter M; Bürgler, Daniel E; Schneider, Claus M

    2014-01-01

    Electron magnetic circular dichroism (EMCD) allows the quantitative, element-selective determination of spin and orbital magnetic moments, similar to its well-established X-ray counterpart, X-ray magnetic circular dichroism (XMCD). As an advantage over XMCD, EMCD measurements are made using transmission electron microscopes, which are routinely operated at sub-nanometre resolution, thereby potentially allowing nanometre magnetic characterization. However, because of the low intensity of the EMCD signal, it has not yet been possible to obtain quantitative information from EMCD signals at the nanoscale. Here we demonstrate a new approach to EMCD measurements that considerably enhances the outreach of the technique. The statistical analysis introduced here yields robust quantitative EMCD signals. Moreover, we demonstrate that quantitative magnetic information can be routinely obtained using electron beams of only a few nanometres in diameter without imposing any restriction regarding the crystalline order of the specimen.

  7. Co-simulation of a complete rectenna with a circular slot loop antenna in CPW technology

    NASA Astrophysics Data System (ADS)

    Rivière, Jérôme; Douyère, Alexandre; Cazour, Jonathan; Alicalapa, Frédéric; Luk, Jean-Daniel Lan Sun

    2017-05-01

    This study starts with the design of a planar and compact CPW antenna fabricated on Arlon AD1000 substrate, ɛr=10.35. The antenna is a coplanar waveguide (CPW) fed circular slot loop antenna matched to the standard impedance 50 Ω by two stubs. The goal is to implement this antenna with a CPW RF/DC rectifier to build an optimized low power level rectenna. The rectenna design is restricted to allow easy and fast fabrication of an array with a high reproducibility. The full rectenna is simulated and achieves 10% effciency at -20 dBm.

  8. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Pt. 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1999-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  9. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Martin, Mikulas M., Jr.; Sumpter, Rod

    2000-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  10. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Sumpter, Rod

    1997-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  11. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    PubMed

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  12. Alternative Transfer to the Earth-Moon Lagrangian Points L4 and L5 Using Lunar Gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, Francisco; Winter, Othon; Macau, Elbert; Bertachini de Almeida Prado, Antonio Fernando

    2012-07-01

    Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies transfer orbits in the planar restricted three-body problem. To avoid solving a two-boundary problem, the patched-conic approximation is used to find initial conditions to transfer a spacecraft between an Earth circular parking orbit and the Lagrangian points L4, L5 (in the Earth-Moon system), such that a swing-by maneuver is applied using the lunar gravity. We also found orbits that can be used to make a tour to the Lagrangian points L4, L5 based on the theorem of image trajectories. Keywords: Stable Lagrangian points, L4, L5, Three-Body problem, Patched Conic, Swing-by

  13. Two hybrid compaction algorithms for the layout optimization problem.

    PubMed

    Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn

    2007-01-01

    In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.

  14. Uniform circular motion in general relativity: existence and extendibility of the trajectories

    NASA Astrophysics Data System (ADS)

    de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.

    2017-06-01

    The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.

  15. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  16. Development of an orthotropic hole element

    NASA Technical Reports Server (NTRS)

    Smith, C. V.; Markham, J. W.; Kelley, J. W.; Kathiresan, K.

    1981-01-01

    A finite element was developed which adequately represents the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This was achieved with a complementary virtual work formulation of the stiffness and stress matrices for a square element with center circular hole. The assumed stress state provides zero shearing stress on the hole boundary, so the element is suitable for problems involving load transfer without friction. The element has been implemented in the NASTRAN computer program, and sample problem results are presented.

  17. The axisymmetric elasticity problem for a laminated plate containing a circular hole

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The elasticity problem for a laminated thick plate which consists of two bonded dissimilar layers and which contains a circular hole is considered. The problem is formulated for arbitrary axisymmetric tractions on the hole surface by using the Love strain function. Through the expansion of the boundary conditions into Fourier series the problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Of particular interest in the problem are the stresses along the interface as they relate to the question of delamination failure of the composite plate. These stresses are calculated and are observed to become unbounded at the hole boundary. An approximate treatment of the singular behavior of the stress state is presented and the stress intensity factors are calculated.

  18. Environmental issues elimination through circular economy

    NASA Astrophysics Data System (ADS)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  19. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.

    PubMed

    Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua

    2017-11-08

    In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.

  20. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2002-01-01

    In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.

  1. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    NASA Astrophysics Data System (ADS)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  2. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  3. EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.

    PubMed

    Hartmann, Tom; Bernt, Matthias; Middendorf, Martin

    2018-05-30

    To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .

  4. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  5. Capture orbits around asteroids by hitting zero-velocity curves

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Hongwei; Zhang, Wei; Ma, Guangfu

    2017-12-01

    The problem of capturing a spacecraft from a heliocentric orbit into a high parking orbit around binary asteroids is investigated in the current study. To reduce the braking Δ V, a new capture strategy takes advantage of the three-body gravity of the binary asteroid to lower the inertial energy before applying the Δ V. The framework of the circular restricted three-body problem (CR3BP) is employed for the binary asteroid system. The proposed capture strategy is based on the mechanism by which inertial energy can be decreased sharply near zero-velocity curves (ZVCs). The strategy has two steps, namely, hitting the target ZVC and raising the periapsis by a small Δ V at the apoapsis. By hitting the target ZVC, the positive inertial energy decreases and becomes negative. Using a small Δ V, the spacecraft inserts into a bounded orbit around the asteroid. In addition, a rotating mass dipole model is employed for elongated asteroids, which leads to dynamics similar to that of the CR3BP. With this approach, the proposed capture strategy can be applied to elongated asteroids. Numerical simulations validate that the proposed capture strategy is applicable for the binary asteroid 90 Antiope and the elongated asteroid 216 Kleopatra.

  6. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    NASA Astrophysics Data System (ADS)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  7. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  8. FIBER AND INTEGRATED OPTICS: Anisotropic waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.

    1990-10-01

    A technology of fabrication of anisotropic single-mode fiber waveguides with an elliptic stress-inducing cladding and a circular core was developed. This technology was used to make fiber waveguides with a birefringence (1-3) × 10 - 4, a coefficient representing the coupling between the polarization modes h = (5-7) × 10 - 5 m - 1, and optical losses a = 0.5 dB/km in the vicinity of 1.6 μm. A comparison was made of the experimental data with the results of a theoretical analysis. It was found that certain mechanisms restricted the ability of these waveguides to maintain a constant polarization of the injected linearly polarized radiation.

  9. Symmetry and Circularization in the Damped Kepler Problem

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hamilton, Brian

    2007-05-01

    Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4

  10. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  11. Circular on early marriage, March 1988.

    PubMed

    1988-01-01

    This Circular calls on government at all levels in Hunan, China, to summon the departments concerned thoroughly to investigate the problem of early child-bearing so that they can do a good job in managing the problems of unregistered cohabiting and of unmarried mothers. The Circular recommends that: "It is necessary to criticize and educate, and even punish by discipline, those parents who connive with their sons and daughters in practicing unregistered cohabiting." It also states the following: "It is necessary to keep a strict check on registry personnel who do not carry out their duties properly. Those who violate laws and discipline, engage in malpractices for selfish ends, and practice bribery and corruption, resulting in early marriage and child-bearing, must be dealt with strictly. Legal sanctions must be enforced against those who break the law." full text

  12. Graph-Theoretic Representations for Proximity Matrices through Strongly-Anti-Robinson or Circular Strongly-Anti-Robinson Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps; Meulman, Jacqueline

    1998-01-01

    Introduces a method for fitting order-constrained matrices that satisfy the strongly anti-Robinson restrictions (SAR). The method permits a representation of the fitted values in a (least-squares) SAR approximating matrix as lengths of paths in a graph. The approach is illustrated with a published proximity matrix. (SLD)

  13. ¿Origen dinámico del polvo sobre la superficie de Iapetus?

    NASA Astrophysics Data System (ADS)

    Leiva, A. M.; Briozzo, C. B.

    We implement the three-dimensional Circular Restricted Three Body Prob- lem for low energy particles entering the Saturn­Iapetus system from the recently discovered dust ring. The distribution of impacts with the surface of Iapetus so obtained shows features resembling that of the dark regions observed in this satellite. FULL TEXT IN SPANISH

  14. Environmental issues elimination through circular economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition.more » Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.« less

  15. Possible Potentials Responsible for Stable Circular Relativistic Orbits

    ERIC Educational Resources Information Center

    Kumar, Prashant; Bhattacharya, Kaushik

    2011-01-01

    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In this paper an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic…

  16. Temperature field determination in slabs, circular plates and spheres with saw tooth heat generating sources

    NASA Astrophysics Data System (ADS)

    Diestra Cruz, Heberth Alexander

    The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.

  17. Two-craft Coulomb formation study about circular orbits and libration points

    NASA Astrophysics Data System (ADS)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.

  18. Control of wheeled mobile robot in restricted environment

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  19. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  20. High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen; Jensen, Jakob S.; Sigmund, Ole

    2012-10-01

    Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to ng = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed.

  1. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  2. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    NASA Astrophysics Data System (ADS)

    Poljak, Nikola

    2016-11-01

    The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.

  3. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1982-01-01

    An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.

  4. Benchmark dataset for undirected and Mixed Capacitated Arc Routing Problems under Time restrictions with Intermediate Facilities.

    PubMed

    Willemse, Elias J; Joubert, Johan W

    2016-09-01

    In this article we present benchmark datasets for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities (MCARPTIF). The problem is a generalisation of the Capacitated Arc Routing Problem (CARP), and closely represents waste collection routing. Four different test sets are presented, each consisting of multiple instance files, and which can be used to benchmark different solution approaches for the MCARPTIF. An in-depth description of the datasets can be found in "Constructive heuristics for the Mixed Capacity Arc Routing Problem under Time Restrictions with Intermediate Facilities" (Willemseand Joubert, 2016) [2] and "Splitting procedures for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemseand Joubert, in press) [4]. The datasets are publicly available from "Library of benchmark test sets for variants of the Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemse and Joubert, 2016) [3].

  5. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  6. Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.

    2005-01-01

    This Memorandum Report consists of a compilation of three individual reports, of increasing complexity, describing investigations of formation flight of spacecraft in the vicinity of the L2 Sun-Earth 1ibration point. The individual reports form the following parts of this compilation: - Introduction to the relative motion of spacecraft about the Sun-Earth L2 Point - Linear and quadratic modelling and solution of the relative motion - Modelling the Perturbations - Elliptical Earth Orbit, Lunar Gravity, Solar Radiation Pressure, Thrusters. The three parts are self-contained, with somewhat, varying notation and terminology. After fair1y significant literature searches: this new work (of Parts 2 and 3) is deemed to be unique because it describes the primary perturbations to the description of relative motion between nearby spacecraft. The effect of the elliptical motion of the Earth about the Sun was verified to be the dominant perturbation to the circular restricted three body problem. Contributions due to lunar gravity and solar radiation pressure are seen to have much smaller effect.

  7. Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Taura, Joel John

    2017-07-01

    In this paper the equations of motion of the circular restricted three body problem is modified to include radiation of the bigger primary, triaxiality of the smaller primary; and gravitational potential created by a belt. We have obtained that due to the perturbations, the locations of the triangular libration points and their linear stability are affected. The points move towards the bigger primary due to the resultant effect of the perturbations. Triangular libration points are stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass ratio affected by the perturbations. The radiation of the bigger primary and triaxiality of the smaller primary have destabilizing propensities, whereas the potential created by the belt has stabilizing propensity. This model could be applied in the study of the motion of a dust particle near radiating -triaxial binary system surrounded by a belt.

  8. Disentangling the Circularity in Sen's Capability Approach: An Analysis of the Co-Evolution of Functioning Achievement and Resources

    ERIC Educational Resources Information Center

    Binder, Martin; Coad, Alex

    2011-01-01

    There is an ambiguity in Amartya Sen's capability approach as to what constitutes an individual's resources, conversion factors and valuable functionings. What we here call the "circularity problem" points to the fact that all three concepts seem to be mutually endogenous and interdependent. To econometrically account for this…

  9. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  10. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    PubMed

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Scattering from randomly oriented circular discs with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1984-01-01

    A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross polarized returns.

  12. Scattering from randomly oriented circular discs with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1983-01-01

    A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross-polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross-polarized returns.

  13. Kramers-Kronig relations for interstellar polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.G.

    1975-12-01

    The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet. (AIP)

  14. Interactive computer programs for the graphic analysis of nucleotide sequence data.

    PubMed Central

    Luckow, V A; Littlewood, R K; Rownd, R H

    1984-01-01

    A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437

  15. Choice of antenna geometry for microwave power transmission from solar power satellites

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  16. A restricted Steiner tree problem is solved by Geometric Method II

    NASA Astrophysics Data System (ADS)

    Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

    2013-03-01

    The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

  17. Restrictive Educational Placements Increase Adolescent Risks for Students with Early-Starting Conduct Problems

    ERIC Educational Resources Information Center

    Powers, Christopher J.; Bierman, Karen L.; Coffman, Donna L.

    2016-01-01

    Background: Students with early-starting conduct problems often do poorly in school; they are disproportionately placed in restrictive educational placements outside of mainstream classrooms. Although intended to benefit students, research suggests that restrictive placements may exacerbate the maladjustment of youth with conduct problems. Mixed…

  18. Restrictive educational placements increase adolescent risks for students with early-starting conduct problems.

    PubMed

    Powers, Christopher J; Bierman, Karen L; Coffman, Donna L

    2016-08-01

    Students with early-starting conduct problems often do poorly in school; they are disproportionately placed in restrictive educational placements outside of mainstream classrooms. Although intended to benefit students, research suggests that restrictive placements may exacerbate the maladjustment of youth with conduct problems. Mixed findings, small samples, and flawed designs limit the utility of existing research. This study examined the impact of restrictive educational placements on three adolescent outcomes (high school noncompletion, conduct disorder, depressive symptoms) in a sample of 861 students with early-starting conduct problems followed longitudinally from kindergarten (age 5-6). Causal modeling with propensity scores was used to adjust for confounding factors associated with restrictive placements. Analyses explored the timing of placement (elementary vs. secondary school) and moderation of impact by initial problem severity. Restrictive educational placement in secondary school (but not in elementary school) was iatrogenic, increasing the risk of high school noncompletion and the severity of adolescent conduct disorder. Negative effects were amplified for students with conduct problem behavior with less cognitive impairment. To avoid harm to students and to society, schools must find alternatives to restrictive placements for students with conduct problems in secondary school, particularly when these students do not have cognitive impairments that might warrant specialized educational supports. © 2015 Association for Child and Adolescent Mental Health.

  19. Slow Down or Speed Up? Lowering Periapsis versus Escaping from a Circular Orbit

    ERIC Educational Resources Information Center

    Blanco, Philip

    2017-01-01

    Paul Hewitt's "Figuring Physics" in the Feb. 2016 issue asked whether it would take a larger velocity change to stop a satellite in a circular orbit or to cause it to escape. An extension of this problem asks: What "minimum" velocity change is required to crash a satellite into the planet, and how does that compare with the…

  20. Fuel optimal maneuvers of spacecraft about a circular orbit

    NASA Technical Reports Server (NTRS)

    Carter, T. E.

    1982-01-01

    Fuel optimal maneuvers of spacecraft relative to a body in circular orbit are investigated using a point mass model in which the magnitude of the thrust vector is bounded. All nonsingular optimal maneuvers consist of intervals of full thrust and coast and are found to contain at most seven such intervals in one period. Only four boundary conditions where singular solutions occur are possible. Computer simulation of optimal flight path shapes and switching functions are found for various boundary conditions. Emphasis is placed on the problem of soft rendezvous with a body in circular orbit.

  1. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    PubMed

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host-HBV interaction, thus providing new insights into targeted therapeutic intervention. (Hepatology 2017;66:398-415). © 2017 by the American Association for the Study of Liver Diseases.

  2. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    NASA Astrophysics Data System (ADS)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon transfers given current sail technology levels. Although the implemented steering laws suffice to generate baseline paths, infeasible turn rate demands placed on the sail are also investigated to explore the technical hurdles in designing Earth-Moon transfers. The methodologies are suitable for a variety of mission scenarios and sail configurations, rendering the resulting trajectories valuable for a diverse range of applications.

  3. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: Comparison with a Conventional Circular Jet

    NASA Astrophysics Data System (ADS)

    Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.

    2010-02-01

    The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.

  4. Application of program generation technology in solving heat and flow problems

    NASA Astrophysics Data System (ADS)

    Wan, Shui; Wu, Bangxian; Chen, Ningning

    2007-05-01

    Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.

  5. Three-dimensional elasticity solution of an infinite plate with a circular hole

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The elasticity problem for a thick plate with a circular hole is formulated in a systematic fashion by using the z-component of the Galerkin vector and that of Muki's harmonic vector function. The problem was originally solved by Alblas. The reasons for reconsidering it are to develop a technique which may be used in solving the elasticity problem for a multilayered plate and to verify and extend the results given by Alblas. The problem is reduced to an infinite system of algebraic equations which is solved by the method of reduction. Various stress components are tabulated as functions of a/h, z/h, r/a, and nu, a and 2h being the radius of the hole and the plate thickness and nu, the Poisson's ratio. The significant effect of the Poisson's ratio on the behavior and the magnitude of the stresses is discussed.

  6. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  7. A new approach to impulsive rendezvous near circular orbit

    NASA Astrophysics Data System (ADS)

    Carter, Thomas; Humi, Mayer

    2012-04-01

    A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.

  8. 48 CFR 3001.301-70 - Amendment of HSAR.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... recommended by DHS personnel, other Government agencies, or the public. Change requests are to be submitted in... Management, Chief Procurement Officer, Washington, DC 20598. (1) Problem: Succinctly state the problem(s...) Homeland Security Acquisition Circular (HSAC). HSAC (see (HSAR) 48 Chapter 3001.301-72) will be used to...

  9. Detection of outliers in the response and explanatory variables of the simple circular regression model

    NASA Astrophysics Data System (ADS)

    Mahmood, Ehab A.; Rana, Sohel; Hussin, Abdul Ghapor; Midi, Habshah

    2016-06-01

    The circular regression model may contain one or more data points which appear to be peculiar or inconsistent with the main part of the model. This may be occur due to recording errors, sudden short events, sampling under abnormal conditions etc. The existence of these data points "outliers" in the data set cause lot of problems in the research results and the conclusions. Therefore, we should identify them before applying statistical analysis. In this article, we aim to propose a statistic to identify outliers in the both of the response and explanatory variables of the simple circular regression model. Our proposed statistic is robust circular distance RCDxy and it is justified by the three robust measurements such as proportion of detection outliers, masking and swamping rates.

  10. Spectral simulation of unsteady compressible flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Don, Wai-Sun; Gottlieb, David

    1990-01-01

    An unsteady compressible viscous wake flow past a circular cylinder was successfully simulated using spectral methods. A new approach in using the Chebyshev collocation method for periodic problems is introduced. It was further proved that the eigenvalues associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It was been shown that the solution of a model problem has exponential growth in time if improper boundary conditions are used. A characteristic boundary condition, which is based on the characteristics of the Euler equations of gas dynamics, was derived for the spectral code. The primary vortex shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80. No secondary frequency is observed in the power spectrum analysis of the pressure data.

  11. Circular motion geometry using minimal data.

    PubMed

    Jiang, Guang; Quan, Long; Tsui, Hung-Tat

    2004-06-01

    Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.

  12. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  13. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  14. Investigation of conjugate circular arcs in rocket nozzle contour design

    NASA Astrophysics Data System (ADS)

    Schomberg, K.; Olsen, J.; Neely, A.; Doig, G.

    2018-05-01

    The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8-5.4 and a length between 60 and 100% of a 15° conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.

  15. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  16. Plasmid mapping computer program.

    PubMed Central

    Nolan, G P; Maina, C V; Szalay, A A

    1984-01-01

    Three new computer algorithms are described which rapidly order the restriction fragments of a plasmid DNA which has been cleaved with two restriction endonucleases in single and double digestions. Two of the algorithms are contained within a single computer program (called MPCIRC). The Rule-Oriented algorithm, constructs all logical circular map solutions within sixty seconds (14 double-digestion fragments) when used in conjunction with the Permutation method. The program is written in Apple Pascal and runs on an Apple II Plus Microcomputer with 64K of memory. A third algorithm is described which rapidly maps double digests and uses the above two algorithms as adducts. Modifications of the algorithms for linear mapping are also presented. PMID:6320105

  17. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  18. Stress and strain concentration at a circular hole in an infinite plate

    NASA Technical Reports Server (NTRS)

    Stowell, Elbridge Z

    1950-01-01

    The theory of elasticity shows that the maximum stress at a circular hole in an infinite plate in tension is three times the applied stress when the material remains elastic. The effect of plasticity of the material is to lower this ratio. This paper considers the theoretical problem of the stress distribution in an infinitely large sheet with a circular hole for the general case where the material may have any stress-strain curve. The plate is assumed to be under uniform tension at a large distance from the hole. The material is taken to be isotropic and incompressible. (author)

  19. Torsion analysis of cracked circular bars actuated by a piezoelectric coating

    NASA Astrophysics Data System (ADS)

    Hassani, A. R.; Faal, R. T.

    2016-12-01

    This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.

  20. Circular epidemiology.

    PubMed

    Kuller, L H

    1999-11-01

    Circular epidemiology can be defined as the continuation of specific types of epidemiologic studies beyond the point of reasonable doubt of the true existence of an important association or the absence of such an association. Circular epidemiology is an extreme example of studies of the consistency of associations. A basic problem for epidemiology is the lack of a systematic approach to acquiring new knowledge to reach a goal of improving public health and preventive medicine. For epidemiologists, research support unfortunately is biased toward the continued study of already proven hypotheses. Circular epidemiology, however, freezes at one point in the evolution of epidemiologic studies, failing to move from descriptive to analytical case-control and longitudinal studies, for example, to experimental, clinical trials. Good epidemiology journals are filled with very well-conducted epidemiologic studies that primarily repeat the obvious or are variations on the theme.

  1. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false The Narrows and Gulf of Mexico... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.710 The Narrows and Gulf of Mexico adjacent to.... The waters of The Narrows and the Gulf of Mexico easterly of the periphery of a circular area 5...

  2. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  3. Making the Impossible Possible: Strategies for Fast POMDP Monitoring

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Systems modeled as partially observable Markov decision processes (POMDPs) can be tracked quickly with three restrictions: all actions are grouped together, the out-degree of each system state is bounded by a constant, and the number of non-zero elements in the belief state is bounded by a (different) constant. With these restrictions, the tracking algorithm operates in constant time and linear space. The first restriction assumes that the action itself is unobservable. The second restriction defines a subclass of POMDPs that covers however a wide range of problems. The third restriction is an approximation technique that can lead to a potentially vexing problem: an observation may be received that has probability according to the restricted belief state. This problem of impossibility will cause the belief state to collapse. In this paper we discuss the tradeoffs between the constant bound on the belief state and the quality of the solution. We concentrate on strategies for overcoming the impossibility problem and demonstrate initial experimental results that indicate promising directions.

  4. Diffraction of dust acoustic waves by a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.

    2008-09-01

    The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].

  5. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements?

    PubMed

    Dib, Julián R; Wagenknecht, Martin; Farías, María E; Meinhardt, Friedhelm

    2015-01-01

    The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which-despite their frequent occurrence in a large number of bacteria-are largely neglected in prevalent plasmidome conceptions.

  6. Trajectory of asteroid 2017 SB20 within the CRTBP

    NASA Astrophysics Data System (ADS)

    Tiwary, Rishikesh Dutta; Kushvah, Badam Singh; Ishwar, Bhola

    2018-06-01

    Regular monitoring the trajectory of asteroids to a future time is a necessity, because the variety of known probably unsafe near-Earth asteroids are increasing. The analysis is perform to avoid any incident or whether they would have a further future threat to the Earth or not. Recently a new Near Earth Asteroid (2017 SB20) has been observed to cross the Earth orbit. In view of this we obtain the trajectory of Asteroid in the circular restricted three body problem with radiation pressure and oblateness. We examine nature of Asteroid's orbit with Lyapunov Characteristic Exponents (LCEs) over a finite intervals of time. LCE of the system confirms that the motion of asteroid is chaotic in nature. With the effect of radiation pressure and oblateness the length of curve varies in both the planes. Oblateness factor is found to be more perturbative than radiation pressure. To see the precision of result obtain from numerical integration we show the error propagation and the numerical stability is assured around the singularity by applying regularized equations of motion for precise long-term study.

  7. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  8. The motion near L{sub 4} equilibrium point under non-point mass primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Utama, J. A.; Madley, D.

    2015-09-30

    The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L{sub 1}, L{sub 2}, and L{sub 3}) and two triangular points (L{sub 4} and L{sub 5}). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L{sub 4}) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q{sub 1} ≠ 1, q{submore » 2} = 1) and oblateness of the smaller primary (A{sub 1} = 0, A{sub 2} ≠ 0). The location of L{sub 4} is analytically derived then the stability of L{sub 4} and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L{sub 4}.« less

  9. Access to Mars from Earth-Moon Libration Point Orbits:. [Manifold and Direct Options

    NASA Technical Reports Server (NTRS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-01-01

    This investigation is focused specifically on transfers from Earth-Moon L(sub 1)/L(sub 2) libration point orbits to Mars. Initially, the analysis is based in the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L(sub 2) orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L(sub 2) libration point orbits to Sun-Earth L(sub 1)/L(sub 2) halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  10. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0060: Gradient Materials Morphology Modeling Support

    DTIC Science & Technology

    2007-08-01

    antiplane eigenstrain . ASME Journal of Applied Mechanics (In press, to appear in the September issue). [4] Wang, X., Pan, E., Roy, A. K, 2007. Three...problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies...strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nOliuniform. This phenomenon differs

  11. Parameter Identification

    DTIC Science & Technology

    1979-11-01

    Science Aeronautique, Vol. 6, pp. 38-49, 1950. 9. Anon.: "Methods of testing at constant attitude", ICAO Circular 16-AN/13, 1951. 10. H.L. Jonkers...spectral density analysis, it was determined that a notch filter at 17.7 hertz and a third-order Butterworth low-pass filter with a break frequency of 20...of the effects of specific errors, they are circular in nature and do not address the basic theoretical problem. Therefore, the Cramer-Rao bound

  12. An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species.

    PubMed

    Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi

    2005-01-01

    In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.

  13. Steady vibrations of wing of circular plan form

    NASA Technical Reports Server (NTRS)

    Kochin, N E

    1953-01-01

    This paper treats the problem of determining the lift, moment, and induced drag of a thin wing of circular plan form in uniform incompressible flow on the basis of linearized theory. As contrasted to a similar paper by Kinner, in which the acceleration potential method was used, the present paper utilizes the concept of the velocity potential. Calculations of the lift and moment are presented for several deformed shapes. It is shown that considerable deviations exist between the strip theory analysis and the more exact theory. The lift, moment, and induced drag are also determined for a harmonically oscillatory circular plan form wing. As contrasted to a similar paper by Schade, in which the acceleration potential method was used, the present paper utilizes the concept of the velocity potential. Expressions for lift, moment, and induced drag are given and finally specialized to the case of a slowly oscillating circular wing.

  14. A novel finite element analysis of three-dimensional circular crack

    NASA Astrophysics Data System (ADS)

    Ping, X. C.; Wang, C. G.; Cheng, L. P.

    2018-06-01

    A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.

  15. Nuclear Resonance Scattering of Circularly Polarized SR

    NASA Astrophysics Data System (ADS)

    Szymanski, K.; Satula, D.; Dobrzynski, L.; Kalska, B.

    2004-09-01

    Results of the experiments with nuclear resonance scattering of synchrotron radiation aiming at construction of the circularly polarized beam suitable for nuclear hyperfine studies are reported. Si(4 0 0) single crystal slab, 100 μ m thick, was used as a quarter wave plate. Observed twofold reduction of the intensity in proposed geometry is due to the Si crystal itself. Hyperfine interactions are used to probe polarization state of the synchrotron beam. Too large angular beam divergence did not allow for achieving full circular polarization of photons. Consequently, further experiments are proposed to overcame beam divergence problems. A number of calculations presented in the paper show that cheap and easily available Si plate can serve as an effective desired polarizer.

  16. Observations on SOFIA Observation Scheduling: Search and Inference in the Face of Discrete and Continuous Constraints

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Gross, Michael; Kuerklu, Elif

    2003-01-01

    We did cool stuff to reduce the number of IVPs and BVPs needed to schedule SOFIA by restricting the problem. The restriction costs us little in terms of the value of the flight plans we can build. The restriction allowed us to reformulate part of the search problem as a zero-finding problem. The result is a simplified planning model and significant savings in computation time.

  17. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  18. Interaction between a circular inclusion and an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.; Ratwani, M.

    1975-01-01

    The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.

  19. Low-Thrust Trajectory Optimization with Simplified SQP Algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Scheeres, Daniel J.

    2017-01-01

    The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on the problem at hand.The biggest limitation to the algorithm at this point is that multi-revolution transfers (greater than 2 revolutions) do not work nearly as well. This restriction comes in because the relationship between node 1 and node N becomes increasingly nonlinear as the angular distance grows. Trans-fers with more than about 1.5 complete revolutions generally require the line search to improve convergence. Future work includes: Comparison of this algorithm with other established tools; improvements to how multiple-revolution transfers are handled; parallelization of the Jacobian computation; in-creased efficiency for the line search; and optimization of many more trajectories between a variety of 3-body orbits.

  20. Circular codes revisited: a statistical approach.

    PubMed

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. General description of circularly symmetric Bessel beams of arbitrary order

    NASA Astrophysics Data System (ADS)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz

    2016-11-01

    A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.

  2. Caustics and Caustic-Interference in Measurements of Contact Angle and Flow Visualization Through Laser Shadowgraphy

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Neng-Li

    2002-01-01

    As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.

  3. Wave multiple scattering by a finite number of unclosed circular cylinders

    NASA Technical Reports Server (NTRS)

    Veliyev, E. I.; Veremey, V. V.

    1984-01-01

    The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.

  4. Periodic orbits in the restricted four-body problem with two equal masses

    NASA Astrophysics Data System (ADS)

    Burgos-García, Jaime; Delgado, Joaquín

    2013-06-01

    The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh's critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.

  5. Torsion Tests of Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1944-01-01

    The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)

  6. Some Investigations of the General Instability of Stiffened Metal Cylinders IV : Continuation of Tests of Sheet-covered Specimens and Studies of the Buckling Phenomena of Unstiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    1943-01-01

    This is the fourth of a series of reports covering an investigation of the general instability problem by the California Institute of Technology. The first five reports of this series cover investigations of the general instability problem under the loading conditions of pure bending and were prepared under the sponsorship of the Civil Aeronautics Administration. The succeeding reports of this series cover the work done on other loading conditions under the sponsorship of the National Advisory Committee for Aeronautics. This report is to deal primarily with the continuation of tests of sheet-covered specimens and studies of the buckling phenomena of unstiffened circular cylinders.

  7. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    2011-12-01

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  8. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  9. A note on libration point orbits, temporary capture and low-energy transfers

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Gómez, G.; Masdemont, J. J.; Ren, Y.

    2010-11-01

    In the circular restricted three-body problem (CR3BP) the weak stability boundary (WSB) is defined as a boundary set in the phase space between stable and unstable motion relative to the second primary. At a given energy level, the boundaries of such region are provided by the stable manifolds of the central objects of the L1 and L2 libration points, i.e., the two planar Lyapunov orbits. Besides, the unstable manifolds of libration point orbits (LPOs) around L1 and L2 have been identified as responsible for the weak or temporary capture around the second primary of the system. These two issues suggest the existence of natural dynamical channels between the Earth's vicinity and the Sun-Earth libration points L1 and L2. Furthermore, it has been shown that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic connection, to the central stable manifolds of the L2 point in the Earth-Moon three-body problem. This concept has been applied to the design of low energy transfers (LETs) from the Earth to the Moon. In this contribution we consider all the above three issues, i.e., weak stability boundaries, temporary capture and low energy transfers, and we discuss the role played by the invariant manifolds of LPOs in each of them. The study is made in the planar approximation.

  10. How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?

    NASA Astrophysics Data System (ADS)

    Antoniadou, K. I.; Libert, A.-S.

    2017-09-01

    Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.

  11. Self-Paced Physics, Segments 6-10.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Five segments of the Self-Paced Physics Course materials are presented in this problems and solutions book for use as the second part of student course work. The subject-matter topics are related to circular motion, work, power, kinetic energy, potential energy, conservative forces, conservation of energy, spring problems, center of mass, and…

  12. Pendulum Rides, Rotations and the Coriolis Effect

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Modig, Conny

    2018-01-01

    An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving…

  13. The Wicked Problem of the Intersection between Supervision and Evaluation

    ERIC Educational Resources Information Center

    Mette, Ian M.; Anderson, Jason; Nieuwenhuizen, Lisa; Range, Bret G.; Hvidston, David J.; Doty, Jon

    2017-01-01

    The purpose of this research was to explore how principals in eight high-functioning elementary schools in one American school district balanced teacher supervision and evaluation in their role as an instructional leader. Using the theoretical framework of "wicked problems," to unpack the circular used to problematize teacher supervision…

  14. A Theoretical Understanding of Circular Polarization Memory in Random Media

    NASA Astrophysics Data System (ADS)

    Dark, Julia

    Radiative transport theory describes the propagation of light in random media that absorb, scatter, and emit radiation. To describe the propagation of light, the full polarization state is quantified using the Stokes parameters. For the sake of mathematical convenience, the polarization state of light is often neglected leading to the scalar radiative transport equation for the intensity only. For scalar transport theory, there is a well-established body of literature on numerical and analytic approximations to the radiative transport equation. We extend the scalar theory to the vector radiative transport equation (vRTE). In particular, we are interested in the theoretical basis for a phenomena called circular polarization memory. Circular polarization memory is the physical phenomena whereby circular polarization retains its ellipticity and handedness when propagating in random media. This is in contrast to the propagation of linear polarization in random media, which depolarizes at a faster rate, and specular reflection of circular polarization, whereby the circular polarization handedness flips. We investigate two limits that are of known interest in the phenomena of circular polarization memory. The first limit we investigate is that of forward-peaked scattering, i.e. the limit where most scattering events occur in the forward or near-forward directions. The second limit we consider is that of strong scattering and weak absorption. In the forward-peaked scattering limit we approximate the vRTE by a system of partial differential equations motivated by the scalar Fokker-Planck approximation. We call the leading order approximation the vector Fokker-Planck approximation. The vector Fokker Planck approximation predicts that strongly forward-peaked media exhibit circular polarization memory where the strength of the effect can be calculated from the expansion of the scattering matrix in special functions. In addition, we find in this limit that total intensity, linear polarization, and circular polarization decouple. From this result we conclude, that in the Fokker-Planck limit the scalar approximation is an appropriate leading order approximation. In the strong scattering and weak absorbing limit the vector radiative transport equation can be analyzed using boundary layer theory. In this case, the problem of light scattering in an optically thick medium is reduced to a 1D vRTE near the boundary and a 3D diffusion equation in the interior. We develop and implement a numerical solver for the boundary layer problem by using a discrete ordinate solver in the boundary layer and a spectral method to solve the diffusion approximation in the interior. We implement the method in Fortran 95 with external dependencies on BLAS, LAPACK, and FFTW. By analyzing the spectrum of the discretized vRTE in the boundary layer, we are able to predict the presence of circular polarization memory in a given medium.

  15. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  16. 3' Homologous Free Ends are Required for Stable Joint Molecule Formation by the RecA and Single-Stranded Binding Proteins of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Konforti, Boyana B.; Davis, Ronald W.

    1987-02-01

    The RecA protein of Escherichia coli is important for genetic recombination in vivo and can promote synapsis and strand exchange in vitro. The DNA pairing and strand exchange reactions have been well characterized in reactions with circular single strands and linear duplexes, but little is known about these two processes using substrates more characteristic of those likely to exist in the cell. Single-stranded linear DNAs were prepared by separating strands of duplex molecules or by cleaving single-stranded circles at a unique restriction site created by annealing a short defined oligonucleotide to the circle. Analysis by gel electrophoresis and electron microscopy revealed that, in the presence of RecA and single-stranded binding proteins, a free 3' homologous end is essential for stable joint molecule formation between linear single-stranded and circular duplex DNA.

  17. Description of a Sleep-Restriction Program to Reduce Bedtime Disturbances and Night Waking

    ERIC Educational Resources Information Center

    Durand, V. Mark; Christodulu, Kristin V.

    2004-01-01

    The authors describe a behavioral intervention designed to reduce sleep problems without increasing disruption at bedtime or throughout the evening. Sleep restriction was used to reduce the bedtime and nighttime sleep problems of two children, a 4-year-old girl with autism and a 4-year-old girl with developmental delay. Sleep restriction involved…

  18. Facile Construction of Random Gene Mutagenesis Library for Directed Evolution Without the Use of Restriction Enzyme in Escherichia coli.

    PubMed

    Kim, Jae-Eung; Huang, Rui; Chen, Hui; You, Chun; Zhang, Y-H Percival

    2016-09-01

    A foolproof protocol was developed for the construction of mutant DNA library for directed protein evolution. First, a library of linear mutant gene was generated by error-prone PCR or molecular shuffling, and a linear vector backbone was prepared by high-fidelity PCR. Second, the amplified insert and vector fragments were assembled by overlap-extension PCR with a pair of 5'-phosphorylated primers. Third, full-length linear plasmids with phosphorylated 5'-ends were self-ligated with T4 ligase, yielding circular plasmids encoding mutant variants suitable for high-efficiency transformation. Self-made competent Escherichia coli BL21(DE3) showed a transformation efficiency of 2.4 × 10(5) cfu/µg of the self-ligated circular plasmid. Using this method, three mutants of mCherry fluorescent protein were found to alter their colors and fluorescent intensities under visible and UV lights, respectively. Also, one mutant of 6-phosphorogluconate dehydrogenase from a thermophilic bacterium Moorella thermoacetica was found to show the 3.5-fold improved catalytic efficiency (kcat /Km ) on NAD(+) as compared to the wild-type. This protocol is DNA-sequence independent, and does not require restriction enzymes, special E. coli host, or labor-intensive optimization. In addition, this protocol can be used for subcloning the relatively long DNA sequences into any position of plasmids. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation

    PubMed Central

    Simons, Michelle; Diffin, Fiona M.; Szczelkun, Mark D.

    2014-01-01

    We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction–modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host, upon generation of new sites by genome rearrangement/mutation or during homologous recombination between hemimethylated DNA. Using recombinant DNA and proteins in vitro, we demonstrate that ClpXP targets EcoKI HsdR during dsDNA translocation on circular DNA but not on linear DNA. Protein roadblocks did not activate HsdR proteolysis. We suggest that DNA translocation lifetime, which is elevated on circular DNA relative to linear DNA, is important to RA. To identify the ClpX degradation tag (degron) in HsdR, we used bioinformatics and biochemical assays to design N- and C-terminal mutations that were analysed in vitro and in vivo. None of the mutants produced a phenotype consistent with loss of the degron, suggesting an as-yet-unidentified recognition pathway. We note that an EcoKI nuclease mutant still produces cell death in a clpx− strain, consistent with DNA damage induced by unregulated motor activity. PMID:25260590

  20. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  1. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  2. Molecular analysis of vector genome structures after liver transduction by conventional and self-complementary adeno-associated viral serotype vectors in murine and nonhuman primate models.

    PubMed

    Sun, Xun; Lu, You; Bish, Lawrence T; Calcedo, Roberto; Wilson, James M; Gao, Guangping

    2010-06-01

    Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage phi29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations.

  3. Molecular Analysis of Vector Genome Structures After Liver Transduction by Conventional and Self-Complementary Adeno-Associated Viral Serotype Vectors in Murine and Nonhuman Primate Models

    PubMed Central

    Sun, Xun; Lu, You; Bish, Lawrence T.; Calcedo, Roberto; Wilson, James M.

    2010-01-01

    Abstract Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage ϕ29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations. PMID:20113166

  4. Blood flow problem in the presence of magnetic particles through a circular cylinder using Caputo-Fabrizio fractional derivative

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Mohamad, Mahathir; Khalid, Kamil; Abdulhammed, Mohammed; Saifullah Rusiman, Mohd; Che – Him, Norziha; Roslan, Rozaini

    2018-04-01

    In this paper, the flow of blood mixed with magnetic particles subjected to uniform transverse magnetic field and pressure gradient in an axisymmetric circular cylinder is studied by using a new trend of fractional derivative without singular kernel. The governing equations are fractional partial differential equations derived based on the Caputo-Fabrizio time-fractional derivatives NFDt. The current result agrees considerably well with that of the previous Caputo fractional derivatives UFDt.

  5. FIBER AND INTEGRATED OPTICS: Propagation of circularly polarized light along a curved trajectory

    NASA Astrophysics Data System (ADS)

    Sadykov, Nail R.

    1992-10-01

    How the eigenfunction of an optical fiber is affected by a slight curvature at bends of the fiber without twisting is analyzed. The effect of a twisting of the ray trajectory in the case with curvature is examined theoretically by the geometric-optics approach. The results are used to analyze the problem of the turning of a meridional ray due to a circular polarization in a multimode optical fiber with a parabolic profile of the refractive index.

  6. Neptune's 5:2 mean motion resonance in the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Lan, Lei; Malhotra, Renu

    2018-04-01

    Recent observations of distant Kuiper belt objects (KBOs) in Neptune's 5:2 mean motion resonance (MMR) present two dynamical puzzles: this third order MMR, located at a semi-major axis of about 55 AU, hosts a surprisingly large population, comparable to the well-known and prominent populations of Plutinos and Twotinos in the 3:2 and the 2:1 MMRs, respectively; secondly, the eccentricities of these resonant KBOs are concentrated near ∼0.4. To shed light on these puzzles, we investigate the phase space structure near this resonance with use of Poincaré sections of the circular planar restricted three body model, for the full range of eccentricities, (0—1). With this non-perturbative numerical analysis, we find that the resonance width in semi-major axis is narrow for very small eccentricities, but widens dramatically for eccentricities ≥ 0.2. The resonance width reaches a maximum near eccentricity 0.4, where it is similar to the maximum widths of the 2:1 and 3:2 MMRs. We confirm these results with numerical simulations of the three dimensional N-body problem of KBOs in the gravitational field of the Sun and the four giant planets; our simulations include a wide range of orbital inclinations of the KBOs relative to the solar system’s invariable plane. From these simulations, we find that the boundaries of the stable zone of the 5:2 MMR in the semimajor axis—eccentricity plane are very similar to those found with the simplified circular planar restricted three body model of the Sun-Neptune-KBO, with the caveat that orbits of eccentricity above ~0.55 are long term unstable; such orbits, which have perihelion distance less than ~25 AU, are phase-protected from close encounters with Neptune but not from destabilizing encounters with Uranus. Additionally, the numerical simulations show that the long term stability of KBOs in Neptune’s 5:2 MMR is only mildly sensitive to KBO inclination. We conclude that the two dynamical puzzles presented by the observations of the KBOs in Neptune’s 5:2 MMR can be understood fairly naturally in light of the phase space structure of this resonance combined with basic considerations of their long term stability.

  7. Thermal runaway and microwave heating in thin cylindrical domains

    NASA Astrophysics Data System (ADS)

    Ward, Michael J.

