Patrussi, Laura; Capitani, Nagaja; Martini, Veronica; Pizzi, Marco; Trimarco, Valentina; Frezzato, Federica; Marino, Filippo; Semenzato, Gianpietro; Trentin, Livio; Baldari, Cosima T
2015-10-01
Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome. ©2015 American Association for Cancer Research.
Further characterization of the circulating cell in chronic lymphocytic leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutz, E.F.; Davis, S.; Rubin, A.D.
Peripheral lymphocytes from normal individuals and from patients with chronic lymphocytic leukemia (CLL) were cultured in vitro for 1-7 days. The growth response to phytohemagglutinin (PHA) was quantitated by the incorporation of tritiated uridine into RNA nucleotide during a 2-hr pulse with the radioisotope. While the maximum response in PHA-stimulated normal cultures appeared at 2-3 days, CLL cultures required 5-7 days to develop their maximal response, which was 50 percent-60 percent of the normal magnitude. Dilution of the number of normally reactive lymphocytes by culturing them with totally unreactive, mitomycin-treated cells produced a normal 72-hr maximal response, no matter whatmore » proportion of unreactive cells was included in the PHA-stimulated cultures. In addition, the response of peripheral lymphocytes from patients with myeloblastic leukemia, where large numbers of unreactive myeloblasts diluted the normal small lymphocytes, a depressed reaction occurred at the anticipated 2-3 days. Nylon fiber-adherent lymphocytes consisting of 85 percent immunoglobulin (Ig)-bearing cells responded minimally to PHA, but showed no evidence of a delay. When isolated from CLL patients, both fiber-adherent cells (ig-bearing) as well as non-fiber-adherent (sheep erythrocyte-rosetting) cells responded to PHA in a delayed fashion. Similarly, a case of CLL, in which 93.5 percent of the circulating lymphocytes bore sheep red blood cell receptors, showed its peak response to PHA at 7 days. Therefore, using surface marker criteria considered characteristic of normal T cells and B cells, the delayed response to PHA on the part of CLL lymphocytes was independent of thymic or nonthymic origin.« less
Sonnenberg, Avery; Marciniak, Jennifer Y.; Skowronski, Elaine A.; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M.; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 µL of CLL blood and 5 µL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). PMID:24723219
Sonnenberg, Avery; Marciniak, Jennifer Y; Skowronski, Elaine A; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-07-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 μL of CLL blood and 5 μL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porter, David L.; Hwang, Wei-Ting; Frey, Noelle V.; Lacey, Simon F.; Shaw, Pamela A.; Loren, Alison W.; Bagg, Adam; Marcucci, Katherine T.; Shen, Angela; Gonzalez, Vanessa; Ambrose, David; Grupp, Stephan A.; Chew, Anne; Zheng, Zhaohui; Milone, Michael C.; Levine, Bruce L.; Melenhorst, Jan J.; June, Carl H.
2018-01-01
Patients with multiply relapsed or refractory chronic lymphocytic leukemia (CLL) have a poor prognosis. Chimeric antigen receptor (CAR)–modified T cells targeting CD19 have the potential to improve on the low complete response rates with conventional therapies by inducing sustained remissions in patients with refractory B cell malignancies. We previously reported preliminary results on three patients with refractory CLL. We report the mature results from our initial trial using CAR-modified T cells to treat 14 patients with relapsed and refractory CLL. Autologous T cells transduced with a CD19-directed CAR (CTL019) lentiviral vector were infused into patients with relapsed/refractory CLL at doses of 0.14 × 108 to 11 × 108 CTL019 cells (median, 1.6 × 108 cells). Patients were monitored for toxicity, response, expansion, and persistence of circulating CTL019 T cells. The overall response rate in these heavily pretreated CLL patients was 8 of 14 (57%), with 4 complete remissions (CR) and 4 partial remissions (PR). The in vivo expansion of the CAR T cells correlated with clinical responses, and the CAR T cells persisted and remained functional beyond 4 years in the first two patients achieving CR. No patient in CR has relapsed. All responding patients developed B cell aplasia and experienced cytokine release syndrome, coincident with T cell proliferation. Minimal residual disease was not detectable in patients who achieved CR, suggesting that disease eradication may be possible in some patients with advanced CLL. PMID:26333935
Borge, Mercedes; Remes Lenicov, Federico; Nannini, Paula R; de los Ríos Alicandú, María M; Podaza, Enrique; Ceballos, Ana; Fernández Grecco, Horacio; Cabrejo, María; Bezares, Raimundo F; Morande, Pablo E; Oppezzo, Pablo; Giordano, Mirta; Gamberale, Romina
2014-09-15
Chronic lymphocytic leukemia (CLL) is characterized by the progressive accumulation of clonal B lymphocytes. Proliferation occurs in lymphoid tissues upon interaction of leukemic cells with a supportive microenvironment. Therefore, the mobilization of tissue-resident CLL cells into the circulation is a useful therapeutic strategy to minimize the reservoir of tumor cells within survival niches. Because the exit of normal lymphocytes from lymphoid tissues depends on the presence of sphingosine-1 phosphate (S1P) and the regulated expression of S1P receptor-1 (S1PR1), we investigated whether the expression and function of S1PR1 can be modulated by key microenvironment signals. We found that activation of CLL cells with CXCL12, fibroblast CD40L(+), BCR cross-linking, or autologous nurse-like cells reduces their S1PR1 expression and the migratory response toward S1P. Moreover, we found that S1PR1 expression was reduced in the proliferative/activated subset of leukemic cells compared with the quiescent subset from the same patient. Similarly, bone marrow-resident CLL cells expressing high levels of the activation marker CD38 showed a lower expression of S1PR1 compared with CD38(low) counterparts. Finally, given that treatment with BCR-associated kinase inhibitors induces a transient redistribution of leukemic cells from lymphoid tissues to circulation, we studied the effect of the Syk inhibitors piceatannol and R406 on S1PR1 expression and function. We found that they enhance S1PR1 expression in CLL cells and their migratory response toward S1P. Based on our results, we suggest that the regulated expression of S1PR1 might modulate the egress of the leukemic clone from lymphoid tissues. Copyright © 2014 by The American Association of Immunologists, Inc.
Bianchi, Sergio; Moreno, Pilar; Landoni, Ana Inés; Naya, Hugo; Oppezzo, Pablo; Dighiero, Guillermo; Gabús, Raúl; Pritsch, Otto
2010-11-01
B-cell chronic lymphocytic leukemia (CLL) is characterized by the accumulation of long-lived circulating clonal leukemic B-cells, although the etiopathogenesis remains unclear. The incidence of CLL is variable in different regions around the world. While it is the most frequent chronic leukemia in Western countries, it has a low incidence in Asia. In this work we have investigated the immunoglobulin heavy chain gene rearrangements and mutational status in 80 Uruguayan patients with CLL, and compared these results with those obtained in other geographic regions. Our results demonstrate that Uruguayan patients with CLL display an IGHV gene usage which resembles that observed in Mediterranean countries and exhibits certain differences compared with Brazilian and Asian series, as expected, considering the ethnic basis of the Uruguayan population. This suggests that genetic influences could be important in the development and etiopathogenesis of CLL, but larger studies are necessary to substantiate this possibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipps, T.J.; Fong, S.; Tomhave, E.
Malignant B lymphocytes from several patients with chronic lymphocytic leukemia (CLL) were examined for reactivity with murine monoclonal antibody 17.109. This antibody, prepared against the rheumatoid factor (RF) paraprotein Sie, recognizes a cross reactive idiotype on 48% of human IgM RF paraproteins, but does not react with IgM paraproteins without RF activity or substantially with normal pooled immunoglobulin. The 17.109-reactive idiotype is a marker for a kappa III variable-region gene, designated V/sub kappa/RF, that is conserved in outbred human populations. In a limited study of 31 CLL patients, the leukemic cells from 5 of 20 patients with kappa light chain-expressingmore » CLL were recognized by the 17.109 monoclonal antibody. Despite having malignant cells specifically reactive with this antibody, patients with 17.109-positive CLL did not have elevated serum levels of circulating antibody bearing 17.109-reactive determinants. Total RNAs isolated from the CLL B lymphocytes, or from hybridomas produced by fusing the CLL cells with the WI-L2-729-HF/sub 2/ cell line, were fractionated electrophoretically and examined by blot hybridization. Under stringent hybridization conditions capable of discerning a single base-pair mismatch, RNA from the 17.109-idiotype-positive CLL cells hybridized to synthetic oligonucleotide probes corresponding to framework and complementary-determining regions in the V/sub kappa/RF gene. The high frequency of the 17.109-associated idiotype and the V/sub kappa/RF gene in CLL suggests that the disease may arise from B lymphocytes that express a restricted set of inherited immunoglobulin variable-region genes with little or no somatic mutation.« less
Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha
2015-01-01
Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398
Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A; Wierda, William G; Keating, Michael J; Balakrishnan, Kumudha; Gandhi, Varsha
2015-08-15
Bruton's tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199), and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted in high cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family antiapoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Our biologic and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. ©2015 American Association for Cancer Research.
Chen, S-S; Chang, B Y; Chang, S; Tong, T; Ham, S; Sherry, B; Burger, J A; Rai, K R; Chiorazzi, N
2016-04-01
Bruton's tyrosine kinase (BTK) is involved in the regulation of B-cell growth, migration and adhesion. The importance of BTK in cell trafficking is emphasized by the clonal contraction proceeded by lymphocytosis typical for the enzyme inhibitor, ibrutinib, in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Here, we investigated BTK regulation of leukemic B-cell trafficking in a mouse model of aggressive TCL1 CLL-like disease. Inhibiting BTK by ibrutinib reduced surface membrane (sm) levels of CXCR4 but not CXCR5, CD49d and other adhesion/homing receptors. Decreased smCXCR4 levels resulted from blocking receptor signal transduction, which in turn aborted cycling from and to the membrane. This resulted in rapid re-distribution of CLL cells from spleens and lymph nodes into the circulation. CLL cells with impaired smCXCR4 from BTK inhibition failed to home to spleens. These functional changes mainly resulted from inhibition of CXCR4 phosphorylation at Ser339, mediated directly by blocking BTK enzymatic activity and indirectly by affecting the function of downstream targets PLCγ2 and PKCμ, and eventually synthesis of PIM-1 and BTK itself. Our data identify CXCR4 as a key regulator in BTK-mediated CLL-cell retention and have elucidated a complex set of not previously described mechanisms responsible for these effects.
Immunotherapy in Chronic Lymphocytic Leukaemia (CLL).
Freeman, Ciara L; Gribben, John G
2016-02-01
Chronic lymphocytic leukaemia (CLL) is well known to generate impaired immune responses in the host, with the malignant clone residing in well-vascularized tissues and circulating in peripheral blood but also in close proximity to effector cells that are capable, if activated appropriately, of eliciting a cytotoxic response. These, combined with the fact that this is frequently a condition affecting older patients with co-morbidities often unfit for many "traditional" cytotoxic agents with their significant associated toxicities, make CLL an ideal candidate for the development of immunotherapy. The impressive results seen with the addition of a monoclonal antibody, rituximab, to a chemotherapy backbone, for example, is testament to how effective harnessing an immune-mediated response in CLL can be. This review serves to outline the available arsenal of immunotherapies-past and present-demonstrated to have potential in CLL with some perspectives on how the landscape in this disease may evolve in the future.
Oppezzo, P; Dighiero, G
2005-01-01
B-CLL cells express CD5 and IgM/IgD and thus have a mantle zone-like phenotype of naive cells, which, in normal conditions express unmutated Ig genes. However, recent studies have shown that 50%-70% of CLL harbour somatic mutations of VH genes, as if they had matured in a lymphoid follicle. Interestingly, the presence or absence of somatic hypermutation (SHM) process is associated with the use of particular VH genes. Particular alleles of the VH1-69 gene and the VH4-39 gene are preferentially expressed in an unmutated form, while VH4-34 or the majority of VH3 family genes frequently contain somatic mutations. The fact that some genes like VH1-69 and VH3-07 recombine this VH segment to particular JH segments and the restricted use of CDR3 sequences by CLLs expressing the VH4-39 gene suggest that the observed differences in BCR structure in B-CLL could result from selection by distinct antigenic epitopes. It is currently unclear whether this putative antigen-driven process could occur prior to leukaemic transformation and/or that the precursors were transformed into leukaemic cells at distinct maturational stages. The mutational profile of Ig genes has been shown to be associated with disease prognosis. These results could favour the idea that CLL could correspond to two different diseases that look alike in morphologic and phenotypic terms. In CLL with mutated Ig genes, the proliferating B cell may have transited through germinal centres, the physiologic site of hypermutation, whereas in CLL with unmutated Ig genes the malignant B cell may derive from a pre-germinal centre naïve B cell. Despite these clinical and molecular differences, recent studies on gene expression profiling of B-CLL cells showed that CLL is characterized by a common gene expression signature that is irrespective of Ig mutational status and differs from other lymphoid cancers and normal lymphoid subpopulations, suggesting that CLL cases share a common mechanism of transformation and/or cell of origin. Activation induced cytidine deaminase (AID) plays a key role in SHM and class switch recombination (CSR). However, the mechanisms accounting for AID action and control of its expression remain unclear. In a recent work we have shown that in contrast to normal circulating B-cells, AID transcripts are expressed constitutively in CLL patients undergoing active CSR, but interestingly this expression occurs predominately in unmutated CLL B-cells. These data favour the view that AID protein may act differentially on CSR and SHM pathways, but the role-played by AID in both processes remains to be elucidated. Recent work indicates that AID is expressed in a small fraction of tumoral cells, which could suggest that this small fraction of cells may correspond to B-CLL cells that would have recently experienced an AID-inducing stimulus occurring in a specific microenvironment.
Niemann, Carsten U.; Herman, Sarah E. M.; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y.; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance; Calvo, Katherine R.; Braylan, Raul C.; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H.; Jones, Jade; Sun, Clare C. L.; Marti, Gerald E.; Farooqui, Mohammed Z.; Wiestner, Adrian
2016-01-01
Purpose Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B cell receptor (BCR) signaling. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. While the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Experimental Design Patients received single agent ibrutinib on an investigator-initiated phase 2 trial. Serial blood and tissue samples were collected pre-treatment and during treatment. Changes in cytokine levels, cellular subsets and microenvironmental interactions were assessed. Results Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Further, ibrutinib treatment decreased circulating tumor cells and overall T cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4+ T cells was observed concurrent with reduced activation markers and expression of PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4+ T cells in vitro. Lastly, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13 and decreased the chemoattraction of CLL cells. Conclusions In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the anti-tumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. PMID:26660519
Niemann, Carsten U; Herman, Sarah E M; Maric, Irina; Gomez-Rodriguez, Julio; Biancotto, Angelique; Chang, Betty Y; Martyr, Sabrina; Stetler-Stevenson, Maryalice; Yuan, Constance M; Calvo, Katherine R; Braylan, Raul C; Valdez, Janet; Lee, Yuh Shan; Wong, Deanna H; Jones, Jade; Sun, Clare; Marti, Gerald E; Farooqui, Mohammed Z H; Wiestner, Adrian
2016-04-01
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B-cell receptor (BCR) signaling. Ibrutinib, a Bruton tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. Although the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Patients received single-agent ibrutinib on an investigator-initiated phase II trial. Serial blood and tissue samples were collected pretreatment and during treatment. Changes in cytokine levels, cellular subsets, and microenvironmental interactions were assessed. Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Furthermore, ibrutinib treatment decreased circulating tumor cells and overall T-cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4(+)T cells was observed concurrent with reduced expression of activation markers and PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4(+)T cells in vitro Finally, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13, and decreased the chemoattraction of CLL cells. In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the antitumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. See related commentary by Bachireddy and Wu, p. 1547. ©2015 American Association for Cancer Research.
Yeh, Paul; Hunter, Tane; Sinha, Devbarna; Ftouni, Sarah; Wallach, Elise; Jiang, Damian; Chan, Yih-Chih; Wong, Stephen Q; Silva, Maria Joao; Vedururu, Ravikiran; Doig, Kenneth; Lam, Enid; Arnau, Gisela Mir; Semple, Timothy; Wall, Meaghan; Zivanovic, Andjelija; Agarwal, Rishu; Petrone, Pasquale; Jones, Kate; Westerman, David; Blombery, Piers; Seymour, John F; Papenfuss, Anthony T; Dawson, Mark A; Tam, Constantine S; Dawson, Sarah-Jane
2017-03-17
Several novel therapeutics are poised to change the natural history of chronic lymphocytic leukaemia (CLL) and the increasing use of these therapies has highlighted limitations of traditional disease monitoring methods. Here we demonstrate that circulating tumour DNA (ctDNA) is readily detectable in patients with CLL. Importantly, ctDNA does not simply mirror the genomic information contained within circulating malignant lymphocytes but instead parallels changes across different disease compartments following treatment with novel therapies. Serial ctDNA analysis allows clonal dynamics to be monitored over time and identifies the emergence of genomic changes associated with Richter's syndrome (RS). In addition to conventional disease monitoring, ctDNA provides a unique opportunity for non-invasive serial analysis of CLL for molecular disease monitoring.
Prognostic relevance of oxidative stress measurement in chronic lymphocytic leukaemia.
D'Arena, Giovanni; Vitale, Candida; Perbellini, Omar; Coscia, Marta; La Rocca, Francesco; Ruggieri, Vitalba; Visco, Carlo; Di Minno, Nicola Matteo Dario; Innocenti, Idanna; Pizza, Vincenzo; Deaglio, Silvia; Di Minno, Giovanni; Giudice, Aldo; Calapai, Gioacchino; Musto, Pellegrino; Laurenti, Luca; Iorio, Eugenio Luigi
2017-10-01
To evaluate the prognostic significance of oxidative stress (OS) and antioxidant defence status measurement in patients with chronic lymphocytic leukaemia (CLL). d-ROMs test and BAP test were evaluated at diagnosis of 165 patients with CLL and correlated with clinical-biological features and prognosis. An increased oxidative damage (d-ROMs test) and a reduced antioxidant potential (BAP test) were found in CLL patients than normal controls (P<.0001). CLL patients with higher d-ROMs values had higher number of circulating white blood cells and lymphocytes, and higher values of β 2 -microglobulin. Higher d-ROMs values were found in female (P=.0003), in patients with unmutated IgVH (P=.04), unfavourable cytogenetics (P=.002) and more advanced clinical stage (P=.002). Higher BAP test values were found in patients expressing CD49d (P=.01) and with more advanced clinical stage (P=.004). At a median follow-up of 48 months, CLL patients with d-ROMs ≥418 CARR U were found to have a shorter time to first treatment (TFT) (P=.0002), and a reduced survival (P=.006) than others. CLL patients with BAP test values ≥2155 μmol/L had a shorter TFT (P=.008) and a shorter survival (P=.003). OS can affect CLL patients by concomitantly increasing reactive oxygen metabolites production and decreasing antioxidant defences. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.
Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F
2016-01-01
Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.
Chronic Lymphocytic Leukemia-Derived IL-10 Suppresses Antitumor Immunity.
Alhakeem, Sara S; McKenna, Mary K; Oben, Karine Z; Noothi, Sunil K; Rivas, Jacqueline R; Hildebrandt, Gerhard C; Fleischman, Roger A; Rangnekar, Vivek M; Muthusamy, Natarajan; Bondada, Subbarao
2018-04-30
Chronic lymphocytic leukemia (CLL) patients progressively develop an immunosuppressive state. CLL patients have more plasma IL-10, an anti-inflammatory cytokine, than healthy controls. In vitro human CLL cells produce IL-10 in response to BCR cross-linking. We used the transgenic Eμ-T cell leukemia oncogene-1 ( TCL1 ) mouse CLL model to study the role of IL-10 in CLL associated immunosuppression. Eμ-TCL mice spontaneously develop CLL because of a B cell-specific expression of the oncogene, TCL1. Eμ- TCL1 mouse CLL cells constitutively produce IL-10, which is further enhanced by BCR cross-linking, CLL-derived IL-10 did not directly affect survival of murine or human CLL cells in vitro. We tested the hypothesis that the CLL-derived IL-10 has a critical role in CLL disease in part by suppressing the host immune response to the CLL cells. In IL-10R -/- mice, wherein the host immune cells are unresponsive to IL-10-mediated suppressive effects, there was a significant reduction in CLL cell growth compared with wild type mice. IL-10 reduced the generation of effector CD4 and CD8 T cells. We also found that activation of BCR signaling regulated the production of IL-10 by both murine and human CLL cells. We identified the transcription factor, Sp1, as a novel regulator of IL-10 production by CLL cells and that it is regulated by BCR signaling via the Syk/MAPK pathway. Our results suggest that incorporation of IL-10 blocking agents may enhance current therapeutic regimens for CLL by potentiating host antitumor immune response. Copyright © 2018 by The American Association of Immunologists, Inc.
Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood
Sonnenberg, Avery; Marciniak, Jennifer Y.; Rassenti, Laura; Ghia, Emanuela M.; Skowronski, Elaine A.; Manouchehri, Sareh; McCanna, James; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
BACKGROUND Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a “liquid biopsy” may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. METHODS We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification,PCR,and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. RESULTS PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15–20 mL blood. CONCLUSIONS Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring. PMID:24270796
Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood.
Sonnenberg, Avery; Marciniak, Jennifer Y; Rassenti, Laura; Ghia, Emanuela M; Skowronski, Elaine A; Manouchehri, Sareh; McCanna, James; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-03-01
Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification, PCR, and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15-20 mL blood. Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring.
van Rhenen, Anna; van Dongen, Guus A M S; Kelder, Angèle; Rombouts, Elwin J; Feller, Nicole; Moshaver, Bijan; Stigter-van Walsum, Marijke; Zweegman, Sonja; Ossenkoppele, Gert J; Jan Schuurhuis, Gerrit
2007-10-01
In CD34(+) acute myeloid leukemia (AML), the malignant stem cells reside in the CD38(-) compartment. We have shown before that the frequency of such CD34(+)CD38(-) cells at diagnosis correlates with minimal residual disease (MRD) frequency after chemotherapy and with survival. Specific targeting of CD34(+)CD38(-) cells might thus offer therapeutic options. Previously, we found that C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cases. We now show that CLL-1 expression is also present on the CD34(+)CD38(-) stem- cell compartment in AML (77/89 patients). The CD34(+)CLL-1(+) population, containing the CD34(+)CD38(-)CLL-1(+) cells, does engraft in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with outgrowth to CLL-1(+) blasts. CLL-1 expression was not different between diagnosis and relapse (n = 9). In remission, both CLL-1(-) normal and CLL-1(+) malignant CD34(+)CD38(-) cells were present. A high CLL-1(+) fraction was associated with quick relapse. CLL-1 expression is completely absent both on CD34(+)CD38(-) cells in normal (n = 11) and in regenerating bone marrow controls (n = 6). This AML stem-cell specificity of the anti-CLL-1 antibody under all conditions of disease and the leukemia-initiating properties of CD34(+)CLL-1(+) cells indicate that anti-CLL-1 antibody enables both AML-specific stem-cell detection and possibly antigen-targeting in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawler, D.L.; Beauregard, J.; Halpern, S.E.
We have administered fifty-six 24 hr infusions of the anti-human T-cell monoclonal antibody T101 to 10 patients with cutaneous T-cell lymphoma (CTCL) and 6 patients with chronic lymphocytic leukemia (CLL) in doses of 10, 50, 100, 150, and 500 mg. The larger doses of T101 resulted in higher, more persistent serum T101 concentrations, and CTCL patients generally developed higher serum T101 levels than CLL patients given equivalent doses. The presence of host anti-mIgG antibodies prior to infusion was associated with decreased serum concentrations of T101. Treatments that demonstrated measurable serum T101 levels were also associated with in vivo T101 bindingmore » and cytodestruction of circulating target cells. Immunofluorescence analysis of bone marrow and lymph node biopsies in CLL, and skin biopsies in CTCL, suggested that T101 had reached extravascular tumor sites. Infusion of /sup 111/In-conjugated T101 showed uptake in the liver, spleen, lymph nodes, and (in CTCL) skin infiltrates. Our data demonstrate the tissue distribution of T101 and suggest that immunoconjugates of T101 with toxins, drugs, or radioisotopes may result in better therapeutic responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, T.; Bloom, M.L.; Dadey, B.
In the present study, there was a complete lack of autologous MLR between responding T cells or T subsets and unirradiated or irradiated leukemic B cells or monocytes in all 20 patients with CLL, regardless of disease status, stage, phenotype, or karyotype of the disease. The stimulating capacity of unirradiated CLL B cells and CLL monocytes or irradiated CLL B cells was significantly depressed as compared to that of respective normal B cells and monocytes in allogeneic MLR. The responding capacity of CLL T cells was also variably lower than that of normal T cells against unirradiated or irradiated normalmore » allogeneic B cells and monocytes. The depressed allogeneic MLR between CLL B cells or CLL monocytes and normal T cells described in the present study could be explained on the basis of a defect in the stimulating antigens of leukemic B cells or monocytes. The decreased allogeneic MLR of CLL T cells might simply be explained by a defect in the responsiveness of T lymphocytes from patients with CLL. However, these speculations do not adequately explain the complete lack of autologous MLR in these patients. When irradiated CLL B cells or irradiated CLL T cells were cocultured with normal T cells and irradiated normal B cells, it was found that there was no suppressor cell activity of CLL B cells or CLL T cells on normal autologous MLR. Our data suggest that the absence or dysfunction of autoreactive T cells within the Tnon-gamma subset account for the lack of autologous MLR in patients with CLL. The possible significance of the autologous MLR, its relationship to in vivo immunoregulatory mechanisms, and the possible role of breakdown of autoimmunoregulation in the oncogenic process of certain lymphoproliferative and autoimmune diseases in man are discussed.« less
Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E
2009-11-01
It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.
Sinha, Sutapa; Boysen, Justin; Nelson, Michael; Secreto, Charla; Warner, Steven L; Bearss, David J; Lesnick, Connie; Shanafelt, Tait D; Kay, Neil E; Ghosh, Asish K
2015-05-01
B-cell chronic lymphocytic leukemia (CLL) is an incurable disease despite aggressive therapeutic approaches. We previously found that Axl receptor tyrosine kinase (RTK) plays a critical role in CLL B-cell survival. Here, we explored the possibility of using a high-affinity Axl inhibitor as a single agent or in combination with Bruton's tyrosine kinase (BTK) inhibitors for future clinical trial to treat patients with CLL. Expression/activation status of other members of the TAM (e.g., Tyro3, Axl, and MER) family of RTKs in CLL B cells was evaluated. Cells were treated with a high-affinity orally bioavailable Axl inhibitor TP-0903 with or without the presence of CLL bone marrow stromal cells (BMSCs). Inhibitory effects of TP-0903 on the Axl signaling pathway were also evaluated in CLL B cells. Finally, cells were exposed to TP-0903 in combination with BTK inhibitors to determine any synergistic/additive effects of the combination. CLL B cells overexpress Tyro3, but not MER. Of interest, Tyro3 remains as constitutively phosphorylated and forms a complex with Axl in CLL B cells. TP-0903 induces massive apoptosis in CLL B cells with LD50 values of nanomolar ranges. Importantly, CLL BMSCs could not protect the leukemic B cells from TP-0903-induced apoptosis. A marked reduction of the antiapoptotic proteins Mcl-1, Bcl-2, and XIAP and upregulation of the proapoptotic protein BIM in CLL B cells was detected as a result of Axl inhibition. Finally, combination of TP-0903 with BTK inhibitors augments CLL B-cell apoptosis. Administration of TP-0903 either as a single agent or in combination with BTK inhibitors may be effective in treating patients with CLL. ©2015 American Association for Cancer Research.
Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland
2018-01-01
ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521
Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F
2004-07-01
Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.
Correlation of the expression of CD32 and CD180 receptors on CLL cells and MEC1 cell line.
Tsertsvadze, T; Mitskevich, N; Ghirdaladze, D; Porakishvili, N
2015-03-01
Chronic Lymphocytic Leukemia (CLL) presents with clonal expansion and accumulation of CD5+CD19+CD23+ cells in peripheral lymphoid organs and tissues and in bone marrow. CLL is supposedly driven by exogenous and/or endogenous (auto)antigen(s) and there is increasing evidence that CLL cells receive microenvironmental signals which support their growth, survival and expansion in vivo. We have previously shown that powerful signals are received by CLL cells through CD180 orphan toll-like receptor. Additional accessory signals could be generated through FcγRII (CD32), since both are expressed on CLL cells as well as on control B cells. Here we studied correlation of the expression of CD32 and CD180 on CLL cells as well as on MEC1 cell line. Peripheral blood mononuclear cells (PBMC) from CLL patients and age-matched healthy volunteers were separated, stained with appropriate antibodies to CD19, CD32 and CD180 and analysed by flow cytometry. CD32 and CD180 expression on MEC1 cells was studied at different time-points. The data was statistically analysed using the Mann-Whitney non-parametrical test. Our data indicates that expression of CD32 is significantly increased on CLL cells compared to control B cells as well as in long-term MEC1 cell culture. In contrast, CD180 expression on MEC1 cells significantly decreased throughout 0-96h of MEC1 cell culture. We have recently shown that CD180 ligation can redirect sIgM-mediated signaling from pro-survival to pro-apoptotic. This data indicates that a drop in the expression of CD180 on cycling CLL cells might lead to a weakening of this effect and enhance further survival and expansion of CLL cells in proliferative centres of lymphoid tissues. Since MEC1 cells are derived from a CLL patient with mutated IGVH genes (M-CLL) negative correlation between CD180 and CD32 expression on cycling MEC1 cells could be limited to M-CLL.
CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.
Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui
2018-01-10
Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.
Trinidad, Eva M.; García, Dolores; Soler, Gloria; Ortuño, Francisco J.; Zapata, Agustín G.; Alonso, Luis M.
2016-01-01
A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival. PMID:27374180
Blanco, Gonzalo; Vardi, Anna; Puiggros, Anna; Gómez-Llonín, Andrea; Muro, Manuel; Rodríguez-Rivera, María; Stalika, Evangelia; Abella, Eugenia; Gimeno, Eva; López-Sánchez, Manuela; Senín, Alicia; Calvo, Xavier; Abrisqueta, Pau; Bosch, Francesc; Ferrer, Ana; Stamatopoulos, Kostas; Espinet, Blanca
2018-01-01
Analysis of the T cell receptor (TR) repertoire of chronic lymphocytic leukemia-like monoclonal B cell lymphocytosis (CLL-like MBL) and early stage CLL is relevant for understanding the dynamic interaction of expanded B cell clones with bystander T cells. Here we profiled the T cell receptor β chain (TRB) repertoire of the CD4 + and CD8 + T cell fractions from 16 CLL-like MBL and 13 untreated, Binet stage A/Rai stage 0 CLL patients using subcloning analysis followed by Sanger sequencing. The T cell subpopulations of both MBL and early stage CLL harbored restricted TRB gene repertoire, with CD4 + T cell clonal expansions whose frequency followed the numerical increase of clonal B cells. Longitudinal analysis in MBL cases revealed clonal persistence, alluding to persistent antigen stimulation. In addition, the identification of shared clonotypes among different MBL/early stage CLL cases pointed towards selection of the T cell clones by common antigenic elements. T cell clonotypes previously described in viral infections and immune disorders were also detected. Altogether, our findings evidence that antigen-mediated TR restriction occurs early in clonal evolution leading to CLL and may further increase together with B cell clonal expansion, possibly suggesting that the T cell selecting antigens are tumor-related.
Mainou-Fowler, T; Copplestone, J A; Prentice, A G
1995-01-01
AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299
STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells
Rozovski, Uri; Harris, David M.; Li, Ping; Liu, Zhiming; Jain, Preetesh; Ferrajoli, Alessandra; Burger, Jan; Thompson, Phillip; Jain, Nitin; Wierda, William; Keating, Michael J.; Estrov, Zeev
2018-01-01
Although several studies established that unlike normal B cells chronic lymphocytic leukemia (CLL) cells metabolize fatty acids (FA), how CLL cells internalize FA is poorly understood. Because in various cell types CD36 facilitates FA uptake, we wondered whether a similar mechanism is operative CLL. We found that CD36 levels are higher in CLL cells than in normal B cells, and that small interfering RNA, CD36 neutralizing antibodies or sulfosuccinimidyl oleate (SSO) that inhibits CD36 significantly reduced the oxygen consumption of CLL cells incubated with FA. Because CD36 is oeverexpressed and STAT3 is constitutively activated in CLL cells, we wondered whether STAT3 induces CD36 expression. Sequence analysis identified putative STAT3 binding sites in the CD36 gene promoter. Chromatin immunoprecipitation and an electrophoretic mobility shift assay revealed that STAT3 binds to the CD36 gene promoter. A luciferase assay and STAT3-small hairpin RNA, that significantly decreased the levels of CD36 in CLL cells, established that STAT3 activates the transcription of the CD36 gene. Furthermore, SSO induced a dose-dependent apoptosis of CLL cells. Taken together, our data suggest that STAT3 activates CD36 and that CD36 facilitates FA uptake in CLL cells. Whether CD36 inhibition would provide clinical benefits in CLL remains to be determined. PMID:29765537
Ph I/II Study of Subcutaneously Administered Veltuzumab (hA20) in NHL and CLL
2013-03-25
NHL; Lymphoma, Non-Hodgkin; Lymphoma, B-Cell; Lymphoma, Follicular; Lymphoma, Intermediate-Grade; Lymphoma, Large-Cell; Lymphoma, Low-Grade; Lymphoma, Mixed-Cell; Lymphoma, Small-Cell; Leukemia, Lymphocytic, Chronic; Leukemia, B-Cell, Chronic; Leukemia, Prolymphocytic; Leukemia, Small Lymphocytic; Lymphoma, Small Lymphocytic; Lymphoma, Lymphoplasmacytoid, CLL; Lymphoplasmacytoid Lymphoma, CLL; CLL; SLL
Polliack, A; Leizerowitz, R; Berrebi, A; Gamliel, H; Galili, N; Gurfel, D; Catovsky, D
1984-08-01
The surface architecture of leukaemic cells obtained from 21 cases of proven prolymphocytic leukaemia (PLL) and eight cases of chronic lymphocytic leukaemia (CLL) with 'prolymphocytoid' transformation (PL-CLL) was compared with the cell surface morphology of leukaemic cells obtained from 46 cases of B-type CLL, using the scanning electron microscope (SEM). All cases were defined by cytochemistry, immunological markers and transmission electron microscopy prior to SEM examination. B-CLL cells showed the well-recognized spectrum of surface architecture described in earlier studies. The majority of cells had moderate numbers of short microvilli, although in a minority, cells with relatively smooth surfaces predominated. In seven of the eight cases of PL-CLL, cells were villous in nature and in this respect similar to CLL cells; however, more cells with dense microvilli were seen. The prolymphocytic cells were recognized by their larger size and in 18 of the 19 cases of B-derived PLL, villous cells predominated. Two cases of T-derived PLL showed variable cell surface morphology ranging from smooth to moderately villous. It appears that B-PLL cells are most frequently villous and display more surface microvilli than B-CLL cells. B-prolymphocytes display the surface features regarded as characteristic for neoplastic B-cells as seen in patients with B-type lymphoma and leukaemia.
Kurtova, Antonina V.; Balakrishnan, Kumudha; Chen, Rong; Ding, Wei; Schnabl, Susanne; Quiroga, Maite P.; Sivina, Mariela; Wierda, William G.; Estrov, Zeev; Keating, Michael J.; Shehata, Medhat; Jäger, Ulrich; Gandhi, Varsha; Kay, Neil E.; Plunkett, William
2009-01-01
Marrow stromal cells (MSCs) provide important survival and drug resistance signals to chronic lymphocytic leukemia (CLL) cells, but current models to analyze CLL–MSC interactions are heterogeneous. Therefore, we tested different human and murine MSC lines and primary human MSCs for their ability to protect CLL cells from spontaneous and drug-induced apoptosis. Our results show that both human and murine MSCs are equally effective in protecting CLL cells from fludarabine-induced apoptosis. This protective effect was sustained over a wide range of CLL–MSC ratios (5:1 to 100:1), and the levels of protection were reproducible in 4 different laboratories. Human and murine MSCs also protected CLL cells from dexamethasone- and cyclophosphamide-induced apoptosis. This protection required cell–cell contact and was virtually absent when CLL cells were separated from the MSCs by micropore filters. Furthermore, MSCs maintained Mcl-1 and protected CLL cells from spontaneous and fludarabine-induced Mcl-1 and PARP cleavage. Collectively, these studies define common denominators for CLL cocultures with MSCs. They also provide a reliable, validated tool for future investigations into the mechanism of MSC–CLL cross talk and for drug testing in a more relevant fashion than the commonly used suspension cultures. PMID:19762485
Bagnara, Davide; Kaufman, Matthew S.; Calissano, Carlo; Marsilio, Sonia; Patten, Piers E. M.; Simone, Rita; Chum, Philip; Yan, Xiao-Jie; Allen, Steven L.; Kolitz, Jonathan E.; Baskar, Sivasubramanian; Rader, Christoph; Mellstedt, Hakan; Rabbani, Hodjattallah; Lee, Annette; Gregersen, Peter K.; Rai, Kanti R.
2011-01-01
Chronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γcnull mice under the influence of activated CLL-derived T lymphocytes. By cotransferring autologous T lymphocytes, activated in vivo by alloantigens, the survival and growth of primary CFSE-labeled CLL cells in vivo is achieved and quantified. Using this approach, we have identified key roles for CD4+ T cells in CLL expansion, a direct link between CD38 expression by leukemic B cells and their activation, and support for CLL cells preferentially proliferating in secondary lymphoid tissues. The model should simplify analyzing kinetics of CLL cells in vivo, deciphering involvement of nonleukemic elements and nongenetic factors promoting CLL cell growth, identifying and characterizing potential leukemic stem cells, and permitting preclinical studies of novel therapeutics. Because autologous activated T lymphocytes are 2-edged swords, generating unwanted graph-versus-host and possibly autologous antitumor reactions, the model may also facilitate analyses of T-cell populations involved in immune surveillance relevant to hematopoietic transplantation and tumor cytoxicity. PMID:21385850
Farahani, Mosavar; Rubbi, Carlos; Liu, Luning; Slupsky, Joseph R.; Kalakonda, Nagesh
2015-01-01
Bi-directional communication with the microenvironment is essential for homing and survival of cancer cells with implications for disease biology and behaviour. In chronic lymphocytic leukemia (CLL), the role of the microenvironment on malignant cell behaviour is well described. However, how CLL cells engage and recruit nurturing cells is poorly characterised. Here we demonstrate that CLL cells secrete exosomes that are nanovesicles originating from the fusion of multivesicular bodies with the plasma membrane, to shuttle proteins, lipids, microRNAs (miR) and mRNAs to recipient cells. We characterise and confirm the size (50–100 nm) and identity of the CLL-derived exosomes by Electron microscopy (EM), Atomic force microscopy (AFM), flow cytometry and western blotting using both exosome- and CLL-specific markers. Incubation of CLL-exosomes, derived either from cell culture supernatants or from patient plasma, with human stromal cells shows that they are readily taken up into endosomes, and induce expression of genes such as c-fos and ATM as well as enhance proliferation of recipient HS-5 cells. Furthermore, we show that CLL exosomes encapsulate abundant small RNAs and are enriched in certain miRs and specifically hsa-miR-202-3p. We suggest that such specific packaging of miR-202-3p into exosomes results in enhanced expression of ‘suppressor of fused’ (Sufu), a Hedgehog (Hh) signalling intermediate, in the parental CLL cells. Thus, our data show that CLL cells secrete exosomes that alter the transcriptome and behaviour of recipient cells. Such communication with microenvironment is likely to have an important role in CLL disease biology. PMID:26509439
Metabolism pathways in chronic lymphocytic leukemia
Rozovski, Uri; Hazan-Halevy, Inbal; Barzilay, Merav; Keating, Michael J.; Estrov, Zeev
2016-01-01
Alterations in CLL cell metabolism have been studied by several investigators. Unlike normal B lymphocytes or other leukemia cells, CLL cells, like adipocytes, store lipids and utilize free fatty acids (FFA) to produce chemical energy. None of the recently identified mutations in CLL directly affects metabolic pathways, suggesting that genetic alterations do not directly contribute to CLL cells’ metabolic reprogramming. Conversely, recent data suggest that activation of STAT3 or downregulation of microRNA-125 levels plays a crucial role in the utilization of FFA to meet CLL cells’ metabolic needs. STAT3, known to be constitutively activated in CLL, increases the levels of lipoprotein lipase that mediates lipoprotein uptake and shifts CLL cells’ metabolism towards utilization of FFA. Herein we review the evidence for altered lipid metabolism, increased mitochondrial activity, and formation of reactive oxygen species in CLL cells, and discuss possible therapeutic strategies to inhibit lipid metabolism pathways in patient with CLL. PMID:26643954
Baskar, Sivasubramanian; Suschak, Jessica M; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W; Pavletic, Steven Z; Bishop, Michael R; Rader, Christoph
2009-11-12
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.
Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective
Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein
2018-01-01
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635
Till, Kathleen J; Allen, John C; Talab, Fatima; Lin, Ke; Allsup, David; Cawkwell, Lynn; Bentley, Alison; Ringshausen, Ingo; Duckworth, Andrew D; Pettitt, Andrew R; Kalakonda, Nagesh; Slupsky, Joseph R
2017-12-01
Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.
Montserrat, Emili
2013-01-01
Chronic lymphocytic leukemia (CLL) cells proliferate in pseudofollicles within the lymphatic tissues, where signals from the microenvironment and BCR signaling drive the expansion of the CLL clone. Mobilization of tissue-resident cells into the blood removes CLL cells from this nurturing milieu and sensitizes them to cytotoxic drugs. This concept recently gained momentum after the clinical activity of kinase inhibitors that target BCR signaling (spleen tyrosine kinase, Bruton tyrosine kinase, PI3Kδ inhibitors) was established. Besides antiproliferative activity, these drugs cause CLL cell redistribution with rapid lymph node shrinkage, along with a transient surge in lymphocytosis, before inducing objective remissions. Inactivation of critical CLL homing mechanism (chemokine receptors, adhesion molecules), thwarting tissue retention and recirculation into the tissues, appears to be the basis for this striking clinical activity. This effect of BCR-signaling inhibitors resembles redistribution of CLL cells after glucocorticoids, described as early as in the 1940s. As such, we are witnessing a renaissance of the concept of leukemia cell redistribution in modern CLL therapy. Here, we review the molecular basis of CLL cell trafficking, homing, and redistribution and similarities between old and new drugs affecting these processes. In addition, we outline how these discoveries are changing our understanding of CLL biology and therapy. PMID:23264597
Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro.
Zhu, Fang; McCaw, Lindsay; Spaner, David E; Gorczynski, Reginald M
2018-03-01
The tumor microenvironment (TME) is critical to the longevity of tumor B cells in chronic lymphocytic leukemia (CLL). Bone marrow mesenchymal stem cells (BMMSCs) and the cytokines they produce including IL-6 are important components of the TME in CLL. We found BMMSCs supported the survival of CLL cells in vitro through an IL-6 dependent mechanism. IL-17 which induces IL-6 generation in a variety of cells increased production of IL-6 both in CLL cells and BMMSCs in vitro. In a xenograft CLL mouse model, BMMSCs and the culture supernatant of BMMSCs increased engraftment of CLL cells through an IL-6 mediated mechanism with human recombinant IL-6 showing similar effects in vivo. Human recombinant IL-17 treatment also increased CLL engraftment in mice through an IL-6 mediated mechanism. Plasma of CLL patients showed elevated levels of both IL-6 and IL-17 by ELISA compared with healthy controls, with levels of IL-6 linearly correlated with IL-17 levels. CLL patients requiring fludarabine based chemotherapy expressed higher levels of IL-6 and IL-17, while CLL patients with the lowest levels of IgA/IgM had higher levels of IL-6, but not IL-17. These data imply an important role for the IL-17/IL-6 axis in CLL which could be therapeutic targets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R
2009-07-15
Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.
Burger, Jan A
2010-12-01
Chemokines and their receptors organize the recruitment and positioning of cells at each stage of the immune response, a system critically dependent upon coordination to get the right cells to the right place at the right time. Chemokine receptors expressed on CLL B cells are thought to function in a similar fashion, regulating the trafficking of the leukemia cells between blood, lymphoid organs, and the bone marrow, and within sub compartments within these tissues, in concert with adhesion molecules and other guidance cues. CLL cells not only respond to chemokines secreted in the microenvironment, the leukemia cells also secrete chemokines in response to external signals, such as B cell receptor engagement. These CLL cell-derived chemokines facilitate interactions between CLL cells, T cells, and other immune cells that shape the CLL microenvironment. CXCR4, the most prominent chemokine receptor in CLL, is now targeted in a first clinical trial, emphasizing that chemokines and their receptors have become a highly dynamic translational research field. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fiskus, Warren; Saba, Nakhle; Shen, Min; Ghias, Mondana; Liu, Jinyun; Gupta, Soumyasri Das; Chauhan, Lata; Rao, Rekha; Gunewardena, Sumedha; Schorno, Kevin; Austin, Christopher P.; Maddocks, Kami; Byrd, John; Melnick, Ari; Huang, Peng; Wiestner, Adrian; Bhalla, Kapil N.
2014-01-01
Chronic lymphocytic leukemia (CLL) exhibits high remission rates after initial chemoimmunotherapy, but with relapses with treatment, refractory disease is the most common outcome, especially in CLL with the deletion of chromosome 11q or 17p. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for CLL treatment. Auranofin (Ridaura) is approved for use in treating rheumatoid arthritis, but it exhibited preclinical efficacy in CLL cells. By inhibiting thioredoxin reductase activity and increasing intracellular reactive oxygen species levels, auranofin induced a lethal endoplasmic reticulum stress response in cultured and primary CLL cells. In addition, auranofin displayed synergistic lethality with heme oxygenase-1 and glutamate-cysteine ligase inhibitors against CLL cells. Auranofin overcame apoptosis resistance mediated by protective stromal cells, and it also killed primary CLL cells with deletion of chromosome 11q or 17p. In TCL-1 transgenic mice, an in vivo model of CLL, auranofin treatment markedly reduced tumor cell burden and improved mouse survival. Our results provide a rationale to reposition the approved drug auranofin for clinical evaluation in the therapy of CLL. PMID:24599128
Faitschuk, Elena; Hombach, Andreas A; Frenzel, Lukas P; Wendtner, Clemens-Martin; Abken, Hinrich
2016-09-29
Adoptive cell therapy of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR)-modified T cells targeting CD19 induced lasting remission of this refractory disease in a number of patients. However, the treatment is associated with prolonged "on-target off-tumor" toxicities due to the targeted elimination of healthy B cells demanding more selectivity in targeting CLL cells. We identified the immunoglobulin M Fc receptor (FcμR), also known as the Fas apoptotic inhibitory molecule-3 or TOSO, as a target for a more selective treatment of CLL by CAR T cells. FcμR is highly and consistently expressed by CLL cells; only minor levels are detected on healthy B cells or other hematopoietic cells. T cells with a CAR specific for FcμR efficiently responded toward CLL cells, released a panel of proinflammatory cytokines and lytic factors, like soluble FasL and granzyme B, and eliminated the leukemic cells. In contrast to CD19 CAR T cells, anti-FcμR CAR T cells did not attack healthy B cells. T cells with anti-FcμR CAR delayed outgrowth of Mec-1-induced leukemia in a xenograft mouse model. T cells from CLL patients in various stages of the disease, modified by the anti-FcμR CAR, purged their autologous CLL cells in vitro without reducing the number of healthy B cells, which is the case with anti-CD19 CAR T cells. Compared with the currently used therapies, the data strongly imply a superior therapeutic index of anti-FcμR CAR T cells for the treatment of CLL. © 2016 by The American Society of Hematology.
Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.
Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco
2015-09-08
B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.
Kellner, Joshua; Wierda, William; Shpall, Elizabeth; Keating, Michael; McNiece, Ian
2016-01-01
Leukemic cell lines have become important tools for studies of disease providing a monoclonal cell population that can be extensively expanded in vitro while preserving leukemic cellular characteristics. However, studies of chronic lymphocytic leukemia (CLL) have been impeded in part by the lack of continuous human cell lines. CLL cells have a high spontaneous apoptosis rate in vitro and exhibit minimal proliferation in xenograft models. Therefore, there is a need for development of primary CLL cell lines and we describe the isolation of such a line from the bone marrow of a CLL patient (17p deletion and TP53 mutation) which has been in long term culture for more than 12 months with continuous proliferation. The CLL cell line (termed MDA-BM5) which was generated in vitro with continuous co-culture on autologous stromal cells is CD19+CD5+ and shows an identical pattern of somatic hypermutation as determined in the patient's bone marrow (BM), confirming the origin of the cells from the original CLL clone. MDA-BM5 cells were readily transplantable in NOD/SCID gamma null mice (NSG) with disease developing in the BM, liver and spleen. BM cells from quaternary serial transplantation in NSG mice demonstrated the presence of CD19+CD5+ cells with Ig restricted to lambda which is consistent with the original patient cells. These studies describe a new CLL cell line from a patient with del(17p) that provides a unique model for in vitro and in vivo studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liao, Wei; Jordaan, Gwen; Nham, Phillipp; Phan, Ryan T; Pelegrini, Matteo; Sharma, Sanjai
2015-10-16
To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1). The RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis.
Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib.
Wodarz, Dominik; Garg, Naveen; Komarova, Natalia L; Benjamini, Ohad; Keating, Michael J; Wierda, William G; Kantarjian, Hagop; James, Danelle; O'Brien, Susan; Burger, Jan A
2014-06-26
The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has excellent clinical activity in patients with chronic lymphocytic leukemia (CLL). Characteristically, ibrutinib causes CLL cell redistribution from tissue sites into the peripheral blood during the initial weeks of therapy. To better characterize the dynamics of this redistribution phenomenon, we correlated serial lymphocyte counts with volumetric changes in lymph node and spleen sizes during ibrutinib therapy. Kinetic parameters were estimated by applying a mathematical model to the data. We found that during ibrutinib therapy, 1.7% ± 1.1% of blood CLL cells and 2.7% ± 0.99% of tissue CLL cells die per day. The fraction of the tissue CLL cells that was redistributed into the blood during therapy was estimated to be 23.3% ± 17% of the total tissue disease burden. These data indicate that the reduction of tissue disease burden by ibrutinib is due more to CLL cell death and less to egress from nodal compartments. © 2014 by The American Society of Hematology.
Facco, Monica; Chiodin, Giorgia; Frezzato, Federica; Martini, Veronica; Gattazzo, Cristina; Lessi, Federica; Giorgi, Carlo Alberto; Visentin, Andrea; Castelli, Monica; Severin, Filippo; Zambello, Renato; Piazza, Francesco; Semenzato, Gianpietro; Trentin, Livio
2015-01-01
Leukemic cells from Chronic Lymphocytic Leukemia (CLL) patients interact with stromal cells of the surrounding microenvironment. Mesenchymal Stromal Cells (MSCs) represent the main population in CLL marrow stroma, which may play a key role for disease support and progression. In this study we evaluated whether MSCs influence in vitro CLL cell survival. MSCs were isolated from the bone marrow of 46 CLL patients and were characterized by flow cytometry analysis. Following co-culture of MSCs and leukemic B cells, we demonstrated that MSCs were able to improve leukemic B cell viability, this latter being differently dependent from the signals coming from MSCs. In addition, we found that the co-culture of MSCs with leukemic B cells induced an increased production of IL-8, CCL4, CCL11, and CXCL10 chemokines. As far as drug resistance is concerned, MSCs counteract the cytotoxic effect of Fludarabine/Cyclophosphamide administration in vivo, whereas they do not protect CLL cells from the apoptosis induced by the kinase inhibitors Bafetinib and Ibrutinib. The evidence that leukemic clones are conditioned by environmental stimuli suggest new putative targets for therapy in CLL patients. PMID:26517523
Improving Therapy of Chronic Lymphocytic Leukemia (CLL) with Chimeric Antigen Receptor (CAR) T Cells
Fraietta, Joseph A.; Schwab, Robert D.; Maus, Marcela V.
2016-01-01
Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically-engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and re-directing the immune system against cancer. This review will briefly summarize T cell therapies in development for CLL disease. We discuss the role of T cell function and phenotype, T cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. PMID:27040708
Herman, Sarah E. M.; Gordon, Amber L.; Hertlein, Erin; Ramanunni, Asha; Zhang, Xiaoli; Jaglowski, Samantha; Flynn, Joseph; Jones, Jeffrey; Blum, Kristie A.; Buggy, Joseph J.; Hamdy, Ahmed
2011-01-01
B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell–specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted. PMID:21422473
Ibrutinib (PCI-32765) in chronic lymphocytic leukemia.
Jain, Nitin; O'Brien, Susan
2013-08-01
B-cell receptor (BCR) signaling is essential for chronic lymphocytic leukemia (CLL) cell survival. Many kinases in the BCR signaling pathway are being studied as potential therapeutic targets. Ibrutinib (PCI-32765) is a novel first-in-class selective inhibitor of Bruton tyrosine kinase. Preclinical evidence suggests that ibrutinib inhibits CLL cell survival and proliferation and affects CLL cell migration and homing. Early clinical data in patients with CLL and non-Hodgkin lymphoma is encouraging. It is likely that ibrutinib and other drugs targeting the BCR pathway will become an integral component of CLL therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G
2015-07-09
T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.
McClanahan, Fabienne; Riches, John C.; Miller, Shaun; Day, William P.; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M.; Capasso, Melania
2015-01-01
T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3+CD8+ T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1+ T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8+ T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. PMID:25979947
2013-01-01
Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568
De Falco, Filomena; Sabatini, Rita; Del Papa, Beatrice; Falzetti, Franca; Di Ianni, Mauro; Sportoletti, Paolo; Baldoni, Stefano; Screpanti, Isabella; Marconi, Pierfrancesco; Rosati, Emanuela
2015-01-01
In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4. Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells. Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL. PMID:26041884
Immunological aspects in chronic lymphocytic leukemia (CLL) development.
García-Muñoz, Ricardo; Galiacho, Verónica Roldan; Llorente, Luis
2012-07-01
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy
2015-01-01
Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin–positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts. PMID:26100252
Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C
2000-05-01
CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B-CLL patients.
Pescarmona, E; Pignoloni, P; Mauro, F R; Cerretti, R; Anselmo, A P; Mandelli, F; Baroni, C D
2000-08-01
We report the immunohistological, molecular and clinical findings in four patients affected by B-cell chronic lymphocytic leukaemia (CLL) who developed "Richter's syndrome with Hodgkin's disease (HD) features" or "CLL with Hodgkin's transformation", all characterised by the presence of typical Hodgkin/Reed-Sternberg (H/RS) cells in lymph node biopsies. In three cases the nodal involvement by CLL was demonstrated both by the presence of a predominant background of CD5/CD19/CD23+ small lymphocytes and an IgH monoclonal rearrangement revealed by PCR analysis. Conversely, in the remaining case there was neither immunohistological nor molecular evidence of lymph node involvement by CLL. In all four cases H/RS cells were Epstein-Barr virus (EBV) latent membrane protein (LMP-1) positive. These findings suggest that the presence of H/RS cells in the first three patients, who had CLL/HD nodal involvement, might be related to transformation or clonal evolution of CLL cells in H/RS cells, which is in keeping with use of the term "CLL with Hodgkin's transformation". In the fourth case a de novo HD may be postulated, representing a second malignancy presumably not clonally related to CLL. In all cases a key pathogenetic role of EBV is suggested by the expression of LMP-1 in H/RS cells. Our findings indicate that the presence of typical H/RS cells in lymph node biopsies in CLL patients may reflect a heterogeneous pathogenetic background. The different clinico-pathologic settings should be taken into consideration because of their possible implications for patients' treatment and prognosis.
Schliep, Stefan; Decker, Thomas; Schneller, Folker; Wagner, Hermann; Häcker, Georg
2004-06-01
The slow accumulation of malignant cells in chronic lymphocytic leukemia (CLL) suggests a defect in the induction of apoptosis in these cells. Previous studies have found sporadic alterations in the apoptotic apparatus in CLL cells, but a widespread defect has not been detected until now. A crucial checkpoint in the progression of apoptosis is the activity of inhibitor of apoptosis proteins (IAP) that control the activity of caspases upon the release of cytochrome c from mitochondria. The aim of this study was to evaluate the role of IAP in the regulation of apoptosis in CLL cells. Lysates from CLL cells were prepared, and the regular function of components of the cytochrome c-dependent caspase-activating machinery (the apoptosome) was investigated. The effect of IAP in caspase-inhibition was tested using a peptide derived from the mitochondrial IAP antagonist Smac/DIABLO. Regulation of expression as well as inhibitory function of the X-linked IAP (XIAP) by cytokines was analyzed. The apoptosome was found to be structurally and functionally competent in CLL. XIAP expression was enhanced by culture in the presence of cytokines. Smac/DIABLO was easily detectable in CLL cells and was released into the cytosol during apoptosis. No inhibitory effect of IAP was detected in CLL, irrespective of XIAP levels and culture conditions. Although XIAP is present in CLL cells and is up-regulated in conditions where apoptosis is prevented, no caspase-inhibiting anti-apoptotic effect of IAP is detectable. This is likely due to the high expression of Smac/DIABLO in CLL cells that is sufficient to overcome the caspase-inhibiting effect of IAP.
Papakonstantinou, Nikos; Ntoufa, Stavroula; Chartomatsidou, Elisavet; Kotta, Konstantia; Agathangelidis, Andreas; Giassafaki, Lefki; Karamanli, Tzeni; Bele, Panagiota; Moysiadis, Theodoros; Baliakas, Panagiotis; Sutton, Lesley Ann; Stavroyianni, Niki; Anagnostopoulos, Achilles; Makris, Antonios M; Ghia, Paolo; Rosenquist, Richard; Stamatopoulos, Kostas
2016-06-14
The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL.
Chartomatsidou, Elisavet; Kotta, Konstantia; Agathangelidis, Andreas; Giassafaki, Lefki; Karamanli, Tzeni; Bele, Panagiota; Moysiadis, Theodoros; Baliakas, Panagiotis; Sutton, Lesley Ann; Stavroyianni, Niki; Anagnostopoulos, Achilles; Makris, Antonios M.; Ghia, Paolo; Rosenquist, Richard; Stamatopoulos, Kostas
2016-01-01
The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL. PMID:27191993
Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.
Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong
2014-03-01
Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.
Ting, Y S; Smith, S A B C; Brown, D A; Dodds, A J; Fay, K C; Ma, D D F; Milliken, S; Moore, J J; Sewell, W A
2018-05-27
Immunophenotyping by flow cytometry is routinely employed in distinguishing between chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). Inclusion of CD200 has been reported to contribute to more reliable differentiation between CLL and MCL. We investigated the value of CD200 in assessment of atypical CLL cases. CD200 expression on mature B cell neoplasms was studied by eight-color flow cytometry in combination with a conventional panel of flow cytometry markers. The study included 70 control samples, 63 samples with CLL or atypical CLL phenotype, 6 MCL samples, and 40 samples of other mature B cell neoplasms. All CLL samples were positive for CD200, whereas MCL samples were dim or negative for CD200. Of the CLL samples, 7 were atypical by conventional flow cytometry, with Matutes scores ≤3. These cases were tested for evidence of a t(11;14) translocation, characteristic of MCL, and all were negative, consistent with their classification as atypical CLL. All these atypical CLL samples were strongly positive for CD200. CD200 proved to be a useful marker for differentiation between CLL and MCL by flow cytometry. In particular, CD200 was useful in distinguishing CLL samples with atypical immunophenotypes from MCL. © 2018 John Wiley & Sons Ltd.
Barnidge, David R; Jelinek, Diane F; Muddiman, David C; Kay, Neil E
2005-01-01
Relative protein expression levels were compared in leukemic B cells from two patients with chronic lymphocytic leukemia (CLL) having either mutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy chain genes (IgV(H)). Cells were separated into cytosol and membrane protein fractions then labeled with acid-cleavable ICAT reagents (cICAT). Labeled proteins were digested with trypsin then subjected to SCX and affinity chromatography followed by LC-ESI-MS/MS analysis on a linear ion trap mass spectrometer. A total of 9 proteins from the cytosol fraction and 4 from the membrane fraction showed a 3-fold or greater difference between M-CLL and UM-CLL and a subset of these were examined by Western blot where results concurred with cICAT abundance ratios. The abundance of one of the proteins in particular, the mitochondrial membrane protein cytochrome c oxidase subunit COX G was examined in 6 M-CLL and 6 UM-CLL patients using western blot and results showed significantly greater levels (P < 0.001) in M-CLL patients vs UM-CLL patients. These results demonstrate that stable isotope labeling and mass spectrometry can complement 2D gel electrophoresis and gene microarray technologies for identifying putative and perhaps unique prognostic markers in CLL.
Heerema, Nyla A.; