Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A
2018-06-01
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
Pelton, Kristine; Freeman, Michael R.; Montgomery, R. Bruce
2012-01-01
Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR. PMID:22279565
THE PATHOGENESIS OF HYPERLIPEMIA INDUCED BY MEANS OF SURFACE-ACTIVE AGENTS
Hirsch, Robert L.; Kellner, Aaron
1956-01-01
Rabbits subjected to subtotal hepatectomy failed to develop increased serum cholesterol levels following parenteral injection of triton WR 1339, the finding indicating that the liver is essential for the establishment of the hypercholesterolemia induced by surface-active agents. The cholesterol content of the livers of rabbits rendered hyperlipemic by means of triton remained unchanged both during the rapid rise of the serum cholesterol levels and during the return to normal values. By contrast, the cholesterol content of the livers of rabbits fed cholesterol rose progressively over a period of 5 weeks, concommittant with the increase in serum cholesterol levels. The findings provide support for the hypothesis that surface-active agents bring about hyperlipemia by altering the circulating lipoproteins in some manner so that they are retained in the circulating body fluids. PMID:13332177
Morinaga, Jun; Zhao, Jiabin; Endo, Motoyoshi; Kadomatsu, Tsuyoshi; Miyata, Keishi; Sugizaki, Taichi; Okadome, Yusuke; Tian, Zhe; Horiguchi, Haruki; Miyashita, Kazuya; Maruyama, Nobuhiro; Mukoyama, Masashi; Oike, Yuichi
2018-01-01
Angiopoietin-like proteins (ANGPTLs) 3, 4, and 8 reportedly contribute to progression of metabolic disease, a risk factor for cardiovascular disease (CVD). The purpose of this study was to investigate whether circulating ANGPTL levels are associated with CVD risk after adjustment for potential confounding factors. We conducted a single center, cross-sectional study of 988 Japanese subjects undergoing routine health checks. Serum ANGPTL3, 4, and 8 levels were measured using an enzyme-linked immunosorbent assay. Using multiple regression analysis we evaluated potential association of circulating ANGPTL3, 4, and 8 levels with general medical status including age, sex, smoking, drinking, obesity, hypertension, impaired glycometabolism, dyslipidemia, hyperuricemia, hepatic impairment, chronic kidney disease, anemia, cardiac abnormality, and inflammation. Circulating ANGPTL3 levels were relatively high in health-related categories of hepatic impairment and inflammation. Circulating ANGPTL4 levels were also significantly high in impaired glycometabolism or hepatic impairment but decreased in inflammation. Finally, increased ANGPTL8 levels were observed in obesity, impaired glycometabolism and dyslipidemia. Particularly, increased levels of circulating ANGPTL8 were positively correlated with circulating triglycerides and LDL-cholesterol levels and inversely correlated with circulating HDL-cholesterol levels. Circulating ANGPTL3, 4, and 8 levels reflect some risk factors for CVD development.
Hypercholesterolemia Induces Angiogenesis and Accelerates Growth of Breast Tumors in Vivo
Pelton, Kristine; Coticchia, Christine M.; Curatolo, Adam S.; Schaffner, Carl P.; Zurakowski, David; Solomon, Keith R.; Moses, Marsha A.
2015-01-01
Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo. PMID:24952430
Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9[S
Ason, Brandon; Tep, Samnang; Davis, Harry R.; Xu, Yiming; Tetzloff, Glen; Galinski, Beverly; Soriano, Ferdie; Dubinina, Natalya; Zhu, Lei; Stefanni, Alice; Wong, Kenny K.; Tadin-Strapps, Marija; Bartz, Steven R.; Hubbard, Brian; Ranalletta, Mollie; Sachs, Alan B.; Flanagan, W. Michael; Strack, Alison; Kuklin, Nelly A.
2011-01-01
Reducing circulating LDL-cholesterol (LDL-c) reduces the risk of cardiovascular disease in people with hypercholesterolemia. Current approaches to reduce circulating LDL-c include statins, which inhibit cholesterol synthesis, and ezetimibe, which blocks cholesterol absorption. Both elevate serum PCSK9 protein levels in patients, which could attenuate their efficacy by reducing the amount of cholesterol cleared from circulation. To determine whether PCSK9 inhibition could enhance LDL-c lowering of both statins and ezetimibe, we utilized small interfering RNAs (siRNAs) to knock down Pcsk9, together with ezetimibe, rosuvastatin, and an ezetimibe/rosuvastatin combination in a mouse model with a human-like lipid profile. We found that ezetimibe, rosuvastatin, and ezetimibe/rosuvastatin combined lower serum cholesterol but induce the expression of Pcsk9 as well as the Srebp-2 hepatic cholesterol biosynthesis pathway. Pcsk9 knockdown in combination with either treatment led to greater reductions in serum non-HDL with a near-uniform reduction of all LDL-c subfractions. In addition to reducing serum cholesterol, the combined rosuvastatin/ezetimibe/Pcsk9 siRNA treatment exhibited a significant reduction in serum APOB protein and triglyceride levels. Taken together, these data provide evidence that PCSK9 inhibitors, in combination with current therapies, have the potential to achieve greater reductions in both serum cholesterol and triglycerides. PMID:21262787
Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo.
Pelton, Kristine; Coticchia, Christine M; Curatolo, Adam S; Schaffner, Carl P; Zurakowski, David; Solomon, Keith R; Moses, Marsha A
2014-07-01
Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Interaction between statin use and saturated fat intake in relation to cognitive test performance
USDA-ARS?s Scientific Manuscript database
Strokes, microvascular disease, and Alzheimer’s disease adversely affect cognitive function in older people. High circulating cholesterol levels and amyloid-beta peptide deposition contribute to these conditions. Statins lower serum cholesterol by interfering with cholesterol biosynthesis, and they ...
Effects of Diet High in Palmitoleic Acid on Serum Lipid Levels and Metabolism
2000-07-01
cholesterol , high - density a typical American diet. lipoprotein cholesterol , and triglyceride ...group imbalance resulting from density lipoprotein ( HDL ) cholesterol , and triglyceride dropouts or exclusions during the run-in or early in the levels...Circulation 1997;95:69-75. 15. Austin MA, Rodriguez BL, McKnight B, JD Curb. Low- density lipoprotein (LDL) particle size and plasma triglyceride ( TG
Abdullah, Mohammad M H; Jones, Peter J H; Eck, Peter K
2015-08-01
Cholesterol metabolism is a well-defined responder to dietary intakes and a classic biomarker of cardiovascular health. For this reason, circulating cholesterol levels have become key in shaping nutritional recommendations by health authorities worldwide for better management of cardiovascular disease, a leading cause of mortality and one of the most costly health problems globally. Data from observational and dietary intervention studies, however, highlight a marked between-individual variability in the response of cholesterol metabolism to similar dietary protocols, a phenomenon linked to genetic heterogeneity. This review summarizes the postgenomic evidence of polymorphisms within cholesterol-associated genes relative to fasting circulating cholesterol levels under diverse nutritional conditions. A number of cholesterol-related gene-diet interactions are confirmed, which may have clinical importance, supporting a deeper look into the rapidly emerging field of nutrigenetics for meaningful conclusions that may eventually lead to genetically targeted dietary recommendations in the era of personalized nutrition. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Trans fatty acids and cholesterol levels: an evidence map of the available science
USDA-ARS?s Scientific Manuscript database
High intakes of industrial trans fatty acids (iTFA) increase circulating low density lipoprotein cholesterol (LDL-C) levels, which has implicated iTFA in coronary heart disease (CHD) risk. Published data on iTFA and LDL-C, however, represent higher intake levels than the U.S. population currently co...
Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.
Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L
2017-09-01
The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile. Copyright © 2017 by the Endocrine Society
Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model
USDA-ARS?s Scientific Manuscript database
Cholestyramine(CA)is a bile acid sequestrant widely used as a cholesterol-lowering drug to treat hypercholesterolemia, one of the major risk factors for cardiovascular disease. Despite the wide use of CA its effect on cholesterol and lipid metabolism at a molecular level and over the long term remai...
Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart
2016-03-11
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.
Serum lipid concentrations in six canid and four ursid species in four zoos.
Crissey, Susan D; Ange, Kimberly D; Slifka, Kerri A; Sadler, William; Kahn, Stephen; Ward, Ann M
2004-03-01
Serum lipid levels were measured in healthy captive wild canids and ursids, and the values were compared with previously published data. Serum lipid levels were evaluated in blood samples collected from eight African wild dogs (Lycaon pictus), three arctic foxes (Alopex lagopus), nine gray wolves (Canis lupus), four maned wolves (Chrysocyon brachyurus), two Mexican wolves (Canis lupus baleiyi), nine red wolves (Canis rufus), two brown bears (Ursus arctos), six polar bears (Ursus maritimus), six spectacled bears (Tremarctos ornatus), and five sun bears (Ursus malayanus). Samples were analyzed for total cholesterol, triacylglycerides, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol. Although the results showed a great variation among species, circulating lipids appeared especially high, sometimes extremely so, in the spectacled bears, polar bears, sun bears, and maned wolves compared with all other species sampled. The study provides a substantial basis for comparing lipid levels in presumed healthy animals and indicates a need for controlled study of the effects of diet on circulating lipid levels.
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.
Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C
2011-10-01
Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Association of Circulating C1q/TNF-Related Protein 1 Levels with Coronary Artery Disease in Men
Yuasa, Daisuke; Ohashi, Koji; Shibata, Rei; Takeshita, Kyosuke; Kikuchi, Ryosuke; Takahashi, Ryotaro; Kataoka, Yoshiyuki; Miyabe, Megumi; Joki, Yusuke; Kambara, Takahiro; Uemura, Yusuke; Matsuo, Kazuhiro; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Ikeda, Nobuo; Murohara, Toyoaki; Ouchi, Noriyuki
2014-01-01
Objective Obesity is a major risk factor for cardiovascular disease. Recent evidence demonstrates that dysregulation of fat-derived hormones, also known as adipokines, is linked with the pathogenesis of obesity-related disorders including coronary artery disease (CAD). Here, we investigated whether circulating level of an adipokine C1q/TNF-related protein (CTRP) 1 is associated with the prevalence of CAD. Methods and Results Consecutive 76 male CAD patients were enrolled from inpatients that underwent coronary angiography. Sixty four healthy male subjects served as controls. Plasma CTRP1 concentration was determined by enzyme-linked immunosorbent assay. CTRP1 levels were correlated positively with systolic blood pressure (BP) and triglyceride levels, and negatively with HDL cholesterol levels in all subjects. Plasma levels of CTRP1 were significantly higher in CAD patients than in control subjects (CAD: 443.3±18.6 ng/ml, control: 307.8±21.5 ng/ml, p<0.001). Multiple logistic regression analysis with body mass index, systolic BP, glucose, total cholesterol, HDL cholesterol, triglyceride, adiponectin and CTRP1 revealed that CTRP1 levels, together with systolic BP and HDL cholesterol, correlated with CAD. Conclusions Our data indicate the close association of high CTRP1 levels with CAD prevalence, suggesting that CTRP1 represents a novel biomarker for CAD. PMID:24945145
Beyond Reasonable Doubt: Who Is the Culprit in Lipotoxicity in NAFLD/NASH?
Arteel, Gavin E.
2016-01-01
BACKGROUND & AIMS Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. METHODS Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. RESULTS Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. CONCLUSIONS In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. PMID:22422583
Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina
2010-08-01
To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL
Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart
2016-01-01
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651
Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich
2017-05-01
This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, p<0.001) and increased markers of cholesterol synthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.
Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M
2015-11-01
Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.
Webb, M. S.; Harasym, T. O.; Masin, D.; Bally, M. B.; Mayer, L. D.
1995-01-01
This study reports on the development of a liposomal formulation of vincristine with significantly enhanced stability and biological properties. The in vitro and in vivo pharmacokinetic, tumour delivery and efficacy properties of liposomal vincristine formulations based on sphingomyelin (SM) and cholesterol were compared with liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol. SM/cholesterol liposomes had significantly greater in vitro stability than did similar DSPC/cholesterol liposomes. SM/cholesterol liposomes also had significantly improved biological properties compared with DSPC/cholesterol. Specifically, SM/cholesterol liposomes administered intravenously retained 25% of the entrapped vincristine after 72 h in the circulation, compared with 5% retention in DSPC/cholesterol liposomes. The improved retention properties of SM/cholesterol liposomes resulted in plasma vincristine levels 7-fold higher than in DSPC/cholesterol liposomes. The improved circulation lifetime of vincristine in SM/cholesterol liposomes correlated with increased vincristine accumulation in peritoneal ascitic murine P388 tumours and in subcutaneous solid A431 human xenograft tumours. Increased vincristine delivery to tumours was also accompanied by increased anti-tumour efficacy. Treatment with SM/cholesterol liposomal formulations of vincristine resulted in greater than 50% cures in mice bearing ascitic P388 tumours, an activity that could not be achieved with the DSPC/cholesterol formulation. Similarly, treatment of mice with severe combined immunodeficiency (SCID) bearing solid human A431 xenograft tumours with SM/cholesterol vincristine formulations delayed the time required for 100% increase in tumour mass to > 40 days, compared with 5 days, 7 days and 14 days for mice receiving no treatment or treatment with free vincristine or DSPC/cholesterol formulations of vincristine respectively. PMID:7547237
Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.
Othman, Rgia A; Myrie, Semone B; Jones, Peter J H
2013-12-01
Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. Copyright © 2013. Published by Elsevier Ireland Ltd.
Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans[S
Bonde, Ylva; Breuer, Olof; Lütjohann, Dieter; Sjöberg, Stefan; Angelin, Bo; Rudling, Mats
2014-01-01
Reduced plasma LDL-cholesterol is a hallmark of hyperthyroidism and is caused by transcriptional stimulation of LDL receptors in the liver. Here, we investigated whether thyroid hormone (TH) actions involve other mechanisms that may also account for the reduction in LDL-cholesterol, including effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) and bile acid synthesis. Twenty hyperthyroid patients were studied before and after clinical normalization, and the responses to hyperthyroidism were compared with those in 14 healthy individuals after 14 days of treatment with the liver-selective TH analog eprotirome. Both hyperthyroidism and eprotirome treatment reduced circulating PCSK9, lipoprotein cholesterol, apoB and AI, and lipoprotein(a), while cholesterol synthesis was stable. Hyperthyroidism, but not eprotirome treatment, markedly increased bile acid synthesis and reduced fibroblast growth factor (FGF) 19 and dietary cholesterol absorption. Eprotirome treatment, but not hyperthyroidism, reduced plasma triglycerides. Neither hyperthyroidism nor eprotirome treatment altered insulin, glucose, or FGF21 levels. TH reduces circulating PSCK9, thereby likely contributing to lower plasma LDL-cholesterol in hyperthyroidism. TH also stimulates bile acid synthesis, although this response is not critical for its LDL-lowering effect. PMID:25172631
Goedeke, Leigh; Rotllan, Noemi; Ramírez, Cristina M.; Aranda, Juan F.; Canfrán-Duque, Alberto; Araldi, Elisa; Fernández-Hernando, Ana; Langhi, Cedric; de Cabo, Rafael; Baldán, Ángel; Suárez, Yajaira; Fernández-Hernando, Carlos
2015-01-01
Rationale Recently, there has been significant interest in the therapeutic administration of miRNA mimics and inhibitors to treat cardiovascular disease. In particular, miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism and potential therapeutic target for treating atherosclerosis. Despite this, the impact of miR-27b on lipid levels in vivo remains to be determined. As such, here we set out to further characterize the role of miR-27b in regulating cholesterol metabolism in vitro and to determine the effect of miR-27b overexpression and inhibition on circulating and hepatic lipids in mice. Methods and Results Our results identify miR-27b as an important regulator of LDLR activity in human and mouse hepatic cells through direct targeting of LDLR and LDLRAP1. In addition, we report that modulation of miR-27b expression affects ABCA1 protein levels and cellular cholesterol efflux to ApoA1 in human hepatic Huh7 cells. Overexpression of pre-miR-27b in the livers of wild-type mice using AAV8 vectors increased pre-miR-27b levels 50–fold and reduced hepatic ABCA1 and LDLR expression by 50% and 20%, respectively, without changing circulating and hepatic cholesterol and triglycerides. To determine the effect of endogenous miR-27b on circulating lipids, wild-type mice were fed a Western diet for one month and injected with 5 mg/kg of LNA control or LNA anti-miR-27b oligonucleotides. Following two weeks of treatment, the expression of ABCA1 and LDLR were increased by 10–20% in the liver, demonstrating effective inhibition of miR-27b function. Intriguingly, no differences in circulating and hepatic lipids were observed between treatment groups. Conclusions The results presented here provide evidence that short-term modulation of miR-27b expression in wild-type mice regulates hepatic LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels. PMID:26520906
Maturation of high-density lipoproteins
Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus
2009-01-01
Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799
PCSK9 inhibition: the dawn of a new age in cholesterol lowering?
Preiss, David; Mafham, Marion
2017-03-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating enzyme of hepatic origin that plays a key role in LDL receptor turnover. Genetic studies have confirmed that individuals with gain-of-function PCSK9 mutations have increased PCSK9 activity, elevated LDL-cholesterol levels and a severe form of familial hypercholesterolaemia. Those with variants leading to reduced PCSK9 have lower LDL-cholesterol levels and a reduced risk of coronary heart disease, and this has led to the development of various strategies aimed at reducing circulating PCSK9. Monoclonal antibodies to PCSK9, given every 2-4 weeks by subcutaneous injection, have been shown to reduce LDL-cholesterol by 50-60% compared with placebo in individuals with and without diabetes. PCSK9 inhibition also reduces lipoprotein(a), an atherogenic lipid particle, by around 20-30%. Major cardiovascular outcome trials for two agents, evolocumab and alirocumab, are expected to report from 2017. These trials involve over 45,000 participants and are likely to include about 15,000 individuals with diabetes. PCSK9-binding adnectins have been employed as an alternative method of removing circulating PCSK9. Small interfering RNA targeting messenger RNA for PCSK9, which acts by reducing hepatic production of PCSK9, is also under investigation. These agents may only need to be given by subcutaneous injection once every 4-6 months. Ongoing trials will determine whether anti-PCSK9 antibody therapy safely reduces cardiovascular risk, although high cost may limit its use. Development of PCSK9-lowering technologies cheaper than monoclonal antibodies will be necessary for large numbers of individuals to benefit from this approach to lowering cholesterol.
Wang, Guang; Liu, Jia; Yang, Ning; Hu, Yanjin; Zhang, Heng; Miao, Li; Yao, Zhi; Xu, Yuan
2016-06-01
Fibroblast growth factor 21 (FGF21) is an important endogenous regulator of energy metabolism. Thyroid hormone has been shown to regulate hepatic FGF21 expression in rodents. The goal of this study was to evaluate the plasma FGF21 levels in participants with normal thyroid function, subclinical hypothyroidism, or overt hypothyroidism and to investigate the change of plasma FGF21 levels in patients with overt hypothyroidism after levothyroxine treatment. A total of 473 drug-naive participants were recruited, including 250 healthy control subjects, 116 patients with subclinical hypothyroidism, and 107 patients with overt hypothyroidism. Thirty-eight patients with overt hypothyroidism were assigned to receive levothyroxine treatment. The overt hypothyroidism group had decreased FGF21 levels compared with the control and subclinical hypothyroidism groups (P<0.01). Levothyroxine treatment markedly attenuated the increased circulating levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (hsCRP), and homeostasis model assessment index of insulin resistance (HOMA-IR) in patients with overt hypothyroidism. A significant increase in plasma FGF21 levels was observed after levothyroxine treatment (P<0.01). The change in FGF21 levels was correlated with the increase of FT3 and FT4 after levothyroxine treatment (FT3: r=0.44; FT4: r=0.53; all P<0.05). Levothyroxine treatment ameliorated metabolic disorders and restored the decreased circulating FGF21 levels in patients with overt hypothyroidism. The increase in FGF21 levels after levothyroxine treatment might be partly associated with the amelioration of metabolic disorders in patients with hypothyroidism. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes. PMID:27023132
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes.
Pu, Shuaihua; Rodríguez-Pérez, Celia; Ramprasath, Vanu Ramkumar; Segura-Carretero, Antonio; Jones, Peter J H
2016-12-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel circulating protein which plays an important role in regulation of cholesterol metabolism by promoting hepatic LDL receptor degradation. However, the action of dietary fat composition on PCSK9 levels remains to be fully elucidated. The objective was to investigate the action of different dietary oils on circulating PCSK9 levels in the Canola Oil Multicenter Intervention Trial (COMIT). COMIT employed a double-blinded crossover randomized control design, consisting of five 30-d treatment periods. Diets were provided based on a 3000Kcal/d intake, including a 60g/d treatment of conventional canola oil (Canola), a high oleic canola/DHA oil blend (CanolaDHA), a corn/safflower oil blend (CornSaff), a flax/safflower oil blend (FlaxSaff) or a high oleic canola oil (CanolaOleic). Plasma PCSK9 levels were assessed using ELISA at the end of each phase. Lipid profiles (n=84) showed that CanolaDHA feeding resulted in the highest (P<0.05) serum total cholesterol (TC, 5.06±0.09mmol/L) and LDL-cholesterol levels (3.15±0.08mmol/L) across all five treatments. CanolaDHA feeding also produced the lowest (P<0.05) plasma PCSK9 concentrations (216.42±8.77ng/mL) compared to other dietary oil treatments. Plasma PCSK9 levels positively correlated (P<0.05) with serum TC, LDL-cholesterol, apolipoprotein A, and apolipoprotein B levels but did not correlate to HDL-cholesterol levels. Results indicate that post-treatment response in PCSK9 may be altered with the CanolaDHA diet. In conclusion, the elevated LDL-C levels from a DHA oil treatment may not be relevant for the observed decline in PCSK9 levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Björkhem, I; Lövgren-Sandblom, A; Piehl, F; Khademi, M; Pettersson, H; Leoni, V; Olsson, T; Diczfalusy, U
2011-01-01
15-Oxygenated cholesterol species such as 5α-cholest-8(14)ene-3β,15α-diol (15HC) and 3β-hydroxy-5α-cholest-8(14)-en-15-one (15KC) are commercially available synthetic products unlikely to occur in biological systems. Surprisingly, Farez et al. recently reported that these two steroids occur in human circulation at levels considerably higher than those of any other endogenous oxysterol [Farez, M. et al. 2009. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10: 958-964]. The levels were reported to be increased in patients with multiple sclerosis in a progressive phase and the authors suggested that this could be utilized diagnostically. Based on extensive in vitro experiments exposing cells to the same high levels of 15HC as found in vivo (1000 ng/ml) the authors concluded that 15HC may be an important pathogenetic factor in multiple sclerosis. Using combined gas chromatography-mass spectrometry we fail to detect significant plasma levels of 15HC either in healthy controls or in patients with multiple sclerosis (levels < 2 ng/ml). If 15KC is present in these plasma samples, the concentration of it must be <10 ng/ml. Our failure to detect significant levels of the above steroids could not be due to loss during hydrolysis and work-up because recovery of the added two oxysterols was close to 100%. Autoxidation of lipoprotein-bound cholesterol resulted in extensive conversion of cholesterol into 7-oxygenated but not 15-oxygenated sterols. We conclude that if present there are trace amounts only of the above 15-oxygenated steroids in human circulation and that the role of such oxysterols as pathogenetic factors and biomarkers must be reconsidered.
Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja
2016-04-22
Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases.
Marchand, Geneviève B; Carreau, Anne-Marie; Weisnagel, S John; Bergeron, Jean; Labrie, Fernand; Lemieux, Simone; Tchernof, André
2018-05-01
The relationship between circulating estrogen levels and cardiometabolic risk factors such as insulin resistance is unclear in postmenopausal women. High estradiol (E 2 ) levels have been reported to predict increased risk of type 2 diabetes in this population. We aimed to examine associations among estrogen levels, adiposity measurements, and cardiometabolic risk variables including insulin resistance in postmenopausal women. One hundred-one healthy participants (mean ± SD: age 57 ± 4 yr, BMI 27.9 ± 4.8 kg/m 2 ) were included in the analysis. Fifteen plasma steroids or metabolites were measured by liquid chromatography-tandem mass spectrometry. Insulin sensitivity was assessed with a hyperinsulinemic-euglycemic clamp. Body composition and fat distribution were determined with hydrostatic weighing and computed tomography, respectively. Blood lipids and circulating cytokines were also measured. Circulating E 2 was positively correlated with all adiposity indexes ( r = 0.62 to 0.42, P < 0.0001) except waist-to-hip ratio. E 2 was positively correlated with VLDL-cholesterol, plasma-, VLDL-, and HDL-triglyceride levels ( r = 0.31 to 0.24, P < 0.02) as well as with hs-CRP and IL-6 ( r = 0.52 and 0.29, P < 0.005) and negatively with HDL-cholesterol, adiponectin, and insulin sensitivity ( r = -0.36 to -0.20, P < 0.02). With adjustments for percent body fat, correlations between E 2 and metabolic risk variables were no longer significant. Similar results were observed for circulating estrone (E 1 ) and estrone-sulfate (E 1 -S) levels. In conclusion, circulating estrogen concentrations are proportional to adipose mass in postmenopausal women, although they remain in the low range. Insulin resistance as well as altered blood lipids and cytokines are observed when circulating estrogen levels are high within that range, but these differences are explained by concomitant variation in total adiposity.
Overexpression of porcine lipoprotein-associated phospholipase A2 in swine.
Tang, Xiaochun; Wang, Gangqi; Liu, Xingxing; Han, Xiaolei; Li, Zhuang; Ran, Guangyao; Li, Zhanjun; Song, Qi; Ji, Yuan; Wang, Haijun; Wang, Yuhui; Ouyang, Hongsheng; Pang, Daxin
2015-09-25
Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is associated with the risk of vascular disease. It circulates in human blood predominantly in association with low-density lipoprotein cholesterol (LDL-C) and hydrolyses oxidized phospholipids into pro-inflammatory products. However, in the mouse circulation, it predominantly binds to high-density lipoprotein cholesterol (HDL-C) and exhibits anti-inflammatory properties. To further investigate the effects of Lp-PLA2 in the circulation, we generated over-expressed Lp-PLA2 transgenic swine. The eukaryotic expression plasmid of porcine Lp-PLA2 which driven by EF1α promoter was constructed and generate transgenic swine via SCNT. The expression and activity of Lp-PLA2 in transgenic swine were evaluated, and the total cholesterol (TC), HDL-C, LDL-C and triglyceride (TG) levels in the fasting and fed states were also assessed. Compared with wild-type swine controls, the transgenic swine exhibited elevated Lp-PLA2 mRNA levels and activities, and the activity did not depend on the feeding state. The TC, HDL-C and LDL-C levels were not significantly increased. There was no change in the TG levels in the fasting state between transgenic and control pigs. However, in the fed state, the TG levels of transgenic swine were slightly increased compared with the control pigs and were significantly elevated compared with the fasting state. In addition, inflammatory gene (interleukin [IL]-6, monocyte chemotactic protein [MCP]-1 and tumor necrosis factor [TNF]-α) mRNA levels in peripheral blood mononuclear cells (PBMCs) were significantly increased. The results demonstrated that Lp-PLA2 is associated with triglycerides which may be helpful for understanding the relationship of this protein with cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth
2015-04-01
Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives. Copyright © 2015 Elsevier Inc. All rights reserved.
Gendle, Mathew H
2016-12-01
Dyslipidemia is a common pathology throughout the industrialized world, and HMG-CoA reductase inhibitors (statins) are often administered to treat elevated lipid levels. Substantial concern has been raised regarding the aggressive clinical lowering of cholesterol, particularly in light of a growing body of research linking low circulating lipid levels with negative behavioral outcomes in both human samples and non-human primate models. In 2009, Goldstein and colleagues tentatively speculated that the greed, impulsiveness, and lack of foresight that lead to the worldwide economic collapse in 2007-2008 could have been caused (in part) by depressed population cholesterol levels resulting from the widespread use of statins by workers in the financial services industry. This paper reviews the literature that links low circulating lipid levels with neurobehavioral dysfunction, develops Goldstein and colleagues' initial speculation into a formal hypothesis, and proposes several specific studies that could rigorously empirically evaluate this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Yanjun; Luo, Xiaohe; Ji, Ying; Xie, Jingwen; Jiang, Han; Fu, Mao; Li, Xiaoqiang
2017-09-01
C1q/TNF-related protein-9 (CTRP9) is a novel adipokine that has been shown to promote lipid metabolism, enhance insulin sensitivity and protect against cardiovascular disease. However, previous studies in humans have produced controversial results regarding the association between CTRP9 and insulin resistance. The objective of this study was to evaluate the relationships between CTRP9 and insulin resistance in Chinese population. Subjects with normal glucose tolerance (NGT, n=108), impaired glucose tolerance (IGT, n=92), and newly diagnosed type 2 diabetes mellitus (nT2DM, n=106) were recruited to determining the circulating CTRP9 and adiponectin levels by enzyme linked immunosorbent assay. Anthropometric and biochemical measurements related to insulin resistance, adiposity and lipid profile were examined for all participants. Oral glucose tolerance test was performed in healthy subjects (17 male and 17 female). Circulating CTRP9 level was significantly higher in both IGT and nT2DM than in individuals with NGT. Overweight/obese subjects had much higher CTRP9 levels than lean individuals, and in all subjects, females also had higher CTRP9 levels than males. In addition, circulating CTRP9 level was positively correlated with markers of obesity and insulin resistance, including body mass index, fasting blood glucose, insulin, HbA1c, homeostasis model assessment of insulin resistance and low-density lipoprotein-cholesterol, while was inversely correlated with high-density lipoprotein-cholesterol and adiponectin. Moreover, hyperglycemia during an oral glucose challenge increased circulating CTRP9 concentrations. We conclude that CTRP9 was strongly associated with insulin resistance, suggesting that CTRP9 might be important in the development of type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T
2015-07-01
The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. © Georg Thieme Verlag KG Stuttgart · New York.
Monteleone, Palmiero; Santonastaso, Paolo; Pannuto, Marilena; Favaro, Angela; Caregaro, Lorenza; Castaldo, Eloisa; Zanetti, Tatiana; Maj, Mario
2005-04-30
Increased levels of cholesterol have been reported in patients with bulimia nervosa (BN), but all but one of the published studies were performed on non-fasting subjects, which limits the interpretation of this finding. Moreover, the relationships between serum lipids and comorbid psychiatric disorders or bulimic psychopathology have scarcely been investigated. We measured serum levels of total cholesterol, triglycerides, glucose, 17beta-estradiol and thyroid hormones in 75 bulimic women and 64 age-matched healthy females after an overnight fast. Compared with healthy women, bulimic patients exhibited significantly enhanced serum levels of cholesterol and triglycerides, but similar values of glucose, 17beta-estradiol, FT3 and FT4. No significant differences emerged in these variables between patients with or without comorbid depression, borderline personality disorder or lifetime anorexia nervosa. Circulating cholesterol was positively correlated to the patients' drive for thinness, ineffectiveness, enteroceptive awareness and impulse regulation sub-item scores of the Eating Disorder Inventory-2. These findings confirm that BN is associated with increased levels of serum lipids. This alteration may be involved in the pathophysiology of certain psychopathological characteristics of BN and cannot be explained by the co-occurrence of other psychiatric disorders.
Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y
2016-12-07
Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.
Ason, Brandon; van der Hoorn, José W A; Chan, Joyce; Lee, Edward; Pieterman, Elsbet J; Nguyen, Kathy Khanh; Di, Mei; Shetterly, Susan; Tang, Jie; Yeh, Wen-Chen; Schwarz, Margrit; Jukema, J Wouter; Scott, Rob; Wasserman, Scott M; Princen, Hans M G; Jackson, Simon
2014-11-01
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15-30% lower circulating LDL-C and a disproportionately lower risk (47-88%) of experiencing a cardiovascular event. Here, we utilized pcsk9(-/-) mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9(-/-) mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (-45%) and TGs (-36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (-91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro
2016-09-01
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Neutrophil Membrane Cholesterol Content is a Key Factor in Cystic Fibrosis Lung Disease.
White, Michelle M; Geraghty, Patrick; Hayes, Elaine; Cox, Stephen; Leitch, William; Alfawaz, Bader; Lavelle, Gillian M; McElvaney, Oliver J; Flannery, Ryan; Keenan, Joanne; Meleady, Paula; Henry, Michael; Clynes, Martin; Gunaratnam, Cedric; McElvaney, Noel G; Reeves, Emer P
2017-09-01
Identification of mechanisms promoting neutrophil trafficking to the lungs of patients with cystic fibrosis (CF) is a challenge for next generation therapeutics. Cholesterol, a structural component of neutrophil plasma membranes influences cell adhesion, a key step in transmigration. The effect of chronic inflammation on neutrophil membrane cholesterol content in patients with CF (PWCF) remains unclear. To address this we examined neutrophils of PWCF to evaluate the cause and consequence of altered membrane cholesterol and identified the effects of lung transplantation and ion channel potentiator therapy on the cellular mechanisms responsible for perturbed membrane cholesterol and increased cell adhesion. PWCF homozygous for the ΔF508 mutation or heterozygous for the G551D mutation were recruited (n=48). Membrane protein expression was investigated by mass spectrometry. The effect of lung transplantation or ivacaftor therapy was assessed by ELISAs, and calcium fluorometric and μ-calpain assays. Membranes of CF neutrophils contain less cholesterol, yet increased integrin CD11b expression, and respond to inflammatory induced endoplasmic reticulum (ER) stress by activating μ-calpain. In vivo and in vitro, increased μ-calpain activity resulted in proteolysis of the membrane cholesterol trafficking protein caveolin-1. The critical role of caveolin-1 for adequate membrane cholesterol content was confirmed in caveolin-1 knock-out mice. Lung transplant therapy or treatment of PWCF with ivacaftor, reduced levels of circulating inflammatory mediators and actuated increased caveolin-1 and membrane cholesterol, with concurrent normalized neutrophil adhesion. Results demonstrate an auxiliary benefit of lung transplant and potentiator therapy, evident by a reduction in circulating inflammation and controlled neutrophil adhesion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys[S
Brodeur, Mathieu R.; Rhainds, David; Charpentier, Daniel; Mihalache-Avram, Teodora; Mecteau, Mélanie; Brand, Geneviève; Chaput, Evelyne; Perez, Anne; Niesor, Eric J.; Rhéaume, Eric; Maugeais, Cyrille; Tardif, Jean-Claude
2017-01-01
Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment. PMID:28515138
TSHB mRNA is linked to cholesterol metabolism in adipose tissue.
Moreno-Navarrete, José María; Moreno, María; Ortega, Francisco; Xifra, Gemma; Hong, Shangyu; Asara, John M; Serrano, José C E; Jové, Mariona; Pissios, Pavlos; Blüher, Matthias; Ricart, Wifredo; Portero-Otin, Manuel; Fernández-Real, José Manuel
2017-10-01
Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-β ( TSHB ) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N -stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/β administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. © FASEB.
Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.
2016-01-01
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144
Emerging Treatments for Heterozygous and Homozygous Familial Hypercholesterolemia.
Baum, Seth J; Soffer, Daniel; Barton Duell, P
Familial hypercholesterolemia (FH) is an autosomal co-dominant disorder marked by extremely high low-density lipoprotein (LDL) cholesterol levels and concomitant premature vascular disease. FH is caused by mutations that most commonly affect three genes integrally involved in the LDL receptor's ability to clear LDL particles from the circulation. Primary intervention efforts to lower LDL cholesterol have centered on therapies that upregulate the LDL receptor. Unfortunately, most patients are insufficiently responsive to traditional LDL-lowering medications. This article focuses primarily on the clinical management of homozygous FH.
Igl, Wilmar; Kamal-Eldin, Afaf; Johansson, Asa; Liebisch, Gerhard; Gnewuch, Carsten; Schmitz, Gerd; Gyllensten, Ulf
2013-01-01
The high intake of game meat in populations with a subsistence-based diet may affect their blood lipids and health status. To examine the association between diet and circulating levels of blood lipid levels in a northern Swedish population. We compared a group with traditional lifestyle (TLS) based on reindeer herding (TLS group) with those from the same area with a non-traditional lifestyle (NTLS) typical of more industrialized regions of Sweden (NTLS group). The analysis was based on self-reported intake of animal source food (i.e. non-game meat, game meat, fish, dairy products and eggs) and the serum blood level of a number of lipids [total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), glycerophospholipids and sphingolipids]. The TLS group had higher cholesterol, LDL and HDL levels than the reference group. Of the TLS group, 65% had cholesterol levels above the threshold for increased risk of coronary heart disease (≥ 240 mg/dl), as compared to 38% of the NTLS group. Self-reported consumption of game meat was positively associated with TC and LDL. The high game meat consumption of the TLS group is associated with increased cholesterol levels. High intake of animal protein and fat and low fibre is known to increase the risk of cardiovascular disease, but other studies of the TLS in northern Sweden have shown comparable incidences of cardiovascular disease to the reference (NTLS) group from the same geographical area. This indicates that factors other than TC influence disease risk. One such possible factor is dietary phospholipids, which are also found in high amounts specifically in game meat and have been shown to inhibit cholesterol absorption.
Kirwan, Laura; Walsh, Marianne C; Celis-Morales, Carlos; Marsaux, Cyril F M; Livingstone, Katherine M; Navas-Carretero, Santiago; Fallaize, Rosalind; O'Donovan, Clare B; Woolhead, Clara; Forster, Hannah; Kolossa, Silvia; Daniel, Hannelore; Moschonis, George; Manios, Yannis; Surwillo, Agnieszka; Godlewska, Magdalena; Traczyk, Iwona; Drevon, Christian A; Gibney, Mike J; Lovegrove, Julie A; Martinez, J Alfredo; Saris, Wim H M; Mathers, John C; Gibney, Eileen R; Brennan, Lorraine
2016-12-01
Individual response to dietary interventions can be highly variable. The phenotypic characteristics of those who will respond positively to personalised dietary advice are largely unknown. The objective of this study was to compare the phenotypic profiles of differential responders to personalised dietary intervention, with a focus on total circulating cholesterol. Subjects from the Food4Me multi-centre study were classified as responders or non-responders to dietary advice on the basis of the change in cholesterol level from baseline to month 6, with lower and upper quartiles defined as responder and non-responder groups, respectively. There were no significant differences between demographic and anthropometric profiles of the groups. Furthermore, with the exception of alcohol, there was no significant difference in reported dietary intake, at baseline. However, there were marked differences in baseline fatty acid profiles. The responder group had significantly higher levels of stearic acid (18 : 0, P=0·034) and lower levels of palmitic acid (16 : 0, P=0·009). Total MUFA (P=0·016) and total PUFA (P=0·008) also differed between the groups. In a step-wise logistic regression model, age, baseline total cholesterol, glucose, five fatty acids and alcohol intakes were selected as factors that successfully discriminated responders from non-responders, with sensitivity of 82 % and specificity of 83 %. The successful delivery of personalised dietary advice may depend on our ability to identify phenotypes that are responsive. The results demonstrate the potential use of metabolic profiles in identifying response to an intervention and could play an important role in the development of precision nutrition.
Li, Dan; Fawaz, Maria V; Morin, Emily E; Ming, Ran; Sviridov, Denis; Tang, Jie; Ackermann, Rose; Olsen, Karl; Remaley, Alan T; Schwendeman, Anna
2018-01-02
Synthetic high density lipoprotein nanoparticles (sHDLs) capable of mobilizing excess cholesterol from atherosclerotic arteries and delivering it to the liver for elimination have been shown to reduce plaque burden in patients. Unfortunately, sHDLs have a narrow therapeutic index and relative to the endogenous HDL shorter circulation half-life. Surface modification with polyethylene glycol (PEG) was investigated for its potential to extend sHDL circulation in vivo. Various amounts (2.5, 5, and 10%) and different chain lengths (2 and 5 kDa) of PEG-modified lipids were incorporated in sHDL's lipid membrane. Incorporating PEG did not reduce the ability of sHDL to facilitate cholesterol efflux, nor did it inhibit cholesterol uptake by the liver cells. By either adding more PEG or using PEG of longer chain lengths, the circulation half-life was extended. Addition of PEG also increased the area under the curve for the phospholipid component of sHDL (p < 0.05), but not for the apolipoprotein A-I peptide component of sHDL, suggesting sHDL is remodeled by endogenous lipoproteins in vivo. The extended phospholipid circulation led to a higher mobilization of plasma free cholesterol, a biomarker for facilitation of reverse cholesterol transport. The area under the cholesterol mobilization increased about 2-4-fold (p < 0.05), with greater increases observed for longer PEG chains and higher molar percentages of incorporated PEGylated lipids. Mobilized cholesterol was associated primarily with the HDL fraction, led to a transient increase in VLDL cholesterol, and returned to baseline 24 h postdose. Overall, PEGylation of sHDL led to beneficial changes in sHDL particle pharmacokinetic and pharmacodynamic behaviors.
Zanotti, Ilaria; Greco, Daniela; Lusardi, Giulia; Zimetti, Francesca; Potì, Francesco; Arnaboldi, Lorenzo; Corsini, Alberto; Bernini, Franco
2013-01-01
Despite the efficacy in reducing acute rejection events in organ transplanted subjects, long term therapy with cyclosporine A is associated with increased atherosclerotic cardiovascular morbidity. We studied whether this drug affects the antiatherogenic process of the reverse cholesterol transport from macrophages in vivo. Cyclosporine A 50 mg/kg/d was administered to C57BL/6 mice by subcutaneous injection for 14 days. Macrophage reverse cholesterol transport was assessed by following [(3)H]-cholesterol mobilization from pre-labeled intraperitoneally injected macrophages, expressing or not apolipoprotein E, to plasma, liver and feces. The pharmacological treatment significantly reduced the amount of radioactive sterols in the feces, independently on the expression of apolipoprotein E in the macrophages injected into recipient mice and in absence of changes of plasma levels of high density lipoprotein-cholesterol. Gene expression analysis revealed that cyclosporine A inhibited the hepatic levels of cholesterol 7-alpha-hydroxylase, concomitantly with the increase in hepatic and intestinal expression of ATP Binding Cassette G5. However, the in vivo relevance of the last observation was challenged by the demonstration that mice treated or not with cyclosporine A showed the same levels of circulating beta-sitosterol. These results indicate that treatment of mice with cyclosporine A impaired the macrophage reverse cholesterol transport by reducing fecal sterol excretion, possibly through the inhibition of cholesterol 7-alpha-hydroxylase expression. The current observation may provide a potential mechanism for the high incidence of atherosclerotic coronary artery disease following the immunosuppressant therapy in organ transplanted recipients.
Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents.
Ward, Natalie; Sahebkar, Amirhossein; Banach, Maciej; Watts, Gerald
2017-12-01
Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.
NASA Astrophysics Data System (ADS)
Vaughan, M. K.; Brainard, G. C.; Reiter, R. J.
1984-09-01
Adult male Syrian hamsters were subjected to 1, 3, 5, 7 or 11 weeks of either natural winter conditions or rigorously controlled laboratory conditions (LD 10∶14; 22 ± 2‡C). Although both groups of hamsters gained weight over the course of the experiment, hamsters housed indoors were significantly heavier after 5 weeks of treatment compared to their outdoors counterparts. Animals housed under natural conditions exhibited a significant decrease in circulating levels of thyroxine (T4) and a rapid rise in triiodothyronine (T3) levels; the free T4 and free T3 index (FT4I and FT3I) mirrored the changes in circulating levels of the respective hormones. Laboratory-housed animals had a slight rise in T4 and FT4I at 3 weeks followed by a slow steady decline in these values; T3 and FT3I values did not change remarkably in these animals. Plasma cholesterol declined steadily over the course of the experiment in laboratory-maintained animals but increased slightly during the first 5 weeks in animals under natural conditions. Since the photoperiodic conditions were approximately of the same duration in these 2 groups, it is concluded that the major differences in body weight, thyroid hormone values and plasma cholesterol are due to some component (possibly temperature) in the natural environment.
Heshmati, Javad; Sepidarkish, Mahdi; Namazi, Nazli; Shokri, Fatemeh; Yavari, Mahsa; Fazelian, Siavash; Khorshidi, Masoud; Shidfar, Farzad
2018-03-21
Dyslipidemia is the main risk factor for developing cardiovascular disease. There are discrepancies in the effects of calcium supplementation on modulation of lipid status. Therefore, we aimed to summarize the effects of dietary calcium supplement on circulating lipoprotein concentrations and atherogenic indices in overweight and obese individuals. We conducted a systematic literature search from 2000 until July 2016. PubMed, Scopus, Cochran Library, and ISI Web of Science databases were searched for clinical trials written in English. Placebo controlled clinical trials on calcium or calcium with vitamin D supplement in overweight and obese indiciduals were considered. Finally, 11 clinical trials met the criteria and were included. Most studies (n = 9) evaluated Ca/D co-supplementation. Positive effects of calcium supplementation alone or with vitamin D were as follows: serum levels of total cholesterol (TC; n = 1), triglyceride (TG) concentrations (n = 1), serum levels of low-density lipoprotein cholesterol (LDL-C; n = 5) and high-density lipoprotein cholesterol (HDL-C; n = 3). Seven clinical trials reported atherogenic indices and three of them demonstrated beneficial effects of calcium supplementation on at least one atherogenic index. Calcium supplementation may not be helpful to reduce serum levels of TC and TG in overweight and obese individuals. However, it may modulate LDL-C and HDL-C concentration. More studies are warranted to clarify the effects of calcium supplementation on each atherogenic index.
USDA-ARS?s Scientific Manuscript database
Data is limited on measures influencing cholesterol homeostasis in subjects at high risk of developing cardiovascular disease (CVD) relative to established risk factors. To address this, we quantified circulating indicators of cholesterol homeostasis (plasma phytosterols and cholesterol precursor co...
Furuhashi, Masato; Omori, Akina; Matsumoto, Megumi; Kataoka, Yu; Tanaka, Marenao; Moniwa, Norihito; Ohnishi, Hirofumi; Yoshida, Hideaki; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji
2016-07-15
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to and degrades the low-density lipoprotein (LDL) receptor, leading to hypercholesterolemia and cardiovascular risk. Fatty acid binding protein 4 (FABP4/adipocyte FABP/aP2) is secreted from adipocytes in association with lipolysis, and circulating FABP4 has been reported to act as an adipokine for the development of insulin resistance and atherosclerosis. Elevated serum FABP4 level is associated with obesity, insulin resistance, dyslipidemia, and atherosclerosis. In this study, we examined the association between circulating levels of FABP4 and PCSK9 in a general population. A total of 265 subjects (male/female: 98/167) who were not on medication were recruited from subjects of the Tanno-Sobetsu Study, and concentrations of FABP4 and PCSK9 were measured. The level of FABP4, but not that of PCSK9, showed a gender difference, being higher in women than in men. FABP4 level was independently associated with gender, adiposity, renal dysfunction, and levels of cholesterol and PCSK9. There was a significant and gender-different correlation between PCSK9 level and age: negatively in men (r = -0.250, p = 0.013) and positively in women (r = 0.183, p = 0.018). After adjustment of age, gender, and LDL cholesterol level, PCSK9 level was positively and independently correlated with FABP4 concentration. In conclusion, PCSK9 level is differentially regulated by gender during aging. Circulating FABP4 is independently associated with the PCSK9 level, suggesting that elevation of FABP4 level as an adipokine leads to dyslipidemia through increased PCSK9 level and subsequent degradation of the LDL receptor. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanotechnology for Synthetic High Density Lipoproteins
Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad
2014-01-01
Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901
Evidence of health benefits of canola oil
Lin, Lin; Allemekinders, Hanja; Dansby, Angela; Campbell, Lisa; Durance-Tod, Shaunda; Berger, Alvin; Jones, Peter JH
2013-01-01
Canola oil-based diets have been shown to reduce plasma cholesterol levels in comparison with diets containing higher levels of saturated fatty acids. Consumption of canola oil also influences biological functions that affect various other biomarkers of disease risk. Previous reviews have focused on the health effects of individual components of canola oil. Here, the objective is to address the health effects of intact canola oil, as this has immediate practical implications for consumers, nutritionists, and others deciding which oil to consume or recommend. A literature search was conducted to examine the effects of canola oil consumption on coronary heart disease, insulin sensitivity, lipid peroxidation, inflammation, energy metabolism, and cancer cell growth. Data reveal substantial reductions in total cholesterol and low-density lipoprotein cholesterol, as well as other positive actions, including increased tocopherol levels and improved insulin sensitivity, compared with consumption of other dietary fat sources. In summary, growing scientific evidence supports the use of canola oil, beyond its beneficial actions on circulating lipid levels, as a health-promoting component of the diet. PMID:23731447
Depression of the Lecithin-Cholesterol Acyltransferase Reaction in Vitamin E-Deficient Monkeys,
Vitamin E deficiency in two species of monkeys reduced the esterification of cholesterol by the plasma lecithin -cholesterol acyltransferase reaction...depression in the concentration of circulating polyunsaturated fatty acid cholesteryl esters. Since the plasma lecithin -cholesterol acyltransferase...cholesterol by plasma from vitamin E-deficient monkeys is due to alteration of these sulfhydryl sites. A similar reduction in the plasma lecithin -cholesterol
Chen, Mei-Jou; Yang, Wei-Shiung; Chen, Hsin-Fu; Kuo, Jahn-Jahn; Ho, Hong-Nerng; Yang, Yu-Shih; Chen, Shee-Uan
2010-03-01
Follistatin levels have recently been considered as a marker for inflammation. Our objective was to evaluate the level of circulating follistatin and high-sensitivity C-reactive protein (hsCRP) in women with polycystic ovary syndrome (PCOS) after oral contraceptive (OC) treatment. A total of 56 Taiwanese women with PCOS were enrolled in this prospective observational study in which they were treated for 3 months with OCs (ethinyl estradiol-cyproterone acetate). Blood samples were taken at baseline after treatment during the withdrawal bleed. Body mass index (BMI), lipid profiles, plasma follistatin, hsCRP, fasting glucose, insulin for the homeostasis model assessment of insulin resistance (HOMA-IR) and hormone profiles were measured and analyzed. Total testosterone, free androgen index (FAI), dehydroepiandrosterone sulfate (DHEAS), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol levels were significantly lower, but total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, circulating follistatin and hsCRP were significantly higher than baseline in women with PCOS after treatment with OCs. An elevation of fasting insulin, HOMA-IR and hsCRP after OC treatment was more evident in non-obese than obese women, whereas the elevation of follistatin was significant in both obese and non-obese women. Follistatin and hsCRP levels all showed significant correlations with each other at baseline and after treatment. The differences in follistatin and hsCRP levels from baseline to after OC treatment were significantly associated with the difference in triglyceride levels. Both hsCRP and follistatin levels increase after OC treatment in women with PCOS. Follistatin seems more sensitive than hsCRP alone to represent the aggravated low-grade inflammatory status after OC treatment in obese and non-obese women with PCOS.
Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis.
Xu, Yingke; Toomre, Derek K; Bogan, Jonathan S; Hao, Mingming
2017-11-01
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Beneficial effects of cytokine induced hyperlipidemia.
Feingold, K R; Hardardóttir, I; Grunfeld, C
1998-01-01
Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and lipoproteins binding toxic agents and neutralizing their harmful effects. Thus, cytokines induce marked changes in lipid metabolism that lead to hyperlipidemia which represents part of the innate immune response and may be beneficial to the host.
Horton, J D; Cuthbert, J A; Spady, D K
1993-01-01
The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814
Bundy, Rafe; Walker, Ann F; Middleton, Richard W; Wallis, Carol; Simpson, Hugh C R
2008-09-01
Cardiovascular diseases are the chief causes of death in the UK, and are associated with high circulating levels of total cholesterol in the plasma. Artichoke leaf extracts (ALEs) have been reported to reduce plasma lipids levels, including total cholesterol, although high quality data is lacking. The objective of this trial was to assess the effect of ALE on plasma lipid levels and general well-being in otherwise healthy adults with mild to moderate hypercholesterolemia. 131 adults were screened for total plasma cholesterol in the range 6.0-8.0 mmol/l, with 75 suitable volunteers randomised onto the trial. Volunteers consumed 1280 mg of a standardised ALE, or matched placebo, daily for 12 weeks. Plasma total cholesterol decreased in the treatment group by an average of 4.2% (from 7.16 (SD 0.62) mmol/l to 6.86 (SD 0.68) mmol/l) and increased in the control group by an average of 1.9% (6.90 (SD 0.49) mmol/l to 7.03 (0.61) mmol/l), the difference between groups being statistically significant (p=0.025). No significant differences between groups were observed for LDL cholesterol, HDL cholesterol or triglyceride levels. General well-being improved significantly in both the treatment (11%) and control groups (9%) with no significant differences between groups. In conclusion, ALE consumption resulted in a modest but favourable statistically significant difference in total cholesterol after 12 weeks. In comparison with a previous trial, it is suggested that the apparent positive health status of the study population may have contributed to the modesty of the observed response.
Tabara, Yasuharu; Ueshima, Hirotsugu; Takashima, Naoyuki; Hisamatsu, Takashi; Fujiyoshi, Akira; Zaid, Maryam; Sumi, Masaki; Kohara, Katsuhiko; Miki, Tetsuro; Miura, Katsuyuki
2016-11-01
While alcohol consumption is known to increase plasma high-density lipoprotein (HDL) cholesterol levels, its relationship with low-density lipoprotein (LDL) cholesterol levels is unclear. Aldehyde dehydrogenase 2 (ALDH2) is a rate-controlling enzyme in alcohol metabolism, but a large number of Japanese people have the inactive allele. Here, we conducted a Mendelian randomization analysis using the ALDH2 genotype to clarify a causal role of alcohol on circulating cholesterol levels and lipoprotein particle numbers. This study was conducted in three independent general Japanese populations (men, n = 2289; women, n = 1940; mean age 63.3 ± 11.2 years). Alcohol consumption was assessed using a questionnaire. Lipoprotein particle numbers were determined by nuclear magnetic resonance spectroscopy. Alcohol consumption increased linearly in proportion to the number of subjects carrying the enzymatically active *1 allele in men (p < 0.001). The *1 allele was also positively associated with HDL cholesterol level (adjusted mean ± standard error, *1*1: 60 ± 0.5, *1*2: 56 ± 0.6, *2*2: 55 ± 1.3 mg/dl, p < 0.001) and inversely associated with LDL cholesterol level (116 ± 0.9, 124 ± 1.1, 130 ± 2.6 mg/dl, p < 0.001). The *1 allele was also positively associated with HDL particle numbers (per-allele: 2.60 ± 0.32 μmol/l, p < 0.001) and inversely associated with LDL particle numbers (-67.8 ± 19.6 nmol/l, p = 0.001). Additional Mendelian randomization analysis failed to clarify the involvement of cholesteryl ester transfer protein in alcohol-related changes in lipoprotein cholesterol levels. No significant association was observed in women, presumably due to their small amount of alcohol intake. Alcohol consumption has a causal role in not only increasing HDL cholesterol levels but also decreasing LDL cholesterol levels and particle numbers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bretillon, L; Lütjohann, D; Ståhle, L; Widhe, T; Bindl, L; Eggertsen, G; Diczfalusy, U; Björkhem, I
2000-05-01
We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface. It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.
USDA-ARS?s Scientific Manuscript database
During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates, and lower circulating cholesterol concentrations as compared to their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical inf...
Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury
Pedigo, Christopher E.; Ducasa, Gloria Michelle; Leclercq, Farah; Sloan, Alexis; Hashmi, Tahreem; Molina-David, Judith; Ge, Mengyuan; Lassenius, Mariann I.; Groop, Per-Henrik; Kretzler, Matthias; Martini, Sebastian; Reich, Heather; Wahl, Patricia; Ghiggeri, GianMarco; Burke, George W.; Kretz, Oliver; Huber, Tobias B.; Mendez, Armando J.; Merscher, Sandra
2016-01-01
High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1–mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol–dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol–dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels. PMID:27482889
Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan
2009-01-01
Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153
Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C
2011-01-01
Background & Aims Type-2 diabetes and non-alcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to pathogenesis of NASH. Methods Alms1 mutant (foz/foz) and wild-type (WT) NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Results Hepatic cholesterol accumulation was attributed to up-regulation of low density lipoprotein receptor (LDLR) via activation of sterol regulatory element binding protein-2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and LDLR and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. Conclusions In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. PMID:21703998
Defective cholesterol metabolism in amyotrophic lateral sclerosis[S
Abdel-Khalik, Jonas; Yutuc, Eylan; Crick, Peter J.; Gustafsson, Jan-Åke; Warner, Margaret; Roman, Gustavo; Talbot, Kevin; Gray, Elizabeth; Turner, Martin R.; Wang, Yuqin
2017-01-01
As neurons die, cholesterol is released in the central nervous system (CNS); hence, this sterol and its metabolites may represent a biomarker of neurodegeneration, including in amyotrophic lateral sclerosis (ALS), in which altered cholesterol levels have been linked to prognosis. More than 40 different sterols were quantified in serum and cerebrospinal fluid (CSF) from ALS patients and healthy controls. In CSF, the concentration of cholesterol was found to be elevated in ALS samples. When CSF metabolite levels were normalized to cholesterol, the cholesterol metabolite 3β,7α-dihydroxycholest-5-en-26-oic acid, along with its precursor 3β-hydroxycholest-5-en-26-oic acid and product 7α-hydroxy-3-oxocholest-4-en-26-oic acid, were reduced in concentration, whereas metabolites known to be imported from the circulation into the CNS were not found to differ in concentration between groups. Analysis of serum revealed that (25R)26-hydroxycholesterol, the immediate precursor of 3β-hydroxycholest-5-en-26-oic acid, was reduced in concentration in ALS patients compared with controls. We conclude that the acidic branch of bile acid biosynthesis, known to be operative in-part in the brain, is defective in ALS, leading to a failure of the CNS to remove excess cholesterol, which may be toxic to neuronal cells, compounded by a reduction in neuroprotective 3β,7α-dihydroxycholest-5-en-26-oic acid. PMID:27811233
Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R; Thiers, Bruce; Lan, Shuping; Tallman, Anna M; Kaur, Mandeep; Tatulych, Svitlana
Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional lipid parameters and CV risk markers in patients with psoriasis from a phase III study, OPT Pivotal 1. Patients with psoriasis were randomized to tofacitinib 5 or 10 mg twice daily (BID) or placebo BID. Serum samples were collected at baseline, week 4, and week 16. Analyses included serum cholesterol levels, triglycerides, lipoproteins, lipid particles, lipid-related parameters/CV risk markers, and high-density lipoprotein (HDL) function analyses. At week 16, small concurrent increases in mean low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels were observed with tofacitinib; total cholesterol/HDL-C ratio did not change. There was no significant change in the number of small dense LDL particles, which are considered to be more atherogenic than large particles, and oxidized LDL did not increase. Paraoxonase 1 activity, linked to HDL antioxidant capacity, increased, and HDL-associated serum amyloid A, which reduces the anti-atherogenic potential of HDL, decreased. HDL capacity to promote cholesterol efflux from macrophages did not change. Lecithin-cholesterol acyltransferase activity, which is associated with reverse cholesterol transport, increased. Markers of systemic inflammation, serum amyloid A and C-reactive protein, decreased with tofacitinib. While small increases in lipid levels are observed with tofacitinib treatment in patients with psoriasis, effects on selected lipid-related parameters and other circulating CV risk biomarkers are not suggestive of an increased CV risk [NCT01276639]. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Spady, D K; Dietschy, J M
1985-07-01
The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.
