Sample records for circular source trajectory

  1. Line plus arc source trajectories and their R-line coverage for long-object cone-beam imaging with a C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Noo, Frédéric

    2011-06-01

    Cone-beam imaging with C-arm systems has become a valuable tool in interventional radiology. Currently, a simple circular trajectory is used, but future applications should use more sophisticated source trajectories, not only to avoid cone-beam artifacts but also to allow extended volume imaging. One attractive strategy to achieve these two goals is to use a source trajectory that consists of two parallel circular arcs connected by a line segment, possibly with repetition. In this work, we address the question of R-line coverage for such a trajectory. More specifically, we examine to what extent R-lines for such a trajectory cover a central cylindrical region of interest (ROI). An R-line is a line segment connecting any two points on the source trajectory. Knowledge of R-line coverage is crucial because a general theory for theoretically exact and stable image reconstruction from axially truncated data is only known for the points in the scanned object that lie on R-lines. Our analysis starts by examining the R-line coverage for the elemental trajectories consisting of (i) two parallel circular arcs and (ii) a circular arc connected orthogonally to a line segment. Next, we utilize our understanding of the R-lines for the aforementioned elemental trajectories to determine the R-line coverage for the trajectory consisting of two parallel circular arcs connected by a tightly fit line segment. For this trajectory, we find that the R-line coverage is insufficient to completely cover any central ROI. Because extension of the line segment beyond the circular arcs helps to increase the R-line coverage, we subsequently propose a trajectory composed of two parallel circular arcs connected by an extended line. We show that the R-lines for this trajectory can fully cover a central ROI if the line extension is long enough. Our presentation includes a formula for the minimum line extension needed to achieve full R-line coverage of an ROI with a specified size, and also includes a preliminary study on the required detector size, showing that the R-lines added by the line extension are not constraining.

  2. WE-G-BRF-07: Non-Circular Scanning Trajectories with Varian Developer Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A; Pearson, E; Pan, X

    2014-06-15

    Purpose: Cone-beam CT (CBCT) in image-guide radiation therapy (IGRT) typicallyacquires scan data via the circular trajectory of the linearaccelerator's (linac) gantry rotation. Though this lends itself toanalytic reconstruction algorithms like FDK, iterative reconstructionalgorithms allow for a broader range of scanning trajectories. Weimplemented a non-circular scanning trajectory with Varian's TrueBeamDeveloper Mode and performed some preliminary reconstructions toverify the geometry. Methods: We used TrueBeam Developer Mode to program a new scanning trajectorythat increases the field of view (FOV) along the gantry rotation axiswithout moving the patient. This trajectory consisted of moving thegantry in a circle, then translating the source and detector alongmore » theaxial direction before acquiring another circular scan 19 cm away fromthe first. The linear portion of the trajectory includes an additional4.5 cm above and below the axial planes of the source's circularrotation. We scanned a calibration phantom consisting of a lucite tubewith a spiral pattern of CT spots and used the maximum-likelihoodalgorithm to iteratively reconstruct the CBCT volume. Results: With the TrueBeam trajectory definition, we acquired projection dataof the calibration phantom using the previously described trajectory.We obtained a scan of the treatment couch for log normalization byscanning with the same trajectory but without the phantom present.Using the nominal geometric parameters reported in the projectionheaders with our iterative reconstruction algorithm, we obtained acorrect reconstruction of the calibration phantom. Conclusion: The ability to implement new scanning trajectories with the TrueBeamDeveloper Mode enables us access to a new parameter space for imagingwith CBCT for IGRT. Previous simulations and simple dual circle scanshave shown iterative reconstruction with non-circular trajectories canincrease the axial FOV with CBCT. Use of Developer Mode allowsexperimentally testing these and other new scanning trajectories. Support was provided in part by the University of Chicago Research Computing Center, Varian Medical Systems, and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P30 CA14599. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the supporting organizations.« less

  3. Adaptive zooming in X-ray computed tomography.

    PubMed

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  4. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  5. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    PubMed Central

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements. PMID:26233179

  6. Mass Spectrometer Containing Multiple Fixed Collectors

    NASA Technical Reports Server (NTRS)

    Moskala, Robert; Celo, Alan; Voss, Guenter; Shaffer, Tom

    2008-01-01

    A miniature mass spectrometer that incorporates features not typically found in prior mass spectrometers is undergoing development. This mass spectrometer is designed to simultaneously measure the relative concentrations of five gases (H2, He, N2, O2, and Ar) in air, over the relative-concentration range from 10(exp -6) to 1, during a sampling time as short as 1 second. It is intended to serve as a prototype of a product line of easy-to-use, portable, lightweight, highspeed, relatively inexpensive instruments for measuring concentrations of multiple chemical species in such diverse applications as detecting explosive or toxic chemicals in air, monitoring and controlling industrial processes, measuring concentrations of deliberately introduced isotopes in medical and biological investigations, and general environmental monitoring. The heart of this mass spectrometer is an integral combination of a circular cycloidal mass analyzer, multiple fixed ion collectors, and two mass-selective ion sources. By circular cycloidal mass analyzer is meant an analyzer that includes (1) two concentric circular cylindrical electrodes for applying a radial electric field and (2) a magnet arranged to impose a magnetic flux aligned predominantly along the cylindrical axis, so that ions, once accelerated into the annulus between the electrodes, move along circular cycloidal trajectories. As in other mass analyzers, trajectory of each ion is determined by its mass-to-charge ratio, and so ions of different species can be collected simultaneously by collectors (Faraday cups) at different locations intersected by the corresponding trajectories (see figure). Unlike in other mass analyzers, the installation of additional collectors to detect additional species does not necessitate increasing the overall size of the analyzer assembly.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jainil P., E-mail: jainil.shah@duke.edu; Mann, Steve D.; McKinley, Randolph L.

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source fluxmore » was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm{sup 3} voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements.« less

  8. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  9. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  10. Uniform circular motion in general relativity: existence and extendibility of the trajectories

    NASA Astrophysics Data System (ADS)

    de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.

    2017-06-01

    The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.

  11. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  12. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    NASA Technical Reports Server (NTRS)

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre

    2007-01-01

    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  13. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  14. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  15. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  16. Janus Colloids Actively Rotating on the Surface of Water.

    PubMed

    Wang, Xiaolu; In, Martin; Blanc, Christophe; Würger, Alois; Nobili, Maurizio; Stocco, Antonio

    2017-12-05

    Biological or artificial microswimmers move performing trajectories of different kinds such as rectilinear, circular, or spiral ones. Here, we report on circular trajectories observed for active Janus colloids trapped at the air-water interface. Circular motion is due to asymmetric and nonuniform surface properties of the particles caused by fabrication. Motion persistence is enhanced by the partial wetted state of the Janus particles actively moving in two dimensions at the air-water interface. The slowing down of in-plane and out-of-plane rotational diffusions is described and discussed.

  17. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  18. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories

    NASA Astrophysics Data System (ADS)

    Jacobson, M. W.; Ketcha, M. D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; Stayman, J. W.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2018-01-01

    Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.

  19. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  20. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumail, Muhammad; Tantawi, Sami G.

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  1. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE PAGES

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-27

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  2. Biomechanical analysis of the circular friction hand massage.

    PubMed

    Ryu, Jeseong; Son, Jongsang; Ahn, Soonjae; Shin, Isu; Kim, Youngho

    2015-01-01

    A massage can be beneficial to relieve muscle tension on the neck and shoulder area. Various massage systems have been developed, but their motions are not uniform throughout different body parts nor specifically targeted to the neck and shoulder areas. Pressure pattern and finger movement trajectories of the circular friction hand massage on trapezius, levator scapulae, and deltoid muscles were determined to develop a massage system that can mimic the motion and the pressure of the circular friction massage. During the massage, finger movement trajectories were measured using a 3D motion capture system, and finger pressures were simultaneously obtained using a grip pressure sensor. Results showed that each muscle had different finger movement trajectory and pressure pattern. The trapezius muscle experienced a higher pressure, longer massage time (duration of pressurization), and larger pressure-time integral than the other muscles. These results could be useful to design a better massage system simulating human finger movements.

  3. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  4. A study of the influence of the sun on optimal two-impulse Earth-to-Moon trajectories with moderate time of flight in the three-body and four-body models

    NASA Astrophysics Data System (ADS)

    Filho, Luiz Arthur Gagg; da Silva Fernandes, Sandro

    2017-05-01

    In this work, a study about the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories for interior transfers with moderate time of flight is presented considering the three-body and the four-body models. The optimization criterion is the total characteristic velocity which represents the fuel consumption of an infinite thrust propulsion system. The optimization problem has been formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP), and, it consists of transferring a spacecraft from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption. The Sequential Gradient Restoration Algorithm (SGRA) is applied to determine the optimal solutions. Numerical results are presented for several final altitudes of a clockwise or a counterclockwise circular low Moon orbit considering a specified altitude of a counterclockwise circular low Earth orbit. Two types of analysis are performed: in the first one, the initial position of the Sun is taken as a parameter and the major parameters describing the optimal trajectories are obtained by solving an optimization problem of one degree of freedom. In the second analysis, an optimization problem with two degrees of freedom is considered and the initial position of the Sun is taken as an additional unknown.

  5. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  6. FIBER AND INTEGRATED OPTICS: Propagation of circularly polarized light along a curved trajectory

    NASA Astrophysics Data System (ADS)

    Sadykov, Nail R.

    1992-10-01

    How the eigenfunction of an optical fiber is affected by a slight curvature at bends of the fiber without twisting is analyzed. The effect of a twisting of the ray trajectory in the case with curvature is examined theoretically by the geometric-optics approach. The results are used to analyze the problem of the turning of a meridional ray due to a circular polarization in a multimode optical fiber with a parabolic profile of the refractive index.

  7. Properties of the ellipse-line-ellipse trajectory with asymmetrical variations

    NASA Astrophysics Data System (ADS)

    Guo, Zijia; Noo, Frédéric; Maier, Andreas; Lauritsch, Guenter

    2016-03-01

    Three-dimensional cone-beam (CB) imaging using a multi-axis floor-mounted (or ceiling-mounted) C-arm system has become an important tool in interventional radiology. This success motivates new developments to improve image quality. One direction in which advancement is sought is the data acquisition geometry and related CB artifacts. Currently, data acquisition is performed using the circular short-scan trajectory, which yields limited axial coverage and also provides incomplete data for accurate reconstruction. To improve the image quality, as well as to increase the coverage in the longitudinal direction of the patient, we recently introduced the ellipse- line-ellipse trajectory and showed that this trajectory provides full R-line coverage within the field-of-view, which is a key property for accurate reconstruction from truncated data. An R-line is any segment of line that connects two source positions. Here, we examine how the application of asymmetrical variations to the definition of the ELE trajectory impacts the R-line coverage. This question is significant to understand how much flexibility can be used in the implementation of the ELE trajectory, particularly to adapt the scan to patient anatomy and imaging task of interest. Two types of asymmetrical variations, called axial and angular variations, are investigated.

  8. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1982-01-01

    An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.

  9. Interplanetary Trajectories, Encke Method (ITEM)

    NASA Technical Reports Server (NTRS)

    Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.

    1972-01-01

    Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.

  10. Self-bending elastic waves and obstacle circumventing in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.

    2017-04-01

    We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.

  11. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  12. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    NASA Technical Reports Server (NTRS)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  13. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  14. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  15. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  16. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  17. Methodology for the regulation of boom sprayers operating in circular trajectories.

    PubMed

    Garcia-Ramos, Francisco Javier; Vidal, Mariano; Boné, Antonio; Serreta, Alfredo

    2011-01-01

    A methodology for the regulation of boom sprayers working in circular trajectories has been developed. In this type of trajectory, the areas of the plots of land treated by the outer nozzles of the boom are treated at reduced rates, and those treated by the inner nozzles are treated in excess. The goal of this study was to establish the methodology to determine the flow of the individual nozzles on the boom to guarantee that the dose of the product applied per surface unit is similar across the plot. This flow is a function of the position of the equipment (circular trajectory radius) and of the displacement velocity such that the treatment applied per surface unit is uniform. GPS technology was proposed as a basis to establish the position and displacement velocity of the tractor. The viability of this methodology was simulated considering two circular plots with radii of 160 m and 310 m, using three sets of equipment with boom widths of 14.5, 24.5 and 29.5 m. Data showed as increasing boom widths produce bigger errors in the surface dose applied (L/m(2)). Error also increases with decreasing plot surface. As an example, considering the three boom widths of 14.5, 24.5 and 29.5 m working on a circular plot with a radius of 160 m, the percentage of surface with errors in the applied surface dose greater than 5% was 30%, 58% and 65% respectively. Considering a circular plot with radius of 310 m the same errors were 8%, 22% and 31%. To obtain a uniform superficial dose two sprayer regulation alternatives have been simulated considering a 14.5 m boom: the regulation of the pressure of each nozzle and the regulation of the pressure of each boom section. The viability of implementing the proposed methodology on commercial boom sprayers using GPS antennas to establish the position and displacement velocity of the tractor was justified with a field trial in which a self-guiding commercial GPS system was used along with three precision GPS systems located in the sprayer boom. The use of an unique central GPS unit should allow the estimation of the work parameters of the boom nozzles (including those located at the boom ends) with great accuracy.

  18. Characteristics of circular features on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Deller, J. F.; Güttler, C.; Tubiana, C.; Hofmann, M.; Sierks, H.

    2017-09-01

    Comet 67P/Churyumov-Gerasimenko shows a large variety of circular structures such as pits, elevated roundish features in Imhotep, and even a single occurrence of a plausible fresh impact crater. Imaging the pits in the Ma'at region, aiming to understand their structure and origin drove the design of the final descent trajectory of the Rosetta spacecraft. The high-resolution images obtained during the last mission phase allow us to study these pits as exemplary circular features. A complete catalogue of circular features gives us the possibility to compare and classify these structures systematically.

  19. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  20. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing; Hu, Jiawei; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn

    We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contributionmore » of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term. - Highlights: • Spontaneous excitation of a circularly accelerated atom is studied. • The atom interacts with the Dirac field through nonlinear coupling. • A cross term involving vacuum fluctuations and radiation reaction contributes. • The atom in circular motion does not perceive pure thermal radiation. • The contribution of the cross term changes as the atomic trajectory varies.« less

  2. Comparison of Low-Energy Lunar Transfer Trajectories to Invariant Manifolds

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Parker, Jeffrey S.

    2011-01-01

    In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants are computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.

  3. Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rit, Simon, E-mail: simon.rit@creatis.insa-lyon.fr; Clackdoyle, Rolf; Keuschnigg, Peter

    Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation. Methods: The source and the detector trajectories are tuned to image a field-of-view (FOV) that is offset with respect to the center-of-rotation. The new reconstruction formula is derived from the Feldkamp algorithm and results in a similar three-step algorithm: projection weighting, ramp filtering, and weighted backprojection. Simulations of a Shepp Logan digital phantom were used tomore » evaluate the new algorithm with a 10 cm-offset FOV. A real cone-beam CT image with an 8.5 cm-offset FOV was also obtained from projections of an anthropomorphic head phantom. Results: The quality of the cone-beam CT images reconstructed using the new algorithm was similar to those using the Feldkamp algorithm which is used in conventional cone-beam CT. The real image of the head phantom exhibited comparable image quality to that of existing systems. Conclusions: The authors have proposed a 3D filtered-backprojection reconstruction for scanners with independent source and detector rotations that is practical and effective. This algorithm forms the basis for exploiting the scanner’s unique capabilities in IGRT protocols.« less

  4. Minimum impulse three-body trajectories.

    NASA Technical Reports Server (NTRS)

    D'Amario, L.; Edelbaum, T. N.

    1973-01-01

    A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.

  5. Algorithm for fuel conservative horizontal capture trajectories

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1981-01-01

    A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.

  6. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim; Noo, Frédéric

    2016-02-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology.

  7. KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers.

    PubMed

    Tubiana, Luca; Polles, Guido; Orlandini, Enzo; Micheletti, Cristian

    2018-06-07

    The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php .

  8. Curved trajectories of actin-based motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  9. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  10. Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Brewe, D. E.; Keith, T. G., Jr.

    1993-01-01

    In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing.

  11. Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Brewe, D. E.; Keith, T. G., Jr.

    1991-01-01

    In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing.

  12. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed

    PubMed Central

    Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco

    2018-01-01

    Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815

  13. Sperm chemotaxis in siphonophores. II. Calcium-dependent asymmetrical movement of spermatozoa induced by the attractant.

    PubMed

    Cosson, M P; Carré, D; Cosson, J

    1984-06-01

    Spermatozoa from siphonophores have been shown to be attracted towards an extracellular structure, the cupule, which covers the predetermined site of fertilization of the egg. Observations on sperm behaviour during the chemotactic response show that spermatozoa describe trajectories of large diameter (700-1000 micron) while far from the cupule, and of smaller diameter (200 micron) in the cupule area. The transition between the two types of swimming occurs progressively when spermatozoa cross a 3 mm wide area around the cupule. After a few minutes 99% of the spermatozoa keep swimming around the attractant source, following circular paths 150-200 micron in diameter. In the absence of the attractant, comparable modifications of sperm trajectories are observed in the presence of the ionophore A23187 and high calcium concentrations. In the presence of 10(-2) M calcium ions, A23187-treated spermatozoa describe trajectories 200 micron in diameter, which increase up to 800 micron at lower calcium concentrations (10(-6) M). In the absence of calcium ions, spermatozoa swim across the cupule area without modification of their trajectories and no sperm accumulation can be detected. This requirement of the chemotactic response for calcium ions is observed either with fresh cupules stuck on the eggs, with cupules separated from the eggs, or with cupule extracts. Moreover, a soluble component fractionated from the cupule induces, when diluted in sea water, a reduction in the size of the sperm trajectories and this also requires calcium ions. The present data show that the chemotactic response of siphonophore sperm, which requires millimolar concentrations of calcium ions, occurs through a non-transient induction of increased asymmetry of the flagellar waveform. It is proposed that the natural attractant operates to produce an increase in the intraaxonemal calcium concentration.

  14. Orbital Transfer Techniques for Round-Trip Mars Missions

    NASA Astrophysics Data System (ADS)

    Landau, D. F.; Barbee, B. W.; Woolley, R. C.; Gershman, R.

    2012-06-01

    Efficient methods to transfer among a variety of Mars orbits is presented. Emphasis is placed on connecting arrival and departure interplanetary trajectories to an arbitrary circular target orbit for a hybrid human/robotic Mars sample return mission.

  15. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  16. Trajectory planning and control of a 6 DOF manipulator with Stewart platform-based mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami

    1990-01-01

    The trajectory planning and control was studied of a robot manipulator that has 6 degrees of freedom and was designed based on the mechanism of the Stewart Platform. First the main components of the manipulator is described along with its operation. The solutions are briefly prescribed for the forward and inverse kinematics of the manipulator. After that, two trajectory planning schemes are developed using the manipulator inverse kinematics to track straight lines and circular paths. Finally experiments conducted to study the performance of the developed planning schemes in tracking a straight line and a circle are presented and discussed.

  17. Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics

    NASA Technical Reports Server (NTRS)

    Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco

    2016-01-01

    This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.

  18. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  19. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  20. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  1. On geometric factors for neutral particle analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagner, L.; Heidbrink, W. W.

    2014-11-15

    Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, “Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry,” J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, “Geometric factor and directional response of single and multi-element particle telescopes,” Nucl. Instrum. Methods 95(1), 5–11 (1971)]more » for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.« less

  2. Dynamics of charges and solitons

    NASA Astrophysics Data System (ADS)

    Barros, Manuel; Ferrández, Ángel; Garay, Óscar J.

    2018-02-01

    We first show that trajectories traced by charges moving in rotational magnetic fields are, basically, the non-parallel geodesics of surfaces of revolution with coincident axis. Thus, people living in a surface of revolution are not able to sense the magnetic Hall effect induced by the surrounding magnetic field and perceive charges as influenced, exclusively, by the gravity action on the surface of revolution. Secondly, the extended Hasimoto transformations are introduced and then used to identify trajectories of charges moving through a Killing rotational magnetic field in terms of non-circular elastic curves. As a consequence, we see that in this case charges evolve along trajectories which are obtained as extended Hasimoto transforms of solitons of the filament equation.

  3. Investigation of BPF algorithm in cone-beam CT with 2D general trajectories.

    PubMed

    Zou, Jing; Gui, Jianbao; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Xia, Dan

    2012-01-01

    A mathematical derivation was conducted to illustrate that exact 3D image reconstruction could be achieved for z-homogeneous phantoms from data acquired with 2D general trajectories using the back projection filtration (BPF) algorithm. The conclusion was verified by computer simulation and experimental result with a circular scanning trajectory. Furthermore, the effect of the non-uniform degree along z-axis of the phantoms on the accuracy of the 3D reconstruction by BPF algorithm was investigated by numerical simulation with a gradual-phantom and a disk-phantom. The preliminary result showed that the performance of BPF algorithm improved with the z-axis homogeneity of the scanned object.

  4. Time-Varying Expression of the Formation Flying along Circular Trajectories

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro

    2007-01-01

    Usually, the formation flying associated with circular orbits is discussed through the well-known Hill s or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller s performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.

  5. A complete system for 3D reconstruction of roots for phenotypic analysis.

    PubMed

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.

  6. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory. PMID:26961687

  7. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  8. Toward the quantification of a conceptual framework for movement ecology using circular statistical modeling.

    PubMed

    Shimatani, Ichiro Ken; Yoda, Ken; Katsumata, Nobuhiro; Sato, Katsufumi

    2012-01-01

    To analyze an animal's movement trajectory, a basic model is required that satisfies the following conditions: the model must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of movement patterns can be explained by that model, and equations and probability distributions in the model should be mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements, partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of external factors on movement separately from the animal's internal state. For example, maximum likelihood estimates and model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.

  9. On Choosing a Rational Flight Trajectory to the Moon

    NASA Astrophysics Data System (ADS)

    Gordienko, E. S.; Khudorozhkov, P. A.

    2017-12-01

    The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.

  10. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  11. Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan

    2017-11-01

    We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.

  12. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    PubMed

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  13. Research in the Restricted Problems of Three and Four Bodies Final Scientific Report

    NASA Technical Reports Server (NTRS)

    Richards, Paul B.; Bernstein, Irwin S.; Chai, Winchung A.; Cronin, Jane; Ellis, Jordan; Fine, William E.; Kass, Sheldon; Musa, Samuel A.; Russell, Lawrence H.

    1968-01-01

    Seven studies have been conducted on research in the existence and nature of solutions of the restricted problems of three and four bodies. The details and results of five of these research investigations have already been published, and the latest two studies will be published shortly. A complete bibliography of publications is included in this report. This research has been primarily qualitative and has yielded new information on the behavior of trajectories near the libration points in the Earth-Moon-Sun and Sun-Jupiter-Saturn systems, and on the existence of periodic trajectories about the libration points of the circular and elliptical restricted four-body models. We have also implemented Birkhoff's normalization process for conservative and nonconservative Hamiltonian systems with equilibrium points. This makes available a technique for analyzing stability properties of certain nonlinear dynamical systems, and we have applied this technique to the circular and elliptical restricted three-body models. A related study was also conducted to determine the feasibility of using cislunar periodic trajectories for various space missions. Preliminary results suggest that this concept is attractive for space flight safety operations in cislunar space. Results of this research will be of interest to mathematicians, particularly those working in ordinary differential equations, dynamical systems and celestial mechanics; to astronomers; and to space guidance and mission analysts.

  14. Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk

    NASA Astrophysics Data System (ADS)

    Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua

    2018-07-01

    We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.

  15. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2003-01-01

    In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.

  16. Polarization characteristics of radiation in both 'light' and conventional undulators

    NASA Astrophysics Data System (ADS)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strokov, S. A.

    2017-07-01

    As a rule, an intensity spectrum of undulator radiation (UR) is calculated by using the classical approach, even for electron energy higher than 10 GeV. Such a spectrum is determined by an electron trajectory in an undulator while neglecting radiation loss. Using Planck's law, the UR photon spectrum can be calculated from the obtained intensity spectrum, for both linear and nonlinear regimes. The electron radiation process in a field of strong electromagnetic waves is considered within the quantum electrodynamics framework, using the Compton scattering process or radiation in a 'light' undulator. A comparison was made of the results from using these two approaches, for UR spectra generated by 250-GeV electrons in an undulator with a 11.5-mm period; this comparison shows that they coincide with high accuracy. The characteristics of the collimated UR beam (i.e. spectrum and circular polarization) were simulated while taking into account the discrete process of photon emission along an electron trajectory in both undulator types. Both spectral photon distributions and polarization dependence on photon energy are 'smoothed', in comparison to that expected for a long undulator-the latter of which considers the ILC positron source (ILC Technical Design Report).

  17. Modulation of a protein free-energy landscape by circular permutation.

    PubMed

    Radou, Gaël; Enciso, Marta; Krivov, Sergei; Paci, Emanuele

    2013-11-07

    Circular permutations usually retain the native structure and function of a protein while inevitably perturbing its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories, we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, although subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, in which one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed.

  18. Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)

    1999-01-01

    A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically. it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved. but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. Tbc trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.

  19. Neural network training by integration of adjoint systems of equations forward in time

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)

    1992-01-01

    A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically, it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved, but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. The trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.

  20. Accurate approximation of in-ecliptic trajectories for E-sail with constant pitch angle

    NASA Astrophysics Data System (ADS)

    Huo, Mingying; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.