    2002-04-01

    The behaviour of the solution to two nonlinear heating problems in a thin cylinder of revolution of variable cross-sectional area is analysed using asymptotic and numerical methods. The first problem is to calculate the fold point, corresponding to the onset of thermal runaway, for a steady-state nonlinear elliptic equation that arises in combustion theory. In the limit of thin cylindrical domains, it is shown that the onset of thermal runaway can be delayed when a circular cylindrical domain is perturbed into a dumbell shape. Numerical values for the fold point for different domain shapes are obtained asymptotically and numerically. The second problem that is analysed is a nonlinear parabolic equation modelling the microwave heating of a ceramic cylinder by a known electric field. The basic model in a thin circular cylindrical domain was analysed in Booty & Kriegsmann (Meth. Appl. Anal. 4 (1994) p. 403). Their analysis is extended to treat thin cylindrical domains of variable cross-section. It is shown that the steady-state and dynamic behaviours of localized regions of high temperature, called hot-spots, depend on a competition between the maxima of the electric field and the maximum deformation of the circular cylinder. For a dumbell-shaped region it is shown that two disconnected hot-spot regions can occur. Depending on the parameters in the model, these regions, ultimately, either merge as time increases or else remain as disconnected regions for all time.

  8. Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem

    ERIC Educational Resources Information Center

    De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo

    2012-01-01

    The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…

  9. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  10. Generation of capillary instabilities by external disturbances in a liquid jet. Ph.D. Thesis - State Univ. of N.Y.

    NASA Technical Reports Server (NTRS)

    Leib, S. J.

    1985-01-01

    The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.

  11. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  12. A proposed benchmark problem for cargo nuclear threat monitoring

    NASA Astrophysics Data System (ADS)

    Wesley Holmes, Thomas; Calderon, Adan; Peeples, Cody R.; Gardner, Robin P.

    2011-10-01

    There is currently a great deal of technical and political effort focused on reducing the risk of potential attacks on the United States involving radiological dispersal devices or nuclear weapons. This paper proposes a benchmark problem for gamma-ray and X-ray cargo monitoring with results calculated using MCNP5, v1.51. The primary goal is to provide a benchmark problem that will allow researchers in this area to evaluate Monte Carlo models for both speed and accuracy in both forward and inverse calculational codes and approaches for nuclear security applications. A previous benchmark problem was developed by one of the authors (RPG) for two similar oil well logging problems (Gardner and Verghese, 1991, [1]). One of those benchmarks has recently been used by at least two researchers in the nuclear threat area to evaluate the speed and accuracy of Monte Carlo codes combined with variance reduction techniques. This apparent need has prompted us to design this benchmark problem specifically for the nuclear threat researcher. This benchmark consists of conceptual design and preliminary calculational results using gamma-ray interactions on a system containing three thicknesses of three different shielding materials. A point source is placed inside the three materials lead, aluminum, and plywood. The first two materials are in right circular cylindrical form while the third is a cube. The entire system rests on a sufficiently thick lead base so as to reduce undesired scattering events. The configuration was arranged in such a manner that as gamma-ray moves from the source outward it first passes through the lead circular cylinder, then the aluminum circular cylinder, and finally the wooden cube before reaching the detector. A 2 in.×4 in.×16 in. box style NaI (Tl) detector was placed 1 m from the point source located in the center with the 4 in.×16 in. side facing the system. The two sources used in the benchmark are 137Cs and 235U.

  13. Synthesis Polarimetry Calibration

    NASA Astrophysics Data System (ADS)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  14. On multiple crack identification by ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Brigante, M.; Sumbatyan, M. A.

    2018-04-01

    The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.

  15. [Reconstruction of tangential and circular infected bone defects].

    PubMed

    Schmidt, H G; Neikes, M; Zimmer, W

    1987-12-01

    In the treatment of bone infections the reconstruction and rehabilitation of bone defects is a problem that often requires treatment secondary to curative treatment of the infection. For the reconstruction of smaller and more extensive defects we used predominantly (92.7%) autogenous (autologous) untreated spongiosa and in only 7% of the cases allogenic (homologous) spongiosa from an organ bank, this being added if necessary. Recently the additionally introduced vascularized bone chip has become a useful extension of the therapy concept. The problems and complications of defect reconstruction are demonstrated for 705 cases of bone infection with 472 defects of different sizes, based on a comprehensive classification with defect calculation. Surgical technical approach and special aspects of after-treatment are described, as well as the results for every group of cases. We achieved stability and freedom from infection in a total of 93.7% of the patients. As was to be expected, the problems grow with the size of the defect. Particularly problematic are joint infections with adjacent extensive circular defect.

  16. Interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Y.M.

    1998-12-31

    The interaction of a penny-shaped crack and an external circular crack in a transversely isotropic composite is investigated using the techniques of Hankel transform and multiplying factors. The boundary conditions of the problem have three different parts. The stress intensity factors at the inner and the outer crack tips are obtained in exact expressions as the products of a dimensional quantity and nondimensional functions. The presence of a penny-shaped crack is shown to have a strong effect on the magnitude of the stress intensity of the external circular crack. The crack surface displacement is also obtained and evaluated numerically formore » different values of the ratio of the inner crack radius to the external crack radius.« less

  17. Research in Celestial Mechanics and Differential Equations.

    DTIC Science & Technology

    Contents: A geopotential representation with sampling functions; Sampling functions as an alternative to spherical harmonics; The Levi - Civita ...restricted problem of three bodies ; Secular perturbations of periodic comets; Resonance in the restricted problem of three bodies ; Two centers of

  18. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  19. The two-dimensional instability of an incompressible vortex in a tube with energy-absorbent walls

    NASA Astrophysics Data System (ADS)

    Broadbent, E. G.; Moore, D. W.

    1994-07-01

    We have previously shown that a Rankine vortex in a compressible fluid is unstable to a perturbation in cross section, e.g. to a slightly eccentric ellipse. This result is surprising, because compressibility leads to a loss of energy from the perturbed vortex by acoustic radiation. An explanation, valid for small swirl Mach numbers, was provided by Kop'ev and Leont'ev. For small Mach numbers the flow in the neighborhood of the vortex can be treated as incompressible, from which it follows that the kinetic energy is greater for the circular vortex than for any other nearby shape. Thus the loss of energy by acoustic radiation will result in increasing departures from a circular cross section. We assert here that the instability is not inherently acoustic, but that any mechanism which can remove energy will result in instability. To support our contention, we examine the Rankine vortex in a concentric circular tube which has compliant walls. Linear theory first establishes that the instability exists in this case and an approximate theory for a small region of vorticity shows that the distortion increases indefinitely. This is confirmed, without the restriction on size, by a numerical solution of the integro-differential equation based on contour dynamics.

  20. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  1. In vivo conformation of mitochondrial DNA revealed by pulsed-field gel electrophoresis in the true slime mold, Physarum polycephalum.

    PubMed

    Sakurai, R; Sasaki, N; Takano, H; Abe, T; Kawano, S

    2000-04-28

    Pulsed-field gel electrophoresis (PFGE) was used to examine the in vivo and in vitro conformations of Physarum polycephalum mitochondrial DNA (mtDNA). We used plugs containing isolated mitochondria, isolated mitochondrial nucleoids (mt-nuclei), and isolated mtDNA, in addition to whole cells. The mtDNA contained in the myxamoebae, plasmodia, isolated mitochondria, and isolated mt-nuclei was circular, but most of the isolated mtDNA had been site-specifically fragmented and linearized during DNA preparation and storage under low ionic strength conditions. Restriction mapping of Physarum mtDNA by the direct digestion of the isolated mt-nuclei from two different strains, DP89 x AI16 and KM88 x AI16, resulted in the circular form. A linear mitochondrial plasmid, mF, is known to promote mitochondrial fusion and integration of itself into the mtDNA in Physarum. Linearization of mtDNA by the integration of the mF plasmid was demonstrated when we used PFGE to analyze isolated mitochondria from the plasmodial strain DP89 x NG7 carrying the mF plasmid (mF+). The PFGE system can be used not only to determine whether the form of mtDNA is linear or circular but also to analyze the dynamic conformational changes of mtDNA.

  2. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    NASA Astrophysics Data System (ADS)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  3. SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.M.; Fowler, J.K.

    The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)

  4. The Oscillating Circular Airfoil on the Basis of Potential Theory

    NASA Technical Reports Server (NTRS)

    Schade, T.; Krienes, K.

    1947-01-01

    Proceeding from the thesis by W. Kinner the present report treats the problem of the circular airfoil in uniform airflow executing small oscillations, the amplitudes of which correspond to whole functions of the second degree in x and y. The pressure distribution is secured by means of Prandtl's acceleration potential. It results in a system of linear equations the coefficients of which can be calculated exactly with the aid of exponential functions and Hankel's functions. The equations necessary are derived in part I; the numerical calculation follows in part II.

  5. Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.

  6. Complete Vision-Based Traffic Sign Recognition Supported by an I2V Communication System

    PubMed Central

    García-Garrido, Miguel A.; Ocaña, Manuel; Llorca, David F.; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance. PMID:22438704

  7. Complete vision-based traffic sign recognition supported by an I2V communication system.

    PubMed

    García-Garrido, Miguel A; Ocaña, Manuel; Llorca, David F; Arroyo, Estefanía; Pozuelo, Jorge; Gavilán, Miguel

    2012-01-01

    This paper presents a complete traffic sign recognition system based on vision sensor onboard a moving vehicle which detects and recognizes up to one hundred of the most important road signs, including circular and triangular signs. A restricted Hough transform is used as detection method from the information extracted in contour images, while the proposed recognition system is based on Support Vector Machines (SVM). A novel solution to the problem of discarding detected signs that do not pertain to the host road is proposed. For that purpose infrastructure-to-vehicle (I2V) communication and a stereo vision sensor are used. Furthermore, the outputs provided by the vision sensor and the data supplied by the CAN Bus and a GPS sensor are combined to obtain the global position of the detected traffic signs, which is used to identify a traffic sign in the I2V communication. This paper presents plenty of tests in real driving conditions, both day and night, in which an average detection rate over 95% and an average recognition rate around 93% were obtained with an average runtime of 35 ms that allows real-time performance.

  8. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  9. GLRT-based array receivers for the detection of a known signal with unknown parameters corrupted by noncircular interferences

    NASA Astrophysics Data System (ADS)

    Chevalier, Pascal; Oukaci, Abdelkader; Delmas, Jean-Pierre

    2011-12-01

    The detection of a known signal with unknown parameters in the presence of noise plus interferences (called total noise) whose covariance matrix is unknown is an important problem which has received much attention these last decades for applications such as radar, satellite localization or time acquisition in radio communications. However, most of the available receivers assume a second order (SO) circular (or proper) total noise and become suboptimal in the presence of SO noncircular (or improper) interferences, potentially present in the previous applications. The scarce available receivers which take the potential SO noncircularity of the total noise into account have been developed under the restrictive condition of a known signal with known parameters or under the assumption of a random signal. For this reason, following a generalized likelihood ratio test (GLRT) approach, the purpose of this paper is to introduce and to analyze the performance of different array receivers for the detection of a known signal, with different sets of unknown parameters, corrupted by an unknown noncircular total noise. To simplify the study, we limit the analysis to rectilinear known useful signals for which the baseband signal is real, which concerns many applications.

  10. Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance

    NASA Astrophysics Data System (ADS)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-06-01

    Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.

  11. A fully implicit numerical integration of the relativistic particle equation of motion

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2017-04-01

    Relativistic strongly magnetized plasmas are produced in laboratories thanks to state-of-the-art laser technology but can naturally be found around compact objects such as neutron stars and black holes. Detailed studies of the behaviour of relativistic plasmas require accurate computations able to catch the full spatial and temporal dynamics of the system. Numerical simulations of ultra-relativistic plasmas face severe restrictions due to limitations in the maximum possible Lorentz factors that current algorithms can reproduce to good accuracy. In order to circumvent this flaw and repel the limit to 9$ , we design a new fully implicit scheme to solve the relativistic particle equation of motion in an external electromagnetic field using a three-dimensional Cartesian geometry. We show some examples of numerical integrations in constant electromagnetic fields to prove the efficiency of our algorithm. The code is also able to follow the electric drift motion for high Lorentz factors. In the most general case of spatially and temporally varying electromagnetic fields, the code performs extremely well, as shown by comparison with exact analytical solutions for the relativistic electrostatic Kepler problem as well as for linearly and circularly polarized plane waves.

  12. Application of Variational Methods to the Thermal Entrance Region of Ducts

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Siegel. R.

    1960-01-01

    A variational method is presented for solving eigenvalue problems which arise in connection with the analysis of convective heat transfer in the thermal entrance region of ducts. Consideration is given, to both situations where the temperature profile depends upon one cross-sectional coordinate (e.g. circular tube) or upon two cross-sectional coordinates (e.g. rectangular duct). The variational method is illustrated and verified by application to laminar heat transfer in a circular tube and a parallel-plate channel, and good agreement with existing numerical solutions is attained. Then, application is made to laminar heat transfer in a square duct as a check, an alternate computation for the square duct is made using a method indicated by Misaps and Pohihausen. The variational method can, in principle, also be applied to problems in turbulent heat transfer.

  13. GRBs as standard candles: There is no “circularity problem” (and there never was)

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo

    2011-02-01

    Beginning with the 2002 discovery of the "Amati Relation" of GRB spectra, there has been much interest in the possibility that this and other correlations of GRB phenomenology might be used to make GRBs into standard candles. One recurring apparent difficulty with this program has been that some of the primary observational quantities to be fit as "data" - to wit, the isotropic-equivalent prompt energy Eiso and the collimation-corrected "total" prompt energy Eγ - depend for their construction on the very cosmological models that they are supposed to help constrain. This is the so-called "circularity problem" of standard candle GRBs. This paper is intended to point out that the circularity problem is not in fact a problem at all, except to the extent that it amounts to a self-inflicted wound. It arises essentially because of an unfortunate choice of data variables - "source-frame" variables such as Eiso, which are unnecessarily encumbered by cosmological considerations. If, instead, the empirical correlations of GRB phenomenology which are formulated in source-variables are mapped to the primitive observational variables (such as fluence) and compared to the observations in that space, then all taint of circularity disappears. I also indicate here a set of procedures for encoding high-dimensional empirical correlations (such as between Eiso, Epk(src),tjet(src), and T45(src)) in a "Gaussian Tube" smeared model that includes both the correlation and its intrinsic scatter, and how that source-variable model may easily be mapped to the space of primitive observables, to be convolved with the measurement errors and fashioned into a likelihood. I discuss the projections of such Gaussian tubes into sub-spaces, which may be used to incorporate data from GRB events that may lack some element of the data (for example, GRBs without ascertained jet-break times). In this way, a large set of inhomogeneously observed GRBs may be assimilated into a single analysis, so long as each possesses at least two correlated data attributes.

  14. Extended model of restricted beam for FSO links

    NASA Astrophysics Data System (ADS)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  15. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    NASA Astrophysics Data System (ADS)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  16. Computational analysis of water entry of a circular section at constant velocity based on Reynold's averaged Navier-Stokes method

    NASA Astrophysics Data System (ADS)

    Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul

    2017-12-01

    With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.

  17. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.

    PubMed

    Xu, Andrew Wei

    2010-09-01

    In genome rearrangement, given a set of genomes G and a distance measure d, the median problem asks for another genome q that minimizes the total distance [Formula: see text]. This is a key problem in genome rearrangement based phylogenetic analysis. Although this problem is known to be NP-hard, we have shown in a previous article, on circular genomes and under the DCJ distance measure, that a family of patterns in the given genomes--represented by adequate subgraphs--allow us to rapidly find exact solutions to the median problem in a decomposition approach. In this article, we extend this result to the case of linear multichromosomal genomes, in order to solve more interesting problems on eukaryotic nuclear genomes. A multi-way capping problem in the linear multichromosomal case imposes an extra computational challenge on top of the difficulty in the circular case, and this difficulty has been underestimated in our previous study and is addressed in this article. We represent the median problem by the capped multiple breakpoint graph, extend the adequate subgraphs into the capped adequate subgraphs, and prove optimality-preserving decomposition theorems, which give us the tools to solve the median problem and the multi-way capping optimization problem together. We also develop an exact algorithm ASMedian-linear, which iteratively detects instances of (capped) adequate subgraphs and decomposes problems into subproblems. Tested on simulated data, ASMedian-linear can rapidly solve most problems with up to several thousand genes, and it also can provide optimal or near-optimal solutions to the median problem under the reversal/HP distance measures. ASMedian-linear is available at http://sites.google.com/site/andrewweixu .

  18. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  19. Natural motion around the Martian moon Phobos: the dynamical substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity harmonics

    NASA Astrophysics Data System (ADS)

    Zamaro, M.; Biggs, J. D.

    2015-07-01

    The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.

  20. Debris Hazards At Civil Airports

    DOT National Transportation Integrated Search

    1996-07-05

    This advisory circular (AC) discusses problems of debris at airports, gives : information on foreign objects, and tells how to eliminate such objects from operational areas. It also addresses the acquisition of power sweepers : for foreign object dam...

  1. Hiking trails and tourism impact assessment in protected area: Jiuzhaigou Biosphere Reserve, China.

    PubMed

    Li, Wenjun; Ge, Xiaodong; Liu, Chunyan

    2005-09-01

    More and more visitors are attracted to protected areas nowadays, which not only bring about economic increase but also seriously adverse impacts on the ecological environment. In protected areas, trails are linkage between visitors and natural ecosystem, so they concentrate most of the adverse impacts caused by visitors. The trampling problems on the trails have been received attentions in the tremendous researches. However, few of them have correlated the environmental impacts to trail spatial patterns. In this project, the trails were selected as assessment objective, the trampling problems trail widening, multiple trail, and root exposure were taken as assessment indicators to assess ecological impacts in the case study area Jiuzhaigou Biosphere Reserve, and two spatial index, connectivity and circularity, were taken to indicate the trail network spatial patterns. The research results showed that the appearing frequency of the trampling problems had inverse correlation with the circularity and connectivity of the trail network, while the problem extent had no correlation with the spatial pattern. Comparing with the pristine trails, the artificial maintenance for the trails such as wooden trails and flagstone trails could prohibit vegetation root from exposure effectively. The research finds will be useful for the future trail design and tourism management.

  2. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  3. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific featuresmore » of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)« less

  4. Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications

    NASA Technical Reports Server (NTRS)

    Chaki, Sagar; Gurfinkel, Arie

    2010-01-01

    We develop a learning-based automated Assume-Guarantee (AG) reasoning framework for verifying omega-regular properties of concurrent systems. We study the applicability of non-circular (AGNC) and circular (AG-C) AG proof rules in the context of systems with infinite behaviors. In particular, we show that AG-NC is incomplete when assumptions are restricted to strictly infinite behaviors, while AG-C remains complete. We present a general formalization, called LAG, of the learning based automated AG paradigm. We show how existing approaches for automated AG reasoning are special instances of LAG.We develop two learning algorithms for a class of systems, called infinite regular systems, that combine finite and infinite behaviors. We show that for infinity-regular systems, both AG-NC and AG-C are sound and complete. Finally, we show how to instantiate LAG to do automated AG reasoning for infinite regular, and omega-regular, systems using both AG-NC and AG-C as proof rules

  5. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  6. Solving the Problem of Linear Viscoelasticity for Piecewise-Homogeneous Anisotropic Plates

    NASA Astrophysics Data System (ADS)

    Kaloerov, S. A.; Koshkin, A. A.

    2017-11-01

    An approximate method for solving the problem of linear viscoelasticity for thin anisotropic plates subject to transverse bending is proposed. The method of small parameter is used to reduce the problem to a sequence of boundary problems of applied theory of bending of plates solved using complex potentials. The general form of complex potentials in approximations and the boundary conditions for determining them are obtained. Problems for a plate with elliptic elastic inclusions are solved as an example. The numerical results for a plate with one, two elliptical (circular), and linear inclusions are analyzed.

  7. Generating equilateral random polygons in confinement

    NASA Astrophysics Data System (ADS)

    Diao, Y.; Ernst, C.; Montemayor, A.; Ziegler, U.

    2011-10-01

    One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon.

  8. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  9. Aerodynamic interaction between vortical wakes and the viscous flow about a circular cylinder

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1985-01-01

    In the design analysis of conventional aircraft configurations, the prediction of the strong interaction between vortical wakes and the viscous flow field about bodies is of considerable importance. Interactions between vortical wakes and aircraft components are even more common on rotorcraft and configurations with lifting surfaces forward of the wing. An accurate analysis of the vortex-wake interaction with aircraft components is needed for the optimization of the payload and the reduction of vibratory loads. However, the three-dimensional flow field beneath the rotor disk and the interaction of the rotor wake with solid bodies in the flow field are highly complex. The present paper has the objective to provide a basis for the considered interactions by studying a simpler problem. This problem involves the two-dimensional interaction of external wakes with the viscous flow about a circular cylinder.

  10. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  11. Stability at Potential Maxima: The L-4 and L-5 Points of the Restricted Three-Body Problem.

    ERIC Educational Resources Information Center

    Greenberg, Richard; Davis, Donald R.

    1978-01-01

    Describes a dynamical system which is stable at potential maxima. The maxima, called L-4 and L-5, are stable locations of the restricted three-body problem. Energy loss from the system will tend to drive it away from stability. (GA)

  12. Equilibria of the symmetric collinear restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.

    2016-02-01

    In this paper, a restricted four-body problem with radiation pressure is considered. The three primaries are supposed in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. After an adequate formulation, the problem is reduced to a tri-parametric one. A complete analysis of the position of equilibria and their stability in the space of parameters is performed.

  13. Criteria for representing circular arc and sine wave spar webs by non-curved elements

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    The basic problem of how to simply represent a curved web of a spar in a finite element structural model was addressed. The ratio of flat web to curved web axial deformations and longitudinal rotations were calculated using NASTRAN models. Multiplying factors were developed from these calculations for various web thicknesses. These multiplying factors can be applied directly to the area and moment of inertia inputs of the finite element model. This allows the thermal stress relieving configurations of sine wave and circular arc webs to be simply accounted for in finite element structural models.

  14. Optimizing Restriction Site Placement for Synthetic Genomes

    NASA Astrophysics Data System (ADS)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  15. Synthesis of concentric circular antenna arrays using dragonfly algorithm

    NASA Astrophysics Data System (ADS)

    Babayigit, B.

    2018-05-01

    Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.

  16. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    ERIC Educational Resources Information Center

    Poljak, Nikola

    2016-01-01

    The problem of determining the angle ? at which a point mass launched from ground level with a given speed v[subscript 0] will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of ? = p/4, producing a maximum range of D[subscript max] = v[superscript…

  17. Heat transfer in laminar flow along circular rods in infinite square arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.H.; Li, W.H.

    1988-02-01

    The need to understand heat transfer characteristics over rods or tube bundles often arises in the design of compact heat exchangers and safety analysis of nuclear reactors. In particular, the fuel bundles of typical light water nuclear reactors are composed of a large number of circular rods arranged in square array pattern. The purpose of the present study is to analyze heat transfer characteristics of flow in such a multirod geometric configuration. The analysis given here will follow as closely as possible the method of Sparrow et al. who analyzed a similar problem for circular cylinders arranged in an equilateralmore » triangular array. The following major assumptions are made in the present analysis: (1) Flow is fully developed laminar flow paralleled to the axis of rods. (2) The axial profile of the surface heat flux to the fluid is uniform.(3) Thermodynamic properties are assumed constant.« less

  18. A Simplified Design with a Toothed Belt and Non-Circular Pulleys to Separate Parts from a Magazine File

    NASA Astrophysics Data System (ADS)

    Hanke, U.; Modler, K.-H.; Neumann, R.; Fischer, C.

    The objective of this paper is to simplify a very complex guidance mechanism, currently used for lid separating issues in a packaging-machine. The task of this machine is to pick up a lid from a magazine file, rotate it around 180° and place it on tins. The developed mechanism works successfully but with a very complex construction. It consists of a planetary cam mechanism, combined with a toothed gear (with a constant transmission ratio) and a guiding mechanism with a toothed belt and circular pulleys. Such complex constructions are very common in industrial solutions. The idea of the authors is to show a much simpler design in solving the same problem. They developed a guidance mechanism realizing the same function, consisting only of a toothed belt with non-circular pulleys. The used parts are common trade articles.

  19. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    PubMed

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  20. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  1. Modified circular velocity law

    NASA Astrophysics Data System (ADS)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  2. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. On the Integration of Logic Programming and Functional Programming.

    DTIC Science & Technology

    1985-06-01

    be performed with simple handtools and devices. However, if the problem is more complex, say involving the cylinders, camshaft , or drive train, then...f(x,x) with f(y, g(y)), and would bind x to g(x) (Ref. 7]. The problem, of course, is that the attempt to prune the search tree allows circularity...combinatorial-explosion, since the search trees generated can grow very unpredictably (Re£. 19: p. 2293. Somewhat akin to the halting problem, it means that a

  4. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  5. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  6. CiPerGenesis, A Mutagenesis Approach that Produces Small Libraries of Circularly Permuted Proteins Randomly Opened at a Focused Region: Testing on the Green Fluorescent Protein.

    PubMed

    Gaytán, Paul; Roldán-Salgado, Abigail; Yáñez, Jorge A; Morales-Arrieta, Sandra; Juárez-González, Víctor R

    2018-06-12

    Circularly permuted proteins (cpPs) represent a novel type of mutant proteins with original termini that are covalently linked through a peptide connector and opened at any other place of the polypeptide backbone to create new ends. cpPs are finding wide applications in biotechnology because their properties may be quite different from those of the parental protein. However, the actual challenge for the creation of successful cpPs is to identify those peptide bonds that can be broken to create new termini and ensure functional and well-folded cpPs. Herein, we describe CiPerGenesis, a combinatorial mutagenesis approach that uses two oligonucleotide libraries to amplify a circularized gene by PCR, starting and ending from a focused target region. This approach creates small libraries of circularly permuted genes that are easily cloned in the correct direction and frame using two different restriction sites encoded in the oligonucleotides. Once expressed, the protein libraries exhibit a unique sequence diversity, comprising cpPs that exhibit ordinary breakpoints between adjacent amino acids localized at the target region as well as cpPs with new termini containing user-defined truncations and repeats of some amino acids. CiPerGenesis was tested at the lid region G134-H148 of green fluorescent protein (GFP), revealing that the most fluorescent variants were those starting at Leu141 and ending at amino acids Tyr145, Tyr143, Glu142, Leu141, Lys140, and H139. Purification and biochemical characterization of some variants suggested a differential expression, solubility and maturation extent of the mutant proteins as the likely cause for the variability in fluorescence intensity observed in colonies.

  7. A Sequence-Specific Nicking Endonuclease from Streptomyces: Purification, Physical and Catalytic Properties

    PubMed Central

    Somyoonsap, Peechapack; Kitpreechavanich, Vichein

    2013-01-01

    A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959

  8. Reflective-emissive liquid-crystal displays constructed from AIE luminogens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tang, Ben Zhong; Zhao, Dongyu; Qin, Anjun

    2015-10-01

    The chiral nematic liquid crystal (N*-LC) has plenty of prospective applications in LC display (LCD) owing to the selective reflection and circular dichroism. The molecules in the N*-LC are aligned forming a helically twisted structure and the specific wavelength of incident light is reflected by the periodically varying refractive index in the N*-LC plane without the aid of a polarizer or color filter. However, N*-LC do not emit light which restricts its application in the dark environment. Moreover, the view angle of N*-LC display device was severe limited due to the strong viewing angle dependence of the structure color of the one dimensional photonic crystal of a N*-LC. In order to overcome these weaknesses, we have synthesized a luminescent liquid crystalline compound consisting of a tetraphenylethene (TPE) core, TPE-PPE, as a luminogen with mesogenic moieties. TPE-PPE exhibits both the aggregate-induced emission (AIE) and thermotropic liquid crystalline characteristics. By dissolving a little amount of TPE-PPE into N*-LC host, a circular polarized emission was obtained on the unidirectional orientated LC cell. Utilizing the circular polarized luminescence property of the LC mixture, we fabricated a photoluminescent liquid crystal display (PL-LCD) device which can work under both dark and sunlit conditions. This approach has simplified the device design, lowered the energy consumption and increased brightness and application of the LCD.

  9. Improvement and emergence of insulin restriction in women with type 1 diabetes.

    PubMed

    Goebel-Fabbri, Ann E; Anderson, Barbara J; Fikkan, Janna; Franko, Debra L; Pearson, Kimberly; Weinger, Katie

    2011-03-01

    To determine the distinguishing characteristics of women who report stopping insulin restriction at 11 years of follow-up from those continuing to endorse insulin restriction as well as those characteristics differing in patients who continue to use insulin appropriately from new insulin restrictors. This is an 11-year follow-up study of 207 women with type 1 diabetes. Insulin restriction, diabetes self-care behaviors, diabetes-specific distress, and psychiatric and eating disorder symptoms were assessed using self-report surveys. Of the original sample, 57% participated in the follow-up study. Mean age was 44 ± 12 years, diabetes duration was 28 ± 11 years, and A1C was 7.9 ± 1.3%. At follow-up, 20 of 60 baseline insulin restrictors had stopped restriction. Women who stopped reported improved diabetes self-care and distress, fewer problems with diabetes self-management, and lower levels of psychologic distress and eating disorder symptoms. Logistic regression indicated that lower levels of fear of weight gain with improved blood glucose and fewer problems with diabetes self-management predicted stopping restriction. At follow-up, 34 women (23%) reported new restriction, and a larger proportion of new insulin restrictors, relative to nonrestrictors, endorsed fear of weight gain with improved blood glucose. Findings indicate that fear of weight gain associated with improved blood glucose and problems with diabetes self-care are core issues related to both the emergence and resolution of insulin restriction. Greater attention to these concerns may help treatment teams to better meet the unique treatment needs of women struggling with insulin restriction.

  10. The structure and stability of orbits in Hoag-like ring systems

    NASA Astrophysics Data System (ADS)

    Bannikova, Elena Yu

    2018-05-01

    Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.

  11. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  12. A helical optical for circular polarized UV-FEL project at the UVSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to bemore » shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.« less

  13. Interplanetary Trajectories, Encke Method (ITEM)

    NASA Technical Reports Server (NTRS)

    Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.

    1972-01-01

    Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.

  14. Recent work on airfoil theory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1940-01-01

    The basic ideas of a new method for treating the problem of the airfoil are presented, and a review is given of the problems thus far computed for incompressible and supersonic flows. Test results are reported for the airfoil of circular plan form and the results are shown to agree well with the theory. As a supplement, a theory based on the older methods is presented for the rectangular of small aspect ratio.

  15. DROMO formulation for planar motions: solution to the Tsien problem

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Morante, David; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-06-01

    The two-body problem subject to a constant radial thrust is analyzed as a planar motion. The description of the problem is performed in terms of three perturbation methods: DROMO and two others due to Deprit. All of them rely on Hansen's ideal frame concept. An explicit, analytic, closed-form solution is obtained for this problem when the initial orbit is circular (Tsien problem), based on the DROMO special perturbation method, and expressed in terms of elliptic integral functions. The analytical solution to the Tsien problem is later used as a reference to test the numerical performance of various orbit propagation methods, including DROMO and Deprit methods, as well as Cowell and Kustaanheimo-Stiefel methods.

  16. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  17. Stress-intensity factors for cracks emanating from the loaded fastener hole

    NASA Technical Reports Server (NTRS)

    Shivakumar, V.; Hsu, Y. C.

    1977-01-01

    Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.

  18. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  19. A dynamical systems analysis of the kinematics of time-periodic vortex shedding past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Ottino, Julio M.

    1991-01-01

    Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.

  20. Detection and Reconstruction of Circular RNAs from Transcriptomic Data.

    PubMed

    Zheng, Yi; Zhao, Fangqing

    2018-01-01

    Recent studies have shown that circular RNAs (circRNAs) are a novel class of abundant, stable, and ubiquitous noncoding RNA molecules in eukaryotic organisms. Comprehensive detection and reconstruction of circRNAs from high-throughput transcriptome data is an initial step to study their biogenesis and function. Several tools have been developed to deal with this issue, but they require many steps and are difficult to use. To solve this problem, we provide a protocol for researchers to detect and reconstruct circRNA by employing CIRI2, CIRI-AS, and CIRI-full. This protocol can not only simplify the usage of above tools but also integrate their results.

  1. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  2. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  3. Improvement and Emergence of Insulin Restriction in Women With Type 1 Diabetes

    PubMed Central

    Goebel-Fabbri, Ann E.; Anderson, Barbara J.; Fikkan, Janna; Franko, Debra L.; Pearson, Kimberly; Weinger, Katie

    2011-01-01

    OBJECTIVE To determine the distinguishing characteristics of women who report stopping insulin restriction at 11 years of follow-up from those continuing to endorse insulin restriction as well as those characteristics differing in patients who continue to use insulin appropriately from new insulin restrictors. RESEARCH DESIGN AND METHODS This is an 11-year follow-up study of 207 women with type 1 diabetes. Insulin restriction, diabetes self-care behaviors, diabetes-specific distress, and psychiatric and eating disorder symptoms were assessed using self-report surveys. RESULTS Of the original sample, 57% participated in the follow-up study. Mean age was 44 ± 12 years, diabetes duration was 28 ± 11 years, and A1C was 7.9 ± 1.3%. At follow-up, 20 of 60 baseline insulin restrictors had stopped restriction. Women who stopped reported improved diabetes self-care and distress, fewer problems with diabetes self-management, and lower levels of psychologic distress and eating disorder symptoms. Logistic regression indicated that lower levels of fear of weight gain with improved blood glucose and fewer problems with diabetes self-management predicted stopping restriction. At follow-up, 34 women (23%) reported new restriction, and a larger proportion of new insulin restrictors, relative to nonrestrictors, endorsed fear of weight gain with improved blood glucose. CONCLUSIONS Findings indicate that fear of weight gain associated with improved blood glucose and problems with diabetes self-care are core issues related to both the emergence and resolution of insulin restriction. Greater attention to these concerns may help treatment teams to better meet the unique treatment needs of women struggling with insulin restriction. PMID:21266653

  4. Accurate orbit propagation in the presence of planetary close encounters

    NASA Astrophysics Data System (ADS)

    Amato, Davide; Baù, Giulio; Bombardelli, Claudio

    2017-09-01

    We present an efficient strategy for the numerical propagation of small Solar system objects undergoing close encounters with massive bodies. The trajectory is split into several phases, each of them being the solution of a perturbed two-body problem. Formulations regularized with respect to different primaries are employed in two subsequent phases. In particular, we consider the Kustaanheimo-Stiefel regularization and a novel set of non-singular orbital elements pertaining to the Dromo family. In order to test the proposed strategy, we perform ensemble propagations in the Earth-Sun Circular Restricted 3-Body Problem (CR3BP) using a variable step size and order multistep integrator and an improved version of Everhart's radau solver of 15th order. By combining the trajectory splitting with regularized equations of motion in short-term propagations (1 year), we gain up to six orders of magnitude in accuracy with respect to the classical Cowell's method for the same computational cost. Moreover, in the propagation of asteroid (99942) Apophis through its 2029 Earth encounter, the position error stays within 100 metres after 100 years. In general, as to improve the performance of regularized formulations, the trajectory must be split between 1.2 and 3 Hill radii from the Earth. We also devise a robust iterative algorithm to stop the integration of regularized equations of motion at a prescribed physical time. The results rigorously hold in the CR3BP, and similar considerations may apply when considering more complex models. The methods and algorithms are implemented in the naples fortran 2003 code, which is available online as a GitHub repository.

  5. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases.

    PubMed

    Ren, Ji-Hua; Hu, Jie-Li; Cheng, Sheng-Tao; Yu, Hai-Bo; Wong, Vincent Kam Wai; Law, Betty Yuen Kwan; Yang, Yong-Feng; Huang, Ying; Liu, Yi; Chen, Wei-Xian; Cai, Xue-Fei; Tang, Hua; Hu, Yuan; Zhang, Wen-Lu; Liu, Xiang; Long, Quan-Xin; Zhou, Li; Tao, Na-Na; Zhou, Hong-Zhong; Yang, Qiu-Xia; Ren, Fang; He, Lin; Gong, Rui; Huang, Ai-Long; Chen, Juan

    2018-04-06

    Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA) which serves as a template for HBV RNA transcription is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified SIRT3 as a host factor restricting HBV transcription and replication by screening seven members of Sirtuin family which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA as well as replicative intermediate DNA in HBV-infected HepG2-NTCP cells and PHH. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. Mechanistic study found nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9 (H3K9). Importantly, occupancy of SIRT3 onto cccDNA could increase the recruitment of histone methyltransferase SUV39H1 to cccDNA and decrease recruitment of SETD1A, leading to a marked increase of H3K9me3 and a decrease of H3K4me3 on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor YY1 to cccDNA. Finally, viral protein HBx could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. SIRT3 is a novel host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase. These data provided a rational for the use of SIRT3 activators in the prevention or treatment of HBV infection. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  6. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2017-01-01

    In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

  7. Voice activity and participation profile: assessing the impact of voice disorders on daily activities.

    PubMed

    Ma, E P; Yiu, E M

    2001-06-01

    Traditional clinical voice evaluation focuses primarily on the severity of voice impairment, with little emphasis on the impact of voice disorders on the individual's quality of life. This study reports the development of a 28-item assessment tool that evaluates the perception of voice problem, activity limitation, and participation restriction using the International Classification of Impairments, Disabilities and Handicaps-2 Beta-1 concept (World Health Organization, 1997). The questionnaire was administered to 40 subjects with dysphonia and 40 control subjects with normal voices. Results showed that the dysphonic group reported significantly more severe voice problems, limitation in daily voice activities, and restricted participation in these activities than the control group. The study also showed that the perception of a voice problem by the dysphonic subjects correlated positively with the perception of limitation in voice activities and restricted participation. However, the self-perceived voice problem had little correlation with the degree of voice-quality impairment measured acoustically and perceptually by speech pathologists. The data also showed that the aggregate scores of activity limitation and participation restriction were positively correlated, and the extent of activity limitation and participation restriction was similar in all except the job area. These findings highlight the importance of identifying and quantifying the impact of dysphonia on the individual's quality of life in the clinical management of voice disorders.

  8. Physical and genetic map of Streptococcus thermophilus A054.

    PubMed Central

    Roussel, Y; Pebay, M; Guedon, G; Simonet, J M; Decaris, B

    1994-01-01

    The three restriction endonucleases SfiI, BssHII, and SmaI were found to generate fragments with suitable size distributions for mapping the genome of Streptococcus thermophilus A054. A total of 5, 8, and 24 fragments were produced with SfiI, BssHII, and SmaI, respectively. An average genome size of 1,824 kb was determined by summing the total fragment sizes obtained by digestions with these three enzymes. Partial and multiple digestions of genomic DNA in conjunction with Southern hybridization were used to map SfiI, BssHII, and SmaI fragments. All restriction fragments were arranged in a unique circular chromosome. Southern hybridization analysis with specific probes allowed 23 genetic markers to be located on the restriction map. Among them, six rrn loci were precisely located. The area of the chromosome containing the ribosomal operons was further detailed by mapping some of the ApaI and SgrAI sites. Comparison of macrorestriction patterns from three clones derived from strain A054 revealed two variable regions in the chromosome. One was associated with the tandem rrnD and rrnE loci, and the other was mapped in the region of the lactose operon. Images PMID:8002562

  9. The Restricted Stackelberg Problem.

    DTIC Science & Technology

    1981-06-01

    CONTROL LABORATORY W- THE RESTRICTED -STACKELBERG PROBLEM *JOHN TING-YUNG WEN DTIC FEB 1 8 1983D E tab, APPROVED FOR PUBLIC RELEASE. DISTRIBUTION...P A G E ,’W lben D ata E n tered) R E ADIN S T R U C TI O N S REPORT DOCUMENTATION PAGE FORE MsPUTIORS.::! -BEF oRE COMPLETINmG F’ORM I. REPORT...STACKELBERG PROBLEM 7 6. PERFORMING ORG. REPORT NUMBER _ _._ _ _ _ _-944DC-46) :UILU-ENG-81-2242 7. AUTHOR( e ) 8. CONTRACT OR GRANT NUMBER(@) NSF ECS-79

  10. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach.

    PubMed

    Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir

    2017-11-06

    Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  11. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  12. Trojan dynamics well approximated by a new Hamiltonian normal form

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Locatelli, Ugo

    2015-10-01

    We revisit a classical perturbative approach to the Hamiltonian related to the motions of Trojan bodies, in the framework of the planar circular restricted three-body problem, by introducing a number of key new ideas in the formulation. In some sense, we adapt the approach of Garfinkel to the context of the normal form theory and its modern techniques. First, we make use of Delaunay variables for a physically accurate representation of the system. Therefore, we introduce a novel manipulation of the variables so as to respect the natural behaviour of the model. We develop a normalization procedure over the fast angle which exploits the fact that singularities in this model are essentially related to the slow angle. Thus, we produce a new normal form, i.e. an integrable approximation to the Hamiltonian. We emphasize some practical examples of the applicability of our normalizing scheme, e.g. the estimation of the stable libration region. Finally, we compare the level curves produced by our normal form with surfaces of section provided by the integration of the non-normalized Hamiltonian, with very good agreement. Further precision tests are also provided. In addition, we give a step-by-step description of the algorithm, allowing for extensions to more complicated models.

  13. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers.

    PubMed Central

    Marck, C

    1988-01-01

    DNA Strider is a new integrated DNA and Protein sequence analysis program written with the C language for the Macintosh Plus, SE and II computers. It has been designed as an easy to learn and use program as well as a fast and efficient tool for the day-to-day sequence analysis work. The program consists of a multi-window sequence editor and of various DNA and Protein analysis functions. The editor may use 4 different types of sequences (DNA, degenerate DNA, RNA and one-letter coded protein) and can handle simultaneously 6 sequences of any type up to 32.5 kB each. Negative numbering of the bases is allowed for DNA sequences. All classical restriction and translation analysis functions are present and can be performed in any order on any open sequence or part of a sequence. The main feature of the program is that the same analysis function can be repeated several times on different sequences, thus generating multiple windows on the screen. Many graphic capabilities have been incorporated such as graphic restriction map, hydrophobicity profile and the CAI plot- codon adaptation index according to Sharp and Li. The restriction sites search uses a newly designed fast hexamer look-ahead algorithm. Typical runtime for the search of all sites with a library of 130 restriction endonucleases is 1 second per 10,000 bases. The circular graphic restriction map of the pBR322 plasmid can be therefore computed from its sequence and displayed on the Macintosh Plus screen within 2 seconds and its multiline restriction map obtained in a scrolling window within 5 seconds. PMID:2832831

  14. Modelling low Reynolds number vortex-induced vibration problems with a fixed mesh fluid-solid interaction formulation

    NASA Astrophysics Data System (ADS)

    González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.

    2017-11-01

    The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.

  15. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Mead, David

    2016-04-27

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  16. Orbital Resonances in the Solar Nebula: Strengths and Weaknesses

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1993-01-01

    A planetesimal moving in the Solar Nebula experiences an aero- dynamic drag which causes its orbit to circularize and shrink. However, resonant perturbations from a protoplanet interior to the planetesimal's orbit ran counteract both the orbital decay and the damping of the eccentricity: the planetesimal can be captured into an orbital resonance and its eccentricity pumped up to a modestly high equilibrium value. Thus, orbital resonances constitute (partial) barriers to the delivery of planetesimals into the feeding zone of the protoplanet. We have established the characteristics of the phenomenon of resonance capture by gas drag in the circular restricted three-body approximation. We have determined the strengths of the equilibrium resonant orbits with respect to impulsive velocity perturbations. We conclude that planetesimals captured in orbital resonances are quite vulnerable to being dislocated from these orbits by mutual planetesimal interactions, but that the resonances are effective in slowing down the rate of orbital decay of planetesimals. Only very small bodies, less or approx. equal to 100 m, are able to reach a approx. 1 mass of the earth protoplanet without being slowed down by resonances.

  17. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Mead, David

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  18. Laparoscopic discoid anterior rectal excision with the circular stapler for rectosigmoid endometriosis, performed by the gynecologic surgeon.

    PubMed

    Zanatta, Alysson; Sousa, Jânio S; Machado, Ricardo L; Polcheira, Paulo A

    2015-01-01

    To demonstrate the technique of laparoscopic discoid anterior rectal wall resection using a circular stapler, feasible in the case of rectosigmoid endometriosis lesions measuring ≤ 3 cm. Case report (Canadian Task Force classification III). Private practice hospital in São Paulo, Brazil. Thirty-four-year-old woman with pelvic deep endometriosis including a 2-cm lesion in the rectosigmoid situated 11 cm proximally to the anal border. She had chronic pelvic pain, dysmenorrhea, dyspareunia, and constipation. She had undergone no previous surgical procedures. Standard 4-puncture laparoscopy was performed, and all visible endometriosis lesions were first removed before proceeding to rectal resection. The avascular rectovaginal space was identified, and the rectosigmoid was mobilized cranially, releasing the vagina and increasing the final distance of the bowel anastomosis to the anal border. The rectosigmoid nodule was isolated in its entire circumference and remained restricted to the anterior wall of the bowel. It was then transfixed using a 2-0 polyglycolic suture, with the healthy proximal and distal limits of the bowel included in the suture. A 33-cm endoscopic circular stapler was introduced via the anus up to the distal limit of the lesion and opened inside the bowel lumen. By pulling the edges of the suture, the rectosigmoid nodule was introduced inside of the circular stapler. It was fired to resect the anterior rectal wall, and the anastomosis was situated at the anterior and lateral walls of the bowel. Integrity of the bowel was checked via infusion of saline solution with methylene blue dye. Gynecologic surgeons performed all of the procedures. Bowel resection took 20 minutes, and the entire surgical procedure lasted 120 minutes. The patient was discharged after 48 hours. There were no intercurrent events, either early or late postoperatively. The patient was symptom-free at 2 years of follow-up. Laparoscopic discoid excision of an anterior rectal nodule using the circular stapler is an effective option for treating selected cases of rectosigmoid endometriosis. The technique might be reproducible by gynecologic surgeons after proper training. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  19. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2003-01-01

    In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.

  20. Comparing the basins of attraction for several methods in the circular Sitnikov problem with spheroid primaries

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2018-06-01

    The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.

  1. Vehicle Routing with Three-dimensional Container Loading Constraints—Comparison of Nested and Joint Algorithms

    NASA Astrophysics Data System (ADS)

    Koloch, Grzegorz; Kaminski, Bogumil

    2010-10-01

    In the paper we examine a modification of the classical Vehicle Routing Problem (VRP) in which shapes of transported cargo are accounted for. This problem, known as a three-dimensional VRP with loading constraints (3D-VRP), is appropriate when transported commodities are not perfectly divisible, but they have fixed and heterogeneous dimensions. In the paper restrictions on allowable cargo positionings are also considered. These restrictions are derived from business practice and they extended the baseline 3D-VRP formulation as considered by Koloch and Kaminski (2010). In particular, we investigate how additional restrictions influence relative performance of two proposed optimization algorithms: the nested and the joint one. Performance of both methods is compared on artificial problems and on a big-scale real life case study.

  2. INM Integrated Noise Model Version 2. Programmer’s Guide

    DTIC Science & Technology

    1979-09-01

    cost, turnaround time, and system-dependent limitations. 3.2 CONVERSION PROBLEMS Item Item Item No. Desciption Category 1 BLOCK DATA Initialization IBM ...Restricted 2 Boolean Operations Differences Call Statement Parameters Extensions 4 Data Initialization IBM Restricted 5 ENTRY Differences 6 EQUIVALENCE...Machine Dependent 7 Format: A CDC Extension 8 Hollerith Strings IBM Restricted 9 Hollerith Variables IBM Restricted 10 Identifier Names CDC Extension

  3. An all-purpose metric for the exterior of any kind of rotating neutron star

    NASA Astrophysics Data System (ADS)

    Pappas, George; Apostolatos, Theocharis A.

    2013-03-01

    We have tested the appropriateness of two-soliton analytic metric to describe the exterior of all types of neutron stars, no matter what their equation of state or rotation rate is. The particular analytic solution of the vacuum Einstein equations proved quite adjustable to mimic the metric functions of all numerically constructed neutron star models that we used as a testbed. The neutron star models covered a wide range of stiffness, with regard to the equation of state of their interior, and all rotation rates up to the maximum possible rotation rate allowed for each such star. Apart from the metric functions themselves, we have compared the radius of the innermost stable circular orbit RISCO, the orbital frequency Ω equiv dφ /dt of circular geodesics, and their epicyclic frequencies Ωρ, Ωz, as well as the change of the energy of circular orbits per logarithmic change of orbital frequency Δ tilde{E}. All these quantities, calculated by means of the two-soliton analytic metric, fitted with good accuracy the corresponding numerical ones as in previous analogous comparisons (although previous attempts were restricted to neutron star models with either high or low rotation rates). We believe that this particular analytic solution could be considered as an analytic faithful representation of the gravitation field of any rotating neutron star with such accuracy, that one could explore the interior structure of a neutron star by using this space-time to interpret observations of astrophysical processes that take place around it.

  4. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  5. Production of biofuels and biomolecules in the framework of circular economy: A regional case study.

    PubMed

    Jacquet, Nicolas; Haubruge, Eric; Richel, Aurore

    2015-12-01

    Faced to the economic and energetic context of our society, it is widely recognised that an alternative to fossil fuels and oil-based products will be needed in the nearest future. In this way, development of urban biorefinery could bring many solutions to this problem. Study of the implementation of urban biorefinery highlights two sustainable configurations that provide solutions to the Walloon context by promoting niche markets, developing circular economy and reducing transport of supply feedstock. First, autonomous urban biorefineries are proposed, which use biological waste for the production of added value molecules and/or finished products and are energetically self-sufficient. Second, integrated urban biorefineries, which benefit from an energy supply from a nearby industrial activity. In the Walloon economic context, these types of urban biorefineries could provide solutions by promoting niche markets, developing a circular economy model, optimise the transport of supply feedstock and contribute to the sustainable development. © The Author(s) 2015.

  6. Investigation of electrodynamic stabilization and control of long orbiting tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Arnold, D.

    1984-01-01

    The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.

  7. Interior and exterior sound field control using general two-dimensional first-order sources.

    PubMed

    Poletti, M A; Abhayapala, T D

    2011-01-01

    Reproduction of a given sound field interior to a circular loudspeaker array without producing an undesirable exterior sound field is an unsolved problem over a broadband of frequencies. At low frequencies, by implementing the Kirchhoff-Helmholtz integral using a circular discrete array of line-source loudspeakers, a sound field can be recreated within the array and produce no exterior sound field, provided that the loudspeakers have azimuthal polar responses with variable first-order responses which are a combination of a two-dimensional (2D) monopole and a radially oriented 2D dipole. This paper examines the performance of circular discrete arrays of line-source loudspeakers which also include a tangential dipole, providing general variable-directivity responses in azimuth. It is shown that at low frequencies, the tangential dipoles are not required, but that near and above the Nyquist frequency, the tangential dipoles can both improve the interior accuracy and reduce the exterior sound field. The additional dipoles extend the useful range of the array by around an octave.

  8. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1981-01-01

    The term 'trajectory problem' is taken to include problems that can arise, for instance, in connection with contour plotting, or in the application of continuation methods, or during phase-plane analysis. Geometrical techniques are used to construct difference methods for these problems to produce in turn explicit and implicit circularly exact formulae. Based on these formulae, a predictor-corrector method is derived which, when compared with a closely related standard method, shows improved performance. It is found that this latter method produces spurious limit cycles, and this behavior is partly analyzed. Finally, a simple variable-step algorithm is constructed and tested.

  9. Current scientific and practical problems in restricting the growth of large cities in the USSR.

    PubMed

    Khorev, B

    1984-12-01

    Current problems involved in restricting the growth of large cities in the USSR are examined using the example of Moscow and its suburban areas. Government policies concerning urbanization and the distribution of the labor force throughout the country are discussed. The use of various types of incentives to regulate the economy and the labor force is suggested.

  10. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: The Effects of the Density and Size of Solid Particles

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Sohn, H. Y.

    2012-08-01

    Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was small. The overall results including the previous work indicated that the penetration behavior of an annular jet is much less sensitive to the variations in operating variables than that of a circular jet. Correlation equations for the penetration depth that show good agreements with the measured values have been developed.

  11. Self-Paced Physics, Segment 18.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…

  12. Combined position and diameter measures for lunar craters

    USGS Publications Warehouse

    Arthur, D.W.G.

    1977-01-01

    The note addresses the problem of simultaneously measuring positions and diameters of circular impact craters on wide-angle photographs of approximately spherical planets such as the Moon and Mercury. The method allows for situations in which the camera is not aligned on the planet's center. ?? 1977.

  13. Conjugate gradient determination of optimal plane changes for a class of three-impulse transfers between noncoplanar circular orbits

    NASA Technical Reports Server (NTRS)

    Burrows, R. R.

    1972-01-01

    A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.

  14. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Schultz, Howard

    1990-01-01

    The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.

  15. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  16. An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems.

    PubMed

    Joyce, Duncan; Parnell, William J; Assier, Raphaël C; Abrahams, I David

    2017-05-01

    In Parnell & Abrahams (2008 Proc. R. Soc. A 464 , 1461-1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.

  17. An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems

    PubMed Central

    Joyce, Duncan

    2017-01-01

    In Parnell & Abrahams (2008 Proc. R. Soc. A 464, 1461–1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme. PMID:28588412

  18. Immediate metabolic consequences of intrauterine growth restriction and low birthweight.

    PubMed

    Bhatia, Jatinder; Gates, Amy

    2013-01-01

    Optimal fetal growth resulting in a 'normally grown' term infant is of paramount importance for assuring a healthy start for postnatal growth and development. Fetal, infant and childhood growth restriction is an important clinical problem for obstetricians, neonatologists, pediatricians and globally, for public health. Worldwide, an estimated 20 million infants are born with low birthweight and a substantial proportion are small for gestational age. Many advances have been made in defining growth restriction by prenatal techniques, thus allowing the recognition of intrauterine growth restriction. Distinguishing infants who are small but have appropriate growth potential from those with growth restriction is important in order to apply obstetric surveillance, anticipate neonatal problems and plan for postneonatal guidance. It is clear that the fetus in growth-restricted pregnancies has limited supply of nutrients and oxygen. The resultant changes, if involving the placenta as well, can lead to circulatory and metabolic changes affecting both short- and long-term survival and development. In this paper, the causes and immediate consequence of being born with low birthweight, intrauterine growth restriction or small for gestational age will be discussed. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  19. Communication Profile of Primary School-Aged Children with Foetal Growth Restriction

    ERIC Educational Resources Information Center

    Partanen, Lea Aulikki; Olsén, Päivi; Mäkikallio, Kaarin; Korkalainen, Noora; Heikkinen, Hanna; Heikkinen, Minna; Yliherva, Anneli

    2017-01-01

    Foetal growth restriction is associated with problems in neurocognitive development. In the present study, prospectively collected cohorts of foetal growth restricted (FGR) and appropriate for gestational age grown (AGA) children were examined at early school-age by using the Children's Communication Checklist-2 (CCC-2) to test the hypothesis that…

  20. Comparative genomics meets topology: a novel view on genome median and halving problems.

    PubMed

    Alexeev, Nikita; Avdeyev, Pavel; Alekseyev, Max A

    2016-11-11

    Genome median and genome halving are combinatorial optimization problems that aim at reconstruction of ancestral genomes by minimizing the number of evolutionary events between them and genomes of the extant species. While these problems have been widely studied in past decades, their solutions are often either not efficient or not biologically adequate. These shortcomings have been recently addressed by restricting the problems solution space. We show that the restricted variants of genome median and halving problems are, in fact, closely related. We demonstrate that these problems have a neat topological interpretation in terms of embedded graphs and polygon gluings. We illustrate how such interpretation can lead to solutions to these problems in particular cases. This study provides an unexpected link between comparative genomics and topology, and demonstrates advantages of solving genome median and halving problems within the topological framework.

  1. Restricted random search method based on taboo search in the multiple minima problem

    NASA Astrophysics Data System (ADS)

    Hong, Seung Do; Jhon, Mu Shik

    1997-03-01

    The restricted random search method is proposed as a simple Monte Carlo sampling method to search minima fast in the multiple minima problem. This method is based on taboo search applied recently to continuous test functions. The concept of the taboo region instead of the taboo list is used and therefore the sampling of a region near an old configuration is restricted in this method. This method is applied to 2-dimensional test functions and the argon clusters. This method is found to be a practical and efficient method to search near-global configurations of test functions and the argon clusters.

  2. Project Physics Tests 1, Concepts of Motion.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  3. Levels of Processing: A Reply to Eysenck

    ERIC Educational Resources Information Center

    Lockhart, Robert S.; Craik, Fergus I. M.

    1978-01-01

    These comments take up the major issues raised in Eyseck's (1978) critique (AA 528 584) of Craik & Lockhart (1972): the problem of circularity in the definition of "depth", the distinction between qualitative and quantitative differences in encoding, and the relationships between the concepts of depth, strength and elaboration. (Editor/RK)

  4. Uniform theory of the boundary diffraction wave

    NASA Astrophysics Data System (ADS)

    Umul, Yusuf Z.

    2009-04-01

    A uniform version of the potential function of the Maggi-Rubinowicz boundary diffraction wave theory is obtained by using the large argument expansion of the Fresnel integral. The derived function is obtained for the problem of diffraction of plane waves by a circular edge. The results are plotted numerically.

  5. A note on boundary-layer pumping

    NASA Astrophysics Data System (ADS)

    Smith, S. H.

    1981-05-01

    The simple model of strong blowing across an impulsively started rotating disc is considered. The model shows features present in the two basic problems of spin-up in a circular cylinder and the flow between counter-rotating discs. The role of boundary layer pumping appears to be crucial in both situations.

  6. The Modified Cognitive Constructions Coding System: Reliability and Validity Assessments

    ERIC Educational Resources Information Center

    Moran, Galia S.; Diamond, Gary M.

    2006-01-01

    The cognitive constructions coding system (CCCS) was designed for coding client's expressed problem constructions on four dimensions: intrapersonal-interpersonal, internal-external, responsible-not responsible, and linear-circular. This study introduces, and examines the reliability and validity of, a modified version of the CCCS--a version that…

  7. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  8. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  9. Mathematics of Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  10. The Effect of Restricting Opening Hours on Alcohol-Related Violence

    PubMed Central

    Duailibi, Sergio; Ponicki, William; Grube, Joel; Pinsky, Ilana; Laranjeira, Ronaldo; Raw, Martin

    2007-01-01

    Objective. We investigated whether limiting the hours of alcoholic beverage sales in bars had an effect on homicides and violence against women in the Brazilian city of Diadema. The policy to restrict alcohol sales was introduced in July 2002 and prohibited on-premises alcohol sales after 11 pm. Methods. We analyzed data on homicides (1995 to 2005) and violence against women (2000 to 2005) from the Diadema (population 360 000) police archives using log-linear regression analyses. Results. The new restriction on drinking hours led to a decrease of almost 9 murders a month. Assaults against women also decreased, but this effect was not significant in models in which we controlled for underlying trends. Conclusions. Introducing restrictions on opening hours resulted in a significant decrease in murders, which confirmed what we know from the literature: restricting access to alcohol can reduce alcohol-related problems. Our results give no support to the converse view, that increasing availability will somehow reduce problems. PMID:17971559

  11. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  12. Aerobraking Magellan

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.; Sjogren, William; Johnson, William T. K.; Schmitt, Durwin; Mcronald, Angus

    1992-01-01

    While the Magellan spacecraft is currently in an elliptical orbit around Venus, its orbit may be circularized by means of an aerobraking maneuver during which a minor amount of aerodynamic drag is applied to 1000-2000 orbits. An evaluation is presently undertaken of the thermal-control and operational problems arising from such a maneuver, in virtue of its not having been considered among the design requirements of the spacecraft. Attention is given to atmospheric erosion and contamination problems to which the spacecraft surfaces could be exposed.

  13. Methods and formulas for calculating the strength of plate and shell constructions as used in airplane design

    NASA Technical Reports Server (NTRS)

    Heck, O S; Ebner, H

    1936-01-01

    This report is a compilation of previously published articles on formulas and methods of calculation for the determination of the strength and stability of plate and shell construction as employed in airplane design. In particular, it treats the problem of isotropic, orthotopic, and stiffened rectangular plates, thin curved panels, and circular cylinders under various loading conditions. The purpose of appending the pertinent literature references following the subjects discussed was to facilitate a comprehensive study of the treated problems.

  14. Computation of Incompressible Potential Flow over an Airfoil Using a High Order Aerodynamic Panel Method Based on Circular Arc Panels.

    DTIC Science & Technology

    1982-08-01

    Vortex Sheet Figure 4 - Properties of Singularity Sheets they may be used to model different types of flow. Transfer of boundary... Vortex Sheet Equivalence Singularity Behavior Using Green’s theorem it is clear that the problem of potential flow over a body can be modeled using ...that source, doublet, or vortex singularities can be used to model potential flow problems, and that the doublet and vortex singularities are

  15. Optimal control of lift/drag ratios on a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  16. A Comparison of Two Approaches to Correction of Restriction of Range in Correlation Analysis

    ERIC Educational Resources Information Center

    Wiberg, Marie; Sundstrom, Anna

    2009-01-01

    A common problem in predictive validity studies in the educational and psychological fields, e.g. in educational and employment selection, is restriction in range of the predictor variables. There are several methods for correcting correlations for restriction of range. The aim of this paper was to examine the usefulness of two approaches to…

  17. Deplacement effect of the laminar boundary layer and the pressure drag

    NASA Technical Reports Server (NTRS)

    Gortler, H

    1951-01-01

    The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.

  18. End of Life Disposal for Three Libration Point Missions through Manipulation of the Jacobi Constant and Zero Velocity Curves

    NASA Technical Reports Server (NTRS)

    Peterson, Jeremy D.; Brown, Jonathan M.

    2015-01-01

    The aim of this investigation is to determine the feasibility of mission disposal by inserting the spacecraft into a heliocentric orbit along the unstable manifold and then manipulating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon system. This investigation focuses around L1 orbits representative of ACE, WIND, and SOHO. It will model the impulsive delta-V necessary to close the zero velocity curves after escape through the L1 gateway in the circular restricted three body model and also include full ephemeris force models and higher fidelity finite maneuver models for the three spacecraft.

  19. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  20. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  1. Optimization methods of laws control of electric propulsion spacecraft in the restricted three-body task

    NASA Astrophysics Data System (ADS)

    Starinova, Olga L.

    2014-12-01

    This paper outlines the optimization methods of the control law of the low thrust spacecraft for the restrict problem of three-body. The conditions for fragmentation trajectory on the specific parts of trajectory are formulated. The mathematical statement and methods to solve the optimal control problem on these parts are stated. Results of the decision of applied problems for various classes of spacecrafts which are carrying out maneuvers with low thrust are presented. In particular, the non-coplanar maneuvers of the low thrust spacecraft in the Earth-Moon system are viewed.

  2. Centre-based restricted nearest feature plane with angle classifier for face recognition

    NASA Astrophysics Data System (ADS)

    Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua

    2017-10-01

    An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.

  3. New prior sampling methods for nested sampling - Development and testing

    NASA Astrophysics Data System (ADS)

    Stokes, Barrie; Tuyl, Frank; Hudson, Irene

    2017-06-01

    Nested Sampling is a powerful algorithm for fitting models to data in the Bayesian setting, introduced by Skilling [1]. The nested sampling algorithm proceeds by carrying out a series of compressive steps, involving successively nested iso-likelihood boundaries, starting with the full prior distribution of the problem parameters. The "central problem" of nested sampling is to draw at each step a sample from the prior distribution whose likelihood is greater than the current likelihood threshold, i.e., a sample falling inside the current likelihood-restricted region. For both flat and informative priors this ultimately requires uniform sampling restricted to the likelihood-restricted region. We present two new methods of carrying out this sampling step, and illustrate their use with the lighthouse problem [2], a bivariate likelihood used by Gregory [3] and a trivariate Gaussian mixture likelihood. All the algorithm development and testing reported here has been done with Mathematica® [4].

  4. Effects of research tool patents on biotechnology innovation in a developing country: A case study of South Korea

    PubMed Central

    Kang, Kyung-Nam; Ryu, Tae-Kyu; Lee, Yoon-Sik

    2009-01-01

    Background Concerns have recently been raised about the negative effects of patents on innovation. In this study, the effects of patents on innovations in the Korean biotech SMEs (small and medium-sized entrepreneurs) were examined using survey data and statistical analysis. Results The survey results of this study provided some evidence that restricted access problems have occurred even though their frequency was not high. Statistical analysis revealed that difficulties in accessing patented research tools were not negatively correlated with the level of innovation performance and attitudes toward the patent system. Conclusion On the basis of the results of this investigation in combination with those of previous studies, we concluded that although restricted access problems have occurred, this has not yet deterred innovation in Korea. However, potential problems do exist, and the effects of restricted access should be constantly scrutinized. PMID:19321013

  5. Effects of research tool patents on biotechnology innovation in a developing country: a case study of South Korea.

    PubMed

    Kang, Kyung-Nam; Ryu, Tae-Kyu; Lee, Yoon-Sik

    2009-03-26

    Concerns have recently been raised about the negative effects of patents on innovation. In this study, the effects of patents on innovations in the Korean biotech SMEs (small and medium-sized entrepreneurs) were examined using survey data and statistical analysis. The survey results of this study provided some evidence that restricted access problems have occurred even though their frequency was not high. Statistical analysis revealed that difficulties in accessing patented research tools were not negatively correlated with the level of innovation performance and attitudes toward the patent system. On the basis of the results of this investigation in combination with those of previous studies, we concluded that although restricted access problems have occurred, this has not yet deterred innovation in Korea. However, potential problems do exist, and the effects of restricted access should be constantly scrutinized.

  6. Reduced cost mission design using surrogate models

    NASA Astrophysics Data System (ADS)

    Feldhacker, Juliana D.; Jones, Brandon A.; Doostan, Alireza; Hampton, Jerrad

    2016-01-01

    This paper uses surrogate models to reduce the computational cost associated with spacecraft mission design in three-body dynamical systems. Sampling-based least squares regression is used to project the system response onto a set of orthogonal bases, providing a representation of the ΔV required for rendezvous as a reduced-order surrogate model. Models are presented for mid-field rendezvous of spacecraft in orbits in the Earth-Moon circular restricted three-body problem, including a halo orbit about the Earth-Moon L2 libration point (EML-2) and a distant retrograde orbit (DRO) about the Moon. In each case, the initial position of the spacecraft, the time of flight, and the separation between the chaser and the target vehicles are all considered as design inputs. The results show that sample sizes on the order of 102 are sufficient to produce accurate surrogates, with RMS errors reaching 0.2 m/s for the halo orbit and falling below 0.01 m/s for the DRO. A single function call to the resulting surrogate is up to two orders of magnitude faster than computing the same solution using full fidelity propagators. The expansion coefficients solved for in the surrogates are then used to conduct a global sensitivity analysis of the ΔV on each of the input parameters, which identifies the separation between the spacecraft as the primary contributor to the ΔV cost. Finally, the models are demonstrated to be useful for cheap evaluation of the cost function in constrained optimization problems seeking to minimize the ΔV required for rendezvous. These surrogate models show significant advantages for mission design in three-body systems, in terms of both computational cost and capabilities, over traditional Monte Carlo methods.

  7. Feeding, eating and behavioral disturbances in Prader-Willi syndrome and non-syndromal obesity.

    PubMed

    Sonnengrün, Lilli; Schober, Celestina; Vogel, Mandy; Hiemisch, Andreas; Döhnert, Mirko; Hilbert, Anja; Kiess, Wieland

    2016-08-01

    Although most individuals with Prader-Willi syndrome (PWS) are obese, little is known about the impact of obesity-related psychosocial factors in PWS. In the present study we compared feeding, eating, and behavioral disturbances in children and adolescents with PWS, peers with non-syndromal obesity, and normal weight controls. Twelve persons with PWS, aged 7-22 years, age- and gender-matched obese and normal weight individuals were analyzed regarding parental feeding practices, eating disturbances, and behavioral problems via standardized questionnaires. Parents of individuals with PWS reported significantly more restrictive feeding and monitoring than did parents of obese or normal weight children without PWS (p<0.05). Social problems were more common in the obese and the PWS group than in the normal-weight group (p<0.05). Behavioral problems were significantly correlated with parental restrictive feeding practices. Our data show that children and adolescents with PWS are affected by psychosocial problems, and that restrictive feeding practices might be associated with more severe behavioral problems. Further studies in larger samples will be necessary to replicate these results and possibly provide new therapeutic approaches for the management of PWS.

  8. Synthesis and circularization of N- and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W.K.; Kiggans, J.O.; Yang, D.M.

    1980-05-01

    Production of various forms of nonintegrated viral DNA was measured in cultured mouse cells carrying different Fv-1 alleles early after infection with N-tropic or B-tropic retroviruses. Quantitative analyses were performed by agarose gel electrophoresis, transfer to diazobenzyloxymethyl-paper, and molecular hybridization. In permissive infection of Fv-1/sup n/ cells (NIH Swiss and DBA mouse strains) with N-tropic virus and of Fv-1/sup b/ cells (BALB/c and C57BL/6 strains) with B-tropic virus, form III (double-stranded linear) DNA first appeared at 3 to 4 hr and reached a maximum at 8 to 10 hr; two form I (closed circle) DNAs appeared at 7 to 8more » hr and reached a maximum at or beyond 12 hr. In the two Fv-1/sup b/ cells infected with N-tropic virus and in DBA (Fv-1/sup n/) cells infected with B-tropic virus, formation of the two form I DNAs was quantitatively restricted but formation of form III DNA was unaltered. In Fv-1/sup n/ NIH Swiss mouse embryo cells infected with B-tropic virus, the level of form III DNA was markedly depressed and hence the two form I DNAs were not detectable. In C57BL/6 cells as well as in DBA/2 cells 12 hr after infection, the quantity of form III DNA varied directly with the amount of restricted virus, whereas the quantity of form I DNA varied according to the square of the amount of restricted virus. The significance of these results for understanding the molecular basis of retrovirus replication and its restriction by the Fv-1 gene is discussed.« less

  9. Plastic buckling. [post-bifurcation and imperfection sensitivity

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. W.

    1974-01-01

    The present article is concerned mainly with the post-bifurcation and imperfection-sensitivity aspects of plastic buckling. A simple two-degree-of-freedom model is used to introduce post-bifurcation behavior and a second model illustrates features of the behavior of continuous solids and structures. Hill's bifurcation criterion for a class of three-dimensional solids is applied to the Donnell-Mushtari-Vlasov (DMV) theory of plates and shells. A general treatment of the initial post-bifurcation behavior of plates and shells is given within the context of the DMV theory. This is illustrated by problems involving columns and circular plates under radial compression. Numerical results are given for a column under axial compression, a circular plate under radial compression, and spherical and cylindrical shells.

  10. Optimal impulsive time-fixed orbital rendezvous and interception with path constraints

    NASA Technical Reports Server (NTRS)

    Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.

    1990-01-01

    Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.

  11. Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.

    2017-12-01

    The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.

  12. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing.

    PubMed

    Sarkar, Debina; Oghabian, Ali; Bodiyabadu, Pasani K; Joseph, Wayne R; Leung, Euphemia Y; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2017-06-27

    The long non-coding RNA ANRIL , antisense to the CDKN2B locus, is transcribed from a gene that encompasses multiple disease-associated polymorphisms. Despite the identification of multiple isoforms of ANRIL , expression of certain transcripts has been found to be tissue-specific and the characterisation of ANRIL transcripts remains incomplete. Several functions have been associated with ANRIL . In our judgement, studies on ANRIL functionality are premature pending a more complete appreciation of the profusion of isoforms. We found differential expression of ANRIL exons, which indicates that multiple isoforms exist in melanoma cells. In addition to linear isoforms, we identified circular forms of ANRIL ( circANRIL ). Further characterisation of circANR IL in two patient-derived metastatic melanoma cell lines (NZM7 and NZM37) revealed the existence of a rich assortment of circular isoforms. Moreover, in the two melanoma cell lines investigated, the complements of circANRIL isoforms were almost completely different. Novel exons were also discovered. We also found the family of linear ANRIL was enriched in the nucleus, whilst the circular isoforms were enriched in the cytoplasm and they differed markedly in stability. With respect to the variable processing of circANRIL species, bioinformatic analysis indicated that intronic Arthrobacter luteus (Alu) restriction endonuclease inverted repeats and exon skipping were not involved in selection of back-spliced exon junctions. Based on our findings, we hypothesise that " ANRIL " has wholly distinct dual sets of functions in melanoma. This reveals the dynamic nature of the locus and constitutes a basis for investigating the functions of ANRIL in melanoma.

  13. Numerical study of unsteady shockwave reflections using an upwind TVD scheme

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.; Liou, Meng-Sing

    1990-01-01

    An unsteady TVD Navier-Stokes solver was developed and applied to the problem of shock reflection on a circular cylinder. The obtained numerical results were compared with the Schlieren photos from an experimental study. These results show that the present computer code has the ability of capturing moving shocks.

  14. Geotechnical Engineering Circular No. 3: Design Guidance. Geotechnical Earthquake Engineering for Highways. Volume I - Design Principles

    DOT National Transportation Integrated Search

    1995-01-01

    In order to obtain regional perspective on the major problems and issues to be addressed, a series of nine regional round tables were convened across the nation. One of these was held in Norfolk, VA, on June 11, 1993. The primary focus of this meetin...

  15. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  16. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  17. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  18. Microwave Heating of a Liquid Stably Flowing in a Circular Channel Under the Conditions of Nonstationary Radiative-Convective Heat Transfer

    NASA Astrophysics Data System (ADS)

    Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.

    2018-05-01

    A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.

  19. Buckling delamination of the circular sandwich plate with piezoelectric face and elastic core layers under rotationally symmetric external pressure

    NASA Astrophysics Data System (ADS)

    Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye

    2017-02-01

    The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).

  20. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Møller, Martin; Olsen, Martin; Abildgaard Pedersen, Jan

    2014-04-01

    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem-using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed-in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system.

  1. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  2. A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Labbé, D. F. L.; Wilson, P. A.

    2007-11-01

    The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.

  3. Progression from laparoscopic-assisted to totally laparoscopic distal gastrectomy: comparison of circular stapler (i-DST) and linear stapler (BBT) for intracorporeal anastomosis.

    PubMed

    Ikeda, Tetsuo; Kawano, Hiroyuki; Hisamatsu, Yuichi; Ando, Koji; Saeki, Hiroshi; Oki, Eiji; Ohga, Takefumi; Kakeji, Yoshihiro; Tsujitani, Shunichi; Kohnoe, Shunji; Maehara, Yoshihiko

    2013-01-01

    Billroth I (B-I) gastroduodenostomy is an anastomotic procedure that is widely performed after gastric resection for distal gastric cancer. A circular stapler often is used for B-I gastroduodenostomy in open and laparoscopic-assisted distal gastrectomy. Recently, totally laparoscopic distal gastrectomy (TLDG) has been considered less invasive than laparoscopic-assisted gastrectomy, and many institutions performing laparoscopic-assisted distal gastrectomy are trying to progress to TLDG without markedly changing the anastomosis method. The purpose of this report is to introduce the technical details of new methods of intracorporeal gastroduodenostomy using either a circular or linear stapler and to evaluate their technical feasibility and safety. Seventeen patients who underwent TLDG with the intracorporeal double-stapling technique using a circular stapler (n = 7) or the book-binding technique (BBT) using a linear stapler (n = 10) between February 2010 and April 2011 were enrolled in the study. Clinicopathological data, surgical data, and postoperative outcomes were analyzed. There were no intraoperative complications or conversions to open surgery in any of the 17 patients. The usual postoperative complications following gastroduodenostomy, such as anastomotic leakage and stenosis, were not observed. Anastomosis took significantly longer to complete with DST (64 ± 24 min) than with BBT (34 ± 7 min), but more stapler cartridges were needed with BBT than with DST. TLDG using a circular or linear stapler is feasible and safe to perform. DST will enable institutions performing laparoscopic-assisted distal gastrectomy with circular staplers to progress to TLDG without problems, and this progression may be more economical because fewer stapler cartridges are used during surgery. However, if an institution has already been performing δ anastomosis in TLDG but has been experiencing certain issues with δ anastomosis, converting from δ anastomosis to BBT should be beneficial.

  4. Discrete restricted four-body problem: Existence of proof of equilibria and reproducibility of periodic orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minesaki, Yukitaka

    2015-01-01

    We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog thatmore » preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.« less

  5. Rapid and simple method for purification of nucleic acids.

    PubMed

    Boom, R; Sol, C J; Salimans, M M; Jansen, C L; Wertheim-van Dillen, P M; van der Noordaa, J

    1990-03-01

    We have developed a simple, rapid, and reliable protocol for the small-scale purification of DNA and RNA from, e.g., human serum and urine. The method is based on the lysing and nuclease-inactivating properties of the chaotropic agent guanidinium thiocyanate together with the nucleic acid-binding properties of silica particles or diatoms in the presence of this agent. By using size-fractionated silica particles, nucleic acids (covalently closed circular, relaxed circular, and linear double-stranded DNA; single-stranded DNA; and rRNA) could be purified from 12 different specimens in less than 1 h and were recovered in the initial reaction vessel. Purified DNA (although significantly sheared) was a good substrate for restriction endonucleases and DNA ligase and was recovered with high yields (usually over 50%) from the picogram to the microgram level. Copurified rRNA was recovered almost undegraded. Substituting size-fractionated silica particles for diatoms (the fossilized cell walls of unicellular algae) allowed for the purification of microgram amounts of genomic DNA, plasmid DNA, and rRNA from cell-rich sources, as exemplified for pathogenic gram-negative bacteria. In this paper, we show representative experiments illustrating some characteristics of the procedure which may have wide application in clinical microbiology.

  6. Circular on controlling the outflow of labourers, March 1989.

    PubMed

    1989-01-01

    In early March 1989, China's General Office of the State Council issued an urgent Circular demanding that various local governmental bodies "do a good job in strictly controlling the blind outflow of laborers." The circular pointed out that "since the Spring Festival, large numbers of laborers from Sichuan, Henan, Hubei, Shandong, Shaanxi, Jiangsu, Zhejiang, Anhui, and other provinces have concentrated in large numbers in regions such as the northwest, the northwest, and Guangdong Province, causing a huge increase in railroad passenger traffic. There has been a large pile-up of passengers on some main railroad lines and stations, and trains have been seriously overcrowded. This has put tremendous pressure on railroad transport. After arriving in the above mentioned regions, some of these laborers hang around the streets because they cannot find work, and their life is extremely difficult. The large influx of laborers into these regions has caused confusion in local social order." In order to resolve this problem satisfactorily, the circular makes the following demands: "The people's government at all levels must rapidly get under control the blind outflow of laborers and their assembly in large numbers for moving elsewhere. It is necessary to organize forces to admonish and stop those laborers who have already assembled at the railroad stations, so that they will not blindly move elsewhere. They should also be mobilized to return to their home towns." full text

  7. The challenging problem of disease staging in human African trypanosomiasis (sleeping sickness): a new approach to a circular question.

    PubMed

    Njamnshi, Alfred K; Gettinby, George; Kennedy, Peter G E

    2017-05-01

    Human African trypanosomiasis (HAT), also known as sleeping sickness, puts millions of people at risk in sub-Saharan Africa and is a neglected parasitic disease that is almost always fatal if untreated or inadequately treated. HAT manifests itself in two stages that are difficult to distinguish clinically. The problem of staging in HAT is extremely important since treatment options, some of which are highly toxic, are directly linked to the disease stage. Several suggested investigations for disease staging have been problematic because of the lack of an existing gold standard with which to compare new clinical staging markers. The somewhat arbitrary current criteria based on the cerebrospinal fluid (CSF) white blood cell (WBC) count have been widely used, but the new potential biomarkers are generally compared with these, thereby making the problem somewhat circular in nature. We propose an alternative 'reverse' approach to address this problem, conceptualised as using appropriate statistical methods to test the performance of combinations of established laboratory variables as staging biomarkers to correlate with the CSF WBC/trypanosomes and clinical features of HAT. This approach could lead to the use of established laboratory staging markers, potentially leading to a gold standard for staging and clinical follow-up of HAT. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Using traveling salesman problem algorithms for evolutionary tree construction.

    PubMed

    Korostensky, C; Gonnet, G H

    2000-07-01

    The construction of evolutionary trees is one of the major problems in computational biology, mainly due to its complexity. We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.

  9. Are We Really Missing Small Galaxies?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    One long-standing astrophysical puzzle is that of so-called missing dwarf galaxies: the number of small dwarf galaxies that we observe is far fewer than that predicted by theory. New simulations, however, suggest that perhaps theres no mystery after all.Missing DwarfsDark-matter cosmological simulations predict many small galaxy halos for every large halo that forms. [The Via Lactea project]Models of a lambda-cold-dark-matter (CDM) universe predict the distribution of galaxy halo sizes throughout the universe, suggesting there should be many more small galaxies than large ones. In what has become known as the missing dwarf problem, however, we find that while we observe the expected numbers of galaxies at the larger end of the scale, we dont see nearly enough small galaxies to match the predictions.Are these galaxies actually missing? Are our predictions wrong? Or are the galaxies there and were just not spotting them? A recent study led by Alyson Brooks (Rutgers University) uses new simulations to explore whatscausing the difference between theory and observation.The fraction of detectable halos as a function of velocity, according to the authors simulations. Below 35 km/s, the detectability of the galaxies drops precipitously. [Brooks et al. 2017]Simulating Galactic VelocitiesBecause we cant weigh a galaxy directly, one proxy used for galaxy mass is its circular velocity; the more massive a galaxy, the faster gas and stars rotate around its center. The discrepancy between models and observations lies in whats known as the galaxy velocity function, which describes the number density of galaxies for a given circular velocity. While theory and observations agree for galaxies with circular velocities above 100 km/s, theory predicts far more dwarfs below this velocity than we observe.To investigate this problem, Brooks and collaborators ran a series of cosmological simulations based on our understanding of a CDM universe. Instead of exploring the result using only dark matter, however, the team included baryons in their simulations. They then produced mock observations of the resulting galaxy velocities to see what an observed velocity function would look like for their simulated galaxies.No Problem After All?Comparison of theoretical velocity functions to observations. The black dashed line shows the original, dark-matter-only model predictions; the black solid line includes the effects of detectability. Blue lines show the authors new model, including the effects of detectability and inclusion of baryons. The red and teal data points from observations match this corrected model well. [Brooks et al. 2017]Based on their baryon-inclusive simulations, Brooks and collaborators argue that there are two main factors that have contributed to the seeming theory/observation mismatch of the missing dwarf problem:Galaxies with low velocities arent detectable by our current surveys.The authors found that the detectable fraction of their simulated galaxies plunges as soon as galaxy velocity drops below 35 km/s. They conclude that were probably unable to see a large fraction of the smallest galaxies.Were not correctly inferring the circular velocity of the galaxies.Circular velocity is usually measured by looking at the line width of a gas tracer like HI. The authors find that this doesnt trace the full potential wells of the dwarf galaxies, however, resulting in an incorrect interpretation of their velocities.The authors show that the inclusion of these effects in the theoretical model significantly changes the predicted shape of the galaxy velocity function. This new function beautifully matches observations, neatly eliminating the missing dwarf problem. Perhaps this long-standing mystery has been a problem of interpretation all along!CitationAlyson M. Brooks et al 2017 ApJ 850 97. doi:10.3847/1538-4357/aa9576

  10. Trajectory Design for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  11. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  12. An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotordynamic systems

    NASA Astrophysics Data System (ADS)

    Torres Cedillo, Sergio G.; Bonello, Philip

    2016-01-01

    The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.

  13. Bifurcation of finitely deformed thick-walled electroelastic cylindrical tubes subject to a radial electric field

    NASA Astrophysics Data System (ADS)

    Melnikov, Andrey; Ogden, Ray W.

    2018-06-01

    This paper is concerned with the bifurcation analysis of a pressurized electroelastic circular cylindrical tube with closed ends and compliant electrodes on its curved boundaries. The theory of small incremental electroelastic deformations superimposed on a finitely deformed electroelastic tube is used to determine those underlying configurations for which the superimposed deformations do not maintain the perfect cylindrical shape of the tube. First, prismatic bifurcations are examined and solutions are obtained which show that for a neo-Hookean electroelastic material prismatic modes of bifurcation become possible under inflation. This result contrasts with that for the purely elastic case for which prismatic bifurcation modes were found only for an externally pressurized tube. Second, axisymmetric bifurcations are analyzed, and results for both neo-Hookean and Mooney-Rivlin electroelastic energy functions are obtained. The solutions show that in the presence of a moderate electric field the electroelastic tube becomes more susceptible to bifurcation, i.e., for fixed values of the axial stretch axisymmetric bifurcations become possible at lower values of the circumferential stretches than in the corresponding problems in the absence of an electric field. As the magnitude of the electric field increases, however, the possibility of bifurcation under internal pressure becomes restricted to a limited range of values of the axial stretch and is phased out completely for sufficiently large electric fields. Then, axisymmetric bifurcation is only possible under external pressure.

  14. Derivation of capture probabilities for the corotation eccentric mean motion resonances

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan

    2017-08-01

    We study in this paper the capture of a massless particle into an isolated, first-order corotation eccentric resonance (CER), in the framework of the planar, eccentric and restricted three-body problem near a m + 1: m mean motion commensurability (m integer). While capture into Lindblad eccentric resonances (where the perturber's orbit is circular) has been investigated years ago, capture into CER (where the perturber's orbit is elliptic) has not yet been investigated in detail. Here, we derive the generic equations of motion near a CER in the general case where both the perturber and the test particle migrate. We derive the probability of capture in that context, and we examine more closely two particular cases: (I) if only the perturber is migrating, capture is possible only if the migration is outward from the primary. Notably, the probability of capture is independent of the way the perturber migrates outward; (II) if only the test particle is migrating, then capture is possible only if the algebraic value of its migration rate is a decreasing function of orbital radius. In this case, the probability of capture is proportional to the radial gradient of migration. These results differ from the capture into Lindblad eccentric resonance (LER), where it is necessary that the orbits of the perturber and the test particle converge for capture to be possible.

  15. Levels of Simplification. The Use of Assumptions, Restrictions, and Constraints in Engineering Analysis.

    ERIC Educational Resources Information Center

    Whitaker, Stephen

    1988-01-01

    Describes the use of assumptions, restrictions, and constraints in solving difficult analytical problems in engineering. Uses the Navier-Stokes equations as examples to demonstrate use, derivations, advantages, and disadvantages of the technique. (RT)

  16. FDTD method for laser absorption in metals for large scale problems.

    PubMed

    Deng, Chun; Ki, Hyungson

    2013-10-21

    The FDTD method has been successfully used for many electromagnetic problems, but its application to laser material processing has been limited because even a several-millimeter domain requires a prohibitively large number of grids. In this article, we present a novel FDTD method for simulating large-scale laser beam absorption problems, especially for metals, by enlarging laser wavelength while maintaining the material's reflection characteristics. For validation purposes, the proposed method has been tested with in-house FDTD codes to simulate p-, s-, and circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the simulation results are in good agreement with theoretical predictions.

  17. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  18. Calculation of double-lunar swingby trajectories: Part 2: Numerical solutions in the restricted problem of three bodies

    NASA Technical Reports Server (NTRS)

    Stalos, S.

    1990-01-01

    The double-lunar swingby trajectory is a method for maintaining alignment of an Earth satellite's line of apsides with the Sun-Earth line. From a Keplerian point of view, successive close encounters with the Moon cause discrete, instantaneous changes in the satellite's eccentricity and semimajor axis. Numerical solutions to the planar, restricted problem of three bodies as double-lunar swingby trajectories are identified. The method of solution is described and the results compared to the Keplerian formulation.

  19. New doubly-symmetric families of comet-like periodic orbits in the spatial restricted ( N + 1)-body problem

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Roberto, Luci Any

    2009-07-01

    For any positive integer N ≥ 2 we prove the existence of a new family of periodic solutions for the spatial restricted ( N +1)-body problem. In these solutions the infinitesimal particle is very far from the primaries. They have large inclinations and some symmetries. In fact we extend results of Howison and Meyer (J. Diff. Equ. 163:174-197, 2000) from N = 2 to any positive integer N ≥ 2.

  20. Transformation of Infrastructure Projects for the Sustainable Development of the Transport Complex

    NASA Astrophysics Data System (ADS)

    Polyakova, Irina; Vasilyeva, Elena; Vorontsova, Natalya

    2017-10-01

    The article contains actual data on the review of the performance of the transport infrastructure in Russia. The problems and restrictions, affecting its sustainable development, are identified; their interaction and interrelations are traced. The authors argue that the majority of the revealed restrictions are of internal character and mainly is the feature of the state contract scheme. According to the authors, the scheme of public-and-private partnership is an effective mechanism, which can be suggested for the existing problems solution.

  1. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  2. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  3. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  4. Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Hackett, R. M.; Juruf, R. S.

    1976-01-01

    A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.

  5. Putting the Cart before the Horse: The Creation of Essences out of Processes in Science Education Research

    ERIC Educational Resources Information Center

    Lundegard, Iann; Hamza, Karim M.

    2014-01-01

    This article addresses the problem of treating generalizations of human activity as entities and structures that ultimately explain the activities from which they were initially drawn. This is problematic because it involves a circular reasoning leading to unwarranted claims explaining the originally studied activities of science teaching and…

  6. A Circular-Impact Sampler for Forest Litter

    Treesearch

    Stephen S. Sackett

    1971-01-01

    Sampling the forest floor to determine litter weight is a tedious, time-consuming job. A new device has been designed and tested at the Southern Forest Fire Laboratory that eliminates many of the past sampling problems. The sampler has been fabricated in two sizes (6- and 12-inch diameters), and these are comparable in accuracy and sampling intensity. This Note...

  7. Understanding the Function of Circular Polarisation Vision in Mantis Shrimps: Building a C-Pol Camera

    DTIC Science & Technology

    2008-10-24

    instrumentation from hand-held to remote sensing (RS) and used to address problems such as coral bleaching or algal blooms. Very recent work has...Fig.1 A mantis shrimp looking out from the front entrance of its burrow. This and other species live on coral reefs and in other shallow

  8. Experimentally Building a Qualitative Understanding of Newton's Second Law

    ERIC Educational Resources Information Center

    Gates, Joshua

    2014-01-01

    Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for…

  9. Periodic perturbations with rotational symmetry of planar systems driven by a central force

    NASA Astrophysics Data System (ADS)

    Fonda, Alessandro; Gallo, Anna Chiara

    2018-06-01

    We consider periodic perturbations of a central force field having a rotational symmetry, and prove the existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler problem.

  10. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  11. Propagation of waves in elliptic ducts. A theoretical study. [in view of jet engine compressor noise reduction

    NASA Technical Reports Server (NTRS)

    Baskaran, S.

    1974-01-01

    The cut-off frequencies for high order circumferential modes were calculated for various eccentricities of an elliptic duct section. The problem was studied with a view to the reduction of jet engine compressor noise by elliptic ducts, instead of circular ducts. The cut-off frequencies for even functions decrease with increasing eccentricity. The third order eigen frequencies are oscillatory as the eccentricity increases for odd functions. The eigen frequencies decrease for higher order odd functions inasmuch as, for higher orders, they assume the same values as those for even functions. Deformation of a circular pipe into an elliptic one of sufficiently large eccentricity produces only a small reduction in the cut-off frequency, provided the area of the pipe section is kept invariable.

  12. Packing of flexible 2D materials in vesicles

    NASA Astrophysics Data System (ADS)

    Zou, Guijin; Yi, Xin; Zhu, Wenpeng; Gao, Huajian

    2018-06-01

    To understand the mechanics of cellular packing of two-dimensional (2D) materials, we perform systematic molecular dynamics simulations and theoretical analysis to investigate the packing of a flexible circular sheet in a spherical vesicle and the 2D packing problem of a strip in a cylindrical vesicle. Depending on the system dimensions and the bending rigidity ratio between the confined sheet and the vesicle membrane, a variety of packing morphologies are observed, including a conical shape, a shape of three-fold symmetry, a cylindrically curved shape, an axisymmetrically buckled shape, as well as the initial circular shape. A set of buckling analyses lead to phase diagrams of the packing morphologies of the encapsulated sheets. These results may have important implications on the mechanism of intracellular packing and toxicity of 2D materials.

  13. On orbital stability of planar oscillations of a satellite in a circular orbit on the boundary of the parametric resonance

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Chekina, E. A.

    2018-05-01

    We consider the motion of a satellite about its center of mass in a circular orbit. We study the problem of orbital stability for planar pendulum-like oscillations of the satellite. It is supposed that the satellite is a rigid body whose mass geometry is that of a plate. For the unperturbed motion the plane of the satellite-plate is perpendicular to the plane of the orbit. We perform a nonlinear analysis of the orbital stability of planar pendulum-like oscillations for previously unexplored parameter values corresponding to the combination resonance. It appears that in this case both formal orbital stability and instability can take place. The results of stability study are shown in stability diagrams.

  14. Acoustic Scattering from Corners, Edges and Circular Cones

    NASA Astrophysics Data System (ADS)

    Elschner, Johannes; Hu, Guanghui

    2018-05-01

    Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in {(0,2π)π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.

  15. Chromosome map of the thermophilic archaebacterium Thermococcus celer

    NASA Technical Reports Server (NTRS)

    Noll, K. M.; Woese, C. R. (Principal Investigator)

    1989-01-01

    A physical map for the chromosome of the thermophilic archaebacterium Thermococcus celer Vu13 has been constructed. Thirty-four restriction endonucleases were tested for their ability to generate large restriction fragments from the chromosome of T. celer. Of these, the enzymes NheI, SpeI, and XbaI yielded the fewest fragments when analyzed by pulsed-field electrophoresis. NheI and SpeI each gave 5 fragments, while XbaI gave 12. The size of the T. celer chromosome was determined from the sum of the apparent sizes of restriction fragments derived from single and double digests by using these enzymes and was found to be 1,890 +/- 27 kilobase pairs. Partial and complete digests allowed the order of all but three small (less than 15 kilobase pairs) fragments to be deduced. These three fragments were assigned positions by using hybridization probes derived from these restriction fragments. The positions of the other fragments were confirmed by using hybridization probes derived in the same manner. The positions of the 5S, 16S, and 23S rRNA genes as well as the 7S RNA gene were located on this map by using cloned portions of these genes as hybridization probes. The 5S rRNA gene was localized 48 to 196 kilobases from the 5' end of the 16S gene. The 7S RNA gene was localized 190 to 504 kilobases from the 3' end of the 23S gene. These analyses demonstrated that the chromosome of T. celer is a single, circular DNA molecule. This is the first such demonstration of the structure of an archaebacterial chromosome.

  16. [Potential role of the Epstein-Barr virus in the pathogenesis of systemic lupus erythematosus and kidney diseases].

    PubMed

    Roszkowiak, Bogna; Niemir, Zofia I

    2004-01-01

    Epstein-Barr virus (EBV) is mainly regarded as a tumorigenic agent widely distributed in the adult population. Recent results also indicate its potential role in systemic autoimmune diseases as well as in renal disorders. This is thought to be due to the virus's capacity to invade B cells and change from the lytic linear form to the circular latent one, which allows restriction in its gene expression array. In this way the virus avoids recognition by CD4+ and CD8+ cells and escapes immunological control. Defective control of lytic and/or latent EBV infection may contribute to the development of systemic or renal pathology.

  17. 78 FR 76218 - Rural Call Completion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... calls to rural areas, and enforce restrictions against blocking, choking, reducing, or restricting calls... to alert the Commission of systemic problems receiving calls from a particular originating long... associated with completing calls to rural areas. These rules will also enhance our ability to enforce...

  18. Thread Graphs, Linear Rank-Width and Their Algorithmic Applications

    NASA Astrophysics Data System (ADS)

    Ganian, Robert

    The introduction of tree-width by Robertson and Seymour [7] was a breakthrough in the design of graph algorithms. A lot of research since then has focused on obtaining a width measure which would be more general and still allowed efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. To this end, Oum and Seymour have proposed rank-width, which allows the solution of many such hard problems on a less restricted graph classes (see e.g. [3,4]). But what about problems which are NP-hard even on graphs of bounded tree-width or even on trees? The parameter used most often for these exceptionally hard problems is path-width, however it is extremely restrictive - for example the graphs of path-width 1 are exactly paths.

  19. The Impact of Coverage Restrictions on Antipsychotic Utilization Among Low-Income Medicare Part D Enrollees.

    PubMed

    Roberto, Pamela N; Brandt, Nicole; Onukwugha, Eberechukwu; Perfetto, Eleanor; Powers, Christopher; Stuart, Bruce

    2017-11-01

    Prior research demonstrates substantial access problems associated with utilization management and formulary exclusions for antipsychotics in Medicaid, but the use and impact of coverage restrictions for these medications in Medicare Part D remains unknown. We assess the effect of coverage restrictions on antipsychotic utilization in Part D by exploiting a unique natural experiment in which low-income beneficiaries are randomly assigned to prescription drug plans with varying levels of formulary generosity. Despite considerable variation in use of coverage restrictions across Part D plans, we find no evidence that these restrictions significantly deter utilization or reduce access to antipsychotics for low-income beneficiaries.

  20. Sparse Image Reconstruction on the Sphere: Analysis and Synthesis.

    PubMed

    Wallis, Christopher G R; Wiaux, Yves; McEwen, Jason D

    2017-11-01

    We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l 1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.

  1. MILP model for integrated balancing and sequencing mixed-model two-sided assembly line with variable launching interval and assignment restrictions

    NASA Astrophysics Data System (ADS)

    Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.

    2017-09-01

    This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.

  2. Approximate solution of the multiple watchman routes problem with restricted visibility range.

    PubMed

    Faigl, Jan

    2010-10-01

    In this paper, a new self-organizing map (SOM) based adaptation procedure is proposed to address the multiple watchman route problem with the restricted visibility range in the polygonal domain W. A watchman route is represented by a ring of connected neuron weights that evolves in W, while obstacles are considered by approximation of the shortest path. The adaptation procedure considers a coverage of W by the ring in order to attract nodes toward uncovered parts of W. The proposed procedure is experimentally verified in a set of environments and several visibility ranges. Performance of the procedure is compared with the decoupled approach based on solutions of the art gallery problem and the consecutive traveling salesman problem. The experimental results show the suitability of the proposed procedure based on relatively simple supporting geometrical structures, enabling application of the SOM principles to watchman route problems in W.

  3. Unitary circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. The origin of this circular code X in genes is an open problem since its discovery in 1996. Here, we first show that the unitary circular codes (UCC), i.e. sets of one word, allow to generate unitary circular code motifs (UCC motifs), i.e. a concatenation of the same motif (simple repeats) leading to low complexity DNA. Three classes of UCC motifs are studied here: repeated dinucleotides (D + motifs), repeated trinucleotides (T + motifs) and repeated tetranucleotides (T + motifs). Thus, the D + , T + and T + motifs allow to retrieve, synchronize and maintain a frame modulo 2, modulo 3 and modulo 4, respectively, and their shifted frames (1 modulo 2; 1 and 2 modulo 3; 1, 2 and 3 modulo 4 according to the C 2 , C 3 and C 4 properties, respectively) in the DNA sequences. The statistical distribution of the D + , T + and T + motifs is analyzed in the genomes of eukaryotes. A UCC motif and its comp lementary UCC motif have the same distribution in the eukaryotic genomes. Furthermore, a UCC motif and its complementary UCC motif have increasing occurrences contrary to their number of hydrogen bonds, very significant with the T + motifs. The longest D + , T + and T + motifs in the studied eukaryotic genomes are also given. Surprisingly, a scarcity of repeated trinucleotides (T + motifs) in the large eukaryotic genomes is observed compared to the D + and T + motifs. This result has been investigated and may be explained by two outcomes. Repeated trinucleotides (T + motifs) are identified in the X motifs of low composition (cardinality less than 10) in the genomes of eukaryotes. Furthermore, identical trinucleotide pairs of the circular code X are preferentially used in the gene sequences of eukaryotes. These two results suggest that the unitary circular codes of trinucleotides may have been involved in the formation of the trinucleotide circular code X. Indeed, repeated trinucleotides in the X motifs in the genomes of eukaryotes may represent an intermediary evolution from repeated trinucleotides of cardinality 1 (T + motifs) in the genomes of eukaryotes up to the X motifs of cardinality 20 in the gene sequences of eukaryotes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stiffness of frictional contact of dissimilar elastic solids

    DOE PAGES

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...

    2017-12-22

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  5. Stiffness of frictional contact of dissimilar elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  6. Stiffness of frictional contact of dissimilar elastic solids

    NASA Astrophysics Data System (ADS)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.

    2018-03-01

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.

  7. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  8. An exploration of the relationship between adherence with dietary sodium restrictions and health beliefs regarding these restrictions in Irish patients receiving haemodialysis for end-stage renal disease.

    PubMed

    Walsh, Ella; Lehane, Elaine

    2011-02-01

    To measure adherence levels with dietary restrictions in Irish patients with end-stage renal disease receiving haemodialysis and to explore the relationships between adherence with dietary sodium restrictions and health beliefs in relation to following these restrictions in this group. Non-adherence to medical regimes is an important healthcare issue and an ever-present problem, particularly in patients with a chronic illness. The literature revealed a lack of studies measuring adherence with the sodium component of the renal dietary restrictions and associated factors; despite the fact that adherence with sodium restrictions is essential to the optimal management of end-stage renal disease. Furthermore, despite increased emphasis on 'the patients' view' in healthcare no study to date has contextualised health beliefs and adherence in end-stage renal disease from an Irish perspective. A quantitative, descriptive, correlational design was employed using the Health Belief Model as a theoretical framework. A convenience sample (n = 79) was recruited from the haemodialysis units of a large hospital. Data were collected using self-report questionnaires. Data were analysed using descriptive and correlational statistics. Non-adherence with dietary restrictions was a problem among a proportion of the sample. Greater adherence levels with dietary sodium restrictions were associated with greater 'perceived benefits' and fewer 'perceived barriers.' For the Irish patient, beliefs in relation to following a low sodium diet significantly affected adherence levels with this diet. This is an important finding as delineating key beliefs, particularly key barriers, facilitates an increased understanding of non-adherence for nurses. These findings have implications for the care of patients with end-stage renal disease in that they can provide guidance in terms of developing interventions designed to improve adherence. © 2011 Blackwell Publishing Ltd.

  9. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  10. A DRBEM for steady infiltration from periodic semi-circular channels with two different types of roots distribution

    NASA Astrophysics Data System (ADS)

    Solekhudin, Imam; Sumardi

    2017-05-01

    In this study, problems involving steady Infiltration from periodic semicircular channels with root-water uptake function are considered. These problems are governed by Richards equation. This equation can be studied more conveniently by transforming the equation into a modified Helmholtz equation. In these problems, two different types of root-water uptake are considered. A dual reciprocity boundary element method (DRBEM) with a predictor-corrector scheme is used to solve the modified Helmholtz equation numerically. Using the solution obtained, numerical values of suction potential and root-water uptake function can be computed. In addition, amount of water absorbed by the different plant roots distribution can also be computed and compared.

  11. CAREGIVERS OF THE CHRONICALLY CRITICALLY ILL AFTER DISCHARGE FROM THE INTENSIVE CARE UNIT: SIX MONTHS’ EXPERIENCE

    PubMed Central

    Choi, JiYeon; Donahoe, Michael P.; Zullo, Thomas G.; Hoffman, Leslie A.

    2011-01-01

    Background Chronically critically ill patients typically undergo an extended recovery after discharge from the intensive care unit, making involvement of family caregivers essential. Prior studies provide limited detail about specific ways this experience affects caregivers. Objectives To (1) describe lifestyle restrictions and distress among caregivers of chronically critically ill patients 1 and 6 months after discharge and (2) explore how caregivers’ lifestyle restrictions and distress differ according to patients’ and caregivers’ characteristics. Methods Sixty-nine chronically critically ill patients and their family caregivers completed follow-up at 1 and 6 months after discharge from the intensive care unit. Data were collected from medical records and survey via telephone or mail. Results Caregivers’ perceived lifestyle restrictions (Changes in Role Function) decreased from 1 month (mean [SD], 23.0 [8.3]) to 6 months (19.4 [8.6]) after discharge (P = .003), although patients’ problem behaviors and caregivers’ distress (8.9 [9.3] vs 7.9 [9.6], respectively; P = .32) did not change. Change in caregivers’ lifestyle restrictions differed by patients’ disposition (P = .02) and functional status (Health Assessment Questionnaire; P = .007). Caregiver’s lifestyle restrictions remained high when patients never returned home or never recovered their preadmission functional status. Caregivers reported the most restrictions in social life and personal recreation. Patients’ negative emotions and pain caused the most caregiver distress. Conclusions Caregivers of chronically critically ill patients perceived fewer lifestyle restrictions over time but reported no change in patients’ problem behaviors or distress. Lifestyle restrictions and distress remained high when patients never returned home or regained their preadmission functional status. PMID:21196567

  12. Caregivers of the chronically critically ill after discharge from the intensive care unit: six months' experience.

    PubMed

    Choi, JiYeon; Donahoe, Michael P; Zullo, Thomas G; Hoffman, Leslie A

    2011-01-01

    Chronically critically ill patients typically undergo an extended recovery after discharge from the intensive care unit, making involvement of family caregivers essential. Prior studies provide limited detail about specific ways this experience affects caregivers. To (1) describe lifestyle restrictions and distress among caregivers of chronically critically ill patients 1 and 6 months after discharge and (2) explore how caregivers' lifestyle restrictions and distress differ according to patients' and caregivers' characteristics. Sixty-nine chronically critically ill patients and their family caregivers completed follow-up at 1 and 6 months after discharge from the intensive care unit. Data were collected from medical records and survey via telephone or mail. Caregivers' perceived lifestyle restrictions (Changes in Role Function) decreased from 1 month (mean [SD], 23.0 [8.3]) to 6 months (19.4 [8.6]) after discharge (P = .003), although patients' problem behaviors and caregivers' distress (8.9 [9.3] vs 7.9 [9.6], respectively; P = .32) did not change. Change in caregivers' lifestyle restrictions differed by patients' disposition (P = .02) and functional status (Health Assessment Questionnaire; P = .007). Caregiver's lifestyle restrictions remained high when patients never returned home or never recovered their preadmission functional status. Caregivers reported the most restrictions in social life and personal recreation. Patients' negative emotions and pain caused the most caregiver distress. Caregivers of chronically critically ill patients perceived fewer lifestyle restrictions over time but reported no change in patients' problem behaviors or distress. Lifestyle restrictions and distress remained high when patients never returned home or regained their preadmission functional status.

  13. The algorithmic details of polynomials application in the problems of heat and mass transfer control on the hypersonic aircraft permeable surfaces

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable surfaces heat and mass transfer effective control mathematical modeling problems are considered. The analysis of the control (the blowing) constructive and gasdynamical restrictions is carried out for the porous and perforated surfaces. The functions classes allowing realize the controls taking into account the arising types of restrictions are suggested. Estimates of the computational complexity of the W. G. Horner scheme application in the case of using the C. Hermite interpolation polynomial are given.

  14. Comment on "Out-of-plane equilibrium points in the restricted three-body problem with oblateness (Research Note)"

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Xuefeng; Zhou, Li-Yong

    2018-06-01

    Douskos & Markellos (2006, A&A, 446, 357) first reported the existence of the out-of-plane equilibrium points in restricted three-body problem with oblateness. This result deviates significantly from the intuitive physical point of view that there is no other force that can balance the combined gravitation in Z direction. In fact, the out-of-plane equilibrium in that model is illusory and we prove here that such equilibrium points arise from the improper application of the potential function.

  15. The uniqueness of the solution of cone-like inversion models for halo CMEs

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  16. Extended generalized recurrence plot quantification of complex circular patterns

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-03-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

  17. Application of circular dichroism and magnetic circular dichroism for assessing biopharmaceuticals formulations photo-stability and small ligands binding properties.

    PubMed

    Longo, Edoardo; Hussain, Rohanah; Siligardi, Giuliano

    2015-03-01

    Synchrotron radiation circular dichroism (SRCD) is a powerful tool for photo-stability assessment of proteins. Recently our research has been interested in applying SRCD to develop screening methodologies for accelerated photo-stability assessment of monoclonal antibody formulations. Despite it was proven to be reliable and applicable within a wide range of salts and excipients containing solutions, the presence of far-UV (<260nm) strong absorbing species (e.g., sodium chloride, histidine, arginine) in common formulations completely prevent the analysis. Herein, we propose a new method based on CD coupled with magnetic CD (MCD) to address the problem and offer an additional versatile tool for monitoring the photo-stability. This is done by assessing the stability of the samples by looking at the near-UV band, as well as giving insights in the denaturation mechanism. We applied this method to four mAbs formulations and correlated the results with dynamic light scattering data. Finally, we applied MCD in ligand interaction to key proteins such as lysozyme, comparing the human with the hen enzyme in the binding of N,N',N''-triacetylchitotriose. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. "Reading man flap" design for reconstruction of circular infraorbital and malar skin defects.

    PubMed

    Seyhan, Tamer; Caglar, Baris

    2008-11-01

    Surgical complications such as lid retraction and ectropion from graft or flap scar contracture make reconstruction of skin defects in the malar and infraorbital regions challenging. A new flap design, the reading man flap, was used to overcome these problems. The Limberg and bilobed flap were compared with the reading man flap. The reading man flap consists mainly of a superiorly based quadrangular flap and an inferiorly based triangular flap. Malar and infraorbital circular skin defects measuring 14 x 14 to 40 x 40 mm were reconstructed with a reading man flap in 13 patients. The defects occurred after basal cell carcinoma in all patients. The Limberg flap, bilobed flap, and reading man flap were planned for same-sized defects on the abdominoplasty resection material. The results were compared in terms of total scar area, scar length, and total healthy skin area discarded. When comparing the 3 flap designs, the reading man flap was the most suitable flap in terms of total scar area and length. The reading man flap can be used to reconstruct malar and infraorbital circular defects with good cosmetic results and without creating any tractional forces to the eyelids.

  19. Anharmonic dynamics of a mass O-spring oscillator

    NASA Astrophysics Data System (ADS)

    Filipponi, A.; Cavicchia, D. R.

    2011-07-01

    We investigate the dynamics of a one-dimensional oscillator made of a mass connected to a circular spring under uniaxial extension. The functional dependence of the elastic energy on the strain is obtained by solving the differential equations resulting from a variational formalism common to Euler's elastica problem. The calculated nonlinear force agrees with the experiment, confirming the anharmonic nature of the oscillator.

  20. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  1. Multiprofessional education to stimulate collaboration: a circular argument and its consequences.

    PubMed

    Roodbol, Petrie F

    2010-01-01

    The current developments in healthcare are unprecedented. The organization of health care is complex. Collaboration is essential to meet all the healthcare needs of patients and to achieve coordinated and unambiguous information. Multiprofessional education (MPE) or multidisciplinary training (MDT) seems a logical step to stimulate teamwork. However, collaboration and MPE are wrestling with the same problems: social identity and acceptance.

  2. Orbital-Maneuver-Sequence Optimization

    DTIC Science & Technology

    1985-12-01

    CLASSIFICATION OF THIS PAGE t j "" r --•.’-, LIST OF FIGURES * 2.1 Clohessy - Wiltshire Axes ....... .................. 17 3.1 Problem Geometry...13 Velocity Impulse ..... ..................... 13 The Clohessy - Wiltshire (CW) Equations ...... .. ... 14 3. INTERCEPT-MANEUVER-SEQUENCE STUDY...use of the Clohessy - Wiltshire near-circular-orbit model (Refs. 1, 2 and 3) which is adequate for low altitude maneuvering studies and attractive for

  3. The acoustic impedance of a circular orifice in grazing mean flow: comparison with theory.

    PubMed

    Peat, Keith S; Ih, Jeong-Guon; Lee, Seong-Hyun

    2003-12-01

    It is well known that the presence of a grazing mean flow affects the acoustic impedance of an aperture, but the detailed nature and understanding of the influence is still unknown. In this paper, results from a recent theoretical analysis of the problem are compared with a new set of experimental results. The purpose is twofold. First, the experimental results are used to validate the theory. It is found that the theory predicts the resistance quite well, but not the reactance. Second, the theory is used to try and give some physical understanding to the experimental results. In particular, some scaling laws are confirmed, and it is also shown that measured negative resistance values are to be expected. They are not erroneous, as previously thought. Former sets of experimental data for this problem are notable for the amount of variation that they display. Thus, both the theory and the new experimental results are also compared with those earlier detailed results that most closely conform to the conditions assumed here, namely fully developed turbulent pipe flow of low Mach number past circular orifices. The main field of application is in flow ducts, in particular, flow through perforated tubes in exhaust mufflers.

  4. Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.

    PubMed

    Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios

    2012-03-01

    This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.

  5. Association between lung function and mental health problems among adults in the United States: findings from the First National Health and Nutrition Examination Survey.

    PubMed

    Goodwin, Renee D; Chuang, Shirley; Simuro, Nicole; Davies, Mark; Pine, Daniel S

    2007-02-15

    The objective of this study was to determine the association between lung function and mental health problems among adults in the United States. Data were drawn from the First National Health and Nutrition Examination Survey (1971-1975), with available information on a representative sample of US adults aged 25-74 years. Lung function was assessed by spirometry, and provisional diagnoses of restrictive and obstructive airway disease were assigned based on percentage of expected forced expiratory volume. Mental health problems were assessed with the General Well-Being scales. Restrictive lung function and obstructive lung function, compared with normal lung function, were each associated with a significantly increased likelihood of mental health problems. After adjustment for differences in demographic characteristics, obstructive lung function was associated with significantly lower overall well-being (p = 0.025), and restrictive lung function was associated with significantly lower overall well-being (p < 0.001), general health (p < 0.0001), vitality (p < 0.0001), and self-control (p = 0.001) and with higher depression (p = 0.002) subscale scores compared with no lung function problems. Consistent with previous findings from clinical and community-based studies, these results extend available data by providing evidence of a link between objectively measured lung function and self-reported mental health problems in a representative sample of community adults. Future studies are needed to determine the mechanisms of these associations.

  6. Some controversial multiple testing problems in regulatory applications.

    PubMed

    Hung, H M James; Wang, Sue-Jane

    2009-01-01

    Multiple testing problems in regulatory applications are often more challenging than the problems of handling a set of mathematical symbols representing multiple null hypotheses under testing. In the union-intersection setting, it is important to define a family of null hypotheses relevant to the clinical questions at issue. The distinction between primary endpoint and secondary endpoint needs to be considered properly in different clinical applications. Without proper consideration, the widely used sequential gate keeping strategies often impose too many logical restrictions to make sense, particularly to deal with the problem of testing multiple doses and multiple endpoints, the problem of testing a composite endpoint and its component endpoints, and the problem of testing superiority and noninferiority in the presence of multiple endpoints. Partitioning the null hypotheses involved in closed testing into clinical relevant orderings or sets can be a viable alternative to resolving the illogical problems requiring more attention from clinical trialists in defining the clinical hypotheses or clinical question(s) at the design stage. In the intersection-union setting there is little room for alleviating the stringency of the requirement that each endpoint must meet the same intended alpha level, unless the parameter space under the null hypothesis can be substantially restricted. Such restriction often requires insurmountable justification and usually cannot be supported by the internal data. Thus, a possible remedial approach to alleviate the possible conservatism as a result of this requirement is a group-sequential design strategy that starts with a conservative sample size planning and then utilizes an alpha spending function to possibly reach the conclusion early.

  7. Reducing Bedtime Disturbance and Night Waking Using Positive Bedtime Routines and Sleep Restriction

    ERIC Educational Resources Information Center

    Christodulu, Kristin V.; Durand, V. Mark

    2004-01-01

    The purpose of this study was to investigate behavioral interventions designed to reduce sleep difficulties in four young children with developmental disorders. Positive bedtime routines and sleep restriction were successful in eliminating bedtime disturbances and nighttime awakenings in four children with significant sleep problems. Positive…

  8. Fear of Femininity Scale (FOFS): Men's Gender Role Conflict.

    ERIC Educational Resources Information Center

    O'Neil, James M.; And Others

    One unified aspect of men's gender role conflict is the fear of femininity, which can produce six conflicts: restrictive emotionality; homophobia; socialized control, power, and competition; restrictive affectionate behavior; obsession with achievement and success; and health care problems. To measure these constructs 85 items were generated from…

  9. Restricted Liberty, Parental Choice and Homeschooling

    ERIC Educational Resources Information Center

    Merry, Michael S.; Karsten, Sjoerd

    2010-01-01

    In this paper the authors carefully study the problem of liberty as it applies to school choice, and whether there ought to be restricted liberty in the case of homeschooling. They examine three prominent concerns that might be brought against homeschooling, viz., that it aggravates social inequality, worsens societal conflict and works against…

  10. Blackboard Electrophoresis: An Inexpensive Exercise on the Principles of DNA Restriction Analysis

    ERIC Educational Resources Information Center

    Costa, M. J.

    2007-01-01

    Undergraduates with little training on molecular biology may find the technical level of the typical introductory restriction laboratory too challenging and have problems with mastering the underlying concepts and processes. "Blackboard electrophoresis" is an active learning exercise, which focuses student attention on the sequences and principles…

  11. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  12. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE PAGES

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; ...

    2017-01-11

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  13. The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.

  14. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  15. The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1989-01-01

    The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary layer flow (i.e., the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so called doubly generalized inflexion condition is derived, which is a condition for the existence of so called subsonic neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two freestream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.

  16. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  17. A seal test facility for the measurement of isotropic and anisotropic linear rotordynamic characteristics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Yang, T.; Pace, S. E.

    1989-01-01

    A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.

  18. Misperceptions about the risks of abortion in women presenting for abortion.

    PubMed

    Wiebe, Ellen R; Littman, Lisa; Kaczorowski, Janusz; Moshier, Erin L

    2014-03-01

    Misinformation about the risks and sequelae of abortion is widespread. The purpose of this study was to examine whether women having an abortion who believe that there should be restrictions to abortion (i.e., that some other women should not be allowed to have an abortion) also believe this misinformation about the health risks associated with abortion. We carried out a cross-sectional survey of women presenting consecutively for an abortion at an urban abortion clinic in Vancouver, British Columbia, between February and September 2012. Of 1008 women presenting for abortion, 978 completed questionnaires (97% response rate), and 333 of these (34%) favoured abortion restrictions. More women who favoured restrictions believed that the health risk of an abortion was the same as or greater than the health risk of childbirth (84.2% vs. 65.6%, P < 0.001), that abortion caused mental health problems (39.1% vs. 28.3%, P < 0.001), and that abortion caused infertility (41.7% vs. 21.9%, P < 0.001). Using multivariate logistic regression analyses, believing that abortion should not be restricted was found to be a significantly correlated with correct answers about health risks, mental health problems, and infertility. Misinformed beliefs about the risks of abortion are common among women having an abortion. Women presenting for abortion who favoured restrictions to abortion have more misperceptions about abortion risks than women who favour no restrictions.

  19. KARHUNEN-LOÈVE Basis Functions of Kolmogorov Turbulence in the Sphere

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    In support of modeling atmospheric turbulence, the statistically independent Karhunen-Loève modes of refractive indices with isotropic Kolmogorov spectrum of the covariance are calculated inside a sphere of fixed radius, rendered as series of 3D Zernike functions. Many of the symmetry arguments of the well-known associated 2D problem for the circular input pupil remain valid. The technique of efficient diagonalization of the eigenvalue problem in wavenumber space is founded on the Fourier representation of the 3D Zernike basis, and extensible to the von-Kármán power spectrum.

  20. Solution Strategies for Constant Acceleration Problems

    ERIC Educational Resources Information Center

    Wheaton, S. M.; Binder, P.-M.

    2017-01-01

    We discuss strategies for the general solution of single-step 1D constant acceleration problems. In a slightly restricted form, these problems have five variables (?"x," "v[subscript 0]," "v," "a" and "t") and two independent equations, so three variables must be given to solve for the other two,…

  1. Parental practices and willingness to ask for children's help later in life.

    PubMed

    Schooler, Carmi; Revell, Andrew J; Caplan, Leslie J

    2007-05-01

    We examine how parents' relationships with their 13- to 25-year-old offspring affect the parents' willingness to ask them for help with financial and personal problems 20 years later. Husbands and wives were interviewed in 1974 and 1994; a child was interviewed in 1974. We used two aspects of parental style, responsiveness and restrictive dominance, to predict parents' willingness to request help from a child 20 years later. Structural equation modeling analyses revealed the following: (a) mothers' willingness to ask an adult child for help with a personal problem was increased by higher levels of responsiveness; (b) mothers' willingness to ask for financial help was increased by responsive and decreased by restrictive-dominant maternal behavior; and (c) neither responsive nor restrictive-dominant paternal behavior affected fathers' later willingness to ask an adult child for help of either kind.

  2. Learned navigation in unknown terrains: A retraction method

    NASA Technical Reports Server (NTRS)

    Rao, Nageswara S. V.; Stoltzfus, N.; Iyengar, S. Sitharama

    1989-01-01

    The problem of learned navigation of a circular robot R, of radius delta (is greater than or equal to 0), through a terrain whose model is not a-priori known is considered. Two-dimensional finite-sized terrains populated by an unknown (but, finite) number of simple polygonal obstacles are also considered. The number and locations of the vertices of each obstacle are unknown to R. R is equipped with a sensor system that detects all vertices and edges that are visible from its present location. In this context two problems are covered. In the visit problem, the robot is required to visit a sequence of destination points, and in the terrain model acquisition problem, the robot is required to acquire the complete model of the terrain. An algorithmic framework is presented for solving these two problems using a retraction of the freespace onto the Voronoi diagram of the terrain. Algorithms are then presented to solve the visit problem and the terrain model acquisition problem.

  3. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    PubMed Central

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S. T.; John, Sabu; Wang, Chun H.; Ghorbani, Kamran

    2014-01-01

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection. PMID:24451457

  4. The effect of a turbulent wake on the stagnation point. I - Skin friction results

    NASA Technical Reports Server (NTRS)

    Wilson, Dennis E.; Hanford, Anthony J.

    1990-01-01

    The response of a boundary layer in the stagnation region of a two-dimensional body to fluctuations in the freestream is examined. The analysis is restricted to laminar incompressible flow. The assumed form of the velocity distribution at the edge of the boundary layer represents both a pulsation of the incoming flow, and an oscillation of the stagnation point streamline. Both features are essential in accurately representing the effect which freestream spatial and temporal nonuniformities have upon the unsteady boundary layer. Finally, a simple model is proposed which relates the characteristic parameters in a turbulent wake to the unsteady boundary-layer edge velocity. Numerical results are presented for both an arbitrary two-dimensional geometry and a circular cylinder.

  5. Quality factor effect on the wireless range of microstrip patch antenna strain sensors.

    PubMed

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S T; John, Sabu; Wang, Chun H; Ghorbani, Kamran

    2014-01-02

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  6. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  7. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    NASA Astrophysics Data System (ADS)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  8. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    NASA Astrophysics Data System (ADS)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  9. Chaotic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth-Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth-Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth-Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.

  10. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  11. Voice activity and participation profile presenting coordinates for readjustment of preventive action of educators.

    PubMed

    Dragone, Maria Lúcia Suzigan

    2011-01-01

    To investigate the perception of voice impairment in professional and social contexts, to correlate these data with existing data in the literature, and to explore the perception of voice problems and the adherence to vocal health programs. 502 Brazilian educators working in municipal public schools responded to the Voice Activity and Participation Profile (VAPP) questionnaire. Then a correlation was made with previous results in the literature dealing with a dysphonic and a nondysphonic group. The VAPP data showed that self-perception of voice problems had a higher vocal impact on daily communication and lower scores for activity limitation and participation restriction. The educators' scores were closer to those of the nondysphonic group with regard to daily and social communication, and emotional and activity limitation, but perception of the voice problem was closest to that of the dysphonic group. Nevertheless, the opposite was the case for participation restriction. The educators perceive vocal problems but do not perceive participation restriction to the same extent. This may explain the decreasing participation in the Vocal Health Program. It probably occurs because adults voluntarily apply for training when they feel that their work performance needs to improve so that they can carry out their job properly. Copyright © 2010 S. Karger AG, Basel.

  12. Women with urinary incontinence: self-perceived worries and general practitioners' knowledge of problem.

    PubMed Central

    Lagro-Janssen, T L; Smits, A J; Van Weel, C

    1990-01-01

    In the context of a large scale survey of health problems in women aged 50 to 65 years, a study was undertaken on the effects of incontinence on daily life. For this purpose 1442 women randomly selected from the practice files of 75 general practitioners in the eastern part of the Netherlands were interviewed at home (response rate 60%). In cases of moderate or severe incontinence the general practitioner of the woman concerned was asked whether this problem had been diagnosed in general practice. Incontinence was reported in 22.5% of the women. Overall, 77.8% of the women did not feel worried about it and 75.4% did not feel restricted in their activities; even for women with severe incontinence (daily frequency and needing protective pads) only 15.6% experienced much worry and 15.7% much restriction. About a third of the women with incontinence (32.0%) had been identified by their general practitioner. The greater the worries and restrictions owing to incontinence, the greater the chance that the incontinence was known to the general practitioner concerned. Only a small minority of the women who felt severely restricted were not identified by their general practitioner. There was a positive relation between recognized incontinence and a history of hysterectomy. This study contradicts the image of the incontinent woman as isolated and helpless; most women in this study seemed able to cope. PMID:2121179

  13. Taxonomies of Organizational Change: Literature Review and Analysis

    DTIC Science & Technology

    1978-09-01

    operational terms presented a sig- nificant problem. The redundancy and circularity in discussions of variable groups reflects this dilemma . -34...Behavioral event and structured inteview protocols to be used to collect data from internal Army OE change agent and client subjects are presented with a...TABLE 22: Data Collection Method Proposed for Each Intervention Variable 168 *1 ABSTRACT This report presents a taxonomy and data collection method

  14. Influence of RF channels mismatch and mutual coupling phenomenon on performance of a multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Górski, Maksymilian

    2010-09-01

    In the paper we analyze the influence of RF channels mismatch and mutual coupling effect on the performance of the multistatic passive radar with Uniform Circular Array (UCA) configuration. The problem was tested intensively in numerous different scenarios with a reference virtual multistatic passive radar. Finally, exemplary results of the computer software simulations are provided and discussed.

  15. Pressure fluctuations on the surface of a cylinder in uniform flow

    NASA Technical Reports Server (NTRS)

    Ayoub, A.; Karamcheti, K.

    1976-01-01

    The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.

  16. Multiprofessional education to stimulate collaboration: a circular argument and its consequences

    PubMed Central

    Roodbol, Petrie F.

    2010-01-01

    The current developments in healthcare are unprecedented. The organization of health care is complex. Collaboration is essential to meet all the healthcare needs of patients and to achieve coordinated and unambiguous information. Multiprofessional education (MPE) or multidisciplinary training (MDT) seems a logical step to stimulate teamwork. However, collaboration and MPE are wrestling with the same problems: social identity and acceptance. PMID:21818197

  17. Language Problems in Africa; A Bibliography (1946-1967) and Summary of the Present Situation, with Special Reference to Kenya, Tanzania and Uganda.

    ERIC Educational Resources Information Center

    Molnos, Angela, Comp.

    The present Information Circular covering the language situation in East Africa has been prepared as a bibliographic reference tool for specialists, universities, and libraries. The introductory section describes the work of EARIC (East African Research Information Centre), which is sponsored by the East African Academy and financed by the Ford…

  18. The effectiveness of interactive computer simulations on college engineering student conceptual understanding and problem-solving ability related to circular motion

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Chih

    In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.

  19. Autonomy and Housing Accessibility Among Powered Mobility Device Users

    PubMed Central

    Brandt, Åse; Lexell, Eva Månsson; Iwarsson, Susanne

    2015-01-01

    OBJECTIVE. To describe environmental barriers, accessibility problems, and powered mobility device (PMD) users’ autonomy indoors and outdoors; to determine the home environmental barriers that generated the most housing accessibility problems indoors, at entrances, and in the close exterior surroundings; and to examine personal factors and environmental components and their association with indoor and outdoor autonomy. METHOD. This cross-sectional study was based on data collected from a sample of 48 PMD users with a spinal cord injury (SCI) using the Impact of Participation and Autonomy and the Housing Enabler instruments. Descriptive statistics and logistic regression were used. RESULTS. More years living with SCI predicted less restriction in autonomy indoors, whereas more functional limitations and accessibility problems related to entrance doors predicted more restriction in autonomy outdoors. CONCLUSION. To enable optimized PMD use, practitioners must pay attention to the relationship between client autonomy and housing accessibility problems. PMID:26356666

  20. On making cuts for magnetic scalar potentials in multiply connected regions

    NASA Astrophysics Data System (ADS)

    Kotiuga, P. R.

    1987-04-01

    The problem of making cuts is of importance to scalar potential formulations of three-dimensional eddy current problems. Its heuristic solution has been known for a century [J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Clarendon, Oxford, 1981), Chap. 1, Article 20] and in the last decade, with the use of finite element methods, a restricted combinatorial variant has been proposed and solved [M. L. Brown, Int. J. Numer. Methods Eng. 20, 665 (1984)]. This problem, in its full generality, has never received a rigorous mathematical formulation. This paper presents such a formulation and outlines a rigorous proof of existence. The technique used in the proof expose the incredible intricacy of the general problem and the restrictive assumptions of Brown [Int. J. Numer. Methods Eng. 20, 665 (1984)]. Finally, the results make rigorous Kotiuga's (Ph. D. Thesis, McGill University, Montreal, 1984) heuristic interpretation of cuts and duality theorems via intersection matrices.

Top