Potential use of cholesterol lipoprotein profile to confirm obesity status in dogs.
Mori, Nobuko; Lee, Peter; Kondo, Kazuo; Kido, Toshimi; Saito, Terumasa; Arai, Toshiro
2011-04-01
A common sign of obesity, in dogs, is hyperlipidemia, which is characterized by hypercholesterolemia and/or hypertriglycemia. Hyperlipidemia can be caused by a quantitative increase in circulating lipoproteins (LP) or by a higher lipid concentration in the various LP classes. In this study, we sought to determine whether aberrations occur with cholesterol lipoprotein profile, especially with sub HDL-cholesterol fraction % in obese dogs. Using clinically healthy and disease free (no overt signs) body condition score classified obese dogs, of all ages, we attempted to determine the influence of age, gender and obesity status on cholesterol lipoprotein profiling. Overall, no aberration in pattern was observed in obese dogs <8 years of age. However, in older obese animals (≥8 years of age), the general aberration pattern to cholesterol lipoprotein observed was that a significant decrease in HDL2 and 3 fraction % occurs with a concomitant increase in either HDL1-Cho or VLDL and LDL -Cho fraction % depending on gender. Linear regression analysis indicated that obesity status appears to significantly affect total cholesterol, HDL2 and 3-Cho, VLDL and LDL-Cho levels (P=0.02, 0.046, and 0.045, respectively), whereas it is borderline with HDL1-Cho (P=0.062). On the other hand, age significantly influenced TG, Total cholesterol, and HDL1-Cho levels (P=0.009, 0.006, and 0.002, respectively), while gender influenced VLDL and LDL-Cho (P=0.024) level. Therefore, aberrations in cholesterol lipoprotein profile pattern might be of potential use to assess and diagnose obesity status, in conjunction with BCS, especially of older overweight animals which might be considered borderline obese. © Springer Science+Business Media B.V. 2011
Jacobson, Terry A; Ito, Matthew K; Maki, Kevin C; Orringer, Carl E; Bays, Harold E; Jones, Peter H; McKenney, James M; Grundy, Scott M; Gill, Edward A; Wild, Robert A; Wilson, Don P; Brown, W Virgil
2015-01-01
The leadership of the National Lipid Association convened an Expert Panel to develop a consensus set of recommendations for patient-centered management of dyslipidemia in clinical medicine. An Executive Summary of those recommendations was previously published. This document provides support for the recommendations outlined in the Executive Summary. The major conclusions include (1) an elevated level of cholesterol carried by circulating apolipoprotein B-containing lipoproteins (non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol [LDL-C], termed atherogenic cholesterol) is a root cause of atherosclerosis, the key underlying process contributing to most clinical atherosclerotic cardiovascular disease (ASCVD) events; (2) reducing elevated levels of atherogenic cholesterol will lower ASCVD risk in proportion to the extent that atherogenic cholesterol is reduced. This benefit is presumed to result from atherogenic cholesterol lowering through multiple modalities, including lifestyle and drug therapies; (3) the intensity of risk-reduction therapy should generally be adjusted to the patient's absolute risk for an ASCVD event; (4) atherosclerosis is a process that often begins early in life and progresses for decades before resulting a clinical ASCVD event. Therefore, both intermediate-term and long-term or lifetime risk should be considered when assessing the potential benefits and hazards of risk-reduction therapies; (5) for patients in whom lipid-lowering drug therapy is indicated, statin treatment is the primary modality for reducing ASCVD risk; (6) nonlipid ASCVD risk factors should also be managed appropriately, particularly high blood pressure, cigarette smoking, and diabetes mellitus; and (7) the measurement and monitoring of atherogenic cholesterol levels remain an important part of a comprehensive ASCVD prevention strategy. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław
2017-08-01
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis
Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A.
2014-01-01
Objective Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein (LDL)- treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of microRNAs regulated in primary macrophages by modified LDL, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. Approach and Results The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3′UTR activity of mouse Abca1 by 48% and human ABCA1 by 45%. Additionally, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with LDL receptor deficiency (Ldlr−/−) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma HDL levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by approximately 25% as well as a more stable plaque morphology with reduced signs of inflammation. Conclusions These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. PMID:25524771
MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.
Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A
2015-02-01
Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. © 2014 American Heart Association, Inc.
Arsenault, Benoit J; Petrides, Francine; Tabet, Fatiha; Bao, Weihang; Hovingh, G Kees; Boekholdt, S Matthijs; Ramin-Mangata, Stéphane; Meilhac, Olivier; DeMicco, David; Rye, Kerry-Anne; Waters, David D; Kastelein, John J P; Barter, Philip; Lambert, Gilles
Proprotein subtilisin kexin type 9 (PCSK9) and lipoprotein (a) [Lp(a)] levels are causative risk factors for coronary heart disease. The objective of the study was to determine the impact of lipid-lowering treatments on circulating PCSK9 and Lp(a). We measured PCSK9 and Lp(a) levels in plasma samples from Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events trial patients with coronary heart disease and/or type II diabetes (T2D) mellitus. Patients received atorvastatin, which was titrated (10, 20, 40, or 80 mg/d) to achieve low-density lipoprotein cholesterol levels <100 mg/dL (baseline) and were subsequently randomized either to atorvastatin + torcetrapib, a cholesterol ester transfer protein inhibitor, or to atorvastatin + placebo. At baseline, both plasma PCSK9 and Lp(a) were dose-dependently increased with increasing atorvastatin doses. Compared with patients without T2D, those with T2D had higher PCSK9 (357 ± 123 vs 338 ± 115 ng/mL, P = .0012) and lower Lp(a) levels (28 ± 32 vs 32 ± 33 mg/dL, P = .0005). Plasma PCSK9 levels significantly increased in patients treated with torcetrapib (+13.1 ± 125.3 ng/mL [+3.7%], P = .005), but not in patients treated with placebo (+2.6 ± 127.9 ng/mL [+0.7%], P = .39). Plasma Lp(a) levels significantly decreased in patients treated with torcetrapib (-3.4 ± 10.7 mg/dL [-11.1%], P < .0001), but not in patients treated with placebo (+0.3 ± 9.4 mg/dL [+0.1%], P = .92). In patients at high cardiovascular disease risk, PCSK9 and Lp(a) are positively and dose-dependently correlated with atorvastatin dosage, whereas the presence of T2D is associated with higher PCSK9 but lower Lp(a) levels. Cholesterol ester transfer protein inhibition with torcetrapib slightly increases PCSK9 levels and decreases Lp(a) levels. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Siddiqui, Khalid; George, Teena P; Nawaz, Shaik Sarfaraz; Shehata, Nevene; El-Sayed, Amel Ahmed; Khanam, Latifa
2018-06-01
Adiponectin and resistin are adipose tissue-derived proteins with antagonistic actions; adiponectin has insulin sensitive properties while resistin is involved in the development of insulin resistance. We analyzed adiponectin and resistin levels in gestational diabetes mellitus (GDM) women to evaluate the association of these adipokines in a very high diabetes prevalence population. An age-matched case-control study of GDM and normal pregnant women in Saudi population. We recruited 90 pregnant women at 24-32 weeks of gestation. Glucose levels (fasting, 1, 2, and 3 h) and lipid parameters (cholesterol, triglyceride, HDL cholesterol, LDL cholesterol) were measured. Serum adiponectin and resistin levels were analyzed using Randox evidence biochip analyzer. Pearson's correlation coefficient was used to determine the association of adiponectin and resistin with GDM risk factors. GDM women showed significantly low adiponectin and high resistin levels when compared with control group. Pearson's correlation analysis of adiponectin and resistin in all the subjects with various GDM risk factors showed a negative association of adiponectin (r = -0.32, p = .05) and a positive correlation of resistin (r = 0.41, p = .01) with LDL cholesterol. This study analyzes adiponectin and resistin levels together, as accumulating evidences shows that these are involved in the pathophysiology of GDM. This is going to help to determine in conjunction with traditional risk factors the incremental value of circulating adiponectin and resistin in developing GDM.
USDA-ARS?s Scientific Manuscript database
Chronically altered levels of circulating lipids, termed dyslipidemia, is a significant risk factor for a number of metabolic and cardiovascular morbidities. MicroRNAs (miRNAs) have emerged as important regulators of lipid balance, have been implicated in dyslipidemia, and have been proposed as cand...
Hong, Ki Bae; Hong, Sung-Yong; Joung, Eun Young; Kim, Byung Hee; Bae, Song-Hwan; Park, Yooheon; Suh, Hyung Joo
2015-01-01
The cauliflower culinary-medicinal mushroom, Sparassis crispa, possesses various biological activities that have been widely reported to have therapeutic applications. We examined the effects of S. crispa on serum cholesterol, hepatic enzymes related to cholesterol metabolism, and fecal sterol excretion in rats fed a cholesterol-rich diet for 4 weeks. Male Sprague-Dawley rats (8 weeks old) were randomly divided into 5 groups (n = 6 mice per group): normal diet (normal control [NC]), cholesterol-rich diet (cholesterol control [CC]), cholesterol-rich diet plus S. crispa fruiting body (SC), cholesterol-rich diet plus S. crispa extract (SCE), and cholesterol-rich diet plus S. crispa residue (SCR). SCE supplementation significantly enhanced hepatic cholesterol catabolism through the upregulation of cholesterol 7α-hydroxylase (CYP7A1) messenger RNA (mRNA) expression (2.55-fold compared with that in the NC group; P < 0.05) and the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression (0.57-fold compared with that in the NC group; P < 0.05). Additionally, the SCE diet resulted in the highest fecal excretion of cholesterol and bile acid in hypercholesterolemic rats. In conclusion, mRNA expression of CYP7A1 and HMG-CoA reductase were significantly modulated by the absorption of SCE samples. Also, SCE samples had a significant effect on fecal bile acid and cholesterol excretion. These results suggest that SCE samples can induce hypocholesterolic effects through cholesterol metabolism and the reduction of circulating cholesterol levels.
Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E
2017-12-01
Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P <0.0001), total cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of reverse cholesterol transport to atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.
State-dependent alterations of lipid profiles in patients with bipolar disorder.
Huang, Yu-Jui; Tsai, Shang-Ying; Chung, Kuo-Hsuan; Chen, Pao-Huan; Huang, Shou-Hung; Kuo, Chian-Jue
2018-07-01
Objective Serum lipid levels may be associated with the affective severity of bipolar disorder, but data on lipid profiles in Asian patients with bipolar disorder and the lipid alterations in different states of opposite polarities are scant. We investigated the lipid profiles of patients in the acute affective, partial, and full remission state in bipolar mania and depression. Methods The physically healthy patients aged between 18 and 45 years with bipolar I disorder, as well as age-matched healthy normal controls were enrolled. We compared the fasting blood levels of glucose, cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein of manic or depressed patients in the acute phase and subsequent partial and full remission with those of their normal controls. Results A total of 32 bipolar manic patients (12 women and 20 men), 32 bipolar depressed participants (18 women and 14 men), and 64 healthy control participants took part in this study. The mean cholesterol level in acute mania was significantly lower than that in acute depression (p < 0.025). The lowest rate of dyslipidemia (hypertriglyceridemia or low high-density lipoprotein cholesterol) was observed in acute bipolar mania. Conclusion Circulating lipid profiles may be easily affected by affective states. The acute manic state may be accompanied by state-dependent lower cholesterol and triglyceride levels relative to that in other mood states.
Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism.
Wang, Yanan; Harding, Scott V; Thandapilly, Sijo J; Tosh, Susan M; Jones, Peter J H; Ames, Nancy P
2017-11-01
Underlying mechanisms responsible for the cholesterol-lowering effect of β-glucan have been proposed, yet have not been fully demonstrated. The primary aim of this study was to determine whether the consumption of barley β-glucan lowers cholesterol by affecting the cholesterol absorption, cholesterol synthesis or bile acid synthesis. In addition, this study was aimed to assess whether the underlying mechanisms are related to cholesterol 7α hydroxylase (CYP7A1) SNP rs3808607 as proposed by us earlier. In a controlled, randomised, cross-over study, participants with mild hypercholesterolaemia (n 30) were randomly assigned to receive breakfast containing 3 g high-molecular weight (HMW), 5 g low-molecular weight (LMW), 3 g LMW barley β-glucan or a control diet, each for 5 weeks. Cholesterol absorption was determined by assessing the enrichment of circulating 13C-cholesterol over 96 h following oral administration; fractional rate of synthesis for cholesterol was assessed by measuring the incorporation rate of 2H derived from deuterium oxide within the body water pool into the erythrocyte cholesterol pool over 24 h; bile acid synthesis was determined by measuring serum 7α-hydroxy-4-cholesten-3-one concentrations. Consumption of 3 g HMW β-glucan decreased total cholesterol (TC) levels (P=0·029), but did not affect cholesterol absorption (P=0·25) or cholesterol synthesis (P=0·14). Increased bile acid synthesis after consumption of 3 g HMW β-glucan was observed in all participants (P=0·049), and more pronounced in individuals carrying homozygous G of rs3808607 (P=0·033). In addition, a linear relationship between log (viscosity) of β-glucan and serum 7α-HC concentration was observed in homozygous G allele carriers. Results indicate that increased bile acid synthesis rather than inhibition of cholesterol absorption or synthesis may be responsible for the cholesterol-lowering effect of barley β-glucan. The pronounced TC reduction in G allele carriers of rs3808607 observed in the previous study may be due to enhanced bile acid synthesis in response to high-viscosity β-glucan consumption in those individuals.
2013-01-01
BACKGROUND Although pregnancies associated with hyperinsulinemia and altered placental angiogenic and inflammatory factors are at increased risk for developing preeclampsia, the effects of euglycemic hyperinsulinemia on placental factors and blood pressure regulation during pregnancy are unclear. We hypothesized that chronic hyperinsulinemia results in increased placental soluble fms-like tyrosine kinase 1(sFlt-1) and tumor necrosis factor α (TNF- α) levels and hypertension in pregnant rats. METHODS On gestational day (GD) 14, Sprague-Dawley rats were assigned as normal pregnant or pregnant + insulin. Insulin was infused subcutaneously by osmotic minipump for 5 days at a dose of 1.5 mU/kg/min. Those rats receiving insulin were supplemented with 20% glucose in drinking water to maintain euglycemia. On GD 19, mean arterial pressure (MAP) and heart rate (HR) were assessed in conscious rats by indwelling carotid catheters, followed by collections of blood, placentas, and fetuses. In addition to pl acental sFlt-1 and TNF-α levels, circulating insulin, glucose, leptin, cholesterol, triglyceride, and free fatty acid concentrations were measured. RESULTS MAP was higher in pregnant + insulin vs. normal pregnant rats; however, HR was similar between groups. Although litter size and placental weight were comparable, fetuses from pregnant + insulin rats were heavier. Importantly, circulating insulin concentration was elevated in the pregnant + insulin group, with no change in glucose level. Moreover, circulating leptin, cholesterol, triglyceride, and free fatty acid concentrations were increased in the pregnant + insulin group. There were no differences in placental sFlt-1 and TNF-α concentrations between groups. CONCLUSIONS In summary, sustained euglycemic hyperinsulinemia, comparable with insulin levels in preeclamptic women, can raise blood pressure in pregnancy independent of recognized placental factors associated with preeclampsia. PMID:23955606
Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease
Dewey, Frederick E.; Gusarova, Viktoria; O’Dushlaine, Colm; Gottesman, Omri; Trejos, Jesus; Hunt, Charleen; Van Hout, Cristopher V.; Habegger, Lukas; Buckler, David; Lai, Ka-Man V.; Leader, Joseph B.; Murray, Michael F.; Ritchie, Marylyn D.; Kirchner, H. Lester; Ledbetter, David H.; Penn, John; Lopez, Alexander; Borecki, Ingrid B.; Overton, John D.; Reid, Jeffrey G.; Carey, David J.; Murphy, Andrew J.; Yancopoulos, George D.; Baras, Aris; Gromada, Jesper; Shuldiner, Alan R.
2016-01-01
BACKGROUND Higher-than-normal levels of circulating triglycerides are a risk factor for ischemic cardiovascular disease. Activation of lipoprotein lipase, an enzyme that is inhibited by angiopoietin-like 4 (ANGPTL4), has been shown to reduce levels of circulating triglycerides. METHODS We sequenced the exons of ANGPTL4 in samples obtain from 42,930 participants of predominantly European ancestry in the DiscovEHR human genetics study. We performed tests of association between lipid levels and the missense E40K variant (which has been associated with reduced plasma triglyceride levels) and other inactivating mutations. We then tested for associations between coronary artery disease and the E40K variant and other inactivating mutations in 10,552 participants with coronary artery disease and 29,223 controls. We also tested the effect of a human monoclonal antibody against ANGPTL4 on lipid levels in mice and monkeys. RESULTS We identified 1661 heterozygotes and 17 homozygotes for the E40K variant and 75 participants who had 13 other monoallelic inactivating mutations in ANGPTL4. The levels of triglycerides were 13% lower and the levels of high-density lipoprotein (HDL) cholesterol were 7% higher among carriers of the E40K variant than among noncarriers. Carriers of the E40K variant were also significantly less likely than noncarriers to have coronary artery disease (odds ratio, 0.81; 95% confidence interval, 0.70 to 0.92; P = 0.002). K40 homozygotes had markedly lower levels of triglycerides and higher levels of HDL cholesterol than did heterozygotes. Carriers of other inactivating mutations also had lower triglyceride levels and higher HDL cholesterol levels and were less likely to have coronary artery disease than were noncarriers. Monoclonal antibody inhibition of Angptl4 in mice and monkeys reduced triglyceride levels. CONCLUSIONS Carriers of E40K and other inactivating mutations in ANGPTL4 had lower levels of triglycerides and a lower risk of coronary artery disease than did noncarriers. The inhibition of Angptl4 in mice and monkeys also resulted in corresponding reductions in these values. (Funded by Regeneron Pharmaceuticals.) PMID:26933753
La Marca, Valeria; Spagnuolo, Maria Stefania; Cigliano, Luisa; Marasco, Daniela; Abrescia, Paolo
2014-07-01
Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture. © 2014 International Society for Neurochemistry.
Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E
2014-03-01
Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.
[Relation of total cholesterol in serum tocopherols, probabilistic study in Mexican children].
López, Guadalupe; Galván, Marcos
2011-06-01
Epidemiological studies have shown the effect of nutritional status of tocopherols and development of cardiovascular diseases that now are more frequent during early years of life. In this work we evaluated the association between the total cholesterol and serum levels of tocopherols in a population of Mexican children in whom we measured the oxidant status and antioxidant capacity (December 2003). In 1155 children (12-59 months) residents of urban and rural locations we quantified in serum alpha-tocopherol, gamma-tocopherol and total cholesterol; the antioxidant capacity and oxidative status were evaluated with the production of TBARS. Children with serum cholesterol < 170 mg/dL had an average of 472.5 +/- 179.6 microg/dL tocopherol in serum and > or = 240 mg/dL cholesterol recorded an average of 577.3 +/- 200.8 microg/dL. However, when tocopherols were expressed in relation to total cholesterol (micromol/mmol) found that children with < 170 mg/dL had the highest ratios (3.06 +/-1.19) which places them in an adequate nutritional status of tocopherol, unlike the group with > or = 240 mg/dL of cholesterol in whom the relationship was low (1.93 +/- 0.69). There were no differences in serum antioxidant capacity, but if in the production of TBARS for children with > or = 200 mg/dL cholesterol. In preschools the increases in total cholesterol limits the availability of serum tocopherol for circulating lipids, this condition over time could determine the early development of vascular injury mediated by oxidative stress.
Naples, Mark; Baker, Chris; Lino, Marsel; Iqbal, Jahangir; Hussain, M. Mahmood
2012-01-01
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis. PMID:22345552
Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.
2001-01-01
BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity. AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo. METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice. RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet. CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in humans. Keywords: gall stones; bile; phospholipids; cholesterol crystallisation; fatty acid bile acid conjugates PMID:11115826
Kruth, Howar S
2013-01-01
Circulating low-density lipoprotein (LDL) that enters the blood vessel wall is the main source of cholesterol that accumulates within atherosclerotic plaques. Much of the deposited cholesterol accumulates within plaque macrophages converting these macrophages into cholesterol-rich foamy looking cells. Cholesterol accumulation in macrophages contributes to cholesterol retention within the vessel wall, and promotes vessel wall inflammation and thrombogenicity. Thus, how macrophages accumulate cholesterol and become foam cells has been the subject of intense investigation. It is generally believed that macrophages accumulate cholesterol only through scavenger receptor-mediated uptake of modified LDL. However, an alternative mechanism for macrophage foam cell formation that does not depend on LDL modification or macrophage receptors has been elucidated. By this alternative mechanism, macrophages show receptor-independent uptake of unmodified native LDL that is mediated by fluid-phase pinocytosis. In receptor-independent, fluid-phase pinocytosis, macrophages take up LDL as part of the fluid that they ingest during micropinocytosis within small vesicles called micropinosomes, and by macropinocytosis within larger vacuoles called macropinosomes. This produces cholesterol accumulation in macrophages to levels characteristic of macrophage foam cells in atherosclerotic plaques. Fluid-phase pinocytosis of LDL is a plausible mechanism that can explain how macrophages accumulate cholesterol and become disease-causing foam cells. Fluid-phase pinocytosis of LDL is a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis. Recent studies show that phosphoinositide 3-kinase (PI3K), liver X receptors (LXRs), the macrophage colony-stimulating factor (M-CSF) receptor, and protein kinase C (PKC) mediate macrophage macropinocytosis of LDL, and thus, these may be relevant targets to inhibit macrophage cholesterol accumulation in atherosclerosis.
Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan
2012-01-01
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784
Martino, Francesco; Carlomosti, Fabrizio; Avitabile, Daniele; Persico, Luca; Picozza, Mario; Barillà, Francesco; Arca, Marcello; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Parrotto, Sandro; Magenta, Alessandra
2015-12-01
Hypercholesterolaemia is one of the major causes of CVD (cardiovascular disease). It is associated with enhanced oxidative stress, leading to increased lipid peroxidation which in turn determines endothelial dysfunction and susceptibility to coronary vasoconstriction and atherosclerosis. Different miRNAs are involved in the pathogenesis of CVD and play an important role in inflammatory process control, therefore, together with atherogenic factors, they can stimulate atherosclerotic degeneration of the vessel walls of arteries. miR-33a and miR-33b play a pivotal role in a variety of biological processes including cholesterol homoeostasis, HDL (high-density lipoprotein)-cholesterol formation, fatty acid oxidation and insulin signalling. Our study aimed to determine whether circulating miR-33a and miR-33b expression was altered in familial hypercholesterolaemic children. Total RNA was extracted from plasma, and miR-33a and miR-33b were measured by quantitative real-time PCR. We found that miR-33a and miR-33b were significantly up-regulated in the plasma of 28 hypercholesterolaemic children compared with 25 healthy subjects (4.49±0.27-fold increase, P<0.001, and 3.21±0.39-fold increase, P<0.05 respectively), and for both miRNAs, a positive correlation with total cholesterol, LDL (low-density lipoprotein)-cholesterol, LDL-cholesterol/HDL-cholesterol ratio, apolipoprotein B, CRP (C-reactive protein) and glycaemia was found. OLS (ordinary least squares) regression analysis revealed that miR-33a was significantly affected by the presence of FH (familial hypercholesterolaemia), glycaemia and CRP (P<0.001, P<0.05 and P<0.05 respectively). The same analysis showed that miR-33b was significantly related to FH and CRP (P<0.05 and P<0.05 respectively). Although it is only explorative, the present study could be the first to point to the use of miR-33a and miR-33b as early biomarkers for cholesterol levels in childhood, once validated in independent larger cohorts. © 2015 Authors; published by Portland Press Limited.
Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G
2017-04-28
Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Martynova, Ekaterina V; Valiullina, Aygul H; Gusev, Oleg A; Davidyuk, Yuriy N; Garanina, Ekaterina E; Shakirova, Venera G; Khaertynova, Ilsiyar; Anokhin, Vladimir A; Rizvanov, Albert A; Khaiboullina, Svetlana F
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN- γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN- γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity.
Valiullina, Aygul H.; Gusev, Oleg A.; Davidyuk, Yuriy N.; Garanina, Ekaterina E.; Shakirova, Venera G.; Khaertynova, Ilsiyar
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN-γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN-γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity. PMID:28053993
Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers.
Pencek, R; Marmon, T; Roth, J D; Liberman, A; Hooshmand-Rad, R; Young, M A
2016-09-01
The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. © 2016 John Wiley & Sons Ltd.
Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J
2014-09-05
Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. Copyright © 2014 Elsevier Inc. All rights reserved.
Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy
2015-01-01
Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians—an ethnic population characterized to represent ‘Asian Indian phenotype’ known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a ‘New Lead’ in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes. PMID:26020947
Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy
2015-01-01
Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.
Moundras, C; Rémésy, C; Levrat, M A; Demigné, C
1995-09-01
A number of studies have provided evidence that plant proteins, especially soy protein, have a cholesterol-lowering effect as compared with casein. However, dietary supply of sulfur amino acids may be deficient when soy protein is present in the diet at a suboptimal level, which could affect lipid metabolism. Accordingly, in rats fed 13% protein diets, soy protein feeding resulted in a cholesterol-increasing effect (+18%), which could be counteracted by methionine supplementation (0.4%). In contrast, soy protein was effective in decreasing plasma triglyceride, as compared with levels in rats fed casein; this triglyceride-lowering effect was entirely abolished by methionine supplementation. The hypercholesterolemic effect of soy protein was characterized by a higher cholesterol content in low-density lipoprotein (LDL) and high-density lipoprotein 1 (HDL1) fractions, together with a marked induction of hepatic hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase activity and to a lesser extent cholesterol 7 alpha-hydroxylase. There was practically no induction of these enzymes, as compared with levels in rats fed casein diets, when the soy protein diet was supplemented with methionine. Very-low-density lipoprotein (VLDL) plus LDL susceptibility to peroxidation was higher in rats fed soy protein than in casein-fed rats, which could reflect in part the lack of sulfur amino acid availability, since methionine supplementation led to a partial recovery of lipoprotein resistance to peroxidation. These findings suggest that amino acid imbalance could be atherogenic by increasing circulating cholesterol and leading to a higher lipoprotein susceptibility to peroxidation.
27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation
Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina
2017-01-01
Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512
Ni, Xunjun; Wang, Haiyan
2016-01-01
Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.
Ramprasath, Vanu R; Jenkins, David J A; Lamarche, Benoit; Kendall, Cyril W C; Faulkner, Dorothea; Cermakova, Luba; Couture, Patrick; Ireland, Chris; Abdulnour, Shahad; Patel, Darshna; Bashyam, Balachandran; Srichaikul, Korbua; de Souza, Russell J; Vidgen, Edward; Josse, Robert G; Leiter, Lawrence A; Connelly, Philip W; Frohlich, Jiri; Jones, Peter J H
2014-10-18
Consumption of a cholesterol lowering dietary portfolio including plant sterols (PS), viscous fibre, soy proteins and nuts for 6 months improves blood lipid profile. Plant sterols reduce blood cholesterol by inhibiting intestinal cholesterol absorption and concerns have been raised whether PS consumption reduces fat soluble vitamin absorption. The objective was to determine effects of consumption of a cholesterol lowering dietary portfolio on circulating concentrations of PS and fat soluble vitamins. Using a parallel design study, 351 hyperlipidemic participants from 4 centres across Canada were randomized to 1 of 3 groups. Participants followed dietary advice with control or portfolio diet. Participants on routine and intensive portfolio involved 2 and 7 clinic visits, respectively, over 6 months. No changes in plasma concentrations of α and γ tocopherol, lutein, lycopene and retinol, but decreased β-carotene concentrations were observed with intensive (week 12: p = 0.045; week 24: p = 0.039) and routine (week 12: p = 0.031; week 24: p = 0.078) portfolio groups compared to control. However, cholesterol adjusted β-carotene and fat soluble compound concentrations were not different compared to control. Plasma PS concentrations were increased with intensive (campesterol:p = 0.012; β-sitosterol:p = 0.035) and routine (campesterol: p = 0.034; β-sitosterol: p = 0.080) portfolio groups compared to control. Plasma cholesterol-adjusted campesterol and β-sitosterol concentrations were negatively correlated (p < 0.001) with total and LDL-C levels. Results demonstrate that consuming a portfolio diet reduces serum total and LDL-C levels while increasing PS values, without altering fat soluble compounds concentrations. The extent of increments of PS with the current study are not deleterious and also maintaining optimum levels of fat soluble vitamins are of paramount necessity to maintain overall metabolism and health. Results indicate portfolio diet as one of the best options for CVD risk reduction. clinicaltrials.gov Identifier: NCT00438425.
Gylling, Helena; Plat, Jogchum; Turley, Stephen; Ginsberg, Henry N; Ellegård, Lars; Jessup, Wendy; Jones, Peter J; Lütjohann, Dieter; Maerz, Winfried; Masana, Luis; Silbernagel, Günther; Staels, Bart; Borén, Jan; Catapano, Alberico L; De Backer, Guy; Deanfield, John; Descamps, Olivier S; Kovanen, Petri T; Riccardi, Gabriele; Tokgözoglu, Lale; Chapman, M John
2014-02-01
This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled clinical trial data with hard end-points to establish clinical benefit from the use of plant sterols or plant stanols. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
2013-01-01
Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061
Gutwenger, Ivana; Hofer, Georg; Gutwenger, Anna K; Sandri, Marco; Wiedermann, Christian J
2015-03-28
Hypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors. This pilot study aimed to explore for effects of a two-week hiking vacation at moderate versus low altitude on adipokines and parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. Fourteen subjects (mean age: 55.8 years, range: 39 - 69) with metabolic syndrome participated in a 2-week structured training program (3 hours of guided daily hiking 4 times a week, training intensity at 55-65% of individual maximal heart rate; total training time, 24 hours). Participants were divided for residence and training into two groups, one at moderate altitude (1,900 m; n = 8), and the other at low altitude (300 m; n = 6). Anthropometric, cardiovascular and metabolic parameters were measured before and after the training period. In study participants, training overall reduced circulating levels of total cholesterol (p = 0.024), low-density lipoprotein cholesterol (p = 0.025) and adiponectin (p < 0.001). In the group training at moderate altitude (n = 8), lowering effects on circulating levels were significant not only for total cholesterol, low-density-lipoprotein cholesterol and adiponectin (all, p < 0.05) but also for triglycerides (p = 0.025) and leptin (p = 0.015), whereas in the low altitude group (n = 6), none of the lipid parameters was significantly changed (each p > 0.05). Hiking-induced relative changes of triglyceride levels were positively associated with reductions in leptin levels (p = 0.006). As compared to 300 m altitude, training at 1,900 m showed borderline significant differences in the pre-post mean reduction rates of triglyceride (p = 0.050) and leptin levels (p = 0.093). Preliminary data on patients with metabolic syndrome suggest that a 2-week hiking vacation at moderate altitude may be more beneficial for adipokines and parameters of lipid metabolism than training at low altitude. In order to draw firm conclusions regarding better corrections of dyslipidemia and metabolic syndrome by physical exercise under mild hypobaric and hypoxic conditions, a sufficiently powered randomized clinical trial appears warranted. ClinicalTrials.gov ID NCT02013947 (first received November 6, 2013).
Samavat, Hamed; Newman, April R; Wang, Renwei; Yuan, Jian-Min; Wu, Anna H; Kurzer, Mindy S
2016-01-01
Background: Green tea has been suggested to improve cardiovascular disease risk factors, including circulating lipid variables. However, current evidence is predominantly based on small, short-term randomized controlled trials conducted in diverse populations. Objective: The aim of this study was to examine the efficacy and impact of green tea extract (GTE) supplementation high in epigallocatechin gallate (EGCG) on blood lipids in healthy postmenopausal women. Design: This was an ancillary study of a double-blind, randomized, placebo-controlled, parallel-arm trial investigating the effects of a GTE supplement containing 1315 mg catechins (843 mg EGCG) on biomarkers of breast cancer risk. Participants were randomly assigned to receive GTE (n = 538) or placebo (n = 537) and were stratified by catechol-O-methyltransferase (COMT) genotype activity (high COMT compared with low or intermediate COMT genotype activity). They consumed either 4 GTE or identical placebo capsules daily for 12 mo. A total of 936 women completed this substudy. Circulating lipid panels including total cholesterol (TC), HDL cholesterol, and triglycerides were measured at baseline and at months 6 and 12. Results: Compared with placebo, 1-y supplementation with GTE capsules resulted in a significant reduction in circulating TC (−2.1% compared with 0.7%; P = 0.0004), LDL cholesterol (−4.1% compared with 0.9%; P < 0.0001) and non-HDL cholesterol (−3.1% compared with 0.4%; P = 0.0032). There was no change in HDL-cholesterol concentration, but triglyceride concentrations increased by 3.6% in the GTE group, whereas they decreased by 2.5% in the placebo group (P = 0.046). A significant reduction in TC was observed only among women with high (i.e., ≥200 mg/dL) baseline TC concentrations (P-interaction = 0.01) who consumed GTE capsules. The effect of GTE on the increase in triglycerides was mainly observed among obese women and statin users (P-interaction = 0.06). Conclusion: Supplementation with GTE significantly reduced circulating TC and LDL-cholesterol concentrations, especially in those with elevated baseline TC concentrations. This trial was registered at clinicaltrials.gov as NCT00917735. PMID:27806972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.
Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To testmore » this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.« less
Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang
2015-01-01
Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.
Survival of adult neurons lacking cholesterol synthesis in vivo.
Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin
2007-01-02
Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.
Whincup, Peter H.; Nightingale, Claire M.; Owen, Christopher G.; Rudnicka, Alicja R.; Gibb, Ian; McKay, Catherine M.; Donin, Angela S.; Sattar, Naveed; Alberti, K. George M. M.; Cook, Derek G.
2010-01-01
Background Adults of South Asian origin living in the United Kingdom have high risks of type 2 diabetes and central obesity; raised circulating insulin, triglyceride, and C-reactive protein concentrations; and low HDL-cholesterol when compared with white Europeans. Adults of African-Caribbean origin living in the UK have smaller increases in type 2 diabetes risk, raised circulating insulin and HDL-cholesterol, and low triglyceride and C-reactive protein concentrations. We examined whether corresponding ethnic differences were apparent in childhood. Methods and Findings We performed a cross-sectional survey of 4,796 children aged 9–10 y in three UK cities who had anthropometric measurements (68% response) and provided blood samples (58% response); ethnicity was based on parental definition. In age-adjusted comparisons with white Europeans (n = 1,153), South Asian children (n = 1,306) had higher glycated haemoglobin (HbA1c) (% difference: 2.1, 95% CI 1.6 to 2.7), fasting insulin (% difference 30.0, 95% CI 23.4 to 36.9), triglyceride (% difference 12.9, 95% CI 9.4 to 16.5), and C-reactive protein (% difference 43.3, 95% CI 28.6 to 59.7), and lower HDL-cholesterol (% difference −2.9, 95% CI −4.5 to −1.3). Higher adiposity levels among South Asians (based on skinfolds and bioimpedance) did not account for these patterns. Black African-Caribbean children (n = 1,215) had higher levels of HbA1c, insulin, and C-reactive protein than white Europeans, though the ethnic differences were not as marked as in South Asians. Black African-Caribbean children had higher HDL-cholesterol and lower triglyceride levels than white Europeans; adiposity markers were not increased. Conclusions Ethnic differences in type 2 diabetes precursors, mostly following adult patterns, are apparent in UK children in the first decade. Some key determinants operate before adult life and may provide scope for early prevention. Please see later in the article for the Editors' Summary PMID:20421924
Triglyceride Treatment in the Age of Cholesterol Reduction
Agrawal, Nidhi; Corradi, Patricia Freitas; Gumaste, Namrata; Goldberg, Ira J.
2017-01-01
Cholesterol reduction has markedly reduced major cardiovascular disease (CVD) events and shown regression of atherosclerosis in some studies. However, CVD has for decades also been associated with increased levels of circulating triglyceride (TG)-rich lipoproteins. Whether this is due to a direct toxic effect of these lipoproteins on arteries or whether this is merely an association is unresolved. More recent genetic analyses have linked genes that modulate TG metabolism with CVD. Moreover, analyses of subgroups of hypertriglyceridemic (HTG) subjects in clinical trials using fibric acid drugs have been interpreted as evidence that TG reduction reduces CVD events. This review will focus on how HTG might cause CVD, whether TG reduction makes a difference, what pathophysiological defects cause HTG, and what options are available for treatment. PMID:27544319
Salvary, Thomas; Gambert-Nicot, Ségolène; Brindisi, Marie-Claude; Meneveau, Nicolas; Schiele, François; Séronde, Marie-France; Lorgis, Luc; Zeller, Marianne; Cottin, Yves; Kantelip, Jean-Pierre; Gambert, Philippe; Davani, Siamak
2012-09-01
Large numbers of monocytes are recruited in the infarcted myocardium. Their cell membranes contain cholesterol-rich microdomains called lipids rafts, which participate in numerous signaling cascades. In addition to its cholesterol-lowering effect, pravastatin has several pleiotropic effects and is widely used as secondary prevention treatment after myocardial infarction (MI). The aim of this study was to investigate the effects of pravastatin on the organization of cholesterol within monocyte membrane rafts from patients who had suffered myocardial infarction. Monocytes from healthy donors and acute MI patients were cultured with or without 4μM pravastatin. Lipid rafts were extracted by Lubrol WX, caveolae and flat rafts were separated using a modified sucrose gradient. Cholesterol level and caveolin-1 expression in lipid rafts were determined. In healthy donors, cholesterol was concentrated in flat rafts (63±3 vs 13±1%, p<0.001). While monocytes from MI patients presented similar cholesterol distribution in both caveolae and flat rafts. Cholesterol distribution was higher in flat rafts in healthy donors, compared to MI patients (63±3 vs 41±2%, p<0.001), with less distribution in caveolae (13±1 vs 34±2%, p<0.001). Pravastatin reversed the cholesterol distribution in MI patients cells between flat rafts (41±2 vs 66±3%, p<0.001) and caveolae (34±2 vs 18±1%, p<0.001). In conclusion, MI redistributes cholesterol from flat rafts to caveolae indicating monocyte membrane reorganization. In vitro pravastatin treatment restored basal conditions in MI monocytes, suggesting another effect of statins. Copyright © 2012 Elsevier B.V. All rights reserved.
Differential expression of Lp-PLA2 in obesity and type 2 diabetes and the influence of lipids.
Jackisch, Laura; Kumsaiyai, Warunee; Moore, Jonathan D; Al-Daghri, Nasser; Kyrou, Ioannis; Barber, Thomas M; Randeva, Harpal; Kumar, Sudhesh; Tripathi, Gyanendra; McTernan, Philip G
2018-05-01
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulatory macrophage-derived factor that increases with obesity and leads to a higher risk of cardiovascular disease (CVD). Despite this, its role in adipose tissue and the adipocyte is unknown. Therefore, the aims of this study were to clarify the expression of Lp-PLA2 in relation to different adipose tissue depots and type 2 diabetes, and ascertain whether markers of obesity and type 2 diabetes correlate with circulating Lp-PLA2. A final aim was to evaluate the effect of cholesterol on cellular Lp-PLA2 in an in vitro adipocyte model. Analysis of anthropometric and biochemical variables from a cohort of lean (age 44.4 ± 6.2 years; BMI 22.15 ± 1.8 kg/m 2 , n = 23), overweight (age 45.4 ± 12.3 years; BMI 26.99 ± 1.5 kg/m 2 , n = 24), obese (age 49.0 ± 9.1 years; BMI 33.74 ± 3.3 kg/m 2 , n = 32) and type 2 diabetic women (age 53.0 ± 6.13 years; BMI 35.08 ± 8.6 kg/m 2 , n = 35), as part of an ethically approved study. Gene and protein expression of PLA2 and its isoforms were assessed in adipose tissue samples, with serum analysis undertaken to assess circulating Lp-PLA2 and its association with cardiometabolic risk markers. A human adipocyte cell model, Chub-S7, was used to address the intracellular change in Lp-PLA2 in adipocytes. Lp-PLA2 and calcium-independent PLA2 (iPLA2) isoforms were altered by adiposity, as shown by microarray analysis (p < 0.05). Type 2 diabetes status was also observed to significantly alter gene and protein levels of Lp-PLA2 in abdominal subcutaneous (AbdSc) (p < 0.01), but not omental, adipose tissue. Furthermore, multivariate stepwise regression analysis of circulating Lp-PLA2 and metabolic markers revealed that the greatest predictor of Lp-PLA2 in non-diabetic individuals was LDL-cholesterol (p = 0.004). Additionally, in people with type 2 diabetes, oxidised LDL (oxLDL), triacylglycerols and HDL-cholesterol appeared important predictors, accounting for 59.7% of the variance (p < 0.001). Subsequent in vitro studies determined human adipocytes to be a source of Lp-PLA2, as confirmed by mRNA expression, protein levels and immunochemistry. Further in vitro experiments revealed that treatment with LDL-cholesterol or oxLDL resulted in significant upregulation of Lp-PLA2, while inhibition of Lp-PLA2 reduced oxLDL production by 19.8% (p < 0.05). Our study suggests adipose tissue and adipocytes are active sources of Lp-PLA2, with differential regulation by fat depot and metabolic state. Moreover, levels of circulating Lp-PLA2 appear to be influenced by unfavourable lipid profiles in type 2 diabetes, which may occur in part through regulation of LDL-cholesterol and oxLDL metabolism in adipocytes.
Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian
2017-09-01
Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.
Urbanová, M; Dostálová, I; Trachta, P; Drápalová, J; Kaválková, P; Haluzíková, D; Matoulek, M; Lacinová, Z; Mráz, M; Kasalický, M; Haluzík, M
2014-01-01
Omentin is a novel adipokine with insulin-sensitizing effects expressed predominantly in visceral fat. We investigated serum omentin levels and its mRNA expression in subcutaneous adipose tissue (SCAT) of 11 women with type 2 diabetes mellitus (T2DM), 37 obese non-diabetic women (OB) and 26 healthy lean women (C) before and after various weight loss interventions: 2-week very-low-calorie diet (VLCD), 3-month regular exercise and laparoscopic sleeve gastrectomy (LSG). At baseline, both T2DM and OB groups had decreased serum omentin concentrations compared with C group while omentin mRNA expression in SCAT did not significantly differ among the groups. Neither VLCD nor exercise significantly affected serum omentin concentrations and its mRNA expression in SCAT of OB or T2DM group. LSG significantly increased serum omentin levels in OB group. In contrast, omentin mRNA expression in SCAT was significantly reduced after LSG. Baseline fasting serum omentin levels in a combined group of the studied subjects (C, OB, T2DM) negatively correlated with BMI, CRP, insulin, LDL-cholesterol, triglycerides and leptin and were positively related to HDL-cholesterol. Reduced circulating omentin levels could play a role in the etiopathogenesis of obesity and T2DM. The increase in circulating omentin levels and the decrease in omentin mRNA expression in SCAT of obese women after LSG might contribute to surgery-induced metabolic improvements and sustained reduction of body weight.
Blair, Hannah A; Dhillon, Sohita
2014-10-01
Omega-3 carboxylic acids (Epanova) [OM3-CA] is the first free fatty acid form of long-chain marine omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid being the most abundant) to be approved by the US FDA as an adjunct to diet to lower triglyceride levels in patients with severe hypertriglyceridemia (≥ 500 mg/dL). Oral OM3-CA has greater bioavailability than ethyl ester forms of omega-3 and, unlike omega-3 acid ethyl esters, does not require co-ingestion of a high-fat meal, as it does not need pancreatic enzyme activity for absorption. In the 12-week EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial, OM3-CA 2 or 4 g/day significantly reduced serum triglyceride levels relative to placebo. Other lipid parameters, including non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol, and very low-density lipoprotein cholesterol (VLDL-C) levels, were also reduced significantly with OM3-CA relative to placebo. Low-density lipoprotein cholesterol levels were increased significantly with OM3-CA relative to placebo; however, these increases were not accompanied by increases in the circulating concentrations of non-HDL-C, VLDL-C, or apolipoprotein B. OM3-CA was generally well tolerated in this study, with most adverse events being of mild or moderate severity. Although additional comparative data are needed to position OM3-CA with respect to other formulations of omega-3 fatty acids, current evidence suggests that OM3-CA is a useful addition to the treatment options available for patients with severe hypertriglyceridemia.
Association between Vitamin D and Circulating Lipids in Early Childhood
Birken, Catherine S.; Lebovic, Gerald; Anderson, Laura N.; McCrindle, Brian W.; Mamdani, Muhammad; Kandasamy, Sharmilaa; Khovratovich, Marina; Parkin, Patricia C.; Maguire, Jonathon L.
2015-01-01
Vitamin D is associated with established cardiovascular risk factors such as low density lipoprotein (LDL) in adults. It is unknown whether these associations are present in early childhood. To determine whether serum 25-hydroxyvitamin D (25(OH)D) is associated with serum non-high density lipoprotein (non-HDL) cholesterol during early childhood we conducted a cross-sectional study of children aged 1 to 5 years. Healthy children were recruited through the TARGet Kids! practice based research network from 2008-2011 (n=1,961). The associations between 25(OH)D and non-fasting non-HDL cholesterol (the primary endpoint), total cholesterol, triglycerides, HDL, and low density lipoprotein (LDL) cholesterol, were evaluated using multiple linear regression adjusted for age, sex, skin pigmentation, milk intake, vitamin D supplementation, season, body mass index, outdoor play, and screen time. Each 10 nmol/L increase in 25(OH)D was associated with a decrease in non-HDL cholesterol concentration of -0.89 mg/dl (95% CI: -1.16,-0.50), total cholesterol of -1.08 mg/dl (95%CI: -1.49,-0.70), and triglycerides of -2.34 mg/dl (95%CI: -3.23,-1.45). The associations between 25(OH)D and LDL and HDL were not statistically significant. 25(OH)D concentrations were inversely associated with circulating lipids in early childhood, suggesting that vitamin D exposure in early life may be an early modifiable risk factor for cardiovascular disease. PMID:26176958
Marquart, Tyler J; Wu, Judy; Lusis, Aldons J; Baldán, Ángel
2013-03-01
To determine the efficacy of long-term anti-miR-33 therapy on the progression of atherosclerosis in high-fat, high-cholesterol-fed Ldlr(-/-) mice. Ldlr(-/-) mice received saline, or control or anti-miR-33 oligonucleotides once a week for 14 weeks. The treatment was effective, as measured by reduced levels of hepatic miR-33 and increased hepatic expression of miR-33 targets. Analysis of plasma samples revealed an initial elevation in high-density lipoprotein cholesterol after 2 weeks of treatment that was not sustained by the end of the experiment. Additionally, we found a significant increase in circulating triglycerides in anti-miR-33-treated mice, compared with controls. Finally, examination of atheromata revealed no significant changes in the size or composition of lesions between the 3 groups. Prolonged silencing of miR-33 fails to maintain elevated plasma high-density lipoprotein cholesterol and does not prevent the progression of atherosclerosis in Ldlr(-/-) mice.
Kosukhin, A B; Akhmetova, B S
1986-01-01
Fatty acid spectrum of lipoproteins was studied in intestinal steam lymph and blood plasma of dogs with alimentary hypercholesterolemia. Mechanism of cholesterol accumulation in blood plasma appears to relate to increase in content of cholesterol palmitate which is secreted from intestine into lymph and hydrolyzed slowly in liver tissue. Alterations in composition of fatty acid acyls of cholesterol esters, of phosphatidyl cholines and triacyl glycerides as well as effect of these alterations on the lecithin-cholesterol acyl-transferase reaction and lipoprotein lipolysis are discussed.
Survival of adult neurons lacking cholesterol synthesis in vivo
Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin
2007-01-01
Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system. PMID:17199885
Khetarpal, Sumeet A; Zeng, Xuemei; Millar, John S; Vitali, Cecilia; Somasundara, Amritha Varshini Hanasoge; Zanoni, Paolo; Landro, James A; Barucci, Nicole; Zavadoski, William J; Sun, Zhiyuan; de Haard, Hans; Toth, Ildikó V; Peloso, Gina M; Natarajan, Pradeep; Cuchel, Marina; Lund-Katz, Sissel; Phillips, Michael C; Tall, Alan R; Kathiresan, Sekar; DaSilva-Jardine, Paul; Yates, Nathan A; Rader, Daniel J
2017-09-01
Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.
Khetarpal, Sumeet A; Zeng, Xuemei; Millar, John S; Vitali, Cecilia; Somasundara, Amritha Varshini Hanasoge; Zanoni, Paolo; Landro, James A; Barucci, Nicole; Zavadoski, William J; Sun, Zhiyuan; de Haard, Hans; Toth, Ildikó V; Peloso, Gina M; Natarajan, Pradeep; Cuchel, Marina; Lund-Katz, Sissel; Phillips, Michael C; Tall, Alan R; Kathiresan, Sekar; DaSilva-Jardine, Paul; Yates, Nathan A; Rader, Daniel J
2017-01-01
Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels1. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance2. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD3–5. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden. PMID:28825717
Dietary intake of plant sterols stably increases plant sterol levels in the murine brain.
Vanmierlo, Tim; Weingärtner, Oliver; van der Pol, Susanne; Husche, Constanze; Kerksiek, Anja; Friedrichs, Silvia; Sijbrands, Eric; Steinbusch, Harry; Grimm, Marcus; Hartmann, Tobias; Laufs, Ulrich; Böhm, Michael; de Vries, Helga E; Mulder, Monique; Lütjohann, Dieter
2012-04-01
Plant sterols such as sitosterol and campesterol are frequently administered as cholesterol-lowering supplements in food. Recently, it has been shown in mice that, in contrast to the structurally related cholesterol, circulating plant sterols can enter the brain. We questioned whether the accumulation of plant sterols in murine brain is reversible. After being fed a plant sterol ester-enriched diet for 6 weeks, C57BL/6NCrl mice displayed significantly increased concentrations of plant sterols in serum, liver, and brain by 2- to 3-fold. Blocking intestinal sterol uptake for the next 6 months while feeding the mice with a plant stanol ester-enriched diet resulted in strongly decreased plant sterol levels in serum and liver, without affecting brain plant sterol levels. Relative to plasma concentrations, brain levels of campesterol were higher than sitosterol, suggesting that campesterol traverses the blood-brain barrier more efficiently. In vitro experiments with brain endothelial cell cultures showed that campesterol crossed the blood-brain barrier more efficiently than sitosterol. We conclude that, over a 6-month period, plant sterol accumulation in murine brain is virtually irreversible.
Mishra, Supriya; Gupta, Vani; Mishra, Sameeksha; Gupta, Vandana; Mahdi, Abbas Ali; Sachan, Rekha
2017-12-01
The present study was to investigate the association between serum acylation stimulating protein (ASP) level with metabolic risk factors in North Indian obese women. This is a case control study, total n=322 women aged between 20 and 45 years (n=162 with metabolic syndrome & n=160 without metabolic syndrome) were recruited for the study according to National Cholesterol Education Program Treatment Panel (NCEPATP) guidelines. Serum ASP level were determined by enzyme linked immunosorbent assay. Results indicated that circulating ASP and other metabolic risk factors (waist circumference, triglycerides, fasting plasma glucose etc) were significantly higher in women with metabolic syndrome (WmetS) than in women without syndrome (WometS) (p<0.001). Furthermore circulating ASP was significantly higher possitively correlated with waist circumference (r=0.51, p<0.001), triglyceride (r=0.56, p<0.001), glucose (r=0.70, p<0.001), and negatively correlated with high density lipoprotein(r=-0.56, p<0.001) in women with metabolic syndrome. Conclusively circulating ASP was found to be significantly associated with hyperlipidemia, obesity and obesity related disorders in North Indian obese women. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Acute decrease in HDL cholesterol associated with exposure to welding fumes.
Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David
2011-01-01
To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.
Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey
2017-05-01
Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using 18 F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of 18 F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; P <0.001). Monocytes from patients with FD showed increased lipid accumulation (lipid-positive monocytes: Patients with FD 92% [86-95], controls 76% [66-81], P =0.001, with an increase in lipid droplets per monocyte), and a higher expression of surface integrins (CD11b, CD11c, and CD18). Patients with FD also exhibited monocytosis and leukocytosis, accompanied by a 1.2-fold increase of 18 F-FDG uptake in bone marrow. In addition, we found a strong correlation between remnant levels and leukocyte counts in the CGPS (n=103 953, P for trend 5×10-276). In vitro experiments substantiated that remnant cholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.
Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L
2018-05-08
The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Weng, Lu-Chen; Roetker, Nicholas S; Lutsey, Pamela L; Alonso, Alvaro; Guan, Weihua; Pankow, James S; Folsom, Aaron R; Steffen, Lyn M; Pankratz, Nathan; Tang, Weihong
2018-01-01
Studies have reported that higher circulating levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and lower of high-density lipoprotein (HDL) cholesterol may be associated with increased risk of abdominal aortic aneurysm (AAA). Whether dyslipidemia causes AAA is still unclear and is potentially testable using a Mendelian randomization (MR) approach. We investigated the associations between blood lipids and AAA using two-sample MR analysis with SNP-lipids association estimates from a published genome-wide association study of blood lipids (n = 188,577) and SNP-AAA association estimates from European Americans (EAs) of the Atherosclerosis Risk in Communities (ARIC) study (n = 8,793). We used inverse variance weighted (IVW) MR as the primary method and MR-Egger regression and weighted median MR estimation as sensitivity analyses. Over a median of 22.7 years of follow-up, 338 of 8,793 ARIC participants experienced incident clinical AAA. Using the IVW method, we observed positive associations of plasma LDL cholesterol and TC with the risk of AAA (odds ratio (OR) = 1.55, P = 0.02 for LDL cholesterol and OR = 1.61, P = 0.01 for TC per 1 standard deviation of lipid increment). Using the MR-Egger regression and weighted median methods, we were able to validate the association of AAA risk with TC, although the associations were less consistent for LDL cholesterol due to wider confidence intervals. Triglycerides and HDL cholesterol were not associated with AAA in any of the MR methods. Assuming instrumental variable assumptions are satisfied, our finding suggests that higher plasma TC and LDL cholesterol are causally associated with the increased risk of AAA in EAs.
WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus.
Sahin Ersoy, Gulcin; Altun Ensari, Tugba; Subas, Seda; Giray, Burak; Simsek, Engin Ersin; Cevik, Ozge
2017-04-01
To investigate Wnt1-inducible signaling pathway protein-1 (WISP1) levels and their correlation with metabolic parameters in pregnant women with gestational diabetes mellitus (GDM) and non-GDM healthy pregnant women. In this prospective cross-sectional study, the study group was composed of 62 women with GDM and 73 healthy pregnant women matched for age, body mass index (BMI) and gestational age. Blood samples were collected at 25-29th gestational week. Serum WISP1, betatrophin, glucose, fasting insulin, glycosylated hemoglobin A1c, total cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol, C reactive protein, alanine aminotransferase and creatinine levels were measured. Homeostasis model assessment of insulin resistance (HOMA-IR) values was calculated. The level of significance was accepted as p < 0.05. Circulating WISP1 in the GDM group was significantly higher than the control group (p <0.001). Further, WISP1 was positively correlated with BMI, HOMA-IR values and fasting glucose, fasting insulin, triglyceride, betatrophin levels. BMI, HOMA-IR and betatrophin independently and positively predicted WISP1 levels. These results demonstrate a relationship between WISP1 and the metabolic parameters of GDM. And, WISP1 might be involved in the pathophysiology of GDM. As a part of this pathophysiological mechanism, the activation of WISP1 and betatrophin might take place through several ways; WISP1 and betatrophin might either use same signaling pathways and potentiate each other or they might also constitute the sequential steps of a common pathway.
Küme, Tuncay; Acar, Sezer; Tuhan, Hale; Çatlı, Gönül; Anık, Ahmet; Gürsoy Çalan, Özlem; Böber, Ece; Abacı, Ayhan
2017-03-01
To investigate the relationship between zonulin levels and clinical and laboratory parameters of childhood obesity. The study included obese children with a body mass index (BMI) >95 th percentile and healthy children who were of similar age and gender distribution. Clinical (BMI, waist circumferences, mid-arm circumference, triceps skinfold, percentage of body fat, systolic blood pressure, diastolic blood pressure) and biochemical (glucose, insulin, lipid levels, thyroid function tests, cortisol, zonulin and leptin levels) parameters were measured. A total of 43 obese subjects (23 males, mean age: 11.1±3.1 years) and 37 healthy subjects (18 males, mean age: 11.5±3.5 years) were included in this study. Obese children had significantly higher insulin, homeostasis model assessment of insulin resistance, triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), zonulin and leptin levels than healthy children (p<0.05), while glucose levels were not different (p>0.05). Comparison of the obese children with and without insulin resistance showed no statistically significant differences for zonulin levels (p>0.05). Zonulin levels were found to negatively correlate with HDL-C and positively correlate with leptin levels, after adjusting for age and BMI. To the best of our knowledge, this is the first study investigating the relationship between circulating zonulin level (as a marker of intestinal permeability) and insulin resistance and leptin (as markers of metabolic disturbances associated with obesity) in childhood obesity. The results showed that zonulin was significantly higher in obese children when compared to healthy children, a finding indicating a potential role of zonulin in the etiopathogenesis of obesity and related disturbances.
Plasma NOV/CCN3 Levels Are Closely Associated with Obesity in Patients with Metabolic Disorders
Pakradouni, Jihane; Le Goff, Wilfried; Calmel, Claire; Antoine, Bénédicte; Villard, Elise; Frisdal, Eric; Abifadel, Marianne; Tordjman, Joan; Poitou, Christine; Bonnefont-Rousselot, Dominique; Bittar, Randa; Bruckert, Eric; Clément, Karine; Fève, Bruno; Martinerie, Cécile; Guérin, Maryse
2013-01-01
Objective Evidence points to a founder of the multifunctional CCN family, NOV/CCN3, as a circulating molecule involved in cardiac development, vascular homeostasis and inflammation. No data are available on the relationship between plasma NOV/CCN3 levels and cardiovascular risk factors in humans. This study investigated the possible relationship between plasma NOV levels and cardiovascular risk factors in humans. Methods NOV levels were measured in the plasma from 594 adults with a hyperlipidemia history and/or with lipid-lowering therapy and/or a body mass index (BMI) >30 kg/m2. Correlations were measured between NOV plasma levels and various parameters, including BMI, fat mass, and plasma triglycerides, cholesterol, glucose, and C-reactive protein. NOV expression was also evaluated in adipose tissue from obese patients and rodents and in primary cultures of adipocytes and macrophages. Results After full multivariate adjustment, we detected a strong positive correlation between plasma NOV and BMI (r = 0.36 p<0.0001) and fat mass (r = 0.33 p<0.0005). According to quintiles, this relationship appeared to be linear. NOV levels were also positively correlated with C-reactive protein but not with total cholesterol, LDL-C or blood glucose. In patients with drastic weight loss induced by Roux-en-Y bariatric surgery, circulating NOV levels decreased by 28% (p<0.02) and 48% (p<0.0001) after 3 and 6 months, respectively, following surgery. In adipose tissue from obese patients, and in human primary cultures NOV protein was detected in adipocytes and macrophages. In mice fed a high fat diet NOV plasma levels and its expression in adipose tissue were also significantly increased compared to controls fed a standard diet. Conclusion Our results strongly suggest that in obese humans and mice plasma NOV levels positively correlated with NOV expression in adipose tissue, and support a possible contribution of NOV to obesity-related inflammation. PMID:23785511
Pérez-Baos, S; Barrasa, J I; Gratal, P; Larrañaga-Vera, A; Prieto-Potin, I; Herrero-Beaumont, G; Largo, R
2017-09-01
Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg -1 ·day -1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients. © 2017 The British Pharmacological Society.
Zhang, Min; Zhao, Guo-Jun; Yao, Feng; Xia, Xiao-Dan; Gong, Duo; Zhao, Zhen-Wang; Chen, Ling-Yan; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke
2018-06-01
ApoA-1 binding protein (AIBP) is a secreted protein that interacts with apoA-I and accelerates cholesterol efflux from cells. We have recently reported that AIBP promotes apoA-1 binding to ABCA1 in the macrophage cell membrane, partially through 115-123 amino acids. However, the effects of AIBP on the development of atherosclerosis in vivo remain unknown. ApoE -/- mice with established atherosclerotic plaques were infected with rAAV-AIBP or rAAV-AIBP(Δ115-123), respectively. AIBP-treated mice showed reduction of atherosclerotic lesion formation, increase in circulating HDL levels and enhancement of reverse cholesterol transport to the plasma, liver, and feces. AIBP increased ABCA1 protein levels in aorta and peritoneal macrophages. Furthermore, AIBP could diminish atherosclerotic plaque macrophage content and the expression of chemotaxis-related factors. In addition, AIBP prevented macrophage inflammation by inactivating NF-κB and promoted the expression of M2 markers like Mrc-1 and Arg-1. However, lack of 115-123 amino acids of AIBP(Δ115-123) had no such preventive effects on the progression of atherosclerosis. Our observations demonstrate that AIBP inhibits atherosclerosis progression and suggest that it may be an effective target for prevention of atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Cholesterol and Prostate Cancer
Pelton, Kristine; Freeman, Michael R.; Solomon, Keith R.
2012-01-01
Summary Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations. PMID:22824430
Martina, Valentino; Benso, Andrea; Gigliardi, Valentina Ramella; Masha, Andi; Origlia, Carla; Granata, Riccarda; Ghigo, Ezio
2006-03-01
Several clinical and population-based studies suggest that dehydroepiandrosterone (DHEA) and its sulphate (DHEA-S) play a protective role against atherosclerosis and coronary artery disease in human. However, the mechanisms underlying this action are still unknown. It has recently been suggested that DHEA-S could delay atheroma formation through an increase in nitric oxide (NO) production. Twenty-four aged male subjects [age (mean +/- SEM): 65.4 +/- 0.7 year; range: 58.2-67.6 years] underwent a blinded placebo controlled study receiving DHEA (50 mg p.o. daily at bedtime) or placebo for 2 months. Platelet cyclic guanosine-monophosphate (cGMP) concentration (as marker of NO production) and serum levels of DHEA-S, DHEA, IGF-I, insulin, glucose, oestradiol (E(2)), testosterone, plasminogen activator inhibitor (PAI)-1 antigen (PAI-1 Ag), homocysteine and lipid profile were evaluated before and after the 2-month treatment with DHEA or placebo. At the baseline, all variables in the two groups were overlapping. All parameters were unchanged after treatment with placebo. Conversely, treatment with DHEA (a) increased (P < 0.001 vs. baseline) platelet cGMP (111.9 +/- 7.1 vs. 50.1 +/- 4.1 fmol/10(6) plts), DHEA-S (13.6 +/- 0.8 vs. 3.0 +/- 0.3 micromol/l), DHEA (23.6 +/- 1.7 vs. 15.3 +/- 1.4 nmol/l), testosterone (23.6 +/- 1.0 vs. 17.7 +/- 1.0 nmol/l) and E(2) (72.0 +/- 5.0 vs. 60.0 +/- 4.0 pmol/l); and (b) decreased (P < 0.05 vs. baseline) PAI-1 Ag (27.4 +/- 3.8 vs. 21.5 +/- 2.5 ng/ml) and low-density lipoprotein (LDL) cholesterol (3.4 +/- 0.2 vs. 3.0 +/- 0.2 mmol/l). IGF-I, insulin, glucose, triglycerides, total cholesterol, HDL cholesterol, HDL2 cholesterol, HDL3 cholesterol, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB) and homocysteine levels were not modified by DHEA treatment. This study shows that short-term treatment with DHEA increased platelet cGMP production, a marker of NO production, in healthy elderly subjects. This effect is coupled with a decrease in PAI-1 and LDL cholesterol levels as well as an increase in testosterone and E(2) levels. These findings, therefore, suggest that chronic DHEA supplementation would exert antiatherogenic effects, particularly in elderly subjects who display low circulating levels of this hormone.
Crespo, N; Esteve-Garcia, E
2003-07-01
An experiment was conducted to study the effect of different dietary fatty acid profiles on plasma levels of insulin, very low density lipoproteins (VLDL), cholesterol, and glucose. Diets with four types of fat (tallow, olive, sunflower, and linseed oils) at an inclusion level of 10% and a basal diet without additional fat were administered to female broiler chickens. Serum insulin, cholesterol, and plasma VLDL were affected by the different treatments; however, glucose concentrations were similar among treatments. In the fasted state, broilers fed diets with sunflower or linseed oil presented lower levels of insulin and cholesterol with respect to those fed tallow or olive oil (P < 0.05). VLDL in the fasted state was reduced in broilers fed sunflower and linseed oils (P < 0.05) with respect to those fed tallow, olive oil, or the basal diet. Plasma levels of VLDL were only significantly correlated with abdominal fat in birds fed the basal diet, in the fed and in the fasted state, and in those fed linseed oil in the fed state (P < 0.05). Results of this experiment suggest that higher insulin levels in broilers fed diets rich in saturated fatty acids could be related to higher fat deposition. Fat deposition in birds fed high fat diets was not correlated with circulating VLDL, which suggested direct dietary fat deposition, except for birds fed linseed oil diets. Although birds fed linseed oil diets presented lower levels of VLDL than those fed tallow, olive oil, or the basal diet, the higher correlation with abdominal fat suggests that in these birds, fat deposition is more dependent on hepatic VLDL secretion, despite the high dietary fat level.
Tureck, Luciane Viater; Leite, Neiva; Souza, Ricardo Lehtonen Rodrigues; da Silva Timossi, Luciana; Osiecki, Ana Claudia Vecchi; Osiecki, Raul; Alle, Lupe Furtado
2015-01-01
Adiponectin is an adipokine inversely correlated with obesity, which has beneficial effect on insulin resistance and lipid metabolism. Considering its potential as a therapeutic target in the metabolic disorder contexts, and in order to add knowledge in the area, our study evaluated the ADIPOQ 276G > T polymorphism effect on adiponectin levels, and on lipoproteins of clinical interest in a population sample composed of 211 healthy individuals. Significant effects were observed only among men: the carriers of heterozygous genotype (GT) showed high levels of adiponectin (p = 0.018), while the rare homozygous genotype (TT) gave its carriers a negative phenotype, represented by higher levels of low density lipoprotein cholesterol (LDL-C) (p = 0.004 and p = 0.005) and total cholesterol (TC) (p = 0.010 and p = 0.005) compared to carriers of other genotypes (GG and GT respectively), the independent effect of SNP on LDL-C and TC levels was confirmed by multiple regression analysis (p = 0.008 and p = 0.044). We found no evidence of correlation between circulating adiponectin levels and biochemical markers, which suggests, therefore, an SNP 276G > T independent effect on adiponectin levels and on lipoprotein metabolism in men enrolled in this study. PMID:26137445
Trans fatty acids and cholesterol levels: An evidence map of the available science.
Liska, DeAnn J; Cook, Chad M; Wang, Ding Ding; Gaine, P Courtney; Baer, David J
2016-12-01
High intakes of industrial trans fatty acids (iTFA) increase circulating low density lipoprotein cholesterol (LDL-C) levels, which has implicated iTFA in coronary heart disease (CHD) risk. Published data on iTFA and LDL-C, however, represent higher intake levels than the U.S. population currently consume. This study used state-of-the-art evidence mapping approaches to characterize the full body of literature on LDL-C and iTFA at low intake levels. A total of 32 independent clinical trials that included at least one intervention or control group with iTFA at ≤3%en were found. Findings indicated that a wide range of oils and interventions were used, limiting the ability to determine an isolated effect of iTFA intake. Few data points were found for iTFA at <3%en, with the majority of low-level exposures actually representing control group interventions containing non-partially hydrogenated (PHO) oils. Further, it appears that few dose-response data points are available to assess the relationship of low levels of iTFA, particularly from PHO exposure, and LDL-C. Therefore, limited evidence is available to determine the effect of iTFA at current consumption levels on CHD risk. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hedman, Åsa K; Mendelson, Michael M; Marioni, Riccardo E; Gustafsson, Stefan; Joehanes, Roby; Irvin, Marguerite R; Zhi, Degui; Sandling, Johanna K; Yao, Chen; Liu, Chunyu; Liang, Liming; Huan, Tianxiao; McRae, Allan F; Demissie, Serkalem; Shah, Sonia; Starr, John M; Cupples, L Adrienne; Deloukas, Panos; Spector, Timothy D; Sundström, Johan; Krauss, Ronald M; Arnett, Donna K; Deary, Ian J; Lind, Lars; Levy, Daniel; Ingelsson, Erik
2017-01-01
Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications. To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA methylation at cytosine-guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts, with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery stage ( P <1.08E-07) and replicated 33 (at Bonferroni-corrected P <0.05), including 25 novel CpGs not previously associated with lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated locus associated with triglycerides and high-density lipoprotein cholesterol (HDL-C; cg27243685; P =8.1E-26 and 9.3E-19) was associated with cis -expression of a reverse cholesterol transporter ( ABCG1; P =7.2E-28) and incident cardiovascular disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15-1.66; P =0.0007). We found significant cis -methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association studies of lipid levels ( P TC =0.004, P HDL-C =0.008 and P triglycerides =0.00003) and coronary heart disease ( P =0.0007). For example, genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were cis -methylation quantitative trait loci for a low-density lipoprotein cholesterol-related differentially methylated locus. We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events. © 2017 The Authors.
Lipoprotein-cholesterol levels in infertile women with luteal phase deficiency.
Hansen, K K; Knopp, R H; Soules, M R
1991-05-01
To determine if reductions in plasma progesterone (P) secretion seen in luteal phase deficiency (LPD) might be because of reduced availability of circulating low-density lipoprotein (LDL) or high-density lipoprotein (HDL), known substrates for corpus luteum P synthesis. We measured plasma lipoproteins in the luteal phase of the menstrual cycle in 39 infertile women. These women were divided into two groups on the basis of endometrial biopsies; the LPD group had biopsies that were greater than or equal to 3 days out-of-phase. All participants were recruited from the Reproductive Endocrinology and Infertility Clinic at the University of Washington, an institutional tertiary care center. Eighteen women had in-phase and 21 had out-of-phase LPD biopsies. Lipoprotein levels were obtained in a fasted state on the day of the luteal phase on which the biopsy was performed. No difference in covariates that affect lipoprotein levels such as obesity, age, and alcohol use were observed between the two groups. No significant differences between groups were found for triglycerides, total cholesterol, very low density lipoprotein, LDL, HDL, HDL2, and HDL3 concentrations. However, LPD was associated with a reduction in the extent to which: age and obesity are associated with higher triglycerides; obesity is associated with a lower HDL2; and alcohol is associated with a higher HDL3-cholesterol. Lipoproteins on average are not different in LPD, suggesting reasons other than a deficient plasma lipoprotein cholesterol source as the explanation for decreased P secretion. A lesser interaction between LDL or HDL and obesity, age, and alcohol in LPD could signify an influence of the altered hormonal milieu of LPD on the way lipoproteins interact with covariates and could lead to differences in lipoproteins between normal and LPD subjects at the extremes of the lipoprotein distribution.
The Antithrombotic and Fibrinolytic Effect of Natto in Hypercholesterolemia Rats
Park, Kum-Ju; Kang, Jung Il; Kim, Tae-Seok; Yeo, Ik-Hyun
2012-01-01
Antithrombotic and fibrinolytic activity of natto was evaluated on platelet aggregation in vitro and in vivo. Natto showed inhibitory effects on platelet aggregation induced by adenosine 5′diphosphate (ADP) and collagen. Orally administered natto also showed fibrinolytic activity in hypercholesterolemia rats. Normal levels of natto, when administered for four weeks, shortened euglobulin clot lysis time (ECLT) and prolonged partial thromboplastin time (PATT) significantly compared to non-treated group. In addition, the natto treatment decreased total cholesterol in serum. These results showed that intake of normal levels of natto can elicit antithrombotic and fibrinolytic effects, suggesting its consumption may improve blood circulation. PMID:24471066
Dumesic, Daniel A; Akopians, Alin L; Madrigal, Vanessa K; Ramirez, Emmanuel; Margolis, Daniel J; Sarma, Manoj K; Thomas, Albert M; Grogan, Tristan R; Haykal, Rasha; Schooler, Tery A; Okeya, Bette L; Abbott, David H; Chazenbalk, Gregorio D
2016-11-01
Normal weight polycystic ovary syndrome (PCOS) women may have altered adipose structure-function underlying metabolic dysfunction. This study examines whether adipose structure-functional changes exist in normal weight PCOS women and correlate with hyperandrogenism and/or hyperinsulinemia. This is a prospective cohort study. The setting was an academic medical center. Six normal weight PCOS women and 14 age- and body mass index-matched normoandrogenic ovulatory (NL) women were included. All women underwent circulating hormone and metabolic measurements; frequently sampled intravenous glucose tolerance testing; total body dual-energy x-ray absorptiometry; abdominal magnetic resonance imaging; and SC abdominal fat biopsy. Circulating hormones and metabolites, body fat and its distribution, and adipocyte size were compared between PCOS and NL women, and were correlated with each other in all women. Circulating LH and androgen levels were significantly greater in PCOS than NL women, as were fasting insulin levels, pancreatic β-cell responsiveness to glucose, and total abdominal fat mass. Intra-abdominal fat mass also was significantly increased in PCOS women and was positively correlated with circulating androgen, fasting insulin, triglyceride, and non-high-density lipoprotein cholesterol levels in all women. SC abdominal fat mass was not significantly increased in PCOS women, but contained a greater proportion of small SC abdominal adipocytes that positively correlated with serum androgen levels in all women. Hyperandrogenism in normal weight PCOS women is associated with preferential intra-abdominal fat deposition and an increased population of small SC abdominal adipocytes that could constrain SC adipose storage and promote metabolic dysfunction.
Lucero, Diego; Zago, Valeria; López, Graciela I; Graffigna, Mabel; López, Gustavo H; Fainboim, Hugo; Miksztowicz, Verónica; Gómez Rosso, Leonardo; Belli, Susana; Levalle, Oscar; Berg, Gabriela; Brites, Fernando; Wikinski, Regina; Schreier, Laura
2011-03-18
Hepatic steatosis (HS) is closely associated to metabolic syndrome (MS). Both, VLDL-triglyceride oversecretion and intrahepatic deposits, can take place. We evaluated VLDL characteristics, CETP, hepatic lipase (HL), IDL and small dense LDL (sdLDL), in patients with HS associated to MS. We studied 3 groups matched by age and sex: 25 MS patients with HS (diagnosed by ultrasonography), 25 MS patients without HS and 25 healthy controls. Main measurements were: lipid profile, free fatty acids, VLDL composition, VLDL size by HPLC, CETP and HL activities, IDL-cholesterol and sdLDL-cholesterol. Patients with HS presented higher triglyceride levels, HOMA-IR and free fatty acids, VLDL mass and VLDL-apoB (p<0.05). No differences in VLDL composition were observed. MS groups presented higher proportion of large VLDL than controls (p<0.05). HS group showed higher CETP than controls (p=0.01) and almost higher than MS without HS (p=0.06). CETP correlated with VLDL-cholesterol content, r=0.48, p<0.005. The increase in sdLDL-cholesterol correlated with CETP (r=0.47) and HL (r=0.56), independent of insulin resistance (p<0.003). Despite intrahepatic fat, patients with HS secreted higher number of VLDL particles. CETP would have a remodeling action on VLDL in circulation, enriching it in cholesterol and also favoring, together with HL, the formation of sdLDL. Copyright © 2010 Elsevier B.V. All rights reserved.
The mechanism of enterohepatic circulation in the formation of gallstone disease.
Cai, Jian-Shan; Chen, Jin-Hong
2014-11-01
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95% BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5% (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Serum cholesterol acceptor capacity in intrauterine growth restricted fetuses.
Pecks, Ulrich; Rath, Werner; Bauerschlag, Dirk O; Maass, Nicolai; Orlikowsky, Thorsten; Mohaupt, Markus G; Escher, Geneviève
2017-10-26
Intrauterine growth restriction (IUGR) is an independent risk factor for the development of cardiovascular diseases later in life. The mechanisms whereby slowed intrauterine growth confers vascular risk are not clearly established. In general, a disturbed cholesterol efflux has been linked to atherosclerosis. The capacity of serum to accept cholesterol has been repeatedly evaluated in clinical studies by the use of macrophage-based cholesterol efflux assays and, if disturbed, precedes atherosclerotic diseases years before the clinical diagnosis. We now hypothesized that circulating cholesterol acceptors in IUGR sera specifically interfere with cholesterol transport mechanisms leading to diminished cholesterol efflux. RAW264.7 cells were used to determine efflux of [3H]-cholesterol in response to [umbilical cord serum (IUGR), n=20; controls (CTRL), n=20]. Cholesterol efflux was lower in IUGR as compared to controls [controls: mean 7.7% fractional [3H]-cholesterol efflux, standard deviation (SD)=0.98; IUGR: mean 6.3%, SD=0.79; P<0.0001]. Values strongly correlated to HDL (ρ=0.655, P<0.0001) and apoE (ρ=0.510, P=0.0008), and mildly to apoA1 (ρ=0.3926, P=0.0122) concentrations. Reduced cholesterol efflux in IUGR could account for the enhanced risk of developing cardiovascular diseases later in life.
Acute Decrease in HDL Cholesterol Associated With Exposure to Welding Fumes
Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David
2011-01-01
Objective To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Methods Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. Results There was a trend toward decrease in HDL (−2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (−2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (−4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Conclusion Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure. PMID:21187793
Cuchel, Marina; Lund-Katz, Sissel; de la Llera-Moya, Margarita; Millar, John S; Chang, David; Fuki, Ilia; Rothblat, George H; Phillips, Michael C; Rader, Daniel J
2010-03-01
Reconstituted high-density lipoprotein (rHDL) is of interest as a potential novel therapy for atherosclerosis because of its ability to promote free cholesterol (FC) mobilization after intravenous administration. We performed studies to identify the underlying molecular mechanisms by which rHDL promote FC mobilization from whole body in vivo and macrophages in vitro. Wild-type (WT), SR-BI knockout (KO), ABCA1 KO, and ABCG1 KO mice received either rHDL or phosphate-buffered saline intravenously. Blood was drawn before and at several time points after injection for apolipoprotein A-I, phosphatidylcholine, and FC measurement. In WT mice, serum FC peaked at 20 minutes and rapidly returned toward baseline levels by 24 hours. Unexpectedly, ABCA1 KO and ABCG1 KO mice did not differ from WT mice regarding the kinetics of FC mobilization. In contrast, in SR-BI KO mice the increase in FC level at 20 minutes was only 10% of that in control mice (P<0.01). Bone marrow-derived macrophages from WT, SR-BI O, ABCA1 KO, and ABCG1 KO mice were incubated in vitro with rHDL and cholesterol efflux was determined. Efflux from SR-BI KO and ABCA1 KO macrophages was not different from WT macrophages. In contrast, efflux from ABCG1 KO macrophages was approximately 50% lower as compared with WT macrophages (P<0.001). The bulk mobilization of FC observed in circulation after rHDL administration is primarily mediated by SR-BI. However, cholesterol mobilization from macrophages to rHDL is primarily mediated by ABCG1.
Li, Sha; Zhao, Xi; Zhang, Yan; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Xu, Rui-Xia; Qing, Ping; Gao, Ying; Sun, Jing; Liu, Geng; Dong, Qian; Li, Jian-Jun
2017-02-14
Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein C-III (apoC3) and small dense low density lipoprotein cholesterol (sdLDL-C), have been recently recognized as circulating atherosclerosis-related lipid measurements. We aimed to elucidate their associations with current dyslipidemias, and identify their levels at increased risk to dyslipidemia. A total of 1,605 consecutive, non-treated patients undergoing diagnostic/interventional coronary angiography were examined. Plasma PCSK9 and apoC3 levels were determined using a validated ELISA assay, and sdLDL-C was measured by the Lipoprint LDL System. Plasma levels of PCSK9, apoC3, and sdLDL-C were associated with the current dyslipidemias classification (all p<0.001). PCSK9 significantly conferred prediction of both hypercholesterolemia and combined hyperlipidemia at a level of 235 ng/ml; apoC3 levels for hypertriglyceridemia, hypercholesterolemia and combined hyperlipidemia were 80.0, 71.5, and 86.4 μg/ml, respectively; and sdLDL-C for hypertriglyceridemia, hypercholesterolemia, combined hyperlipidemia and hypo high density lipoprotein (HDL) cholesterolemia 3.5, 2.5, 4.5, and 2.5 mg/dl, respectively (all p<0.001 for area under the receiver-operating characteristic curve). In a polytomous logistic model comparing increasing LDL-C categories, the interactions with high PCSK9, apoC3, and sdLDL-C elevated gradually. Similarly, apoC3 and sdLDL-C showed elevated interaction with increased triglyceride categories, and only sdLDL-C showed interaction with decreased HDL cholesterol (HDL-C) categories. Furthermore, discordances of PCSK9, apoC3, and sdLDL-C with current dyslipidemias were observed. PCSK9, apoC3, and sdLDL-C showed significant interactions with current dyslipidemias, and were predictive in the screening. The substantial discordances with current dyslipidemias might provide novel view in lipid management and further cardiovascular benefit.
Li, Sha; Zhao, Xi; Zhang, Yan; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Xu, Rui-Xia; Qing, Ping; Gao, Ying; Sun, Jing; Liu, Geng; Dong, Qian; Li, Jian-Jun
2017-01-01
Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein C-III (apoC3) and small dense low density lipoprotein cholesterol (sdLDL-C), have been recently recognized as circulating atherosclerosis-related lipid measurements. We aimed to elucidate their associations with current dyslipidemias, and identify their levels at increased risk to dyslipidemia. A total of 1,605 consecutive, non-treated patients undergoing diagnostic/interventional coronary angiography were examined. Plasma PCSK9 and apoC3 levels were determined using a validated ELISA assay, and sdLDL-C was measured by the Lipoprint LDL System. Plasma levels of PCSK9, apoC3, and sdLDL-C were associated with the current dyslipidemias classification (all p<0.001). PCSK9 significantly conferred prediction of both hypercholesterolemia and combined hyperlipidemia at a level of 235 ng/ml; apoC3 levels for hypertriglyceridemia, hypercholesterolemia and combined hyperlipidemia were 80.0, 71.5, and 86.4 g/ml, respectively; and sdLDL-C for hypertriglyceridemia, hypercholesterolemia, combined hyperlipidemia and hypo high density lipoprotein (HDL) cholesterolemia 3.5, 2.5, 4.5, and 2.5 mg/dl, respectively (all p<0.001 for area under the receiver-operating characteristic curve). In a polytomous logistic model comparing increasing LDL-C categories, the interactions with high PCSK9, apoC3, and sdLDL-C elevated gradually. Similarly, apoC3 and sdLDL-C showed elevated interaction with increased triglyceride categories, and only sdLDL-C showed interaction with decreased HDL cholesterol (HDL-C) categories. Furthermore, discordances of PCSK9, apoC3, and sdLDL-C with current dyslipidemias were observed. PCSK9, apoC3, and sdLDL-C showed significant interactions with current dyslipidemias, and were predictive in the screening. The substantial discordances with current dyslipidemias might provide novel view in lipid management and further cardiovascular benefit. PMID:27713142
Pankow, James S; Tang, Weihong; Pankratz, Nathan; Guan, Weihua; Weng, Lu-Chen; Cushman, Mary; Boerwinkle, Eric; Folsom, Aaron R
2017-03-01
Previous studies have identified common genetic variants in 4 chromosomal regions that together account for 14% to 15% of the variance in circulating levels of protein C. To further characterize the genetic architecture of protein C, we obtained denser coverage at some loci, extended investigation of protein C to low-frequency and rare variants, and searched for new associations in genes known to influence protein C. Genetic associations with protein C antigen level were evaluated in ≤10 778 European and 3190 black participants aged 45 to 64 years. Analyses included >26 million autosomal variants available after imputation to the 1000 Genomes reference panel along with additional low-frequency and rare variants directly genotyped using the Illumina ITMAT-Broad-CARe chip and Illumina HumanExome BeadChip. Genome-wide significant associations ( P <5×10 -8 ) were found for common variants in the GCKR , PROC , BAZ1B , and PROCR-EDEM2 regions in whites and PROC and PROCR-EDEM2 regions in blacks, confirming earlier findings. In a novel finding, the low-density lipoprotein cholesterol-lowering allele of rs12740374, located in the CELSR2-PSRC1-SORT1 region, was associated with lower protein C level in both whites and blacks, reaching genome-wide significance in a meta-analysis combining results from both groups ( P =1.4×10 -9 ). To further investigate a possible link between lipid metabolism and protein C level, we conducted Mendelian randomization analyses using 185 lipid-related genetic variants as instrumental variables. The results indicated that triglycerides, and possibly low-density lipoprotein cholesterol, influence protein C levels. Discovery of variants influencing circulating protein C levels in the CELSR2-PSRC1-SORT1 region may indicate a novel genetic link between lipoprotein metabolism and hemostasis. © 2017 American Heart Association, Inc.
... cholesterol from circulating in the blood. Watch an animation of how statins work. Reason for Medication Used ... Kindle Fire Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...
Jabbari, Masoumeh; Kheirouri, Sorayya; Alizadeh, Mohammad
2018-03-21
We aimed to investigate the association between serum levels of ghrelin and brain-derived neurotrophic factor (BDNF) with MetS and its components in premenopausal women. 43 patients with MetS and 43 healthy controls participated in this study. Participants' body mass index (BMI), waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP) were measured. Serum levels of total cholesterol (TC), triglyceride (TG), low and high density lipoprotein cholesterol (LDL-C and HDL-C), fasting blood sugar (FBS), insulin, BDNF and ghrelin determined. Homeostasis model assessment insulin resistance index (HOMA-IR) was also calculated. Participants in MetS group had higher waist-to-hip ratios, elevated SBP and DBP, and higher serum levels of TG, FBS and insulin when compared with the control group. Serum ghrelin and BDNF levels were significantly lower in participants with MetS than in the healthier control subjects. There was a strong, positive correlation between serum ghrelin and BDNF levels. Both proteins negatively correlated with TG, FBS, HOMA-IR and positively with HDL-C. Furthermore, serum BDNF levels negatively associated with insulin levels. The findings indicate that variations occur in the circulating level of ghrelin and BDNF proteins in MetS patients. A strong correlation between serum ghrelin and BDNF suggests that production, release or practice of these 2 proteins might be related mechanically.
Mitchell, Tracy; Chao, Ginger; Sitkoff, Doree; Lo, Fred; Monshizadegan, Hossain; Meyers, Daniel; Low, Simon; Russo, Katie; DiBella, Rose; Denhez, Fabienne; Gao, Mian; Myers, Joseph; Duke, Gerald; Witmer, Mark; Miao, Bowman; Ho, Siew P; Khan, Javed; Parker, Rex A
2014-08-01
Proprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III-domain and engineered for high-affinity target binding. BMS-962476, an ∼11-kDa polypeptide conjugated to polyethylene glycol to enhance pharmacokinetics, binds with subnanomolar affinity to human. The X-ray cocrystal structure of PCSK9 with a progenitor Adnectin shows ∼910 Å(2) of PCSK9 surface covered next to the LDL receptor binding site, largely by residues of a single loop of the Adnectin. In hypercholesterolemic, overexpressing human PCSK9 transgenic mice, BMS-962476 rapidly lowered cholesterol and free PCSK9 levels. In genomic transgenic mice, BMS-962476 potently reduced free human PCSK9 (ED50 ∼0.01 mg/kg) followed by ∼2-fold increases in total PCSK9 before return to baseline. Treatment of cynomolgus monkeys with BMS-962476 rapidly suppressed free PCSK9 >99% and LDL-cholesterol ∼55% with subsequent 6-fold increase in total PCSK9, suggesting reduced clearance of circulating complex. Liver sterol response genes were consequently downregulated, following which LDL and total PCSK9 returned to baseline. These studies highlight the rapid dynamics of PCSK9 control over LDL and liver cholesterol metabolism and characterize BMS-962476 as a potent and efficacious PCSK9 inhibitor. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Dhar, Indu; Lysne, Vegard; Seifert, Reinhard; Svingen, Gard F T; Ueland, Per M; Nygård, Ottar K
2018-05-01
Methionine (Met) is an essential amino acid involved in methylation reactions and lipid metabolism. A Met-deficient diet may cause hepatic lipid accumulation, which is considered an independent risk factor for atherosclerosis. However, the prospective relationship between circulating Met and incident acute myocardial infarction (AMI) is unknown. We studied the associations of plasma Met and incident AMI in 4156 patients (77% men; median age 62 years) with stable angina pectoris, among whom the majority received lipid lowering therapy with statins. Risk associations were estimated using Cox-regression analyses. Plasma Met was negatively related to age, serum levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (apo) B at baseline (all p≤0.05). During a median follow-up of 7.5 years, 534 (12.8%) patients experienced an AMI. There was no overall association between plasma Met and incident AMI; however, plasma Met was inversely associated with risk among patients with high as compared to low levels of serum LDL-C or apo B 100 (multivariate adjusted HRs per SD [95% CI] 0.84 [0.73-0.96] and 0.83[0.73-0.95], respectively; p-interaction ≤0.02). Trends towards an inverse risk relationship were also observed among those younger than 62 years and patients without diabetes or hypertension. Low plasma Met was associated with increased risk of AMI in patients with high circulating levels of atherogenic lipids, but also in subgroups with presumably lower cardiovascular risk. The determinants of Met status and their relation with residual cardiovascular risk in patients with coronary heart disease should be further investigated. Copyright © 2018 Elsevier B.V. All rights reserved.
Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin
2010-07-01
A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.
Intestinal ABCA1 directly contributes to HDL biogenesis in vivo
Brunham, Liam R.; Kruit, Janine K.; Iqbal, Jahangir; Fievet, Catherine; Timmins, Jenelle M.; Pape, Terry D.; Coburn, Bryan A.; Bissada, Nagat; Staels, Bart; Groen, Albert K.; Hussain, M. Mahmood; Parks, John S.; Kuipers, Folkert; Hayden, Michael R.
2006-01-01
Plasma HDL cholesterol levels are inversely related to risk for atherosclerosis. The ATP-binding cassette, subfamily A, member 1 (ABCA1) mediates the rate-controlling step in HDL particle formation, the assembly of free cholesterol and phospholipids with apoA-I. ABCA1 is expressed in many tissues; however, the physiological functions of ABCA1 in specific tissues and organs are still elusive. The liver is known to be the major source of plasma HDL, but it is likely that there are other important sites of HDL biogenesis. To assess the contribution of intestinal ABCA1 to plasma HDL levels in vivo, we generated mice that specifically lack ABCA1 in the intestine. Our results indicate that approximately 30% of the steady-state plasma HDL pool is contributed by intestinal ABCA1 in mice. In addition, our data suggest that HDL derived from intestinal ABCA1 is secreted directly into the circulation and that HDL in lymph is predominantly derived from the plasma compartment. These data establish a critical role for intestinal ABCA1 in plasma HDL biogenesis in vivo. PMID:16543947
Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels
2012-02-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhat, Amani; National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3; Buick, Julie K.
We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The genemore » expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.« less
Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H
2017-01-01
Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.
Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D
2018-06-07
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.
Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition.
Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-An
2015-01-01
Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory cytokines, and inhibiting macrophage accumulation in the lesions.
Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition
Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-an
2015-01-01
Background Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. Methods and Results ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Conclusions Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory cytokines, and inhibiting macrophage accumulation in the lesions. PMID:26555472
Faiz, Fathimath; Hooper, Amanda J; van Bockxmeer, Frank M
2012-01-01
The development of the statin class of cholesterol-lowering drugs is one of the most significant success stories of modern pharmacotherapy. World-wide there are an estimated 150 million people on statins, with the emerging economies of India and China predicted to contribute significantly to that number. Notwithstanding their success, a significant number of people cannot tolerate statins because of serious side effects; of equal concern, a substantial proportion of high risk patients fail to reach cholesterol-lowering targets. For these subjects there is an urgent need for new cholesterol-lowering agents to be used alone or in combination with statins. The success of statins has been largely underpinned by knowledge of cholesterol homeostasis at a molecular level, knowledge that was first gleaned in the 1980s from Brown and Goldstein's pioneering studies of familial hypercholesterolemia (FH, OMIM 143890). Follow-up work that has identified a number of intracellular and circulating factors, all capable of disrupting LDL clearance, has revealed that the low-density lipoprotein receptor- (LDLR) mediated clearance pathway is substantially more complex than previously thought. These factors were discovered in studies of individuals with very rare inherited conditions that lead to either hypo- or hypercholesterolemia. These investigations, besides providing clearer insight into the molecular mechanisms regulating plasma LDL concentrations, have also revealed a number of novel therapeutic targets independent from statins. Consequently, a number of novel therapeutic approaches that are based on small interfering bio-molecules, including antisense oligonucleotides, are now in clinical development. These are aimed at impairing the assembly, synthesis and secretion of apolipoprotein B-containing lipoproteins and/or accelerating their hepatic catabolism. The aim of this article is to focus on these recent advances in the understanding of the molecular basis of cholesterol metabolism that should herald novel cholesterol-lowering agents beyond the statins.
Tayebjee, Muzahir H; Nadar, Sunil; Blann, Andrew D; Gareth Beevers, D; MacFadyen, Robert J; Lip, Gregory Y H
2004-09-01
Hypertension results in structural changes to the cardiac and vascular extracellular matrix (ECM). Matrix metalloproteinases (MMP) and their inhibitors (TIMP) may play a central role in the modulation of this matrix. We hypothesized that both MMP-9 and TIMP-1 would be abnormal in hypertension, reflecting alterations in ECM turnover, and that their circulating levels should be linked to cardiovascular (CHD) and stroke (CVA) risk scores using the Framingham equation. Second, we hypothesized that treatment would result in changes in ECM indices. Plasma MMP-9 and TIMP-1 were measured before and after treatment (median 3 years) from 96 patients with uncontrolled hypertension participating in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Pretreatment values were compared to circulating MMP-9 and TIMP-1 levels in 45 age- and sex-matched healthy controls. Circulating pretreatment MMP-9 and TIMP-1 levels were significantly higher in patients with hypertension than in the normotensive controls (P =.0041 and P =.0166, respectively). Plasma MMP-9 levels decreased, and TIMP-1 levels increased after treatment (P =.035 and P =.005, respectively). Levels of MMP-9 correlated with CHD risk (r = 0.317, P =.007) and HDL cholesterol (r = -0.237, P =.022), but not CVA risk. There were no significant correlations between TIMP-1 and CVA or CHD scores. Increased circulating MMP-9 and TIMP-1 at baseline in patients with hypertension could reflect an increased deposition and retention of type I collagen at the expense of other components of ECM within the cardiac and vascular ECM. After cardiovascular risk management, MMP-9 levels decreased and TIMP-1 levels increased. Elevated levels of MMP-9 also appeared to be associated with higher Framingham cardiovascular risk scores. Our observations suggest a possible role for these surrogate markers of tissue ECM composition and the prognosis of cardiovascular events in hypertension. Copyright 2004 American Journal of Hypertension, Ltd.
Hypercholesterolemia induces T cell expansion in humanized immune mice.
Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira
2018-06-01
Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.
Wild, Robert A
2012-03-10
Life-long apolipoprotein lipid metabolic dysfunction in women with PCOS exaggerates the risk for cardiovascular disease (CVD) with aging. The dysfunction has involved insulin resistance (IR), which occurs in most women with PCOS. Women with PCOS have androgen excess, IR, variable amounts of estrogen exposure, and many environmental factors, all of which can influence lipid metabolism. On average, women with PCOS were higher triglyceride [26.39 95% CI (17.24, 35.54)], lower HDL-cholesterol [6.41 95% CI (3.69, 9.14)], and higher non HDL cholesterol levels [18.82 95% CI (15.53, 22.11)] than their non-PCOS counterparts. They have higher ApoCIII/ApoCII ratios and higher ApoCI even if they are not obese. ApoC1 elevation in women with PCOS needs to be further evaluated as a marker of dysfunction and potential CVD risk. ApoB measurements track with non-HDL cholesterol as a surrogate for increased atherogenic circulating small LDL particles. Elevated triglycerides and waist circumference predict CVD risk and women with PCOS often have these phenotypes. Diet and exercise interventions followed by selective lipid lowering medications are encouraged to normalize the dyslipidemia. Copyright © 2012 Elsevier Inc. All rights reserved.
Canfrán-Duque, Alberto; Ramírez, Cristina M; Goedeke, Leigh; Lin, Chin-Sheng; Fernández-Hernando, Carlos
2014-08-01
miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Fröhlich, M; Imhof, A; Berg, G; Hutchinson, W L; Pepys, M B; Boeing, H; Muche, R; Brenner, H; Koenig, W
2000-12-01
To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence of diabetes and hypertension were assessed in 747 men and 956 women aged 18-89 years who were participating in the population-based National Health and Nutrition Survey, which was carried out in former West Germany in 1987-1988. There was a statistically significant positive crude correlation between C-reactive protein and TC (R = 0.19), TG (R = 0.29), BMI (R = 0.32), glucose (R = 0.11), and uric acid (R = 0.14) (all P < 0.0001). A negative correlation was found between C-reactive protein and HDL cholesterol (R = 0.13, P < 0.0001). The age-adjusted geometric means of C-reactive protein concentrations in subjects grouped according to the presence of 0-1, 2-3, and > or =4 features of the metabolic syndrome were 1.11, 1.27, and 2.16 mg/l, respectively, with a statistically highly significant trend (P < 0.0001). The data suggest that a variety of features of the metabolic syndrome are associated with a systemic inflammatory response.
Mitić, Tijana; Shave, Steven; Semjonous, Nina; McNae, Iain; Cobice, Diego F; Lavery, Gareth G; Webster, Scott P; Hadoke, Patrick W F; Walker, Brian R; Andrew, Ruth
2013-07-01
11β-Hydroxysteroid dehydrogenase 1 (11βHSD1; EC 1.1.1.146) generates active glucocorticoids from inert 11-keto metabolites. However, it can also metabolize alternative substrates, including 7β-hydroxy- and 7-keto-cholesterol (7βOHC, 7KC). This has been demonstrated in vitro but its consequences in vivo are uncertain. We used genetically modified mice to investigate the contribution of 11βHSD1 to the balance of circulating levels of 7KC and 7βOHC in vivo, and dissected in vitro the kinetics of the interactions between oxysterols and glucocorticoids for metabolism by the mouse enzyme. Circulating levels of 7KC and 7βOHC in mice were 91.3±22.3 and 22.6±5.7 nM respectively, increasing to 1240±220 and 406±39 nM in ApoE(-/-) mice receiving atherogenic western diet. Disruption of 11βHSD1 in mice increased (p<0.05) the 7KC/7βOHC ratio in plasma (by 20%) and also in isolated microsomes (2 fold). The 7KC/7βOHC ratio was similarly increased when NADPH generation was restricted by disruption of hexose-6-phosphate dehydrogenase. Reduction and oxidation of 7-oxysterols by murine 11βHSD1 proceeded more slowly and substrate affinity was lower than for glucocorticoids. in vitro 7βOHC was a competitive inhibitor of oxidation of corticosterone (Ki=0.9 μM), whereas 7KC only weakly inhibited reduction of 11-dehydrocorticosterone. However, supplementation of 7-oxysterols in cultured cells, secondary to cholesterol loading, preferentially slowed reduction of glucocorticoids, rather than oxidation. Thus, in mouse, 11βHSD1 influenced the abundance and balance of circulating and tissue levels of 7βOHC and 7KC, promoting reduction of 7KC. In health, 7-oxysterols are unlikely to regulate glucocorticoid metabolism. However, in hyperlipidaemia, 7-oxysterols may inhibit glucocorticoid metabolism and modulate signaling through corticosteroid receptors. Copyright © 2013 Elsevier Inc. All rights reserved.
Proitsi, Petroula; Lupton, Michelle K; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F
2014-09-01
Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n=10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10-8 and trait specific scores using SNPs associated exclusively with each trait at p<5 × 10-8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR]=1.005, 95% CI 0.82-1.24, p = 0.962 per 1 unit increase in HDL-c; OR=0.901, 95% CI 0.65-1.25, p=0.530 per 1 unit increase in LDL-c; OR=1.104, 95% CI 0.89-1.37, p=0.362 per 1 unit increase in triglycerides; and OR=0.954, 95% CI 0.76-1.21, p=0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary.
Complement factor H is expressed in adipose tissue in association with insulin resistance.
Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel
2010-01-01
Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.
Stryjecki, Carolina; Peralta-Romero, Jesus; Alyass, Akram; Karam-Araujo, Roberto; Suarez, Fernando; Gomez-Zamudio, Jaime; Burguete-Garcia, Ana; Cruz, Miguel; Meyre, David
2016-01-01
The Pro12Ala (rs1801282) polymorphism in peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) has been convincingly associated with insulin resistance (IR) and type 2 diabetes (T2D) among Europeans, in interaction with a high-fat diet. Mexico is disproportionally affected by obesity and T2D however, whether the Pro12Ala polymorphism is associated with early metabolic complications in this population is unknown. We assessed the association of PPAR-γ2 Pro12Ala with metabolic traits in 1457 Mexican children using linear regression models. Interactions between PPAR-γ2 Pro12Ala and circulating lipids on metabolic traits were determined by adding an interaction term to regression models. We observed a high prevalence of overweight/obesity (49.2%), dyslipidemia (34.9%) and IR (11.1%). We detected nominally significant/significant interactions between lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol), the PPAR-γ2 Pro12Ala genotype and waist-to-hip ratio, fasting insulin, HOMA-IR and IR (9.30 × 10−4 ≤ Pinteraction ≤ 0.04). Post-hoc subgroup analyses evidenced that the association between the PPAR-γ2 Pro12Ala genotype and fasting insulin, HOMA-IR and IR was restricted to children with total cholesterol or LDL-cholesterol values higher than the median (0.02 ≤ P ≤ 0.03). Our data support an association of the Pro12Ala polymorphism with IR in Mexican children and suggest that this relationship is modified by dyslipidemia. PMID:27075119
NASA Astrophysics Data System (ADS)
Xu, Lin; Zhang, Canbang; Wen, Yuanbin; Liu, Shuxiao; Zhou, Lingyun
2009-08-01
Some cases with cerebral infarction were treated by He-Ne laser irradiation on blood. In the treatment before and after, membrane-cholesterol(C)/membrane-phosphatide(P), membrane fluidity(F) and deformability of erythrocyte were determined. The results showed that low level laser irradiation on blood (LLLIB) can sure reduce the ratio of (C)/(P), can heighten fluidity and improve deformability of erythrocyte .Thus the metabolism ability of erythrocyte membrane-lipid ,the blood circulation and the properties of hemorheology can be improved. In this paper, the microscopic mechanism of those aforesaid action effects by low level laser irradiation on blood were analyzed by means of Quantum theory and some corresponding models.
Gemfibrozil disrupts the metabolism of circulating lipids in bobwhite quails.
Bussière-Côté, Sophie; Omlin, Teye; de Càssia Pinheiro, Eliana; Weber, Jean-Michel
2016-01-01
The circulating lipids of birds play essential roles for egg production and as an energy source for flight and thermogenesis. How lipid-lowering pharmaceuticals geared to prevent heart disease in humans and that are routinely released in the environment affect their metabolism is unknown. This study assesses the impact of the popular drug gemfibrozil (GEM) on the plasma phospholipids (PL), neutral lipids (NL), and nonesterified fatty acids (NEFA) of bobwhite quails (Colinus virginianus). Results show that bird lipoproteins are rapidly altered by GEM, even at environmentally-relevant doses. After 4 days of exposure, pharmacological amounts cause an 83% increase in circulating PL levels, a major decrease in average lipoprotein size measured as a 56% drop in the NL/PL ratio, and important changes in the fatty acid composition of PL and NEFA (increases in fatty acid unsaturation). The levels of PL carrying all individual fatty acids except arachidonate are strongly stimulated. The large decrease in bird lipoprotein size may reflect the effects seen in humans: lowering of LDL that can cause atherosclerosis and stimulation of HDL that promote cholesterol disposal. Lower (environmental) doses of GEM cause a reduction of %palmitate in all the plasma lipid fractions of quails, but particularly in the core triacylglycerol of lipoproteins (NL). No changes in mRNA levels of bird peroxisome proliferator-activated receptor (PPAR) could be demonstrated. The disrupting effects of GEM on circulating lipids reported here suggest that the pervasive presence of this drug in the environment could jeopardize reproduction and migratory behaviours in wild birds. Copyright © 2015 Elsevier Inc. All rights reserved.
The road to LOAD: late-onset Alzheimer's disease and a possible way to block it.
Whitfield, James F
2007-10-01
The ageing brain becomes increasingly less able to destroy or eject toxic amyloid (A) beta42 peptide byproducts of normal neuronal activity that consequently accumulate to induce Alzheimer's disease (AD). Therefore, the various components of the Abeta-clearing machinery are prime targets for AD therapeutics. In this connection, there are reports that taking statins to lower circulating cholesterol to prevent cardiovascular disease can also prevent late-onset AD (LOAD) the most common form of the disease. However, it seems unlikely that statins would prevent LOAD by lowering the very long-lived brain cholesterol that is controlled independently from the very much shorter-lived circulating cholesterol. In fact, reducing the ability of the brain astrocytes to make cholesterol for their closely associated neuron clients' synaptogenesis could damage the brain rather than protect it. However, a plausible way statins might prevent LOAD is to target a main component of the clearance machinery, low-density lipoprotein receptor-related protein 1 (LRP1), the brain's powerful Abeta-efflux driver. This is indicated by a reported ability of micromolar concentrations of lovastatin and simvastatin to strongly stimulate brain vascular endothelial cells to make this Abeta ejector. Therefore, if this holds up, taking a statin over the years would prevent the normal decline of LRP1 in the ageing brain and a LOAD-driving accumulation of Abeta.
Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies.
van der Lee, Sven J; Teunissen, Charlotte E; Pool, René; Shipley, Martin J; Teumer, Alexander; Chouraki, Vincent; Melo van Lent, Debora; Tynkkynen, Juho; Fischer, Krista; Hernesniemi, Jussi; Haller, Toomas; Singh-Manoux, Archana; Verhoeven, Aswin; Willemsen, Gonneke; de Leeuw, Francisca A; Wagner, Holger; van Dongen, Jenny; Hertel, Johannes; Budde, Kathrin; Willems van Dijk, Ko; Weinhold, Leonie; Ikram, M Arfan; Pietzner, Maik; Perola, Markus; Wagner, Michael; Friedrich, Nele; Slagboom, P Eline; Scheltens, Philip; Yang, Qiong; Gertzen, Robert E; Egert, Sarah; Li, Shuo; Hankemeier, Thomas; van Beijsterveldt, Catharina E M; Vasan, Ramachandran S; Maier, Wolfgang; Peeters, Carel F W; Jörgen Grabe, Hans; Ramirez, Alfredo; Seshadri, Sudha; Metspalu, Andres; Kivimäki, Mika; Salomaa, Veikko; Demirkan, Ayşe; Boomsma, Dorret I; van der Flier, Wiesje M; Amin, Najaf; van Duijn, Cornelia M
2018-06-01
Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Paul, A; Calleja, L; Vilella, E; Martínez, R; Osada, J; Joven, J
1999-11-01
Epidemiological and experimental studies suggest that circulating erythrocytes play a role in the incidence of coronary heart disease. We investigated the influence of phenylhydrazine (PHZ)-induced anemia on the formation of atherosclerotic lesions in apo E-deficient mice on regular chow and on a high-fat, high-cholesterol diet during 10 weeks. The repeated doses of PHZ caused sustained anemia throughout the study, changes in the physical characteristics of erythrocytes and increased reticulocyte count. The lesions of the anemic animals were smaller than in the controls and this was even more evident in mice fed with the atherogenic diet. A positive correlation was found between circulating red blood cells at the end of the experiment and the area of aortic lesion. There was also a negative association between the lesion and the reticulocyte count. This reduced progression of atherosclerotic lesions is independent of nutritional status or the lipoprotein cholesterol distribution. The results suggest that mechanisms related to the number of circulating red blood cells may have a significant influence on the development of atherosclerosis.
Akopians, Alin L.; Madrigal, Vanessa K.; Ramirez, Emmanuel; Margolis, Daniel J.; Sarma, Manoj K.; Thomas, Albert M.; Grogan, Tristan R.; Haykal, Rasha; Schooler, Tery A.; Okeya, Bette L.; Abbott, David H.; Chazenbalk, Gregorio D.
2016-01-01
Context: Normal weight polycystic ovary syndrome (PCOS) women may have altered adipose structure-function underlying metabolic dysfunction. Objective: This study examines whether adipose structure-functional changes exist in normal weight PCOS women and correlate with hyperandrogenism and/or hyperinsulinemia. Design: This is a prospective cohort study. Setting: The setting was an academic medical center. Patients: Six normal weight PCOS women and 14 age- and body mass index-matched normoandrogenic ovulatory (NL) women were included. Intervention(s): All women underwent circulating hormone and metabolic measurements; frequently sampled intravenous glucose tolerance testing; total body dual-energy x-ray absorptiometry; abdominal magnetic resonance imaging; and SC abdominal fat biopsy. Main Outcome Measure(s): Circulating hormones and metabolites, body fat and its distribution, and adipocyte size were compared between PCOS and NL women, and were correlated with each other in all women. Results: Circulating LH and androgen levels were significantly greater in PCOS than NL women, as were fasting insulin levels, pancreatic β-cell responsiveness to glucose, and total abdominal fat mass. Intra-abdominal fat mass also was significantly increased in PCOS women and was positively correlated with circulating androgen, fasting insulin, triglyceride, and non-high-density lipoprotein cholesterol levels in all women. SC abdominal fat mass was not significantly increased in PCOS women, but contained a greater proportion of small SC abdominal adipocytes that positively correlated with serum androgen levels in all women. Conclusion: Hyperandrogenism in normal weight PCOS women is associated with preferential intra-abdominal fat deposition and an increased population of small SC abdominal adipocytes that could constrain SC adipose storage and promote metabolic dysfunction. PMID:27571186
Obesity suppresses circulating level and function of endothelial progenitor cells and heart function
2012-01-01
Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs) and left ventricular ejection fraction (LVEF). Methods High fat diet (45 Kcal% fat) was given to 8-week-old C57BL/6 J mice (n = 8) for 20 weeks to induce obesity (group 1). Another age-matched group (n = 8) were fed with control diet for 20 weeks as controls (group 2). The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p<0.01). The circulating level of EPCs (C-kit/CD31, Sca-1/KDR, CXCR4/CD34) was significantly lower in group 1 than in group 2 (p<0.03) at 18 h after critical limb ischemia induction. The angiogenesis and migratory ability of bone marrow-derived EPCs was remarkably impaired in group 1 compared to that in group 2 (all p<0.01). The repair ability of aortic endothelium damage by lipopolysaccharide was notably attenuated in group 1 compared with that in group 2 (p<0.01). Collagen deposition (Sirius red staining) and fibrotic area (Masson's Trichrome staining) in LV myocardium were notably increased in group 1 compared with group 2 (p<0.001). LVEF was notably lower, whereas LV end-diastolic and end-systolic dimensions were remarkably higher in group 1 than in group 2 (all p<0.001). Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling. PMID:22747715
Al-Attas, Omar S; Al-Daghri, Nasser M; Alokail, Majed S; Alfadda, Assim; Bamakhramah, Ahmed; Sabico, Shaun; Pritlove, Dave; Harte, Alison; Tripathi, Gyanendra; McTernan, Philip G; Kumar, Sudhesh; Chrousos, George
2010-10-01
Studies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2). One hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR. Circulating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01). Obesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging.
Al-Attas, Omar S; Al-Daghri, Nasser M; Alokail, Majed S; Alfadda, Assim; Bamakhramah, Ahmed; Sabico, Shaun; Pritlove, Dave; Harte, Alison; Tripathi, Gyanendra; McTernan, Philip G; Kumar, Sudhesh; Chrousos, George
2010-01-01
Objective Studies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2). Design and methods One hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR. Results Circulating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01). Conclusion Obesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging. PMID:20679357
Forcheron, Fabien; Beylot, Michel
2007-08-01
Short-term studies have shown that the addition to diet of inulin-type fructans, a nondigestible carbohydrate, may have a plasma lipid-lowering effect in humans. Whether this beneficial effect persists during long-term administration has not been determined. The study was aimed at determining whether a prolonged (6 months) administration of inulin-type fructans to healthy subjects has a lipid-lowering action. In a double-blind, randomized, placebo-controlled study, 17 healthy subjects were studied before and after 6 months of daily administration of placebo (8 subjects) or 10 g of a mix of inulin and oligofructose (9 subjects). During this 6-month period, they consumed their usual diet and did not modify their everyday way of life. We measured plasma lipid concentrations; cholesterol synthesis and hepatic lipogenesis; and adipose tissue and circulating mononuclear cell messenger RNA concentrations of key regulatory genes of cholesterol metabolism. Compared with the administration of placebo, the administration of inulin-type fructans had no effect on plasma triacylglycerol concentrations and hepatic lipogenesis and induced only a nonsignificant trend for decreased plasma total and low-density lipoprotein cholesterol levels and increased high-density lipoprotein cholesterol concentration. Cholesterol synthesis was not significantly modified. Of all the messenger RNA concentrations measured, none was significantly modified by the administration of inulin-type fructans. In conclusion, contrary to what was observed in short-term studies, we observed no significant beneficial effect of a long-term (6-month) administration of inulin-type fructans on plasma lipids in healthy human subjects.
FXR signaling in the enterohepatic system
Matsubara, Tsutomu; Li, Fei; Gonzalez, Frank J.
2012-01-01
Enterohepatic circulation serves to capture bile acids and other steroid metabolites produced in the liver and secreted to the intestine, for reabsorption back into the circulation and reuptake to the liver. This process is under tight regulation by nuclear receptor signaling. Bile acids, produced from cholesterol, can alter gene expression in the liver and small intestine via activating the nuclear receptors farnesoid X receptor (FXR; NR1H4), pregnane X receptor (PXR; NR1I2), vitamin D receptor (VDR; NR1I1), G protein coupled receptor TGR5, and other cell signaling pathways (JNK1/2, AKT and ERK1/2). Among these controls, FXR is known to be a major bile acid-responsive ligand-activated transcription factor and a crucial control element for maintaining bile acid homeostasis. FXR has a high affinity for several major endogenous bile acids, notably cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. By responding to excess bile acids, FXR is a bridge between the liver and small intestine to control bile acid levels and regulate bile acid synthesis and enterohepatic flow. FXR is highly expressed in the liver and gut, relative to other tissues, and contributes to the maintenance of cholesterol/bile acid homeostasis by regulating a variety of metabolic enzymes and transporters. FXR activation also affects lipid and glucose metabolism, and can influence drug metabolism. PMID:22609541
C3 Polymorphism Influences Circulating Levels of C3, ASP and Lipids in Schizophrenic Patients.
Nsaiba, Mohamed Jalloul; Lapointe, Marc; Mabrouk, Hajer; Douki, Wahiba; Gaha, Lotfi; Pérusse, Louis; Bouchard, Claude; Jrad, Besma Bel Hadj; Cianflone, Katherine
2015-05-01
Excessive activation of complement is associated with many diseases including schizophrenia. Investigation of C3 polymorphisms, circulating C3, cleavage product ASP/C3adesArg, and lipid metabolism. Cross-sectional analysis. C3 genotyping (CC vs GG for R102L) was performed on 434 Tunisian people consisting of 272 schizophrenic (SZ) patients and 162 control subjects. In a age- and gender-matched subgroups of the three genotypes (131 SZ and 112 NOR), plasma triglycerides, total cholesterol (C), LDL-C, HDL-C, ASP, and complement C3 were measured. C3 gene polymorphism influences BMI and plasma C3, ASP, triglyceride, total cholesterol, LDL-C and HDL-C among SZ patients (p < 0.05-0.0001), with increasing values demonstrated from CC (common form) to CG (heterozygote form) to GG (rare homozygote) forms. Significant correlations between plasma C3 and BMI, triglyceride, HDL-C and ASP (p < 0.05-0.0001) were observed, while ASP correlated with BMI and LDL-C (p = 0.005, p = 0.001, respectively) in SZ patients. Further, proportional conversion of C3 to ASP (%ASP/C3) also increased (p < 0.0001, GG>CG>CC). C3 polymorphisms and plasma C3, ASP and %ASP/C3 correlated with lipid parameters in this SZ population, suggesting that factors predisposing patients to schizophrenia are permissive for complement pathway activation and dyslipidemic influences.
Lin, Cheng-Yuan; Huang, Tao; Zhao, Ling; Zhong, Linda L D; Lam, Wai Ching; Fan, Bao-Min; Bian, Zhao-Xiang
2018-05-01
Spexin is a newly identified neuropeptide that is involved in satiety control, glucose, and lipids metabolism. It has also been related to human diseases, such as obesity and type 2 diabetes. However, whether spexin changes with age or not is still unclear. The aim of this study is to investigate the relationship between circulating spexin levels and age and to study their interaction effects on body mass index (BMI), fasting glucose, and -lipids. This is a cross-sectional study, including 68 healthy adult women whose ages are in a wide range (minimum: 23; median: 38.5; maximum: 64). The serum spexin levels were measured by an enzyme-linked immunosorbent assay. Fasting glucose, total cholesterol, triglycerides (TG), alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine were measured by routine biochemical test. Shapiro-Wilk's test, Spearman and Pearson correlation analyses, χ 2 test, and two-way analysis of variance were used to interpret the data. Serum spexin levels are significantly correlated with age (Spearman r = -0.277, P = 0.022), BMI (Spearman r = -0.445, P < 0.001), fasting glucose (Spearman r = -0.302, P = 0.014), and TG (Spearman r = -0.324, P = 0.008). Spexin levels independently predict the risk of high BMI and high fasting glucose. No interaction effects of spexin and age on BMI and fasting glucose were found. Circulating spexin levels decrease with age, suggesting a possible role of this peptide in aging-related functions and disorders. Further investigations are needed to expand the clinical significance of this finding.
Jacobsen, Mette J.; Mentzel, Caroline M. Junker; Olesen, Ann Sofie; Huby, Thierry; Jørgensen, Claus B.; Barrès, Romain; Fredholm, Merete
2016-01-01
Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity. PMID:26798656
Raghavendra, Chikkanna K; Srinivasan, Krishnapura
2015-10-01
Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect.
NASA Astrophysics Data System (ADS)
Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni
2017-02-01
Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.
Wattoo, Feroza Hamid; Memon, Muhammad Saleh; Memon, Allah Nawaz; Wattoo, Muhammad Hamid Sarwar; Tirmizi, Syed Ahmed; Iqbal, Javed
2008-01-01
To evaluate environmental, psychological and physiological stresses in college teachers and housewives, and to correlate with their serum total cholesterol, HDL cholesterol, and LDL cholesterol, and triglyceride levels. This cohort study was performed at the Institute of Biochemistry, University of Sindh, Jamshoro, Pakistan during 2003-2005. Eighty females from middle socioeconomic groups, college teachers (40) and housewives (40) aged between 25-45 years participated in this study and subjects were selected from Hyderabad and its adjoining areas. Environmental, psychological and physiological stress levels were measured with Likert scale. Total cholesterol, LDL cholesterol and HDL cholesterol were measured by CHOD-PAP method and triglyceride levels were measured by GPO method. Housewives had high levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in college teachers. Environmental, psychological and physiological stresses were significantly higher in housewives as compared to college teachers. Housewives were under more stress than college teachers. High levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in housewives compared to college teachers.
Hypolipidemic effect of hemicellulose component of coconut fiber.
Sindhurani, J A; Rajamohan, T
1998-08-01
The neutral detergent fiber (NDF) isolated from coconut kernel was digested with cellulase and hemicellulase and the residual fiber rich in hemicellulose (without cellulose) and cellulose (with out hemicellulose) were fed to rats and compared with a fiber free group. The results indicate that hemicellulose rich fiber showed decreased concentration of total cholesterol, LDL + VLDL cholesterol and increased HDL cholesterol, while cellulose rich fiber showed no significant alteration. There was increased HMG CoA reductase activity and increased incorporation of labeled acetate into free cholesterol. Rats fed hemicellulose rich coconut fiber produced lower concentration of triglycerides and phospholipids and lower release of lipoproteins into circulation. There was increased concentration of hepatic bile acids and increased excretion of faecal sterols and bile acids. These results indicate that the hemicellulose component of coconut fiber was responsible for the observed hypolipidemic effect.
Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.
2011-01-01
Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210
Nagoor Meeran, Mohamed Fizur; Javed, Hayate; Al Taee, Hasan; Azimullah, Sheikh; Ojha, Shreesh K.
2017-01-01
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol’s therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol. PMID:28694777
Solheim, S; Seljeflot, I; Arnesen, H; Eritsland, J; Eikvar, L
2001-08-01
cellular adhesion molecules (CAMs) expressed on the endothelial surface play a key role in the inflammatory process of atherosclerosis, and increased expression of CAMs has been shown in hypercholesterolemic individuals. The expression of CAMs is mediated by several cytokines including tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6). The aim of the present study was to assess the influence of pravastatin 40 mg per day on selected soluble CAMs; intercellular adhesion molecule 1 (ICAM-1), vascular cellular adhesion molecule 1 (VCAM-1), E-selectin, P-selectin and some circulating markers of inflammation; C-reactive protein (CRP) and the cytokines TNF alpha and IL-6. 40 non-diabetic men, age below 70 years, with serum total cholesterol 6--10 mmol/l combined with HDL-cholesterol < or =1.2 mmol/l were included. The study was randomized, double blinded, placebo controlled, cross over designed with 8 weeks intervention periods. Fasting blood samples were drawn after 8 and 16 weeks. significant reduction of total cholesterol was achieved after treatment with pravastatin (7.8 on placebo vs. 5.7 mmol/l on pravastatin). TNF alpha was significantly reduced after treatment with pravastatin (1.33 on placebo vs. 1.10 pg/ml on pravastatin, P=0.032), whereas no differences in the levels of the measured sCAMs, CRP and IL-6 were found. Subgroup analysis among smokers versus non-smokers showed a significant reduction in the level of TNF alpha only among the smokers. hypercholesterolemic individuals treated with pravastatin 40 mg per day for 8 weeks showed a statistically significant reduction in the levels of TNF alpha as compared with placebo.
Loss of CTRP1 disrupts glucose and lipid homeostasis
Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.
2016-01-01
C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298
Maiorino, Maria Ida; Bellastella, Giuseppe; Petrizzo, Michela; Gicchino, Maurizio; Caputo, Mariangela; Giugliano, Dario; Esposito, Katherine
2017-03-01
Background We assessed the long-term effects of a Mediterranean diet on circulating levels of endothelial progenitor cells (EPCs) and the carotid intima-media thickness (CIMT) in patients with type 2 diabetes. Design This was a parallel, two-arm, single-centre trial. Methods Two hundred and fifteen men and women with newly diagnosed type 2 diabetes were randomized to a Mediterranean diet ( n = 108) or a low-fat diet ( n = 107). The primary outcome measures were changes in the EPC count and the CIMT of the common carotid artery after the treatment period defined as the end of trial (EOT). Results At the EOT, both the CD34 + KDR + and CD34 + KDR + CD133 + counts had increased with the Mediterranean diet compared with the low-fat diet ( p < 0.05 for both). At the EOT evaluation, there was a significant ( p = 0.024) difference of -0.025 mm in the CIMT favouring the Mediterranean diet. Compared with the low-fat diet, the rate of regression in the CIMT was higher in the Mediterranean diet group (51 vs. 26%), whereas the rate of progression was lower (25 vs. 50%) ( p = 0.032 for both). Changes in the CIMT were inversely correlated with the changes in EPC levels (CD34 + KDR + , r = -0.24, p = 0.020; CD34 + KDR + CD133 + , r = -0.28, p = 0.014). At the EOT, changes in levels of HbA1c, HOMA, total cholesterol, high-density lipoprotein cholesterol and systolic blood pressure were significantly greater with the Mediterranean diet than with the low-fat diet. Conclusion Compared with a low-fat diet, a long-term trial with Mediterranean diet was associated with an increase in circulating EPCs levels and prevention of the progression of subclinical atherosclerosis in patients with newly diagnosed type 2 diabetes.
The Complex Interplay Between Cholesterol and Prostate Malignancy
Solomon, Keith R.; Freeman, Michael R.
2011-01-01
Research into the topic of the role of cholesterol and prostate disease has been ongoing for many years, however our mechanistic and translational understanding is still poor. Recent evidence indicates that cholesterol lowering drugs reduce the risk of aggressive prostate cancer, however the studies in this area, performed over many years, reflect much controversy and uncertainty. Here we explore the entire literature on the relationship between circulating cholesterol and prostate cancer, with consideration and criticism of the older as well as the newer studies. We consider why low cholesterol is associated with both increased and decreased risk of advanced prostate cancer, and explain why both observations are probably correct. We discuss the conflicting results of randomized placebo-controlled trials of statin drugs vs. observational studies and demonstrate that a predominance of pravastatin in the randomized trials paints a distorted view of statin effects. Lastly, we discuss new data suggesting that a critical aspect of the role of cholesterol in prostate cancer progression is through its role in intratumoral steroidogenesis. With these points addressed, the data strongly point to hypercholesterolemia as a risk factor for prostate cancer progression and suggest clinical opportunities for the use of cholesterol lowering therapies to alter disease course. PMID:21798387
Cholesterol - what to ask your doctor
... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...
Pecks, U.; Rath, W.; Kleine-Eggebrecht, N.; Maass, N.; Voigt, F.; Goecke, T. W.; Mohaupt, M. G.; Escher, G.
2016-01-01
Objective: Lipids and steroid hormones are closely linked. While cholesterol is the substrate for (placental) steroid hormone synthesis, steroid hormones regulate hepatic lipid production. The aim of this study was to quantify circulating steroid hormones and lipid metabolites, and to characterize their interactions in normal and pathological pregnancies with a focus on hepatic and placental pathologies. Methods: A total of 216 serum samples were analyzed. Group A consisted of 32 patients with uncomplicated pregnancies who were analyzed at three different time-points in pregnancy (from the first through the third trimester) and once post partum. Group B consisted of 36 patients (24th to 42nd week of gestation) with pregnancy pathologies (IUGR n = 10, preeclampsia n = 13, HELLP n = 6, intrahepatic cholestasis n = 7) and 31 controls with uncomplicated pregnancies. Steroid profiles including estradiol, progesterone, and dehydroepiandrosterone were measured by GC-MS and compared with lipid concentrations. Results: In Group A, cholesterol and triglycerides correlated positively with estradiol (cholesterol ρ = 0.50, triglycerides ρ = 0.57) and progesterone (ρ = 0.49, ρ = 0.53) and negatively with dehydroepiandrosterone (ρ = − 0.47, ρ = − 0.38). Smoking during pregnancy affected estradiol concentrations, leading to lower levels in the third trimester compared to non-smoking patients (p < 0.05). In Group B, cholesterol levels were found to be lower in IUGR pregnancies and in patients with HELLP syndrome compared to controls (p < 0.05). Steroid hormone concentrations of estradiol (p < 0.05) and progesterone (p < 0.01) were lower in pregnancies with IUGR. Discussion: Lipid and steroid levels were affected most in IUGR pregnancies, while only minor changes in concentrations were observed for other pregnancy-related disorders. Each of the analyzed entities displayed specific changes. However, since the changes were most obvious in pregnancies complicated by IUGR and only minor changes were observed in pregnancies where patients had impaired liver function, our data suggests that placental rather than maternal hepatic function strongly determines lipid and steroid levels in pregnancy. PMID:27582578
Meza-Herrera, C A; Calderón-Leyva, G; Soto-Sanchez, M J; Serradilla, J M; García-Martinez, A; Mellado, M; Veliz-Deras, F G
2014-06-30
Different neurotransmitter and neuromodulatory systems regulate synthesis and secretion of GnRH. Whereas the endocrine and neural systems are activated in response to the metabolic status and the circulating levels of specific blood metabolites, glutamate receptors have been reported at hepatic level. This study evaluated the possible effect of glutamate supplementation upon changes in serum concentrations across time for total protein (TP), urea (UR) and cholesterol (CL) around the onset of puberty in goats. Prepuberal female goats (n=18) were randomly assigned to: (1) excitatory amino acids group, GLUT, n=10; 16.52±1.04kg live weight (LW), 3.4±0.12 body condition score (BCS) receiving an i.v. infusion of 7mgkg(-1) LW of l-glutamate, and (2) Control group, CONT, n=8; 16.1±1.04kg LW, 3.1±0.12 BCS. General averages for LW (23.2±0.72kg), BCS (3.37±0.10 units), serum TP (65.28±2.46mgdL(-1)), UR (23.42±0.95mgdL(-1)), CL (77.89±1.10mgdL(-1)) as well as the serum levels for TP and UR across time did not differ (P>0.05) between treatments. However, while GLUT positively affected (P<0.05) both the onset (207±9 vs. 225±12 d) and the percentage (70 vs. 25%) of females showing puberty, a treatment×time interaction effect (P<0.05) was observed in the GLUT group, with increases in serum cholesterol, coincident with the onset of puberty. Therefore, in peripuberal glutamate supplemented goats, serum cholesterol profile could act as a metabolic modulator for the establishment of puberty, denoting also a potential role of glutamate as modulator of lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Circulating PCSK9 in patients with type 2 diabetes and related metabolic disorders.
Ibarretxe, Daiana; Girona, Josefa; Plana, Núria; Cabré, Anna; Ferré, Raimón; Amigó, Núria; Guaita, Sandra; Mallol, Roger; Heras, Mercedes; Masana, Luis
2016-01-01
PCSK9 is a pivotal molecule in the regulation of lipid metabolism. Previous studies have suggested that PCSK9 expression and its function in LDL receptor regulation could be altered in the context of diabetes. The aim was to assess PCSK9 plasma levels in patients with type 2 diabetes (T2DM) and other related metabolic disorders as well as its relation to the metabolomic profile generated by nuclear magnetic resonance (NMR) and glucose homeostasis. There were recruited a total of 457 patients suffering from T2DM and other metabolic disorders (metabolic syndrome (MetS), obesity and atherogenic dyslipidaemia (AD) and other disorders). Anamnesis, anthropometry and physical examinations were conducted, and vascular and abdominal adiposity imaging were carried out. Biochemical studies were performed to determine PCSK9 plasma levels 6 weeks after lipid lowering drug wash-out in treated patients. A complete metabolomic lipid profile was also generated by NMR. The rs505151 and rs11591147 genetic variants of PCSK9 gene were identified in patients. The results showed that PCSK9 levels are increased in patients with T2DM and MetS (14% and 13%; p<0.005, respectively). Circulating PCSK9 levels were correlated with an atherogenic lipid profile and with insulin resistance parameters. PCSK9 levels were also positively associated with AD, as defined by lipoprotein particle number and size. The rs11591147 genetic variant resulted in lower levels of circulating PCSK9 and LDL cholesterol (LDL-C). PCSK9 plasma levels are increased in T2DM and MetS patients and are associated with LDL-C and other parameters of AD and glucose metabolism. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Circulating Adipokines in Healthy versus Unhealthy Overweight and Obese Subjects
Alfadda, Assim A.
2014-01-01
It is now well established that not all obese subjects are at increased risk of cardiometabolic complications; such patients are termed the metabolically healthy obese. Despite their higher-than-normal body fat mass, they are still insulin sensitive, with a favorable inflammatory and lipid profile and no signs of hypertension. It remains unclear which factors determine an individual's metabolic health. Adipose tissue is known to secrete multiple bioactive substances, called adipokines, that can contribute to the development of obesity-associated complications. The goal of this study was to determine whether the circulating adipokine profiles differs between metabolically healthy and metabolically unhealthy overweight and obese subjects, thereby obtaining data that could help to explain the link between obesity and its related cardiometabolic complications. We defined metabolic health in terms of several metabolic and inflammatory risk factors. The serum adiponectin levels were higher in the healthy group and showed a positive correlation with HDL cholesterol levels in the unhealthy group. There were no differences between the two groups in the levels of serum leptin, chemerin and orosomucoid. Accordingly, adiponectin might play a role in protecting against obesity-associated cardiometabolic derangements. More studies are needed to clarify the role of different chemerin isoforms in this system. PMID:24550983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Debabrata; Sen, Gargi; Sarkar, Avik
Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administrationmore » of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS.« less
Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M
2017-08-01
Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: <25; n = 14) and overweight or obese (≥25; n = 34) participants by using linear mixed models. Results: The almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P < 0.05). No diet effects were observed in the overweight or obese group. Conclusions: Substituting almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01101230. © 2017 American Society for Nutrition.
Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G
2011-05-01
The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.
Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance
Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel
2010-01-01
OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances. PMID:19833879
Raghavendra, Chikkanna K.; Srinivasan, Krishnapura
2015-01-01
Background & objectives: Dietary fibre-rich tender cluster beans (Cyamopsis tetragonoloba; CB) are known to exert beneficial cholesterol lowering influence. We examined the influence of a combination of dietary tender CB and garlic (Allium sativum) in reducing the cholesterol gallstone formation in mice. Methods: Cholesterol gallstones were induced in Swiss mice by feeding a high-cholesterol diet (HCD) for 10 wk. Dietary interventions were made with 10 per cent CB and 1 per cent garlic included individually or together along with HCD. A total of 100 mice were divided into five groups of 20 mice each. Results: Dietary CB, garlic and CB+garlic reduced the formation of cholesterol gallstones by 44, 25 and 56 per cent, respectively, lowered cholesterol by 23-48, 16-24, and 24-58 in bile, serum, and liver, respectively. Cholesterol saturation index in bile and cholesterol: phospholipid ratio in circulation and hepatic tissue were significantly lowered by these dietary interventions, with highest beneficial effect from CB+garlic. Activities of hepatic cholesterol metabolizing enzymes were modulated by CB, garlic and CB+garlic. Elevation in lipid peroxides caused by HCD was also countered by these dietary interventions, the combination producing the highest effect. Interpretation & conclusions: The results showed that the prevention of experimentally induced formation of cholesterol gallstones by dietary CB and garlic was due to decreased biliary cholesterol secretion and increased cholesterol saturation index. In addition of anti-lithogenic effect, dietary CB and garlic in combination had a beneficial antioxidant effect. PMID:26609039
[Protective role of high density lipoproteins in sepsis: basic issues and clinical implications].
Contreras-Duarte, Susana; Varas, Pablo; Awad, Fernanda; Busso, Dolores; Rigotti, Attilio
2014-02-01
High density lipoproteins (HDL) are responsible of reverse cholesterol transport and play an important antiatherogenic role. In recent years, several studies suggest that HDL have additional functions, including a possible anti-inflammatory activity in infectious conditions. Furthermore, available evidence indicates that the presence of lipopolysaccharide (LPS) within the circulation during infectious states induced by gram-negative bacteria may be involved in the decrease in HDL cholesterol levels and changes in lipoprotein composition, which have been associated with a higher mortality due to sepsis in animal models and in humans. In this article, we review this subject and also discuss possible mechanisms that explain the positive impact achieved by native HDL, reconstituted HDL, or HDL apolipoprotein peptides on the inflammatory response and mortality in models of endotoxemia. In this regard, it has been proposed that one of the mechanisms by which HDL protect against sepsis may be mediated by its binding ability and/or neutralizing capacity on LPS, avoiding an excessive response of the immune system. Thus, increasing blood levels of HDL and/or parenteral HDL administration may represent a new anti-inflammatory tool for managing septic states in humans.
Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G
2013-02-15
Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.
Proitsi, Petroula; Lupton, Michelle K.; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F.
2014-01-01
Background Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. Methods and Findings We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n = 10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10−8 and trait specific scores using SNPs associated exclusively with each trait at p<5×10−8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR] = 1.005, 95% CI 0.82–1.24, p = 0.962 per 1 unit increase in HDL-c; OR = 0.901, 95% CI 0.65–1.25, p = 0.530 per 1 unit increase in LDL-c; OR = 1.104, 95% CI 0.89–1.37, p = 0.362 per 1 unit increase in triglycerides; and OR = 0.954, 95% CI 0.76–1.21, p = 0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Conclusions Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary PMID:25226301
Móczár, Csaba
2015-10-18
Prevention program including lifestyle changes was initiated with the participation of obese and overweight subjects recruited from the practices of 29 family doctors. The aim of the author was to analyse changes of non-HDL-cholesterol levels, especially when triglyceride levels were above 2.26 mmol/l, and when non-HDL cholesterol levels were high in association with low HDL-cholesterol levels in overweight or obese subjects who had no cardiovascular disease and diabetes mellitus. Data obtained from 1192 subjects (424 men and 768 women) before and 12 month after inclusion into the prevention program was analysed. The average level of non-HDL-cholesterol in the whole group of subjects decreased from 4.74 to 4.64 mmol/l, but the change was not significant. However, the average concentration of non-HDL-cholesterol was reduced significantly from 4.87 to 4.4 mmol/l in men, whereas no significant change was detected in women. In cases when triglyceride levels were higher than 2.26 mmol/l, the non-HDL-cholesterol level was reduced by 0.65 mmol/l. In cases when the non-HDL-cholesterol level was high in association with low HDL-cholesterol level, the non-HDL-cholesterol was significantly decreased from 5.22 to 4.48 mmol/l. In addition, in cases when HDL-cholesterol levels were low, the average level of the HDL-cholesterol significantly increased from 0.84 to 1.3 mmol/l. Lifestyle changes decrease the level of atherogenic lipid fractions, particularly in men with high triglyceride levels. Improvement of the atherogenic lipid profile in response to lifestyle changes is related not only to the reduction of atherogenic lipid fractions, but also to the increase of HDL-cholesterol level.
Vidakovic, Aleksandra Jelena; Jaddoe, Vincent WV; Voortman, Trudy; Demmelmair, Hans; Koletzko, Berthold; Gaillard, Romy
2017-01-01
Background and Aims Maternal polyunsaturated fatty acid (PUFA) levels are associated with cord blood lipid and insulin levels. Not much is known about the influence of maternal PUFAs during pregnancy on long-term offspring lipid and insulin metabolism. We examined the associations of maternal plasma n-3 and n-6 PUFA levels during pregnancy with childhood lipids and insulin levels. Methods and Results In a population-based prospective cohort study among 3,230 mothers and their children, we measured maternal second trimester n-3 and n-6 PUFA plasma levels. At the median age of 6.0 years (95% range, 5.6-7.9), we measured childhood total-cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides, insulin and c-peptide levels. Higher maternal total n-3 PUFA levels, and specifically DHA levels, were associated with higher childhood total-cholesterol, HDL-cholesterol and insulin levels (p-values <0.05), but not with LDL-cholesterol and triglycerides. Maternal total n-6 PUFA levels were not associated with childhood outcomes, but higher levels of the individual n-6 PUFAs, EDA and DGLA were associated with a lower childhood HDL-cholesterol, and higher AA levels with higher childhood total-cholesterol and HDL-cholesterol levels (all p-values <0.05). A higher maternal n-6/n-3 PUFA ratio was only associated with lower childhood HDL-cholesterol and insulin levels (p-values <0.05). These associations were not explained by childhood body mass index. Conclusions Higher maternal total n-3 PUFAs and specifically DHA levels during pregnancy are associated with higher childhood total-cholesterol, HDL-cholesterol and insulin levels. Only individual maternal n-6 PUFAs, not total maternal n-6 PUFA levels, tended to be associated with childhood lipids and insulin levels. PMID:27919543
Ríos, Glenda L.; Canizo, Jesica R.; Antollini, Silvia S.; Alberio, Ricardo H.
2017-01-01
Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD) did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane) and cholesteryl esters (stored in lipid droplets), revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs) among seasons and a dynamic organizational structure of cholesterol homeostasis within the COC. Modulation of membrane cholesterol by MβCD improved survival of bovine oocytes and preserved integrity of GM1-related rafts after vitrification. PMID:28686720
Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice
Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.
2012-01-01
Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206
Leptin, adiponectin and serotonin levels in lean and obese dogs.
Park, Hyung-Jin; Lee, Sang-Eun; Oh, Jung-Hyun; Seo, Kyoung-Won; Song, Kun-Ho
2014-05-13
Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility. There are few studies looking at the role of 5HT and the relationship between peripheral circulating serotonin and obesity. The aim of this study was to find any differences in leptin, adiponectin, and 5HT between lean and obese dogs and to identify correlations among these factors. Leptin, triglyceride (TG) and cholesterol levels were higher in the obese group (all p < 0.01). Adiponectin and 5HT levels were higher in the lean group compared to the obese group (p < 0.01). Leptin (r = 0.628, p < 0.01), TG (r = 0.491, p < 0.01) and cholesterol (r = 0.419, p < 0.01) were positively correlated with body condition score (BCS), and adiponectin (r = -0.446, p < 0.01) and 5HT (r = -0.490, p < 0.01) were negatively correlated with BCS. Leptin was negatively correlated with adiponectin (r = -0.294, p < 0.01) and 5HT (r = -0.343, p < 0.01). 5HT was negatively correlated with leptin (r = -0.343, p < 0.01), TG (r = -0.268, p < 0.05) and cholesterol (r = -0.357, p < 0.05). 5HT is an important appetite control neurotransmitter, but there are limited studies for 5HT levels related to obesity in dogs. To the best of our knowledge, this is the first study to evaluate peripheral 5HT levels in obese dogs. From this research, we can assume that 5HT may be correlated with canine obesity. Further studies will be needed to further elucidate the role of low serum 5HT levels in canine obesity.
Leptin, adiponectin and serotonin levels in lean and obese dogs
2014-01-01
Background Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility. There are few studies looking at the role of 5HT and the relationship between peripheral circulating serotonin and obesity. The aim of this study was to find any differences in leptin, adiponectin, and 5HT between lean and obese dogs and to identify correlations among these factors. Results Leptin, triglyceride (TG) and cholesterol levels were higher in the obese group (all p < 0.01). Adiponectin and 5HT levels were higher in the lean group compared to the obese group (p < 0.01). Leptin (r = 0.628, p < 0.01), TG (r = 0.491, p < 0.01) and cholesterol (r = 0.419, p < 0.01) were positively correlated with body condition score (BCS), and adiponectin (r = -0.446, p < 0.01) and 5HT (r = -0.490, p < 0.01) were negatively correlated with BCS. Leptin was negatively correlated with adiponectin (r = -0.294, p < 0.01) and 5HT (r = -0.343, p < 0.01). 5HT was negatively correlated with leptin (r = -0.343, p < 0.01), TG (r = -0.268, p < 0.05) and cholesterol (r = -0.357, p < 0.05). Conclusions 5HT is an important appetite control neurotransmitter, but there are limited studies for 5HT levels related to obesity in dogs. To the best of our knowledge, this is the first study to evaluate peripheral 5HT levels in obese dogs. From this research, we can assume that 5HT may be correlated with canine obesity. Further studies will be needed to further elucidate the role of low serum 5HT levels in canine obesity. PMID:24886049
1990-08-01
cholesterol with same method as for TC; however, precision of the HDL measurements were (±SD) ±1.5 mg/dl. Triglycerides ( TG ) were...placebo lipid levels (TC and TG levels), lipoprotein cholesterol levels (LDL, VLDL, and HDL cholesterol levels), and the cholesterol ratios between... high density lipoprotein cholesterol in the serum and risk of mortality: evidence of a threshold effect. Br Med J. 1985; 290:1239-43. 7. Gordon
Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase.
Würtz, Peter; Wang, Qin; Soininen, Pasi; Kangas, Antti J; Fatemifar, Ghazaleh; Tynkkynen, Tuulia; Tiainen, Mika; Perola, Markus; Tillin, Therese; Hughes, Alun D; Mäntyselkä, Pekka; Kähönen, Mika; Lehtimäki, Terho; Sattar, Naveed; Hingorani, Aroon D; Casas, Juan-Pablo; Salomaa, Veikko; Kivimäki, Mika; Järvelin, Marjo-Riitta; Davey Smith, George; Vanhala, Mauno; Lawlor, Debbie A; Raitakari, Olli T; Chaturvedi, Nish; Kettunen, Johannes; Ala-Korpela, Mika
2016-03-15
Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R(2) = 0.94, slope 1.00 ± 0.03). Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmacological mechanisms. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Wu, Jianwei; Chen, Shengyun; Liu, Liping; Gao, Xiang; Zhou, Yong; Wang, Chunxue; Zhang, Qian; Wang, Anxin; Hussain, Mohammed; Sun, Baoying; Wu, Shouling; Zhao, Xingquan
2013-06-01
To compare the predictive value of serum low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol levels for ischemic stroke in the Chinese population. We performed a four-year cohort study of 95 778 men and women, aged 18-98 years, selected from the Kailuan study (2006-2007). Baseline LDL cholesterol levels were estimated using direct test method. Total cholesterol levels were estimated using endpoint test method. The predictive values of LDL cholesterol and non-HDL cholesterol for ischemic stroke were compared. During the follow-up period, there were 1153 incident cases of ischemic stroke. The hazard ratio (HR) for ischemic stroke in the top quintile of LDL cholesterol was the highest among five quintiles (HR: 1·25; 95% confidence interval (CI), 1·01-1·53). The HR in the top quintile of non-HDL cholesterol for ischemic stroke was also the highest among five quintiles (HR: 1·53; 95% CI, 1·24-1·88). Analysis of trends showed a significant positive relationship between ischemic stroke incidence and serum LDL cholesterol level, and non-HDL cholesterol level, respectively (both P < 0·05). The area under the curve of LDL cholesterol and non-HDL cholesterol for ischemic stroke was 0·51 and 0·56, respectively (P < 0·05 for the difference). Serum Non-HDL cholesterol level is a stronger predictor for the risk of ischemic stroke than serum LDL cholesterol level in the Chinese population.
Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice.
Huang, S K; Lee, K D; Hong, K; Friend, D S; Papahadjopoulos, D
1992-10-01
Using light and electron microscopy, we investigated the in vivo distribution of liposomes sterically stabilized by specific lipids which prolong their circulation in blood. Tissue distribution of sterically stabilized liposomes composed of distearoyl phosphatidylcholine:cholesterol:monosialoganglioside GM1 (10:5:1)-encapsulated 67Ga-Desferal indicates that more than 30% of liposomes still remain in the blood at 24 h after tail vein injection. Moreover, such liposomes accumulated in tumors (C-26 colon carcinoma cells implanted s.c.), reaching almost the same level of uptake as liver (approximately 20% injected dose/g tissue). The microscopic localization of liposomes labeled with encapsulated colloidal gold or rhodamine-labeled dextran coincided well with the tissue distribution. To evaluate circulation parameters, two sizes of gold-containing egg phosphatidylcholine:cholesterol:distearoyl phosphatidylethanolamine (derivatized at its amino position with a 1900 molecular weight segment of polyethylene glycol) (10:5:0.8) liposomes were injected. The plasma was examined by electron microscopy of negative-stained preparations at 0.5, 4, and 24 h after liposome injection. It was found that the ratio of small (less than 100 nm diameter) to large (greater than 100 nm) liposomes increased with time, indicating a much faster clearance of the larger liposomes. To detect the localization of liposomes in various tissues, appropriate samples were fixed 24 h after the injection of gold-containing liposomes (between 80 and 100 nm in diameter) composed of egg phosphatidylcholine:cholesterol:monosialoganglioside GM1 (10:5:1) or egg phosphatidylcholine:cholesterol:derivatized distearoyl phosphatidylethanolamine. The tissues examined for this study included normal liver, bone marrow, and implanted neoplasms. Silver-enhanced colloidal gold was found predominantly within Kupffer cells in the normal liver and within macrophages in the bone marrow. Rarely were any silver-enhanced gold particles detected in hepatocytes. In all preparations, electron microscopy revealed the presence of gold in endosomes and lysosomes of fixed sinusoidal lining macrophages in the liver and bone marrow. Peripheral to the implanted tumors, silver enhancement revealed gold in small blood vessels and focally beyond the vessel boundaries in extracellular spaces around tumor cells. Gold particles were not observed within the tumor cell cytoplasm. At the tumor border, nonenhanced gold was occasionally seen by electron microscopy in cells of the mononuclear phagocyte system. We obtained the same localization pattern as with silver enhancement by using an alternative aqueous content marker, rhodamine B isothiocyanate-dextran. We conclude that liposomes of specific composition, which have the ability to remain in circulation with a half-life of 12-24 h, are also able to transverse the endothelium of small blood vessels, including those in tumors, and extravasate into extracellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS)
Reitz, Christiane
2013-01-01
The role of cholesterol in the etiology of Alzheimer’s disease (AD) is still controversial. Some studies aiming to explore the association between lipids and/or lipid lowering treatment and AD indicate a harmful effect of dyslipidemia and a beneficial effect of statin therapy on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including Apolipoprotein E (APOE), Apolipoprotein J (APOJ, CLU) and the sortilin-related receptor (SORL1). Functional cell biology studies support a critical involvement of lipid raft cholesterol in the modulation of AbetaPP processing by β- and γ-secretase resulting in altered Aβ production. Contradictory evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk, cell biology studies suggesting that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits co-localization of BACE1 and AbetaPP in non-raft membrane domains and thereby increasing generation of plasmin, an Aβ-degrading enzyme. The aim of this review is to summarize the findings of epidemiologic and cell biologic studies aiming to elucidate the role of cholesterol in AD etiology. PMID:21965313
Alpañés, Macarena; Luque-Ramírez, Manuel; Martínez-García, M Ángeles; Fernández-Durán, Elena; Álvarez-Blasco, Francisco; Escobar-Morreale, Héctor Francisco
2015-03-01
To study the impact of adrenal hyperandrogenism (AH; defined as DHEAS concentration >95th percentile of a healthy female control population) on cardiometabolic risk factors associated with polycystic ovary syndrome (PCOS). Cross-sectional study. Academic hospital. Two-hundred ninety-eight consecutive women with PCOS, of whom 120 were obese (body mass index [BMI] ≥30 kg/m(2)) and 178 nonobese (BMI <30 kg/m(2)). None. Comprehensive evaluation of cardiovascular risk factors, including 75-g oral glucose tolerance test, office blood pressure, lipid profile, and low-grade inflammatory markers. Patients with AH (AH-PCOS) had higher insulin circulating levels and lower insulin sensitivity than their counterparts without AH (non-AH-PCOS). Obesity, but not AH, was the main contributor to the presence of glucose tolerance disorders. Both obesity and AH increased the prevalence of prehypertension and hypertension. AH diminished high-density lipoprotein (HDL) levels in nonobese PCOS women in parallel with a decrease in total cholesterol levels, leading to a total to HDL cholesterol ratio similar to that of nonobese non-AH-PCOS patients. Furthermore, AH blunted the deleterious effect of obesity on the total cholesterol/HDL ratio, with the ratio of obese AH-PCOS patients being similar to that of nonobese PCOS patients with or without AH. The presence of AH in women with PCOS is associated with reduced insulin sensitivity and increased blood pressure but may have beneficial impact on the lipid profile. Obesity is the main determinant of the clustering of cardiovascular risk factors in PCOS women. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S
2011-08-01
Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Aragonès, Gerard; Alonso-Villaverde, Carlos; Pardo-Reche, Pedro; Rull, Anna; Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Sender, Laura; Camps, Jordi; Joven, Jorge
2011-09-22
The recently observed association between the APOC3-related rs10892151 polymorphism and serum triglyceride levels has prompted us the possibility to explore whether this genetic variant may play a major role in human immunodeficiency virus (HIV)/antiretroviral therapy-induced dyslipidemia. We determined the rs10892151 genotype distribution and serum apolipoprotein (apo) C-III concentration in a group of HIV-infected patients (n = 208) and in a group of age and sex-matched healthy volunteers (n = 200). Circulating lipid and lipoprotein levels were followed for 12 months after antiretroviral treatment initiation in the HIV-infected group. There were no significant variations in the frequency of the A allele between the healthy and HIV-infected groups (7.5 vs. 8.6%, respectively; p = 0.7); additionally, the A allele was not related to serum apo C-III concentration. However, among patients receiving protease inhibitor (PI) treatment, carriers of the A allele had significantly increased serum triglyceride (5.76 ± 2.54 mmol/L) and total cholesterol (6.63 ± 2.85 mmol/L) concentrations together with depressed levels of HDL-cholesterol (0.75 ± 0.3 mmol/L) when compared with patients not carrying the allele (2.43 ± 1.32, 5.2 ± 2.17 and 1.24 ± 0.4 mmol/L, respectively) at the end of the study. This effect was only evident for HDL-cholesterol concentration when patients were treated with non-nucleoside reverse transcriptase inhibitors (1.05 ± 0.4 vs. 1.28 ± 0.4 mmol/L). The A allelic variant of the rs10892151 polymorphism is not associated with serum apo C-III concentration, but predisposes HIV-infected patients to less favorable lipid profile, particularly in those patients treated with PIs.
Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika
2015-01-01
A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.
Youn, Byung-Soo; Bang, Sa-Ik; Klöting, Nora; Park, Ji Woo; Lee, Namseok; Oh, Ji-Eun; Pi, Kyung-Bae; Lee, Tae Hee; Ruschke, Karen; Fasshauer, Mathias; Stumvoll, Michael; Blüher, Matthias
2009-01-01
OBJECTIVE—Progranulin is an important molecule in inflammatory response. Chronic inflammation is frequently associated with central obesity and associated disturbances; however, the role of circulating progranulin in human obesity, type 2 diabetes, and dyslipidemia is unknown. RESEARCH DESIGN AND METHODS—For the measurement of progranulin serum concentrations, we developed an enzyme-linked immunosorbent assay (ELISA). Using this ELISA, we assessed circulating progranulin in a cross-sectional study of 209 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance and in 60 individuals with normal (NGT) or impaired (IGT) glucose tolerance or type 2 diabetes before and after a 4-week physical training program. Progranulin mRNA and protein expression was measured in paired samples of omental and subcutaneous adipose tissue (adipocytes and cells of the stromal vascular fraction) from 55 lean or obese individuals. Measurement of Erk activation and chemotactic activity induced by progranulin in vitro was performed using THP-1–based cell migration assays. RESULTS—Progranulin serum concentrations were significantly higher in individuals with type 2 diabetes compared with NGT and in obese subjects with predominant visceral fat accumulation. Circulating progranulin significantly correlates with BMI, macrophage infiltration in omental adipose tissue, C-reactive protein (CRP) serum concentrations, A1C values, and total cholesterol. Multivariable linear regression analyses revealed CRP levels as the strongest independent predictor of circulating progranulin. The extent of in vitro progranulin-mediated chemotaxis is similar to that of monocyte chemoattractant protein-1 but independent of Gα. Moreover, in type 2 diabetes, but not in IGT and NGT individuals, physical training for 4 weeks resulted in significantly decreased circulating progranulin levels. CONCLUSIONS—Elevated progranulin serum concentrations are associated with visceral obesity, elevated plasma glucose, and dyslipidemia. We identified progranulin as a novel marker of chronic inflammation in obesity and type 2 diabetes that closely reflects omental adipose tissue macrophage infiltration. Physical training significantly reduces elevated circulating progranulin in patients with type 2 diabetes. PMID:19056610
Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G; Guizzetti, Marina
2014-11-01
Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
High Density Lipoprotein Cholesterol Increasing Therapy: The Unmet Cardiovascular Need
Cimmino, Giovanni; Ciccarelli, Giovanni; Morello, Alberto; Ciccarelli, Michele; Golino, Paolo
2015-01-01
Despite aggressive strategies are now available to reduce LDL-cholesterol, the risk of cardiovascular events in patients with coronary artery disease remains substantial. Several preclinical and clinical studies have shown that drug therapy ultimately leads to a regression of the angiographic lesions but also results in a reduction in cardiovascular events. The dramatic failure of clinical trials evaluating the cholesterol ester transfer protein (CEPT) inhibitors, torcetrapib and dalcetrapib, has led to considerable doubt about the value of the current strategy to raise high-density lipoprotein cholesterol (HDL-C) as a treatment for cardiovascular disease. These clinical results, as well as animal studies, have revealed the complexity of HDL metabolism, assessing a more important role of functional quality compared to circulating quantity of HDL. As a result, HDL-based therapeutic interventions that maintain or enhance HDL functionality, such as improving its main property, the reverse cholesterol transport, require closer investigation. In this review, we will discuss HDL metabolism and function, clinical-trial data available for HDL-raising agents, and potential strategies for future HDL-based therapies. PMID:26535185
Outdoor temperature is associated with serum HDL and LDL.
Halonen, Jaana I; Zanobetti, Antonella; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel
2011-02-01
While exposures to high and low air temperatures are associated with cardiovascular mortality, the underlying mechanisms are poorly understood. The risk factors for cardiovascular disease include high levels of total cholesterol and low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL). We investigated whether temperature was associated with changes in circulating lipid levels, and whether this might explain part of the association with increased cardiovascular events. The study cohort consisted of 478 men in the greater Boston area with a mean age of 74.2 years. They visited the clinic every 3-5 years between 1995 and 2008 for physical examination and to complete questionnaires. We excluded from analyses all men taking statin medication and all days with missing data, resulting in a total of 862 visits. Associations between three temperature variables (ambient, apparent, and dew point temperature) and serum lipid levels (total cholesterol, HDL, LDL, and triglycerides) were studied with linear mixed models that included possible confounders such as air pollution and a random intercept for each subject. We found that HDL decreased -1.76% (95% CI: from -3.17 to -0.32, lag 2 days), and -5.58% (95% CI: from -8.87 to -2.16, moving average of 4 weeks) for each 5°C increase in mean ambient temperature. For the same increase in mean ambient temperature, LDL increased by 1.74% (95% CI: 0.07-3.44, lag 1 day) and 1.87% (95% CI: 0.14-3.63, lag 2 days). These results were also similar for apparent and dew point temperatures. No changes were found in total cholesterol or triglycerides in relation to temperature increase. Changes in HDL and LDL levels associated with an increase in ambient temperature may be among the underlying mechanisms of temperature-related cardiovascular mortality. Copyright © 2010 Elsevier Inc. All rights reserved.
The impact of adipogenic diet on rats' tissue trace elements content.
Tinkov, A A; Gatiatulina, E R; Popova, E V; Polyakova, V S; Skalvaya, A A; Agletdinov, E F; Nikonorov, A A; Radysh, I V; Kkarganov, M Yu; Skalny, A V
2016-01-01
The influence of high-fat diet (HFD) on trace elements status, adipokine level, and markers of carbohydrate and lipid metabolism in weanling Wistar rats was investigated. A total of 20 male 1-months-old Wistar rats divided into two equal groups were used in the present study. The first group of animals obtained a standard diet (STD), whereas animals from the second group (NAFLD) were maintained on high-fat diet containing 10 and 31.6% of total calories from fat, respectively, during 1 month. Fat diet (HFD). Trace element status (using inductively coupled plasma mass spectrometry), serum levels of insulin, adiponectin, and leptin (using enzyme-linked immunosorbent assay), total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glucose (spectrophotometrically), apolipoprotein A1 (ApoA1) and B (ApoB) (using immunoturbidimetric method) were assessed. It was shown that 1-month HFD feeding resulted in significant increase of EDAT, RPAT, total adipose tissue mass, and adipocyte area. HFD-fed animals were also characterized by a significant increase in circulating leptin levels and leptin-to-adiponectin ratio as compared to the control ones. No significant HFD-related difference in serum lipid spectrum, adiponectin, apolipoproteins, glucose, insulin, and HOMA-IR were revealed. Liver Cu, I, Mn, Se, Zn; EDAT Cr, V, Co, Cu, Fe,I, and RPAT Co, Cu, I, Cr, V, Fe, and Zn were significantly decreased in HFD-fed rats in comparison with the control group levels. Hair Co, Mn, Si, and V levels significantly exceeded the respective control values, whereas Se and I content were decreased in studied animals. At the same time, only serum Cu was significantly decreased in HFD-fed rats. The interplay between the impaired trace elements metabolism of HFD-fed weanling Wistar rats and disorder of adipokine balance was demonstrated. It is supposed that the altered trace elements status is primary and precedes other metabolic obesity-related disturbances.
Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet
2013-01-01
Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression levels of liver enzymes related to cholesterol metabolism, including the down regulation of acyl-CoA:cholesterol acyltransferase (ACAT) and the upregulation of cholesterol 7α-hydroxylase (CYP7A1). Conclusion This study suggested that the two NS lactobacillus strains may affect lipid metabolism and have cholesterol-lowering effects in rats fed a high cholesterol diet. PMID:23656797
Development of CER-001: Preclinical Dose Selection Through to Phase I Clinical Findings.
Keyserling, Constance H; Barbaras, Ronald; Benghozi, Renee; Dasseux, Jean-Louis
2017-05-01
CER-001 comprises recombinant human apolipoprotein A-I complexed with phospholipids that mimics natural, nascent, pre-β high-density lipoprotein (HDL). We present animal model data showing dose-dependent increases in cholesterol efflux with CER-001 and its subsequent elimination by reverse lipid transport, together with inhibition of atherosclerotic plaque progression. We report the first phase I study results with CER-001 in humans, starting at 0.25 mg/kg, which is 1/80th of the safe dose (20 mg/kg) established in 4-week multiple-dose animal studies dosed every second day. Healthy volunteers, 18-55 years old with a low-density lipoprotein-cholesterol:HDL-cholesterol ratio greater than 3.0, received single intravenous escalating doses of CER-001 (0.25-45.0 mg/kg) and placebo in a double-blind randomised cross-over fashion. Subjects were followed up for 3 weeks post-dose. Assessments included adverse event monitoring, blood sampling, and clinical laboratory measurements. Thirty-two subjects were enrolled. All CER-001 doses (0.25-45 mg/kg) were safe and well tolerated, with an adverse event profile similar to placebo. Effects on clinical chemistry, haematology and coagulation parameters were comparable to placebo. No adverse effects of CER-001 on electrocardiograms were observed. No antibodies to apolipoprotein A-I were detected following single-dose administration of CER-001. Plasma apolipoprotein A-I levels increased in a dose-related manner and returned to baseline by 24 h post-dose for doses up to 10 mg/kg but remained in circulation for >72 h post-dose for doses >10 mg/kg. CER-001 caused elevations in plasma cholesterol and total and unesterified cholesterol in the HDL fraction. Mobilisation of unesterified cholesterol in the HDL fraction was seen with CER-001 at doses as low as 2 mg/kg. CER-001 is well tolerated when administered to humans as single doses up to 45 mg/kg and mobilises and eliminates cholesterol via reverse lipid transport.
Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M
2014-04-01
The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.
Dias, C B; Wood, L G; Garg, M L
2016-07-01
Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.
Solonin, Iu G; Markov, A L; Boĭko, E R; Potolitsyna, N N; Parshukova, O I
2014-01-01
17 male northerners participating in the satellite experiments of the '"Mars-500" project passed through the morphological, physiometric, psychological and biochemical studies. The prenosological health indices in different seasons were calculated using the hardware-software complex "Ecosan-2007". Seasonal sinusoidal fluctuations were detected for the thermoregulation (body and skin temperature), lipids metabolism (cholesterol, HDL and LDL levels in the blood), circulation regulation under physical exercise (the increase of "double product" and its recovery time). In the majority of the participants the unfavorable deviations of body mass index, "power" and "life" indices, simple visual-motor reaction time, Kerdo vegetative index, physical health levels and regulatory systems activity index (in comparison with the mid-latitude standards) were found.
Larmo, Petra S; Yang, Baoru; Hurme, Saija A M; Alin, Jouni A; Kallio, Heikki P; Salminen, Eeva K; Tahvonen, Raija L
2009-08-01
Epidemiological studies indicate beneficial effects of flavonoids on cardiovascular disease (CVD) risk. To study the effect of flavonoid-rich sea buckthorn berry (SBB) on circulating lipid markers associated with CVD risk and plasma flavonol concentration. Also investigated was whether changes in the circulating flavonol concentrations correlate with the SBB induced changes in C-reactive protein (CRP) concentration observed previously. In all 229 healthy participants completed the randomized double-blind study and consumed daily 28 g of SBB or placebo for 3 months. Fasting blood samples for the analysis of lipid markers and flavonols were obtained at the beginning and end of the study. Compared to the placebo, the consumption of SBB increased the plasma concentration of the flavonols quercetin and isorhamnetin significantly [treatment differences 3.0 ng/ml (P = 0.03) and 3.9 ng/ml (P < 0.01), respectively]. The increase of kaempferol concentration was not significant [treatment difference 0.7 ng/ml (P = 0.08)]. SBB did not affect the serum total, HDL, LDL cholesterol, or the serum triacylglycerol concentrations. There was no correlation between the changes in flavonol and CRP concentrations of participants. The consumption of SBB significantly increased the fasting plasma concentration of quercetin and isorhamnetin indicating that it is a good dietary source of flavonols. However, this did not convert to affecting the circulating concentrations of lipid markers in healthy, normolipidemic adults having healthy diets.
A race-specific interaction between vitamin K status and statin use
USDA-ARS?s Scientific Manuscript database
The oral anticoagulant warfarin is a vitamin K antagonist. Phylloquinone, the primary circulating form of vitamin K, is transported by triglyceride-rich lipoproteins and shares a metabolic pathway with cholesterol. Thus, there is biological plausibility for an interaction between serum phylloquinone...
Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.
2007-01-01
Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159
Vila, Greisa; Hopfgartner, Judith; Grimm, Gabriele; Baumgartner-Parzer, Sabina M; Kautzky-Willer, Alexandra; Clodi, Martin; Luger, Anton
2015-10-28
Breast-feeding is associated with maternal hormonal and metabolic changes ensuring adequate milk production. In this study, we investigate the impact of breast-feeding on the profile of changes in maternal appetite-regulating hormones 3-6 months postpartum. Study participants were age- and BMI-matched lactating mothers (n 10), non-lactating mothers (n 9) and women without any history of pregnancy or breast-feeding in the previous 12 months (control group, n 10). During study sessions, young mothers breast-fed or bottle-fed their babies, and maternal blood samples were collected at five time points during 90 min: before, during and after feeding the babies. Outcome parameters were plasma concentrations of ghrelin, peptide YY (PYY), leptin, adiponectin, prolactin, cortisol, insulin, glucose and lipid values. At baseline, circulating PYY concentrations were significantly increased in lactating mothers (100·3 (se 6·7) pg/ml) v. non-lactating mothers (73·6 (se 4·9) pg/ml, P=0·008) and v. the control group (70·2 (se 9) pg/ml, P=0·021). We found no differences in ghrelin, leptin and adiponectin values. Baseline prolactin concentrations were over 4-fold higher in lactating mothers (P<0·001). Lactating women had reduced TAG levels and LDL-cholesterol:HDL-cholesterol ratio, but increased waist circumference, when compared with non-lactating women. Breast-feeding sessions further elevated circulating prolactin (P<0·001), but induced no acute effects on appetite-regulating hormones. In summary, one single breast-feeding session did not acutely modulate circulating appetite-regulating hormones, but increased baseline PYY concentrations are associated with prolonged lactation. PYY might play a role in the coordination of energy balance during lactation, increasing fat mobilisation from maternal depots and ensuring adequate milk production for the demands of the growing infant.
Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro
2012-03-01
Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.
Bai, Jianling; Xun, Pengcheng; Morris, Steve; Jacobs, David R.; Liu, Kiang; He, Ka
2015-01-01
Studies suggest that chromium deficiency is associated with elevated levels of fasting blood glucose, circulating insulin, cholesterol and triglycerides, and decreased proportion of lean body mass. However, data directly relating chromium levels to metabolic syndrome (MetS) risk are lacking. A total of 3,648 American adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, aged 20–32 years, were prospectively examined for the incidence of MetS and its five components from 1987–88 to 2010–11. Baseline toenail chromium levels were measured with instrumental neutron-activation analysis. Incident MetS was defined by the NCEP-ATP III criteria. During the 23-year follow-up, 878 incident MetS cases were identified. Baseline toenail chromium was inversely associated with incidence of MetS as well as its blood lipid components. The multivariable-adjusted hazard ratio (HR) (95% confidence interval [CI]) of MetS comparing the highest to the lowest quartiles of toenail chromium levels was 0.80 (0.66–0.98; Plinear trend = 0.006). The adjusted HRs were 0.82 (0.68–0.98; Ptrend = 0.045) for having abnormal triglycerides levels and 0.75 (0.64–0.88; Ptrend = 0.030) for having abnormal HDL cholesterol levels. Toenail chromium levels were inversely and longitudinally associated with incidence of MetS in American young adults. This inverse association was mainly explained by its relation to blood lipids. PMID:26489690
Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C
2015-01-01
The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.
Mailloux, Ryan J.; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C.; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G.; Jin, Xiaolei
2014-01-01
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol. PMID:25222487
Huang, Zhenhua; Liang, Lining; Li, Lingyu; Xu, Miao; Li, Xiang; Sun, Hao; He, Songwei; Lin, Lilong; Zhang, Yixin; Song, Yancheng; Yang, Man; Luo, Yuling; Loh, Horace H; Law, Ping-Yee; Zheng, Dayong; Zheng, Hui
2016-03-08
Pain management has been considered as significant contributor to broad quality-of-life improvement for cancer patients. Modulating serum cholesterol levels affects analgesia abilities of opioids, important pain killer for cancer patients, in mice system. Thus the correlation between opioids usages and cholesterol levels were investigated in human patients with lung cancer. Medical records of 282 patients were selected with following criteria, 1) signed inform consent, 2) full medical records on total serum cholesterol levels and opioid administration, 3) opioid-naïve, 4) not received/receiving cancer-related or cholesterol lowering treatment, 5) pain level at level 5-8. The patients were divided into different groups basing on their gender and cholesterol levels. Since different opioids, morphine, oxycodone, and fentanyl, were all administrated at fixed low dose initially and increased gradually only if pain was not controlled, the percentages of patients in each group who did not respond to the initial doses of opioids and required higher doses for pain management were determined and compared. Patients with relative low cholesterol levels have larger percentage (11 out of 28 in female and 31 out of 71 in male) to not respond to the initial dose of opioids than those with high cholesterol levels (0 out of 258 in female and 8 out of 74 in male). Similar differences were obtained when patients with different opioids were analyzed separately. After converting the doses of different opioids to equivalent doses of oxycodone, significant correlation between opioid usages and cholesterol levels was also observed. Therefore, more attention should be taken to those cancer patients with low cholesterol levels because they may require higher doses of opioids as pain killer.
Björkhem, Ingemar; Lövgren-Sandblom, Anita; Leoni, Valerio; Meaney, Steve; Brodin, Lovisa; Salveson, Lisette; Winge, Kristian; Pålhagen, Sven; Svenningsson, Per
2013-10-25
Oxysterols are important for cholesterol homeostasis in the brain and may be affected in neurodegenerative diseases. The levels of the brain-derived oxysterol 24S-hydroxycholesterol (24S-OH) have been reported to be markedly reduced in the circulation of patients with Parkinson's disease (PD) (Lee et al., Antioxid. Redox Signal. 11 (2009) 407-420). The finding is surprising in view of the fact that other neurodegenerative diseases are associated with relatively modest effects on the circulating levels of 24S-OH. We determined the plasma and cerebrospinal fluid (CSF) levels of 24S-OH and 27-hydroxycholesterol (27-OH) in patients with PD with different disease duration using a highly accurate method based on isotope dilution-mass spectrometry. All the patients had plasma levels of the different oxysterols within the normal range. When analyzing CSF, 10% of the PD patients were found to have levels of 24S-OH above the cut-off level and interestingly there was a significant correlation between levels of 24S-OH in CSF and duration of the disease (r=0.40, P<0.05). The CSF level of 27-OH was found to be above the cut-off level in 10% of the patients, indicating a defect blood-brain barrier function. There was no correlation between levels of 27-OH in CSF and duration of the disease. These data indicates that oxysterol levels in CSF may be of value to follow disease progression. Copyright © 2013. Published by Elsevier Ireland Ltd.
Family Planning for women unable to tolerate oral contraceptives.
Spellacy, W N
1974-04-08
Should women with a family history of diabetes or myocardial infarcation, or women with abnormal blood glucose or cholesterol levels receive oral contraceptives? There is clear evidence that oral contraceptives can alter both carbohydrate and lipid metabolism in certain women. The lipid alteration is mainly an elevation of the circulating triglyceride levels, and only rarely is cholesterol content altered. It is also clear from extensive research during the past ten years that women who already have subclinical abnormalities, either in their triglyceride levels (family hyperlipoproteinemia) or glucose tolerance, are at great risk for the development of clinical disease while using oral contraceptives. Accordingly, all pharmaceutical firms are required by the Food and Drug Administration to instruct physicians about these problems through the package inserts and other means. Specifically, the physician should be alerted by the patient's history, and then he should use the laboratory to confirm any suspicion of abnormalities of carbohydrate or lipid metabolism. If there is any abnormal blood glucose or triglyceride value, the oral contraceptives should not be prescribed. There are other forms of contraception available for child spacing. Mechanical contraceptives will not aggravate a metabolic disorder. A useful substitute then would be an intrauterine device plus vaginal foam. When the woman has completed her family, she should be all means be offered surgical sterilization as a permanent family planning technique.
Cohen, Margo P.; Shea, Elizabeth A.; Wu, Van-Yu
2009-01-01
Increased nonenzymatic glycation of apoB-containing lipoproteins impairs uptake and metabolism by the high affinity low density lipoprotein (LDL) receptor, and is one of the post-secretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate (CAP22) to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in LDL incubated with 200 mM glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apoB-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared to nondiabetic controls were significantly reduced in diabetic animals treated for six months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apoB-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes. PMID:19922964
A Statistical Study of Serum Cholesterol Level by Gender and Race.
Tharu, Bhikhari Prasad; Tsokos, Chris P
2017-07-25
Cholesterol level (CL) is growing concerned as health issue in human health since it is considered one of the causes in heart diseases. A study of cholesterol level can provide insight about its nature and characteristics. A cross-sectional study. National Health and Nutrition Examination Survey (NHANS) II was conducted on a probability sample of approximately 28,000 persons in the USA and cholesterol level is obtained from laboratory results. Samples were selected so that certain population groups thought to be at high risk of malnutrition. Study included 11,864 persons for CL cases with 9,602 males and 2,262 females with races: whites, blacks, and others. Non-parametric statistical tests and goodness of fit test have been used to identify probability distributions. The study concludes that the cholesterol level exhibits significant racial and gender differences in terms of probability distributions. The study has concluded that white people are relatively higher at risk than black people to have risk line and high risk cholesterol. The study clearly indicates that black males normally have higher cholesterol. Females have lower variation in cholesterol than males. There exists gender and racial discrepancies in cholesterol which has been identified as lognormal and gamma probability distributions. White individuals seem to be at a higher risk of having high risk cholesterol level than blacks. Females tend to have higher variation in cholesterol level than males.
Vinagre, J C; Vinagre, C G; Pozzi, F S; Slywitch, E; Maranhão, R C
2013-01-01
Vegan diet excludes all foodstuffs of animal origin and leads to cholesterol lowering and possibly reduction of cardiovascular disease risk. The aim was to investigate whether vegan diet improves the metabolic pathway of triglyceride-rich lipoproteins, consisting in lipoprotein lipolysis and removal from circulation of the resulting remnants and to verify whether the diet alters HDL metabolism by changing lipid transfers to this lipoprotein. 21 vegan and 29 omnivores eutrophic and normolipidemic subjects were intravenously injected triglyceride-rich emulsions labeled with (14)C-cholesterol oleate and (3)H-triolein: fractional clearance rates (FCR, in min(-1)) were calculated from samples collected during 60 min for radioactive counting. Lipid transfer to HDL was assayed by incubating plasma samples with a donor nanoemulsion labeled with radioactive lipids; % lipids transferred to HDL were quantified in supernatant after chemical precipitation of non-HDL fractions and nanoemulsion. Serum LDL cholesterol was lower in vegans than in omnivores (2.1 ± 0.8, 2.7 ± 0.7 mmol/L, respectively, p < 0,05), but HDL cholesterol and triglycerides were equal. Cholesteryl ester FCR was greater in vegans than in omnivores (0.016 ± 0.012, 0.003 ± 0.003, p < 0.01), whereas triglyceride FCR was equal (0.024 ± 0.014, 0.030 ± 0.016, N.S.). Cholesteryl ester transfer to HDL was lower in vegans than in omnivores (2.7 ± 0.6, 3.5 ± 1.5%, p < 0,05). Free-cholesterol, triglyceride and phospholipid transfer were equal, as well as HDL size. Remnant removal from circulation, estimated by cholesteryl oleate FCR was faster in vegans, but the lipolysis process, estimated by triglyceride FCR was equal. Increased removal of atherogenic remnants and diminution of cholesteryl ester transfer may favor atherosclerosis prevention by vegan diet. Copyright © 2011 Elsevier B.V. All rights reserved.
Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes.
Gómez-Ambrosi, Javier; Pascual, Eider; Catalán, Victoria; Rodríguez, Amaia; Ramírez, Beatriz; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema
2014-10-01
Betatrophin is a secreted protein recently involved in β-cell replication with a potential role in type 2 diabetes mellitus (T2D). The aim of the present study was to compare the circulating concentrations of betatrophin in human obesity and T2D. Serum concentrations of betatrophin were measured by ELISA in 153 subjects: 75 obese normoglycemic subjects (OB-NG), 30 obese subjects with impaired glucose tolerance (OB-IGT), and 15 obese subjects with T2D (OB-T2D) matched by sex, age, and body adiposity, in comparison with 33 lean normoglycemic individuals (LN-NG). Circulating levels of betatrophin were significantly decreased in obese individuals and further diminished in IGT and T2D participants (LN-NG, 45.1 ± 24.4 ng/mL; OB-NG, 26.9 ± 15.4 ng/mL; OB-IGT, 18.3 ± 10.7 ng/mL; OB-T2D, 13.5 ± 8.8 ng/mL; P < .001). A marked sexual dimorphism was found, with betatrophin levels being significantly higher in women than in men (males, 21.1 ± 16.0 ng/mL; females, 34.1 ± 20.1 ng/mL; P < .001). Interestingly, betatrophin levels were positively correlated with the quantitative insulin sensitivity check index (r = 0.46; P < .001) and with high-density lipoprotein-cholesterol concentrations (r = 0.51; P < .001). We conclude that serum betatrophin is decreased in human obesity, being further reduced in obesity-associated insulin resistance. Betatrophin levels are closely related to obesity-associated cardiometabolic risk factors, emerging as a potential biomarker of insulin resistance and T2D.
The Curves Exercise Suppresses Endotoxemia in Korean Women with Obesity.
Jin, Seon Ah; Kim, Sun Kyeong; Seo, Hee Jung; Kim, Mijoo; Ahn, Kye Taek; Kim, Jun Hyung; Park, Jae Hyeong; Lee, Jae Hwan; Choi, Si Wan; Jeong, Jin Ok
2017-02-01
Obesity and metabolic syndrome is a worldwide pandemic and associated with high cardiovascular risk. Metabolic endotoxemia (ME) is thought to be an underlying molecular mechanism. It triggers toll-like receptor 4-mediated inflammatory adipokines and causes a chronic low grade inflammatory status, which results in cardiovascular risk increase. Exercise is the best nonpharmacological treatment to improve prognosis. In this study, we examined the circulating endotoxin level in Korean obese women and investigated effects of exercise on it. Women over body mass index (BMI) 25 kg/m² participated in a resistance training exercise, Curves. At baseline and after 12 weeks exercise, tests including blood samples were taken. In Korean obese women, the fasting endotoxin was 1.45 ± 0.11 EU/mL. Ingestion of a high calorie meal led to a peak level after 2 hours (postprandial 2 hours [PP2]) and a significant rise over the 4 hours (postprandial 4 hours [PP4]) in it (1.78 ± 0.15 and 1.75 ± 0.14 EU/mL for PP2 and PP4, P < 0.05 vs. fasting). After exercise, BMI and hip circumference were reduced significantly. The total cholesterol (TC) at fasting, PP2 and PP4 were decreased significantly. All levels of circulating endotoxin at fasting, PP2 and PP4 showed reduction. But, the peak change was only significant (baseline vs. 12 weeks for PP2; 1.78 ± 0.15 vs. 1.48 ± 0.06 EU/mL, P < 0.05). We report the circulating endotoxin level in Korean obese women for the first time. Also, we establish that energy intake leads to endotoxemia and exercise suppresses the peak endotoxemia after meal. It suggests an impact for a better prognosis in obese women who follow regular exercise.
Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.
ERIC Educational Resources Information Center
National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.
This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood…
Peluso, Ilaria; Villano, Debora V; Roberts, Susan A; Cesqui, Eleonora; Raguzzini, Anna; Borges, Gina; Crozier, Alan; Catasta, Giovina; Toti, Elisabetta; Serafini, Mauro
2014-01-01
Postprandial stress induced by acute consumption of meals with a high fat content results in an increase of markers of cardiometabolic risk. Repeated acute dietary stress may induce a persistent low-grade inflammation, playing a role in the pathogenesis of functional gut diseases. This may cause an impairment of the complex immune response of the gastrointestinal mucosa, which results in a breakdown of oral tolerance. We investigated the effect of ingestion of a fruit-juice drink (FJD) composed by multiple fruit juice and extracts, green tea extracts and vitamin C on postprandial stress induced by a High Fat Meal (HFM) in healthy overweight subjects. Following a double blind, placebo controlled, cross-over design, 15 healthy overweight subjects were randomized to a HFM providing 1334 Kcal (55% fat, 30% carbohydrates and 15% proteins) in combination with 500 mL of a placebo drink (HFM-P) or a fruit-juice drink (HFM-FJD). Ingestion of HFM-P led to an increase in circulating levels of cholesterol, triglycerides, glucose, insulin, TNF-α and IL-6. Ingestion of HFM-FJD significantly reduced plasma levels of cholesterol and triglycerides, decreasing inflammatory response mediated by TNF-α and IL-6. Ingestion of a fruit-juice drink reduce markers of postprandial stress induced by a HFM.
Steele, Kimberley E.; Peterson, Leigh A.; Zeng, Xiange; Jaffe, Andrew E.; Schweitzer, Michael A.; Magnuson, Thomas H.; Wong, G. William
2016-01-01
Context: C1q/TNF-related protein-9 (CTRP9) is a novel adipokine that has beneficial metabolic and cardiovascular effects in various animal models. Alterations in circulating CTRP9 have also been observed in patients with cardiovascular disease and diabetes, but little is known about the impact of obesity and bariatric surgery on CTRP9 concentrations. Objective: The aim of this study was to compare CTRP9 levels in obese and lean subjects and to determine whether circulating CTRP9 levels in morbidly obese patients are altered by bariatric surgery. Design, Setting, and Participants: Fifty-nine obese bariatric surgical patients and 62 lean controls were recruited to participate in a cross-sectional study at an academic medical center. The obese patients were further invited to participate in a cohort study, and 21 returned for analysis at 3 and 6 months postsurgery. Intervention: Bariatric surgery (Roux-en-Y gastric bypass and vertical sleeve gastrectomy) was the intervention for this study. Main Outcome Measures: Fasting serum was obtained from all subjects on entry to the study and was analyzed in the core laboratory for hemoglobin A1c, glucose, aspartate aminotransferase, alanine aminotransferase, total cholesterol, high- and low-density lipoprotein cholesterol, and triglycerides; CTRP9, insulin, adiponectin, and leptin were measured by ELISA. Serum from the patients in the cohort study was also analyzed at 3 and 6 months. Results: Serum CTRP9 was significantly higher in the obese group compared to the lean group. CTRP9 was associated with obesity, even after controlling for age, gender, and ethnicity. Following bariatric surgery, there was a significant decrease in weight at 3 and 6 months postprocedure, accompanied by decreases in CTRP9, hemoglobin A1c and leptin, and an increase in serum adiponectin. Conclusions: CTRP9 levels are elevated in obesity and significantly decrease following weight loss surgery. Our data suggest that CTRP9 may play a compensatory role in obesity, similar to that of insulin, and is down-regulated following weight loss surgery. PMID:26982010
Proprotein convertase subtilisin/kexin type 9: a new target molecule for gene therapy.
Banaszewska, Anna; Piechota, Michal; Plewa, Robert
2012-06-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.
Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian
2010-04-01
Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.
Clinical and anti-aging effect of mud-bathing therapy for patients with fibromyalgia.
Maeda, Toyoki; Kudo, Yoshihiro; Horiuchi, Takahiko; Makino, Naoki
2017-12-06
Spa bathing is known as a medical treatment for certain diseases causing chronic pains. Spa water contains mineral components which lower the specific heat of the water, resulting in a higher efficiency to warm body-core temperature. This phenomenon yields pain-relieving effect for rheumatoid arthritis, low back pain, sciatic neuralgia, fibromyalgia, etc. Here we introduce medical and biological effects of mud-spa-bathing therapy for fibromyalgia other than pain relief, the changes of blood examination data, and the telomere length of circulating leukocytes. The enrolled 7 patients with fibromyalgia syndrome were hospitalized and were subject to daily mud bathing at 40 °C for 10 min for about a month. Then, their subjective pain was reduced to about a quarter in average. They also showed lowered serum triglyceride and C-reactive protein level, maintaining the levels of aspartate transaminase and creatine phosphokinase, and increases of the red blood cell count, the serum albumin level, and the serum LDL-cholesterol level in comparison with cases without mud-bathing therapy, suggesting that mud bathing prevents inflammation and muscle atrophy and improves nutritional condition in fibromyalgia. In addition, the analysis of telomere length of peripheral leukocytes revealed a trend of negative correlation between telomere shortening and laboratory data change of hemoglobin and serum albumin. These telomeric changes can be explained hypothetically by an effect of mud bathing extending life-span of circulating leukocytes.
Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S
2016-02-01
Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. © 2015 American Heart Association, Inc.
Nonlinear Associations between Plasma Cholesterol Levels and Neuropsychological Function
Wendell, Carrington R.; Zonderman, Alan B.; Katzel, Leslie I.; Rosenberger, William F.; Plamadeala, Victoria V.; Hosey, Megan M.; Waldstein, Shari R.
2016-01-01
Objective Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Method Participants were 190 older adults (53% men, ages 54–83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed/dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. Results A significant quadratic effect of total cholesterol2 × age was identified for Logical Memory II (b=−.0013, p=.039), such that the 70+ group performed best at high and low levels of total cholesterol than at mid-range total cholesterol (U-shaped), and the <70 group performed worse at high and low levels of total cholesterol than at mid-range total cholesterol (inverted U-shape). Similarly, significant U- and J-shaped effects of LDL cholesterol2 × age were identified for Visual Reproduction II (b=−.0020, p=.026) and log of Trails B (b=.0001, p=.044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Conclusions Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. PMID:27280580
Characteristics of human hypo- and hyperresponders to dietary cholesterol.
Katan, M B; Beynen, A C
1987-03-01
The characteristics of people whose serum cholesterol level is unusually susceptible to consumption of cholesterol were investigated. Thirty-two volunteers from the general population of Wageningen, the Netherlands, each participated in three controlled dietary trials in 1982. A low-cholesterol diet was fed during the first half and a high-cholesterol diet during the second half of each trial, and the change (response) of serum cholesterol was measured. The responses in the three trials were averaged to give each subject's mean responsiveness. Fecal excretion of cholesterol and its metabolites were measured in the second trial, and body cholesterol synthesis was calculated. Responsiveness showed a positive correlation with serum high density lipoprotein2 (HDL2) cholesterol (r = 0.41, p less than 0.05) and with serum total cholesterol level on a high-cholesterol diet (r = 0.31, p = 0.09). A negative relation was found with habitual cholesterol consumption (r = -0.62, p less than 0.01), with body mass index (r = -0.50, p less than 0.01), and with the rate of endogenous cholesterol synthesis (r = -0.40, p less than 0.05), but not with the reaction of endogenous cholesterol synthesis rate to an increased intake of cholesterol. No relation was found with age, sex, total caloric needs, or the ratio of primary to secondary fecal steroids. Upon multiple regression analysis, only habitual cholesterol intake and serum total and HDL2 cholesterol levels contributed significantly to the explanation of variance in responsiveness. Thus, a low habitual cholesterol intake, a high serum HDL2 cholesterol level, or a low body weight do not make one less susceptible to dietary cholesterol-induced hypercholesterolemia.
Pashevin, Denis A; Tumanovska, Lesya V; Dosenko, Victor E; Nagibin, Vasyl S; Gurianova, Veronika L; Moibenko, Alexey A
2011-01-01
Quercetin, a plant-derived flavonoid, has attracted considerable attention as promising compound for heart disease prevention and therapy. It has been linked to decreased mortality from heart disease and decreased incidence of stroke. Here, we report new data showing the angioprotective properties of quercetin mediated by its effect on proteasomal proteolysis. This study was designed to investigate the ability of quercetin to modulate proteasomal activity in a rabbit model of cholesterol-induced atherosclerosis. First, we show proteasomal trypsin-like (TL) activity increased up to 2.4-fold, chymotrypsin-like (CTL) activity increased by up to 43% and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activity increased by up to 10% after 8 weeks of a cholesterol-rich diet. A single intravenous injection of the water-soluble form of quercetin (Corvitin) significantly decreased proteasomal TL activity 1.85-fold in monocytes, and decreased the CTL and PGPH activities more than 2-fold in polymorphonuclear leukocytes (PMNL) after 2 h. Prolonged administration (1 month) of Corvitin to animals following a cholesterol-rich diet significantly decreased all types of proteolytic proteasome activities both in tissues and in circulating leukocytes and was associated with the reduction of atherosclerotic lesion areas in the aorta. Additionally, the pharmacological form of quercetin (Quertin) was shown to have an antiatherogenic effect and an ability to inhibit proteasome activities.
Guaita-Esteruelas, Sandra; Saavedra-García, Paula; Bosquet, Alba; Borràs, Joan; Girona, Josefa; Amiliano, Kepa; Rodríguez-Balada, Marta; Heras, Mercedes; Masana, Luís; Gumà, Josep
2017-11-01
Adipose tissue is an endocrine organ that could play a role in tumor progression via its secreted adipokines. The role of adipose-derived fatty acid-binding protein (FABP) 4 and FABP5 in breast cancer is presently under study, but their circulating levels in this pathology are poorly known. We analyzed the blood concentrations of FABP4 and FABP5 in breast cancer patients to determine whether there is an association between them and breast cancer. We studied 294 women in the oncology department with a family history of breast cancer; 198 of the women had breast cancer, and 96 were healthy controls. The levels of FABP4, FABP5, lipid profile, standard biochemical parameter, and high-sensitivity C-reactive protein (hsCRP) were determined. We analyzed the association of FABP4 and FABP5 with breast cancer, while adjusting for demographic, anthropometric, and biochemical parameters. Breast cancer patients had a 24.8% ( p < .0001) and 11.4% ( p < .05) higher blood concentration of FABP4 and FABP5, respectively. Fatty acid-binding protein 4 was positively associated with age, body mass index (BMI), FABP5, very-low-density lipoprotein cholesterol (VLDLc), non-high-density lipoprote in cholesterol (non-HDLc), Apolipoprotein B 100 (ApoB100), triglycerides, glycerol, glucose, and hsCRP ( p < .05), and was negatively associated with HDLc ( p < .005) in breast cancer patients. Fatty acid-binding protein 5 was positively associated with BMI, FABP4, VLDLc, triglycerides, glycerol, and hsCRP ( p < .05), and was negatively associated with HDLc and Apolipoprotein AI (ApoAI) ( p < .05) in breast cancer patients. Using a logistic regression analysis and adjusting for age, BMI, hsCRP, non-HDLc, and triglycerides, FABP4 was independently associated with breast cancer (odds ratio [OR]: 1.091 [95% CI: 1.037-1.149]). Moreover, total cholesterol, VLDLc, non-HDLc, ApoB100, triglycerides, and hsCRP were significantly increased in breast cancer patients ( p < .005). In contrast, the non-esterified fatty acids concentrations were significantly decreased in breast cancer patients ( p < .05). Circulating FABP4 and FABP5 levels were increased in breast cancer patients compared with controls. The positive association of FABP4 with breast cancer was maintained after adjusting for important covariates, while the association with FABP5 was lost. Our data reinforce the role of adipose tissue and their adipokines in breast cancer. Despite these data, further studies must be performed to better explain the prognosis or diagnostic value of these blood parameters and their possible role in breast cancer. We focus on the effect of adipose tissue on cancer, which is increasingly recognized. The association between adipocyte-derived adipokines and breast cancer opens new diagnosis and therapy perspectives. In this study, we provide original data concerning FABP4 and FABP5 plasma concentrations in breast cancer patients. Compared to control group, breast cancer patients show higher FABP4 and FABP5 blood levels. Our data suggest that, particularly, circulating FABP4 levels could be considered a new independent breast cancer biomarker. Our work translates basic science data to clinic linking the relationship between adipose tissue and lipid metabolism to breast cancer. © 2017 The Authors. The Oncologist published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
USDA-ARS?s Scientific Manuscript database
Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol (HDL-C) concentrations reported an 'off-target' blood pressure (BP) raising effect. We evaluated the relations of baseline plasma CETP activity and longitudinal BP change. One tho...
The Effect of Deployment on Cholesterol Levels of Active Duty Personnel
2006-05-01
fairly good results regarding cholesterol levels. It was noted that several members returned from deployment with elevated levels, sometimes to the...LDL cholesterol and low HDL cholesterol (Downs, John R., Beere, Polly A., Whitney, Edwin, Clearfield, Michael, Weis, Stephen, Rochen, Jeffrey, Stein...specific ages, including cholesterol screenings beginning at age 25. Given the age of the majority of this population, one might expect relatively good
ERIC Educational Resources Information Center
National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.
Studies have shown that high blood cholesterol levels play a role in the development of coronary heart disease in adults, and that the process leading to atherosclerosis begins in childhood. To address the problem of high cholesterol levels in children, the Panel on Blood Cholesterol Levels recommends complementary approaches for individuals and…
NASA Astrophysics Data System (ADS)
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-06-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-01-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931
Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco
2012-05-01
In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol GSD. Copyright © 2012 American Association for the Study of Liver Diseases.
Nonlinear associations between plasma cholesterol levels and neuropsychological function.
Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R
2016-11-01
Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. A significant quadratic effect of Total Cholesterol² × Age was identified for Logical Memory II ( b = -.0013, p = .039), such that the 70+ group performed best at high and low levels of total cholesterol than at midrange total cholesterol (U-shaped) and the <70 group performed worse at high and low levels of total cholesterol than at midrange total cholesterol (inverted U shape). Similarly, significant U- and J-shaped effects of LDL Cholesterol² × Age were identified for Visual Reproduction II ( b = -.0020, p = .026) and log of the Trail Making Test, Part B (b = .0001, p = .044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Dávalos, Alberto; Fernández-Hernando, Carlos
2013-01-01
There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093
Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis
Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.
2014-01-01
High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875
Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.
Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M
2017-07-11
From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels. Copyright © 2017 Serquiña et al.
Wu, Ya-Ke; Chu, Nain-Feng; Huang, Ya-Hsien; Syu, Jhu-Ting; Chang, Jin-Biou
2016-01-01
To investigate the risk factors associated with cardiovascular diseases and its relation to BMI, body fat mass and plasma leptin level among adolescents in Taitung, Taiwan. A cross-sectional Taitung Children Heart Study for 500 young adolescents between ages 13 and 15 was conducted. Gender-specific regression models were used to determine the associations between BMI, percentage of body fat mass, plasma leptin level and seven CVDs risk factors (systolic and diastolic blood pressure, mean arterial pressure, triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol) before and after adjusting for weight status and age. After adjusting for weight status and age, BMI was positively associated with systolic BP, triglycerides, LDL-cholesterol levels but negatively associated with HDL-cholesterol level in boys while positively associated with systolic and diastolic BP, mean arterial pressure, and LDL-cholesterol level in girls. The percentage of body fat mass was positively associated with triglycerides, total cholesterol, and LDL-cholesterol in boys while positively associated with systolic BP, total cholesterol, and LDL-cholesterol in girls. Plasma leptin was positively associated with triglycerides, total cholesterol and LDL-cholesterol in boys but no statistically significant associations with CVDs risk factors in girls. A strong relationship between the percentage of body fat mass and plasma leptin appeared among all participants (r=0.59, p<0.01). BMI, body fat mass and plasma leptin level may be used to identify certain CVDs risk factors among Taitung adolescents. Future researches could consider measuring body fat mass in the relationship of CVDs risk factors instead of plasma leptin among young adolescents. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Biswas, Debabrata; Sen, Gargi; Sarkar, Avik; Biswas, Tuli
2011-01-01
Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS. Copyright © 2010 Elsevier Inc. All rights reserved.
Fleischmann, Roy; Davignon, Jean; Schwartz, Howard; Turner, Scott M.; Beysen, Carine; Milad, Mark; Hellerstein, Marc K.; Luo, Zhen; Kaplan, Irina V.; Riese, Richard; Zuckerman, Andrea; McInnes, Iain B.
2015-01-01
Objective Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. Methods This was a phase I open‐label mechanism‐of‐action study. Cholesterol and lipoprotein kinetics were assessed with 13C‐cholesterol and 13C‐leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. Results Levels of high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A‐I (Apo A‐I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL‐associated Apo A‐I fractional catabolic rate, or LDL‐associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. Conclusion This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved. PMID:25470338
Wagner, En-Young N; Wagner, Jan T; Glaus, Jennifer; Vandeleur, Caroline L; Castelao, Enrique; Strippoli, Marie-Pierre F; Vollenweider, Peter; Preisig, Martin; von Känel, Roland
2015-01-01
Anxiety disorders have been linked to an increased risk of incident coronary heart disease in which inflammation plays a key pathogenic role. To date, no studies have looked at the association between proinflammatory markers and agoraphobia. In a random Swiss population sample of 2890 persons (35-67 years, 53% women), we diagnosed a total of 124 individuals (4.3%) with agoraphobia using a validated semi-structured psychiatric interview. We also assessed socioeconomic status, traditional cardiovascular risk factors (i.e., body mass index, hypertension, blood glucose levels, total cholesterol/high-density lipoprotein-cholesterol ratio), and health behaviors (i.e., smoking, alcohol consumption, and physical activity), and other major psychiatric diseases (other anxiety disorders, major depressive disorder, drug dependence) which were treated as covariates in linear regression models. Circulating levels of inflammatory markers, statistically controlled for the baseline demographic and health-related measures, were determined at a mean follow-up of 5.5 ± 0.4 years (range 4.7 - 8.5). Individuals with agoraphobia had significantly higher follow-up levels of C-reactive protein (p = 0.007) and tumor-necrosis-factor-α (p = 0.042) as well as lower levels of the cardioprotective marker adiponectin (p = 0.032) than their non-agoraphobic counterparts. Follow-up levels of interleukin (IL)-1β and IL-6 did not significantly differ between the two groups. Our results suggest an increase in chronic low-grade inflammation in agoraphobia over time. Such a mechanism might link agoraphobia with an increased risk of atherosclerosis and coronary heart disease, and needs to be tested in longitudinal studies.
Chapman, M. John; Ginsberg, Henry N.; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L.; Descamps, Olivier S.; Fisher, Edward; Kovanen, Petri T.; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G.; Ray, Kausik K.; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F.
2011-01-01
Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal. PMID:21531743
Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho
2015-01-01
This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.
Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.
2014-01-01
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480
Desai, Nihar R; Giugliano, Robert P; Wasserman, Scott M; Gibbs, John P; Liu, Thomas; Scott, Rob; Sabatine, Marc S
2017-05-01
Levels of proprotein convertase subtilisin kexin type 9 (PCSK9) vary markedly across the population and are influenced by genetic and nongenetic factors. Evolocumab is a fully human, monoclonal antibody against PCSK9 that reduces low-density lipoprotein cholesterol (LDL-C) levels by 55% to 75%. Whether the efficacy of evolocumab varies based on an individual's baseline PCSK9 level remains unknown. To characterize variability in PCSK9 levels and determine whether the LDL-C level reduction achieved with evolocumab differs based on PCSK9 levels. This study included pooled data from 3016 patients from 4 phase 3 randomized clinical trials of evolocumab as part of the Program to Reduce LDL-C and Cardiovascular Outcomes Following Inhibition of PCSK9 in Different Populations. Circulating PCSK9 levels were measured at baseline using quantitative enzyme-linked immunosorbent assays and used to stratify patients into quartiles, and LDL-C level was measured at baseline and weeks 10 and 12. In an additional 138 patients enrolled in a pharmacokinetic and pharmacodynamic substudy from 4 phase 2 trials, circulating PCSK9 levels were measured at baseline and then weekly at weeks 8 through 12. Placebo-controlled percentage change in LDL-C level with evolocumab, 140 mg every 2 weeks and 420 mg once monthly, across quartiles of baseline PCSK9 levels. Of the 3016 patients, 1492 (49.5%) were female and 2758 (91.4%) were white. The median baseline circulating PCSK9 level was 323 ng/mL (interquartile range, 258-406 ng/mL). Patients with higher levels of PCSK9 were more likely to be receiving intensive statin therapy (56%, 36%, 25%, and 13% in the fourth through first quartiles; P < .001) and had significantly lower baseline LDL-C level (123 mg/dL, 124 mg/dL, 128 mg/dL, and 137 mg/dL in the fourth through first quartiles; P < .001). After stratifying by statin use, there was no correlation between PCSK9 levels and LDL-C levels (ρ = 0.03 [95% CI, -0.04 to 0.10] for nonstatin users, P = .39, and ρ = 0.03 [95% CI, -0.01 to 0.08] for statin users, P = .12). Across all quartiles of baseline PCSK9 levels, both evolocumab 140 mg every 2 weeks and 420 mg once monthly suppressed circulating PCSK9 levels by 90% to 100% within 1 week of administration. Both evolocumab 140 mg every 2 weeks and 420 mg once monthly were associated with significant reductions in LDL-C levels between 64% and 71% (P < .001), regardless of PCSK9 levels (P for interaction = .76 and .21, respectively). Regardless of baseline PCSK9 levels, the doses of evolocumab being studied in a large cardiovascular outcomes trial suppress PCSK9 levels and consistently and substantially reduce LDL-C levels.
Correlation between plasma component levels of cultured fish and resistance to bacterial infection
Maita, M.; Satoh, K.-I.; Fukuda, Y.; Lee, H.-K.; Winton, J.R.; Okamoto, N.
1998-01-01
Mortalities of yellowtail Seriola quinqueradiata artificially infected with Lactococcus garvieae and of rainbow trout Oncorhynchus mykiss artificially infected with Vibrio anguillarum were compared with the levels of plasma components measured prior to challenge. The levels of plasma total cholesterol, free cholesterol and phospholipid of fish surviving infection were significantly higher in both yellowtail and rainbow trout than those of fish which died during the challenge test. Mortality of yellowtail with plasma total cholesterol levels lower than 250 mg/100 ml was significantly higher than that of fish which had cholesterol levels higher than 275 mg/100 ml (p < 0.05). Rainbow trout whose cholesterol was lower than 520 mg/100 ml suffered a significantly higher mortality due to vibriosis than fish having cholesterol levels higher than 560 mg/100 ml (p < 0.005). These results indicate that low levels of plasma lipid components may be an indicator of lowered disease resistance in cultured fish.
Segoviano-Mendoza, Marcela; Cárdenas-de la Cruz, Manuel; Salas-Pacheco, José; Vázquez-Alaniz, Fernando; La Llave-León, Osmel; Castellanos-Juárez, Francisco; Méndez-Hernández, Jazmín; Barraza-Salas, Marcelo; Miranda-Morales, Ernesto; Arias-Carrión, Oscar; Méndez-Hernández, Edna
2018-01-15
Cholesterol has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence about crucial requirement of neuron membrane cholesterol in the organization and function of the 5-HT 1A serotonin receptor. For this, low cholesterol level has been reported to be associated with depression and suicidality. However there have been inconsistent reports about this finding and the exact relationship between these factors remains controversial. Therefore, we investigated the link between serum cholesterol and its fractions with depression disorder and suicide attempt in 467 adult subjects in Mexican mestizo population. Plasma levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined in 261 MDD patients meeting the DSM-5 criteria for major depressive disorder (MDD), 59 of whom had undergone an episode of suicide attempt, and 206 healthy controls. A significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol and triglyceride serum levels was observed in the groups of MDD patients and suicide attempt compared to those without suicidal behavior (p < 0.05). After adjusting for covariates, lower cholesterol levels were significantly associated with MDD (OR 4.229 CI 95% 2.555 - 7.000, p<.001) and suicide attempt (OR 5.540 CI 95% 2.825 - 10.866, p<.001) CONCLUSIONS: These results support the hypothesis that lower levels of cholesterol are associated with mood disorders like MDD and suicidal behavior. More mechanistic studies are needed to further explain this association.
Xie, Jiang; Guan, Fei; Wang, Jia-Hong; Hu, Da-Yi
2011-10-01
The community medical center is the first barrier for lipid control. We aimed to survey the residents' cholesterol condition in the community, and pursue the reasons for the upsetting results from various aspects. Residents and physicians were recruited from four community centers. Residents completed questionnaires and a physical examination as well as biochemical analysis. Physicians were also asked to complete a questionnaire, some of which were about basic knowledge of lipids. About 37.0% male and 48.1% female had elevated cholesterol levels. Residents' blood pressure (BP), fasting glucose (FG), body mass index (BMI), and waist circumference (WC) were positively associated with their low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Framingham risk scoring (FRS) was strongly related to cholesterol (P < 0.001 for LDL-C and TC). Residents' higher education grade was positively related to a normal cholesterol condition (P < 0.001), while personal income was negatively related to it. Rural residents had higher percent of population with normal cholesterol level (normal cholesterol rate) than their city counterpart (P < 0.001). Although physicians with college education had a much higher lipid knowledge level themselves, the physicians' factors had almost no relationship with the residents' cholesterol levels. Management of hypercholesterolemia should be an important component of health strategy in Beijing. Education is imperative for residents as well as for physicians.
Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol.
Ray, Kausik K; Landmesser, Ulf; Leiter, Lawrence A; Kallend, David; Dufour, Robert; Karakas, Mahir; Hall, Tim; Troquay, Roland P T; Turner, Traci; Visseren, Frank L J; Wijngaard, Peter; Wright, R Scott; Kastelein, John J P
2017-04-13
In a previous study, a single injection of inclisiran, a chemically synthesized small interfering RNA designed to target PCSK9 messenger RNA, was found to produce sustained reductions in low-density lipoprotein (LDL) cholesterol levels over the course of 84 days in healthy volunteers. We conducted a phase 2, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial of inclisiran administered as a subcutaneous injection in patients at high risk for cardiovascular disease who had elevated LDL cholesterol levels. Patients were randomly assigned to receive a single dose of placebo or 200, 300, or 500 mg of inclisiran or two doses (at days 1 and 90) of placebo or 100, 200, or 300 mg of inclisiran. The primary end point was the change from baseline in LDL cholesterol level at 180 days. Safety data were available through day 210, and data on LDL cholesterol and proprotein convertase subtilisin-kexin type 9 (PCSK9) levels were available through day 240. A total of 501 patients underwent randomization. Patients who received inclisiran had dose-dependent reductions in PCSK9 and LDL cholesterol levels. At day 180, the least-squares mean reductions in LDL cholesterol levels were 27.9 to 41.9% after a single dose of inclisiran and 35.5 to 52.6% after two doses (P<0.001 for all comparisons vs. placebo). The two-dose 300-mg inclisiran regimen produced the greatest reduction in LDL cholesterol levels: 48% of the patients who received the regimen had an LDL cholesterol level below 50 mg per deciliter (1.3 mmol per liter) at day 180. At day 240, PCSK9 and LDL cholesterol levels remained significantly lower than at baseline in association with all inclisiran regimens. Serious adverse events occurred in 11% of the patients who received inclisiran and in 8% of the patients who received placebo. Injection-site reactions occurred in 5% of the patients who received injections of inclisiran. In our trial, inclisiran was found to lower PCSK9 and LDL cholesterol levels among patients at high cardiovascular risk who had elevated LDL cholesterol levels. (Funded by the Medicines Company; ORION-1 ClinicalTrials.gov number, NCT02597127 .).
ERICA: prevalence of dyslipidemia in Brazilian adolescents
Faria, José Rocha; Bento, Vivian Freitas Rezende; Baena, Cristina Pellegrino; Olandoski, Marcia; Gonçalves, Luis Gonzaga de Oliveira; Abreu, Gabriela de Azevedo; Kuschnir, Maria Cristina Caetano; Bloch, Katia Vergetti
2016-01-01
ABSTRACT OBJECTIVE To determine the distribution of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides in Brazilian adolescents, as well as the prevalence of altered levels of such parameters. METHODS Data from the Study of Cardiovascular Risks in Adolescents (ERICA) were used. This is a country-wide, school-based cross-sectional study that evaluated 12 to 17-year old adolescents living in cities with over 100,000 inhabitants. The average and distribution of plasma levels of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides were evaluated. Dyslipidemia was determined by levels of total cholesterol ≥ 170 mg/dl, LDL cholesterol ≥ 130 mg/dl, HDL cholesterol < 45 mg/dL, or triglycerides ≥ 130 mg/dl. The data were analyzed by gender, age, and regions in Brazil. RESULTS We evaluated 38,069 adolescents – 59.9% of females, and 54.2% between 15 and 17 years. The average values found were: total cholesterol = 148.1 mg/dl (95%CI 147.1-149.1), HDL cholesterol = 47.3 mg/dl (95%CI 46.7-47.9), LDL cholesterol = 85.3 mg/dl (95%CI 84.5-86.1), and triglycerides = 77.8 mg/dl (95%CI 76.5-79.2). The female adolescents had higher average levels of total cholesterol, LDL cholesterol, and HDL cholesterol, without differences in the levels of triglycerides. We did not observe any significant differences between the average values among 12 to 14 and 15- to 17-year old adolescents. The most prevalent lipid alterations were low HDL cholesterol (46.8% [95%CI 44.8-48.9]), hypercholesterolemia (20.1% [95%CI 19.0-21.3]), and hypertriglyceridemia (7.8% [95%CI 7.1-8.6]). High LDL cholesterol was found in 3.5% (95%CI 3.2-4.0) of the adolescents. Prevalence of low HDL cholesterol was higher in Brazil’s North and Northeast regions. CONCLUSIONS A significant proportion of Brazilian adolescents has alterations in their plasma lipids. The high prevalence of low HDL cholesterol and hypertriglyceridemia, especially in Brazil’s North and Northeast regions, must be analyzed in future studies, to support the creation of strategies for efficient interventions. PMID:26910544
Determinants of blood uric acid levels in a dyslipidemic Arab population.
Al-Meshaweh, Ahoud F; Jafar, Yaqoub; Asem, Mohammad; Akanji, Abayomi O
2012-01-01
The objective of this study was to explore the relationships between circulating uric acid and lipid levels and components of the metabolic syndrome (MetS) in Arab dyslipidemic patients, a group already at high coronary artery disease risk. The medical records of 1,229 subjects (632 men, 597 women) referred for treatment of dyslipidemia and followed up for at least 12 months were reviewed. Serum levels of uric acid and lipids (total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein) and other variables in the National Cholesterol Education Program ATP III criteria definition of MetS were assessed at initial presentation and every 4- 6 months, under specific lipid-lowering treatment (statins and/or fibrates), in each of the subjects. Their respective associations were explored by appropriate logistic regression techniques with control for confounding risk factors, including age, gender and body mass index. 306 subjects (24.9%) of the study population were hyperuricemic; they were more likely to be men, obese and diabetic. Also the serum uric acid level (mean ± SD) was greater in men with MetS compared with men without (377.0 ± 98.0 vs. 361.6 ± 83.1 μmol/l, p < 0.05), an observation not reproduced in women. Uric acid levels had significant associations with the presence of fasting hyperglycemia, hypertension and large waist circumference (WC) in men, but only with large WC in women. With statin treatment, uric acid levels decreased by 10% within 1 year of treatment; with fibrates, uric acid levels remained unchanged or slightly increased. The data showed that hyperuricemia is common in dyslipidemic patients in Kuwait, where its important determinants are male sex, obesity, diabetes and statin treatment. Copyright © 2011 S. Karger AG, Basel.
Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin
2014-12-01
This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.
NASA Astrophysics Data System (ADS)
Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni
2018-01-01
The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.
Aspirin Increases the Solubility of Cholesterol in Lipid Membranes
NASA Astrophysics Data System (ADS)
Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel
2014-03-01
Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.
USDA-ARS?s Scientific Manuscript database
Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. ...
Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles
NASA Astrophysics Data System (ADS)
Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Laganà, Aldo
2013-03-01
Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a "protein corona". NP-protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.
Knee osteoarthritis, dyslipidemia syndrome and exercise.
Păstrăiguş, Carmen; Ancuţa, Codrina; Miu, Smaranda; Ancuţa, E; Chirieac, Rodica
2012-01-01
The aim of our study was to evaluate the influence of aerobic training on the dyslipedemia in patients with knee osteoarthritis (KOA). Prospective observational six-month study performed on 40 patients with KOA, fulfilling the inclusion criteria, classified according to their participation in specific aerobic training program (30 minutes/day, 5 days/ week) in two subgroups. A standard evaluation protocol was followed assessing lipid parameters (total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol levels) at baseline, three and six months. Statistical analysis was performed in SPSS 16.0, p < 0.05. Subgroup analysis has demonstrated a statistical significant improvement in plasma lipids levels in all patients performing regular aerobic training (cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol) (p < 0.05). Although the difference reported for total cholesterol, triglycerides and LDL-cholesterol after six months between subgroups was not significant (p > 0.05), the mean level of HDL-cholesterol was significantly higher in patients performing aerobic training, reaching the cardio-vascular protective levels. Regular aerobic exercise has a positive effect on plasma lipoprotein concentrations; further research is needed for the assessment of long-term effects of physical exercises for both KOA and lipid pattern.
Association of lifestyle with serum lipid levels: a study of middle-aged Japanese men.
Nakanishi, N; Tatara, K; Nakamura, K; Suzuki, K
2000-07-01
Cross-sectional associations between lifestyle and serum lipid levels were examined in 1591 Japanese male office workers aged 35 to 59 years in Osaka, Japan. From multiple linear regression analyses, significant correlates with low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and Log triglyceride levels and the ratio of LDL cholesterol to HDL cholesterol were, in the order of relative importance: BMI, alcohol intake (negative) and age for LDL cholesterol level; BMI (negative), cigarette smoking (negative), alcohol intake, consideration for nutritional balance, hours of brisk walking, hours of walking at an ordinary pace and physical exercise for HDL cholesterol level; BMI, cigarette smoking, consideration for nutritional balance (negative), hours of work (negative), alcohol intake and coffee drinking (negative) for Log triglyceride level; and BMI, alcohol intake (negative), cigarette smoking, consideration for nutritional balance (negative), age, hours of brisk walking (negative) and the frequency of snack intake between meals for the ratio of LDL cholesterol to HDL cholesterol. Our data suggest that obesity, cigarette smoking and snack intake between meals are atherogenic whereas alcohol consumption, consideration for nutritional balance and walking long hours, especially at a brisk pace, are anti-atherogenic in middle-aged Japanese men.
[Hypercholesterolemia: a therapeutic approach].
Moráis López, A; Lama More, R A; Dalmau Serra, J
2009-05-01
High blood cholesterol levels represent an important cardiovascular risk factor. Hypercholesterolemia is defined as levels of total cholesterol and low-density lipoprotein cholesterol above 95th percentile for age and gender. For the paediatric population, selective screening is recommended in children older than 2 years who are overweight, with a family history of early cardiovascular disease or whose parents have high cholesterol levels. Initial therapeutic approach includes diet therapy, appropriate physical activity and healthy lifestyle changes. Drug treatment should be considered in children from the age of 10 who, after having followed appropriate diet recommendations, still have very high LDL-cholesterol levels or moderately high levels with concomitant risk factors. In case of extremely high LDL-cholesterol levels, drug treatment should be taken into consideration at earlier ages (8 years old). Modest response is usually observed with bile acid-binding resins. Statins can be considered first-choice drugs, once evidence on their efficacy and safety has been shown.
Teng, Ming-Sheng; Hsu, Lung-An; Wu, Semon; Sun, Yu-Chen; Juan, Shu-Hui; Ko, Yu-Lin
2015-01-01
Objective Previous genome-wide association studies have indicated an association between CDH13 genotypes and adiponectin levels. In this study, we used mediation analysis to assess the statistical association between CDH13 locus variants and adiponectin levels, metabolic syndrome, and related metabolic phenotypes. Methods and results A sample population of 530 Taiwanese participants was enrolled. Four CDH13 gene variants in the promoter and intron 1 regions were genotyped. After adjustment for clinical covariates, the CDH13 genotypes/haplotypes exhibited an association with the adiponectin levels (lowest P = 1.95 × 10−11 for rs4783244 and lowest P = 3.78 × 10−13 for haplotype ATTT). Significant correlations were observed between the adiponectin levels and the various metabolic syndrome-related phenotypes (all P ≤ 0.005). After further adjustment for the adiponectin levels, participants with a minor allele of rs12051272 revealed a considerable association with a more favorable metabolic profile, including higher insulin sensitivity, high-density lipoprotein cholesterol levels, lower diastolic blood pressure, circulating levels of fasting plasma glucose, and triglycerides, and as a lower risk of metabolic syndrome (all P < 0.05). The mediation analysis further revealed a suppression effect of the adiponectin levels on the association between CDH13 genotypes and metabolic syndrome and its related phenotypes (Sobel test; all P < 0.001). Conclusion The genetic polymorphisms at the CDH13 locus independently affect the adiponectin levels, whereas the adiponectin levels exhibit a suppressive effect on the association between CDH13 locus variants and various metabolic phenotypes and metabolic syndrome. In addition, these results provide further evidence of the association between the CDH13 gene variants and the risks of metabolic syndrome and atherosclerotic cardiovascular disease. PMID:25875811
Roy, Suparna; Dasgupta, Anindya
2017-03-01
Metabolic dysfunctions characteristic of overt hypothyroidism (OH) start at the early stage of subclinical hypothyroidism (SCH). Na⁺/K⁺-ATPase (the sodium pump) is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients. In 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T₄) and thyroid stimulating hormone (TSH) levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis. Sodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T₄ levels. No dependence on serum cholesterol was observed in either case. Despite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations. Copyright © 2017 Korean Endocrine Society
Jamshed, Humaira; Sultan, Fateh Ali Tipoo; Iqbal, Romaina; Gilani, Anwar Hassan
2015-10-01
More than one-half of coronary artery disease (CAD) patients have low HDL cholesterol despite having well-managed LDL cholesterol. Almond supplementation has not been shown to elevate circulating HDL cholesterol concentrations in clinical trials, perhaps because the baseline HDL cholesterol of trial subjects was not low. This clinical trial was designed to test the effect of almond supplementation on low HDL cholesterol in CAD patients. A total of 150 CAD patients (50 per group), with serum LDL cholesterol ≤100 mg/dL and HDL cholesterol ≤40 mg/dL in men and ≤50 mg/dL in women, were recruited from the Aga Khan University Hospital. After recording vital signs and completing a dietary and physical activity questionnaire, patients were randomly assigned to 1 of the following 3 groups: the no-intervention group (NI), the Pakistani almonds group (PA), and the American almonds group (AA). The respective almond varieties (10 g/d) were given to patients with instructions to soak them overnight, remove the skin, and eat them before breakfast. Blood samples for lipid profiling, body weight, and blood pressure were collected, and assessment of dietary patterns was done at baseline, week 6, and week 12. Almonds significantly increased HDL cholesterol. At weeks 6 and 12, HDL cholesterol was 12-14% and 14-16% higher, respectively, in the PA and AA than their respective baselines. In line with previous reports, serum concentrations of total cholesterol, triglycerides, LDL cholesterol, and VLDL cholesterol; total-to-HDL and LDL-to-HDL cholesterol ratios, and the atherogenic index were reduced in both the PA and AA at weeks 6 and 12 compared with baseline (P < 0.05). Effects on serum lipids did not differ between the 2 almond groups. Dietary patterns, body weight, and blood pressure did not change in any of the 3 groups during the trial. A low dose of almonds (10 g/d) consumed before breakfast can increase HDL cholesterol, in addition to improving other markers of abnormal lipid metabolism in CAD patients with low initial HDL cholesterol. This trial was registered at the Australian New Zealand Clinical Trial Registry as ACTRN12614000036617. © 2015 American Society for Nutrition.
Free fatty acids and the metabolic syndrome in patients with obstructive sleep apnoea.
Barceló, A; Piérola, J; de la Peña, M; Esquinas, C; Fuster, A; Sanchez-de-la-Torre, M; Carrera, M; Alonso-Fernandez, A; Ladaria, A; Bosch, M; Barbé, F
2011-06-01
Obesity and metabolic syndrome (MS) occur frequently in patients with obstructive sleep apnoea syndrome (OSAS). We hypothesised that circulating free fatty acids (FFAs) are elevated in OSAS patients independently of obesity. This elevation may contribute to the development of MS in these patients. We studied 119 OSAS patients and 119 controls. Participants were recruited and studied at sleep unit of our institution (Hospital Universitari Son Dureta, Palma de Mallorca, Spain) and were matched for sex, age and body mass index (BMI). The occurrence of MS was analysed by clinical criteria. Serum levels of FFAs, glucose, triglycerides, cholesterol, high-density lipoprotein-cholesterol, aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, C-reactive protein and 8-isoprostanes were determined. Prevalence of MS was higher in OSAS than in the control group (38 versus 21%; p=0.006). OSAS patients had higher FFAs levels than controls (mean±sd 12.2±4.9 versus 10.5±5.0 mg·dL(-1); p=0.015). Among subjects without MS, OSAS patients (OSAS+ MS-) showed higher levels of FFAs than controls (OSAS- MS-) (11.6±4.7 versus 10.0±4.4 mg·dL(-1); p=0.04). In a multiple regression model, after adjustment for age, sex, BMI and the presence of MS, FFAs were significantly associated with apnoea/hypopnoea index (p=0.04). This study shows that FFAs are elevated in OSAS and could be one of the mechanisms involved in the metabolic complications of OSAS.
Ridker, Paul M; Amarenco, Pierre; Brunell, Robert; Glynn, Robert J; Jukema, J Wouter; Kastelein, John J P; Koenig, Wolfgang; Nissen, Steven; Revkin, James; Santos, Raul D; Schwartz, Pamela F; Yunis, Carla; Tardif, Jean-Claude
2016-08-01
Although statins significantly reduce vascular event rates, residual cholesterol risk remains high in many patient groups, including those with known vascular disease as well as in the setting of high-risk primary prevention. Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9), prolongs the half-life of hepatic low-density lipoprotein (LDL) receptors, and reduces circulating atherogenic cholesterol levels. The SPIRE program comprises 6 lipid-lowering studies and 2 cardiovascular outcomes trials, each comparing bococizumab (150 mg subcutaneously every 2 weeks) to matching placebo. The 6 SPIRE lipid-lowering studies include 3 parallel 12-month assessments of bococizumab on atherogenic lipids among statin-treated individuals at high residual risk (SPIRE-HR, SPIRE-LDL, SPIRE-LL), one 12-month study of bococizumab among individuals with familial hypercholesterolemia (SPIRE-FH), one 6-month study of bococizumab among those with statin intolerance (SPIRE-SI), and one 3-month study of bococizumab delivery using an auto-injector device (SPIRE-AI). The SPIRE-1 and SPIRE-2 event-driven cardiovascular outcome trials will assess the efficacy and safety of bococizumab in the prevention of incident vascular events in high-risk populations with and without clinically evident cardiovascular disease who have directly measured entry LDL cholesterol levels ≥70 mg/dL (SPIRE-1, n = 17,000) or ≥100 mg/dL (SPIRE-2, n = 11,000). The SPIRE trials, inclusive of more than 30,000 participants worldwide, will ascertain the magnitude of reduction in atherogenic lipids that accrue with bococizumab and determine whether the addition of this PCSK9 inhibitor to standard treatment significantly reduces cardiovascular morbidity and mortality in high-risk patients, including those without a history of clinical cardiovascular events. Copyright © 2016 Elsevier Inc. All rights reserved.
Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-Yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B
2017-01-01
Copper diethyldithiocarbamate (Cu(DDC) 2 ) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC) 2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC) 2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC) 2 formulation prepared through a method that involves synthesis of Cu(DDC) 2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC) 2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4-11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC) 2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC) 2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC) 2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC (0-∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC) 2 formulation was subsequently evaluated in the MV-4-11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects of an injectable Cu(DDC) 2 formulation in vivo.
Wehbe, Mohamed; Anantha, Malathi; Shi, Minghan; Leung, Ada Wai-yin; Dragowska, Wieslawa H; Sanche, Léon; Bally, Marcel B
2017-01-01
Copper diethyldithiocarbamate (Cu(DDC)2) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC)2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC)2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC)2 formulation prepared through a method that involves synthesis of Cu(DDC)2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC)2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4–11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC)2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC)2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC)2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC(0−∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC)2 formulation was subsequently evaluated in the MV-4–11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects of an injectable Cu(DDC)2 formulation in vivo. PMID:28615941
Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.
Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K
2016-08-01
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice
Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.
2016-01-01
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057
Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru
2014-01-01
A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389
Determinants of atherosclerosis in children and adolescents with diabetes type 1.
Stanković, Sandra M; Zivić, Saša R; Šaranac, Ljiljana; Cvetković, Vesna; Pešić, Milica; Vasić, Karin; Stanković, Miodrag; Topalović, Aleksandra; Cvetković, Tatjana
2012-01-01
To evaluate the degree of atherosclerosis in children and adolescents with type 1 diabetes and its correlation with risk factors, traditional and other, such as anti-oxidative capacity of circulating blood and level of lipid peroxidation. Forty children and adolescents with type 1 diabetes with mean age 13.7 years were compared with 20 age- and sex-matched healthy control subjects. Association of carotid artery intima-media thickness (cIMT) with different risk factors measured in children with type 1 diabetes was evaluated. Mean carotid IMT was higher in subjects with diabetes (p 〈 0.01) and was strongly associated with total cholesterol with an odds ratio of 4.08 (p = 0.016), LDL-cholesterol with an odds ratio of 2.78 (p = 0.037), length of disease with an odds ratio of 1.87 (p = 0.007) and positive family history (first- and second-degree relatives) of diabetes and early CVD (heart attack and/or stroke before the age of 60 years) with an odds ratio of 6.8 (p = 0.007). We found significantly increased cIMT in the diabetic patients compared to the healthy control subjects. Risk factors for the development of atherosclerosis included higher total and LDL-cholesterol, higher systolic blood pressure, positive family history of diabetes and early CVD and longer diabetes duration. In spite of the documented increased oxidative stress, we failed to establish a correlation between the oxidative stress parameters and cIMT values.
High-Density Lipoproteins (HDL) – Nature’s Multi-Functional Nanoparticles
Kuai, Rui; Li, Dan; Chen, Y. Eugene; Moon, James J.; Schwendeman, Anna
2016-01-01
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well known as the ―good‖ cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and anti-oxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultra-small size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 hours), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize: a) clinical pharmacokinetics and safety of reconstituted HDL products, b) comparison of HDL with inorganic and other organic nanoparticles, c) the rationale for using HDL as drug delivery vehicles for important therapeutic indications, d) the current state-of-the-art in HDL production, and e) HDL-based drug delivery strategies for small molecules, peptides/proteins, nucleic acids, and imaging agents targeted to various organs. PMID:26889958
Circulating endothelial progenitor cells in obese children and adolescents.
Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel
2015-01-01
This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.
Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung
2016-10-01
Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
Xu, D; Liang, C; Chen, L; Wu, X D; He, J
2018-04-25
Objective: To study the variations and influencing factors of serum triglycerides and cholesterol levels during pregnancy and postpartum. Methods: A retrospective study was performed among 5 020 healthy singleton (95.10%, 4 774/5 020) and twin (4.90%, 246/5 020) women who had delivery in Women's Hospital, Zhejiang University School of Medicine from January 2011 to December 2016. Serum triglycerides and cholesterol levels during pregnancy and postpartum of all the cases were collected. Both singleton and twin pregnant women were divided into advanced age and appropriate age groups, and then data of serum sample were assigned to 3 groups according to the gestation weeks, which were second trimester pregnancy (24-28 gestation weeks) , third trimester pregnancy (32-41 gestation weeks) and postpartum (within 72 hours after delivery) . The serum triglycerides and cholesterol levels in each groups were compared. Results: (1) Serum triglycerides and cholesterol levels during the second trimester pregnancy, third trimester pregnancy and postpartum were higher than levels of non-pregnancy in both singleton and twin groups (all P< 0.05) . (2) Serum triglycerides and cholesterol levels in the third trimester pregnancy group were higher than those of second trimester pregnancy group in both advanced age and appropriate aged women regardless singleton or twin pregnancy (all P< 0.05) . The 95% CI of serum lipid levels in each group during second and third trimester pregnancy were as follows: in appropriate aged singleton group, the triglycerides levels were 1.07-4.13 and 1.52-7.21 mmol/L, and the cholesterol levels were 2.77-12.11 and 4.44-9.36 mmol/L. In advanced aged singleton group, the triglycerides levels were 1.28-4.61 and 1.70-7.80 mmol/L, and the cholesterol levels were 4.35-8.40 and 4.46-9.35 mmol/L; in appropriate aged twin group, the triglycerides levels were 1.39-7.16 and 1.90-9.29 mmol/L, and the cholesterol levels were 4.99-12.16 and 4.52-10.07 mmol/L; in advanced aged twin group, the triglycerides levels were 1.61-5.32 and 1.94-9.29 mmol/L, and the cholesterol levels were 5.24-8.10 and 4.53-8.86 mmol/L. (3) Serum lipids levels rapidly decreased during postpartum compared to the third trimester pregnancy. The 95% CI of blood lipid levels in each group were as follows: in appropriate aged singleton group, the triglycerides level was 0.90-5.64 mmol/L and the cholesterol level was 4.70-8.52 mmol/L; in advanced aged singleton group, the triglycerides level was 0.87-5.43 mmol/L and the cholesterol level was 4.68-9.04 mmol/L; in appropriate aged twin group, the triglycerides level was 1.20-8.21 mmol/L and the cholesterol level was 4.66-8.45 mmol/L; in advanced aged twin group, the triglycerides level was 1.32-6.61 mmol/L, and the cholesterol level was 5.01-7.94 mmol/L. (4) Serum triglycerides and cholesterol levels in twin pregnant women were significantly higher than in singleton during the second trimester and third trimester pregnancy both in advanced age and appropriate age groups (all P< 0.05) . During postpartum, there was no difference in serum lipid levels between the singleton and twin pregnant women in appropriate age group (triglycerides: P= 0.982; cholesterol: P= 0.759, respectively) . While the serum lipid levels in twin pregnant women were significantly higher than those of singleton women in advanced age group (triglycerides: P= 0.000; cholesterol: P= 0.000, respectively) . Conclusions: The standard of serum lipid levels of non-pregnant adults is not suitable for assessing that in pregnant women. Regardless of singleton or twin pregnancy, serum triglyceride and cholesterol levels during pregnancy elevate with the increasing gestational week and then rapidly decrease during postpartum. Age and twins are the influencing factors of the elevated physiological lipid levels during pregnancy.
High plasma level of remnant-like particle cholesterol in the metabolic syndrome.
Satoh, Akira; Adachi, Hisashi; Tsuruta, Makoto; Hirai, Yuji; Hiratsuka, Akiko; Enomoto, Mika; Furuki, Kumiko; Hino, Asuka; Takeuchi, Tomohiro; Imaizumi, Tsutomu
2005-10-01
The metabolic syndrome is associated with a high incidence of cardiovascular disease even when the abnormalities present in the syndrome are mild. The underlying mechanism of the metabolic syndrome has not been elucidated. We investigated whether a strong atherogenic lipoprotein, remnant-like particle (RLP) lipoprotein cholesterol, is elevated in the metabolic syndrome. We performed a health examination among the residents of a rural community in Japan. Complete datasets, including fasting RLP cholesterol levels, were obtained in 1,261 subjects (509 men and 752 women) without diabetes and who were not taking lipid-lowering drugs. The subjects' medical history, use of alcohol, and smoking habits were ascertained by a questionnaire. All of the components of the metabolic syndrome were significantly related to RLP cholesterol by univariate analysis. Total cholesterol and smoking habits were also positively associated with RLP cholesterol. The subjects with the metabolic syndrome showed only mild abnormalities of each component. When RLP cholesterol levels were stratified by the number of the components of the metabolic syndrome, there was a strong association between RLP cholesterol levels and the number of components (P < 0.001 and F = 72.7). RLP cholesterol levels are elevated in the metabolic syndrome, and this elevation may underlie the high incidence of cardiovascular disease in the metabolic syndrome.
Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya
2016-01-01
COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin-low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin(®), a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. This is a randomized, double-blind, parallel-group study. Subjects with stages I-II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin(®) or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. There were no differences between the Theracurmin(®) and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin(®) group compared with the placebo group. Theracurmin(®) reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects.
Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra
2009-11-01
The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.
Serum HDL cholesterol concentration in patients with squamous cell and small cell lung cancer.
Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H
2000-09-01
Cancer patients often present altered serum lipid profile including changes of HDL cholesterol level. The aim of our work was to evaluate serum level of HDL cholesterol in patients with squamous cell and small cell lung cancer and its dependence on histological type and clinical stage of lung cancer. Fasting serum level of HDL cholesterol was analysed in 135 patients with newly diagnosed lung cancer and compared to a control group of healthy men. All lung cancer patients, as well as subgroups of squamous cell and small cell lung cancer had statistically significantly lower HDL cholesterol concentration than controls. There were no statistically significant differences of HDL cholesterol level between the histological types or between clinical stages of each histological type of lung cancer.
Infante, Rodney Elwood; Radhakrishnan, Arun
2017-01-01
Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis. DOI: http://dx.doi.org/10.7554/eLife.25466.001 PMID:28414269
Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors
Fall, Tove; Hägg, Sara; Ploner, Alexander; Mägi, Reedik; Fischer, Krista; Draisma, Harmen H.M.; Sarin, Antti-Pekka; Benyamin, Beben; Ladenvall, Claes; Åkerlund, Mikael; Kals, Mart; Esko, Tõnu; Nelson, Christopher P.; Kaakinen, Marika; Huikari, Ville; Mangino, Massimo; Meirhaeghe, Aline; Kristiansson, Kati; Nuotio, Marja-Liisa; Kobl, Michael; Grallert, Harald; Dehghan, Abbas; Kuningas, Maris; de Vries, Paul S.; de Bruijn, Renée F.A.G.; Willems, Sara M.; Heikkilä, Kauko; Silventoinen, Karri; Pietiläinen, Kirsi H.; Legry, Vanessa; Giedraitis, Vilmantas; Goumidi, Louisa; Syvänen, Ann-Christine; Strauch, Konstantin; Koenig, Wolfgang; Lichtner, Peter; Herder, Christian; Palotie, Aarno; Menni, Cristina; Uitterlinden, André G.; Kuulasmaa, Kari; Havulinna, Aki S.; Moreno, Luis A.; Gonzalez-Gross, Marcela; Evans, Alun; Tregouet, David-Alexandre; Yarnell, John W.G.; Virtamo, Jarmo; Ferrières, Jean; Veronesi, Giovanni; Perola, Markus; Arveiler, Dominique; Brambilla, Paolo; Lind, Lars; Kaprio, Jaakko; Hofman, Albert; Stricker, Bruno H.; van Duijn, Cornelia M.; Ikram, M. Arfan; Franco, Oscar H.; Cottel, Dominique; Dallongeville, Jean; Hall, Alistair S.; Jula, Antti; Tobin, Martin D.; Penninx, Brenda W.; Peters, Annette; Gieger, Christian; Samani, Nilesh J.; Montgomery, Grant W.; Whitfield, John B.; Martin, Nicholas G.; Groop, Leif; Spector, Tim D.; Magnusson, Patrik K.; Amouyel, Philippe; Boomsma, Dorret I.; Nilsson, Peter M.; Järvelin, Marjo-Riitta; Lyssenko, Valeriya; Metspalu, Andres; Strachan, David P.; Salomaa, Veikko; Ripatti, Samuli; Pedersen, Nancy L.; Prokopenko, Inga; McCarthy, Mark I.
2015-01-01
Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10−107) and stratified analyses (all P < 3.3 × 10−30). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors. PMID:25712996
Jones, Peter J; Raeini-Sarjaz, Mahmoud; Jenkins, David J A; Kendall, Cyril W C; Vidgen, Edward; Trautwein, Elke A; Lapsley, Karen G; Marchie, Augustine; Cunnane, Stephen C; Connelly, Philip W
2005-02-01
Plant sterols, soy proteins, viscous fibers, and nuts are advised for cholesterol reduction, but their combined effect on plant sterol absorption has never been tested. We assessed their combined action on serum sterols in hyperlipidemic subjects who were following low-saturated fat diets before starting the study and who returned to these diets post-test. The 1-mon test (combination) diet was high in plant sterols (1 g/1,000 kcal), soy protein (23 g/1,000 kcal), viscous fiber (9 g/1,000 kcal), and almonds (14 g/1000 kcal). Fasting blood was obtained for serum lipids and sterols, and erythrocytes were obtained for fragility prior to and at 2-wk intervals during the study. The combination diet raised serum campesterol concentrations by 50% and beta-sitosterol by 27%, although these changes were not significant after Bonferroni correction; near-maximal rises were found by the end of the first week, but no change was found in red cell fragility despite a 29% reduction in the LDL cholesterol level. No significant associations were observed between changes in red cell fragility and blood lipids or sterols. We conclude that plant sterols had a minimal impact on serum sterol concentrations or red cell fragility in hyperlipidemic subjects on diets that greatly reduced their serum lipids.
Szilagyi, John T.; Vetrano, Anna M.; Laskin, Jeffrey D.; Aleksunes, Lauren M.
2017-01-01
Introduction The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. Methods BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200μM, 48 h). Results and Discussion BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. PMID:28623970
Szilagyi, John T; Vetrano, Anna M; Laskin, Jeffrey D; Aleksunes, Lauren M
2017-07-01
The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pitfalls in the detection of cholesterol in Huntington's disease models.
Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena
2012-10-11
Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington's disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it.
Disparities in Intratumoral Steroidogenesis
2014-07-01
shown), but does raise cholesterol levels significantly(18-22) (Fig 5). The diets are used with and without ezetimibe , a cholesterol reducing drug...yielding 4 base diet groups: 1) LFNC; 2) LFNC + ezetimibe (30 mg/kg/day); 3) HFHC; and 4) HFHC + ezetimibe (30 mg/kg/day). Critical comments...Serum Cholesterol Levels. Mice were fed either high fat, high cholesterol (HFHC) or a low fat, no cholesterol (LFNC) diet ± ezetimibe (Z) and bled
Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men
Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku
2013-01-01
We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693
Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming
2015-12-01
Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia
2012-01-01
In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836
Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.H.; Chen, S.M.; Ogle, C.W.
1989-01-01
The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less
Vega, Gloria Lena; Weiner, Myron F; Lipton, Anne M; Von Bergmann, Klaus; Lutjohann, Dieter; Moore, Carol; Svetlik, Doris
2003-04-01
The statin treatment of dyslipidemia is associated with a reduced risk of development of Alzheimer disease (AD). The effect may be mediated by a reduction in cholesterol biosynthesis in the brain, by lowering levels of apolipoprotein E (apo E)-containing lipoproteins, or by pleitropic effects such as reduction in beta-amyloid production. In the brain, cholesterol from damaged or dying neurons is converted to 24S-hydroxycholesterol by cholesterol 24-hydroxylase (CYP46). The oxysterol is subsequently transferred across the blood-brain barrier, transported to the liver by low-density lipoproteins (LDLs), and excreted as bile acids. Most of plasma 24S-hydroxycholesterol is derived from brain cholesterol; consequently, plasma levels of the oxysterol reflect brain cholesterol catabolism. To examine the effect of 3 statins and a nonstatin hypolipidemic agent on plasma levels of 24S-hydroxycholesterol and apo E in patients with AD. The study had a sequential parallel design. It was open-labeled and involved lipoprotein and 24S-hydroxycholesterol evaluations at baseline and at 6 weeks of treatment with 40 mg of lovastatin, simvastatin, or pravastatin sodium per day, or 1 g of extended-release niacin per day. Blood samples were drawn after a 12-hour fast for measurement of plasma sterols, oxysterols, lipoprotein cholesterol, and levels of apo E, plasma transaminases, and glucose. Measurements were made at baseline and during treatment. Statin treatment reduced levels of plasma lathosterol by 49.5%, 24S-hydroxycholesterol by 21.4%, LDL cholesterol by 34.9%, and total cholesterol by 25%. The ratios of lathosterol-campesterol and 24S-hydroxycholesterol-LDL cholesterol were reduced significantly, but the ratio of 24S-hydroxycholesterol-total cholesterol was unchanged. Extended-release niacin also significantly reduced levels of 24S-hydroxycholesterol by 10% and LDL cholesterol by 18.1%. None of the agents lowered plasma concentration of apo E. Statins lowered levels of plasma 24S-hydroxycholesterol without affecting levels of apo E. The LDL lowering was more pronounced than 24S-hydroxycholesterol reductions. The effect of statins on LDL partially explains the reduction of plasma oxysterol level.
Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas
2003-08-01
Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.
2016-04-01
Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. This study capitalizes on the availability of pre-diagnostic serum samples...we identified eligible breast cancer cases (n=530) from the European Investigation into Cancer and Nutrition (EPIC) – Heidelberg cohort, verified
USDA-ARS?s Scientific Manuscript database
Cardiovascular disease (CVD) is the leading cause of death in the United States and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risks through the modulation of...
The Canadian experience: why Canada decided against an upper limit for cholesterol.
McDonald, Bruce E
2004-12-01
Canada, like the United States, held a "consensus conference on cholesterol" in 1988. Although the final report of the consensus panel recommended that total dietary fat not exceed 30 percent and saturated fat not exceed 10 percent of total energy intake, it did not specify an upper limit for dietary cholesterol. Similarly, the 1990, Health Canada publication "Nutrition Recommendations: The Report of the Scientific Review Committee" specified upper limits for total and saturated fat in the diet but did not specify an upper limit for cholesterol. Canada's Guidelines for Healthy Eating, a companion publication from Health Canada, suggested that Canadians "choose low-fat dairy products, lean meats, and foods prepared with little or no fat" while enjoying "a variety of foods." Many factors contributed to this position but a primary element was the belief that total dietary fat and saturated fat were primary dietary determinants of serum total and low-density lipoprotein (LDL) cholesterol levels, not dietary cholesterol. Hence, Canadian health authorities focused on reducing saturated fat and trans fats in the Canadian diet to help lower blood cholesterol levels rather than focusing on limiting dietary cholesterol. In an effort to allay consumer concern with the premise that blood cholesterol level is linked to dietary cholesterol, organizations such as the Canadian Egg Marketing Agency (CEMA) reminded health professionals, including registered dietitians, family physicians and nutrition educators, of the extensive data showing that there is little relationship between dietary cholesterol intake and cardiovascular mortality. In addition, it was pointed out that for most healthy individuals, endogenous synthesis of cholesterol by the liver adjusts to the level of dietary cholesterol intake. Educating health professionals about the relatively weak association between dietary cholesterol and the relatively strong association between serum cholesterol and saturated fat and trans fats helped keep consumers informed about healthy diets and ways to control blood cholesterol.
Cholesterol Level: Can It Be Too Low?
... total cholesterol level has been associated with some health problems. Doctors are still trying to find out more about the connection between low cholesterol and health risks. There is no consensus on how to ...
Nikolopoulos, Georgios K; Bagos, Pantelis G; Tsangaris, Iraklis; Tsiara, Chrissa G; Kopterides, Petros; Vaiopoulos, Aristides; Kapsimali, Violetta; Bonovas, Stefanos; Tsantes, Argirios E
2014-07-01
The circulating levels of plasminogen activator inhibitor type 1 (PAI-1) are increased in individuals carrying the 4G allele at position -675 of the PAI-1 gene. In turn, overexpression of PAI-1 has been found to affect both atheroma and thrombosis. However, the association between PAI-1 levels and the incidence of myocardial infarction (MI) is complicated by the potentially confounding effects of well-known cardiovascular risk factors. The current study tried to investigate in parallel the association of PAI-1 activity with the PAI-1 4G/5G polymorphism, with MI, and some components of metabolic syndrome (MetS). Using meta-analytical Mendelian randomization approaches, genotype-disease and genotype-phenotype associations were modeled simultaneously. According to an additive model of inheritance and the Mendelian randomization approach, the MI-related odd ratio for individuals carrying the 4G allele was 1.088 with 95% confidence interval (CI) 1.007, 1.175. Moreover, the 4G carriers had, on average, higher PAI-1 activity than 5G carriers by 1.136 units (95% CI 0.738, 1.533). The meta-regression analyses showed that the levels of triglycerides (p=0.005), cholesterol (p=0.037) and PAI-1 (p=0.021) in controls were associated with the MI risk conferred by the 4G carriers. The Mendelian randomization meta-analysis confirmed previous knowledge that the PAI-1 4G allele slightly increases the risk for MI. In addition, it supports the notion that PAI-1 activity and established cardiovascular determinants, such as cholesterol and triglyceride levels, could lie in the etiological pathway from PAI-1 4G allele to the occurrence of MI. Further research is warranted to elucidate these interactions.
Wagner, En-Young N.; Wagner, Jan T.; Glaus, Jennifer; Vandeleur, Caroline L.; Castelao, Enrique; Strippoli, Marie-Pierre F.; Vollenweider, Peter; Preisig, Martin; von Känel, Roland
2015-01-01
Background Anxiety disorders have been linked to an increased risk of incident coronary heart disease in which inflammation plays a key pathogenic role. To date, no studies have looked at the association between proinflammatory markers and agoraphobia. Methods In a random Swiss population sample of 2890 persons (35-67 years, 53% women), we diagnosed a total of 124 individuals (4.3%) with agoraphobia using a validated semi-structured psychiatric interview. We also assessed socioeconomic status, traditional cardiovascular risk factors (i.e., body mass index, hypertension, blood glucose levels, total cholesterol/high-density lipoprotein-cholesterol ratio), and health behaviors (i.e., smoking, alcohol consumption, and physical activity), and other major psychiatric diseases (other anxiety disorders, major depressive disorder, drug dependence) which were treated as covariates in linear regression models. Circulating levels of inflammatory markers, statistically controlled for the baseline demographic and health-related measures, were determined at a mean follow-up of 5.5 ± 0.4 years (range 4.7 – 8.5). Results Individuals with agoraphobia had significantly higher follow-up levels of C-reactive protein (p = 0.007) and tumor-necrosis-factor-α (p = 0.042) as well as lower levels of the cardioprotective marker adiponectin (p = 0.032) than their non-agoraphobic counterparts. Follow-up levels of interleukin (IL)-1β and IL-6 did not significantly differ between the two groups. Conclusions Our results suggest an increase in chronic low-grade inflammation in agoraphobia over time. Such a mechanism might link agoraphobia with an increased risk of atherosclerosis and coronary heart disease, and needs to be tested in longitudinal studies. PMID:25875094
Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T
2017-08-01
LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Pharmacological activation of LXRs decreases amyloid-β levels in Niemann-Pick type C model cells.
Stefulj, Jasminka; Peric, Maja; Malnar, Martina; Kosicek, Marko; Schweinzer, Cornelia; Zivkovic, Jelena; Scholler, Monika; Panzenboeck, Ute; Hecimovic, Silva
2013-01-01
Niemann-Pick type C disease (NPC) is an inherited disorder mainly caused by loss-of-function mutations in the NPC1 gene, that lead to intracellular cholesterol accumulation and disturbed cholesterol homeostasis. Similarly to Alzheimer's disease (AD), NPC is associated with progressive neurodegeneration and altered metabolism of amyloid precursor protein (APP). Liver X receptors (LXRs), the key transcriptional regulators of cholesterol homeostasis, were reported to play neuroprotective roles in NPC mice. We investigated the impacts of LXRs on APP metabolism in mutant CHO cells lacking the NPC1 gene (-NPC1 cells). Pharmacological activation of LXRs in -NPC1 cells tended to reduce the ratio of total secreted APP (sAPP) to full length APP (flAPP) levels and sAPPβ levels as well as to increase the ratio of APP Cterminal fragments to flAPP levels, resulting in decreased levels of amyloid β (Aβ) peptides. -NPC1 cells treated with LXR agonist TO901317 (TO90) displayed a modest increase in cholesterol efflux to apolipoprotein A-I (apoA-I) but not to HDL3, or in the absence of extracellular cholesterol acceptors. The observed similar reduction of Aβ levels upon TO90 treatment in the presence or in the absence of extracellular apoA-I indicated a cholesterol-efflux independent effect of TO90 on Aβ levels. Furthermore, TO90 had no effect on the cholesterol synthesis rate in -NPC1 cells, while it reduced the rate of cholesterol esterification. The obtained results indicate that LXR activation may decrease Aβ levels in NPC1- deficient conditions. The underlying mechanism of this action does not appear to be related to effects on cholesterol efflux or synthesis rates.
Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.
Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip
2017-01-01
The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg -1 day -1 , 50 mg kg -1 day -1 , and 200 mg kg -1 day -1 ) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.
Serum Lipid Levels in Patients with Eating Disorders.
Nakai, Yoshikatsu; Noma, Shun'ichi; Fukusima, Mitsuo; Taniguchi, Ataru; Teramukai, Satoshi
2016-01-01
Objective To evaluate some risk factors for cardiovascular diseases in feeding and eating disorders, the degree of lipid abnormalities was investigated in a large Japanese cohort of different groups of feeding and eating disorders, according to the Japan Atherosclerosis Society Guidelines for the Prevention of Atherosclerotic Cardiovascular Diseases 2012 (JAS Guidelines 2012). Methods Participants in the current study included 732 women divided into four groups of feeding and eating disorders: anorexia nervosa, restricting type (AN-R); anorexia nervosa, binge-eating/purging type; bulimia nervosa (BN); and binge-eating disorder (BED). We measured the serum levels of total cholesterol, high-density-lipoprotein (HDL) cholesterol, and triglyceride in these participants. Low-density-lipoprotein (LDL) cholesterol and non-HDL cholesterol levels were also calculated. Results The concentrations of LDL cholesterol and non-HDL cholesterol were widely distributed in all groups. When the LDL cholesterol risk was defined as ≥120 mg/dL and the non-HDL cholesterol risk as ≥150 mg/dL, according to the JAS Guidelines 2012, the proportion of LDL cholesterol risk ranged from 29.6% (BN) to 38.6% (AN-R), and the proportion of non-HDL cholesterol risk ranged from 17.8% (BN) to 30.1% (BED). Conclusion The present findings suggest the existence of LDL cholesterol risk and non-HDL cholesterol risk in all groups of eating disorders. Given the chronicity of this condition, the development of elevated concentrations of LDL cholesterol and non-HDL cholesterol at an early age may increase the risk of cardiovascular diseases.
Serum Cholesterol Levels in College Students: Opportunities for Education and Intervention.
ERIC Educational Resources Information Center
Sparling, Phillip B.; Snow, Teresa K.; Beavers, Bill D.
1999-01-01
Analyzed lipid profiles in 1,088 college students at a university where lipid profiles were available to students in selected health/wellness courses. Mean total cholesterol levels were similar for men and women, but men had significantly lower high-density lipoprotein cholesterol and higher low-density lipoprotein cholesterol than women. About 11…
Pitfalls in the detection of cholesterol in Huntington’s disease models
Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena
2012-01-01
Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it PMID:23145355
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.
Polakof, Sergio; Rémond, Didier; Bernalier-Donadille, Annick; Rambeau, Mathieu; Pujos-Guillot, Estelle; Comte, Blandine; Dardevet, Dominique; Savary-Auzeloux, Isabelle
2018-02-01
In the present study, we aimed to metabolically characterize the postprandial adaptations of the major tissues involved in energy, lipids and amino acids metabolisms in mini-pigs. Mini-pigs were fed on high-fat-high-sucrose (HFHS) diet for 2 months and several tissues explored for metabolic analyses. Further, the urine metabolome was followed over the time to picture the metabolic adaptations occurring at the whole body level following overfeeding. After 2 months of HFHS consumption, mini-pigs displayed an obese phenotype characterized by high circulating insulin, triglycerides and cholesterol levels. At the tissue level, a general (muscle, adipose tissue, intestine) reduction in the capacity to phosphorylate glucose was observed. This was also supported by the enhanced hepatic gluconeogenesis potential, despite the concomitant normoglycaemia, suggesting that the high circulating insulin levels would be enough to maintain glucose homoeostasis. The HFHS feeding also resulted in a reduced capacity of two other pathways: the de novo lipogenesis, and the branched-chain amino acids transamination. Finally, the follow-up of the urine metabolome over the time allowed determining breaking points in the metabolic trajectory of the animals. Several features confirmed the pertinence of the animal model, including increased body weight, adiposity and porcine obesity index. At the metabolic level, we observed a perturbed glucose and amino acid metabolism, known to be related to the onset of the obesity. The urine metabolome analyses revealed several metabolic pathways potentially involved in the obesity onset, including TCA (citrate, pantothenic acid), amino acids catabolism (cysteine, threonine, leucine).
Plasma Omentin-1 Level as a Predictor of Good Coronary Collateral Circulation.
Zhou, Ji-Peng; Tong, Xiao-Yu; Zhu, Ling-Ping; Luo, Jing-Min; Luo, Ying; Bai, Yong-Ping; Li, Chuan-Chang; Zhang, Guo-Gang
2017-09-01
Coronary collateral circulation (CCC) is crucial during an acute ischemic attack. Evidences showed that omentin-1 exhibited remarkable antiatherogenic effects and ischemia-induced revascularization. The aim of this study was to investigate the relationship between plasma omentin-1 levels and CCC in patients with ≥90% angiography-proven coronary occlusion. 142 patients with ≥90% luminal diameter stenosis in at least one major epicardial coronary artery were recruited. Among them, 79 patients with Rentrop 0-1 grade were classified into the poor CCC group and 63 patients with Rentrop 2-3 grade were included into the good CCC group. The association between plasma omentin-1 levels and CCC status was assessed. Plasma omentin-1 level was significantly higher in patients with good CCC than those with poor CCC (566.57±26.90 vs. 492.38±19.70 ng/mL, p=0.024). Besides, omentin-1 was positively correlated with total cholesterol (TC), high-density lipoprotein, and gensini score but inversely with hyperlipidemia and body mass index (all p values<0.05). Multivariate regression analysis indicated that omentin-1 [odds ratio (OR)=1.002, 95% confidence interval (CI): 1.000-1.004, p=0.041)], TC, the number of the diseased vessels, a higher frequency of left circumflex artery and right coronary artery, chronic total occlusion, and gensini score remained as the independent predictors of good CCC. Higher plasma omentin-1 level was associated with better CCC development. Our findings suggest that omentin-1 may be an alternative marker for adequate CCC in patients with ≥90% coronary occlusion.
Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui
2018-05-02
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
2013-01-01
Background Peripheral artery disease (PAD) represents atherosclerotic disease and is a risk factor for death in peritoneal dialysis (PD) patients, who tend to show an atherogenic lipid profile. In this study, we investigated the relationship between lipid profile and ankle-brachial index (ABI) as an index of atherosclerosis in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level. Methods Thirty-five PD patients, whose serum LDL cholesterol level was controlled at less than 120mg/dl, were enrolled in this cross-sectional study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions and the mean size of lipoprotein particles were measured using an improved method, namely, high-performance gel permeation chromatography. Multivariate linear regression analysis was adjusted for diabetes mellitus and cardiovascular and/or cerebrovascular diseases. Results The mean (standard deviation) age was 61.6 (10.5) years; PD vintage, 38.5 (28.1) months; ABI, 1.07 (0.22). A low ABI (0.9 or lower) was observed in 7 patients (low-ABI group). The low-ABI group showed significantly higher cholesterol proportions in the chylomicron fraction and large very-low-density lipoproteins (VLDLs) (Fractions 3–5) than the high-ABI group (ABI>0.9). Adjusted multivariate linear regression analysis showed that ABI was negatively associated with serum VLDL cholesterol level (parameter estimate=-0.00566, p=0.0074); the cholesterol proportions in large VLDLs (Fraction 4, parameter estimate=-3.82, p=0.038; Fraction 5, parameter estimate=-3.62, p=0.0039) and medium VLDL (Fraction 6, parameter estimate=-3.25, p=0.014); and the size of VLDL particles (parameter estimate=-0.0352, p=0.032). Conclusions This study showed that the characteristics of VLDL particles were associated with ABI among PD patients. Lowering serum VLDL level may be an effective therapy against atherosclerosis in PD patients after the control of serum LDL cholesterol level. PMID:24093487
Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.
Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S
2015-03-01
We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of Weight Reduction on Cardiovascular Risk Factors and CD34-positive Cells in Circulation
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation. PMID:21850193
Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation.
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation.
Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.
Kovanen, P T
1987-02-01
The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.
Singh, Ranjana; Sharma, Sumita; Singh, Rajesh K; Mahdi, Abbas A; Singh, Raj K; Lee Gierke, Cathy; Cornelissen, Germaine
2016-08-01
Circulating lipid components were studied under near-normal tropical conditions (around Lucknow) in 162 healthy volunteers - mostly medical students, staff members and members of their families (103 males and 59 females; 7 to 75y), subdivided into 4 age groups: A (7-20y; N=42), B (21-40y; N=60), C (41-60y; N=35) and D (61-75y; N=25). Blood samples were collected from each subject every 6h for 24h (4 samples). Plasma was separated and total cholesterol, high-density-lipoprotein (HDL) cholesterol, phospholipids and total lipids were measured spectrophotometrically. Data from each subject were analyzed by cosinor. We examined by multiple-analysis of variance how the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted mean) and the circadian amplitude of these variables is affected by gender, age, diet (vegetarian vs. omnivore), and smoking status. In addition to effects of gender and age, diet and smoking were found to affect the MESOR of circulating plasma lipid components in healthy Indians residing in northern India. Age also affected the circadian amplitude of these variables. These results indicate the possibility of using non-pharmacological interventions to improve a patient's metabolic profile before prescribing medication under near normal tropical conditions. They also add information that may help refine cut-off values in the light of factors shown here to affect blood lipids. Copyright © 2016 Elsevier B.V. All rights reserved.
Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease.
Martins, Ian J; Berger, Tamar; Sharman, Matthew J; Verdile, Giuseppe; Fuller, Stephanie J; Martins, Ralph N
2009-12-01
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Cohen, R D; Castellani, L W; Qiao, J H; Van Lenten, B J; Lusis, A J; Reue, K
1997-01-01
Transgenic mouse lines carrying several copies of the mouse apo A-IV gene were produced. Lipoprotein composition and function, and aortic lesion development were examined. Apo A-IV levels in the plasma of transgenic mice were elevated threefold compared with nontransgenic littermates on a chow diet, and sixfold in mice fed an atherogenic diet. Plasma concentrations of total cholesterol, HDL cholesterol, triglycerides, and free fatty acids were similar in transgenic and control mice fed a chow diet. However, with the atherogenic diet, male transgenic mice exhibited significantly higher levels of plasma triglycerides (P < 0.05), total cholesterol (P < 0.01), HDL cholesterol (P < 0.0001), and free fatty acids (P < 0.05), and lower levels of unesterified cholesterol (P < 0.05), than nontransgenic littermates. Expression of the apo A-IV transgene had a protective effect against the formation of diet-induced aortic lesions, with transgenics exhibiting lesion scores of approximately 30% those seen in control mice. HDL-sized lipoproteins isolated from transgenic mice fed the atherogenic diet promoted cholesterol efflux from cholesterol-loaded human monocytes more efficiently than comparable lipoproteins from nontransgenic counterparts. Plasma from transgenics also exhibited higher endogenous cholesterol esterification rates. Taken together, these results suggest that apo A-IV levels influence the metabolism and antiatherogenic properties of HDL. PMID:9109435
Aizawa, Koichi; Inakuma, Takahiro
2009-12-01
The effects of dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), on lipid metabolism were examined. Young male Wistar rats were fed diets containing paprika powder, paprika organic solvent extract, residue of paprika extract, and purified capsanthin. Administration of purified capsanthin for 2 weeks resulted in a significant increase in plasma HDL-cholesterol (P < 0.05) without detectable differences in plasma total cholesterol and TAG concentrations. A statistically significant correlation (r 0.567; P < 0.001) was found between dietary capsanthin concentrations and plasma HDL-cholesterol concentrations. Animals receiving diets containing two different capsanthin concentrations exhibited dose-dependent increases in plasma HDL-cholesterol (r 0.597; P < 0.005). While capsanthin was absent in the liver of animals fed the basal diet, it increased markedly in capsanthin-fed animals (P < 0.001). Quantitative analyses of hepatic mRNA levels revealed that capsanthin administration resulted in up-regulation of mRNA for apoA5 and lecithin cholesterol acyltransferase (LCAT), without significant differences in other mRNA levels related to HDL-cholesterol metabolism. These results suggest that capsanthin had an HDL-cholesterol-raising effect on plasma, and the potential to increase cholesterol efflux to HDL particles by increasing apoA5 levels and/or enhancement of LCAT activity.
High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides.
Uehara, Yoshinari; Chiesa, Giulia; Saku, Keijiro
2015-01-01
Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low HDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases.
Nixon, Daniel E; Bosch, Ronald J; Chan, Ellen S; Funderburg, Nicholas T; Hodder, Sally; Lake, Jordan E; Lederman, Michael M; Klingman, Karin L; Aberg, Judith A
Persistent immune activation and inflammation in virologically suppressed human immunodeficiency virus (HIV) infection are linked to excess cardiovascular risk. To evaluate atorvastatin as a strategy to reduce cardiovascular risk. A5275 was a multicenter, prospective, randomized, double-blind, placebo-controlled, cross-over pilot study of atorvastatin (10 mg/day for 4 weeks then 20 mg/day for 16 weeks) with a planned enrollment of 97 HIV-infected participants ≥18 years old, receiving boosted protease inhibitor-based antiretroviral therapy for ≥6 months, with plasma HIV-1 RNAs below limits of quantification ≥180 days, and fasting low-density lipoprotein (LDL) cholesterol ≥70 and <130 mg/dL. Primary endpoints were differences of changes ([week 44-week 24]-[week 20-baseline]) in CD4+ and CD8+ T-lymphocyte activation (% CD38 + /DR + ) and plasma levels of IL-6 and D-dimer. Arms were compared using the Wilcoxon rank-sum tests and also summarized changes pre-to-post atorvastatin treatment. Analyses were as-treated. Ninety-eight participants were enrolled at 31 U S sites and 73 completed study treatment. Atorvastatin treatment did not decrease T-lymphocyte or monocyte activation, circulating biomarker levels (interleukin-6, D-dimer, soluble CD14, soluble CD163, monocyte chemoattractant protein-1, interferon-gamma-induced protein-10, high-sensitivity C-reactive protein, CD40L, and P-selectin) or white blood cell Krüppel-like Factor 2/4 messenger RNA levels. Pre-to-post atorvastatin reductions in calculated LDL (-38%), oxidized-LDL (-33%), and lipoprotein-associated phospholipase A2 (-31%) were significant (P < .01). In virologically suppressed individuals with HIV infection, atorvastatin did not significantly decrease levels of soluble or cellular biomarkers of immune activation and inflammation but resulted in robust reductions in LDL cholesterol, oxLDL, and lipoprotein-associated phospholipase A 2 , biomarkers associated with cardiovascular risk. Copyright © 2016 National Lipid Association. All rights reserved.
Results of a heart disease risk-factor screening among traditional college students.
Spencer, Leslie
2002-05-01
The author collected data on serum cholesterol, blood pressure, and self-reported health behavior in 226 college students aged 18 to 26 years. Twenty-nine percent had undesirable total cholesterol levels, 10% had high cholesterol, 10% had high systolic blood pressure, and 11% had high diastolic blood pressure. Half or more of the participants consumed a diet high in saturated fats, engaged in binge drinking, had a parental risk for high cholesterol or blood pressure, or reported they experienced elevated stress levels. Men had higher risk-factor levels than women. Findings from a regression analysis revealed that smoking, binge drinking, lack of cardiovascular exercise, and eating a high saturated-fat diet were predictive of undesirable cholesterol levels. Study limitations included self-selection of participants and single measurements of blood pressure and cholesterol. Trained students served as screeners in the program for providing an effective, low-cost screening intervention.
Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.
2017-01-01
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451
de Bem, Andreza Fabro; Portella, Rafael de Lima; Colpo, Elisângela; Duarte, Marta Maria Medeiros Frescura; Frediane, Andressa; Taube, Paulo Sergio; Nogueira, Cristina Wayne; Farina, Marcelo; da Silva, Edson Luiz; Teixeira Rocha, João Batista
2009-07-01
Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.
Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats.
Sandhya, V G; Rajamohan, T
2006-01-01
The purpose of this study was to determine the effect of coconut water feeding in cholesterol-fed rats. Male albino rats were fed tender coconut water and mature coconut water at a dose level of 4 mL/100 g of body weight. Cholesterol feeding caused a marked increase in total cholesterol, very low-density lipoprotein (VLDL) + low-density lipoprotein (LDL) cholesterol, and triglycerides in serum. Administration of coconut water counteracts the increase in total cholesterol, VLDL + LDL cholesterol, and triglycerides, while high-density lipoprotein cholesterol was higher. Lipid levels in the tissues viz. liver, heart, kidney, and aorta were markedly decreased in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased activities of 3-hydroxy-3-methylglutaryl-CoA reductase in liver, lipoprotein lipase in heart and adipose tissue, and plasma lecithin:cholesterol acyl transferase, while lipogenic enzymes showed decreased activities. An increased rate of cholesterol conversion to bile acid and an increased excretion of bile acids and neutral sterols were observed in rats fed coconut water. Histopathological studies of liver and aorta revealed much less fatty accumulation in these tissues in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased plasma L-arginine content, urinary nitrite level, and nitric oxide synthase activity. These results indicate that both tender and mature coconut water has beneficial effects on serum and tissue lipid parameters in rats fed cholesterol-containing diet.
2012-01-01
One experiment was conducted to determine the nutritive value of cholesterol for post-larval shrimp, Litopenaeus vannamei. Four isoenergetic and isonitrogenous diets supplemented with four levels of cholesterol (D1, D2, D3 and D4 with 0, 0.5%, 1% and 2% cholesterol, respectively) were fed to triplicate groups of L. vannamei shrimp (mean initial wet weight 0.8 mg) for 27 days. After the trial, shrimp fed the D1 diet had the best growth performance (final body weights: FBW; weight gain: WG; specific growth rate: SGR), while there was no significant difference between diet treatments with respect to survival. The whole body crude protein level in the shrimp decreased with the increase in dietary cholesterol levels, while the whole body crude lipid level in shrimps in the D4 diet treatment was significantly higher (P < 0.05) than in other diet treatments. Dietary analysis indicated that the D1 diet contained 0.92% cholesterol prior to supplementation, which may have satisfied the dietary cholesterol requirement of post-larval L. vannamei; excess dietary cholesterol may thus lead to adverse effects on the growth performance of post-larval shrimp. PMID:22958647
Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa
Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found thatmore » quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.« less
Mercado, Carla I; Gregg, Edward; Gillespie, Cathleen; Loustalot, Fleetwood
2018-01-01
With a cholesterol-lowering focus for diabetic adults and in the age of polypharmacy, it is important to understand how lipid profile levels differ among those with and without diabetes. Investigate the means, differences, and trends in lipid profile measures [TC, total cholesterol; LDL-c, low-density lipoprotein; HDL-c, high-density lipoprotein; and TG, triglycerides] among US adults by diabetes status and cholesterol-lowering medication. Population number and proportion of adults aged ≥21 years with diabetes and taking cholesterol-lowering medication were estimated using data on 10,384 participants from NHANES 2003-2012. Age-standardized means, trends, and differences in lipid profile measures were estimated by diabetes status and cholesterol medication use. For trends and differences, linear regression analysis were used adjusted for age, gender, and race/ethnicity. Among diabetic adults, 52% were taking cholesterol-lowering medication compared to the 14% taking cholesterol-lowering medication without diabetes. Although diabetic adults had significantly lower TC and LDL-c levels than non-diabetic adults [% difference (95% confidence interval): TC = -5.2% (-6.8 --3.5), LDL-c = -8.0% (-10.4 --5.5)], the percent difference was greater among adults taking cholesterol medication [TC = -8.0% (-10.3 --5.7); LDL-c = -13.7% (-17.1 --10.2)] than adults not taking cholesterol medication [TC = -3.5% (-5.2 --1.6); LDL-c = -4.3% (-7.1 --1.5)] (interaction p-value: TC = <0.001; LDL-c = <0.001). From 2003-2012, mean TC and HDL-c significantly decreased among diabetic adults taking cholesterol medication [% difference per survey cycle (p-value for linear trend): TC = -2.3% (0.003) and HDL-c = -2.3% (0.033)]. Mean TC, HDL-c, and LDL-c levels did not significantly change from 2003 to 2012 in non-diabetic adults taking cholesterol medication or for adults not taking cholesterol medications. Diabetic adults were more likely to have lower lipid levels, except for triglyceride levels, than non-diabetic adults with profound differences when considering cholesterol medication use, possibly due to the positive effects from clinical diabetes management.
Chakrabarti, Rima S; Ingham, Sally A; Kozlitina, Julia; Gay, Austin; Cohen, Jonathan C; Radhakrishnan, Arun; Hobbs, Helen H
2017-01-01
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI: http://dx.doi.org/10.7554/eLife.23355.001 PMID:28169829
O'Connor, Constance M; Gilmour, Kathleen M; Arlinghaus, Robert; Van Der Kraak, Glen; Cooke, Steven J
2009-01-01
Male largemouth bass (Micropterus salmoides) provide sole parental care over a 4-6-wk period to a single brood, fanning the eggs to keep them oxygenated and free of silt and defending the brood until the offspring develop antipredator tactics. During this period, fish are highly active and have few opportunities for feeding, so this activity is energetically costly. To understand some of the consequences of stress during this challenging period, we injected fish with cortisol suspended in coconut oil to experimentally raise circulating cortisol in parental males for the first week of the parental care period. We compared parental care behavior between cortisol-treated, sham-treated (injected only with coconut oil), and control parental males. We further compared physiological parameters associated with metabolism and reproductive function between cortisol-treated and control males. The cortisol injections resulted in supraphysiological levels of circulating plasma cortisol, giving us insight into potential maximal effects of stress during parental care. At these supraphysiological levels, the cortisol-treated fish displayed higher concentrations of circulating glucose and cholesterol and lower concentrations of circulating triglycerides when compared with control fish, with no change in plasma concentrations of total protein. Plasma concentrations of androgen were similarly unaffected by cortisol treatment. In the short term (initial 1-2 wk), parental care of eggs and egg-sac fry was maintained by all groups, with no differences observed in behavior (e.g., tending, vigilance, defense) among the groups. However, the cortisol-treated fish abandoned their offspring at a higher rate than in the control or sham groups. The fish treated with cortisol also tended to develop external Saprolegnian infections, indicative of compromised immune function. These data demonstrate that exogenous cortisol elevation during parental care results in changes in energy use and a decrease in immune function. Interestingly, the data also suggest resistance to stress during parental care in largemouth bass, with no changes in parental care behavior before abandonment.
Olsen, Tom Skyhøj; Christensen, Rune Haubo Bojesen; Kammersgaard, Lars Peter; Andersen, Klaus Kaae
2007-10-01
Evidence of a causal relation between serum cholesterol and stroke is inconsistent. We investigated the relation between total serum cholesterol and both stroke severity and poststroke mortality to test the hypothesis that hypercholesterolemia is primarily associated with minor stroke. In the study, 652 unselected patients with ischemic stroke arrived at the hospital within 24 hours of stroke onset. A measure of total serum cholesterol was obtained in 513 (79%) within the 24-hour time window. Stroke severity was measured with the Scandinavian Stroke Scale (0=worst, 58=best); a full cardiovascular risk profile was established for all. Death within 10 years after stroke onset was obtained from the Danish Registry of Persons. Mean+/-SD age of the 513 patients was 75+/-10 years, 54% were women, and the mean+/-SD Scandinavian Stroke Scale score was 39+/-17. Serum cholesterol was inversely and almost linearly related to stroke severity: an increase of 1 mmol/L in total serum cholesterol resulted in an increase in the Scandinavian Stroke Scale score of 1.32 (95% CI, 0.28 to 2.36, P=0.013), meaning that higher cholesterol levels are associated with less severe strokes. A survival analysis revealed an inverse linear relation between serum cholesterol and mortality, meaning that an increase of 1 mmol/L in cholesterol results in a hazard ratio of 0.89 (95% CI, 0.82 to 0.97, P=0.01). The results of our study support the hypothesis that a higher cholesterol level favors development of minor strokes. Because of selection, therefore, major strokes are more often seen in patients with lower cholesterol levels. Poststroke mortality, therefore, is inversely related to cholesterol.
Probiotic Properties of Lactobacillus Strains Isolated from Tibetan Kefir Grains
Zheng, Yongchen; Lu, Yingli; Wang, Jinfeng; Yang, Longfei; Pan, Chenyu; Huang, Ying
2013-01-01
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods. PMID:23894554
Portman, Oscar W.; Hegsted, D. Mark; Stare, Fredrick J.; Bruno, Dorothy; Murphy, Robert; Sinisterra, Leonardo
1956-01-01
A study was carried out to determine the effect of the level and type of dietary fat on the concentration of cholesterol and beta lipoproteins in the sera of Cebus monkeys. Three groups of monkeys were fed isocaloric diets containing a fixed ratio of alpha protein and cholesterol to calories but with different amounts of corn oil and sucrose. Corn oil provided 10, 32, and 45 per cent of the calories in the three diets, and the level of sucrose was varied inversely. After 8 weeks the serum cholesterol and Sf 12 to 100 beta lipoprotein concentrations were significantly greater in the medium and high fat groups. When corn oil was decreased from 45 to 10 per cent of dietary calories and sucrose was increased, the serum cholesterol fell in all cases, and when the reverse change was made, the concentration of serum cholesterol increased. Variation in dietary sucrose had no specific effect. Substitution of starch for sucrose with diets otherwise constant did not cause significant change in the concentration of serum cholesterol. When monkeys fed corn oil diets at any of three levels were changed to hydrogenated cottonseed oil diets at the same level, the serum cholesterol and Sf 12 to 100 beta lipoproteins rose. However, hydrogenated cottonseed oil had no greater hypercholesteremic effect than did corn oil in the absence of dietary cholesterol. Diets containing lard with cholesterol also produced strikingly greater serum lipide responses than did diets based on corn oil and cholesterol. Hydrogenated cottonseed oil had a greater hypercholesteremic effect than an unhydrogenated cottonseed oil from the same lot. Preliminary studies indicated that the saturated fats (hydrogenated cottonseed oil) produced the most striking elevation of serum cholesterol values (above controls fed corn oil) when casein was the dietary protein. PMID:13376806
DIETARY FAT AND HYPERCHOLESTEREMIA IN THE CEBUS MONKEY
Portman, Oscar W.; Sinisterra, Leonardo
1957-01-01
A series of studies of cholesterol metabolism in the Cebus monkey were carried out in an attempt to understand the mechanisms responsible for the great differences in serum cholesterol levels when different dietary fats were used. Three groups of monkeys, one fed diets including 45 per cent of calories as corn oil, a second corn oil plus cholesterol (0.1 gm./100 calories), and a third lard plus cholesterol for 5 months (mean serum cholesterol values were 237, 268, and 601 mg. per cent, respectively) were injected with emulsions of cholesterol-4-C14. The mean biological half-lives for the disappearance of serum radiocholesterol were 8.8, 8.4, and 6.6 days respectively. Esterification of radiocholesterol as measured by equilibration of specific activities of serum-free cholesterol and total cholesterol was delayed in the monkeys fed lard plus cholesterol. When cholesterol-4-C-14-stearate was given intravenously to a series of monkeys, an erratic non-exponential biological decay curve resulted. Specific activity for free serum cholesterol was greater than that for total cholesterol within 1 hour after the injection. After 7 months on experimental diets including corn oil with added cholesterol and lard with added cholesterol the levels of lipides in most tissues were not different for the two dietary groups, nor were they appreciably elevated above previous control figures for monkeys not fed cholesterol. Total lipide levels in the adrenals of monkeys fed corn oil were twice those of monkeys fed lard. Monkeys were fasted before and after intragastric administration of cholesterol-4-C14 in small formula meals including various fats and fatty acids. The disappearance of total cholesterol from the serum consisted of a rapid followed by a slow exponential function. The type of fat and fatty acid appeared to influence the rate of disappearance of radiocholesterol. There was a broad range of apparent activity of the different fats and fatty acids in promoting cholesterol absorption. PMID:13475627
Pezzini, Alessandro; Grassi, Mario; Iacoviello, Licia; Zedde, Marialuisa; Marcheselli, Simona; Silvestrelli, Giorgio; DeLodovici, Maria Luisa; Sessa, Maria; Zini, Andrea; Paciaroni, Maurizio; Azzini, Cristiano; Gamba, Massimo; Del Sette, Massimo; Toriello, Antonella; Gandolfo, Carlo; Bonifati, Domenico Marco; Tassi, Rossana; Cavallini, Anna; Chiti, Alberto; Calabrò, Rocco Salvatore; Musolino, Rossella; Bovi, Paolo; Tomelleri, Giampaolo; Di Castelnuovo, Augusto; Vandelli, Laura; Ritelli, Marco; Agnelli, Giancarlo; De Vito, Alessandro; Pugliese, Nicola; Martini, Giuseppe; Lanari, Alessia; Ciccone, Alfonso; Lodigiani, Corrado; Malferrari, Giovanni; Del Zotto, Elisabetta; Morotti, Andrea; Costa, Paolo; Poli, Loris; De Giuli, Valeria; Bonaiti, Silvia; La Spina, Paolo; Marcello, Norina; Micieli, Giuseppe; de Gaetano, Giovanni; Colombi, Marina; Padovani, Alessandro
2016-09-01
Although a concern exists that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) might increase the risk of intracerebral haemorrhage (ICH), the contribution of these agents to the relationship between serum cholesterol and disease occurrence has been poorly investigated. We compared consecutive patients having ICH with age and sex-matched stroke-free control subjects in a case-control analysis, as part of the Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy), and tested the presence of interaction effects between total serum cholesterol levels and statins on the risk of ICH. A total of 3492 cases (mean age, 73.0±12.7 years; males, 56.6%) and 3492 control subjects were enrolled. Increasing total serum cholesterol levels were confirmed to be inversely associated with ICH. We observed a statistical interaction between total serum cholesterol levels and statin use for the risk of haemorrhage (Interaction OR (IOR), 1.09; 95% CI 1.05 to 1.12). Increasing levels of total serum cholesterol were associated with a decreased risk of ICH within statin strata (average OR, 0.87; 95% CI 0.86 to 0.88 for every increase of 0.26 mmol/l of total serum cholesterol concentrations), while statin use was associated with an increased risk (OR, 1.54; 95% CI 1.31 to 1.81 of the average level of total serum cholesterol). The protective effect of serum cholesterol against ICH was reduced by statins in strictly lobar brain regions more than in non-lobar ones. Statin therapy and total serum cholesterol levels exhibit interaction effects towards the risk of ICH. The magnitude of such effects appears higher in lobar brain regions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Malnutrition-Inflammation Modifies the Relationship of Cholesterol with Cardiovascular Disease
Astor, Brad C.; Greene, Tom; Erlinger, Thomas; Kusek, John W.; Lipkowitz, Michael; Lewis, Julia A.; Randall, Otelio S.; Hebert, Lee; Wright, Jackson T; Kendrick, Cynthia A.; Gassman, Jennifer; Bakris, George; Kopple, Joel D.; Appel, Lawrence J.
2010-01-01
In moderate and severe CKD, the association of cholesterol with subsequent cardiovascular disease (CVD) is weak. We examined whether malnutrition or inflammation (M-I) modifies the risk relationship between cholesterol levels and CVD events in African Americans with hypertensive CKD and a GFR between 20 and 65 ml/min per 1.73 m2. We stratified 990 participants by the presence or absence of M-I, defined as body mass index <23 kg/m2 or C-reactive protein >10 mg/L at baseline. The primary composite outcome included cardiovascular death or first hospitalization for coronary artery disease, stroke, or congestive heart failure occurring during a median follow-up of 77 months. Baseline total cholesterol (212 ± 48 versus 212 ± 44 mg/dl) and overall incidence of the primary CVD outcome (19 versus 21%) were similar in participants with (n = 304) and without (n = 686) M-I. In adjusted analyses, the CVD composite outcome exhibited a significantly stronger relationship with total cholesterol for participants without M-I than for participants with M-I at baseline (P < 0.02). In the non–M-I group, the cholesterol-adjusted hazard ratio (HR) for CVD increased progressively across cholesterol levels: HR = 1.19 [95% CI; 0.77, 1.84] and 2.18 [1.43, 3.33] in participants with cholesterol 200 to 239 and ≥240 mg/dl, respectively (reference: cholesterol <200). In the M-I group, the corresponding HRs did not vary significantly by cholesterol level. In conclusion, the presence of M-I modifies the risk relationship between cholesterol level and CVD in African Americans with hypertensive CKD. PMID:20864686
Gupta, Nidhi; Fisker, Niels; Asselin, Marie-Claude; Lindholm, Marie; Rosenbohm, Christoph; Ørum, Henrik; Elmén, Joacim; Seidah, Nabil G; Straarup, Ellen Marie
2010-05-17
The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity. LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.
D'Agostino, Marco; Martino, Francesco; Sileno, Sara; Barillà, Francesco; Beji, Sara; Marchetti, Lorenza; Gangi, Fabio Maria; Persico, Luca; Picozza, Mario; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Avitabile, Daniele; Parrotto, Sandro; Capogrossi, Maurizio Colognesi; Magenta, Alessandra
2017-09-15
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P <0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a ( P <0.01; P <0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b -ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c , as early biomarkers of CVD, in paediatric FH. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Technical Reports Server (NTRS)
Angotti, C. M.; Levine, M. S.
1994-01-01
A chart review covering the first 5 years of clinical experience with a combined dietary and exercise intervention program for the reduction of hypercholesterolemia at the National Aeronautics and Space Administration headquarters demonstrated the program's success in maintaining high-density lipoprotein cholesterol (HDL-C) levels while significantly lowering total serum cholesterol levels. This combined program also resulted in improved ratios of total serum cholesterol to HDL-C and lowered levels of low-density lipoprotein cholesterol, thus further reducing the risk for cardiovascular disease. The National Aeronautics and Space Administration Cardiovascular Risk Reduction Program was developed after it was determined that although dietary intervention alone improved total cholesterol levels, it often resulted in a more than proportionate decrease in HDL-C and a worsening of the ratio of cholesterol to HDL-C. An approach was needed that would positively affect all factors of the lipid profile. The findings from the program indicate that reduction of cardiovascular risk can be accomplished easily and effectively at the worksite through dietary intervention, personal monitoring, and a reasonable exercise program.
Wang, Helen H.; Lammert, Frank; Schmitz, Anne; Wang, David Q.-H.
2010-01-01
Background Cholesterol gallstone disease is a complex genetic trait and induced by multiple but as yet unknown genes. A major Lith gene, Lith1 was first identified on chromosome 2 in gallstone-susceptible C57L mice compared with resistant AKR mice. Abcb11, encoding the canalicular bile salt export pump in the hepatocyte, co-localizes with the Lith1 QTL region and its hepatic expression is significantly higher in C57L mice than in AKR mice. Material and methods To investigate whether Abcb11 influences cholesterol gallstone formation, we created an Abcb11 transgenic strain on the AKR genetic background and fed these mice with a lithogenic diet for 56 days. Result We excluded functionally relevant polymorphisms of the Abcb11 gene and its promoter region between C57L and AKR mice. Overexpression of Abcb11 significantly promoted biliary bile salt secretion and increased circulating bile salt pool size and bile salt-dependent bile flow rate. However, biliary cholesterol and phospholipid secretion, as well as gallbladder size and contractility were comparable in transgenic and wild-type mice. At 56 days on the lithogenic diet, cholesterol saturation indexes of gallbladder biles and gallstone prevalence rates were essentially similar in these two groups of mice. Conclusion Overexpression of Abcb11 augments biliary bile salt secretion, but does not affect cholelithogenesis in mice. PMID:20456485
Dose additive effects of simvastatin and dipentyl phthalate on ...
Sex differentiation of the mammalian reproductive tract is a highly regulated process that is driven, in part, by fetal testosterone (T) production. In utero exposure to phthalate esters (PE) during sex differentiation can cause reproductive tract malformations in rats. PE alter the expression of genes associated with steroid synthesis/transport and cholesterol biosynthesis. Simvastatin (SMV) is a cholesterol-lowering drug that inhibits HMG-CoA reductase. As cholesterol is a precursor for steroid biosynthesis, we proposed that maternal exposure to SMV during the critical period of sex differentiation would lower fetal T and result in corresponding alterations in cholesterol- and androgenmediated gene expression. Timed pregnant SD rats were dosed orally with SMV from GD14-GD18. T production on GD18 was measured by RIA, and changes in gene expression in maternal and fetal tissues were assessed by quantitative rt-PCR. Circulating lipids were also measured in dams and fetuses. SMV lowered fetal T production, altered several genes involved in cholesterol biosynthesis in the maternal liver, and lowered lipids in the fetus but not in the dam. Unlike PE, SMV did not alter genes associated with sex differentiation. In a second experiment, dams were dosed with SMV, dipentyl phthalate (DPeP, a PE), or both. SMV and DPeP alone reduced fetal T production to 44.3 and 37.5% of control values, respectively, but the mixture reduced T production to 19.9% of control. These studies
Parlesak, Alexandr; Eckoldt, Joachim; Winkler, Karl; Bode, Christian J; Schäfer, Christian
2014-05-01
So far, little is known about the effect of nutrition and lifestyle on the composition of circulating lipoprotein subfractions. In the current study, we measured the correlations among physical activity, nutrient intake, smoking, body-mass index (BMI), and age with the concentration of triglycerides, cholesterol, phospholipids, and apolipoproteins (ApoA1, ApoA2 and ApoB) in subfractions of LDL and HDL in 265 healthy working men. Concentrations of cholesterol, phospholipids, and ApoB in small, dense atherogenic LDL particles (sdLDL) correlated negatively (p<0.001) with those of cholesterol, phospholipids, and ApoA1 in HDL2, respectively. Age correlated positively with sdLDL while increasing BMI correlated with an atherogenic shift of cholesterol, phospholipids, and ApoB from large, buoyant LDL (lbLDL) to sdLDL and decreasing concentrations of HDL2 constituents. Physical activity and alcohol intake correlated negatively with sdLDL constituents and positively with HDL2 components. Consumption of monounsaturated fatty acids (MUFA) correlated with a lower ratio of sdLDL to HDL2 cholesterol. A favorable lipoprotein subfraction profile linked to a reduced risk of cardiovascular disease in men was associated with physical activity, moderate alcohol consumption, and dietary intake of MUFA, which might be exploited in future interventions for prevention of age- and BMI-associated atherogenic shifts of lipoprotein subfractions.
Parlesak, Alexandr; Eckoldt, Joachim; Winkler, Karl; Bode, Christian J; Schäfer, Christian
2014-01-01
So far, little is known about the effect of nutrition and lifestyle on the composition of circulating lipoprotein subfractions. In the current study, we measured the correlations among physical activity, nutrient intake, smoking, body-mass index (BMI), and age with the concentration of triglycerides, cholesterol, phospholipids, and apolipoproteins (ApoA1, ApoA2 and ApoB) in subfractions of LDL and HDL in 265 healthy working men. Concentrations of cholesterol, phospholipids, and ApoB in small, dense atherogenic LDL particles (sdLDL) correlated negatively (p<0.001) with those of cholesterol, phospholipids, and ApoA1 in HDL2, respectively. Age correlated positively with sdLDL while increasing BMI correlated with an atherogenic shift of cholesterol, phospholipids, and ApoB from large, buoyant LDL (lbLDL) to sdLDL and decreasing concentrations of HDL2 constituents. Physical activity and alcohol intake correlated negatively with sdLDL constituents and positively with HDL2 components. Consumption of monounsaturated fatty acids (MUFA) correlated with a lower ratio of sdLDL to HDL2 cholesterol. A favorable lipoprotein subfraction profile linked to a reduced risk of cardiovascular disease in men was associated with physical activity, moderate alcohol consumption, and dietary intake of MUFA, which might be exploited in future interventions for prevention of age- and BMI-associated atherogenic shifts of lipoprotein subfractions. PMID:24895480
Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar
2016-01-01
The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399
Yang, Runmei; Chu, Xinxin; Sun, Le; Kang, Zhuoying; Ji, Min; Yu, Ying; Liu, Ying; He, Zhendan; Gao, Nannan
2018-04-01
The aim of this study was to evaluate the hypolipidemic effect and mechanisms of total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) in hamsters fed a high-fat diet and to discover bioactive components in HepG2 cell model induced by oleic acid. LRTPG of high (1.2 g/kg), medium (0.6 g/kg), and low (0.3 g/kg) doses was administrated daily for 21 consecutive days in hamsters. We found that in hamsters fed a high-fat diet, LRTPG effectively reduced the concentrations of plasma triglycerides (TG), free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and hepatic TG and total cholesterol. And the compounds acteoside, ligupurpuroside A, ligupurpuroside C, and ligupurpuroside D significantly inhibited lipid accumulation in HepG2 cell at the concentration of 50 μmol/L. Mechanism research demonstrated that LRTPG increased the levels of phospho-AMP-activated protein kinase and phospho-sterol regulatory element binding protein-1c in liver, further to suppress the downstream lipogenic genes as stearoyl-CoA desaturase 1, glycerol-3-phosphate acyltransferase, 1-acylglycerol-3-phosphate O-acyltransferase 2, and diacylglycerol acyltransferase 2. In addition, LRTPG increased the hydrolysis of circulating TG by up-regulating lipoprotein lipase activities. These results indicate that LRTPG prevents hyperlipidemia via activation of hepatic AMP-activated protein kinase-sterol regulatory element binding protein-1c pathway. Copyright © 2018 John Wiley & Sons, Ltd.
Palomäki, Ari; Pohjantähti-Maaroos, Hanna; Wallenius, Marja; Kankkunen, Päivi; Aro, Heikki; Husgafvel, Sari; Pihlava, Juha-Matti; Oksanen, Kalevi
2010-12-01
Rapeseed oil is the principal dietary source of monounsaturated and n-3 polyunsaturated fatty acids in the Northern Europe. However, the effect of rapeseed oil on the markers of subclinical atherosclerosis is not known. The purpose of this study was to compare the effects of dietary intake of cold-pressed turnip rapeseed oil (CPTRO) and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Thirty-seven men with metabolic syndrome completed an open and balanced crossover study. Treatment periods lasted for 6 to 8 weeks and they were separated from each other with an eight-week washout period. Subjects maintained their normal dietary habits and physical activity without major variations. The daily fat adjunct consisted either of 37.5 grams of butter or 35 mL of Virgino R CPTRO. Participants were asked to spread butter on bread on the butter period and to drink CPTRO on the oil period. The fat adjunct was used as such without heating or frying. Compared to butter, administration of CPTRO was followed by a reduction of total cholesterol by 8% (p < 0.001) and LDL cholesterol by 11% (p < 0.001). The level of oxidized LDL was 16% lower after oil period (p = 0.024). Minimal differences in arterial elasticity were not statistically significant. Cold-pressed turnip rapeseed oil had favourable effects on circulating LDL cholesterol and oxidized LDL, which may be important in the management of patients at high cardiovascular risk.
Addition of Garlic Extract in Ration to Reduce Cholesterol Level of Broiler
NASA Astrophysics Data System (ADS)
Utami, M. M. D.; Pantaya, D.; Agus, A.
2018-01-01
The purpose of this research is to know the effect of garlic extract (GE) in reducing cholesterol level of broiler chicken by analyzing cholesterol level of broiler chicken blood. Two hundred one day broiler age were used in this study for 35 days. The chickens were randomly divided into four treatments, each treatment consist of five replications and each repetition consist of ten chickens. This research is used completely randomized design, such as: T0: 0% EBP, T1: 2%, T2: 4% and T3: 6%. Furthermore, at age 35 days each chicken was taken blood to be analyzed cholesterol levels, low density lipoprotein (LDL), high density lipoprotein (HDL) and calculated the ratio of LDL and HDL levels. The data obtained were analyzed using software from Statistical Product and Service Solution (SPSS 16.0). The results of significant analysis continued by Duncan’s New Multiple Range Test. Addition of GE from the 2% level decreases (P <0.05) of LDL and total cholesterol, and increases HDL and HDL-LDL ratio. The conclusions is obtained garlic extract plays an important role in lowering cholesterol levels of broiler meat.
2011-01-01
Background Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes. Results Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of Cyp8b1, a regulatory enzyme of bile acid synthesis, and the Abcb11 bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle Il6 and Dio2 mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH) in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of Abcb11 and Dio2 identifies novel strong positional candidate genes as they map within the quantitative trait loci (QTL) regions detected previously in crosses between the Lean and Fat mice. Conclusion We identified novel candidate molecular targets and metabolic changes which can at least in part explain resistance to obesity development in the Lean line. The major difference between the Lean and Fat mice was in increased liver cholesterol biosynthesis gene mRNA expression, bile acid metabolism and changes in selected muscle genes' expression in the Lean line. The liver Abcb11 and muscle Dio2 were identified as novel positional candidate genes to explain part of the phenotypic difference between the Lean and Fat lines. PMID:21291556
Cholesterol blocks spontaneous insertion of membrane proteins into liposomes of phosphatidylcholine.
Nakamura, Shota; Suzuki, Sonomi; Saito, Hiroaki; Nishiyama, Ken-Ichi
2018-04-01
Spontaneous insertion of membrane proteins into liposomes formed from Escherichia coli polar phospholipids is blocked by diacylglycerol (DAG) at a physiological level. We found that cholesterol also blocks this spontaneous insertion, although a much larger amount is necessary for sufficient blockage. Reversely, sphingomyelin enhanced the spontaneous insertion. DAG at a physiological level was found not to block spontaneous insertion into liposomes formed from phosphatidylcholine (PC), while non-physiologically high concentrations of DAG reduced it. On the other hand, cholesterol blocked the spontaneous insertion into PC liposomes at a physiological level, explaining that both PC and cholesterol are absent in E. coli. While sphingomyelin did not enhance spontaneous insertion into PC liposomes, the effect of cholesterol on blockage of spontaneous insertion was dominant over that of sphingomyelin, suggesting that cholesterol functions as a blocker of disordered spontaneous insertion in eukaryotic cells. Lower amount of cholesterol was necessary to block spontaneous insertion into ER-mimic liposomes, explaining that ER membranes contain less amount of cholesterol. These results also explain that cholesterol, but not DAG, is involved in blockage of spontaneous insertion in eukaryotic cells, since DAG plays an important role as a second messenger in signal transduction.
Randomized controlled trial of a nonpharmacologic cholesterol reduction program at the worksite.
Bruno, R; Arnold, C; Jacobson, L; Winick, M; Wynder, E
1983-07-01
Under experimental clinical conditions diet modification has been shown to reduce serum cholesterol levels. This paper reports such a positive response to a nonpharmacologic, behavioral education program at the worksite. Employees at the New York Telephone Company corporate headquarters were assigned randomly to treatment and control groups. Treatment consisted of an 8-week group cholesterol reduction program conducted during employee lunch hours. It comprised a multiple-treatment approach--food behavior change techniques combined with nutrition education, physical activity planning, and self-management skills. The treatment group showed substantial change compared with the control group at the program's completion. Those treated displayed a significant 6.4% reduction in total serum cholesterol (266 mg% average at baseline) as compared with control subjects with a corresponding decrease in high-density lipoprotein levels. A significant increase in nutrition knowledge and moderate weight loss were also documented for this group. The magnitudes of a participant's baseline serum cholesterol level and his/her reduction in percentage of ideal body weight were positively and independently correlated with percentage changes in serum cholesterol levels. Over the same period, decreases in high-density lipoprotein levels and no changes in serum cholesterol, weight, and nutrition knowledge were observed for the control group. Overall, participants in the treatment program successfully reduced the coronary heart disease risk factors of elevated cholesterol and weight. Directions for future study are suggested.
2013-01-01
Background Because of the absorption of glucose in peritoneal dialysis (PD) solution, PD patients show an atherogenic lipid profile, which is predictive of poor survival in PD patients. Lipoprotein subclasses consist of a continuous spectrum of particles of different sizes and densities (fraction). In this study, we investigated the lipoprotein fractions in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level, and evaluated the effects of icodextrin on lipid metabolism. Methods Forty-nine PD patients were enrolled in this cross-sectional study in Japan. The proportions of cholesterol levels to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions were measured using an improved method of high-performance gel permeation chromatography (HPGPC). Results Twenty-six patients used icodextrin. Although no significant differences in cholesterol levels in LDL and high-density lipoprotein (HDL) were observed between the patients using icodextrin (icodextrin group) and control groups, HPGPC showed that the icodextrin group had significantly lower cholesterol proportions in the small LDL (t-test, p=0.053) and very small LDL (p=0.019), and significantly higher cholesterol proportions in the very large HDL and large HDL than the control group (p=0.037; p=0.066, respectively). Multivariate analysis adjusted for patient characteristics and statin use showed that icodextrin use was negatively associated with the cholesterol proportions in the small LDL (p=0.037) and very small LDL (p=0.026), and positively with those in the very large HDL (p=0.040), large HDL (p=0.047), and medium HDL (p=0.009). Conclusions HPGPC showed the relationship between icodextrin use and the cholesterol proportions in lipoprotein fractions in PD patients. These results suggest that icodextrin may improve atherogenic lipid profiles in a manner different from statin. PMID:24161017
Kim, Sangmi; Kim, Joohee; Lim, Yeni; Kim, You Jin; Kim, Ji Yeon; Kwon, Oran
2016-05-13
Previous animal studies suggested that Chlorella, a unicellular green alga, has a preventive role in maintaining serum cholesterol levels against excess dietary cholesterol intake. This study aimed to conduct a pioneering investigation to clarify this issue in healthy subjects by adopting a dietary cholesterol challenge, which has not been used previously in similar studies of Chlorella in hypercholesterolemia. In this double blind, randomized, placebo-controlled study, 34 participants ingested 510 mg of dietary cholesterol from three eggs concomitantly with a usual dose of Chlorella (5 g/d) or a matched placebo for 4 weeks. The dietary cholesterol challenge induced consistently higher concentrations of serum total cholesterol (TC, P < 0.001), LDL-C (P = 0.004), and HDL-C (P = 0.010) compared with baseline values, suggesting that the challenge was reliable. Thus, we observed a preventive action of Chlorella in maintaining serum TC versus placebo levels (3.5 % versus 9.8 %, respectively; P = 0.037) and LDL-C versus placebo levels (1.7 % versus 14.3 %, respectively; P = 0.012) against excessive dietary cholesterol intake and in augmenting HDL-C versus placebo levels (8.3 % versus 3.8 %, respectively). Furthermore, serum α-carotene showed the best separation between the placebo and Chlorella groups (R(2)X and R(2)Y > 0.5; Q(2) > 0.4). The results suggest that a fully replicated dietary cholesterol challenge may be useful in assessing the effectiveness of dietary supplements in maintaining the serum lipid profiles of adults whose habitual diets are high in cholesterol. WHO International Clinical Trials Registry Platform ( KCT0000258 ).
Clarke, John D; Sharapova, Tatiana; Lake, April D; Blomme, Eric; Maher, Jonathan; Cherrington, Nathan J
2014-06-01
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) and is a major cause of liver cirrhosis and hepatic failure. The methionine choline-deficient diet (MCD) is a frequently used hepatotoxicity animal model of NASH that induces hepatic transaminase (ALT, AST) elevations and hepatobiliary histological changes similar to those observed in human NASH. Liver-specific microRNA-122 (miR-122) has been shown as a key regulator of cholesterol and fatty acid metabolism in adult liver, and has recently been proposed as a sensitive and specific circulating biomarker of hepatic injury. The purpose of this study was to assess miR-122 serum levels in mice receiving an MCD diet for 0, 3, 7, 14, 28 and 56 days and compare the performance vs. routine clinical chemistry when benchmarked against the histopathological liver findings. MiR-122 levels were quantified in serum using RT-qPCR. Both miR-122 and ALT/AST levels were significantly elevated in serum at all timepoints. MiR-122 levels increased on average by 40-fold after 3 days of initiating the MCD diet, whereas ALT and AST changes were 4.8- and 3.3-fold, respectively. In general, miR-122 levels remained elevated across all time points, whereas the ALT/AST increases were less robust but correlated with the progressive severity of NASH as assessed by histopathology. In conclusion, serum levels of miR-122 can potentially be used as a sensitive biomarker for the early detection of hepatotoxicity and can aid in monitoring the extent of NAFLD-associated liver injury in mouse efficacy models. Copyright © 2013 John Wiley & Sons, Ltd.
Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Sümegi, Katalin; Szabó, Melinda; Hetyésy, Katalin; Valasek, Andrea; Janicsek, Ingrid; Wittmann, István; Melegh, Béla
2011-03-01
Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.
Croyal, Mikaël; Tran, Thi-Thu-Trang; Blanchard, Rose Hélène; Le Bail, Jean-Christophe; Villard, Elise F; Poirier, Bruno; Aguesse, Audrey; Billon-Crossouard, Stéphanie; Ramin-Mangata, Stéphane; Blanchard, Valentin; Nativel, Brice; Chemello, Kévin; Khantalin, Ilya; Thedrez, Aurélie; Janiak, Philip; Krempf, Michel; Boixel, Christophe; Lambert, Gilles; Guillot, Etienne
2018-05-31
Therapeutic antibodies targeting proprotein convertase subtilisin kexin type 9 (PCSK9) (e.g. alirocumab) lower low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in clinical trials. We recently showed that PCSK9 enhances apolipoprotein(a) [apo(a)] secretion from primary human hepatocytes but does not affect Lp(a) cellular uptake. Here, we aimed to determine how PCSK9 neutralization modulates Lp(a) levels in vivo Six nonhuman primates (NHP) were treated with alirocumab or a control antibody (IgG1) in a crossover protocol. After the lowering of lipids reached steady state, NHP received an intravenous injection of [ 2 H 3 ]-leucine, and blood samples were collected sequentially over 48 h. Enrichment of apolipoproteins in [ 2 H 3 ]-leucine was assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kinetic parameters were calculated using numerical models with the SAAMII software. Compared with IgG1, alirocumab significantly reduced total cholesterol (TC) (-28%), LDL-C (-67%), Lp(a) (-56%), apolipoprotein B100 (apoB100) (-53%), and apo(a) (-53%). Alirocumab significantly increased the fractional catabolic rate of apoB100 (+29%) but not that of apo(a). Conversely, alirocumab sharply and significantly reduced the production rate (PR) of apo(a) (-42%), but not significantly that of apoB100, compared with IgG1, respectively.In line with the observations made in human hepatocytes, the present kinetic study establishes that PCSK9 neutralization with alirocumab efficiently reduces circulating apoB100 and apo(a) levels by distinct mechanisms: apoB primarily by enhancing its catabolism and apo(a) primarily by lowering its production. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Zhou, Mi; Bao, Yuqian; Lu, Junxi; Zhou, Jian; Jia, Weiping
2011-01-01
Adipocyte fatty acid-binding protein (A-FABP) has been shown to play important roles in the development of metabolic syndrome, diabetes, and cardiovascular diseases. In this study we investigated the possible role of A-FABP in the development of cardiac dysfunction related to rosiglitazone treatment. A total of 84 patients with newly diagnosed type 2 diabetes were treated with rosiglitazone for 48 weeks. Circulating A-FABP and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were determined at baseline and repeated at 24 and 48 weeks. After the 48-week rosiglitazone treatment period, serum levels of both A-FABP and NT-proBNP increased progressively and significantly (P<0.01). Serum levels of A-FABP were demonstrated to be positively correlated with gender and waist circumference both at baseline and the end of the study, and with age, body mass index (BMI), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and NT-proBNP at 48 weeks (all P<0.05). In addition, changes in A-FABP were significantly and positively correlated with changes in NT-proBNP (r = 0.239, P = 0.039). Furthermore, multiple stepwise regression analysis showed that the changes in A-FABP were independently and positively associated with changes in NT-proBNP after adjusting for confounding factors (β = 0.320, P = 0.007). Rosiglitazone-mediated increase of A-FABP is closely associated with the elevation of NT-proBNP, a well-established marker of cardiac dysfunction. The findings of our study imply that A-FABP may mediate the cross-talk between heart and adipose tissue.
Huang, Fuqing; Zhang, Fen; Xu, Di; Zhang, Zhihong; Xu, Feng; Tao, Xueying; Qiu, Liang; Wei, Hua
2018-06-20
Enterococcus faecium WEFA23 is a potential probiotic strain from Chinese infants with the ability to decrease cholesterol levels. Aiming to explore the mechanism of E. faecium WEFA23 in lowering cholesterol in vivo, we examined the gene transcriptions related to cholesterol metabolism, the composition of bile acids in feces, the synthesis of trimethylamine N-oxide (TMAO) in liver, and the composition of the gut microbiota of rats. We found that E. faecium WEFA23 enhanced the synthesis of bile acids by promoting cholesterol excretion, upregulating the genes transcript level relevant to cholesterol decomposition and transportation, and downregulating the genes involved in cholesterol synthesis. In addition, E. faecium WEFA23 not only downregulated the transcript levels of farnesoid X receptor and fibroblast growth factor 15 as well as flavin-containing monooxygenase 3, but also decreased the TMAO production followed by increasing the CYP7A1 transcript level. Furthermore, when orally administered to rats for 35 d, E. faecium WEFA23 improved the gut microbiota diversity of rats fed a high-fat diet. Therein, the ratio of Bacteroidetes to Firmicutes and the abundance of Rikenellaceae increased, whereas the number of Veillonellaceae decreased. These results suggest that reduction of cholesterol level by E. faecium WEFA23 might be related to the changes in the gut microbiota. Our finding provides important information on lowering cholesterol by E. faecium and reveals that Enterococcus spp. might have the potential to decrease the TMAO level. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kariv-Inbal, Zehavit; Yacobson, Shiri; Berkecz, Robert; Peter, Maria; Janaky, Tamas; Lütjohann, Dieter; Broersen, Laus M; Hartmann, Tobias; Michaelson, Daniel M
2012-01-01
Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD). Epidemiological studies revealed that consumption of docosahexaenoic acid (DHA: 22 : 6 (ω3)), a major brain polyunsaturated fatty acid, is protective for AD and that elevated cholesterol levels are an AD risk factor. We presently investigated the extent to which the pathological effects of apoE4 in vivo can be prevented by consuming fish oil (DHA) or can be modified by cholesterol. Accordingly, apoE3- and apoE4-targeted replacement mice were subjected, following weaning, to a fish oil diet enriched in DHA and to a cholesterol-containing diet under regular and enriched environments. Cholesterol metabolism in the hippocampus and the corresponding phospholipid and fatty acid levels were affected by fish oil (DHA) and cholesterol diets and by environmental stimulation. Importantly, cholesterol metabolism and the fatty acid levels were not affected by apoE4. The phospholipid levels were, however, affected by apoE4. This effect was most pronounced in the cholesterol-fed mice and was abolished by the fish oil (DHA) diet. ApoE4 elevated hippocampal intraneuronal amyloid-β levels under regular conditions and lowered them following environmental stimulation, relative to those of the apoE3 mice. ApoE4 also elevated the levels of the presynaptic transporters Vglut and Vgat, and decreased behavioral performance in an object recognition test. Importantly, all of these apoE4 phenotypes were abolished by the fish oil (DHA) diet, whereas the cholesterol diet modified them. These findings suggest that a fish oil (DHA) diet could be used to attenuate the effects of apoE4 in AD.
Agostinis-Sobrinho, C; Santos, R; Moreira, C; Abreu, S; Lopes, L; Oliveira-Santos, J; Rosário, R; Póvoas, S; Mota, J
2016-06-01
Paradoxically, recent investigations have showed that adiponectin levels are inversely associated with muscle strength. However, to date, there is a lack of knowledge on the relationship between muscular fitness (MF) and adiponectin levels in adolescents. We aimed to examine the independent associations between MF and adiponectin levels in adolescents, controlling for several potential confounders. This is a cross-sectional analysis with 529 Portuguese adolescents aged 12-18 years. A MF score was computed as the mean of the handgrip strength and standing long jump standardized values by age and gender. We measured fasting glucose, insulin, HDL-cholesterol, C-reactive protein and adiponectin. Linear regression analysis showed a significant inverse association between adiponectin (Z-score by age and sex) and MF score, after adjustments for age, sex, pubertal stage, socioeconomic status, adherence to the Mediterranean diet, body mass index, HOMA-IR, HDL-cholesterol, C-reactive protein and cardiorespiratory fitness (unstandardized β = -0.176; p < 0.005). Analysis of covariance showed a significant difference between the Low MF/Non-overweight group and the High MF/Non-overweight Group (p < 0.05) and between the Low MF/Non-overweight and High MF/Overweight Group (p < 0.05) (F (5, 523) = 2.262, p = 0.047). Adiponectin circulating levels are inversely and independently associated with MF. In non-overweight adolescents, those with high levels of MF presented lower levels of adiponectin compared to those with Low MF. Likewise, overweight adolescents with High MF presented lower levels of serum adiponectin than non-overweight adolescents with Low MF. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A
2018-05-01
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Abdominal obesity and circulating metabolites: A twin study approach.
Bogl, Leonie H; Kaye, Sanna M; Rämö, Joel T; Kangas, Antti J; Soininen, Pasi; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Ortega-Alonso, Alfredo; Rissanen, Aila; Ala-Korpela, Mika; Kaprio, Jaakko; Pietiläinen, Kirsi H
2016-03-01
To investigate how obesity, insulin resistance and low-grade inflammation link to circulating metabolites, and whether the connections are due to genetic or environmental factors. Circulating serum metabolites were determined by proton NMR spectroscopy. Data from 1368 (531 monozygotic (MZ) and 837 dizygotic (DZ)) twins were used for bivariate twin modeling to derive the genetic (rg) and environmental (re) correlations between waist circumference (WC) and serum metabolites. Detailed examination of the associations between fat distribution (DEXA) and metabolic health (HOMA-IR, CRP) was performed among 286 twins including 33 BMI-discordant MZ pairs (intrapair BMI difference ≥3 kg/m(2)). Fat, especially in the abdominal area (i.e. WC, android fat % and android to gynoid fat ratio), together with HOMA-IR and CRP correlated significantly with an atherogenic lipoprotein profile, higher levels of branched-chain (BCAA) and aromatic amino acids, higher levels of glycoprotein, and a more saturated fatty acid profile. In contrast, a higher proportion of gynoid to total fat associated with a favorable metabolite profile. There was a significant genetic overlap between WC and several metabolites, most strongly with phenylalanine (rg=0.40), glycoprotein (rg=0.37), serum triglycerides (rg=0.36), BCAAs (rg=0.30-0.40), HDL particle diameter (rg=-0.33) and HDL cholesterol (rg=-0.30). The effect of acquired obesity within the discordant MZ pairs was particularly strong for atherogenic lipoproteins. A wide range of unfavorable alterations in the serum metabolome was associated with abdominal obesity, insulin resistance and low-grade inflammation. Twin modeling and obesity-discordant twin analysis suggest that these associations are partly explained by shared genes but also reflect mechanisms independent of genetic liability. Copyright © 2015 Elsevier Inc. All rights reserved.
Cinnamon improves glucose and lipids of people with type 2 diabetes.
Khan, Alam; Safdar, Mahpara; Ali Khan, Mohammad Muzaffar; Khattak, Khan Nawaz; Anderson, Richard A
2003-12-01
The objective of this study was to determine whether cinnamon improves blood glucose, triglyceride, total cholesterol, HDL cholesterol, and LDL cholesterol levels in people with type 2 diabetes. A total of 60 people with type 2 diabetes, 30 men and 30 women aged 52.2 +/- 6.32 years, were divided randomly into six groups. Groups 1, 2, and 3 consumed 1, 3, or 6 g of cinnamon daily, respectively, and groups 4, 5, and 6 were given placebo capsules corresponding to the number of capsules consumed for the three levels of cinnamon. The cinnamon was consumed for 40 days followed by a 20-day washout period. After 40 days, all three levels of cinnamon reduced the mean fasting serum glucose (18-29%), triglyceride (23-30%), LDL cholesterol (7-27%), and total cholesterol (12-26%) levels; no significant changes were noted in the placebo groups. Changes in HDL cholesterol were not significant. The results of this study demonstrate that intake of 1, 3, or 6 g of cinnamon per day reduces serum glucose, triglyceride, LDL cholesterol, and total cholesterol in people with type 2 diabetes and suggest that the inclusion of cinnamon in the diet of people with type 2 diabetes will reduce risk factors associated with diabetes and cardiovascular diseases.
Smith, U; Holm, G
1982-10-01
Six healthy volunteers and 17 diabetics (6 insulin-dependent and 11 diet- and tablet-treated) were treated with a special processed, palatable guar gum (10 g b.i.d. immediately before meals) for periods of one or three weeks or, in some cases, up to 13 weeks. A standardized test meal was given to study the effect of the fiber on postprandial glucose levels. Ten g guar was stirred in water and taken immediately before the test meal. The postprandial blood glucose levels were similar in the healthy volunteers but significantly lower in the diabetics following treatment with guar for one and three weeks, respectively. Furthermore, the fasting blood glucose levels were significantly lower in the diabetics after three, but not one, weeks of treatment. The lower postprandial glucose levels were coupled with attenuated and delayed insulin levels in accordance with an effect of guar gum on the rate of carbohydrate absorption. The cholesterol levels were on average reduced with 14% in the diabetics following three weeks' treatment with guar. The higher the initial cholesterol level, the greater the reduction in cholesterol; 26% reduction was achieved in four patients with initial levels above 7 mM. The alpha-lipoprotein cholesterol levels were not significantly changed, thus an increase in the alpha-lipoprotein cholesterol/total serum cholesterol ratio was obtained. Neither plasma triglycerides nor body weights altered during treatment. The reported side-effects were as expected and were usually mild and transient (e.g. increased flatulence). The data show that guar gum also reduces postprandial glucose levels on a long-term basis and may improve the diabetic control. Additionally, treatment with this fiber leads to a concentration-dependent decrease in cholesterol levels.
Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP.
Zhang, Li; Rajbhandari, Prashant; Priest, Christina; Sandhu, Jaspreet; Wu, Xiaohui; Temel, Ryan; Castrillo, Antonio; de Aguiar Vallim, Thomas Q; Sallam, Tamer; Tontonoz, Peter
2017-10-25
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Association of ADRB2 polymorphism with triglyceride levels in Tongans.
Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro
2013-07-23
Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W.; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer’s disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD. PMID:29556189
Treating elevated cholesterol levels: the great Satan in perspective.
Gibaldi, M; Kradjan, W
1996-03-01
The purpose of this review is to provide perspective on the developments leading to the recognition of high cholesterol levels as a risk factor for coronary heart disease (CHD). Another objective is to consider the unfolding controversies regarding the relative value of cholesterol-lowering drug therapy in primary and secondary prevention. Should physicians use lipid-lowering drugs to treat patients with elevated cholesterol levels but no clinical evidence of coronary disease, or limit intervention to patients with a previous history of angina, coronary angioplasty, coronary artery bypass surgery, or myocardial infarction? This review finds inadequate data to support a recommendation for screening large populations for the presence of elevated cholesterol levels or for primary prevention in those known to have high cholesterol. On the other hand, there is mounting evidence to support vigorous intervention in those with known coronary disease. Further study is needed to determine whether a subset of patients with one or more well-defined risk factors would benefit from primary prevention.
ERIC Educational Resources Information Center
National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.
Precise and accurate cholesterol measurements are required to identify and treat individuals with high blood cholesterol levels. However, the current state of reliability of blood cholesterol measurements suggests that considerable inaccuracy in cholesterol testing exists. This report describes the Laboratory Standardization Panel findings on the…
Zwald, Marissa L; Akinbami, Lara J; Fakhouri, Tala H I; Fryar, Chryl D
2017-03-01
Data from the National Health and Nutrition Examination Survey •The prevalence of low high-density lipoprotein (HDL) cholesterol was significantly higher among adults who did not meet recommended physical activity guidelines (21.0%) than adults who met the guidelines (17.7%). •Low HDL cholesterol prevalence differed significantly for both men and women by adherence to physical activity guidelines. •Prevalence of low HDL cholesterol declined as age increased for both those who did and did not meet the physical activity guidelines. •Non-Hispanic white and non-Hispanic black adults who did not meet the physical activity guidelines had a higher prevalence than those who met the guidelines. •Low HDL cholesterol prevalence declined with increasing education level regardless of adherence to physical activity guidelines. Regular physical activity can improve cholesterol levels among adults, including increasing high-density lipoprotein (HDL) cholesterol (1). HDL cholesterol is known as "good" cholesterol because high levels can reduce cardiovascular disease risk (2). The 2008 Physical Activity Guidelines for Americans recommend that adults engage in 150 minutes or more of moderate-intensity aerobic activity per week, 75 minutes of vigorous-intensity aerobic activity per week, or an equivalent combination (3). Adherence to these guidelines is expected to decrease the prevalence of low HDL cholesterol levels (4-8). This report presents national data for 2011-2014 on low HDL cholesterol prevalence among U.S. adults aged 20 and over, by whether they met these guidelines. All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.
Shiels, Paul G; McGlynn, Liane M; MacIntyre, Alan; Johnson, Paul C D; Batty, G David; Burns, Harry; Cavanagh, Jonathan; Deans, Kevin A; Ford, Ian; McConnachie, Alex; McGinty, Agnes; McLean, Jennifer S; Millar, Keith; Sattar, Naveed; Tannahill, Carol; Velupillai, Yoga N; Packard, Chris J
2011-01-01
It has previously been hypothesized that lower socio-economic status can accelerate biological ageing, and predispose to early onset of disease. This study investigated the association of socio-economic and lifestyle factors, as well as traditional and novel risk factors, with biological-ageing, as measured by telomere length, in a Glasgow based cohort that included individuals with extreme socio-economic differences. A total of 382 blood samples from the pSoBid study were available for telomere analysis. For each participant, data was available for socio-economic status factors, biochemical parameters and dietary intake. Statistical analyses were undertaken to investigate the association between telomere lengths and these aforementioned parameters. The rate of age-related telomere attrition was significantly associated with low relative income, housing tenure and poor diet. Notably, telomere length was positively associated with LDL and total cholesterol levels, but inversely correlated to circulating IL-6. These data suggest lower socio-economic status and poor diet are relevant to accelerated biological ageing. They also suggest potential associations between elevated circulating IL-6, a measure known to predict cardiovascular disease and diabetes with biological ageing. These observations require further study to tease out potential mechanistic links.
NASA Astrophysics Data System (ADS)
Sa'adah, Noor Nailis; Purwani, Kristanti Indah; Nurhayati, Awik Puji Dyah; Ashuri, Nova Maulidina
2017-06-01
Diet of high lipids cause hyperlipidemia, which marked by an increase of total cholesterols, triglycerides, LDL-C, and decreasing of HDL-C. Hyperlipidemia lead the occurrence of atherosclerosis, one of factors that trigger cardiovascular disease, as hypertention; coronary heart and stroke. Parijoto (M. speciosa) is endemic plants in Asia with a distribution center in Malaysia, Indonesia and Philippines. Parijoto contain phytochemical components such as flavonoids, saponins and kardenolin. Flavonoid potensial as an antioxidants and can improve the hyperlipidemia condition. This study was aimed to determine lipid profiles and atherogenic index of hyperlipidemic Wistar rats (R. norvegicus Berkenhout, 1769) which given the methanolic extract of Parijoto (M. speciosa). The research was done with pre and post test randomized control group design. Rats were given a mixture of duck yolk and reused cooking oil (1:1) orally as much as 1% of body weight (BW) for 30 days. After hyperlipidemia achieved, rats were divided into 5 group: normal rats, hyperlipidemic rats, hyperlipidemic rats were given the methanolic extract of Parijoto (M. speciosa) 500 mg/kg, 1000 mg/kg, and 1500 mg/kg BW. Blood samples were collected when rats in hyperlipidemia conditions and after treatment with the methanolic extract of Parijoto (M. speciosa) for 30 days. The data of total cholesterol, HDL-Cholesterol, LDL-Cholesterol level, and atherogenic index were analyzed using ANOVA followed by Tukey test at 5% significance level. The result showed that giving of methanolic extract of Parijoto (M. speciosa) in hyperlipidemic rats reduced the total cholesterol, LDL-Cholesterol levels, and increased of HDL-cholesterol levels significantly (p<0.01), so atherogenic index reduced significantly too (p<0.01). Total cholesterol and LDL-Cholesterol levels were positively correlated with the atherogenic index, whereas HDL-cholesterol levels were negatively correlated with the atherogenic index.
Borzyszkowska, Joanna; Stanislawska-Sachadyn, Anna; Wirtwein, Marcin; Sobiczewski, Wojciech; Ciecwierz, Dariusz; Targonski, Radoslaw; Gruchala, Marcin; Rynkiewicz, Andrzej; Limon, Janusz
2012-05-01
This study examines whether renin-angiotensin-aldosterone system gene polymorphisms: ACE (encoding for angiotensin converting enzyme) c.2306-117_404 I/D, AGTR1 (encoding for angiotensin II type-1 receptor) c.1080*86A>C and CYP11B2 (encoding for aldosterone synthase) c.-344C>T are associated with the extension of coronary atherosclerosis in a group of 647 patients who underwent elective coronary angiography. The extension of CAD was evaluated using the Gensini score. The polymorphisms were determined by PCR and RFLP assays. The associations between genotypes and the extent of coronary atherosclerosis were tested by the Kruskal-Wallis test, followed by pairwise comparisons using Wilcoxon test. The population has been divided into groups defined by: sex, smoking habit, past myocardial infarction, BMI (>, ≤ 25), age (>, ≤ 55), diabetes mellitus, level of total cholesterol (>, ≤ 200 mg/dl), LDL cholesterol (>, ≤ 130 mg/dl), HDL cholesterol (>, ≤ 40 mg/dl), triglycerides (>, ≤ 150 mg/dl). Significant associations between the ACE c.2306-117_404 I/D polymorphism and the Gensini score in men with high total cholesterol levels (P(Kruskal-Wallis) = 0.008; P(adjusted) = 0.009), high level of LDL cholesterol (P(Kruskal-Wallis) = 0.016; P(adjusted) = 0.028) and low level of HDL cholesterol (P(Kruskal-Wallis) = 0.04; P(adjusted) = 0.055) have been found. No association between the AGTR1 c.1080*86A>C and CYP11B2 c.-344C>T and the Gensini score has been found. These results suggest that men who carry ACE c.2306-117_404 DD genotype and have high total cholesterol, high LDL cholesterol and low HDL cholesterol levels may be predisposed to the development of more severe CAD.
Lv, Yun-cheng; Yang, Jing; Yao, Feng; Xie, Wei; Tang, Yan-yan; Ouyang, Xin-ping; He, Ping-ping; Tan, Yu-lin; Li, Liang; Zhang, Min; Liu, Dan; Cayabyab, Francisco S; Zheng, Xi-Long; Tang, Chao-ke
2015-05-01
Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro
2018-01-01
Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.
Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.
Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S
2000-12-08
The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.
Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland
2003-04-11
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.
Effect of diet-induced weight loss on inflammatory cytokines in obese women.
Tajik, N; Keshavarz, S A; Masoudkabir, F; Djalali, M; Sadrzadeh-Yeganeh, H Hale; Eshraghian, M R; Chamary, M; Ahmadivand, Z; Yazdani, T; Javanbakht, M H
2013-04-01
Obesity is associated with lowgrade systemic inflammation which has been linked to the increased risk of cardiovascular disease and Type 2 diabetes in obese patients. To evaluate changes in pro/anti-inflammatory adipocytokines and metabolic profile after moderate diet-induced weight loss. Twenty-nine pre-menopausal obese women (body mass index ≥30 kg/m2) aged 21 to 54 years without diabetes, hypertension, or hyperlipidemia, were enrolled in this study. We measured anthropometric parameters, lipid and glucose profiles, interleukin (IL)-6, IL-10, and IL-18 in obese women, who then entered a medically supervised program aimed at reducing body weight by 10% or more. Obese women restricted their caloric intake (by 500-1000 kcal/day) and consumed 50 g/day of a fiber supplement (Slim Last Powder) for 12 weeks. By completing the dietary intervention program, weight (Δ = -10.0%, p<0.0001), body mass index, waist circumference, triceps skinfold thickness, total cholesterol, triglyceride, and fasting plasma glucose significantly decreased, while HDL-cholesterol significantly increased. While plasma levels of IL-6 and IL-18 decreased by 27% after 12 weeks, no significant change was observed in circulating levels of IL-10. Our study suggests that an improved body composition induced by restriction of energy intake is associated with favorable serum concentrations of IL-6 and IL-18 in obese women. However, the anti-inflammatory IL-10 is not affected by a moderate weight decrease.
Williams, C M
2001-08-01
Previous research concerning protective cardiovascular properties of olive oil has focussed on the beneficial consequences on blood cholesterol levels of substituting dietary saturated fatty acids with oleic acid. Despite evidence implicating raised circulating triglycerides in the postprandial state in the pathogenesis of atherosclerosis and thrombosis, little research had been conducted to investigate effects of monounsaturated fatty acids on postprandial events. In a case control study of southern (n = 30) versus northern European (n = 30) men, significant differences in postprandial triglyceride and apolipoprotein (apo) B-48 response were observed, with evidence of attenuated and potentially beneficial responses in the Southern Europeans. In a randomised controlled study manufactured foods typical of the Northern European food culture, were used to deliver diets rich in either saturated or monounsaturated fatty acids (from olive oil). During the period of the olive oil enriched diet, LDL-cholesterol levels were 15% lower (p < 0.001) than during the saturated fat diet. Postprandial triglyceride response was shifted towards the profile seen in southern European men and the postprandial activation of factor VII, as well as the production of factor VII antigen, was reduced on the olive oil diet. The study demonstrated significant improvements in biomarkers for cardiovascular disease in subjects osed to high olive oil diets (Southern Europeans) or transferred to such diets in the short term (Northern European volunteers). The study produced novel findings with respect to potential mechanisms by which diets high in monounsaturated fatty acids (MUFA) can reduce population risk of cardiovascular disease.
Are functional foods redefining nutritional requirements?
Jones, Peter J; Varady, Krista A
2008-02-01
Functional foods are increasing in popularity owing to their ability to confer health and physiological benefits. Nevertheless, the notion that functional foods improve health when providing nutrients at levels above and beyond existing recommended intakes is inconsistent with the definition of requirement. This disparity highlights the need for an alternative definition of nutrient requirement. The present objective is to examine distinctions between optimization of health, as defined by what we currently deem as required intakes, versus adding physiological benefit using bioactive agents found in functional foods. Presently, requirement is defined as the lowest amount of intake of a nutrient that will maintain a defined level of nourishment for a specific indicator of adequacy. In contrast, functional foods are described as ingredients that are not necessary for body function, yet provide added physiological benefit that confer better overall health. Plant sterols are one example of such an ingredient. Plant sterols lower plasma cholesterol concentrations, and may thus be considered essential nutrients in physiological situations where circulating cholesterol concentrations are high. Similarly, intakes of omega-3 fats beyond existing requirement may confer additional health benefits such as hypolipidemic and anti-diabetic effects. These examples underscore the inconsistencies between what is defined as a nutrient requirement versus what is identified as a health benefit of a functional food. Such discrepancies emphasize the need for a more all-encompassing definition of a nutrient requirement; that is, one that moves beyond the prevention of overt deficiency to encompass improved health and disease risk reduction.
Wang, Yaoyong; Sawashita, Jinko; Qian, Jinze; Zhang, Beiru; Fu, Xiaoying; Tian, Geng; Chen, Lei; Mori, Masayuki; Higuchi, Keiichi
2011-01-01
Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy. PMID:21622630
Won, Jane I; Zhang, Jun; Tecson, Kristen M; McCullough, Peter A
2017-01-01
Homozygous familial hypercholesterolemia (HoFH) is an autosomal codominant disorder manifested by high concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol, and premature cardiovascular disease. Despite conventional lipid-lowering therapy, LDL cholesterol levels remain elevated in patients with HoFH; these patients are considered to be at high risk for cardiovascular events. In 2012-2013, two drugs with novel mechanisms of action were approved by the US Food and Drug Administration for the treatment of HoFH: lomitapide mesylate and mipomersen. Both of these treatments reduce total cholesterol, LDL cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein a, and triglyceride levels. This review describes the clinical tradeoffs in efficacy and hepatotoxicity of these drugs in two cases of HoFH.
Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters[S
Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen
2017-01-01
The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI. PMID:27940481
Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters.
Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen
2017-02-01
The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI.
Cholesterol in islet dysfunction and type 2 diabetes
Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.
2008-01-01
Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189
Whittaker, Anne; Sofi, Francesco; Luisi, Maria Luisa Eliana; Rafanelli, Elena; Fiorillo, Claudia; Becatti, Matteo; Abbate, Rosanna; Casini, Alessandro; Gensini, Gian Franco; Benedettelli, Stefano
2015-05-11
Khorasan wheat is an ancient grain with previously reported health benefits in clinically healthy subjects. The aim of this study was to examine whether a replacement diet, thereby substituting all other cereal grains, with products made with organic khorasan wheat could provide additive protective effects in reducing lipid, oxidative and inflammatory risk factors, in patients with Acute Coronary Syndromes (ACS) in comparison to a similar replacement diet using products made from organic modern wheat. A randomized double-blinded crossover trial with two intervention phases was conducted on 22 ACS patients (9 F; 13 M). The patients were assigned to consume products (bread, pasta, biscuits and crackers) made either from organic semi-whole khorasan wheat or organic semi-whole control wheat for eight weeks in a random order. On average, patients ingested 62.0 g dry weight (DW) day-1 khorasan or control semolina; and 140.5 g DW day-1 khorasan or control flour, respectively. An eight-week washout period was implemented between the respective interventions. Blood analyses were performed both at the beginning and end of each intervention phase; thereby permitting a comparison of both the khorasan and control intervention phases, respectively, on circulatory risk factors for the same patient. Consumption of products made with khorasan wheat resulted in a significant amelioration in total cholesterol (-6.8%), low-density lipoprotein cholesterol (LDL-C) (-8.1%) glucose (-8%) and insulin (-24.6%) from baseline levels, independently of age, sex, traditional risk factors, medication and diet quality. Moreover, there was a significant reduction in reactive oxygen species (ROS), lipoperoxidation of circulating monocytes and lymphocytes, as well as in the levels of Tumor Necrosis Factor-alpha. No significant differences from baseline in the same patients were observed after the conventional control wheat intervention phase. The present results suggest that a replacement diet with cereal products made from organic khorasan wheat provides additional protection in patients with ACS. Circulating cardiovascular risk factors, including lipid parameters, and markers of both oxidative stress and inflammatory status, were reduced, irrespective of the number and combination of medicinal therapies with proven efficacy in secondary prevention.
Work, sleep, and cholesterol levels of U.S. long-haul truck drivers
LEMKE, Michael K.; APOSTOLOPOULOS, Yorghos; HEGE, Adam; WIDEMAN, Laurie; SÖNMEZ, Sevil
2016-01-01
Long-haul truck drivers in the United States experience elevated cardiovascular health risks, possibly due to hypercholesterolemia. The current study has two objectives: 1) to generate a cholesterol profile for U.S. long-haul truck drivers; and 2) to determine the influence of work organization characteristics and sleep quality and duration on cholesterol levels of long-haul truck drivers. Survey and biometric data were collected from 262 long-haul truck drivers. Descriptive analyses were performed for demographic, work organization, sleep, and cholesterol measures. Linear regression and ordinal logistic regression analyses were conducted to examine for possible predictive relationships between demographic, work organization, and sleep variables, and cholesterol outcomes. The majority (66.4%) of drivers had a low HDL (<40 mg/dL), and nearly 42% of drivers had a high-risk total cholesterol to HDL cholesterol ratio. Sleep quality was associated with HDL, LDL, and total cholesterol, and daily work hours were associated with LDL cholesterol. Workday sleep duration was associated with non-HDL cholesterol, and driving experience and sleep quality were associated with cholesterol ratio. Long-haul truck drivers have a high risk cholesterol profile, and sleep quality and work organization factors may induce these cholesterol outcomes. Targeted worksite health promotion programs are needed to curb these atherosclerotic risks. PMID:28049935
Pla2g12b and Hpn Are Genes Identified by Mouse ENU Mutagenesis That Affect HDL Cholesterol
Aljakna, Aleksandra; Choi, Seungbum; Savage, Holly; Hageman Blair, Rachael; Gu, Tongjun; Svenson, Karen L.; Churchill, Gary A.; Hibbs, Matt; Korstanje, Ron
2012-01-01
Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3′ splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism. PMID:22912808
Olatunji, L A; Soladoye, A O
2007-06-01
Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.
The effect of cholesterol overload on mouse kidney and kidney-derived cells.
Honzumi, Shoko; Takeuchi, Miho; Kurihara, Mizuki; Fujiyoshi, Masachika; Uchida, Masashi; Watanabe, Kenta; Suzuki, Takaaki; Ishii, Itsuko
2018-11-01
Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.
Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... A cholesterol test is done to diagnose a lipid disorder. Different experts recommend different starting ages. Recommended ...
Ye, Yuanyuan; Wang, Wei; Zhao, Haijian; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo
2017-09-01
To investigate the situation of Internal Quality Control (IQC) practice for total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol from 2014 to 2016 in laboratories in China and provide improvement measurements. A web-based External Quality Assessment (EQA) system was used to collect IQC data of lipid parameters in laboratories which continuously participated in the national EQA programs in China from 2014 to 2016. Pass rate of the coefficients of variation (CVs) of two level quality controls in four lipid parameters were calculated according to six quality specifications for precision to evaluate the current status of precision level of the four lipid parameters and their change over time in China. 533, 512, 504, and 466 laboratories continuously reported the data of level one for total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol, and 212, 210, 208 and 198 laboratories reported the level two, respectively. The percentage of laboratories meeting the quality specification varied based on different criteria. Non-significant change can be found in the pass rate of CVs over time. The number of laboratories using a closed system increased over time, but still only accounted for a small proportion. There is no significant difference in the pass rate of CVs between closed and open systems. Triglycerides currently have a fairly good performance in China. While the performance of laboratories on total cholesterol, HDL-cholesterol and LDL-cholesterol has yet to be improved.
Impact of a public cholesterol screening program.
Fischer, P M; Guinan, K H; Burke, J J; Karp, W B; Richards, J W
1990-12-01
The National Cholesterol Education Program (NCEP) has endorsed physician case finding as the primary method to detect individuals with elevated cholesterol levels. Despite this recommendation, promotional and for-profit public screening programs have flourished. We surveyed participants of a mall-based cholesterol screening program 1 year after their screening. Sixty-four percent of those screened had not previously known their cholesterol levels. Those who were newly screened were less likely to benefit from this testing than the general public, since they were older (mean age, 55.3 years), more likely to be female (67.4%), and nonsmokers (88%). Screenees had excellent recall of their cholesterol level (mean absolute reporting error, 0.24 mmol/L [9 mg/dL]) and a good understanding of cholesterol as a coronary heart disease risk. Those with elevated cholesterol levels reported high distress from screening but no reduction in overall psychosocial well-being and an actual decrease in absenteeism. Only 53.7% of all who were advised to seek follow-up because of an elevated screening value had done so within the year following the screening program. However, of those with values greater than 6.2 mmol/L (240 mg/dL), 68% had sought follow-up. Many of those who participate in public screening programs have been previously tested, fall into low-benefit groups, or fail to comply with recommended follow-up. We therefore conclude that cholesterol screening programs of the type now commonly offered are unlikely to contribute greatly to the national efforts to further reduce coronary heart disease.
de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; Aller, R; Ortola, A; Gómez, E; Lopez, J J
2018-03-01
Several adiponectin gene (ADIPOQ) single nucleotide polymorphisms (SNPS) have been related with adiponectin levels and risk for obesity. The aim of our study was to analyze the effect of rs1501299 ADIPOQ gene polymorphism and dietary intake on total adiponectin levels and insulin resistance after two hypocaloric diets in obese subjects. A Caucasian population of 284 obese patients was enrolled in a randomized clinical trial with two hypocaloric diets (I: moderate carbohydrates vs II: low fat). Before and after 12 weeks on each hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were realized. The statistical analysis was performed for the combined GT and TT as a group (mutant) and GG as second group (wild) (dominant model). The genotype distribution was 149 GG, 124 GT and 21 TT. With caloric restriction strategies, body weight, body mass index (BMI), fat mass, waist circumference, systolic blood pressure, total LDL cholesterol, LDL cholesterol and leptin levels decreased. Only in subjects with GG genotype, diet I and II decreased fasting insulin levels, HOMA-IR and adiponectin levels. The improvement was similar with both diets; insulin concentrations (Diet I: -4.7 ± 1.4 mUI/L vs. Diet II: -5.9 ± 1.9 mUI/L: p = .76), HOMA-IR (Diet I: -1.4 ± 0.6 units vs. Diet II: -2.0 ± 0.7 units: p = .56) and adiponectin levels (Diet I: -10.2 ± 3.4 ng/dl vs. Diet II: -14.0 ± 2.9 ng/dl: p = .33). The GG genotype of ADIPOQ gene variant (rs1501299) is associated with an increase in adiponectin levels and a decrease of insulin and HOMA-IR after weight loss. Copyright © 2018 Elsevier B.V. All rights reserved.
de Luis, Daniel Antonio; Pacheco, David; Primo, D; Izaola, Olatz; Aller, R
2017-12-01
The effects of rs1501299 variant of ADIPO gene on weight loss after bariatric surgery have not been evaluated. We decided to investigate the role of this genetic variant on anthropometric and biochemical outcomes such as serum adiponectin levels after biliopancreatic diversion (BPD) surgery in morbidly obese patients during 3 years. A sample of 64 patients with morbid obesity without diabetes mellitus was operated. Biochemical and anthropometric evaluation were realized at basal visit and at each visit during 3 years (1, 2, and 3 years). Percent excess weight loss, body mass index, weight, waist circumference, fat mass, blood pressure, fasting glucose, LDL cholesterol, total cholesterol, and triglycerides levels improved in both genotype groups. Fasting insulin levels and HOMA-IR decreased significantly only in non-T allele carriers. The decrease of fasting insulin levels at 3 years (delta -9.2 ± 3.4 vs -2.9 ± 2.2 mUI/L; p = 0.01) and HOMA-IR (delta -1.3 ± 0.3 vs -0.8 ± 0.4 units; p = 0.03) were higher in non-T allele carriers than T carriers. Adiponectin levels increased in all times after surgery in non-T allele carriers, too. The increase of adiponectin levels at 3 years (delta 12.2 ± 3.6 vs 1.8 ± 1.2 ng/mL; p = 0.01) was higher in non-T allele carriers than T carriers. Non-T allele of ADIPOQ gene variant (rs1501299) is associated with increases in adiponectin levels and better improvements of insulin and HOMA-IR after BPD massive weight loss. These parameters remained unchanged in T allele carriers.
The effects of coffee consumption on serum lipids and lipoprotein in healthy individuals.
Onuegbu, A J; Agbedana, E O
2001-01-01
The changes in total serum cholestrol, serum triglyceride, HDL-cholesterol and LDL-cholesterol after twenty eight (28) days of consumption of moderate quantity of a commercial coffee preparation (NESCAFE brand) were studied in 30 human subjects consisting of 20 male and 10 female healthy adults. Significant increases in the mean total serum cholesterol concentration (110.8-126.5 mg/100 mls) and LDL- cholesterol concentration (78.4-94.5 mg/100 ml) were observed in the subjects. No significant differences were obtained in the mean HDL cholesterol concentration and in the mean serum triglyceride levels. The differences observed in the mean total serum cholesterol, LDL cholesterol, HDL- cholesterol and triglyceride concentrations in the individual male and female groups studied were not statistically significant. The results from this study suggest that short-term consumption of coffee may increase the total serum cholesterol and LDL cholesterol levels. It is therefore possible that long-term consumption of coffee may lead to clinically significant alterations in serum lipid profile and could be important in the aetiology of atherosclerotic vascular diseases such as coronary heart disease.
Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles
NASA Astrophysics Data System (ADS)
Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal
2018-02-01
We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.
Contemporary trends in dyslipidemia in the Framingham Heart Study
USDA-ARS?s Scientific Manuscript database
Recent cross-sectional population studies in the United States have shown an increase in obesity, a decrease in cholesterol values, but no changes in levels of high-density lipoprotein cholesterol (HDL-C) or triglycerides (TG). Plasma total cholesterol, HDL-C, and TG levels, measured by the same met...
USDA-ARS?s Scientific Manuscript database
Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...
Chen, Jing; Costa, Lucio G.
2011-01-01
Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (±0.25), 3.6- (±0.42), 4.1- (±0.5), and 1.75- (±0.43) fold, respectively, and Abcg1 by 2.1- (±0.26), 2.2- (±0.33), 2.5- (±0.23), and 2.2- (±0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions. PMID:21628419
Guptha, Soneil; Gupta, Rajeev; Deedwania, Prakash; Bhansali, Anil; Maheshwari, Anuj; Gupta, Arvind; Gupta, Balkishan; Saboo, Banshi; Singh, Jitendra; Achari, Vijay; Sharma, Krishna Kumar
2014-01-01
Objective To determine levels of cholesterol lipoproteins and prevalence of dyslipidemias in urban Asian Indians. Methods Population based 6123 subjects (men 3388) were evaluated. Mean±1SD of various cholesterol lipoproteins (total, HDL, LDL and non-HDL cholesterol) and triglycerides were reported. Subjects were classified according to US National Cholesterol Education Program. Results Age-adjusted levels in men and women were cholesterol total 178.4 ± 39 and 184.6 ± 39, HDL 44.9 ± 11 and 51.1 ± 11, LDL 102.5 ± 33 and 106.2 ± 33, total:HDL 4.15 ± 1.2 and 3.79 ± 1.0 and triglycerides 162.5 ± 83 and 143.7 ± 83 mg/dl. Age-adjusted prevalence (%) in men and women, respectively were, total cholesterol ≥200 mg/dl 25.1 and 24.9, LDL cholesterol ≥130 mg/dl 16.3 and 15.1 and ≥100 mg/dl 49.5 and 49.7, HDL cholesterol <40/<50 mg/dl 33.6 and 52.8, total:HDL cholesterol ≥4.5 29.4 and 16.8, and triglycerides ≥150 mg/dl 42.1 and 32.9%. Cholesterol level was significantly greater in subjects with better socioeconomic status, body mass index and waist circumference while triglycerides were more among those with high socioeconomic status, fat intake, body mass index and waist circumference (p < 0.05). Hypercholesterolemia awareness (15.6%), treatment (7.2%) and control (4.1%) were low. Conclusions Mean cholesterol and LDL cholesterol are low and triglycerides were high in urban Asian Indians. Most prevalent dyslipidemias are borderline high LDL, low HDL and high triglycerides. Subjects with high socioeconomic status, high fat intake and greater adiposity have higher total and LDL cholesterol and triglyceride and lower HDL cholesterol. PMID:24973832
Owei, Ibiye; Umekwe, Nkiru; Wan, Jim
2016-01-01
Dyslipidemia and dysglycemia are etiologically associated, but the direction, chronology, and mechanisms of the association are not fully understood. We, therefore, analyzed data from 335 healthy adults (184 black, 151 white) enrolled in the Pathobiology of Prediabetes in A Biracial Cohort study. Subjects underwent oral glucose tolerance test (OGTT) and were enrolled if they had normal fasting and 2-h plasma glucose levels. Assessments during year 1 included anthropometry, fasting lipid profile, insulin sensitivity, and insulin secretion. Thereafter, OGTT was assessed annually for 5.5 years. The primary outcome was occurrence of prediabetes (impaired fasting glucose or impaired glucose tolerance) or diabetes. During a mean follow-up of 2.62 years, 110 participants (32.8%) developed prediabetes (N = 100) or diabetes (N = 10). In multivariate logistic regression models, higher baseline low-density lipoprotein (LDL) cholesterol and triglyceride levels and lower HDL cholesterol levels significantly increased the risk of incident prediabetes. The combined relative risk (95% confidence interval [CI]) of prediabetes for participants with lower baseline HDL cholesterol (10th vs. 90th percentile), higher LDL cholesterol (90th vs. 10th percentile) and high triglycerides levels (90th vs. 10th percentile) was 4.12 (95% CI 1.61–10.56), P = 0.0032. At baseline, lipid values showed significant associations with measures of adiposity, glycemia, insulin sensitivity, and secretion. In both ethnic groups, waist circumference correlated positively with triglycerides and inversely with HDL cholesterol levels (P = 0.0004–<0.0001); fasting plasma glucose correlated positively with triglycerides and LDL cholesterol levels and inversely with HDL cholesterol levels (P = 0.006–<0.0001); insulin sensitivity correlated positively with HDL cholesterol and inversely with triglyceride levels (P < 0.0001), and insulin secretion correlated positively with triglycerides (P = 0.01) and inversely with HDL cholesterol (P < 0.0001). We conclude that a baseline lipidemic signature identifies normoglycemic individuals at high risk for future glycemic progression, via congruent associations with adiposity and glucoregulatory mechanisms. These findings suggest that early lifestyle intervention could ameliorate progressive dyslipidemia and dysglycemia. PMID:27430991
Plasma Omentin-1 Level as a Predictor of Good Coronary Collateral Circulation
Zhou, Ji-Peng; Tong, Xiao-Yu; Zhu, Ling-Ping; Luo, Jing-Min; Luo, Ying; Bai, Yong-Ping
2017-01-01
Aims: Coronary collateral circulation (CCC) is crucial during an acute ischemic attack. Evidences showed that omentin-1 exhibited remarkable antiatherogenic effects and ischemia-induced revascularization. The aim of this study was to investigate the relationship between plasma omentin-1 levels and CCC in patients with ≥ 90% angiography-proven coronary occlusion. Methods: 142 patients with ≥ 90% luminal diameter stenosis in at least one major epicardial coronary artery were recruited. Among them, 79 patients with Rentrop 0–1 grade were classified into the poor CCC group and 63 patients with Rentrop 2–3 grade were included into the good CCC group. The association between plasma omentin-1 levels and CCC status was assessed. Results: Plasma omentin-1 level was significantly higher in patients with good CCC than those with poor CCC (566.57 ± 26.90 vs. 492.38 ± 19.70 ng/mL, p = 0.024). Besides, omentin-1 was positively correlated with total cholesterol (TC), high-density lipoprotein, and gensini score but inversely with hyperlipidemia and body mass index (all p values < 0.05). Multivariate regression analysis indicated that omentin-1 [odds ratio (OR) = 1.002, 95% confidence interval (CI): 1.000 – 1.004, p = 0.041)], TC, the number of the diseased vessels, a higher frequency of left circumflex artery and right coronary artery, chronic total occlusion, and gensini score remained as the independent predictors of good CCC. Conclusion: Higher plasma omentin-1 level was associated with better CCC development. Our findings suggest that omentin-1 may be an alternative marker for adequate CCC in patients with ≥ 90% coronary occlusion. PMID:28123148
Modeling total cholesterol as predictor of mortality: the low-cholesterol paradox.
Wesley, David; Cox, Hugh F
2011-01-01
Elevated total cholesterol is well-established as a risk factor for coronary artery disease and cardiovascular mortality. However, less attention is paid to the association between low cholesterol levels and mortality--the low cholesterol paradox. In this paper, restricted cubic splines (RCS) and complex survey methodology are used to show the low-cholesterol paradox is present in the laboratory, examination, and mortality follow-up data from the Third National Health and Nutrition Examination Survey (NHANES III). A series of Cox proportional hazard models, demonstrate that RCS are necessary to incorporate desired covariates while avoiding the use of categorical variables. Valid concerns regarding the accuracy of such predictive models are discussed. The one certain conclusion is that low cholesterol levels are markers for excess mortality, just as are high levels. Restricted cubic splines provide the necessary flexibility to demonstrate the U-shaped relationship between cholesterol and mortality without resorting to binning results. Cox PH models perform well at identifying associations between risk factors and outcomes of interest such as mortality. However, the predictions from such a model may not be as accurate as common statistics suggest and predictive models should be used with caution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershock, D.; Vogel, W.H.
1989-02-09
Serum triglycerides, nonesterified fatty acids (NEFA), and total cholesterol were determined during one hour immobilization stress in adult male Sprague-Dawley rats after ethanol administration (2g/kg, i.p.). Stress and ethanol effects were evaluated in two experiments: (1) rats maintained on Purina Rodent Chow for six weeks and fasted for 24 hours; and (2) rats maintained on the same diet supplemented with 1% cholesterol and 10% peanut oil for six weeks and nonfasted prior to experimentation. Blood was obtained from indwelling jugular catheters. In each experiment, differences were seen in triglyceride and NEFA levels but not in total cholesterol. In the regularmore » diet-fed rats (1), serum triglyceride levels were not affected by either stress or ethanol. However, NEFA levels did show differences in the response to ethanol and stress. A 63% decrease from baseline after 5{prime} of stress was partially abolished by ethanol; instead, a 24% increase was observed. Also, a stress-induced increase in NEFA which occurred after 15{prime} was not observed in the ethanol treated rats; rather, a decrease in NEFA was noted. Total cholesterol did not change in response to stress or ethanol. In the high cholesterol diet-fed rats (2), ethanol did not suppress a stress-induced increase in triglyceride levels. NEFA levels in ethanol-treated rats were higher during the first 15{prime} of stress as compared to stress alone. A decrease in NEFA was however seen in the ethanol-treated rats after 30{prime} of stress and these levels remained lower than the stress alone group. A diet-induced increase in total cholesterol levels was observed; however, no changes were seen due to either or ethanol. Thus, ethanol administration prior to acute immobilization stress did affect serum triglyceride and NEFA levels but did not change total cholesterol.« less
Gentles, Dudley; Metcalf, Patricia; Dyall, Lorna; Scragg, Robert; Sundborn, Gerhard; Schaaf, David; Black, Peter N; Jackson, Rodney T
2007-11-09
To describe mean serum lipid concentrations for Maori, Pacific people (mostly of Samoan, Tongan, Niuean, or Cook Islands origin), and Others (mostly New Zealand-born Europeans), and to identify risk factors for an adverse lipid profile. A cross-sectional survey of adults aged between 35-74 years within the Auckland area. There were 1006 Maori, 996 Pacific people, and 2021 'Others' Fasting blood samples were collected from participants, and total cholesterol, high-density lipoproteins (HDL), low-density lipoproteins (LDL), and triglycerides were measured. Maori and Pacific people had similar mean serum total and LDL cholesterol levels but lower HDL levels and higher total to HDL cholesterol ratios compared to Others (adjusted for age and gender). Maori also had higher triglycerides than Others. High BMI and cigarette smoking were positively associated with unfavourable lipid profiles, while current alcohol drinking and vigorous leisure time activity were associated with increased HDL cholesterol and lower total to HDL cholesterol ratios. Over 90% of all ethnic groups had total cholesterol levels above currently accepted optimal levels (>4 mmol/L) and two-thirds were above 5 mmol/L. While 30% of Others had a total to HDL cholesterol ratio above the 'optimal' threshold of 4.5, 40% of Maori and 44% of pacific people were above this level. This is the first study to simultaneously assess lipid levels in Maori, Pacific people, and Others in one population-based study. Despite similar total and LDL cholesterol levels in all ethnic groups; overweight, obesity, and current cigarette smoking were the main risk factors for their adverse lipid profiles. Engaging in leisure-time activity and alcohol consumption (and not surprisingly lipid-lowering drugs) were associated with better lipid profiles. We confirm that the main lipid-related cardiovascular disease risk in Maori and Pacific people is due to their low HDL and high triglyceride levels.
Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A
1993-12-01
To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.
Sofi, Francesco; Dinu, Monica; Pagliai, Giuditta; Cesari, Francesca; Gori, Anna Maria; Sereni, Alice; Becatti, Matteo; Fiorillo, Claudia; Marcucci, Rossella; Casini, Alessandro
2018-03-13
Only a few randomized dietary intervention studies that investigated the effects of lacto-ovo vegetarian diet (Vd) in clinically healthy omnivorous subjects are available. We randomly assigned to overweight omnivores with a low-to-moderate cardiovascular risk profile a low-calorie Vd compared with a low-calorie Mediterranean diet (MD), each lasting 3 months, with a crossover design. The primary outcome was the difference in body weight, body mass index, and fat mass changes between the 2 groups. Secondary outcomes were differences in circulating cardiovascular disease risk parameters changes between the 2 groups. One hundred eighteen subjects (mean age: 51.1 years, females: 78%) were enrolled. The total participation rate at the end of the study was 84.7%. No differences between the 2 diets in body weight were observed, as reported by similar and significant reductions obtained by both Vd (-1.88 kg) and MD (-1.77 kg). Similar results were observed for body mass index and fat mass. In contrast, significant differences between the 2 interventions were obtained for low-density lipoprotein cholesterol, triglycerides, and vitamin B 12 levels. The difference between the Vd and MD groups, in terms of end-of-diet values, was recorded at 9.10 mg/dL for low-density lipoprotein cholesterol ( P =0.01), 12.70 mg/dL for triglycerides ( P <0.01), and 32.32 pg/mL for vitamin B 12 ( P <0.01). Finally, no significant difference was found between Vd and MD interventions in oxidative stress markers and inflammatory cytokines, except for interleukin-17, which improved only in the MD group. Forty-six participants during the Vd period and 35 during the MD period reached the target values for ≥1 cardiovascular risk factor. Both Vd and MD were effective in reducing body weight, body mass index, and fat mass, with no significant differences between them. However, Vd was more effective in reducing low-density lipoprotein cholesterol levels, whereas MD led to a greater reduction in triglyceride levels. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02641834. © 2018 American Heart Association, Inc.
Suicidal behaviour and lipid levels in unipolar and bipolar depression.
Ainiyet, Babajohn; Rybakowski, Janusz K
2014-10-01
Evidence for a possible association between a low level of cholesterol and increased suicidal behaviour has accumulated in the recent 3 decades. The present study investigates whether lipid levels can make state-dependent markers of suicidal behaviour in Polish patients with mood disorder recently admitted to a psychiatric hospital owing to an acute depressive episode. The study was conducted on 223 patients (73 male and 150 female) with unipolar (n=171) and bipolar (n=52) depression. They were interviewed to assess any occurrence of suicidal thoughts, suicidal tendencies and/or suicidal attempts during the 3 months before admission. Laboratory measurements [total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides and total lipids] were obtained within 24-72 h after hospital admission. Suicidal thoughts, tendencies, and attempts were associated with low total cholesterol, LDL cholesterol, and total lipids in both male and female patients, in both diagnostic categories. Triglycerides were significantly lower in male and female patients with suicidal thoughts compared with their non-suicidal counterparts. No association with suicidality was found with HDL cholesterol. The results of our study support a majority of research showing the association in depressed patients between suicidal behaviour and low levels of total and LDL cholesterol. In addition, the data suggest a similar association with low total lipids, and in some instances, with low triglycerides.
Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C; Brown, Andrew J; Sandoval, Cecilia; Hallab, Jeannette C; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard
2014-03-14
The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes.
Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard
2014-01-01
The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716
Brink, P A; Brink, L T; Torrington, M; Bester, A J
1990-03-17
Overlap of clinical and biochemical characteristics between hypercholesterolaemia in members of the general population and familial hypercholesterolaemic (FH) individuals may lead to misdiagnosis. Quantitative analysis of family data may circumvent this problem. A way of looking for an association between plasma cholesterol levels and restriction fragment length polymorphism markers (RFLP) on the low-density lipoprotein (LDL) receptor gene by using reference cholesterol distributions was explored. Linkage, with a logarithm of the odds (LOD) score of 6.8 at theta 0, was detected between cholesterol levels and the LDL receptor in an extended Afrikaner family. Two RFLP-haplotypes, one previously found in a majority of Afrikaner FH homozygotes, and a second, Stu I-, BstE II+, Pvu II+, Nco I+, were associated with high cholesterol levels in this pedigree.
Canivell, Silvia; Rebuffat, Sandra; Ruano, Elena G; Kostov, Belchin; Sisó-Almirall, Antoni; Novials, Anna; Ceriello, Antonio; Gomis, Ramon
2015-02-01
Secreted frizzled-related protein 5 (SFRP5) has been linked to obesity. Results are conflicting regarding its association with type 2 diabetes (T2D) in humans. We aimed to investigate circulating SFRP5 in prediabetes and T2D and its potential association with parameters of insulin resistance and beta-cell function. We studied 70 drug-naïve T2D patients, 70 prediabetic subjects and 70 controls. All subjects were body mass index matched to the T2D patients and overweight or obese. SFRP5, hormones and cytokines levels were measured by ELISA. Serum SFRP5 levels were elevated in T2D patients as compared with prediabetic subjects (median 15.6, interquartile range [9-24.5] ng/mL vs 9.8 [5-14.2] ng/mL, p < 0.001, respectively) and controls (15.6 [9-24.5] ng/mL vs 10.4 [6.7-16.6] ng/mL, P < 0.001, respectively). No differences were found in serum SFRP5 levels between prediabetic subjects and controls (9.8 [5-14.2] ng/mL vs 10.4 [6.7-16.6] ng/mL, p = 0.472, respectively). After adjusting for potential confounders (age, gender, body mass index, triglycerides, high-density lipoprotein cholesterol and blood pressure), T2D was still associated with higher values of SFRP5 as compared with prediabetes in multinomial logistic regression analysis (fully adjusted odds ratio 3.50, 95% confidence interval 1.40-8.79, p = 0.008). The association was more subtle when comparing T2D with normal glucose tolerance state (fully adjusted odds ratio 2.18, 95% confidence interval 0.91-5.21, p = 0.078). Circulating SFRP5 levels were independently associated with T2D as compared with prediabetes and normal glucose tolerance state. Copyright © 2014 John Wiley & Sons, Ltd.
Association of ADRB2 polymorphism with triglyceride levels in Tongans
2013-01-01
Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540
Nestel, Paul J; Khan, Anmar A; Straznicky, Nora E; Mellett, Natalie A; Jayawardana, Kaushala; Mundra, Piyushkumar A; Lambert, Gavin W; Meikle, Peter J
2017-01-01
Plasma sphingolipids including ceramides, and gangliosides are associated with insulin resistance (IR) through effects on insulin signalling and glucose metabolism. Our studies of subjects with metabolic syndrome (MetS) showed close relationships between IR and sympathetic nervous system (SNS) activity including arterial norepinephrine (NE). We have therefore investigated possible associations of IR and SNS activity with complex lipids that are involved in both insulin sensitivity and neurotransmission. We performed a cross-sectional assessment of 23 lipid classes/subclasses (total 339 lipid species) by tandem mass spectrometry in 94 overweight untreated subjects with IR (quantified by HOMA-IR, Matsuda index and plasma insulin). Independently of IR parameters, several circulating complex lipids associated significantly with arterial NE and NEFA (non-esterified fatty acids) and marginally with heart rate (HR). After accounting for BMI, HOMA-IR, systolic BP, age, gender, and correction for multiple comparisons, these associations were significant (p < 0.05): NE with ceramide, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine and free cholesterol; NEFA with mono- di- and trihexosylceramide, G M3 ganglioside, sphingomyelin, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine, phosphatidylinositol and free cholesterol; HR marginally (p = or <0.1>0.05) with ceramide, G M3 ganglioside, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol, lysophosphatidylinositol and free cholesterol. Multiple subspecies of these lipids significantly associated with NE and NEFA. None of the IR biomarkers associated significantly with lipid classes/subclasses after correction for multiple comparisons. This is the first demonstration that arterial norepinephrine and NEFA, that reflect both SNS activity and IR, associate significantly with circulating complex lipids independently of IR, suggesting a role for such lipids in neural mechanisms operating in MetS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gustavsen, Kate A; Stanhope, Kimber L; Lin, Amy S; Graham, James L; Havel, Peter J; Paul-Murphy, Joanne R
2016-09-01
Hypercholesterolemia is common in psittacines, and Amazon parrots ( Amazona spp.) are particularly susceptible. Associations have been demonstrated between naturally occurring and experimentally induced hypercholesterolemia and atherosclerosis in psittacines. Daily exercise improves lipid metabolism in humans and other mammals, as well as pigeons and chickens, under varying experimental conditions. Hispaniolan Amazon parrots ( Amazona ventralis ) with naturally occurring hypercholesterolemia (343-576 mg/dl) were divided into two groups. An exercised group (n = 8) was housed as a flock and exercised daily with 30 min of aviary flight and 30 min walking on a rotating perch. A sedentary control group (n = 4) was housed in individual cages with no exercise regime. A plasma lipid panel, including total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and triglycerides, was validated for this species. Body weight, chest girth, and the lipid panel were measured at 0, 61, and 105 days. Hematology and plasma biochemistry were measured at 0 and 105 days. Weight and girth were significantly lower in exercised than sedentary parrots at 61 and 105 days. HDL-C concentrations were significantly higher in exercised parrots at 61 days but returned to near baseline by 105 days. There were no significant changes in hematology, biochemistry, or other lipid panel parameters. Results were similar to studies in humans and animal models, in which increased HDL-C was the most consistent effect of exercise on circulating lipid and lipoprotein parameters. The return toward baseline HDL-C may have resulted from decreased participation in aviary flight. Additional investigation will be required to determine the amount of exercise and change in circulating lipid-related parameters necessary to improve long-term wellness in psittacine species predisposed to hypercholesterolemia.
Barker, Tyler; Henriksen, Vanessa T; Rogers, Victoria E; Momberger, Nathan G; Rasmussen, G Lynn; Trawick, Roy H
2016-12-01
The purpose of this study was to identify if circulating interleukin (IL)-6 and γ-tocopherol (γT) fluctuate with vitamin D status in subjects with an underlying knee joint injury or disease. We hypothesized that low vitamin D associates with an increase in plasma γT while serum IL-6 remains unchanged in subjects with an underlying knee joint trauma or disease. Fifty-four subjects scheduled to undergo primary, unilateral anterior cruciate ligament reconstructive surgery (ACL; n=27) or total knee arthroplasty (TKA; n=27) were studied. Circulating γT, α-tocopherol (αT), lipids (cholesterol and triglycerides), IL-6, and 25-hydroxyvitamin D (25(OH)D) were measured in fasting blood samples obtained prior to surgery. Subjects were classified as vitamin D deficient, insufficient, or sufficient if they had a serum 25(OH)D concentration <50, 50-75, or >75nM, respectively. The majority (57%) of the subjects possessed a serum 25(OH)D less than 50nM. Circulating cholesterol, triglycerides, and IL-6 were not significantly (all p>0.05) different between vitamin D status groups. However, lipid corrected αT was significantly (p<0.05) decreased and both lipid- and non-lipid-corrected plasma γT concentrations were significantly (both p<0.05) increased with low serum 25(OH)D (i.e., <50nM). A significant (p<0.05) multi-variate analysis revealed that an increase in plasma γT per lipids was significantly (p<0.05) predicted by a decrease in serum 25(OH)D but not by a decrease in plasma αT per lipids. We conclude that low vitamin D associates with an increase in plasma γT but not IL-6 in subjects with an underlying joint injury or disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramachandran, Surya; Venugopal, Anila; Kutty, V Raman; A, Vinitha; G, Divya; Chitrasree, V; Mullassari, Ajit; Pratapchandran, N S; Santosh, K R; Pillai, M Radhakrishna; Kartha, C C
2014-02-07
Cyclophilin A, an immunophilin is secreted from human monocytes activated by high glucose. Given its role as an inflammatory mediator of vascular tissue damage associated with inflammation and oxidative stress, we examined plasma levels of cyclophilin A in normal healthy volunteers and patients with type 2 diabetes (DM), with or without coronary artery disease (CAD). Study subjects comprised of 212 patients with DM and CAD,101 patients with diabetes, 122 patients with CAD and 121 normal healthy volunteers. Diabetes was assessed by HbA1c levels while coronary artery disease was established by a positive treadmill test and/or coronary angiography. Plasma cyclophilin A was measured using a cyclophilin A ELISA Kit. Relationship of plasma cyclophilin A levels with blood markers of type 2 diabetes, blood lipid levels and medication for diabetes and coronary artery disease were also explored. Plasma Cyclophilin levels were higher in diabetes patients with or without CAD compared to normal subjects (P < 0.001). Age, fasting blood sugar levels and HbA1C levels were positively associated with increased plasma cyclophilin. Patients using metformin had reduced levels of plasma cyclophilin (p < 0.001).Serum levels of total cholesterol, LDL cholesterol and triglycerides had no significant association with plasma cyclophilin levels. In patients with increased serum CRP levels, plasma cyclophilin A was also elevated (p = 0.016). Prevalence odds for DM, DM + CAD and CAD are higher in those with high cyclophilin values, compared to those with lower values, after adjusting for age and sex, indicating strong association of high cyclophilin values with diabetes and vascular disease. Our study demonstrates that patients with type 2 diabetes have higher circulating levels of cyclophilin A than the normal population. Plasma cyclophilin levels were increased in patients with diabetes and coronary artery disease suggesting a role of this protein in accelerating vascular disease in type 2 diabetes. Considering the evidence that Cyclophilin A is an inflammatory mediator in atherogenesis, the mechanistic role of cyclophilin A in diabetic vascular disease progression deserves detailed investigation.
2014-01-01
Aims/hypothesis Cyclophilin A, an immunophilin is secreted from human monocytes activated by high glucose. Given its role as an inflammatory mediator of vascular tissue damage associated with inflammation and oxidative stress, we examined plasma levels of cyclophilin A in normal healthy volunteers and patients with type 2 diabetes (DM), with or without coronary artery disease (CAD). Methods Study subjects comprised of 212 patients with DM and CAD,101 patients with diabetes, 122 patients with CAD and 121 normal healthy volunteers. Diabetes was assessed by HbA1c levels while coronary artery disease was established by a positive treadmill test and/or coronary angiography. Plasma cyclophilin A was measured using a cyclophilin A ELISA Kit. Relationship of plasma cyclophilin A levels with blood markers of type 2 diabetes, blood lipid levels and medication for diabetes and coronary artery disease were also explored. Results Plasma Cyclophilin levels were higher in diabetes patients with or without CAD compared to normal subjects (P < 0.001). Age, fasting blood sugar levels and HbA1C levels were positively associated with increased plasma cyclophilin. Patients using metformin had reduced levels of plasma cyclophilin (p < 0.001).Serum levels of total cholesterol, LDL cholesterol and triglycerides had no significant association with plasma cyclophilin levels. In patients with increased serum CRP levels, plasma cyclophilin A was also elevated (p = 0.016). Prevalence odds for DM, DM + CAD and CAD are higher in those with high cyclophilin values, compared to those with lower values, after adjusting for age and sex, indicating strong association of high cyclophilin values with diabetes and vascular disease. Conclusions/interpretations Our study demonstrates that patients with type 2 diabetes have higher circulating levels of cyclophilin A than the normal population. Plasma cyclophilin levels were increased in patients with diabetes and coronary artery disease suggesting a role of this protein in accelerating vascular disease in type 2 diabetes. Considering the evidence that Cyclophilin A is an inflammatory mediator in atherogenesis, the mechanistic role of cyclophilin A in diabetic vascular disease progression deserves detailed investigation. PMID:24502618
Effect of cholesterol and triglycerides levels on the rheological behavior of human blood
NASA Astrophysics Data System (ADS)
Moreno, Leonardo; Calderas, Fausto; Sanchez-Olivares, Guadalupe; Medina-Torres, Luis; Sanchez-Solis, Antonio; Manero, Octavio
2015-02-01
Important public health problems worldwide such as obesity, diabetes, hyperlipidemia and coronary diseases are quite common. These problems arise from numerous factors, such as hyper-caloric diets, sedentary habits and other epigenetic factors. With respect to Mexico, the population reference values of total cholesterol in plasma are around 200 mg/dL. However, a large proportion has higher levels than this reference value. In this work, we analyze the rheological properties of human blood obtained from 20 donors, as a function of cholesterol and triglyceride levels, upon a protocol previously approved by the health authorities. Samples with high and low cholesterol and triglyceride levels were selected and analyzed by simple-continuous and linear-oscillatory shear flow. Rheometric properties were measured and related to the structure and composition of human blood. In addition, rheometric data were modeled by using several constitutive equations: Bautista-Manero-Puig (BMP) and the multimodal Maxwell equations to predict the flow behavior of human blood. Finally, a comparison was made among various models, namely, the BMP, Carreau and Quemada equations for simple shear rate flow. An important relationship was found between cholesterol, triglycerides and the structure of human blood. Results show that blood with high cholesterol levels (400 mg/dL) has flow properties fully different (higher viscosity and a more pseudo-plastic behavior) than blood with lower levels of cholesterol (tendency to Newtonian behavior or viscosity plateau at low shear rates).
Schneider, Raul J; Barengo, Noel; Haapala, Irja; Tavella, Marcelo
2006-01-01
A cross sectional study of 107 women between 20 and 69 years old, living in the town of Cabildo, province of Buenos Aires, Argentina, which describes food intake and analyses its relation to their education, blood cholesterol and serum triglyceride levels. A food frequency questionnaire including questions regarding meal patterns and food use were completed by the participants. Questions regarding educational status were included. A nutritional risk score was created from nine food groups. Total blood cholesterol and serum triglyceride levels were determined. Average total blood cholesterol levels of the women who participated in the present study were higher (209 mg/dl) than those recommended by the National Cholesterol Education Program, while triglyceride values remained within the normal range (124 mg/dl). Total blood cholesterol levels increased with age. Bread, biscuits and cakes were consumed on a daily basis by 98% of the participants and dairy products by 92%, these being mainly full-fat. Meat and fast food intake were very high (96% and 100% respectively). Vegetable and fish intakes were higher among the more educated women. Mayonnaise (58%) and butter (43%) are popular as food dressings and bread spreads respectively, and sunflower oil was the most commonly used for cooking by 94% of the participants. Women with low educational levels (less than 7 years) had higher nutritional risk scores, and thus unhealthier dietary habits than those with more years of formal education. No statistically significant association was found between food groups and cholesterol or triglyceride levels.
Meier, C; Staub, J J; Roth, C B; Guglielmetti, M; Kunz, M; Miserez, A R; Drewe, J; Huber, P; Herzog, R; Müller, B
2001-10-01
This study evaluated the effect of physiological, TSH-guided, L-thyroxine treatment on serum lipids and clinical symptoms in patients with subclinical hypothyroidism. Sixty-six women with proven subclinical hypothyroidism (TSH, 11.7 +/- 0.8 mIU/liter) were randomly assigned to receive L-thyroxine or placebo for 48 wk. Individual L-thyroxine replacement (mean dose, 85.5 +/- 4.3 microg/d) was performed based on blinded TSH monitoring, resulting in euthyroid TSH levels (3.1 +/- 0.3 mIU/liter). Lipid concentrations and clinical scores were measured before and after treatment. Sixty-three of 66 patients completed the study. In the L-thyroxine group (n = 31) total cholesterol and low density lipoprotein cholesterol were significantly reduced [-0.24 mmol/liter, 3.8% (P = 0.015) and -0.33 mmol/liter, 8.2% (P = 0.004), respectively]. Low density lipoprotein cholesterol decrease was more pronounced in patients with TSH levels greater than 12 mIU/liter or elevated low density lipoprotein cholesterol levels at baseline. A significant decrease in apolipoprotein B-100 concentrations was observed (P = 0.037), whereas high density lipoprotein cholesterol, triglycerides, apolipoprotein AI, and lipoprotein(a) levels remained unchanged. Two clinical scores assessing symptoms and signs of hypothyroidism (Billewicz and Zulewski scores) improved significantly (P = 0.02). This is the first double blind study to show that physiological L-thyroxine replacement in patients with subclinical hypothyroidism has a beneficial effect on low density lipoprotein cholesterol levels and clinical symptoms of hypothyroidism. An important risk reduction of cardiovascular mortality of 9-31% can be estimated from the observed improvement in low density lipoprotein cholesterol.
Subramaniam, Priya; Sharma, Akhliesh; Kaje, Keerthan
2015-01-01
Metabolic disturbances in diabetes mellitus can affect oral health. Altered levels of salivary lipids have been suggested as a risk for dental caries. There has been lack of research in this regard and in children with type 1 diabetes mellitus. To assess the salivary triglycerides and cholesterol levels in children with type 1 diabetes mellitus and correlate them with their dental caries status. Thirty children aged 12-16 years with type 1 diabetes mellitus and 30 age- and gender-matched healthy children were included in the study. Unstimulated saliva was collected from each child and evaluated for salivary triglyceride and cholesterol levels. Dental caries status (DMFT) was recorded. Salivary cholesterol and triglyceride levels were significantly higher in children with type 1 diabetes mellitus (p ≤ 0.05). In comparison to controls, mean DMFT score was higher in the diabetic children. Salivary triglycerides showed a significant correlation with dental caries status in the study group (p = 0.035). In normal children, salivary cholesterol levels showed a significant association with dental caries. (p = 0.008). Both salivary cholesterol and triglycerides levels were significantly higher in children with type 1 diabetes mellitus. Salivary triglycerides showed a significant association with dental caries in these children. © 2014 Special Care Dentistry Association and Wiley Periodicals, Inc.
Wang, Zeneng; Roberts, Adam B.; Buffa, Jennifer A.; Levison, Bruce S.; Zhu, Weifei; Org, Elin; Gu, Xiaodong; Huang, Ying; Zamanian-Daryoush, Maryam; Culley, Miranda K.; DiDonato, Anthony J.; Fu, Xiaoming; Hazen, Jennie E.; Krajcik, Daniel; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.
2016-01-01
SUMMARY Trimethylamine N-oxide (TMAO), a gut microbiota dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial trimethylamine (TMA) production, on diet-induced atherosclerosis. A structural analogue of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (eg intestinal contents, human feces) and reduce TMAO levels in mice fed a high choline or carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e−/− mice without alterations in circulating cholesterol levels. The present studies suggest gut microbial production of TMA specifically, and non-lethal microbial inhibitors in general, may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases. PMID:26687352
Lavoie, Jean-Marc
2016-01-01
Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative. PMID:27621762
Garcez, Marcela Riccioppo; Pereira, Jaqueline Lopes; Fontanelli, Mariane de Mello; Marchioni, Dirce Maria Lobo; Fisberg, Regina Mara
2014-12-01
Overweight is one of the major public health problems in Brazil; it is associated with dyslipidemia, which is an important risk factor for cardiovascular diseases. To evaluate the lipid profile of residents of the municipality of São Paulo, state of São Paulo, according to the nutritional status. Data from the population-based cross-sectional study ISA-Capital 2008 on a sample of residents of São Paulo were used. Participants were categorized into groups according to body mass index and age range. The levels of total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and non-HDL cholesterol were measured. The association between lipid profile, nutricional status, and waist circumference was investigated. The data were processed using the survey mode of the Stata 11.0 software. The prevalence of any type of dyslipidemia in the population was 59.74%, with low HDL-cholesterol dyslipidemia being the most common type. Not overweight individuals had higher mean levels of HDL-cholesterol and lower levels of LDL-cholesterol, total cholesterol, triglycerides, and non-HDL cholesterol when compared with the overweight group. The rate of inadequacy of these variables was higher in the overweight individuals, regardless of the age group, to the exception of LDL-cholesterol in the adults and elderly. A higher prevalence of isolated hypertriglyceridemia was observed in individuals with higher waist circumference among the adults and the total population. The results indicate an association between dyslipidemia and overweight in the population of the city of São Paulo. The most prevalent dyslipidemia in this population was low HDL-cholesterol.
Santos, António J M; Meinecke, Michael; Fessler, Michael B; Holden, David W; Boucrot, Emmanuel
2013-07-15
Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a ∼2080 outerinner leaflet repartition during interphase to ∼5050 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding.
Babaknejad, Nasim; Nayeri, Hashem; Hemmati, Roohullah; Bahrami, Somaye; Esmaillzadeh, Ahmad
2018-06-01
Fibroblast growth factors (FGFs) are responsible for the regulation of a wide range of biological functions, among which cellular proliferation, survival, migration, and differentiation could be pointed out. FGF19 controls the enterohepatic bile acid/cholesterol system, and FGF21 modulates fatty acid/glucose metabolism. Obesity, type 2 diabetes, coronary artery disease, and cancer, all can alter FGF21 circulating concentrations. In contrast to FGF21, metabolic diseases exhibit reduced serum FGF19 levels. Accordingly, FGF19 and FGF21 play important roles in regulating glucose and lipid metabolism. Hence, we present here a timely review on the relationship between FGF19/21 and metabolic diseases, especially obesity, and their probable role in development and treatment of obesity seems necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Kongshaug, Heidi; Horsberg, Tor Einar; Male, Rune; Nilsen, Frank; Dalvin, Sussie
2018-01-01
The salmon louse is a marine ectoparasitic copepod on salmonid fishes. Its lifecycle consists of eight developmental stages, each separated by a molt. In crustaceans and insects, molting and reproduction is controlled by circulating steroid hormones such as 20-hydroxyecdysone. Steroid hormones are synthesized from cholesterol through catalytic reactions involving a 7,8-dehydrogenase Neverland and several cytochrome P450 genes collectively called the Halloween genes. In this study, we have isolated and identified orthologs of neverland, disembodied and shade in the salmon louse (Lepeophtheirus salmonis) genome. Tissue-specific expression analysis show that the genes are expressed in intestine and reproductive tissue. In addition, levels of the steroid hormones ecdysone, 20-hydroxyecdysone and ponasterone A were measured during the reproductive stage of adult females and in early life stages. PMID:29401467
Lin, Li-Yun; Peng, Chiung-Chi; Yang, Ya-Lu; Peng, Robert Y
2008-02-27
Nutrient levels in buckwheats that were maximized in day 8 sprouts (D8SP) included total phenolics, quercetin, and l-ascorbic acid, whereas those of oxalic, malic, tartaric, and citric acids, rutin, and gamma-aminobutyric acid (GABA) were found to reach maximum levels on day 10. Ethanolic extract of D8SP (2.5 mg/mL) revealed potent free-radical scavenging (FRS) and antioxidative (ANO) capabilities. However, its Fe2+-chelating capability was only moderate. To further study the hypolipidemic activity of D8SP, 36 Syrian hamsters were grouped into six groups and fed for 28 days, respectively, with (i) control meal, (ii) high fat plus high cholesterol meal, (iii) high fat plus high cholesterol plus 2.5% of buckwheat seeds, (iv) high fat plus high cholesterol plus 25% of buckwheat seeds, (v) high fat plus high cholesterol plus 2.5% of D8SP, and (vi) high fat plus high cholesterol plus 25% of D8SP. High seed meal prominently enhanced body weight gain, whereas high sprout meal exhibited the highest feed efficiency. Ratios of liver/body weight (L/B) were significantly lowered by all BS meals. Although low seed meal reduced serum total cholesterol (TC) levels (p<0.05), its effect was still inferior to the high seed and sprout meals (p<0.01). In contrast, serum triglyceride (TG) levels were lowered only by the high seed and sprout meals (p<0.05). Alternatively, levels of serum low-density lipoprotein cholesterol (LDL-C) were significantly suppressed by all buckwheat meals (p<0.01). Serum high-density lipoprotein cholesterol (HDL-C) levels were increased, however, insignificantly. Nutraceutically more meaningful is that both LDL-C/HDL-C and TC/HDL-C ratios were significantly lowered (p<0.01). Apparently, hepatic TC levels were significantly reduced, whereas hepatic TG levels were totally unaffected. Conclusively, sprouting triggers a variety of nutritional changes in buckwheats. Day 8 sprouts, consisting of high polyphenolic and moderate quercetin contents, are nutraceutically maximized when hypocholesterolemic, hypotriglyceridemic, and antioxidative activities are concerned.
Pörn, M I; Slotte, J P
1990-01-01
Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406
2011-01-01
Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism. PMID:22018327
Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H
2011-10-21
The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.
The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children.
Güzel, Orkide; Yılmaz, Unsal; Uysal, Utku; Arslan, Nur
2016-03-01
Ketogenic diet (KD) is one of the most effective therapies for intractable epilepsy. Olive oil is rich in monounsaturated fatty acids and antioxidant molecules and has some beneficial effects on lipid profile, inflammation and oxidant status. The aim of this study was to evaluate the serum lipid levels of children who were receiving olive oil-based KD for intractable seizures at least 1 year. 121 patients (mean age 7.45 ± 4.21 years, 57 girls) were enrolled. At baseline and post-treatment 1, 3, 6, and 12 months body mass index-SDS, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride levels were measured. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. The mean duration of KD was 15.4 ± 4.1 months. Mean total cholesterol, LDL-cholesterol and triglyceride levels were significantly higher at 1st, 3rd, 6th and 12th months of the KD treatment, compared to pre-treatment levels (p = 0.001), but showed no difference among during-treatment measurements. Mean body mass index-SDS and HDL-cholesterol levels were not different among the baseline and follow-up time points (p = 0.113 and p = 0.067, respectively). No child in this study discontinued the KD because of dyslipidemia. Even if rich in olive oil, high-fat KD causes significant increase in LDL-cholesterol and triglyceride levels. More studies are needed to determine the effect of KD on serum lipids in children using different fat sources in the diet.
Schwartz, Joseph A; Rowland, Meghan W; Beaver, Kevin M
2014-08-01
Low cholesterol levels have been found to be associated with a wide range of behavioral problems, including violent and criminal behavior, and a wide range of psychological problems including impulsivity, depression, and other internalizing problems. The casual mechanisms underlying these associations remain largely unknown, but genetic factors may play a role in the etiology of such associations as previous research has found significant genetic influence on cholesterol levels and various deleterious behavioral and psychological outcomes. The current study addressed this existing gap in the literature by performing a genetically sensitive test of the association between cholesterol levels and various outcomes including levels of self-control, depressive symptoms, anger expression, and neuroticism. DeFries-Fulker (DF) analysis was used to analyze data from 388 twin pairs nested within the Survey of Midlife Development in the United States (MIDUS). The results of the genetically informed models revealed that high-density lipoprotein (HDL) cholesterol levels were negatively and significantly associated with depressive symptoms, had a marginally significant effect on neuroticism, and a nonsignificant effect on both anger expression and self-control. The findings may not extrapolate to the larger population of American adults since the subsample of twins with cholesterol information may not be nationally representative. Genetic influences play a significant role in the association between cholesterol levels and various deleterious outcomes and failing to control for these influences may result in model misspecification and may increase the probability of detecting a significant association when one does not actually exist. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiao, Chao-Wu; Wood, Carla M; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M N
2016-01-01
This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada's capital region. Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50-74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC.
Xiao, Chao-Wu; Wood, Carla M.; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M. N.
2016-01-01
Objectives This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada’s capital region. Methods Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. Results SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50–74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. Conclusions The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC. PMID:26809065
Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi
2014-01-01
To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = -0.821 and -0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α.
MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease
Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin
2016-01-01
Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024
Serum cholesterol levels of Seventh-day Adventists.
Taylor, C B; Allen, E S; Mikkelson, B; Kang-Jey, H
1976-10-01
Serum cholesterol levels and dietary habits were surveyed in 27 male and 34 female Seventh-day Adventist. All subjects studied were lacto-ovo-vegetarians and a few consumed some meat products. Their serum cholesterol levels, significantly lower than those of the United States general population, showed no sex difference but increased with age and were higher in overweight males. Their levels, however, were much higher than those of true vegetarians which was most likely attributable to their consumption, even though to a limited acount, of dairy foods.
Kennedy, Barry E; Charman, Mark; Karten, Barbara
2017-01-01
All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.
The relationship between job stress and dyslipidemia.
Catalina-Romero, C; Calvo, E; Sánchez-Chaparro, M A; Valdivielso, P; Sainz, J C; Cabrera, M; González-Quintela, A; Román, J
2013-03-01
To investigate whether there is an association between job stress, lipid profile and dyslipidemia diagnosis. This study used a questionnaire to evaluate job stress and lifestyle variables in 91,593 workers undergoing periodic checkups. Serum lipid levels were measured in all cases. The prevalence of job stress was 8.7% (95% CI, 8.5-8.8%). In bivariate analyses, job stress was significantly associated with previous dyslipidemia diagnosis (p < 0.001), lipid-lowering therapy (p < 0.001), and altered total-cholesterol (p = 0.001), HDL-cholesterol (p < 0.001) and LDL-cholesterol levels (p = 0.025). After adjusting for potential confounding variables, job stress was still associated with current dyslipidemia diagnosis (OR = 1.10; 95% CI, 1.04-1.17), high LDL-cholesterol (OR = 1.14; 95% CI, 1.05-1.23), low HDL-cholesterol (OR 1.08; 95% CI, 1.01-1.15), high total cholesterol/HDL-cholesterol ratio (OR 1.13; 95% CI, 1.05-1.23) and high LDL-cholesterol/HDL-cholesterol ratio (OR 1.11; 95% CI, 1.04-1.19). These results support the hypothesis of an association between job stress and lipid disturbances.
Korematsu, Seigo; Uchiyama, Shin-ichi; Honda, Akira; Izumi, Tatsuro
2014-06-01
Cholesterol is one of the main components of human cell membranes and constitutes an essential substance in the central nervous system, endocrine system, and its hormones, including sex hormones. A 19-year-old male patient presented with failure to thrive, psychomotor deterioration, intractable epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration. His serum level of cholesterol was low, ranging from 78.7 to 116.5 mg/dL. The serum concentrations of intermediates in the cholesterol biosynthesis pathway, such as 7-dehydrocholesterol, 8-dehydrocholesterol, desmosterol, lathosterol, and dihydrolanosterol, were not increased. In addition, the levels of the urinary cholesterol biosynthesis marker mevalonic acid, the serum cholesterol absorption markers, campesterol and sitosterol, and the serum cholesterol catabolism marker, 7α-hydroxycholesterol, were all low. A serum biomarker analysis indicated that the patient's basic abnormality differed from that of Smith-Lemli-Opitz syndrome and other known disorders of cholesterol metabolism. Therefore, this individual may have a new metabolic disorder with hypocholesterolemia because of decreased biosynthesis and absorption of cholesterol. Copyright © 2014 Elsevier Inc. All rights reserved.
2014-01-01
Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Trial registration Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117] PMID:24766766
Hallikainen, Maarit; Simonen, Piia; Gylling, Helena
2014-04-27
The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol absorption inhibition with STAEST. Serum plant sterol concentrations decrease dose-dependently in response to plant stanols suggesting that the higher the plant stanol dose, the more cholesterol absorption is inhibited and the greater the reduction in LDL cholesterol level is that can be achieved. Clinical Trials Register # NCT00698256 [Eur J Nutr 2010, 49:111-117].
Garavelo, Shérrira M; Higuchi, Maria de Lourdes; Pereira, Jaqueline J; Reis, Marcia M; Kawakami, Joyce T; Ikegami, Renata N; Palomino, Suely A P; Wadt, Nilsa S Y; Agouni, Abdelali
2017-01-01
Previous studies showed the presence of Mycoplasma pneumoniae ( M. pneumoniae ) and membrane-shed microparticles (MPs) in vulnerable atherosclerotic plaques. H&S Science and Biotechnology developed PTCTS, composed by natural particles from medicinal plants (PTC) combined with trans -Sialidase (TS), to combat MPs and Mycoplasma pneumoniae . Our aim was to determine the effects of the different components of PTCTS in a rabbit model of atherosclerosis. Rabbits were fed with high cholesterol diet for 12 weeks and treated during the last 6 weeks with either vehicle, PTC, TS, or PTCTS. Lipid profile and quantification of MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens were carried out. Aortas and organs were then histologically analyzed. PTCTS reduced circulating MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens, reduced the plaque area in the abdominal aorta, and caused positive remodeling of the ascendant aorta. PTC caused positive remodeling and reduced plaque area in the abdominal aorta; however, TS had a lipid lowering effect. PTCTS components combined were more effective against atherosclerosis than individual components. Our data reinforce the infectious theory of atherosclerosis and underscore the potential role of circulating MPs. Therefore, the removal of Mycoplasma -derived MPs could be a new therapeutic approach in the treatment of atherosclerosis.
Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo
2009-06-11
Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.
Rosenbaum, Anton I.; Zhang, Guangtao; Warren, J. David; Maxfield, Frederick R.
2010-01-01
Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-β-cyclodextrin injections in npc1−/− mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin–dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-β-cyclodextrin is more potent than hydroxypropyl-β-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2. PMID:20212119
Association between cholesterol plasma levels and craving among heroin users.
Lin, Shih-Hsien; Yang, Yen Kuang; Lee, Sheng-Yu; Hsieh, Pei Chun; Chen, Po See; Lu, Ru-Band; Chen, Kao Chin
2012-12-01
Lipids may play some roles in the central nervous system functions that are associated with drug addiction. To date, cholesterol is known to influence relapse of cocaine use. However, the relationship between cholesterol and heroin craving is unclear. This study examined the concurrent association between cholesterol and craving. The serum lipid levels of 70 heroin users who were undergoing or had undergone a methadone maintenance therapy were measured. Their craving and demographic data were assessed. Total cholesterol and low-density lipoprotein cholesterol are negatively associated with craving before (r = -0.33, P < 0.01, and r = -0.36, P < 0.01, respectively) and after controlling for the effects of potential confounders (β = -0.38, P < 0.01, and β = -0.42, P < 0.01, respectively). Cholesterol could be associated with the cognitive aspect of craving and may be a potential marker to predict risk of drug relapse.
Jung, Ji-Hye; Kim, Hyun-Sook
2013-10-01
Non-alcoholic fatty liver disease (NAFLD) is defined as excess of fat in the liver. We investigated the effects of black soybean on the cholesterol metabolism and insulin resistance of mice fed high cholesterol/fat diets. Mice were randomly allocated into four groups that were fed different diets: the normal cholesterol/fat diet; high cholesterol/fat diets (HCD); and HCD with 1%, and 4% black soybean powder (1B-HCD, and 4B-HCD). Liver total cholesterol and triglyceride concentrations were significantly lower in the black soybean-supplemented groups than that in the HCD group. PCR revealed significantly lower hepatic SREBP2 and HMG-CoA reductase mRNA levels of black soybean-supplemented mice. Real-time PCR revealed significantly higher hepatic ABCA1 mRNA level of black soybean-supplemented mice, which may increase cholesterol efflux. Liver bile acids concentration was significantly high in the 4B-HCD group. Black soybean stimulated secretion of adiponectin, activation of pAMPK, and eliminated free fatty acids in the liver. Black soybean supplementation decreased MDA and nitrate level. The activities of SOD, catalase, and GPx were restored by black soybean supplementation. Our data strongly indicate that black soybean influences the balance between oxidative and antioxidative stress. We suggest that black soybean improves cholesterol metabolism, insulin resistance, and alleviates oxidative damage in NAFLD. Published by Elsevier Ltd.
Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke
2017-09-15
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.
Vitamin D Levels and Lipid Response to Atorvastatin
Pérez-Castrillón, José Luis; Abad Manteca, Laura; Vega, Gemma; del Pino Montes, Javier; de Luis, Daniel; Dueňas Laita, Antonio
2010-01-01
Adequate vitamin D levels are necessary for good vascular health. 1,25-dihydroxycholecalciferol activates CYP3A4, an enzyme of the cytochrome P450 system, which metabolizes atorvastatin to its main metabolites. The objective of this study was to evaluate the response of cholesterol and triglycerides to atorvastatin according to vitamin D levels. Sixty-three patients with acute myocardial infarction treated with low and high doses of atorvastatin were included. Levels of total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol were measured at baseline and at 12 months of follow-up. Baseline levels of 25-hydroxyvitamin D (25-OHD) were classified as deficient (<30 nmol/L), insufficient (30–50 nmol/L), and normal (>50 nmol/L). In patients with 25-OHD <30 nmol/L, there were no significant changes in levels of total cholesterol (173 ± 47 mg/dL versus 164 ± 51 mg/dL), triglycerides (151 ± 49 mg/dL versus 177 ± 94 mg/dL), and LDL cholesterol (111 ± 48 mg/dL versus 92 45 ± mg/dL); whereas patients with insufficient (30–50 nmol/L) and normal vitamin D (>50 nmol/L) had a good response to atorvastatin. We suggest that vitamin D concentrations >30 nmol/L may be required for atorvastatin to reduce lipid levels in patients with acute myocardial infarction. PMID:20016682
Mc Auley, Mark T; Mooney, Kathleen M
2017-07-01
The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our conjecture this deleterious state has the potential to account for the inverse association between LDL-C level and CVD risk observed in older people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cholesterol and Women's Health
... having a high LDL cholesterol level lead to cardiovascular disease? • Besides abnormal cholesterol, what are other risk factors for cardiovascular disease? • What are some risk factors for cardiovascular disease ...
Simons, K; Ikonen, E
2000-12-01
Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Recent advances suggest that cholesterol exerts many of its actions mainly by maintaining sphingolipid rafts in a functional state. How rafts contribute to cholesterol metabolism and transport in the cell is still an open issue. It has long been known that cellular cholesterol levels are precisely controlled by biosynthesis, efflux from cells, and influx of lipoprotein cholesterol into cells. The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J
2006-03-01
The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (P<0.05). Similarly, hamsters fed the OCC and COC diets reduced their plasma nonHDL cholesterol levels by 47% and 57%, respectively (P<0.05), compared to hamsters fed the HCD after 2 weeks of dietary treatment. Although hamsters fed the OCC (-26%) and COC (-32%) had significantly lower plasma HDL levels compared to HCD, (P<0.05), the plasma nonHDL/HDL cholesterol ratio was significantly lower (P<0.05) compared to the HCD for the OCC-fed (-27%) and the COC-fed (-38%) hamsters, respectively. Compared to the HCD group, aortic esterified cholesterol was 20% and 53% lower for the OCC and COC groups, respectively, with the latter reaching statistical significance, P<0.05. In conclusion, the hamsters fed the structured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.
Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2016-01-01
Song is a sexually selected trait that is thought to be an honest signal of the health condition of an individual in many bird species. For species that breed opportunistically, the quantity of food may be a determinant of singing activity. However, it is not yet known whether the quality of food plays an important role in this respect. The aim of the present study was to experimentally investigate the role of two calorie-free nutrients (lutein and cholesterol) in determining the expression of a sexually selected behavior (song rate) and other behaviors (locomotor activity, self-maintenance activity, eating and resting) in male zebra finches (Taeniopygia guttata). We predicted that males supplemented with lutein and cholesterol would sing at higher rates than controls because both lutein and cholesterol have important health-related physiological functions in birds and birdsong mirrors individual condition. To control for testosterone secretion that may upregulate birdsong, birds were exposed to a decreasing photoperiod. Our results showed that control males down-regulated testosterone in response to a decreasing photoperiod, while birds treated with lutein or cholesterol maintained a constant singing activity. Both lutein- and cholesterol-supplemented groups sang more than control groups by the end of the experiment, indicating that the quality of food can affect undirected song irrespective of circulating testosterone concentrations. None of the other measured behaviors were affected by the treatment, suggesting that, when individuals have full availability of food, sexually selected song traits are more sensitive to the effect of food quality than other behavioral traits. Overall the results support our prediction that undirected song produced by male zebra finches signals access to high-quality food. PMID:27761321
Schioldan, Anne Grethe; Gregersen, Søren; Hald, Stine; Bjørnshave, Ann; Bohl, Mette; Hartmann, Bolette; Holst, Jens Juul; Stødkilde-Jørgensen, Hans; Hermansen, Kjeld
2018-03-01
Low intake of dietary fibre is associated with the development of type 2 diabetes. Dyslipidaemia plays a key role in the pathogenesis of type 2 diabetes. Knowledge of the impact of dietary fibres on postprandial lipaemia is, however, sparse. This study aimed in subjects with metabolic syndrome to assess the impact on postprandial lipaemia and features of the metabolic syndrome of a healthy carbohydrate diet (HCD) rich in cereal fibre, arabinoxylan and resistant starch compared to a refined-carbohydrate western-style diet (WSD). Nineteen subjects completed the randomised, crossover study with HCD and WCD for 4-week. Postprandial metabolism was evaluated by a meal-challenge test and insulin sensitivity was assessed by HOMA-IR and Matsuda index. Furthermore, fasting cholesterols, serum-fructosamine, circulating inflammatory markers, ambulatory blood pressure and intrahepatic lipid content were measured. We found no diet effects on postprandial lipaemia. However, there was a significant diet × statin interaction on total cholesterol (P = 0.02) and LDL cholesterol (P = 0.002). HCD decreased total cholesterol (-0.72 mmol/l, 95% CI (-1.29; -0.14) P = 0.03) and LDL cholesterol (-0.61 mmol/l, 95% CI (-0.86; -0.36) P = 0.002) compared with WSD in subjects on but not without statin treatment. We detected no other significant diet effects. In subjects with metabolic syndrome on statins a 4-week diet rich in arabinoxylan and resistant starch improved fasting LDL and total cholesterol compared to subjects not being on statins. However, we observed no diet related impact on postprandial lipaemia or features of the metabolic syndrome. The dietary fibre x statin interaction deserves further elucidation.
Cárdenas Medellín, M L; Serna Saldívar, S O; Velazco de la Garza, J
1998-12-01
Two different concentrations (approx. 6 and 12%) and two presentations (raw and cooked) of dehydrated nopal were fed to laboratory rats and growth and serum total cholesterol, lipoprotein profile and glucose determined. Samples of raw and cooked nopal were chemically characterized for moisture, protein, ash, crude fiber, ether extract, total dietary fiber, reducing sugars, amino acids, minerals and gross energy. Cooking slightly affected some of the nutrients analyzed. After one month feeding, blood was withdrawn via intracardiac puncture and serum glucose, total cholesterol, HDL, LDL, and VLDL were determined. Rats fed 12% nopal had lower weight gains (P < 0.05) when compared with counterparts fed 6% nopal or the control diet. Consumption of nopal did not affect (P > 0.05) glucose, total cholesterol and HDL cholesterol levels. However, rats fed raw nopal at the 12% concentration level had a 34% reduction in LDL cholesterol levels; thus, it was concluded that raw nopal had a potentially beneficial effect for hypercholesterolemic individuals.
Xu, Baocheng; Li, Peiwu; Ma, Fei; Wang, Xiuping; Matthäus, Bertrand; Chen, Ran; Yang, Qingqing; Zhang, Wen; Zhang, Qi
2015-07-01
A new method based on the cholesterol level was developed to detect the presence of animal fats in virgin coconut oil (VCO). In this study, the sterols in VCO and animal fats was separated using conventional one-dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Compared with 1D GC, the GC×GC system could obtain a complete baseline separation of the sterol trimethylsilyl ethers derived from cholesterol and cholestanol, so that the cholesterol content in pure VCO and false VCO adulterated with animal fats could be accurately determined. Cholesterol, a main sterol found in animal fats, represented less than 5mg/kg of VCO. The study demonstrated that the determination of the cholesterol level in VCO could be used for reliable detection of the presence of lard, chicken fat, mutton tallow, beef tallow, or their mixture in VCO at a level as little as 0.25%. Copyright © 2015 Elsevier Ltd. All rights reserved.
2010-01-01
Background Rapeseed oil is the principal dietary source of monounsaturated and n-3 polyunsaturated fatty acids in the Northern Europe. However, the effect of rapeseed oil on the markers of subclinical atherosclerosis is not known. The purpose of this study was to compare the effects of dietary intake of cold-pressed turnip rapeseed oil (CPTRO) and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Methods Thirty-seven men with metabolic syndrome completed an open and balanced crossover study. Treatment periods lasted for 6 to 8 weeks and they were separated from each other with an eight-week washout period. Subjects maintained their normal dietary habits and physical activity without major variations. The daily fat adjunct consisted either of 37.5 grams of butter or 35 mL of VirginoR CPTRO. Participants were asked to spread butter on bread on the butter period and to drink CPTRO on the oil period. The fat adjunct was used as such without heating or frying. Results Compared to butter, administration of CPTRO was followed by a reduction of total cholesterol by 8% (p < 0.001) and LDL cholesterol by 11% (p < 0.001). The level of oxidized LDL was 16% lower after oil period (p = 0.024). Minimal differences in arterial elasticity were not statistically significant. Conclusion Cold-pressed turnip rapeseed oil had favourable effects on circulating LDL cholesterol and oxidized LDL, which may be important in the management of patients at high cardiovascular risk. Trial registration ClinicalTrial.gov NCT01119690 PMID:21122147