  1. Vehicle Guidance and Control Along Circular Trajectories

    DTIC Science & Technology

    1992-09-01

    the line of sight, while Chism [2] studied a cross track error based control law. Hawkinson [3] extended the results to the multiple input case when...Thesis, Naval Postgraduate School, Monterey, California, June. 2. Chism , S., (1990) "Robust path tracking of autonomous underwater vehicles using sliding

  2. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  3. Experiences in Delta mission planning

    NASA Technical Reports Server (NTRS)

    Kork, J.

    1981-01-01

    The Delta launch vehicle has experienced 153 successful launches since 1960 and 40 more are scheduled. Relying on up-to-date technology and proven flight hardware, the Delta vehicle has been used for low to high circular and geosynchronous transfer orbits, high elliptic probes, and lunar and planetary missions. A history of Delta launches and configuration modifications is presented, noting a 92-95% success rate and its cost effective role in reimbursable missions. Elements of mission planning such as feasibility studies (1-3 yrs), spacecraft restraints manuals, reference trajectories, preliminary mission analysis, detailed test objectives, range/safety studies, guided nominal trajectory, and mission specific studies are discussed. Trajectory shaping determines vehicle and spacecraft restraints, optimizes the trajectory, and maximizes the payload capabilities. Improvements in the Delta vehicle have boosted payloads from 100 to 2890 lbs., improving the price per pound ratio, as costs have risen, only by a factor of three. Current launch schedules extend well into 1985.

  4. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  5. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  6. Analysis of the trajectory of Drosophila melanogaster in a circular open field arena.

    PubMed

    Valente, Dan; Golani, Ilan; Mitra, Partha P

    2007-10-24

    Obtaining a complete phenotypic characterization of a freely moving organism is a difficult task, yet such a description is desired in many neuroethological studies. Many metrics currently used in the literature to describe locomotor and exploratory behavior are typically based on average quantities or subjectively chosen spatial and temporal thresholds. All of these measures are relatively coarse-grained in the time domain. It is advantageous, however, to employ metrics based on the entire trajectory that an organism takes while exploring its environment. To characterize the locomotor behavior of Drosophila melanogaster, we used a video tracking system to record the trajectory of a single fly walking in a circular open field arena. The fly was tracked for two hours. Here, we present techniques with which to analyze the motion of the fly in this paradigm, and we discuss the methods of calculation. The measures we introduce are based on spatial and temporal probability distributions and utilize the entire time-series trajectory of the fly, thus emphasizing the dynamic nature of locomotor behavior. Marginal and joint probability distributions of speed, position, segment duration, path curvature, and reorientation angle are examined and related to the observed behavior. The measures discussed in this paper provide a detailed profile of the behavior of a single fly and highlight the interaction of the fly with the environment. Such measures may serve as useful tools in any behavioral study in which the movement of a fly is an important variable and can be incorporated easily into many setups, facilitating high-throughput phenotypic characterization.

  7. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    NASA Astrophysics Data System (ADS)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  8. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  9. The Values of Scottish Comprehensive Schooling

    ERIC Educational Resources Information Center

    Murphy, Daniel; Croxford, Linda; Howieson, Cathy

    2016-01-01

    It is just over 50 years since the government circulars in Scotland, England, and Wales which signalled an intention to abolish selection and reform secondary schooling along comprehensive lines. Each country's policy trajectories since then have been quite different. In this article the authors reflect on more than 50 years of comprehensive…

  10. Partial differential equation-based localization of a monopole source from a circular array.

    PubMed

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  11. Motion Trajectories for Wide-area Surveying with a Rover-based Distributed Spectrometer

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Anderson, Gary; Wilson, Edmond

    2006-01-01

    A mobile ground survey application that employs remote sensing as a primary means of area coverage is highlighted. It is distinguished from mobile robotic area coverage problems that employ contact or proximity-based sensing. The focus is on a specific concept for performing mobile surveys in search of biogenic gases on planetary surfaces using a distributed spectrometer -- a rover-based instrument designed for wide measurement coverage of promising search areas. Navigation algorithms for executing circular and spiral survey trajectories are presented for widearea distributed spectroscopy and evaluated based on area covered and distance traveled.

  12. Alternative transfer to the Earth-Moon Lagrangian points L4 and L5 using lunar gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    2014-02-01

    Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon's sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon's gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.

  13. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  14. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  15. Children's success at detecting circular explanations and their interest in future learning.

    PubMed

    Mills, Candice M; Danovitch, Judith H; Rowles, Sydney P; Campbell, Ian L

    2017-10-01

    These studies explore elementary-school-aged children's ability to evaluate circular explanations and whether they respond to receiving weak explanations by expressing interest in additional learning. In the first study, 6-, 8-, and 10-year-olds (n = 53) heard why questions about unfamiliar animals. For each question, they rated the quality of single explanations and later selected the best explanation between pairs of circular and noncircular explanations. When judging single explanations, 8- and 10-year-olds, and to some extent 6-year-olds, provided higher ratings for noncircular explanations compared to circular ones. When selecting between pairs of explanations, all age groups preferred noncircular explanations to circular ones, but older children did so more consistently than 6-year-olds. Children who recognized the weakness of the single circular explanations were more interested in receiving additional information about the question topics. In Study 2, all three age groups (n = 87) provided higher ratings for noncircular explanations compared to circular ones when listening to responses to how questions, but older children showed a greater distinction in their ratings than 6-year-olds. Moreover, the link between recognizing circular explanations as weak and interest in future learning could not be accounted for solely by individual differences in verbal intelligence. These findings illustrate the developmental trajectory of explanation evaluation and support that recognition of weak explanations is linked to interest in future learning across the elementary years. Implications for education are discussed.

  16. Tour of Jupiter Galilean moons: Winning solution of GTOC6

    NASA Astrophysics Data System (ADS)

    Colasurdo, Guido; Zavoli, Alessandro; Longo, Alessandro; Casalino, Lorenzo; Simeoni, Francesco

    2014-09-01

    The paper presents the trajectory designed by the Italian joint team Politecnico di Torino & Sapienza Università di Roma (Team5), winner of the 6th edition of the Global Trajectory Optimization Competition (GTOC6). In the short time available in these competitions, Team5 resorted to basic knowledge, simple tools and a powerful indirect optimization procedure. The mission concerns a 4-year tour of the Jupiter Galilean moons. The paper explains the strategy that was preliminarily devised and eventually implemented by looking for a viable trajectory. The first phase is a capture that moves the spacecraft from the arrival hyperbola to a low-energy orbit around Jupiter. Six series of flybys follow; in each one the spacecraft orbits Jupiter in resonance with a single moon; criteria to construct efficient chains of resonant flybys are presented. Transfer legs move the spacecraft from resonance with a moon to another one; precise phasing of the relevant moons is required; mission opportunities in a 11-year launch window are found by assuming ballistic trajectories and coplanar circular orbits for the Jovian satellites. The actual trajectory is found by using an indirect technique.

  17. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2002-01-01

    In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.

  18. High-harmonic generation by two-color mixing of circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.; Kopold, R.

    2000-06-01

    Dipole selection rules prevent harmonic generation by an atom in a circularly polarized laser field. However, this is not the case for a superposition of several circularly polarized fields, such as two circularly polarized fields with frequencies ω and 2ω that corotate or counter-rotate in the same plane. Harmonic generation in this environment has been observed and, in fact, found to be very intense in the counter-rotating case [1]. In a certain frequency region, the harmonics may be stronger than those radiated in a linearly polarized field of either frequency. The selection rules dictate that the harmonics are circularly polarized with a helicity that alternates from one harmonic to the next. Besides their practical interest, these harmonics are also intriguing from a fundamental point of view: the standard simple-man picture does not apply since orbits that start with zero velocity in this field almost never return to their point of departure. In terms of quantum trajectories, we discuss the mechanism that generates these harmonics. In several interesting ways, it is complementary to the case of linear polarization. [1] H. Eichmann et al., Phys. Rev. A 51, R3414 (1995)

  19. Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Deaton, A. W.

    1990-01-01

    The optimization of trajectories for coplaner, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO) is examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized. First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, dynamic pressure, and heating rate. Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for the lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.

  20. Swimming trajectories of a three-sphere microswimmer near a wall

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut

    2018-04-01

    The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

  1. Dynamic laser piercing of thick section metals

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.

    2018-01-01

    Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.

  2. Predictor laws for pictorial flight displays

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.

    1985-01-01

    Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.

  3. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  4. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  5. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    NASA Astrophysics Data System (ADS)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  6. Potential sources of precipitation in Lake Baikal basin

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Mokhov, I. I.

    2017-11-01

    Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.

  7. Geometrically derived difference formulae for the numerical integration of trajectory problems

    NASA Technical Reports Server (NTRS)

    Mcleod, R. J. Y.; Sanz-Serna, J. M.

    1981-01-01

    The term 'trajectory problem' is taken to include problems that can arise, for instance, in connection with contour plotting, or in the application of continuation methods, or during phase-plane analysis. Geometrical techniques are used to construct difference methods for these problems to produce in turn explicit and implicit circularly exact formulae. Based on these formulae, a predictor-corrector method is derived which, when compared with a closely related standard method, shows improved performance. It is found that this latter method produces spurious limit cycles, and this behavior is partly analyzed. Finally, a simple variable-step algorithm is constructed and tested.

  8. Hysteresis phenomena of the intelligent driver model for traffic flow

    NASA Astrophysics Data System (ADS)

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  9. Reading Materials in Large Print: A Resource Guide. Reference Circular No. 97-02.

    ERIC Educational Resources Information Center

    Mendle, Gillian, Comp.

    This reference circular contains information about large-print materials. Section 1 is an annotated list of selected sources of large-print materials available for purchase or loan. The sources are publishers or distributors, specialized libraries, and associations for persons with visual impairments. Several of these sources also provide general…

  10. Radiative flux from a planar multiple point source within a cylindrical enclosure reaching a coaxial circular plane

    NASA Astrophysics Data System (ADS)

    Tryka, Stanislaw

    2007-04-01

    A general formula and some special integral formulas were presented for calculating radiative fluxes incident on a circular plane from a planar multiple point source within a coaxial cylindrical enclosure perpendicular to the source. These formula were obtained for radiation propagating in a homogeneous isotropic medium assuming that the lateral surface of the enclosure completely absorbs the incident radiation. Exemplary results were computed numerically and illustrated with three-dimensional surface plots. The formulas presented are suitable for determining fluxes of radiation reaching planar circular detectors, collectors or other planar circular elements from systems of laser diodes, light emitting diodes and fiber lamps within cylindrical enclosures, as well as small biological emitters (bacteria, fungi, yeast, etc.) distributed on planar bases of open nontransparent cylindrical containers.

  11. Kurtosis-Based Blind Source Extraction of Complex Non-Circular Signals with Application in EEG Artifact Removal in Real-Time

    PubMed Central

    Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej

    2011-01-01

    A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461

  12. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  13. Bouncing droplets on a billiard table.

    PubMed

    Shirokoff, David

    2013-03-01

    In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.

  14. Earth-return trajectory options for the 1985-86 Halley opportunity

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1982-01-01

    A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.

  15. Optimized x-ray source scanning trajectories for iterative reconstruction in high cone-angle tomography

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.

    2016-10-01

    With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.

  16. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    DTIC Science & Technology

    2014-12-08

    circularly-polarized laser pulses field-ionize a gas in a hollow - core waveguide. We use this new light source for magnetic circular dichroism...polarized with opposite helicity in a gas-filled hollow waveguide (see Supplementary Section 6 for details on the important features of this source...mJ/pulse) driving lasers are focused into a 150-µm-diameter, 2-cm-long gas-filled hollow waveguide using lenses with focal lengths of 50 cm and 75 cm

  17. Central region of SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, S. Y.; Kim, H. W.; Ghergherehchi, M.; Park, J. K.; Chai, J. S.; Kim, S. H.

    2014-04-01

    The development of a 9 MeV compact cyclotron for the production of radioisotopes for medical applications has been recently completed. The machine accelerates negative hydrogen ions generated from an internal PIG (Penning Ion Gauge) ion source following spiral orbits. Some of the structures designed for early beam acceleration, including a pair of center poles providing ions a circular direction, the head of the ion source, and the electrodes, are located in the center of the cyclotron. In this paper we discuss and evaluate the design of the central region that pulls the ions from the chimney of the ion source and directs them into the equilibrium orbit. The magnetic field produced by the center poles was analyzed using the magnetic solver in OPERA-3D TOSCA, and the phase error and ion equilibrium orbit, which is dependent on the kinetic energy within the designed field, were calculated using CYCLONE v8.4. The electric field produced in the acceleration gap was designed using an electrostatic solver. Then, the single beam trajectory was calculated by our own Cyclotron Beam Dynamics (CBD) code. The early orbits, vertical oscillation, acceptable RF phase and the energy gain during the early turns was evaluated. Final goal was to design the central region by the iterative optimization process and verify it with 1 MeV beam experiment.

  18. Circular revisit orbits design for responsive mission over a single target

    NASA Astrophysics Data System (ADS)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  19. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μmmore » cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.« less

  20. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.

    PubMed

    Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai

    2012-08-13

    We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.

  1. Pteros: fast and easy to use open-source C++ library for molecular analysis.

    PubMed

    Yesylevskyy, Semen O

    2012-07-15

    An open-source Pteros library for molecular modeling and analysis of molecular dynamics trajectories for C++ programming language is introduced. Pteros provides a number of routine analysis operations ranging from reading and writing trajectory files and geometry transformations to structural alignment and computation of nonbonded interaction energies. The library features asynchronous trajectory reading and parallel execution of several analysis routines, which greatly simplifies development of computationally intensive trajectory analysis algorithms. Pteros programming interface is very simple and intuitive while the source code is well documented and easily extendible. Pteros is available for free under open-source Artistic License from http://sourceforge.net/projects/pteros/. Copyright © 2012 Wiley Periodicals, Inc.

  2. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments

    NASA Astrophysics Data System (ADS)

    Vaquero Escribano, Tatiana Mar

    Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.

  3. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.

    PubMed

    Turcato, Anna Maria; Godi, Marco; Giordano, Andrea; Schieppati, Marco; Nardone, Antonio

    2015-01-09

    Turning involves complex reorientation of the body and is accompanied by asymmetric motion of the lower limbs. We investigated the distribution of the forces under the two feet, and its relation to the trajectory features and body medio-lateral displacement during curved walking. Twenty-six healthy young participants walked under three different randomized conditions: in a straight line (LIN), in a circular clockwise path and in a circular counter-clockwise path. Both feet were instrumented with Pedar-X insoles. An accelerometer was fixed to the trunk to measure the medio-lateral inclination of the body. We analyzed walking speed, stance duration as a percent of gait cycle (%GC), the vertical component of the ground reaction force (vGRF) of both feet during the entire stance, and trunk inclination. Gait speed was faster during LIN than curved walking, but not affected by the direction of the curved trajectory. Trunk inclination was negligible during LIN, while the trunk was inclined toward the center of the path during curved trajectories. Stance duration of LIN foot and foot inside the curved trajectory (Foot-In) was longer than for foot outside the trajectory (Foot-Out). vGRF at heel strike was larger in LIN than in curved walking. At mid-stance, vGRF for both Foot-In and Foot-Out was higher than for LIN foot. At toe off, vGRF for both Foot-In and Foot-Out was lower than for LIN foot; in addition, Foot-In had lower vGRF than Foot-Out. During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot. On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot. At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In. The lower gait speed during curved walking is shaped by the control of trunk inclination and the production of asymmetric loading of heel and metatarsal heads, hence by the different contribution of the feet in producing the body inclination towards the centre of the trajectory.

  4. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    NASA Technical Reports Server (NTRS)

    Galecki, Diane L.; Patterson, Michael J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  5. OpenCFU, a new free and open-source software to count cell colonies and other circular objects.

    PubMed

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net.

  6. Comparison of two trajectory based models for locating particle sources for two rural New York sites

    NASA Astrophysics Data System (ADS)

    Zhou, Liming; Hopke, Philip K.; Liu, Wei

    Two back trajectory-based statistical models, simplified quantitative transport bias analysis and residence-time weighted concentrations (RTWC) have been compared for their capabilities of identifying likely locations of source emissions contributing to observed particle concentrations at Potsdam and Stockton, New York. Quantitative transport bias analysis (QTBA) attempts to take into account the distribution of concentrations around the directions of the back trajectories. In full QTBA approach, deposition processes (wet and dry) are also considered. Simplified QTBA omits the consideration of deposition. It is best used with multiple site data. Similarly the RTWC approach uses concentrations measured at different sites along with the back trajectories to distribute the concentration contributions across the spatial domain of the trajectories. In this study, these models are used in combination with the source contribution values obtained by the previous positive matrix factorization analysis of particle composition data from Potsdam and Stockton. The six common sources for the two sites, sulfate, soil, zinc smelter, nitrate, wood smoke and copper smelter were analyzed. The results of the two methods are consistent and locate large and clearly defined sources well. RTWC approach can find more minor sources but may also give unrealistic estimations of the source locations.

  7. The Poynting-Robertson effect in the Newtonian potential with a Yukawa correction

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Ragos, Omiros; Gkigkitzis, Ioannis; Kotsireas, Ilias; Martz, Connor; Van Middekoop, Sheldon

    2018-01-01

    We consider a Yukawa-type gravitational potential combined with the Poynting-Robertson effect. Dust particles originating within the asteroid belt and moving on circular and elliptic trajectories are studied and expressions for the time rate of change of their orbital radii and semimajor axes, respectively, are obtained. These expressions are written in terms of basic particle parameters, namely their density and diameter. Then, they are applied to produce expressions for the time required by the dust particles to reach the orbit of Earth. For the Yukawa gravitational potential, dust particles of diameter 10^{ - 3} m in circular orbits require times of the order of 8.557 × 106 yr and for elliptic orbits of eccentricities e =0.1, 0.5 require times of 9.396 × 106 and 2.129 × 106 yr respectively to reach Earth's orbit. Finally, various cases of the Yukawa potential are studied and the corresponding particle times to reach Earth's are derived per case along with numerical results for circular and various elliptical orbits.

  8. Expulsion of swimming bacteria by a circular flow

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sule, Nishant; Yifat, Yuval; Gray, Stephen K.

    We examine the formation and concomitant rotation of electrodynamically bound dimers (EBD) of 150nm diameter Ag nanoparticles trapped in circularly polarized focused Gaussian beams. The rotation frequency of an EBD increases linearly with the incident beam power, reaching high mean values of ~ 4kHz for a relatively low incident power of 14mW. Using a coupled-dipole/effective polarizability model, we reveal that retardation of the scattered fields and electrodynamic interactions can lead to a “negative torque” causing rotation of the EBD in the direction opposite to that of the circular polarization. This intriguing opposite-handed rotation due to negative torque is clearly demonstratedmore » using electrodynamics-Langevin dynamics simulations by changing particle separations and thus varying the retardation effects. Finally, negative torque is also demonstrated in experiments from statistical analysis of the EBD trajectories. These results demonstrate novel rotational dynamics of nanoparticles in optical matter using circular polarization and open a new avenue to control orientational dynamics through coupling to interparticle separation.« less

  10. The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.

    PubMed

    Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson

    2008-09-01

    To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.

  11. Centripetal force draws the eyes, not memory of the target, toward the center.

    PubMed

    Kerzel, Dirk

    2003-05-01

    Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.

  12. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  13. Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2017-12-01

    To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

  14. Identifying sources of fugitive emissions in industrial facilities using trajectory statistical methods

    NASA Astrophysics Data System (ADS)

    Brereton, Carol A.; Johnson, Matthew R.

    2012-05-01

    Fugitive pollutant sources from the oil and gas industry are typically quite difficult to find within industrial plants and refineries, yet they are a significant contributor of global greenhouse gas emissions. A novel approach for locating fugitive emission sources using computationally efficient trajectory statistical methods (TSM) has been investigated in detailed proof-of-concept simulations. Four TSMs were examined in a variety of source emissions scenarios developed using transient CFD simulations on the simplified geometry of an actual gas plant: potential source contribution function (PSCF), concentration weighted trajectory (CWT), residence time weighted concentration (RTWC), and quantitative transport bias analysis (QTBA). Quantitative comparisons were made using a correlation measure based on search area from the source(s). PSCF, CWT and RTWC could all distinguish areas near major sources from the surroundings. QTBA successfully located sources in only some cases, even when provided with a large data set. RTWC, given sufficient domain trajectory coverage, distinguished source areas best, but otherwise could produce false source predictions. Using RTWC in conjunction with CWT could overcome this issue as well as reduce sensitivity to noise in the data. The results demonstrate that TSMs are a promising approach for identifying fugitive emissions sources within complex facility geometries.

  15. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.

  16. The Best Estimated Trajectory Analysis for Pad Abort One

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Noonan, Meghan; Karlgaard, Christopher; Beck, Roger

    2011-01-01

    I. Best Estimated Trajectory (BET) objective: a) Produce reconstructed trajectory of the PA-1 flight to understand vehicle dynamics and aid other post flight analyses. b) Leverage all measurement sources taken of vehicle during flight to produce the most accurate estimate of vehicle trajectory. c) Generate trajectory reconstructions of the Crew Module (CM), Launch Abort System (LAS), and Forward Bay Cover (FBC). II. BET analysis was started immediately following the PA-1 mission and was completed in September, 2010 a) Quick look version of BET released 5/25/2010: initial repackaging of SIGI data. b) Preliminary version of BET released 7/6/2010: first blended solution using available sources of external measurements. c) Final version of BET released 9/1/2010: final blended solution using all available sources of data.

  17. OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects

    PubMed Central

    Geissmann, Quentin

    2013-01-01

    Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net. PMID:23457446

  18. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  19. Shielded transient self-interaction of a bunch entering a circle from a straight path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-08-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less

  20. Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors

    NASA Astrophysics Data System (ADS)

    Weiss, S.; Deegan, R. D.

    2015-06-01

    Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.

  1. Optimization of extended propulsion time nuclear-electric propulsion trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1981-01-01

    This paper presents the methodology used in optimizing extended propulsion time NEP missions considering realistic thruster lifetime constraints. These missions consist of a powered spiral escape from a 700-km circular orbit at the earth, followed by a powered heliocentric transfer with an optimized coast phase, and terminating in a spiral capture phase at the target planet. This analysis is most applicable to those missions with very high energy requirements such as outer planet orbiter missions or sample return missions where the total propulsion time could greatly exceed the expected lifetime of an individual thruster. This methodology has been applied to the investigation of NEP missions to the outer planets where examples are presented of both constrained and optimized trajectories.

  2. Encke-Beta Predictor for Orion Burn Targeting and Guidance

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Scarritt, Sara; Goodman, John L.

    2016-01-01

    The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hyperbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta numerical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals.

  3. STELLAR ROTATION EFFECTS IN POLARIMETRIC MICROLENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir

    2016-07-10

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation throughmore » polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.« less

  4. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    PubMed Central

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  5. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson's Disease: A Proof of Concept.

    PubMed

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking.

  6. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  7. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, A B; Vlasov, V V

    2014-03-28

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment onmore » reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)« less

  8. Dynamics and control of quadcopter using linear model predictive control approach

    NASA Astrophysics Data System (ADS)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  9. Strong-field ionization with twisted laser pulses

    NASA Astrophysics Data System (ADS)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  10. NOTE: Circular symmetry in topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2010-05-01

    We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.

  11. Optical touch sensing: practical bounds for design and performance

    NASA Astrophysics Data System (ADS)

    Bläßle, Alexander; Janbek, Bebart; Liu, Lifeng; Nakamura, Kanna; Nolan, Kimberly; Paraschiv, Victor

    2013-02-01

    Touch sensitive screens are used in many applications ranging in size from smartphones and tablets to display walls and collaborative surfaces. In this study, we consider optical touch sensing, a technology best suited for large-scale touch surfaces. Optical touch sensing utilizes cameras and light sources placed along the edge of the display. Within this framework, we first find a sufficient number of cameras necessary for identifying a convex polygon touching the screen, using a continuous light source on the boundary of a circular domain. We then find the number of cameras necessary to distinguish between two circular objects in a circular or rectangular domain. Finally, we use Matlab to simulate the polygonal mesh formed from distributing cameras and light sources on a circular domain. Using this, we compute the number of polygons in the mesh and the maximum polygon area to give us information about the accuracy of the configuration. We close with summary and conclusions, and pointers to possible future research directions.

  12. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun

    2017-12-01

    Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.

  13. Generation of irradiance patterns using a semi-spherical meter of two degrees of freedom

    NASA Astrophysics Data System (ADS)

    Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Escobedo-Alatorre, J.; Sánchez-Mondragón, J.; Torres-Cisneros, M.; Cabello-Ruiz, R.; Varona, J.

    2011-09-01

    The meter device presented in this work consists of a photo-detector mounted on the mechanism of a mobile rectangular arc. One stepper motor located on the lateral axis of the device displaces the sensor along a semi-circular trajectory of 170°, almost half meridians. Another motor located at the base of the device enables 360° rotation of the illumination source under test. This arrangement effectively produces a semi-spherical volume for the sensor to move within. The number of measurement points is determined by programming the two stepper motors. Also, the use of a single photo-sensor ensures uniformity in the measurements. The mechanical structure provides enough rigidity for supporting the accuracy required by the data acquisition circuitry based on a DSPIC. Measurement of illumination sources of different sizes is possible by using adjustable lengths of the mobile base and the ring for a maximum lamp length of 0.16 m. Because this work is partially supported by a private entity interested in the characterization of its products, especial attention has been given to the luminaries based on LED technology with divergent beams. The received power by the detector is useful to obtain the irradiance profile of the lighting source under test. The meter device presented herein is a low-cost prototype designed and fabricated using recyclable materials only such as "electronic waste".

  14. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To alleviate problems due to selection of a backward-trajectory starting level within a large complex set of 3-dimensional winds, turbulence, and dispersion, results were averaged from all heights, which yielded uniform improvement against all individual cases.

  15. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.

    PubMed

    Wittkowski, Raphael; Löwen, Hartmut

    2012-02-01

    Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories. © 2012 American Physical Society

  16. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  17. Wave Field Synthesis of moving sources with arbitrary trajectory and velocity profile.

    PubMed

    Firtha, Gergely; Fiala, Péter

    2017-08-01

    The sound field synthesis of moving sound sources is of great importance when dynamic virtual sound scenes are to be reconstructed. Previous solutions considered only virtual sources moving uniformly along a straight trajectory, synthesized employing a linear loudspeaker array. This article presents the synthesis of point sources following an arbitrary trajectory. Under high-frequency assumptions 2.5D Wave Field Synthesis driving functions are derived for arbitrary shaped secondary source contours by adapting the stationary phase approximation to the dynamic description of sources in motion. It is explained how a referencing function should be chosen in order to optimize the amplitude of synthesis on an arbitrary receiver curve. Finally, a finite difference implementation scheme is considered, making the presented approach suitable for real-time applications.

  18. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  19. A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, Donald R.

    1961-01-01

    A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.

  20. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    NASA Astrophysics Data System (ADS)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  1. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation.

    PubMed

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-01-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  2. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  3. Simple circular odor chart for characterization of trace amounts of odorants discharged from thirteen odor sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshika, Y.; Nihei, Y.; Muto, G.

    1981-04-01

    A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less

  4. Applying circular economy innovation theory in business process modeling and analysis

    NASA Astrophysics Data System (ADS)

    Popa, V.; Popa, L.

    2017-08-01

    The overall aim of this paper is to develop a new conceptual framework for business process modeling and analysis using circular economy innovative theory as a source for business knowledge management. The last part of the paper presents an author’s proposed basic structure for a new business models applying circular economy innovation theories. For people working on new innovative business models in the field of the circular economy this paper provides new ideas for clustering their concepts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  6. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  7. Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor

    NASA Astrophysics Data System (ADS)

    Bae, Eun-Hyon; Lee, Kyun-Kyung

    A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.

  8. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules.

    PubMed

    Lin, Hsiang-Ting; Chang, Chiao-Yun; Cheng, Pi-Ju; Li, Ming-Yang; Cheng, Chia-Chin; Chang, Shu-Wei; Li, Lance L J; Chu, Chih-Wei; Wei, Pei-Kuen; Shih, Min-Hsiung

    2018-05-09

    Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe 2 ) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe 2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

  9. Temperature field determination in slabs, circular plates and spheres with saw tooth heat generating sources

    NASA Astrophysics Data System (ADS)

    Diestra Cruz, Heberth Alexander

    The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.

  10. SU-E-I-02: Characterizing Low-Contrast Resolution for Non-Circular CBCT Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A; Pan, X; Pelizzari, C

    Purpose: The use of non-circular scanning trajectories with optimization-basedreconstruction algorithms can be used in conjunction with non-planaracquisition geometries for axial field-of-view (FOV) extension incone-beam CT (CBCT). To evaluate the utility of these trajectories,quantitative image quality metrics should be evaluated. Low-contrastresolution (LCR) and CT number accuracy are significant challenges forCBCT. With unprecedented axial coverage provided by thesetrajectories, measuring such metrics throughout the axial range iscritical. There are currently no phantoms designed to measurelow-contrast resolution over such an extended volume. Methods: The CATPHAN (The Phantom Laboratory, Salem NY) is the current standardfor image quality evaluation. While providing several useful modulesfor different evaluationmore » metrics, each module was designed to beevaluated in a single slice and not for comparison across axialpositions. To characterize the LCR and HU accuracy over an extendedaxial length, we have designed and built a phantom with evaluationmodules at multiple and adjustable axial positions. Results: The modules were made from a cast polyurethane resin. Holes rangingfrom 1/8 to 5/8 inch were added at a constant radius from the modulecenter into which rods of two different plastic materials were pressedto provide two nominal levels of contrast (1.0% and 0.5%). Largerholes were bored to accept various RMI plugs with known electrondensities for HU accuracy evaluation. The modules can be inserted intoan acrylic tube long enough to cover the entire axial FOV and theirpositions adjusted to desired evaluation points. Conclusion: This phantom allows us to measure the LCR and HU accuracy across theaxial coverage within a single acquisition. These metrics can be usedto characterize the impact different trajectories and reconstructionparameters have on clinically relevant image quality performancemetrics. Funding was provided in part by Varian Medical Systems and NIH R01 Grants Nos. CA158446, CA182264, EB018102, and EB000225. The contents of this poster are solely the responsibility of the authors and do not necessarily represent the official view of any of the supporting organizations.« less

  11. Computational models for the berry phase in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  12. Gamma-ray generation in the interaction of two tightly focused laser pulses with a low-density target composed of electrons

    NASA Astrophysics Data System (ADS)

    Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.

    2015-05-01

    With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.

  13. Analysis of direct transfer trajectories from LL2 halo orbits to LLOs

    NASA Astrophysics Data System (ADS)

    Cao, Pengfei; He, Boyong; Li, Haiyang

    2017-09-01

    A convenient procedure for designing the direct transfer trajectory from lunar L2 point (LL2) halo orbit to a low lunar orbit (LLO) is presented in this paper. The trajectory characteristics are analyzed to support the manned lunar missions design aimed at lunar surface global access. The concise procedure is established based on the circular restricted three-body problem (CR3BP) model. An analytical algorithm is employed to estimate an initial maneuver vector for approaching the Moon in its close vicinity. An iteration process is adopted to generate favorable trajectory that satisfies the constraints at perilune. By introducing a number of intermediate coordinate frames, an algorithm to compute the arriving LLO inclination and right ascension of ascending node (RAAN) is proposed. The orbital inclination and RAAN in this paper are defined and established in the J2000 frame rather than in the synodical frame. Numerical results show that, regardless of value of out-of-plane amplitude (Az) of the halo orbit, the overall maneuver cost of the trajectory largely depends on departure position, and it has two minima around 0.65 km/s. Further study shows that the values of the arriving LLO inclination and RAAN largely depend on the choices of the departure time and the value of Az. The periodicity, due to the natural motion of the Moon, is discovered to play a role in this time dependency. It is concluded that the fuel optimal trajectory permits access to almost any final lunar orbit, including a polar orbit, by means of varying the departure time and Az value.

  14. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-05-25

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.

  15. Trajectory of asteroid 2017 SB20 within the CRTBP

    NASA Astrophysics Data System (ADS)

    Tiwary, Rishikesh Dutta; Kushvah, Badam Singh; Ishwar, Bhola

    2018-06-01

    Regular monitoring the trajectory of asteroids to a future time is a necessity, because the variety of known probably unsafe near-Earth asteroids are increasing. The analysis is perform to avoid any incident or whether they would have a further future threat to the Earth or not. Recently a new Near Earth Asteroid (2017 SB20) has been observed to cross the Earth orbit. In view of this we obtain the trajectory of Asteroid in the circular restricted three body problem with radiation pressure and oblateness. We examine nature of Asteroid's orbit with Lyapunov Characteristic Exponents (LCEs) over a finite intervals of time. LCE of the system confirms that the motion of asteroid is chaotic in nature. With the effect of radiation pressure and oblateness the length of curve varies in both the planes. Oblateness factor is found to be more perturbative than radiation pressure. To see the precision of result obtain from numerical integration we show the error propagation and the numerical stability is assured around the singularity by applying regularized equations of motion for precise long-term study.

  16. Optimal trajectories based on linear equations

    NASA Technical Reports Server (NTRS)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  17. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    NASA Technical Reports Server (NTRS)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  18. Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones

    NASA Astrophysics Data System (ADS)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.

    2016-12-01

    We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.

  19. Time-optimal control of the spacecraft trajectories in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Starinova, O. L.; Fain, M. K.; Materova, I. L.

    2017-01-01

    This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.

  20. The IRAS radiation environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    Orbital flux integration for three selected mission altitudes and geographic instantaneous flux-mapping for nominal flight-path altitude were used to determine the external charged particle radiation predicted for the Infrared Astronomy Satellite. A current field model was used for magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions. Innovative analysis features introduced include (1) positional fluxes as a function of time and energy for the most severe pass through the South Atlantic Anomaly; (2) total positional doses as a function of time and shield thickness; (3) comparison mapping fluxes for ratios of positional intensities to orbit integrated averages; and (4) statistical exposure-time history of a trajectory as a function of energy indicating, in percent of total mission duration, the time intervals over which the instantaneous fluxes would exceed the orbit integrated averages. Results are presented in tables and graphs.

  1. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    PubMed

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  2. Analysis of Chemical, REP, and SEP missions to the Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Oh, David; Yen, Chen-Wan

    2005-01-01

    Recent studies suggest significant benefits from using 1st and 2nd generation Radioisotope Power Systems (RPS) as a power source for electric propulsion (EP) missions to the outer planets. This study focuses on trajectories to the Trojan asteroids. A high level analysis is performed with chemical trajectories to determine potential canidates for REP trajectory optimization. Extensive analysis of direct trajectories using REP is performed on these candidates. Solar Electric Propulsion (SEP) trajectories are also considered for comparison against REP trajectories.

  3. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  4. Numerical Analysis of Film Cooling at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  5. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murad, Paul

    2010-01-28

    The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectorymore » of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.« less

  6. Numerical Simulation of Particle Motion in a Curved Channel

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Nie, Deming

    2018-01-01

    In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.

  7. Technology requirements for a generic aerocapture system. [for atmospheric entry

    NASA Technical Reports Server (NTRS)

    Cruz, M. I.

    1980-01-01

    The technology requirements for the design of a generic aerocapture vehicle system are summarized. These spacecraft have the capability of completely eliminating fuel-costly retropropulsion for planetary orbit capture through a single aerodynamically controlled atmospheric braking pass from a hyperbolic trajectory into a near circular orbit. This generic system has application at both the inner and outer planets. Spacecraft design integration, navigation, communications, and aerothermal protection system design problems were assessed in the technology requirements study and are discussed in this paper.

  8. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  9. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Ando, Toshiaki; Miura, Shun; Kanya, Reika; Yamanouchi, Kaoru; Rathje, Tim; Paulus, Gerhard G.

    2017-05-01

    The angle-resolved photoelectron spectra of Ar are recorded using intense circularly polarized near-infrared few-cycle laser pulses, and the effect of the depletion of Ar atoms by the ionization and the effect of the Coulombic potential are examined by the classical trajectory Monte Carlo simulations. On the basis of the comparison between the experimental and theoretical photoelectron spectra, a procedure for estimating the absolute carrier-envelope phase (CEP) of the few-cycle laser pulses interacting with atoms and molecules is proposed. It is confirmed that the absolute CEP can securely be estimated without any numerical calculations once the angular distribution of the yield of photoelectrons having the kinetic energy larger than 30 eV is measured with the peak laser intensity in the range between 1 ×1014 and 5 ×1014W /c m2 .

  10. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    PubMed

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Gamma guidance of trajectories for coplanar, aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.

    1990-01-01

    The optimization and guidance of trajectories for coplaner, aeroassisted orbital transfer (AOT) from high Earth orbit (HEO) to low Earth orbit (LEO) are examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that at most three impulses are employed: one at HEO exit, one at atmospheric exit, and one at LEO entry. It is also assumed that, during the atmospheric pass, the trajectory is controlled via the lift coefficient. The presence of upper and lower bounds on the lift coefficient is considered. First, optimal trajectories are computed by minimizing the total velocity impulse (hence, the propellant consumption) required for AOT transfer. The sequential gradient-restoration algorithm (SGRA) is used for optimal control problems. The optimal trajectory is shown to include two branches: a relatively short descending flight branch (branch 1) and a long ascending flight branch (branch 2). Next, attention is focused on guidance trajectories capable of approximating the optimal trajectories in real time, while retaining the essential characteristics of simplicity, ease of implementation, and reliability. For the atmospheric pass, a feedback control scheme is employed and the lift coefficient is adjusted according to a two-stage gamma guidance law. Further improvements are possible via a modified gamma guidance which is more stable with respect to dispersion effects arising from navigation errors, variations of the atmospheric density, and uncertainties in the aerodynamic coefficients than gamma guidance trajectory. A byproduct of the studies on dispersion effects is the following design concept. For coplaner aeroassisted orbital transfer, the lift-range-to-weight ratio appears to play a more important role than the lift-to-drag ratio. This is because the lift-range-to-weight ratio controls mainly the minimum altitude (hence, the peak heating rate) of the guidance trajectory; on the other hand, the lift-to-drag ratio controls mainly the duration of the atmospheric pass of the guidance trajectory.

  12. Investigations of SPS Orbit Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel

    2014-07-01

    The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variationsmore » are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.« less

  13. A study of variable thrust, variable specific impulse trajectories for solar system exploration

    NASA Astrophysics Data System (ADS)

    Sakai, Tadashi

    A study has been performed to determine the advantages and disadvantages of variable thrust and variable Isp (specific impulse) trajectories for solar system exploration. There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse; or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality. This research has been conducted to answer the following questions: (1) Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion? (2) If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory? To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys. Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high thrust trajectory solutions. Results show that VSI rocket engines reduce fuel requirements for any mission compared to CSI rocket engines. Fuel can be saved by applying swing-by maneuvers for VSI engines; but the effects of swing-bys due to VSI engines are smaller than that of CSI or high thrust engines.

  14. Beam shaping of light sources using circular photonic crystal funnel

    NASA Astrophysics Data System (ADS)

    Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.

    2012-10-01

    A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.

  15. Separating the Air Quality Impact of a Major Highway and Nearby Sources by Nonparametric Trajectory Analysis

    EPA Science Inventory

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur di...

  16. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in acoustic levitation, long-distance particle transport and manipulation, as well as acousto-fluidics directly benefit from the results of this analysis.

  17. TRIPPy: Trailed Image Photometry in Python

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michaël; Pike, Rosemary E.; Kavelaars, J. J.; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey

    2016-06-01

    Photometry of moving sources typically suffers from a reduced signal-to-noise ratio (S/N) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue, we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSFs) and trailed PSFs (TSFs) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super-sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with an accuracy of 10 mmag for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve S/Ns of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all S/Ns.

  18. Mixing entropy in Dean flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron

    2013-03-01

    We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.

  19. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  20. Magnon modes and magnon-vortex scattering in two-dimensional easy-plane ferromagnets

    NASA Astrophysics Data System (ADS)

    Ivanov, B. A.; Schnitzer, H. J.; Mertens, F. G.; Wysin, G. M.

    1998-10-01

    We calculate the magnon modes in the presence of a vortex on a circular system, combining analytical calculations in the continuum limit with a numerical diagonalization of the discrete system. The magnon modes are expressed by the S matrix for magnon-vortex scattering, as a function of the parameters and the size of the system and for different boundary conditions. Certain quasilocal translational modes are identified with the frequencies which appear in the trajectory X-->(t) of the vortex center in recent molecular dynamics simulations of the full many-spin model. Using these quasilocal modes we calculate the two parameters of a third-order equation of motion for X-->(t). This equation was recently derived by a collective variable theory and describes very well the trajectories observed in the simulations. Both parameters, the vortex mass and the factor in front of X-->⃛, depend strongly on the boundary conditions.

  1. Study on the effect of sink moving trajectory on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  2. L^1 -optimality conditions for the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Chen, Zheng

    2016-11-01

    In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.

  3. An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985-1989

    NASA Astrophysics Data System (ADS)

    Harris, Joyce M.

    1992-09-01

    An analysis of 5-day midtropospheric flow patterns for the South Pole during 1985-1989 is presented. Cluster analysis was used to summarize trajectories by year and by month. The results indicate that flow from the east was most often anticyclonic and light, occurring 8-18% of the time. Westerly flow patterns were the strongest and most frequent (37-51% occurrence). They were consistently cyclonic, usually reflecting storms in the Ross Sea area, the average center of the circumpolar vortex. Strong northerly flow occurred more often in 1987 than in other years. Year-to-year variability was also evident in southwesterly flow, which was enhanced in 1988, and weaker in 1987, compared with other years. The lightest winds over the South Pole occur during January, while the most vigorous long-range transport to South Pole occurs from July through October. Selected isentropic trajectories were examined to determine errors inherent in the isobaric estimates. Isentropic trajectories from the east showed little vertical motion and good agreement with isobaric ones. Over west Antarctica, however, isentropic trajectories consistently showed positive vertical motion. As a result, their isobaric counterparts were too long and overestimated the cyclonic curvature in the flow. Preferred transport from the west with warm-air advection results from the circumpolar vortex being asymmetrical, and the average isotherms, though roughly circular, being offset to the east of the South Pole.

  4. Trajectory Design for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  5. Terrestrial Sagnac delay constraining modified gravity models

    NASA Astrophysics Data System (ADS)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  6. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi

    2012-11-28

    This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.

  7. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  8. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  9. Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1998-01-01

    Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.

  10. Interior and exterior sound field control using general two-dimensional first-order sources.

    PubMed

    Poletti, M A; Abhayapala, T D

    2011-01-01

    Reproduction of a given sound field interior to a circular loudspeaker array without producing an undesirable exterior sound field is an unsolved problem over a broadband of frequencies. At low frequencies, by implementing the Kirchhoff-Helmholtz integral using a circular discrete array of line-source loudspeakers, a sound field can be recreated within the array and produce no exterior sound field, provided that the loudspeakers have azimuthal polar responses with variable first-order responses which are a combination of a two-dimensional (2D) monopole and a radially oriented 2D dipole. This paper examines the performance of circular discrete arrays of line-source loudspeakers which also include a tangential dipole, providing general variable-directivity responses in azimuth. It is shown that at low frequencies, the tangential dipoles are not required, but that near and above the Nyquist frequency, the tangential dipoles can both improve the interior accuracy and reduce the exterior sound field. The additional dipoles extend the useful range of the array by around an octave.

  11. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    PubMed

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

  12. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography.

    PubMed

    Gibby, Jacob T; Swenson, Samuel A; Cvetko, Steve; Rao, Raj; Javan, Ramin

    2018-06-22

    Augmented reality has potential to enhance surgical navigation and visualization. We determined whether head-mounted display augmented reality (HMD-AR) with superimposed computed tomography (CT) data could allow the wearer to percutaneously guide pedicle screw placement in an opaque lumbar model with no real-time fluoroscopic guidance. CT imaging was obtained of a phantom composed of L1-L3 Sawbones vertebrae in opaque silicone. Preprocedural planning was performed by creating virtual trajectories of appropriate angle and depth for ideal approach into the pedicle, and these data were integrated into the Microsoft HoloLens using the Novarad OpenSight application allowing the user to view the virtual trajectory guides and CT images superimposed on the phantom in two and three dimensions. Spinal needles were inserted following the virtual trajectories to the point of contact with bone. Repeat CT revealed actual needle trajectory, allowing comparison with the ideal preprocedural paths. Registration of AR to phantom showed a roughly circular deviation with maximum average radius of 2.5 mm. Users took an average of 200 s to place a needle. Extrapolation of needle trajectory into the pedicle showed that of 36 needles placed, 35 (97%) would have remained within the pedicles. Needles placed approximated a mean distance of 4.69 mm in the mediolateral direction and 4.48 mm in the craniocaudal direction from pedicle bone edge. To our knowledge, this is the first peer-reviewed report and evaluation of HMD-AR with superimposed 3D guidance utilizing CT for spinal pedicle guide placement for the purpose of cannulation without the use of fluoroscopy.

  13. Deaf-Blindness: National Organizations and Resources. Reference Circular No. 93-1.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This circular lists national organizations and print and audiovisual resources on areas of service to persons with deaf blindness, including rehabilitation, education, information and referral, recreation, and sources for adaptive devices and products. Section I is an alphabetical list of 40 national organizations and resources, including…

  14. A Tracking Analyst for large 3D spatiotemporal data from multiple sources (case study: Tracking volcanic eruptions in the atmosphere)

    NASA Astrophysics Data System (ADS)

    Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.

    2018-02-01

    This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.

  15. The use of ARL trajectories for the evaluation of precipitation chemistry data

    Treesearch

    John M. Miller; James N. Galloway; Gene E. Likens

    1976-01-01

    One of the major problems in interpreting precipitation chemistry data is determining the possible source areas of the materials found in the precipitation. To investigate this problem, the trajectory program developed at Air Resources Laboratories (NOAA) was used to compute five-day backward air trajectories from Ithaca, New York.

  16. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of photon antibunching from emitters doped in each of these structures. These experimental observations include photon antibunching from: nanocrystal quantum dots and nanodiamond color-centers doped in a cholesteric microcavity; terrylene and DiIC 18(3) dye molecules doped in nematic structures, and nanocrystal quantum dots doped in the distributed Bragg reflector microcavity. A value of the zero-time second-order coherence as low as g(2)(0) = 0.001 +/- 0.03 was measured. These results represent an important step forward in the realization of room temperature single-photon sources with definite polarization for secure quantum communication.

  17. Determination of NH3 emissions from confined areas using backward Lagrangian stochastic dispersion modelling

    NASA Astrophysics Data System (ADS)

    Häni, Christoph; Neftel, Albrecht; Sintermann, Jörg

    2016-04-01

    Employing backward Lagrangian stochastic (bLS) dispersion modelling to infer emission strengths from confined areas using trace gas concentration measurements is a convenient way of emission estimation from field measurements (see Wilson et al., 2012 and references therein). The freely available software 'WindTrax' (www.thunderbeachscientific.com), providing a graphical interface for the application of a bLS model, has spurred its utilisation in the past decade. Investigations include mainly methane (CH4) and ammonia (NH3) emissions based on experimental plots with dimensions between approximately 102 to 104 m2. Whereas for CH4 deposition processes can be neglected, NH3 has a strong affinity to any surface and is therefore efficiently deposited. Neglecting dry deposition will underestimate NH3 emissions, e.g. with a standard WindTrax approach. We extended the bLS model described in Flesch et al. (2004) by a dry deposition process using a simple, one-directional deposition velocity approach. At every contact of the model trajectories with ground level (here at the height of the roughness length Zo), deposition is modelled as: Fdep = vdep × CT raj (1) where vdep represents deposition velocity, and CTraj is the actual concentration of the specific trajectory at contact. A convenient way to model vdep is given by a resistances approach. The deposition velocity is modelled as the inverse of the sum of a series of different resistances to deposition. The aerodynamic resistance is already implicitly included in the bLS model, thus vdep is given as: v = ---1--- dep Rb + Rc (2) Rb and Rc represent resistances of different model layers between Zo and the surfaces where deposition take place. With this approach we analysed a dataset from measurements with an artificial NH3 source that consisted of 36 individual orifices mimicking a circular area source with a radius of 10 m. The use of three open-path miniDOAS (Sintermann et al., submitted to AMT) systems allowed to measure a line integrated vertical concentration profile downwind of the source. The inclusion of the deposition process is necessary for a consistent interpretation of the measurements. References Flesch, T.K., Wilson, J.D., Harper, L.A., Crenna, B.P., Sharpe, R.R., 2004. Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteorol. 43 (3), 487-502. Wilson, J.D., Flesch, T.K., Crenna, B.P., 2012. Estimating Surface-Air Gas Fluxes by Inverse Dispersion Using a Backward Lagrangian Stochastic Trajectory Model, in: Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., Webley, P. (Eds.), Lagrangian Modeling of the Atmosphere. American Geophysical Union, Washington, D. C., pp. 149-162.

  18. Orbits of two electrons released from rest in a uniform transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.

    2018-03-01

    Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.

  19. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  20. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  1. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  2. The Europa Mission: Multiple Europa Flyby Trajectory Design Trades and Challenges

    NASA Technical Reports Server (NTRS)

    Lam, Try; Arrieta-Camacho, Juan J.; Buffington, Brent B.

    2015-01-01

    With potential sources of water, energy and other chemicals essential for life, Europa is a top candidate for finding current life in our Solar System outside of Earth. This paper describes the current trajectory design concept for a multiple Europa flyby mission and discusses several trajectory design challenges. The candidate reference trajectory utilizes multiple Europa flybys while around Jupiter to enable near global coverage of Europa while balancing science requirements, radiation dose, propellant usage, and flight time. Trajectory design trades and robustness are also discussed.

  3. JBoss Middleware for Spacecraft Trajectory Operations

    NASA Technical Reports Server (NTRS)

    Stensrud, Kjell; Srinivasan, Ravi; Hamm, Dustin

    2008-01-01

    This viewgraph presentation reviews the use of middleware for spacecraft trajectory planning. It reviews the following areas and questions: 1. Project Background - What is the environment where we are considering Open Source Middleware? 2. System Architecture - What technologies and design did we apply? 3. Testing overview - What are the quality scenarios and test points? 4. Project Conclusion - What did we learn about Open Source Middleware?

  4. Joint Blind Source Separation by Multi-set Canonical Correlation Analysis

    PubMed Central

    Li, Yi-Ou; Adalı, Tülay; Wang, Wei; Calhoun, Vince D

    2009-01-01

    In this work, we introduce a simple and effective scheme to achieve joint blind source separation (BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first propose a generative model of joint BSS based on the correlation of latent sources within and between datasets. We specify source separability conditions, and show that, when the conditions are satisfied, the group of corresponding sources from each dataset can be jointly extracted by M-CCA through maximization of correlation among the extracted sources. We compare source separation performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of corresponding sources with heterogeneous correlation values, and complex-valued sources with circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful brain activations from a visuomotor task. PMID:20221319

  5. Room temperature high circular dichroism ultraviolet lasing from planar spiral metal-GaN nanowire cavity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shih, Min-Hsiung

    2016-09-01

    Circularly polarized light and chiroptical effect have received considerable attention in advanced photonic and electronic technologies including optical spintronics, quantum-based optical information processing and communication, and high-efficiency liquid crystal display backlights. Moreover, the development of circularly polarized photon sources has played a major role in circular dichroism (CD) spectroscopy, which is important for analyses of optically active molecules, chiral synthesis in biology and chemistry, and ultrafast magnetization control. However, the conventional collocation of light-emitting devices and additional circular-polarization converters that produce circularly polarized beams makes the setup bulky and hardly compatible with nanophotonic devices in ultrasmall scales. In fact, the direct generation of circularly polarized photons may simplify the system integration, compact the setup, lower the cost of external components, and perhaps enhance the power efficiency. In this work, with the spiral-type metal-gallium nitride (GaN) nanowire cavity, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with decently high degrees of circular polarizations.

  6. The Advanced Light Source Elliptically Polarizing Undulator

    NASA Astrophysics Data System (ADS)

    Marks, Steve; Cortopassi, Christopher; Devries, Jan; Hoyer, Egon; Leinbach, Robert; Minamihara, Yoshi; Padmore, Howard; Pipersky, Paul; Plate, Dave; Schlueter, Ross; Young, Anthony

    1997-05-01

    An elliptically polarizing undulator for the Advanced Light Source has been designed and is currently under construction. The magnetic design is a four quadrant pure permanent magnet structure featuring moveable magnets to correct phase errors and on axis field integrals. The device is designed with a 5.0 cm period and will produce variably polarized light of any ellipticity, including pure circular and linear. The spectral range at 1.9 GeV for typical elliptical polarization with a degree of circular polarization greater than 0.8 will be from 100 eV to 1500 eV, using the third and fifth spectral harmonics. The device will be switchabe between left and right circular modes at a frequency of up to 0.1 Hz. The 1.95 m long overall length will allow two such devices in a single ALS straight sector.

  7. Braille Literacy: Resources for Instruction, Writing Equipment, and Supplies. NLS Reference Circulars

    ERIC Educational Resources Information Center

    Peaco, Freddie L., Comp.

    2004-01-01

    This reference circular lists instructional materials, supplies, and equipment currently available for learning braille, and cites sources about braille literacy. The resources given are intended to assist sighted individuals who are interested in learning braille or want to transcribe print materials into braille; instructors who teach braille;…

  8. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    NASA Astrophysics Data System (ADS)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  9. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    DOE PAGES

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    2017-07-01

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less

  10. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Willems, F.; Smeenk, C. T. L.; Zhavoronkov, N.; Kornilov, O.; Radu, I.; Schmidbauer, M.; Hanke, M.; von Korff Schmising, C.; Vrakking, M. J. J.; Eisebitt, S.

    2015-12-01

    Magnetic circular dichroism in the extreme ultraviolet (XUV) spectral range is a powerful technique for element-specific probing of magnetization in multicomponent magnetic alloys and multilayers. We combine a high-harmonic generation source with a λ /4 phase shifter to obtain circularly polarized XUV femtosecond pulses for ultrafast magnetization studies. We report on simultaneously measured resonant magnetic circular dichroism (MCD) of Co and Ni at their respective M2 ,3 edges and of Pt at its O edge, originating from interface magnetism. We present a time-resolved MCD absorption measurement of a thin magnetic Pt/Co/Pt film, showing simultaneous demagnetization of Co and Pt on a femtosecond time scale.

  11. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less

  12. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  13. SU-F-BRB-16: A Spreadsheet Based Automatic Trajectory GEnerator (SAGE): An Open Source Tool for Automatic Creation of TrueBeam Developer Mode Robotic Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etmektzoglou, A; Mishra, P; Svatos, M

    Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less

  14. Improved moving source photometry with TRIPPy

    NASA Astrophysics Data System (ADS)

    Alexandersen, Mike; Fraser, Wesley Cristopher

    2017-10-01

    Photometry of moving sources is more complicated than for stationary sources, because the sources trail their signal out over more pixels than a point source of the same magnitude. Using a circular aperture of same size as would be appropriate for point sources can cut out a large amount of flux if a moving source moves substantially relative to the size of the aperture during the exposure, resulting in underestimated fluxes. Using a large circular aperture can mitigate this issue at the cost of a significantly reduced signal to noise compared to a point source, as a result of the inclusion of a larger background region within the aperture.Trailed Image Photometry in Python (TRIPPy) solves this problem by using a pill-shaped aperture: the traditional circular aperture is sliced in half perpendicular to the direction of motion and separated by a rectangle as long as the total motion of the source during the exposure. TRIPPy can also calculate the appropriate aperture correction (which will depend both on the radius and trail length of the pill-shaped aperture), and has features for selecting good PSF stars, creating a PSF model (convolved moffat profile + lookup table) and selecting a custom sky-background area in order to ensure no other sources contribute to the background estimate.In this poster, we present an overview of the TRIPPy features and demonstrate the improvements resulting from using TRIPPy compared to photometry obtained by other methods with examples from real projects where TRIPPy has been implemented in order to obtain the best-possible photometric measurements of Solar System objects. While TRIPPy has currently mainly been used for Trans-Neptunian Objects, the improvement from using the pill-shaped aperture increases with source motion, making TRIPPy highly relevant for asteroid and centaur photometry as well.

  15. Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    2000-10-01

    The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.

  16. Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone

    NASA Astrophysics Data System (ADS)

    Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.

  17. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  18. Reynolds numbers influence the directionality of self-propelled microjet engines in the 10(-4) regime.

    PubMed

    Zhao, Guanjia; Nguyen, Nam-Trung; Pumera, Martin

    2013-08-21

    The motion directionality of self-propelled bubble-jet microengines is influenced by their velocities and/or viscosity of the media in which they move. The influence of the fuel concentration from 1 to 3 wt% of H2O2 in 0.5% steps and of the glycerol fraction from 0 to 64% in aqueous solution on the directionality of the microjets motions is examined systematically. We show that with decreasing Reynolds numbers of the system (that is, with increasing viscosity or decreasing velocity of the microjets), the directionality of the motion shifts from circular to linear motion. This translates to a shorter travel time towards a designated target for the microjets despite moving at a slower speed, since the movements are linear instead of circular. We show that such dependence of trajectories of microjets on Re is a general issue. This observation has a strong implication for the real-world applications of microjets.

  19. Spin lattices of walking droplets

    NASA Astrophysics Data System (ADS)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  20. Temporal correlation and correlated momentum distribution in nonsequential double ionization of Mg by circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen

    2017-07-01

    We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).

  1. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  2. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  3. Tunable Spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium

    PubMed Central

    Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya

    2016-01-01

    Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825

  4. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  5. System and method for bullet tracking and shooter localization

    DOEpatents

    Roberts, Randy S [Livermore, CA; Breitfeller, Eric F [Dublin, CA

    2011-06-21

    A system and method of processing infrared imagery to determine projectile trajectories and the locations of shooters with a high degree of accuracy. The method includes image processing infrared image data to reduce noise and identify streak-shaped image features, using a Kalman filter to estimate optimal projectile trajectories, updating the Kalman filter with new image data, determining projectile source locations by solving a combinatorial least-squares solution for all optimal projectile trajectories, and displaying all of the projectile source locations. Such a shooter-localization system is of great interest for military and law enforcement applications to determine sniper locations, especially in urban combat scenarios.

  6. Full-Stokes polarimetry with circularly polarized feeds. Sources with stable linear and circular polarization in the GHz regime

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.

    2018-01-01

    We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A68

  7. Final STS-11 (41-B) best estimate trajectory products: Development and results from the first Cape landing

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Mcconnell, J. G.; Findlay, J. T.; Heck, M. L.; Henry, M. W.

    1984-01-01

    The STS-11 (41-B) postflight data processing is completed and the results published. The final reconstructed entry trajectory is presented. The various atmospheric sources available for this flight are discussed. Aerodynamic Best Estimate of Trajectory BET generation and plots from this file are presented. A definition of the major maneuvers effected is given. Physical constants, including spacecraft mass properties; final residuals from the reconstruction process; trajectory parameter listings; and an archival section are included.

  8. The General Mission Analysis Tool (GMAT): Current Features And Adding Custom Functionality

    NASA Technical Reports Server (NTRS)

    Conway, Darrel J.; Hughes, Steven P.

    2010-01-01

    The General Mission Analysis Tool (GMAT) is a software system for trajectory optimization, mission analysis, trajectory estimation, and prediction developed by NASA, the Air Force Research Lab, and private industry. GMAT's design and implementation are based on four basic principles: open source visibility for both the source code and design documentation; platform independence; modular design; and user extensibility. The system, released under the NASA Open Source Agreement, runs on Windows, Mac and Linux. User extensions, loaded at run time, have been built for optimization, trajectory visualization, force model extension, and estimation, by parties outside of GMAT's development group. The system has been used to optimize maneuvers for the Lunar Crater Observation and Sensing Satellite (LCROSS) and ARTEMIS missions and is being used for formation design and analysis for the Magnetospheric Multiscale Mission (MMS).

  9. Bilocal current densities and mean trajectories in a Young interferometer with two Gaussian slits and two detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, L. P., E-mail: lpwithers@mitre.org; Narducci, F. A., E-mail: francesco.narducci@navy.mil

    2015-06-15

    The recent single-photon double-slit experiment of Steinberg et al., based on a weak measurement method proposed by Wiseman, showed that, by encoding the photon’s transverse momentum behind the slits into its polarization state, the momentum profile can subsequently be measured on average, from a difference of the separated fringe intensities for the two circular polarization components. They then integrated the measured average velocity field, to obtain the average trajectories of the photons enroute to the detector array. In this paper, we propose a modification of their experiment, to demonstrate that the average particle velocities and trajectories change when the modemore » of detection changes. The proposed experiment replaces a single detector by a pair of detectors with a given spacing between them. The pair of detectors is configured so that it is impossible to distinguish which detector received the particle. The pair of detectors is then analogous to the simple pair of slits, in that it is impossible to distinguish which slit the particle passed through. To establish the paradoxical outcome of the modified experiment, the theory and explicit three-dimensional formulas are developed for the bilocal probability and current densities, and for the average velocity field and trajectories as the particle wavefunction propagates in the volume of space behind the Gaussian slits. Examples of these predicted results are plotted. Implementation details of the proposed experiment are discussed.« less

  10. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  11. Development and clinical evaluation of a simple optical method to detect and measure patient external motion.

    PubMed

    Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier

    2015-09-08

    A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET.

  12. Schema generation in recurrent neural nets for intercepting a moving target.

    PubMed

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  13. Study of Amorphous Ferrimagnet Fe0.66Er0.19B0.15 by Means of Monochromatic Circularly Polarised Source

    NASA Astrophysics Data System (ADS)

    Kalska, B.; Szymański, K.; Dobrzyński, L.; Satuła, D.; Wäppling, R.; Broddefalk, A.; Nordblad, P.

    2002-06-01

    Properties of amorphous alloy Fe0.66Er0.19B0.15 are reported. A reorientation of the Fe and Er magnetic moments during sample cooling through the compensation point in a large magnetic field is found by means of monochromatic circularly polarised radiation.

  14. Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories

    NASA Technical Reports Server (NTRS)

    Green, S.; Grace, M.; Williams, D.

    1999-01-01

    The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.

  15. Optimal cooperative time-fixed impulsive rendezvous

    NASA Technical Reports Server (NTRS)

    Mirfakhraie, Koorosh; Conway, Bruce A.; Prussing, John E.

    1988-01-01

    A method has been developed for determining optimal, i.e., minimum fuel, trajectories for the fixed-time cooperative rendezvous of two spacecraft. The method presently assumes that the vehicles perform a total of three impulsive maneuvers with each vehicle being active, that is, making at least one maneuver. The cost of a feasible 'reference' trajectory is improved by an optimizer which uses an analytical gradient developed using primer vector theory and a new solution for the optimal terminal (rendezvous) maneuver. Results are presented for a large number of cases in which the initial orbits of both vehicles are circular but in which the initial positions of the vehicles and the allotted time for rendezvous are varied. In general, the cost of the cooperative rendezvous is less than that of rendezvous with one vehicle passive. Further improvement in cost may be obtained in the future when additional, i.e., midcourse, impulses are allowed and inserted as indicated for some cases by the primer vector histories which are generated by the program.

  16. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  17. Translational-circular scanning for magneto-acoustic tomography with current injection.

    PubMed

    Wang, Shigang; Ma, Ren; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-01-27

    Magneto-acoustic tomography with current injection involves using electrical impedance imaging technology. To explore the potential applications in imaging biological tissue and enhance image quality, a new scan mode for the transducer is proposed that is based on translational and circular scanning to record acoustic signals from sources. An imaging algorithm to analyze these signals is developed in respect to this alternative scanning scheme. Numerical simulations and physical experiments were conducted to evaluate the effectiveness of this scheme. An experiment using a graphite sheet as a tissue-mimicking phantom medium was conducted to verify simulation results. A pulsed voltage signal was applied across the sample, and acoustic signals were recorded as the transducer performed stepped translational or circular scans. The imaging algorithm was used to obtain an acoustic-source image based on the signals. In simulations, the acoustic-source image is correlated with the conductivity at the sample boundaries of the sample, but image results change depending on distance and angular aspect of the transducer. In general, as angle and distance decreases, the image quality improves. Moreover, experimental data confirmed the correlation. The acoustic-source images resulting from the alternative scanning mode has yielded the outline of a phantom medium. This scan mode enables improvements to be made in the sensitivity of the detecting unit and a change to a transducer array that would improve the efficiency and accuracy of acoustic-source images.

  18. NASA's Core Trajectory Sub-System Project: Using JBoss Enterprise Middleware for Building Software Systems Used to Support Spacecraft Trajectory Operations

    NASA Technical Reports Server (NTRS)

    Stensrud, Kjell C.; Hamm, Dustin

    2007-01-01

    NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.

  19. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  20. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.

    PubMed

    Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.

  1. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model

    PubMed Central

    Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401

  2. JPRS report: Science and technology. Central Eurasia: Space

    NASA Astrophysics Data System (ADS)

    1994-12-01

    Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.

  3. INSAT-1A launch on Delta

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The INSAT-1A, the first in a series of 12 transponder communications satellites developed for India, is described as well as the launch plans. The launch vehicle will be the Delta 3910 configuration which incorporates an extended long tank Thor booster, nine Castor IV strap-on motors, a TR-201 second stage, and an 8 foot fairing. The satellite will be placed in a suborbital trajectory. A DAM-D stage will then thrust it into a synchronous transfer orbit. An apogee kick motor will be fired to circularize its orbit at a geosynchronous altitude of 19,300 nautical miles.

  4. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  5. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  6. Nonlinear stability and control of gliding vehicles

    NASA Astrophysics Data System (ADS)

    Bhatta, Pradeep

    In this thesis we use nonlinear systems analysis to study dynamics and design control solutions for vehicles subject to hydrodynamic or aerodynamic forcing. Application of energy-based methods for such vehicles is challenging due to the presence of energy-conserving lift and side forces. We study how the lift force determines the geometric structure of vehicle dynamics. A Hamiltonian formulation of the integrable phugoid-mode equations provides a Lyapunov function candidate, which is used throughout the thesis for deriving equilibrium stability results and designing stabilizing control laws. A strong motivation for our work is the emergence of underwater gliders as an important observation platform for oceanography. Underwater gliders rely on buoyancy regulation and internal mass redistribution for motion control. These vehicles are attractive because they are designed to operate autonomously and continuously for several weeks. The results presented in this thesis contribute toward the development of systematic control design procedures for extending the range of provably stable maneuvers of the underwater glider. As the first major contribution we derive conditions for nonlinear stability of longitudinal steady gliding motions using singular perturbation theory. Stability is proved using a composite Lyapunov function, composed of individual Lyapunov functions that prove stability of rotational and translational subsystem equilibria. We use the composite Lyapunov function to design control laws for stabilizing desired relative equilibria in different actuation configurations for the underwater glider. We propose an approximate trajectory tracking method for an aircraft model. Our method uses exponential stability results of controllable steady gliding motions, derived by interpreting the aircraft dynamics as an interconnected system of rotational and translational subsystems. We prove bounded position error for tracking prescribed, straight-line trajectories, and demonstrate good performance in tracking unsteady trajectories in the longitudinal plane. We present all possible relative equilibrium motions for a rigid body moving in a fluid. Motion along a circular helix is a practical relative equilibrium for an underwater glider. We present a study of how internal mass distribution and buoyancy of the underwater glider influence the size of the steady circular helix, and the effect of a vehicle bottom-heaviness parameter on its stability.

  7. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    NASA Astrophysics Data System (ADS)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon transfers given current sail technology levels. Although the implemented steering laws suffice to generate baseline paths, infeasible turn rate demands placed on the sail are also investigated to explore the technical hurdles in designing Earth-Moon transfers. The methodologies are suitable for a variety of mission scenarios and sail configurations, rendering the resulting trajectories valuable for a diverse range of applications.

  8. Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.

  9. The fields of mean concentration in potential sources of ammonium sulphate, ammonium nitrate and natural silicates for the west of Moscow region

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    According to measurements in 2002-2015 of concentrations of ammonium nitrate, ammonium sulfate and natural silicates in aerosol samples with particles in the range of 1-2 μm in diameter at the Zvenigorod scientific station (55.7° N, 36.8° E) of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences and simulation of backward trajectories of air parcels using the trajectory model NOAA HYSPLIT_4 by means of CWT (concentration weighted trajectory) method, the average fields of capacity (in unit of concentration) of potential sources of these admixtures and their sum for the west of Moscow region were obtained. The patterns of large-scale atmospheric circulation, which favoring the transfer of these admixtures from their regions of the most probable potential sources to the western Moscow region, are analyzed.

  10. 49 CFR 601.10 - Sources of information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION ORGANIZATION, FUNCTIONS, AND PROCEDURES Public Availability of Information § 601.10 Sources of information. (a) FTA guidance documents. (1) Circulars and other guidance/policy... 49 Transportation 7 2014-10-01 2014-10-01 false Sources of information. 601.10 Section 601.10...

  11. 49 CFR 601.10 - Sources of information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION ORGANIZATION, FUNCTIONS, AND PROCEDURES Public Availability of Information § 601.10 Sources of information. (a) FTA guidance documents. (1) Circulars and other guidance/policy... 49 Transportation 7 2013-10-01 2013-10-01 false Sources of information. 601.10 Section 601.10...

  12. 49 CFR 601.10 - Sources of information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION ORGANIZATION, FUNCTIONS, AND PROCEDURES Public Availability of Information § 601.10 Sources of information. (a) FTA guidance documents. (1) Circulars and other guidance/policy... 49 Transportation 7 2012-10-01 2012-10-01 false Sources of information. 601.10 Section 601.10...

  13. 49 CFR 601.10 - Sources of information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION ORGANIZATION, FUNCTIONS, AND PROCEDURES Public Availability of Information § 601.10 Sources of information. (a) FTA guidance documents. (1) Circulars and other guidance/policy... 49 Transportation 7 2011-10-01 2011-10-01 false Sources of information. 601.10 Section 601.10...

  14. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  15. Localization and separation of acoustic sources by using a 2.5-dimensional circular microphone array.

    PubMed

    Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen

    2017-07-01

    Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.

  16. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis.

    PubMed

    Mellow, Tim; Kärkkäinen, Leo

    2014-03-01

    An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.

  17. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  18. Comparing modal noise and FRD of circular and non-circular cross-section fibres

    NASA Astrophysics Data System (ADS)

    Sablowski, D. P.; Plüschke, D.; Weber, M.; Strassmeier, K. G.; Järvinen, A.

    2016-03-01

    Modal noise is a common source of noise introduced to the measurements by optical fibres and is particularly important for fibre-fed spectroscopic instruments, especially for high-resolution measurements. This noise source can limit the signal-to-noise ratio and jeopardize photon-noise limited data. The subject of the present work is to compare measurements of modal noise and focal-ratio degradation (FRD) for several commonly used fibres. We study the influence of a simple mechanical scrambling method (excenter) on both FRD and modal noise. Measurements are performed with circular and octagonal fibres from Polymicro Technology (FBP-Series) with diameters of 100, 200, and 300 μm and for square and rectangular fibres from CeramOptec, among others. FRD measurements for the same sample of fibres are performed as a function of wavelength. Furthermore, we replaced the circular fibre of the STELLA-échelle-spectrograph (SES) in Tenerife with an octagonal and found a SNR increase by a factor of 1.6 at 678 nm. It is shown in the laboratory that an excenter with a large amplitude and low frequency will not influence the FRD but will reduce modal noise rather effectively by up to 180%.

  19. Theory and algorithms for image reconstruction on chords and within regions of interest

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.

    2005-11-01

    We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.

  20. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. We discuss the relative impact of these different aerosol sources on the overall radiative forcing at Ilorin AERONET site.

  1. Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall

    NASA Astrophysics Data System (ADS)

    Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru

    2018-07-01

    We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.

  2. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  3. Accuracy of a Real-Time, Computerized, Binocular, Three-Dimensional Trajectory-Tracking Device for Recording Functional Mandibular Movements

    PubMed Central

    Zhao, Tian; Yang, Huifang; Sui, Huaxin; Salvi, Satyajeet Sudhir; Wang, Yong; Sun, Yuchun

    2016-01-01

    Objective Developments in digital technology have permitted researchers to study mandibular movements. Here, the accuracy of a real-time, computerized, binocular, three-dimensional (3D) trajectory-tracking device for recording functional mandibular movements was evaluated. Methods An occlusal splint without the occlusal region was created based on a plaster cast of the lower dentition. The splint was rigidly connected with a target on its labial side and seated on the cast. The cast was then rigidly attached to the stage of a high-precision triaxial electronic translator, which was used to move the target-cast-stage complex. Half-circular movements (5.00-mm radius) in three planes (XOY, XOZ, YOZ) and linear movements along the x-axis were performed at 5.00 mm/s. All trajectory points were recorded with the binocular 3D trajectory-tracking device and fitted to arcs or lines, respectively, with the Imageware software. To analyze the accuracy of the trajectory-tracking device, the mean distances between the trajectory points and the fitted arcs or lines were measured, and the mean differences between the lengths of the fitted arcs’ radii and a set value (5.00 mm) were then calculated. A one-way analysis of variance was used to evaluate the spatial consistency of the recording accuracy in three different planes. Results The mean distances between the trajectory points and fitted arcs or lines were 0.076 ± 0.033 mm or 0.089 ± 0.014 mm. The mean difference between the lengths of the fitted arcs’ radii and the set value (5.00 mm) was 0.025 ± 0.071 mm. A one-way ANOVA showed that the recording errors in three different planes were not statistically significant. Conclusion These results suggest that the device can record certain movements at 5.00 mm/s, which is similar to the speed of functional mandibular movements. In addition, the recordings had an error of <0.1 mm and good spatial consistency. Thus, the device meets some of the requirements necessary for recording human mandibular movements. PMID:27701462

  4. Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results

    NASA Astrophysics Data System (ADS)

    Novick, Jaison Allen

    We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.

  5. 41 CFR 302-17.13 - Source references.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Source references. 302... references. The following references or publications have been used as source material for this part. (a...) Internal Revenue Service Publication 521, “Moving Expenses.” (c) Internal Revenue Service, Circular E...

  6. CircularLogo: A lightweight web application to visualize intra-motif dependencies.

    PubMed

    Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo

    2017-05-22

    The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.

  7. Research and Analysis on the Localization of a 3-D Single Source in Lossy Medium Using Uniform Circular Array

    PubMed Central

    Xue, Bing; Qu, Xiaodong; Fang, Guangyou; Ji, Yicai

    2017-01-01

    In this paper, the methods and analysis for estimating the location of a three-dimensional (3-D) single source buried in lossy medium are presented with uniform circular array (UCA). The mathematical model of the signal in the lossy medium is proposed. Using information in the covariance matrix obtained by the sensors’ outputs, equations of the source location (azimuth angle, elevation angle, and range) are obtained. Then, the phase and amplitude of the covariance matrix function are used to process the source localization in the lossy medium. By analyzing the characteristics of the proposed methods and the multiple signal classification (MUSIC) method, the computational complexity and the valid scope of these methods are given. From the results, whether the loss is known or not, we can choose the best method for processing the issues (localization in lossless medium or lossy medium). PMID:28574467

  8. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  9. Separating the air quality impact of a major highway and nearby sources by nonparametric trajectory analysis.

    PubMed

    Henry, Ronald C; Vette, Alan; Norris, Gary; Vedantham, Ram; Kimbrough, Sue; Shores, Richard C

    2011-12-15

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur dioxide concentrations were collected from December 2008 to December 2009. The purpose of the study was to determine the impact of the highway at three downwind monitoring stations using an upwind station to measure background concentrations. NTA was used to precisely determine the contribution of the highway to the average concentrations measured at the monitoring stations accounting for the spatially heterogeneous contributions of other local urban sources. NTA uses short time average concentrations, 5 min in this case, and constructed local back-trajectories from similarly short time average wind speed and direction to locate and quantify contributions from local source regions. Averaged over an entire year, the decrease of concentrations with distance from the highway was found to be consistent with previous studies. For this study, the NTA model is shown to be a reliable approach to quantify the impact of the highway on local air quality in an urban area with other local sources.

  10. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    PubMed

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  11. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network

    PubMed Central

    Han, Changcai; Yang, Jinsheng

    2017-01-01

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155

  12. Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.; Douglas, Jack F.; Garboczi, Edward J.

    2001-12-01

    The problem of calculating the electric polarizability tensor αe of objects of arbitrary shape has been reformulated in terms of path integration and implemented computationally. The method simultaneously yields the electrostatic capacity C and the equilibrium charge density. These functionals of particle shape are important in many materials science applications, including the conductivity and viscosity of filled materials and suspensions. The method has been validated through comparison with exact results (for the sphere, the circular disk, touching spheres, and tori), it has been found that 106 trajectories yield an accuracy of about four and three significant figures for C and αe, respectively. The method is fast: For simple objects, 106 trajectories require about 1 min on a PC. It is also versatile: Switching from one object to another is easy. Predictions have also been made for regular polygons, polyhedra, and right circular cylinders, since these shapes are important in applications and since numerical calculations of high stated accuracy are available. Finally, the path-integration method has been applied to estimate transport properties of both linear flexible polymers (random walk chains of spheres) and lattice model dendrimer molecules. This requires probing of an ensemble of objects. For linear chains, the distribution function of C and of the trace (αe), are found to be universal in a size coordinate reduced by the chain radius of gyration. For dendrimers, these distribution functions become increasingly sharp with generation number. It has been found that C and αe provide important information about the distribution of molecular size and shape and that they are important for estimating the Stokes friction and intrinsic viscosity of macromolecules.

  13. The long-time dynamics of two hydrodynamically-coupled swimming cells.

    PubMed

    Michelin, Sébastien; Lauga, Eric

    2010-05-01

    Swimming microorganisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here, we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system--of dimension two--describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of t-->infinity, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations. Our analysis shows therefore that, even in the dilute limit, hydrodynamic interactions lead to new modes of cell-cell locomotion.

  14. Modeling Drosophila Positional Preferences in Open Field Arenas with Directional Persistence and Wall Attraction

    PubMed Central

    Soibam, Benjamin; Goldfeder, Rachel L.; Manson-Bishop, Claire; Gamblin, Rachel; Pletcher, Scott D.; Shah, Shishir; Gunaratne, Gemunu H.; Roman, Gregg W.

    2012-01-01

    In open field arenas, Drosophila adults exhibit a preference for arena boundaries over internal walls and open regions. Herein, we investigate the nature of this preference using phenomenological modeling of locomotion to determine whether local arena features and constraints on movement alone are sufficient to drive positional preferences within open field arenas of different shapes and with different internal features. Our model has two components: directional persistence and local wall force. In regions far away from walls, the trajectory is entirely characterized by a directional persistence probability, , for each movement defined by the step size, , and the turn angle, . In close proximity to walls, motion is computed from and a local attractive force which depends on the distance between the fly and points on the walls. The directional persistence probability was obtained experimentally from trajectories of wild type Drosophila in a circular open field arena and the wall force was computed to minimize the difference between the radial distributions from the model and Drosophila in the same circular arena. The two-component model for fly movement was challenged by comparing the positional preferences from the two-component model to wild type Drosophila in a variety of open field arenas. In most arenas there was a strong concordance between the two-component model and Drosophila. In more complex arenas, the model exhibits similar trends, but some significant differences were found. These differences suggest that there are emergent features within these complex arenas that have significance for the fly, such as potential shelter. Hence, the two-component model is an important step in defining how Drosophila interact with their environment. PMID:23071591

  15. Circular array of stable atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.

    2010-12-01

    A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.

  16. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  17. More on accreting black hole spacetime in equatorial plane

    NASA Astrophysics Data System (ADS)

    Salahshoor, K.; Nozari, K.; Khesali, A. R.

    2017-02-01

    Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.

  18. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  19. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  20. A study of impact of Asian dusts and their transport pathways to Hong Kong using multiple AERONET data, trajectory, and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet Elizabeth; Lee, Kwon Ho

    2010-10-01

    Hong Kong, a commercial and financial city located in south-east China has suffered serious air pollution for the last decade due largely to rapid urban and industrial expansion of the cities of mainland China. However, the potential sources and pathways of aerosols transported to Hong Kong have not been well researched due to the lack of air quality monitoring stations in southern China. Here, an integrated method combining the AErosol RObotic NETwork (AERONET) data, trajectory and Potential Source Contribution Function (PSCF) modeling is used to identify the potential transport pathways and contribution of sources from four characteristic aerosol types. Four characteristic aerosol types were defined using a total of 730 AERONET data measurements between 2005 and 2008. They are coastal urban, polluted urban, dust (likely to be long distance desert dust), and heavy pollution. Results show that the sources of polluted urban and heavy pollution are associated with industrial emissions in southern China, whereas coastal urban aerosols have been affected both from natural marine aerosol and emissions. The PSCF map of dust shows a wide range of pathways followed by east- and south-eastwards trajectories from northwest China to Hong Kong. Although the contribution from dust sources is small compared to the anthropogenic aerosols, a serious recent dust outbreak has been observed in Hong Kong with an elevation of the Air Pollution Index to 500, compared with 50-100 on normal days. Therefore, the combined use of clustered AERONET data, trajectory and the PSCF models can help to resolve the longstanding issue about source regions and characteristics of pollutants carried to Hong Kong.

  1. A straightforward method to compute average stochastic oscillations from data samples.

    PubMed

    Júlvez, Jorge

    2015-10-19

    Many biological systems exhibit sustained stochastic oscillations in their steady state. Assessing these oscillations is usually a challenging task due to the potential variability of the amplitude and frequency of the oscillations over time. As a result of this variability, when several stochastic replications are averaged, the oscillations are flattened and can be overlooked. This can easily lead to the erroneous conclusion that the system reaches a constant steady state. This paper proposes a straightforward method to detect and asses stochastic oscillations. The basis of the method is in the use of polar coordinates for systems with two species, and cylindrical coordinates for systems with more than two species. By slightly modifying these coordinate systems, it is possible to compute the total angular distance run by the system and the average Euclidean distance to a reference point. This allows us to compute confidence intervals, both for the average angular speed and for the distance to a reference point, from a set of replications. The use of polar (or cylindrical) coordinates provides a new perspective of the system dynamics. The mean trajectory that can be obtained by averaging the usual cartesian coordinates of the samples informs about the trajectory of the center of mass of the replications. In contrast to such a mean cartesian trajectory, the mean polar trajectory can be used to compute the average circular motion of those replications, and therefore, can yield evidence about sustained steady state oscillations. Both, the coordinate transformation and the computation of confidence intervals, can be carried out efficiently. This results in an efficient method to evaluate stochastic oscillations.

  2. Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick

    1998-08-01

    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.

  3. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, Stefania; Masiol, Mauro

    2015-10-01

    The air quality is influenced by the potential effects of meteorology at meso- and synoptic scales. While local weather and mixing layer dynamics mainly drive the dispersion of sources at small scales, long-range transports affect the movements of air masses over regional, transboundary and even continental scales. Long-range transport may advect polluted air masses from hot-spots by increasing the levels of pollution at nearby or remote locations or may further raise air pollution levels where external air masses originate from other hot-spots. Therefore, the knowledge of ground-wind circulation and potential long-range transports is fundamental not only to evaluate how local or external sources may affect the air quality at a receptor site but also to quantify it. This review is focussed on establishing the relationships among PM2.5 sources, meteorological condition and air mass origin in the Po Valley, which is one of the most polluted areas in Europe. We have chosen the results from a recent study carried out in Venice (Eastern Po Valley) and have analysed them using different statistical approaches to understand the influence of external and local contribution of PM2.5 sources. External contributions were evaluated by applying Trajectory Statistical Methods (TSMs) based on back-trajectory analysis including (i) back-trajectories cluster analysis, (ii) potential source contribution function (PSCF) and (iii) concentration weighted trajectory (CWT). Furthermore, the relationships between the source contributions and ground-wind circulation patterns were investigated by using (iv) cluster analysis on wind data and (v) conditional probability function (CPF). Finally, local source contribution have been estimated by applying the Lenschow' approach. In summary, the integrated approach of different techniques has successfully identified both local and external sources of particulate matter pollution in a European hot-spot affected by the worst air quality.

  4. Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2017-11-01

    For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.

  5. Statistical signatures of a targeted search by bacteria

    NASA Astrophysics Data System (ADS)

    Jashnsaz, Hossein; Anderson, Gregory G.; Pressé, Steve

    2017-12-01

    Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium’s natural habitat, striking phenomena—such as the volcano effect or banding—have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium’s diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.

  6. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-01

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for consistent real-time tumour tracking, even with prior knowledge. We found that, among the seven patients studied with peak-to-peak marker motion greater than 1 cm, five cases have mean localization errors greater than 2 mm and two have mean errors greater than 3 mm. Because of this uncertainty associated with a monoscopic system, two source/imager pairs are necessary for robust 3D target localization. Dual orthogonal x-ray source/imager pairs mounted on the linac gantry are chosen for the IRIS. We further studied the placement of the x-ray sources/panel based on the geometric specifications of the Varian 21EX Clinac. The best configuration minimizes the localization error while maintaining a large field of view and avoiding collisions with the floor/ceiling or couch.

  7. Acoustic theory of axisymmetric multisectioned ducts. [reduction of turbofan engine noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1974-01-01

    Equations are developed for the acoustic field in a duct system which is made up of a number of connected circular and annular ducts. These equations are suitable for finding the acoustic field inside of and radiated from an aircraft turbofan engine. Acoustic modes are used as generalized coordinates in order to develop a set of matrix equations for the acoustic field. Equations for these modes are given for circular and annular ducts with uniform flow. Modal source equations are derived for point acoustic sources. General equations for mode transmission and reflection are developed and detailed equations are derived for ducts with multiple sections of acoustic treatment and for ducts with circumferential splitter rings. The general theory is applied to the special case of a uniform area circular duct with multisection liners and it is shown that the mode reflection effects are proportional to differences of the acoustic admittances of adjacent liners. A numerical example is given which shows that multisection liners may provide greater noise suppression than uniform liners.

  8. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra

    2015-04-01

    We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.

  9. Controlling orbital angular momentum of an optical vortex by varying its ellipticity

    NASA Astrophysics Data System (ADS)

    Kotlyar, Victor V.; Kovalev, Alexey A.

    2018-03-01

    An exact analytical expression is obtained for the orbital angular momentum (OAM) of a Gaussian optical vortex with a different degree of ellipticity. The OAM turned out to be proportional to the ratio of two Legendre polynomials of adjoining orders. It is shown that if an elliptical optical vortex is embedded into the center of the waist of a circularly symmetrical Gaussian beam, then the normalized OAM of such laser beam is fractional and it does not exceed the topological charge n. If, on the contrary, a circularly symmetrical optical vortex is embedded into the center of the waist of an elliptical Gaussian beam, then the OAM is equal to n. If the optical vortex and the Gaussian beam have the same (or matched) ellipticity degree, then the OAM of the laser beam is greater than n. Continuous varying of the OAM of a laser beam by varying its ellipticity degree can be used in optical trapping for accelerated motion of microscopic particles along an elliptical trajectory as well as in quantum informatics for detecting OAM-entangled photons.

  10. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  11. Comparison of hybrid receptor models to locate PCB sources in Chicago

    NASA Astrophysics Data System (ADS)

    Hsu, Ying-Kuang; Holsen, Thomas M.; Hopke, Philip K.

    Results of three hybrid receptor models, potential source contribution function (PSCF), concentration weighted trajectory (CWT), and residence time weighted concentration (RTWC), were compared for locating polychlorinated biphenyl (PCB) sources contributing to the atmospheric concentrations in Chicago. Variations of these models, including PSCF using mean and 75% criterion concentrations, joint probability PSCF (JP-PSCF), changes of point filters and grid cell sizes for RTWC, and PSCF using wind trajectories started at different altitudes, are also discussed. Modeling results were relatively consistent between models. However, no single model provided as complete information as was obtained by using all of them. CWT and 75% PSCF appears to be able to distinguish between larger sources and moderate ones. RTWC resolved high potential source areas. RTWC and JP-PSCF pooling data from all sampling sites removed the trailing effect often seen in PSCF modeling. PSCF results using average concentration criteria, appears to identify both moderate and major sources. Each model has advantages and disadvantages. However, used in combination, they provide information that is not available if only one of them is used. For short-range atmospheric transport, PSCF results were consistent when using wind trajectories starting at different heights. Based on the archived PCB data, the modeling results indicate there is a large potential source area between Joliet and Kankakee, IL, and two moderate sources to the northwest and south of Chicago. On the south side of Chicago in the neighborhood of Lake Calumet, several PCB sources were identified. Other unidentified potential source location(s) will require additional upwind/downwind field sampling to verify modeling results.

  12. Magazines in Special Media: Subscription Sources. Reference Circular No. 85-1.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Div. for the Blind and Physically Handicapped.

    The guide provides information about the availability of approximately 275 magazines in media suitable for use by persons unable to read or handle conventional print materials. The alphabetical listing (by title) includes information on magazine title, frequency on issue, special medium or media in which it is available, source or sources from…

  13. Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS).

    PubMed

    Moayyeri, Alireza; Hart, Deborah J; Snieder, Harold; Hammond, Christopher J; Spector, Timothy D; Steves, Claire J

    2016-02-01

    Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal clinical data were collected on 3,508 female twins in the TwinsUK registry (complete pairs:740 monozygotic (MZ), 986 dizygotic (DZ), mean age at entry 48.9 ± 10.4, range 18-75 years; mean follow-up 10.2 ± 2.8 years, range 4-17.8 years). Panel data on multiple age-related variables were used to estimate biological ages for each individual at each time point, in linear mixed effects models. A weighted average approach was used to combine variables within predefined body system groups. Aging trajectories for each system in each individual were then constructed using linear modeling. Multivariate structural equation modeling of these aging trajectories showed low genetic effects (heritability), ranging from 2% in metabolic aging to 22% in cardiovascular aging. However, we found a significant effect of shared environmental factors on the variations in aging trajectories in cardiovascular (54%), skeletal (34%), morphometric (53%), and metabolic systems (53%). The remainder was due to environmental factors unique to each individual plus error. Multivariate Cholesky decomposition showed that among aging trajectories for various body systems there were significant and substantial correlations between the unique environmental latent factors as well as shared environmental factors. However, there was no evidence for a single common factor for aging. This study, the first of its kind in aging, suggests that diverse organ systems share non-genetic sources of variance for aging trajectories. Confirmatory studies are needed using population-based twin cohorts and alternative methods of handling missing data.

  14. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  15. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  16. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    NASA Astrophysics Data System (ADS)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  17. Microwave switching power divider. [antenna feeds

    NASA Technical Reports Server (NTRS)

    Stockton, R. J.; Johnson, R. W. (Inventor)

    1981-01-01

    A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.

  18. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    2011-12-01

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  19. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  20. Estimation of Tree Position and STEM Diameter Using Simultaneous Localization and Mapping with Data from a Backpack-Mounted Laser Scanner

    NASA Astrophysics Data System (ADS)

    Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.

    2017-10-01

    A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.

  1. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  2. Implied dynamics biases the visual perception of velocity.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo

    2014-01-01

    We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform.

  3. Automated generation and optimization of ballistic lunar capture transfer trajectories

    NASA Astrophysics Data System (ADS)

    Griesemer, Paul Ricord

    The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.

  4. Two-Body Approximations in the Design of Low-Energy Transfers Between Galilean Moons

    NASA Astrophysics Data System (ADS)

    Fantino, Elena; Castelli, Roberto

    Over the past two decades, the robotic exploration of the Solar System has reached the moons of the giant planets. In the case of Jupiter, a strong scientific interest towards its icy moons has motivated important space missions (e.g., ESAs' JUICE and NASA's Europa Mission). A major issue in this context is the design of efficient trajectories enabling satellite tours, i.e., visiting the several moons in succession. Concepts like the Petit Grand Tour and the Multi-Moon Orbiter have been developed to this purpose, and the literature on the subject is quite rich. The models adopted are the two-body problem (with the patched conics approximation and gravity assists) and the three-body problem (giving rise to the so-called low-energy transfers, LETs). In this contribution, we deal with the connection between two moons, Europa and Ganymede, and we investigate a two-body approximation of trajectories originating from the stable/unstable invariant manifolds of the two circular restricted three body problems, i.e., Jupiter-Ganymede and Jupiter-Europa. We develop ad-hoc algorithms to determine the intersections of the resulting elliptical arcs, and the magnitude of the maneuver at the intersections. We provide a means to perform very fast and accurate evaluations of the minimum-cost trajectories between the two moons. Eventually, we validate the methodology by comparison with numerical integrations in the three-body problem.

  5. Three-Dimensional Weighting in Cone Beam FBP Reconstruction and Its Transformation Over Geometries.

    PubMed

    Tang, Shaojie; Huang, Kuidong; Cheng, Yunyong; Niu, Tianye; Tang, Xiangyang

    2018-06-01

    With substantially increased number of detector rows in multidetector CT (MDCT), axial scan with projection data acquired along a circular source trajectory has become the method-of-choice in increasing clinical applications. Recognizing the practical relevance of image reconstruction directly from the projection data acquired in the native cone beam (CB) geometry, especially in scenarios wherein the most achievable in-plane resolution is desirable, we present a three-dimensional (3-D) weighted CB-FBP algorithm in such geometry in this paper. We start the algorithm's derivation in the cone-parallel geometry. Via changing of variables, taking the Jacobian into account and making heuristic and empirical assumptions, we arrive at the formulas for 3-D weighted image reconstruction in the native CB geometry. Using the projection data simulated by computer and acquired by an MDCT scanner, we evaluate and verify performance of the proposed algorithm for image reconstruction directly from projection data acquired in the native CB geometry. The preliminary data show that the proposed algorithm performs as well as the 3-D weighted CB-FBP algorithm in the cone-parallel geometry. The proposed algorithm is anticipated to find its utility in extensive clinical and preclinical applications wherein the reconstruction of images in the native CB geometry, i.e., the geometry for data acquisition, is of relevance.

  6. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Beauchamp, P.; Elliott, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its 1.5 year Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit. The next phase would utilize concurrent aerosampling and aerobraking (to a depth of 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit that initiates in the 10 AM orbit plane and would move ~ 40º towards the 8 AM orbit plane. At completion of the mission, a disposal phase would be initiated by simply letting the spacecraft decay under the influence of Saturn perturbations and Titan's atmospheric drag. The Titan Saturn System Mission is enabled by proven flight systems, launch capabilities, and wellunderstood trajectory options. The concept relies on traditional chemical propulsion (similar to Cassini and Galileo), a power source consisting of five Multi- Mission Radioisotope Thermoelectric Generators (MMRTGs) and a robust data downlink. The Titan Saturn System Mission maps well to NASA and ESA scientific objectives. This concept builds on a considerable basis of previous work and indicates that a flagship-class Titan mission is ready to enter Phase A and could be launched in the 2016-18 timeframe, requiring no new technologies. Furthermore, this mission includes accommodations to deliver and support ESA provided in situ elements (e.g., Montgolfiere balloon system and capable lander) should they be available. Alternative concepts (abiet higher cost) have been identified that provide benefits to the mission of reduced trip time to Saturn, higher delivered mass, enhanced resources for in situ accommodation and mission flexibility. These options, taken with the baseline described herein, provide NASA and ESA with a robust trade space for implementing a Titan Saturn System Mission.

  7. An integrated WRF/HYSPLIT modeling approach for the assessment of PM(2.5) source regions over the Mississippi Gulf Coast region.

    PubMed

    Yerramilli, Anjaneyulu; Dodla, Venkata Bhaskar Rao; Challa, Venkata Srinivas; Myles, Latoya; Pendergrass, William R; Vogel, Christoph A; Dasari, Hari Prasad; Tuluri, Francis; Baham, Julius M; Hughes, Robert L; Patrick, Chuck; Young, John H; Swanier, Shelton J; Hardy, Mark G

    2012-12-01

    Fine particulate matter (PM(2.5)) is majorly formed by precursor gases, such as sulfur dioxide (SO(2)) and nitrogen oxides (NO(x)), which are emitted largely from intense industrial operations and transportation activities. PM(2.5) has been shown to affect respiratory health in humans. Evaluation of source regions and assessment of emission source contributions in the Gulf Coast region of the USA will be useful for the development of PM(2.5) regulatory and mitigation strategies. In the present study, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the Weather Research & Forecasting (WRF) model is used to identify the emission source locations and transportation trends. Meteorological observations as well as PM(2.5) sulfate and nitric acid concentrations were collected at two sites during the Mississippi Coastal Atmospheric Dispersion Study, a summer 2009 field experiment along the Mississippi Gulf Coast. Meteorological fields during the campaign were simulated using WRF with three nested domains of 36, 12, and 4 km horizontal resolutions and 43 vertical levels and validated with North American Mesoscale Analysis. The HYSPLIT model was integrated with meteorological fields derived from the WRF model to identify the source locations using backward trajectory analysis. The backward trajectories for a 24-h period were plotted at 1-h intervals starting from two observation locations to identify probable sources. The back trajectories distinctly indicated the sources to be in the direction between south and west, thus to have origin from local Mississippi, neighboring Louisiana state, and Gulf of Mexico. Out of the eight power plants located within the radius of 300 km of the two monitoring sites examined as sources, only Watson, Cajun, and Morrow power plants fall in the path of the derived back trajectories. Forward dispersions patterns computed using HYSPLIT were plotted from each of these source locations using the hourly mean emission concentrations as computed from past annual emission strength data to assess extent of their contribution. An assessment of the relative contributions from the eight sources reveal that only Cajun and Morrow power plants contribute to the observations at the Wiggins Airport to a certain extent while none of the eight power plants contribute to the observations at Harrison Central High School. As these observations represent a moderate event with daily average values of 5-8 μg m(-3) for sulfate and 1-3 μg m(-3) for HNO(3) with differences between the two spatially varied sites, the local sources may also be significant contributors for the observed values of PM(2.5).

  8. Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources.

    PubMed

    Sandford, S A; Bradley, J P

    1989-01-01

    The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a nongravitational force important in the orbital evolution of dust in the Solar System.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslar, John; Chu, Shih-I.

    Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less

  10. Simulation and analysis of a geopotential research mission

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.

    1987-01-01

    Computer simulations were performed for a Geopotential Research Mission (GRM) to enable the study of the gravitational sensitivity of the range rate measurements between the two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulations were conducted with two satellites in near circular, frozen orbits at 160 km altitudes separated by 300 km. High precision numerical integration of the polar orbits were used with a gravitational field complete to degree and order 360. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The results presented cover the most recent simulation, S8703, and includes a summary of the numerical integration of the simulated trajectories, a summary of the requirements to compute nominal reference trajectories to meet the initial orbit determination requirements for the recovery of the geopotential, an analysis of the nature of the one way integrated Doppler measurements associated with the simulation, and a discussion of the data set to be made available.

  11. Hydrodynamic synchronization of flagella on the surface of the colonial alga Volvox carteri

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Goldstein, Raymond; Pedley, Timothy

    2012-11-01

    Whether on the surface of unicellular ciliates or in the respiratory epithelium, groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales. The mechanism responsible for the emergence of these metachronal waves is still unclear, mostly because finding an experimental system in which the beating filaments can be followed individually is challenging. We propose the multicellular green alga Volvox carteri as an ideal model system to study metachronal coordination, and report the existence of robust metachronal waves on its surface. Inspired by flagellar tip trajectories of Volvox somatic cells, we model a flagellum using a sphere of radius a elastically bound to a circular orbit of radius r0, perpendicular to a no-slip plane. This elastohydrodynamic model of weakly-coupled self-sustained oscillators can be recast in terms of interacting phase oscillators, offering an intuitive understanding of the mechanism driving the emergence of coordination. Our results confirm that elasticity is fundamental to guarantee fast and robust synchronization, and that sufficiently compliant trajectories lead to the emergence of metachronal waves in a manner essentially independent of boundary conditions.

  12. Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.

    PubMed

    Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M

    2015-01-01

    The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  14. Revisiting LS I +61°303 with VLBI astrometry

    NASA Astrophysics Data System (ADS)

    Wu, Y. W.; Torricelli-Ciamponi, G.; Massi, M.; Reid, M. J.; Zhang, B.; Shao, L.; Zheng, X. W.

    2018-03-01

    We conducted multi-epoch Very Long Baseline Array (VLBA) phase-referenced observations of LS I +61°303 in order to study its precessing radio jet. Compared to similar observations in 2006, we find that the observed elliptical trajectory of emission at 8.4 GHz repeats after the 9 yr gap. The accurate alignment of the emission patterns yields a precession period of 26.926 ± 0.005 d, which is consistent with that determined by Lomb-Scargle analysis of the radio light curve. We analytically model the projection on the sky plane of the peak position of a precessing, synchrotron-emitting jet, which traces an elliptical trajectory on the sky. Comparing the simulation with the VLBA astrometry we improve our knowledge of the geometry of the system. We measure the LS I +61°303 absolute proper motion to be -0.150 ± 0.006 mas yr-1 eastward and -0.264 ± 0.006 mas yr-1 northward. Removing Galactic rotation, this reveals a small, <20 km s-1, non-circular motion, which indicates a very low kick velocity when the black hole was formed.

  15. Investigating bacteria-surface interactions with microfluidics and Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, Harsh; Barry, Michael; Stocker, Roman; Sheng, Jian

    2009-11-01

    Quantitative data of swimming characteristics of bacteria in the shear flow adjacent to a surface are crucial for understanding cell attachment and detachment, and thus biofilm formation. We combined microfluidics and holography to expose Escherichia coli AW405 to a carefully controlled flow environment and visualize their movement in three dimensions. We investigated wall shear rates up to 200 (1/s) and recorded holograms at 40X magnification and 15fps for several minutes. Three-dimensional locations and orientations of bacteria were extracted from numerically reconstructed images. We obtained thousands of 3D trajectories over a sample volume of 380x380x200 μm, with a resolution of 0.2 μm in the two in-plane directions and 1 μm in the out-of-plane direction. Preliminary results revealed a range of behaviors, including circular trajectories near surfaces and migration normal to the wall. We expect that ongoing analysis will provide robust statistics of wall effects on bacterial motility. Sponsored by NIH (1-R21-EB008844-01) and NSF (CBET-0844647, DBI-0852875)

  16. Near-infrared Polarimetry of the Outflow Source AFGL 6366S: Detection of Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Kandori, Ryo; Choi, Minho; Kang, Miju; Cho, Jungyeon; Nakajima, Yasushi; Nagata, Tetsuya

    2018-07-01

    We have carried out near-infrared circular and linear imaging polarimetry of the AFGL 6366S region. There is one large infrared reflection nebula associated with the AFGL 6366S cluster and one small infrared reflection nebula associated with AFGL 6366S NE. Prominent and extended polarized nebulosities over the AFGL 6366S cluster field are found to be composed of several components and local nebula peaks, and those nebulosities are illuminated by at least three sources, which is roughly consistent with a previous study. However, the detailed linear polarization patterns and their degrees differ from the earlier study. The brightest regions of the nebulae are illuminated by the IRAS/WISE source. In addition, we report the first detection of circular polarization (CP) in the reflection nebula associated with AFGL 6366S. The CP is as large as approximately 4% in the K s band, and the maximum CP extent is approximately 0.45 pc, which is comparable to that for the largest CP regions known to date, such as Orion and Mon R2, although the CP degrees are much smaller. The CP pattern is mostly quadrupolar, and its morphology resembles the shape of the C18O dense core. Therefore, the CP region is probably illuminated by the IRAS/WISE source and its polarization is amplified by the dichroic absorption of the dense core associated with the cluster. This is the ninth source whose degrees of CPs are measured to be greater than 3%, suggesting that large and extended infrared CP regions are common among mid- to high-mass young stellar objects.

  17. Polarization control of high order harmonics in the EUV photon energy range.

    PubMed

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  18. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  19. Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w1118 line.

    PubMed

    Qiu, Shuang; Xiao, Chengfeng

    2018-05-01

    The Drosophila melanogaster white-eyed w 1118 line serves as a parental stock, allowing genetic recombination of any gene of interest along with a readily recognizable marker. w 1118 flies display behavioral susceptibility to environmental stimulation such as light. It is of great importance to characterize the behavioral performance of w 1118 flies because this would provide a baseline from which the effect of the gene of interest could be differentiated. Little work has been performed to characterize the walking behavior in adult w 1118 flies. Here we show that pulsed light stimulation increased the regularity of walking trajectories of w 1118 flies in circular arenas. We statistically modeled the distribution of distances to center and extracted the walking structures of w 1118 flies. Pulsed light stimulation redistributed the time proportions for individual walking structures. Specifically, pulsed light stimulation reduced the episodes of crossing over the central region of the arena. An addition of four genomic copies of mini-white, a common marker gene for eye color, mimicked the effect of pulsed light stimulation in reducing crossing in a circular arena. The reducing effect of mini-white was copy-number-dependent. These findings highlight the rhythmic light stimulation-evoked modifications of walking behavior in w 1118 flies and an unexpected behavioral consequence of mini-white in transgenic flies carrying w 1118 isogenic background. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    NASA Astrophysics Data System (ADS)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  1. Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1987-01-01

    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.

  2. Approximation for the Rayleigh Resolution of a Circular Aperture

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2009-01-01

    Rayleigh's criterion states that a pair of point sources are barely resolved by an optical instrument when the central maximum of the diffraction pattern due to one source coincides with the first minimum of the pattern of the other source. As derived in standard introductory physics textbooks, the first minimum for a rectangular slit of width "a"…

  3. Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn

    2005-01-01

    The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....

  4. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    EPA Science Inventory

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  5. A source array for generating higher order acoustic modes in circular ducts

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.; Reethof, G.

    1976-01-01

    A unique source array has been developed for the generation of both spinning and non-spinning higher order modes in a circular duct. The array consists of two concentric rings of sources. Through individual control of the response of each element, the array provided phase and amplitude control in the radial as well as circumferential directions. Radial modes shapes were measured in a 12-inch diameter anechoically-terminated hollow duct. These modes could be generated at their cut-off frequency and throughout a frequency range extending to the cut-off frequency for the next higher order radial mode. Comparisons are given between theory and experiment for the generation of specific modes. The radial dependence of the measured mode shapes was enhanced considerably by the design of this array. The results indicate a significant improvement over previous mode generation mechanisms. The contamination of the generated mode by additional spurious modes is also considered for variations between individual elements within the source array.

  6. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models

    NASA Astrophysics Data System (ADS)

    Han, Young-Ji; Holsen, Thomas M.; Hopke, Philip K.

    Ambient gaseous phase mercury concentrations (TGM) were measured at three locations in NY State including Potsdam, Stockton, and Sterling from May 2000 to March 2005. Using these data, three hybrid receptor models incorporating backward trajectories were used to identify source areas for TGM. The models used were potential source contribution function (PSCF), residence time weighted concentration (RTWC), and simplified quantitative transport bias analysis (SQTBA). Each model was applied using multi-site measurements to resolve the locations of important mercury sources for New York State. PSCF results showed that southeastern New York, Ohio, Indiana, Tennessee, Louisiana, and Virginia were important TGM source areas for these sites. RTWC identified Canadian sources including the metal production facilities in Ontario and Quebec, but US regional sources including the Ohio River Valley were also resolved. Sources in southeastern NY, Massachusetts, western Pennsylvania, Indiana, and northern Illinois were identified to be significant by SQTBA. The three modeling results were combined to locate the most important probable source locations, and those are Ohio, Indiana, Illinois, and Wisconsin. The Atlantic Ocean was suggested to be a possible source as well.

  7. Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay

    PubMed Central

    Leung, Jacqueline M.; Rould, Mark A.; Konradt, Christoph; Hunter, Christopher A.; Ward, Gary E.

    2014-01-01

    T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility. PMID:24489670

  8. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation.

    PubMed

    Ritschl, Ludwig; Kuntz, Jan; Fleischmann, Christof; Kachelrieß, Marc

    2016-05-01

    In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.

  9. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan, E-mail: j.kuntz@dkfz.de

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled datamore » set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.« less

  10. Nonparametric Trajectory Analysis of R2PIER Data

    EPA Science Inventory

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  11. Assessing intra- and inter-regional climate effects on Douglas-fir biomass dynamics in Oregon and Washington, USA

    Treesearch

    David M. Bell; Andrew N. Gray

    2016-01-01

    While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (...

  12. ADAPTATION OF THE ADVANCED STATISTICAL TRAJECTORY REGIONAL AIR POLLUTION (ASTRAP) MODEL TO THE EPA VAX COMPUTER - MODIFICATIONS AND TESTING

    EPA Science Inventory

    The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model simulates long-term transport and deposition of oxides of and nitrogen. t is a potential screening tool for assessing long-term effects on regional visibility from sulfur emission sources. owever, a rigorou...

  13. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  14. Estimated Accuracy of Three Common Trajectory Statistical Methods

    NASA Technical Reports Server (NTRS)

    Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.

    2011-01-01

    Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h and 0.5 0.95 for the decay time of 12 h. The best results of source reconstruction can be expected for the trace substances with a decay time on the order of several days. Although the methods considered in this paper do not guarantee high accuracy they are computationally simple and fast. Using the TSMs in optimum conditions and taking into account the range of uncertainties, one can obtain a first hint on potential source areas.

  15. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    PubMed

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object.

  16. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self- limitations as grain-population density constrains the free-path motion of individual grains.

  17. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 um-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self-limitations as grain-population density constrains the free-path motion of individial grains.

  18. Progress in the development of an H{sup −} ion source for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.

    2015-04-08

    A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrodemore » design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.« less

  19. Comparison of transport pathways and potential sources of PM10 in two cities around a large Chinese lake using the modified trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kong, Xiangzhen; He, Wei; Qin, Ning; He, Qishuang; Yang, Bin; Ouyang, Huiling; Wang, Qingmei; Xu, Fuliu

    2013-03-01

    Trajectory cluster analysis, including the two-stage cluster method based on Euclidean metrics and the one-stage clustering method based on Mahalanobis metrics and self-organizing maps (SOM), was applied and compared to identify the transport pathways of PM10 for the cities of Chaohu and Hefei, both located near Lake Chaohu in China. The two-stage cluster method was modified to further investigate the long trajectories in the second stage in order to eliminate the observed disaggregation among them. Twelve trajectory clusters were identified for both cities. The one-stage clustering method based on Mahalanobis metrics gives the best performance regarding the variances within clusters. The results showed that local PM10 emission was one of the most important sources in both cities and that the local emission in Hefei was higher than in Chaohu. In addition, Chaohu suffered greater effects from the eastern region (Yangtze River Delta, YRD) than Hefei. On the other hand, the long-range transportation from the northwestern pathway had a higher influence on the PM10 level in Hefei. Receptor models, including potential source contribution function (PSCF) and residence time weighted concentrations (RTWC), were utilized to identify the potential source locations of PM10 for both cities. However, the combined PSCF and RTWC results for the two cities provided PM10 source locations that were more consistent with the results of transport pathways and the total anthropogenic PM10 emission inventory. This indicates that the combined method's ability to identify the source regions is superior to that of the individual PSCF or RTWC methods. Henan and Shanxi Provinces and the YRD were important PM10 source regions for the two cities, but the Henan and Shanxi area was more important for Hefei than for Chaohu, while the YRD region was less important. In addition, the PSCF, RTWC and the combined results all had higher correlation coefficients with PM10 emission from traffic than from industry, electricity generation or residential sources, suggesting the relatively higher contribution of traffic emissions to the PM10 pollution in Lake Chaohu.

  20. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    NASA Astrophysics Data System (ADS)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver, and for funding provided by the Mt. Cuba Astronomical Foundation.

  1. Space charge tune shift, fast resonance traversal, and current limits in circular accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, G.H.

    1996-06-01

    Space charge tune shifts, fast resonance traversals, and current limits are important design issues for low energy, high power circular accelerators. Areas of interest are accumulator rings and fast cycling synchrotrons, and typical applications are for pulsed spallation neutron sources, heavy ion fusion storage ring drivers, and booster injectors for high energy proton and ion facilities. Aspects of the three topics are discussed in the paper. {copyright} {ital 1996 American Institute of Physics.}

  2. Iridium(iii) phosphorescent complexes with dual stereogenic centers: single crystal, electronic circular dichroism evidence and circularly polarized luminescence properties.

    PubMed

    Li, Tian-Yi; Zheng, You-Xuan; Zhou, Yong-Hui

    2016-12-06

    Iridium complexes with a chiral metal center and chiral carbons, Λ/Δ-(dfppy) 2 Ir(chty-R) and Λ/Δ-(dfppy) 2 Ir(chty-S), were synthesized and characterized. These isomers have the same steady-state photophysical properties, and obvious offsets in ECD spectra highlight both the chiral sources. Each enantiomeric couple shows mirror-image CPL bands with a dissymmetry factor in the order of 10 -3 .

  3. Repeat immigration: A previously unobserved source of heterogeneity?

    PubMed

    Aradhya, Siddartha; Scott, Kirk; Smith, Christopher D

    2017-07-01

    Register data allow for nuanced analyses of heterogeneities between sub-groups which are not observable in other data sources. One heterogeneity for which register data is particularly useful is in identifying unique migration histories of immigrant populations, a group of interest across disciplines. Years since migration is a commonly used measure of integration in studies seeking to understand the outcomes of immigrants. This study constructs detailed migration histories to test whether misclassified migrations may mask important heterogeneities. In doing so, we identify a previously understudied group of migrants called repeat immigrants, and show that they differ systematically from permanent immigrants. In addition, we quantify the degree to which migration information is misreported in the registers. The analysis is carried out in two steps. First, we estimate income trajectories for repeat immigrants and permanent immigrants to understand the degree to which they differ. Second, we test data validity by cross-referencing migration information with changes in income to determine whether there are inconsistencies indicating misreporting. From the first part of the analysis, the results indicate that repeat immigrants systematically differ from permanent immigrants in terms of income trajectories. Furthermore, income trajectories differ based on the way in which years since migration is calculated. The second part of the analysis suggests that misreported migration events, while present, are negligible. Repeat immigrants differ in terms of income trajectories, and may differ in terms of other outcomes as well. Furthermore, this study underlines that Swedish registers provide a reliable data source to analyze groups which are unidentifiable in other data sources.

  4. ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Kai; Guo, Yang; Ding, M. D., E-mail: guoyang@nju.edu.cn, E-mail: dmd@nju.edu.cn

    2015-06-20

    Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12–25 keV energy band were located at the footpoints of this hot channel. Using amore » nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.« less

  5. Application of Modern Fortran to Spacecraft Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Falck, Robert D.; Beekman, Izaak B.

    2018-01-01

    In this paper, applications of the modern Fortran programming language to the field of spacecraft trajectory optimization and design are examined. Modern object-oriented Fortran has many advantages for scientific programming, although many legacy Fortran aerospace codes have not been upgraded to use the newer standards (or have been rewritten in other languages perceived to be more modern). NASA's Copernicus spacecraft trajectory optimization program, originally a combination of Fortran 77 and Fortran 95, has attempted to keep up with modern standards and makes significant use of the new language features. Various algorithms and methods are presented from trajectory tools such as Copernicus, as well as modern Fortran open source libraries and other projects.

  6. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.

    PubMed

    Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J

    2018-03-16

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  7. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    NASA Astrophysics Data System (ADS)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  8. Correction of Depolarizing Resonances in ELSA

    NASA Astrophysics Data System (ADS)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  9. Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources

    NASA Technical Reports Server (NTRS)

    Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.

    1987-01-01

    High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.

  10. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Thaw, Melissa; Esser, Brad

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  11. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE PAGES

    Visser, Ate; Thaw, Melissa; Esser, Brad

    2017-11-20

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  12. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  13. Bright Linearly and Circularly Polarized Extreme Ultraviolet and Soft X-ray High Harmonics for Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Tingting

    High harmonic generation (HHG) is an extreme nonlinear optical process. When implemented in a phase-matched geometry, HHG coherent upconverts femtosecond laser light into coherent "X-ray laser" beams, while retaining excellent spatial and temporal coherence, as well as the polarization state of the driving laser. HHG has a tabletop footprint, with femtosecond to attosecond time resolution, combined with nanometer spatial resolution. As a consequence of these unique capabilities, HHG is now being widely adopted for use in molecular spectroscopy and imaging, materials science, as well as nanoimaging in general. In the first half of this thesis, I demonstrate high flux linearly polarized soft X-ray HHG, driven by a single-stage 10-mJ Ti:sapphire regenerative amplifier at a repetition rate of 1 kHz. I first down-converted the laser to 1.3 mum using an optical parametric amplifier, before up-converting it into the soft X-ray region using HHG in a high-pressure, phase-matched, hollow waveguide geometry. The resulting optimally phase-matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 106 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 109 photons/s/1% bandwidth, or approximately a three orders-of-magnitude increase compared with past work. Using this broad bandwidth X-ray source, I demonstrated X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure. In the second half of this thesis, I discuss how to generate the first bright circularly polarized (CP) soft X-ray HHG and also use them to implement the first tabletop X-ray magnetic circular dichroism (XMCD) measurements. Using counter-rotating CP lasers at 1.3 mum and 0.79 mum, I generated CPHHG with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right CP peaks, with energies determined by conservation of energy and spin angular momentum. I explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase matching conditions. The first advanced propagation simulations for CPHHG reveal the influence of the finite phase matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. The first tabletop XMCD measurements at the N4,5 absorption edges of Gd using this light source validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum and temporal shape of soft X-ray HHG by manipulating the driving laser waveform. Finally, I present the first bright phase-matched CPHHG driven by lasers at wavelengths of 2 mum and 0.79 mum, which extends CPHHG to a broader wavelength combination and confirms the universal nature of this generation scheme. By analyzing the helicity dependent intensity asymmetry of CPHHG generated using different wavelengths and different gas targets, I show that the helicity dependent intensity asymmetry was mostly caused by the helicity dependent single-atom physics, which exhibits different behaviors for different gas targets. Moreover, the asymmetry can reverse and very interestingly, CPHHG from Ar exhibits a single helicity in the high-photon-energy region of the spectrum, which provide a convenient way to generate CPHHG with a single helicity and CP attosecond pulse trains. Finally, simple simulations and cutoff analysis of CPHHG provide guidance for generating CPHHG at higher photon energies.

  14. Comparison of actual and seismologically inferred stress drops in dynamic models of microseismicity

    NASA Astrophysics Data System (ADS)

    Lin, Y. Y.; Lapusta, N.

    2017-12-01

    Estimating source parameters for small earthquakes is commonly based on either Brune or Madariaga source models. These models assume circular rupture that starts from the center of a fault and spreads axisymmetrically with a constant rupture speed. The resulting stress drops are moment-independent, with large scatter. However, more complex source behaviors are commonly discovered by finite-fault inversions for both large and small earthquakes, including directivity, heterogeneous slip, and non-circular shapes. Recent studies (Noda, Lapusta, and Kanamori, GJI, 2013; Kaneko and Shearer, GJI, 2014; JGR, 2015) have shown that slip heterogeneity and directivity can result in large discrepancies between the actual and estimated stress drops. We explore the relation between the actual and seismologically estimated stress drops for several types of numerically produced microearthquakes. For example, an asperity-type circular fault patch with increasing normal stress towards the middle of the patch, surrounded by a creeping region, is a potentially common microseismicity source. In such models, a number of events rupture the portion of the patch near its circumference, producing ring-like ruptures, before a patch-spanning event occurs. We calculate the far-field synthetic waveforms for our simulated sources and estimate their spectral properties. The distribution of corner frequencies over the focal sphere is markedly different for the ring-like sources compared to the Madariaga model. Furthermore, most waveforms for the ring-like sources are better fitted by a high-frequency fall-off rate different from the commonly assumed value of 2 (from the so-called omega-squared model), with the average value over the focal sphere being 1.5. The application of Brune- or Madariaga-type analysis to these sources results in the stress drops estimates different from the actual stress drops by a factor of up to 125 in the models we considered. We will report on our current studies of other types of seismic sources, such as repeating earthquakes and foreshock-like events, and whether the potentially realistic and common sources different from the standard Brune and Madariaga models can be identified from their focal spectral signatures and studied using a more tailored seismological analysis.

  15. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    NASA Astrophysics Data System (ADS)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust particles (characterized by typical elements like Al, Si, Ca, Fe). To estimate the influence of the selected regions, we compare the time series of the dominating elements or molecular fragments to the times with trajectories from specific source regions. For differentiation between short and long-range transported particles, molecules that are typical for aging processes in the atmosphere, e.g., products from reaction with ozone, nitric and sulfuric acid will be considered. Additionally, modifications of the internal mixing state of the particles during the measurement period will be studied. This project was supported by DFG (FOR 1525 "INUIT) and has received funding from the European Union's Seventh Framework Programme (FP7) project BACCHUS under grant agreement no. 603445 and from the European Union's Horizon 2020 research and innovation programme ACTRIS-2 under grant agreement No 654109.

  16. Orbital and Landing Operations at Near-Earth

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  17. Radar for tracer particles

    NASA Astrophysics Data System (ADS)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  18. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  19. The attainment of large accelerating gradients using near field synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G.

    1989-01-01

    Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in free space resulting from a point charge moving on a helical trajectory. The total power emitted as synchrotron radiation from a particle on a circular path is calculated. The point charge results are generalized to the case of a line charge, and formulae are presented which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving beams moving on 1 cm radius helical orbits with bunch length 1more » mm. 11 refs., 5 figs.« less

  20. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    PubMed

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  1. Computational methods for analyzing the transmission characteristics of a beta particle magnetic analysis system

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    Computational methods were developed to study the trajectories of beta particles (positrons) through a magnetic analysis system as a function of the spatial distribution of the radionuclides in the beta source, size and shape of the source collimator, and the strength of the analyzer magnetic field. On the basis of these methods, the particle flux, their energy spectrum, and source-to-target transit times have been calculated for Na-22 positrons as a function of the analyzer magnetic field and the size and location of the target. These data are in studies requiring parallel beams of positrons of uniform energy such as measurement of the moisture distribution in composite materials. Computer programs for obtaining various trajectories are included.

  2. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development. The goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities, businesses, and other government organizations, and to share that technology in an open and unhindered way. GMAT is a free and open source software system licensed under the NASA Open Source Agreement: free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or further technology development.

  3. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also an indicator of high BC content. Extinction Angstrom exponent, is an indicator of the particle size. EAE values of 0.95-1.32 for aerosol in the GF cluster shows that the aerosols are mainly fine or accumulation mode while values of EAE (0.36-0.6) for the other cluster indicate coarse mode domination of the aerosol. See table 1 for a summary of result.

  4. Unravelling the dynamical origin of below- and near-threshold harmonic generation of H 2 + in an intense NIR laser field

    DOE PAGES

    Heslar, John; Chu, Shih-I.

    2016-11-24

    Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less

  5. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1975-01-01

    The minimum velocity change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples presented.

  6. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    PubMed

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  8. User and technical documentation

    NASA Astrophysics Data System (ADS)

    1988-09-01

    The program LIBRATE calculates velocities for trajectories from low earth orbit (LEO) to four of the five libration points (L2, L3, L4, and L5), and from low lunar orbit (LLO) to libration points L1 and L2. The flight to be analyzed departs from a circular orbit of any altitude and inclination about the Earth or Moon and finishes in a circular orbit about the Earth at the desired libration point within a specified flight time. This program produces a matrix of the delta V's needed to complete the desired flight. The user specifies the departure orbit, and the maximum flight time. A matrix is then developed with 10 inclinations, ranging from 0 to 90 degrees, forming the columns, and 19 possible flight times, ranging from the flight time (input) to 36 hours less than the input value, in decrements of 2 hours, forming the rows. This matrix is presented in three different reports including the total delta V's, and both of the delta V components discussed. The input required from the user to define the flight is discussed. The contents of the three reports that are produced as outputs are also described. The instructions are also included which are needed to execute the program.

  9. Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection

    NASA Astrophysics Data System (ADS)

    Brokish, Jeffrey; Sack, Paul; Bresler, Yoram

    2010-04-01

    In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.

  10. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  11. Leveraging natural dynamical structures to explore multi-body systems

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha

    Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.

  12. Animal escapology II: escape trajectory case studies

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape trajectories (ETs; measured as the angle relative to the direction of the threat) have been studied in many taxa using a variety of methodologies and definitions. Here, we provide a review of methodological issues followed by a survey of ET studies across animal taxa, including insects, crustaceans, molluscs, lizards, fish, amphibians, birds and mammals. Variability in ETs is examined in terms of ecological significance and morpho-physiological constraints. The survey shows that certain escape strategies (single ETs and highly variable ETs within a limited angular sector) are found in most taxa reviewed here, suggesting that at least some of these ET distributions are the result of convergent evolution. High variability in ETs is found to be associated with multiple preferred trajectories in species from all taxa, and is suggested to provide unpredictability in the escape response. Random ETs are relatively rare and may be related to constraints in the manoeuvrability of the prey. Similarly, reports of the effect of refuges in the immediate environment are relatively uncommon, and mainly confined to lizards and mammals. This may be related to the fact that work on ETs carried out in laboratory settings has rarely provided shelters. Although there are a relatively large number of examples in the literature that suggest trends in the distribution of ETs, our understanding of animal escape strategies would benefit from a standardization of the analytical approach in the study of ETs, using circular statistics and related tests, in addition to the generation of large data sets. PMID:21753040

  13. Implied Dynamics Biases the Visual Perception of Velocity

    PubMed Central

    La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo

    2014-01-01

    We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform. PMID:24667578

  14. Chaotic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth-Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth-Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth-Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.

  15. A novel vibration assisted polishing device based on the flexural mechanism driven by the piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Guilian; Zhou, Xiaoqin; Ma, Peiqun; Wang, Rongqi; Meng, Guangwei; Yang, Xu

    2018-01-01

    The vibration assisted polishing has widely application fields because of higher machining frequency and better polishing quality, especially the polishing with the non-resonant mode that is regarded as a kind of promising polishing method. This paper reports a novel vibration assisted polishing device, consisting of the flexible hinge mechanism driven by the piezoelectric actuators, which is suitable for polishing planes or curve surfaces with slow curvature. Firstly, the generation methods of vibration trajectory are investigated for the same frequency and different frequency signals' inputs, respectively, and then the types of elliptic and Lissajous's vibration trajectories are generated respectively. Secondly, a flexural mechanism consisting of the right circular flexible hinges and the leaf springs is developed to produce two-dimensional vibration trajectory. Statics and dynamics investigating of this flexible mechanism are finished in detail. The analytical models about input and output compliances of the flexural mechanism are established according to the matrix-based compliance modeling, and the dynamic model of the flexural mechanism based on the Euler-Lagrange equation is also presented. The finite element model of the flexural mechanism was established to carry out the numerical simulation in order to testify the rationality of device design. Finally, the polishing experiment is carried out to prove the effectiveness of the vibration device. The experimental results show that this novel vibration assisted polishing device developed in this study can remove more effectively the cutting marks left by last process and obviously reduce the workpiece surface roughness.

  16. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  17. 13 CFR 130.100 - Introduction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... references. All references in these regulations to OMB Circulars, other SBA regulations, Standard Operating Procedures, and other sources of SBA policy guidance incorporate all ensuing changes or amendments to such...

  18. 13 CFR 130.100 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... references. All references in these regulations to OMB Circulars, other SBA regulations, Standard Operating Procedures, and other sources of SBA policy guidance incorporate all ensuing changes or amendments to such...

  19. 13 CFR 130.100 - Introduction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... references. All references in these regulations to OMB Circulars, other SBA regulations, Standard Operating Procedures, and other sources of SBA policy guidance incorporate all ensuing changes or amendments to such...

  20. 13 CFR 130.100 - Introduction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... references. All references in these regulations to OMB Circulars, other SBA regulations, Standard Operating Procedures, and other sources of SBA policy guidance incorporate all ensuing changes or amendments to such...

  1. 13 CFR 130.100 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... references. All references in these regulations to OMB Circulars, other SBA regulations, Standard Operating Procedures, and other sources of SBA policy guidance incorporate all ensuing changes or amendments to such...

  2. Bifurcation and stability analysis of rotating chemical spirals in circular domains: Boundary-induced meandering and stabilization

    NASA Astrophysics Data System (ADS)

    Bär, Markus; Bangia, Anil K.; Kevrekidis, Ioannis G.

    2003-05-01

    Recent experimental and model studies have revealed that the domain size may strongly influence the dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmann et al. [Phys. Rev. Lett. 76, 1384 (1996)], report a frequency increase of spirals in circular domains with diameters substantially smaller than the spiral wavelength in a large domain for the catalytic NO+CO reaction on a microstructured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigenvectors very close to those corresponding to infinite medium translational invariance are observed. Upon decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these eigenvalues from being neutrally stable (zero real part). The latter phenomenon indicates that the translation symmetry of the spiral solution is appreciably broken due to the interaction with the (now nearby) wall. Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves towards the center of the circular domain corresponding to a negative real part of the “translational” eigenvalues. This effect is noticeable at a domain radius of R

  3. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  4. Extending Bell's beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories

    NASA Astrophysics Data System (ADS)

    Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.

    2009-09-01

    In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.

  5. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  6. A study of birefringence in the interstellar medium in the direction of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Angel, J. R. P.

    1974-01-01

    The interstellar medium may be regarded as a weak wave plate, the linear birefringence arising from the aligned grains which produce interstellar linear polarization. Using the Crab Nebula as a background source of linearly polarized light we have investigated this birefringence by measurements of circular polarization. The circular component is found to vary with the intrinsic linear polarization in a sinusoidal fashion characteristic of a wave plate with the orientation expected from independent measurements of the interstellar linear polarization in the same direction. Measurements of the wavelength dependence, together with the sense and magnitude of the circular polarization are interpreted as evidence for the dielectric nature of the interstellar grain materials. These observations provide a firm basis for a similar interpretation of the circular polarization of reddened stars. The observations of the stars can then be used to study the grain composition and the structure of the magnetic field in many directions in the Galaxy.

  7. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  8. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  9. Numerical Predictions of Mode Reflections in an Open Circular Duct: Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray

    2015-01-01

    The NASA Broadband Aeroacoustic Stator Simulation code was used to compute the acoustic field for higher-order modes in a circular duct geometry. To test the accuracy of the results computed by the code, the duct was terminated by an open end with an infinite flange or no flange. Both open end conditions have a theoretical solution that was used to compare with the computed results. Excellent comparison for reflection matrix values was achieved after suitable refinement of the grid at the open end. The study also revealed issues with the level of the mode amplitude introduced into the acoustic held from the source boundary and the amount of reflection that occurred at the source boundary when a general nonreflecting boundary condition was applied.

  10. 4 years of PM10 pollution in Poland - observations and modelling

    NASA Astrophysics Data System (ADS)

    Durka, Pawel; Struzewska, Joanna; Kaminski, Jacek W.

    2017-04-01

    Poor air quality is a health issue in Poland, especially during winter. In central and northern part of the country, the primary source is low-level domestic emissions. In larger cities and agglomerations traffic emissions are also an issue. Quantification of the contribution of transboundary pollution sources is still an open issue. Analyses of 60 episodes for the period 2013-2016 with high PM10 concentrations were carried out under a contract from the Chief Inspectorate of Environmental Protection in Poland. Analyses of synoptic conditions and calculation of back trajectories were undertaken. A tropospheric chemistry model GEM-AQ was run at 10km resolution to calculate contributions from surface, line and point sources. We will present trajectories for different types of episodes, maps with contributions for specific emission sources and transboundary pollution. Also, mean distribution of PM10 concentrations during episodes will be shown.

  11. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  12. NEAR-INFRARED CIRCULAR AND LINEAR POLARIMETRY OF MONOCEROS R2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.

    We have conducted simultaneous JHK{sub s}-band imaging circular and linear polarimetry of the Monoceros R2 (Mon R2) cluster. We present results from deep and wide near-infrared linear polarimetry of the Mon R2 region. Prominent and extended polarized nebulosities over the Mon R2 field are revisited, and an infrared reflection nebula associated with the Mon R2 cluster and two local reflection nebulae, vdB 67 and vdB 69, is detected. We also present results from deep imaging circular polarimetry in the same region. For the first time, the observations show relatively high degrees of circular polarization (CP) in Mon R2, with asmore » much as approximately 10% in the K{sub s} band. The maximum CP extent of a ring-like nebula around the Mon R2 cluster is approximately 0.60 pc, while that of a western nebula, around vdB 67, is approximately 0.24 pc. The extended size of the CP is larger than those seen in the Orion region around IRc2, while the maximum degree of CP of ∼10% is smaller than those of ∼17% seen in the Orion region. Nonetheless, both the CP size and degree of this region are among the largest in our infrared CP survey of star-forming regions. We have also investigated the time variability of the degree of the polarization of several infrared sources and found possible variations in three sources.« less

  13. Application of ensemble back trajectory and factor analysis methods to aerosol data from Fort Meade, MD: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.

    2001-12-01

    As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html

  14. Correlated photometric and polarimetric phenomena in AM Herculis

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W. C.; Krzeminski, W.; Tapia, S.

    1978-01-01

    Via simultaneous multicolor photometry and polarimetry of AM Herculis, we find correlations among polarization, flux, and color in the V and I bands in periodic and nonperiodic (i.e., flickering) activity. The primary minimum observed in both bands is accompanied by a blueward shift of the (B - R) color and a decrease in the absolute value of the percent circular polarization in the V band. Outside primary minimum, peaks of flickering activity tend to be associated with an increase in the absolute value of the circular polarization and the concurrent reddening of the (B - R) and (R - I) colors. The visual light curve of AM Her can be explained by a flickering, circularly polarized light source which is obscured at primary minimum, and is redder than the total system color in the URVRI bands.

  15. A Hamiltonian approach to the planar optimization of mid-course corrections

    NASA Astrophysics Data System (ADS)

    Iorfida, E.; Palmer, P. L.; Roberts, M.

    2016-04-01

    Lawden's primer vector theory gives a set of necessary conditions that characterize the optimality of a transfer orbit, defined accordingly to the possibility of adding mid-course corrections. In this paper a novel approach is proposed where, through a polar coordinates transformation, the primer vector components decouple. Furthermore, the case when transfer, departure and arrival orbits are coplanar is analyzed using a Hamiltonian approach. This procedure leads to approximate analytic solutions for the in-plane components of the primer vector. Moreover, the solution for the circular transfer case is proven to be the Hill's solution. The novel procedure reduces the mathematical and computational complexity of the original case study. It is shown that the primer vector is independent of the semi-major axis of the transfer orbit. The case with a fixed transfer trajectory and variable initial and final thrust impulses is studied. The acquired related optimality maps are presented and analyzed and they express the likelihood of a set of trajectories to be optimal. Furthermore, it is presented which kind of requirements have to be fulfilled by a set of departure and arrival orbits to have the same profile of primer vector.

  16. Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories

    NASA Astrophysics Data System (ADS)

    Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2017-11-01

    A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 <= f <= 190 Hz, while the tangential amplitude of the flapping trailing edge varies from 18% to 114% of the foil cord. To improve the airfoil propulsive performance, two-dimensional numerical simulations are implemented on FLUENT. The Reynolds number based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.

  17. Orbit Determination Support for the Microwave Anisotropy Probe (MAP)

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Truong, Son H.; Cuevas, Osvaldo O.; Slojkowski, Steven

    2003-01-01

    NASA's Microwave Anisotropy Probe (MAP) was launched from the Cape Canaveral Air Force Station Complex 17 aboard a Delta II 7425-10 expendable launch vehicle on June 30, 2001. The spacecraft received a nominal direct insertion by the Delta expendable launch vehicle into a 185-km circular orbit with a 28.7deg inclination. MAP was then maneuvered into a sequence of phasing loops designed to set up a lunar swingby (gravity-assisted acceleration) of the spacecraft onto a transfer trajectory to a lissajous orbit about the Earth-Sun L2 Lagrange point, about 1.5 million km from Earth. Because of its complex orbital characteristics, the mission provided a unique challenge for orbit determination (OD) support in many orbital regimes. This paper summarizes the premission trajectory covariance error analysis, as well as actual OD results. The use and impact of the various tracking stations, systems, and measurements will be also discussed. Important lessons learned from the MAP OD support team will be presented. There will be a discussion of the challenges presented to OD support including the effects of delta-Vs at apogee as well as perigee, and the impact of the spacecraft attitude mode on the OD accuracy and covariance analysis.

  18. Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions

    NASA Astrophysics Data System (ADS)

    Salmin, Vadim V.

    2017-01-01

    Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.

  19. Heliocentric phasing performance of electric sail spacecraft

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso

    2016-10-01

    We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.

  20. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  1. Spiral trajectory design: a flexible numerical algorithm and base analytical equations.

    PubMed

    Pipe, James G; Zwart, Nicholas R

    2014-01-01

    Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.

  2. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.

    PubMed

    Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan

    2013-02-01

    A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.

  3. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    PubMed

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  4. Three year study of tropospheric ozone with back trajectories at a metropolitan and a medium scale urban area in Greece.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2015-01-01

    Three years of hourly O3 concentration measurements from a metropolitan and a medium scale urban area in Greece: Athens and Ioannina respectively, were analyzed in conjunction with hourly wind speed/direction data and air mass trajectories, aiming to reveal local and regional contributions respectively. Conditional Probability Function was used to indicate associations among distinct wind directions and extreme O3 episodes. Backward trajectory clusters were elaborated by Potential Source Contribution Function on a grid of a 0.5°×0.5° resolution, in order to localize potential exogenous sources of O3 and its precursors. In Athens, an increased likelihood of extreme O3 events at the Northern suburbs was associated with the influence of SSW-SW sea breeze from Saronikos Gulf, due to O3 transportation from the city center. In Ioannina, the impacts of O3 conveyance from the city center to the suburban monitoring site were weaker. Potential O3 transboundary sources for Athens were mainly localized over Balkan Peninsula, Greece and the Aegean Sea. Potential Source Contribution Function hotspots were isolated over the industrialized area of Ptolemaida basin and above the region of Thessaloniki. Potential regional O3 sources for Ioannina were indicated across northern Greece and Balkan Peninsula, whereas peak Potential Source Contribution Function values were particularly observed over the urban area of Sofia in Bulgaria. The implemented methods, revealed local and potential transboundary source areas of O3, influencing Athens and Ioannina. Differences among the two cities were highlighted and the role of topography was emerged. These findings can be used in order to reduce the emission of O3 precursors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of downscaled high-resolution meteorological data on the PSCF identification of emission sources

    DOE PAGES

    Cheng, Meng -Dawn; Kabela, Erik D.

    2016-04-30

    The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizesmore » (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influ- ence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. In conclusion, a potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input.« less

  6. The long-range transport of aerosol particles over the north Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, W.G. Jr.

    1992-01-01

    As part of the Atmosphere/Ocean Chemistry Experiment (AE-ROCE), daily aerosol samples were collected at Bermuda and Barbados. In addition, gas-phase [sup 222]Rn concentrations were analyzed hourly from July 1991 to June 1992. Isentropic analyses, isentropic trajectories, and non-isentropic tranjectories were used to understand the long-range transport of these substances. In particular, the sources of selenium (Se) at Bermuda and Barbados, the transport of aluminum (Al) at Barbados, and the effect of atmospheric stability on radionuclides at Bermuda, were investigated. At Bermuda, approximately 55% of the aerosol Se came from anthropogenic sources located in North America, while the remainder appeared tomore » be from a marine biogenic sources. At Barbados, 60-80% of the Se was attributed to marine biogenic sources. At Barbados, the transport of Al from northern Africa to Barbados was modeled using a vertical interpolation of wind fields. Stoke's law of gravitational settling was used to parameterize the vertical motion. The trajectories using Stokes's law more more accurately predicted the source region of the Al compared to low-level isentropic trajectories. The affect of tropospheric stability on the concentrations of [sup 222]Rn, [sup 210]Pb, and [sup 7]Be sampled at Bermuda was investigated. [sup 7]Be has an upper tropospheric source, while [sup 222]Rn and [sup 210]Pb both have a continental source. The stability of the lower troposphere was calculated based on the relative separation of isentropic surfaces over North America. The results showed that this measure of stability was able to resolve the seasonal effect of stability on these radionuclides, but was not a quantitative predictor.« less

  7. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    NASA Astrophysics Data System (ADS)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able to spatially reproduce trajectories and dust dispersion plumes during the Paracas wind storms. HYSPLIT trajectories revealed that part of the wind-eroded lithological material can be transported downwind several kilometers along the Peruvian coast and also deposited over the nearby coastal ocean, giving support to the presence of an aeolian signal in continental shelf sediments, of great importance for paleoenvironmental studies.

  8. A high-order time-accurate interrogation method for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Lynch, Kyle; Scarano, Fulvio

    2013-03-01

    A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In both cases, it is demonstrated that the measurement time interval can be significantly extended without compromising the correlation signal-to-noise ratio and with no increase of the truncation error. The increase of velocity dynamic range scales more than linearly with the number of frames included for the analysis, which supersedes by one order of magnitude the pair correlation by window deformation. The main factors influencing the performance of the method are discussed, namely the number of images composing the sequence and the polynomial order chosen to represent the motion throughout the trajectory.

  9. The fine and coarse particulate matter at four major Mediterranean cities: local and regional sources

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2013-11-01

    Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.

  10. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia.

    PubMed

    Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul

    2014-01-01

    The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.

  11. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  12. SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.M.; Fowler, J.K.

    The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)

  13. Optimal rendezvous in the neighborhood of a circular orbit

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1976-01-01

    The minimum velocity-change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity-change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples are presented.

  14. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj, E-mail: acnayak@iitk.ac.in, E-mail: ravindkv@iitk.ac.in, E-mail: pkjain@iitk.ac.in

    2015-07-01

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  15. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  16. Direct and interactive effects of parent, friend and schoolmate drinking on alcohol use trajectories.

    PubMed

    Lynch, Alicia Doyle; Coley, Rebekah Levine; Sims, Jacqueline; Lombardi, Caitlin McPherran; Mahalik, James R

    2015-01-01

    This study considered the unique and interactive roles of social norms from parents, friends and schools in predicting developmental trajectories of adolescent drinking and intoxication. Using data from the National Longitudinal Study of Adolescent Health, which followed adolescents (N = 18,921) for 13 years, we used discrete mixture modelling to identify unique developmental trajectories of drinking and of intoxication. Next, multilevel multinomial regression models examined the role of alcohol-related social norms from parents, friends and schoolmates in the prediction of youths' trajectory group membership. Results demonstrated that social norms from parents, friends and schoolmates that were favourable towards alcohol use uniquely predicted drinking and intoxication trajectory group membership. Interactions between social norms revealed that schoolmate drinking played an important moderating role, frequently augmenting social norms from parents and friends. The current findings suggest that social norms from multiple sources (parents, friends and schools) work both independently and interactively to predict longitudinal trajectories of adolescent alcohol use. Results highlight the need to identify and understand social messages from multiple developmental contexts in efforts to reduce adolescent alcohol consumption and alcohol-related risk-taking.

  17. Point-Mass Aircraft Trajectory Prediction Using a Hierarchical, Highly-Adaptable Software Design

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Woods, Sharon E.; Wing, David J.

    2017-01-01

    A highly adaptable and extensible method for predicting four-dimensional trajectories of civil aircraft has been developed. This method, Behavior-Based Trajectory Prediction, is based on taxonomic concepts developed for the description and comparison of trajectory prediction software. A hierarchical approach to the "behavioral" layer of a point-mass model of aircraft flight, a clear separation between the "behavioral" and "mathematical" layers of the model, and an abstraction of the methods of integrating differential equations in the "mathematical" layer have been demonstrated to support aircraft models of different types (in particular, turbojet vs. turboprop aircraft) using performance models at different levels of detail and in different formats, and promise to be easily extensible to other aircraft types and sources of data. The resulting trajectories predict location, altitude, lateral and vertical speeds, and fuel consumption along the flight path of the subject aircraft accurately and quickly, accounting for local conditions of wind and outside air temperature. The Behavior-Based Trajectory Prediction concept was implemented in NASA's Traffic Aware Planner (TAP) flight-optimizing cockpit software application.

  18. Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology

    NASA Astrophysics Data System (ADS)

    Schlei, Wayne R.

    Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple spacecraft rerouting scenario incorporating a very limited Delta V budget. In the Earth-Moon system, a low-DeltaV transfer from low Earth orbit (LEO) to the distant retrograde orbit (DRO) vicinity is derived with interactive topology-based design tactics. Finally, Poincare map topology is exploited in the Saturn-Enceladus system to explore a possible ballistic capture scenario around Enceladus.

  19. Exploration of bounded motion near binary systems comprised of small irregular bodies

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic; Howell, Kathleen C.

    2015-10-01

    To investigate the behavior of a spacecraft near a pair of irregular bodies, consider a three-body configuration (one massless). Two massive bodies, P_1 and P_2, form the primary system; each primary is modeled as a sphere or an ellipsoid. Two primary configurations are addressed: `synchronous' and `non-synchronous'. Concepts and tools similar to those applied in the circular restricted three-body problem are exploited to construct periodic trajectories for a third body in synchronous systems. In non-synchronous systems, however, the search for third body periodic orbits is complicated by several factors. The mathematical model for the third-body motion is now time-variant and the motion of P_2 is not trivial.

  20. The onset of chaos in orbital pilot-wave dynamics.

    PubMed

    Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  1. Gravity Recovery and Interior Laboratory (GRAIL) Mission: Status at the Initiation of the Science Mapping Phase

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Asmar, Sami W.; Alomon; Konopliv, Alexander S.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips. Roger J.; Solomon, Sean C.; hide

    2012-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission, a component of NASA's Discovery Program, launched successfully from Cape Canaveral Air Force Station on September 10, 2011. The dual spacecraft traversed independent, low-energy trajectories to the Moon via the EL-1 Lagrange point and inserted into elliptical, 11.5-hour polar orbits around the Moon on December 31, 2011, and January 1, 2012. The spacecraft are currently executing a series of maneuvers to circularize their orbits at 55-km mean altitude. Once the mapping orbit is achieved, the spacecraft will undergo additional maneuvers to align them into mapping configuration. The mission is on track to initiate the Science Phase on March 8, 2012.

  2. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  3. Transport System for Delivery Tourists At Altitude 140 km

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    The author offers a new method and installation for flight in space. This method uses the centrifugal force of a rotating circular cable that provides a means for the launch of a payload into outer space, to keep the fixed space stations at high altitudes (up to 200 km). The method may also be useful for landing to space bodies, for launching of the space ships (crafts), and for moving and accelerating other artificial apparatuses. The offered installation may be used as a propulsion system for space ships and/or probes. This system uses the material of any space body (i.e. stones) for acceleration and change of the space vehicle trajectory. The suggested system may be also used as a high capacity energy accumulator.

  4. Dilution jet mixing program, supplementary report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1986-01-01

    The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.

  5. Earth-Moon Libration Point Orbit Stationkeeping: Theory, Modeling and Operations

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.; Woodard, Mark A.

    2013-01-01

    Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincare maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.

  6. Swimming Pattern of Vorticella convallaria Trophont in the Hele-Shaw Confinements

    NASA Astrophysics Data System (ADS)

    Park, Younggil; Ryu, Sangjin; Jung, Sunghwan

    In the trophont form Vorticella convallariais a sessile stalked ciliate, which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Under mechanical shearing, the zooid is separated from the stalk and can swim using circular cilia rows around the oral part. Here we present how the stalkless trophont zooid of V. convallariaswims in Hele-Shaw geometries, as a model system for microorganism swimming. After having harvested stalkless zooids, we observed their swimming in water between two glass surfaces with narrow gaps using video microscopy. Based on their swimming trajectories measured with image analysis, we investigated how the swimming pattern of the trophont zooid of V. convallaria was influenced by the constraints.

  7. Effects of fluid viscosity on a moving sonoluminescing bubble.

    PubMed

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Rezaee, Nastaran; Ebrahimi, Homa

    2011-08-01

    Based on the quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence in water, adiponitrile, and N-methylformamide are calculated for various fluid viscosities. By using a complete form of the hydrodynamic force, the bubble trajectory is calculated for a moving single bubble sonoluminescence (m-SBSL). It is found that as the fluid viscosity increases, the unique circular path changes to an ellipsoidal and then linear form and along this incrementally increase of viscosity the light intensity increases. By using the Bremsstrahlung model to describe the bubble radiation, gradual increase of the viscosity results in brighter emissions. It is found that in fluids with higher viscosity the light intensity decreases as time passes.

  8. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  9. The attainment of large accelerating gradients using near field synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G.

    1989-10-15

    Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in free space resulting from a point charge moving on a helical trajectory. The total power emitted as synchrotron radiation from a particle on a circular path is calculated. The point charge results are generalized to the case of a line charge, and formulae are presented which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving beams moving on 1 cm radius helical orbits with bunch length 1more » mm. {copyright} 1989 American Institute of Physics« less

  10. Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.

    PubMed

    Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias

    2017-05-29

    We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.

  11. Distribution and trajectories of floating and benthic marine macrolitter in the south-eastern North Sea.

    PubMed

    Gutow, Lars; Ricker, Marcel; Holstein, Jan M; Dannheim, Jennifer; Stanev, Emil V; Wolff, Jörg-Olaf

    2018-06-01

    In coastal waters the identification of sources, trajectories and deposition sites of marine litter is often hampered by the complex oceanography of shallow shelf seas. We conducted a multi-annual survey on litter at the sea surface and on the seafloor in the south-eastern North Sea. Bottom trawling was identified as a major source of marine litter. Oceanographic modelling revealed that the distribution of floating litter in the North Sea is largely determined by the site of origin of floating objects whereas the trajectories are strongly influenced by wind drag. Methods adopted from species distribution modelling indicated that resuspension of benthic litter and near-bottom transport processes strongly influence the distribution of litter on the seafloor. Major sink regions for floating marine litter were identified at the west coast of Denmark and in the Skagerrak. Our results may support the development of strategies to reduce the pollution of the North Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Formaldehyde Source Attribution in Houston during TexAQS II and TRAMP

    NASA Astrophysics Data System (ADS)

    Guven, B.; Olaguer, E. P.

    2010-12-01

    To determine the relative importance of primary vs secondary formaldehyde in Houston, source apportionment was performed on continuous online measurements of VOCs, formaldehyde (HCHO), CO, SO2, and HONO at one urban and two industrial sites. The results of source apportionment were used in conjunction with the meteorological, emission inventory, emission event, and back trajectory data catalogued in Air Research Information Infrastructure (ARII) to determine the dominant source regions and evaluate the accuracy of reported regular and upset emissions from industrial facilities. The contribution of industrial sources such as flares from petrochemical plants and refineries to total atmospheric formaldehyde concentrations at the urban site is estimated to be 17% compared to 23% for mobile sources, amounting to 40% for the total contribution of primary HCHO sources. The relative contribution of industrial sources to HCHO concentration at the urban site increased to about 66% on some mornings coinciding with the HCHO peak concentrations. Secondary formation of HCHO during the day and night resulted from the reactions of industrial olefins and other VOCs with OH or ozone was a significant contributor to HCHO concentrations at the urban site. An analysis of emission event, back trajectory and ambient concentration data in ARII showed that a large percentage of emission events were associated with trajectories that passed through the two industrial sites when peaks in concentrations were detected at those sites. Some peak HCHO concentrations can also be linked to emission events of other VOCs, while a significant portion remained unexplained by the reported events. It is likely, based on the results from the SHARP campaign and our analysis, that some episodic emission events containing HCHO are unreported to the TCEQ. Overlaid CPF plots for nighttime (green) and daytime (red) HCHO concentrations measured at three sites and the locations of the largest emitting point sources around the sites. Average contributions to formaldehyde concentrations.

  13. GRBs as standard candles: There is no “circularity problem” (and there never was)

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo

    2011-02-01

    Beginning with the 2002 discovery of the "Amati Relation" of GRB spectra, there has been much interest in the possibility that this and other correlations of GRB phenomenology might be used to make GRBs into standard candles. One recurring apparent difficulty with this program has been that some of the primary observational quantities to be fit as "data" - to wit, the isotropic-equivalent prompt energy Eiso and the collimation-corrected "total" prompt energy Eγ - depend for their construction on the very cosmological models that they are supposed to help constrain. This is the so-called "circularity problem" of standard candle GRBs. This paper is intended to point out that the circularity problem is not in fact a problem at all, except to the extent that it amounts to a self-inflicted wound. It arises essentially because of an unfortunate choice of data variables - "source-frame" variables such as Eiso, which are unnecessarily encumbered by cosmological considerations. If, instead, the empirical correlations of GRB phenomenology which are formulated in source-variables are mapped to the primitive observational variables (such as fluence) and compared to the observations in that space, then all taint of circularity disappears. I also indicate here a set of procedures for encoding high-dimensional empirical correlations (such as between Eiso, Epk(src),tjet(src), and T45(src)) in a "Gaussian Tube" smeared model that includes both the correlation and its intrinsic scatter, and how that source-variable model may easily be mapped to the space of primitive observables, to be convolved with the measurement errors and fashioned into a likelihood. I discuss the projections of such Gaussian tubes into sub-spaces, which may be used to incorporate data from GRB events that may lack some element of the data (for example, GRBs without ascertained jet-break times). In this way, a large set of inhomogeneously observed GRBs may be assimilated into a single analysis, so long as each possesses at least two correlated data attributes.

  14. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  15. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China.

    PubMed

    Han, Wei; Gao, Guanghai; Geng, Jinyao; Li, Yao; Wang, Yingying

    2018-04-01

    Ziya Circular Economy Park is the biggest e-waste recycle park in North China before 2011, its function was then transformed in response to regulations and rules. In this paper, investigation was conducted to research the residual concentrations of 14 analytes (12 heavy metals and 2 non-metals) in the surface soil of Ziya Circular Economy Park and surrounding area. Both ecological and health assessments were evaluated using GI (geo-accumulation index) and NPI (Nemerow pollution index), and associated health risk was assessed by using USEPA model. According to the ecological risk assessment, Cu, Sb, Cd, Zn and Co were seriously enriched in the soil of the studied area. The health risk assessment proposed by USEPA indicated no significant health risks to the population. Soil properties, such as pH and organic matter, were found to correlate with the enrichment of heavy metals. Arsenic concentrations in the soil were found positively correlated to dead bacteria concentrations. Spatial distribution of heavy metals revealed that Ziya Circular Economy Park was the dominant pollution source in the studied area. Findings in this study suggest that enough attention should be payed to the heavy metal pollution in Ziya Circular Economy Park. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Panther Mountain circular structure, a possible buried meteorite crater

    NASA Astrophysics Data System (ADS)

    Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.

    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.

  17. The Panther Mountain circular structure, a possible buried meteorite crater

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.

    1992-01-01

    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.

  18. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  19. Source apportionment of wet-deposited atmospheric mercury in Tampa, Florida

    NASA Astrophysics Data System (ADS)

    Michael, Ryan; Stuart, Amy L.; Trotz, Maya A.; Akiwumi, Fenda

    2016-03-01

    In this paper, sources of mercury deposition to the Tampa area (Florida, USA) are investigated by analysis of one year (March 2000-March 2001) of daily wet deposition data. HYSPLIT back-trajectory modeling was performed to assess potential source locations for high versus low concentration events in data stratified by precipitation level. Positive matrix factorization (PMF) was also applied to apportion the elemental compositions from each event and to identify sources. Increased total mercury deposition was observed during summer months, corresponding to increased precipitation. However, mercury concentration in deposited samples was not strongly correlated with precipitation amount. Back-trajectories show air masses passing over Florida land in the short (12 h) and medium (24 h) term prior to deposition for high mercury concentration events. PMF results indicate that eleven factors contribute to the deposited elements in the event data. Diagnosed elemental profiles suggest the sources that contribute to mercury wet deposition at the study site are coal combustion (52% of the deposited mercury mass), municipal waste incineration (23%), medical waste incineration (19%), and crustal dust (6%). Overall, results suggest that sources local to the county and in Florida likely contributed substantially to mercury deposition at the study site, but distant sources may also contribute.

  20. Accurate orbit propagation in the presence of planetary close encounters

    NASA Astrophysics Data System (ADS)

    Amato, Davide; Baù, Giulio; Bombardelli, Claudio

    2017-09-01

    We present an efficient strategy for the numerical propagation of small Solar system objects undergoing close encounters with massive bodies. The trajectory is split into several phases, each of them being the solution of a perturbed two-body problem. Formulations regularized with respect to different primaries are employed in two subsequent phases. In particular, we consider the Kustaanheimo-Stiefel regularization and a novel set of non-singular orbital elements pertaining to the Dromo family. In order to test the proposed strategy, we perform ensemble propagations in the Earth-Sun Circular Restricted 3-Body Problem (CR3BP) using a variable step size and order multistep integrator and an improved version of Everhart's radau solver of 15th order. By combining the trajectory splitting with regularized equations of motion in short-term propagations (1 year), we gain up to six orders of magnitude in accuracy with respect to the classical Cowell's method for the same computational cost. Moreover, in the propagation of asteroid (99942) Apophis through its 2029 Earth encounter, the position error stays within 100 metres after 100 years. In general, as to improve the performance of regularized formulations, the trajectory must be split between 1.2 and 3 Hill radii from the Earth. We also devise a robust iterative algorithm to stop the integration of regularized equations of motion at a prescribed physical time. The results rigorously hold in the CR3BP, and similar considerations may apply when considering more complex models. The methods and algorithms are implemented in the naples fortran 2003 code, which is available online as a GitHub repository.

  1. Physical properties of meteoroids based on middle and upper atmosphere radar measurements

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Kero, J.; Virtanen, J.; Szasz, C.; Nakamura, T.; Peltoniemi, J.; Koschny, D.

    2014-07-01

    We present a novel approach to reliably interpret the meteor head-echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically-based parametrization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100,000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern-related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.

  2. PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.

    PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.

  3. Quantifying phytoplankton productivity and photoinhibition in the Ross Sea Polynya with large eddy simulation of Langmuir circulation

    NASA Astrophysics Data System (ADS)

    Smyth, Robyn L.; Akan, Cigdem; Tejada-Martínez, Andrés.; Neale, Patrick J.

    2017-07-01

    Southern Ocean phytoplankton assemblages acclimated to low-light environments that result from deep mixing are often sensitive to ultraviolet and high photosynthetically available radiation. In such assemblages, exposures to inhibitory irradiance near the surface result in loss of photosynthetic capacity that is not rapidly recovered and can depress photosynthesis after transport below depths penetrated by inhibitory irradiance. We used a coupled biophysical modeling approach to quantify the reduction in primary productivity due to photoinhibition based upon experiments and observations made during the spring bloom in Ross Sea Polynya (RSP). Large eddy simulation (LES) was used to generate depth trajectories representative of observed Langmuir circulation that were passed through an underwater light field to yield time series of spectral irradiance representative of what phytoplankton would have experienced in situ. These were used to drive an assemblage-specific photosynthesis-irradiance model with inhibition determined from a biological weighting function and repair rate estimated from shipboard experiments on the local assemblage. We estimate the daily depth-integrated productivity was 230 mmol C m-2. This estimate includes a 6-7% reduction in daily depth-integrated productivity over potential productivity (i.e., effects of photoinhibition excluded). When trajectory depths were fixed (no vertical transport), the reduction in productivity was nearly double. Relative to LES estimates, there was slightly less depth-integrated photoinhibition with random walk trajectories and nearly twice as much with circular rotations. This suggests it is important to account for turbulence when simulating the effects of vertical mixing on photoinhibition due to the kinetics of photodamage and repair.

  4. Physical Properties of Meteoroids based on Middle and Upper Atmosphere Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Nakamura, Takuji; Kero, Johan; Szasz, Csilla; Virtanen, Jenni; Peltoniemi, Jouni; Koschny, Detlef

    We present a novel approach to reliably interpret the meteor head echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically based parameterization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.

  5. EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.

    PubMed

    Hartmann, Tom; Bernt, Matthias; Middendorf, Martin

    2018-05-30

    To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .

  6. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  7. Test facility for the evaluation of microwave transmission components

    NASA Astrophysics Data System (ADS)

    Fong, C. G.; Poole, B. R.

    1985-10-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.

  8. SU-E-J-11: A New Optical Method to Register Patient External Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbes, B; Azcona, J; Moreno, M

    2014-06-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used amore » first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.« less

  9. Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae)

    PubMed Central

    Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots. PMID:23209398

  10. Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby

    NASA Astrophysics Data System (ADS)

    Patrick, Sean

    Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.

  11. Black Swan Event Assessment for Fort Leonard Wood, Missouri

    DTIC Science & Technology

    2016-03-01

    FEMA standards category and using ASCE 7-05. (Source: FEMA.) ................ 16 Figure 9. Estimated trajectory and impact area of the Joplin tornado in...Missouri on May 22, 2011. (Source: U.S. Army Corps of Engineers, Kansas City District.) .............. 18 Figure 10. Tornado intensities and path...near Fort Leonard Wood, Missouri. (Source: Tornado History Project webpage

  12. A Stroboscopic Light Source for Experiments in Mechanics

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2017-01-01

    We propose to attach a small stroboscopic light source to a moving object and connect the source to a pulse generator with the help of insulated thin flexible multi-cored wires. Students can assemble such a device independently in a school laboratory. The device can be used to obtain trajectories with time marks in students' research projects in…

  13. Water Supply Systems For Aircraft Fire And Rescue Protection

    DOT National Transportation Integrated Search

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  14. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  15. Spatial-temporal travel pattern mining using massive taxi trajectory data

    NASA Astrophysics Data System (ADS)

    Zheng, Linjiang; Xia, Dong; Zhao, Xin; Tan, Longyou; Li, Hang; Chen, Li; Liu, Weining

    2018-07-01

    Deep understanding of residents' travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial-temporal characterization of urban residents' travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial-temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial-temporal characterization of Chongqing residents' travel pattern.

  16. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  17. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  18. Space Instrument Optimization by Implementing of Generic Three Bodies Circular Restricted Problem

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2011-01-01

    In this study, the main discussion emphasizes on the spacecraft operation with a concentration on stationary points in space. To achieve these objectives, the circular restricted problem was solved for selected approaches. The equations of motion of three body restricted problem was demonstrated to apply in cases other than Lagrange's (1736-1813 A.D.) achievements, by means of the purposed CN (Cyrus Nejat) theorem along with appropriate comments. In addition to five Lagrange, two other points, CN1 and CN2 were found to be in unstable equilibrium points in a very large distance respect to Lagrange points, but stable at infinity. A very interesting simulation of Milky Way Galaxy and Andromeda Galaxy were created to find the Lagrange points, CN points (Cyrus Nejat Points), and CN lines (Cyrus Nejat Lines). The equations of motion were rearranged such a way that the transfer trajectory would be conical, by means of decoupling concept. The main objective was to make a halo orbit transfer about CN lines. The author purposes therefore that all of the corresponding sizing design that they must be developed by optimization techniques would be considered in future approaches. The optimization techniques are sufficient procedures to search for the most ideal response of a system.

  19. Gradient rotating outer volume excitation (GROOVE): A novel method for single-shot two-dimensional outer volume suppression.

    PubMed

    Powell, Nathaniel J; Jang, Albert; Park, Jang-Yeon; Valette, Julien; Garwood, Michael; Marjańska, Małgorzata

    2015-01-01

    To introduce a new outer volume suppression (OVS) technique that uses a single pulse and rotating gradients to accomplish frequency-swept excitation. This new technique, which is called gradient rotating outer volume excitation (GROOVE), produces a circular or elliptical suppression band rather than suppressing the entire outer volume. Theoretical and k-space descriptions of GROOVE are provided. The properties of GROOVE were investigated with simulations, phantom, and human experiments performed using a 4T horizontal bore magnet equipped with a TEM coil. Similar suppression performance was obtained in phantom and human brain using GROOVE with circular and elliptical shapes. Simulations indicate that GROOVE requires less SAR and time than traditional OVS schemes, but traditional schemes provide a sharper transition zone and less residual signal. GROOVE represents a new way of performing OVS in which spins are excited temporally in space on a trajectory that can be tailored to fit the shape of the suppression region. In addition, GROOVE is capable of suppressing tailored regions of space with more flexibility and in a shorter period of time than conventional methods. GROOVE provides a fast, low SAR alternative to conventional OVS methods in some applications (e.g., scalp suppression). © 2014 Wiley Periodicals, Inc.

  20. Analytical solutions to optimal underactuated spacecraft formation reconfiguration

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-11-01

    Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.

  1. Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method

    NASA Astrophysics Data System (ADS)

    Wang, Shoucheng; Huang, Guoqing; Wu, Xin

    2018-02-01

    In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.

  2. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.

    Near-infrared imaging polarimetry in the J , H , and K{sub s} bands was carried out for GGD 27 in the dark cloud Lynds 291. Details of an infrared reflection nebula associated with the optical nebulosity GGD 27 and the infrared nebula GGD 27 IRS are presented. Aperture photometry of 1263 point-like sources, detected in all three bands, was used to classify them based on a color–color diagram, and the linear polarization of several hundred sources was determined, with the latter used to map the magnetic field structure around GGD 27. This field, around GGD 27 IRS, appears to bemore » associated with the extended CO outflow of IRAS 18162–2048; however, there are partly distorted or bent components in the field. The Chandrasekhar–Fermi method gives an estimate of the magnetic field strength as ∼90 μ G. A region associated with GGD 27 IRS is discovered to have a circular polarization in the range of ∼2%–11% in the K{sub s} band. The circular polarization has an asymmetric positive/negative pattern and extends out to ∼ 120″ or 1.0 pc. The circular and linear polarization patterns are explained as resulting from a combination of dense inner and fainter outer lobes, suggesting episodic outflow.« less

  4. Kinematic cross-correlation induces sensory integration across separate objects.

    PubMed

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-12-01

    In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.

    USGS Publications Warehouse

    Alldredge, L.R.; Benton, E.R.

    1986-01-01

    The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors

  6. Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants

    DTIC Science & Technology

    1951-06-01

    1946 R. H. Miller, Jet propulsion applied to helicopter rotors. J. Aeronaut. Sci. 13, 639 (1946). J. C. Sanders and N . Y , Sanders, Preliminary study of a...Circular 482) ~h r the Su hinte- n -• PDriceS~~~Washingon2. C. - rice2dt ’ Preface The purposeT o is Circular is to present references to published sources of...tl~e references are grouped according to subject matter. To aid in the use of the bibliography, there is included a brief intpodie4ion- n the

  7. A Solar Stationary Type IV Radio Burst and Its Radiation Mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Chen, Yao; Cho, Kyungsuk; Feng, Shiwei; Vasanth, Veluchamy; Koval, Artem; Du, Guohui; Wu, Zhao; Li, Chuanyang

    2018-04-01

    A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (TB) of this burst is extremely high, over 10^{11} K at 150 MHz and over 108 K in general. The degree of circular polarization (q) is between -60% ˜ -100%, which means that it is highly left-handed circularly polarized. The flux-frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly -3 ˜ -4 throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.

  8. Cigarette access and pupil smoking rates: a circular relationship?

    PubMed

    Turner, Katrina M; Gordon, Jacki; Young, Robert

    2004-12-01

    Adolescents obtain cigarettes from both commercial and social sources. While the relationship between commercial access and adolescent smoking has been researched, no one has considered in detail whether rates of peer smoking affect cigarette availability. In two relatively deprived Scottish schools that differed in their pupil smoking rates, we assess pupil access to cigarettes. 896 13 and 15 year olds were surveyed, and 25 single-sex discussion groups held with a sub-sample of the 13 year olds. Smokers in both schools obtained cigarettes from shops, food vans and other pupils. However, pupils in the 'high' smoking school perceived greater access to both commercial and social sources, and had access to an active 'peer market'. These findings suggest that variations in cigarette access may contribute to school differences in pupil smoking rates, and that the relationship between access and adolescent smoking is circular, with greater availability increasing rates, and higher rates enhancing access.

  9. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    PubMed

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  10. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  11. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.

  12. Analytical Solution of Displacements Around Circular Openings in Generalized Hoek-Brown Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Houxu; Li, Jie; Wei, Jiuqi

    2017-09-01

    The rock in plastic region is divided into numbers of elements by the slip lines, resulted from shear localization. During the deformation process, the elements will slip along the slip lines and the displacement field is discontinuous. Slip lines around circular opening in isotropic rock, subjected to hydrostatic stress are described by the logarithmic spirals. Deformation of the plastic region is mainly attributed to the slippage. Relationship between the shear stresses and slippage on slip lines is presented, based on the study of Revuzhenko and Shemyakin. Relations between slippage and rock failure are described, based on the elastic-brittle-plastic model. An analytical solution is presented for the plane strain analysis of displacements around circular openings in the Generalized Hoek-Brown rock. With properly choosing of slippage parameters, results obtained by using the proposed solution agree well with those presented in published sources.

  13. Millisecond radio spikes from the dwarf M flare star AD Leonis

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Arecibo radio observations of millisec bursts of radio signals at 1415 MHz from AD Leonis are reported. The observed burst had an ellipticity of 0.95, 50-100 percent circular polarization, and a flux density maximum of 30 mJy. The 50 sec burst featured five quasi-periodic oscillations with a mean periodicity of about 3.2 sec. A second, less intense burst that occurred 20 sec later was 100 percent circularly polarized. The area emitting the bursts covered an estimated 0.005 of the radius of AD Leonis and had an electron density of 6 billion/cu cm and a longitudinal magnetic field strength of 250 gauss, if the source was an electron-cyclotron maser. A coherent plasma source would require, for the first harmonic, an electron density of 20 billion/cu cm and a magnetic field much less than 500 gauss. A second harmonic of the plasma frequency would require an electron density of 6 billion/cu cm and a field strength much less than 250 gauss. The possibility that the source was periodic oscillations in coronal loops is discussed.

  14. Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways

    NASA Astrophysics Data System (ADS)

    Lee, Gang-San; Kim, Pyung-Rae; Han, Young-Ji; Holsen, Thomas M.; Seo, Yong-Seok; Yi, Seung-Muk

    2016-03-01

    As a global pollutant, mercury (Hg) is of particular concern in East Asia, where anthropogenic emissions are the largest. In this study, speciated Hg concentrations were measured on Yongheung Island, the westernmost island in Korea, located between China and the Korean mainland to identify the importance of local and regional Hg sources. Various tools including correlations with other pollutants, conditional probability function, and back-trajectory-based analysis consistently indicated that Korean sources were important for gaseous oxidized mercury (GOM) whereas, for total gaseous mercury (TGM) and particulate bound mercury (PBM), regional transport was also important. A trajectory cluster based approach, considering both Hg concentration and the fraction of time each cluster was impacting the site, was developed to quantify the effect of Korean sources and out-of-Korean sources. This analysis suggests that contributions from out-of-Korean sources were similar to Korean sources for TGM whereas Korean sources contributed slightly more to the concentration variations of GOM and PBM compared to out-of-Korean sources. The ratio of GOM/PBM decreased when the site was impacted by regional transport, suggesting that this ratio may be a useful tool for identifying the relative significance of local sources vs. regional transport. The secondary formation of PBM through gas-particle partitioning with GOM was found to be important at low temperatures and high relative humidity.

  15. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features

    NASA Astrophysics Data System (ADS)

    Rybczyński, Józef

    2011-02-01

    This paper presents the results of computer simulation of bearing misalignment defects in a power turbogenerator. This malfunction is typical for great multi-rotor and multi-bearing rotating machines and very common in power turbo-sets. Necessary calculations were carried out by the computer code system MESWIR, developed and used at the IFFM in Gdansk for calculating dynamics of rotors supported on oil bearings. The results are presented in the form of a set of journal and bush trajectories of all turbo-set bearings. Our analysis focuses on the vibrational effects of displacing the two most vulnerable machine bearings in horizontal and vertical directions by the maximum acceptable range calculated with regard to bearing vibration criterion. This assumption required preliminary assessment of the maximum values for the permissible bearing dislocations. We show the relations between the attributes of the particular bearing trajectories and the bearing displacements in relation to their base design position. The shape and dimensions of bearing trajectories are interpreted based on the theory of hydrodynamic lubrication of oil bearings. It was shown that the relative journal trajectories and absolute bush trajectories carry much important information about the dynamic state of the machine, indicating also the way in which bearings are loaded. Therefore, trajectories can be a source of information about the position and direction of bearing misalignments. This article indicates the potential of using trajectory patterns for diagnosing misalignment defects in rotating machines and suggests including sets of trajectory patterns to the knowledge base of a machine diagnostic system.

  16. Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Artíñano, B.; Pio, C. A.; Afonso, J.; Puxbaum, H.; Legrand, M.; Hammer, S.; Kaiser, A.

    2009-04-01

    During the last years, the analysis of a great number of back-trajectories from receptor sites has turned out to be a valuable tool to identify sources and sinks areas of atmospheric particulate matter (PM) or to reconstruct their average spatial distribution. A number of works have applied different trajectory statistical methods (TSM), which allow working simultaneously with back-trajectories computed from one or several receptor points and PM concentration values registered there. In spite of these methods have many limitations, they are simple and effective methods to detect the relevant source regions and the air flow regimes which are connected with regional and large-scale air pollution transport. In this study 5-day backward air trajectories arriving over 3 monitoring sites, were utilised and analysed simultaneously with the PM levels and chemical composition values registered there. These sites are located in the centre of Europe and can be classified into natural continental background (Schauinsland-SIL in Germany (1205 m asl), Puy de Dôme-PDD in France (1450 m asl) and Sonnblick-SBO in Austria (3106 m asl)). In the framework of the CARBOSOL European project, weekly aerosol samples were collected with High Volume Samplers (DIGITEL DH77) and PM10 (SIL and PDD) or PM2.5 (SBO) inlets, on quartz fibre filters. Filter samples were treated and analyzed for determining the levels of major organic fractions (OC, EC) and inorganic ions. Additionally, analyses for specific organic compounds were also carried out whenever was possible (Pio et al., 2007). For each day of the sampling period, four trajectories ending at 00:00, 06:00, 12:00 and 18:00 h UTC have been computed by the Norwegian Institute for Air Research NILU (SIL and PDD) and the Central Institute for Meteorology and Geophysics of Austria (SBO) using the FLEXTRA model (Stohl et al., 1995). In all, more than 8000 complete trajectories were available for analysis, each with 40 endpoints. Firstly air mass back-trajectories have been grouped into clusters, each one representing a characteristic meteorological scenario. Some common features have been detected for the clusters obtained in the three monitoring sites. A clear seasonal pattern has been observed with marked fast westerly and northerly Atlantic flows during the winter, to low speed air circulation flows in summertime. The transition period between the occurrence of the longest trajectories in winter and the shortest ones in summer has been characterised by the advection of moderate flows from the north-eastern and eastern European mainland areas. Meteorological scenarios represented by trajectories coming from the Mediterranean basin and North-African regions, have also occurred during the summer months. Then, Redistribution Concentration Fields (RCF, Stohl, 1996) have been computed for each single station and for SIL and PDD together with the aim to obtain more reliable information on PM10 sources, for the whole sampling period and also for the summer and winter seasons. With this methodology, it is possible to obtain spatial distributions of concentrations for specific tracers of PM sources. High concentration values of the element C obtained over a geographical region means that, on average, air parcels passing over that region result in high concentrations of the element C at the receptor site. The main results obtained with this analysis, suggests that current carbonaceous aerosol concentrations in central Europe are likely to be influenced significantly during the winter and autumn months by long-range transport of PM from the north-eastern and eastern regions of Europe. Emissions produced by fossil-fuel and biomass burning processes in these areas, are probably the main sources contributing to the transported aerosol. In contrast, in summer there is a higher contribution of the emissions from local and regional sources on the OC and EC levels at these background sites (Germany, Poland and the Baltic countries). Secondary organic aerosol carbon formed by the photo-oxidation of biogenic emissions mainly from Germany, seems to be predominant in this season. This seasonal cycle is mainly driven by the winter/summer contrast of the regional-scale vertical mixing. During the warm season the vertical air mass exchange is enhanced by a more efficient upward transport from the boundary layer to the mountain sites. During the winter months, the vertical mixing intensity is reduced. In this season the mean levels obtained for OC and EC were lower than those recorded during the summer. Their spatiotemporal variability was mainly governed by air mass transport from distant regions, especially from Eastern Europe regions, where significant amounts of fossil fuels and biomass are currently consumed. Furthermore, emissions from desert regions in North Africa seemed to significantly influence the central European background mineral aerosol concentrations throughout the year. References: Pio C. A., M. Legrand, T. Oliveira, J. Afonso, C. Santos, A. Caseiro, P. Fialho, F. Barata, H. Puxbaum, A. Sanchez-Ochoa, A. Kasper-Giebl, A. Gelencsér, S. Preunkert, and M. Schock (2007), Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. J. Geophys. Res., 112, D23S02, doi:10.1029/2006JD008038. Stohl A., G. Wotawa, P. Seibert and H. Kromp-Kolb (1995), Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J. Appl. Meteorol., 34, 2149-2165. Stohl A. (1996), Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ., 30(4), 579-587.

  17. Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser

    PubMed Central

    Takahashi, Jun-ichi; Shinojima, Hiroyuki; Seyama, Michiko; Ueno, Yuko; Kaneko, Takeo; Kobayashi, Kensei; Mita, Hajime; Adachi, Mashahiro; Hosaka, Masahito; Katoh, Masahiro

    2009-01-01

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bioorganic compounds is that a kind of “chiral impulse” as an asymmetric excitation source induced asymmetric reactions on the surfaces of such materials such as meteorites or interstellar dusts prior to the existence of terrestrial life (Cosmic Scenario). To experimentally introduce chiral structure into racemic films of amino acids (alanine, phenylalanine, isovaline, etc.), we irradiated them with linearly polarized light (LPL) from synchrotron radiation and circularly polarized light (CPL) from a free electron laser. After the irradiation, we evaluated optical anisotropy by measuring the circular dichroism (CD) spectra and verified that new Cotton peaks appeared at almost the same peak position as those of the corresponding non-racemic amino acid films. With LPL irradiation, two-dimensional anisotropic structure expressed as linear dichroism and/or linear birefringence was introduced into the racemic films. With CPL irradiation, the signs of the Cotton peaks exhibit symmetrical structure corresponding to the direction of CPL rotation. This indicates that some kinds of chiral structure were introduced into the racemic film. The CD spectra after CPL irradiation suggest the chiral structure should be derived from not only preferential photolysis but also from photolysis-induced molecular structural change. These results suggest that circularly polarized light sources in space could be associated with the origin of terrestrial homochirality; that is, they would be effective asymmetric exciting sources introducing chiral structures into bio-organic molecules or complex organic compounds. PMID:19742124

  18. Control of wheeled mobile robot in restricted environment

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  19. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  20. Stable orbits for lunar landing assistance

    NASA Astrophysics Data System (ADS)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

Top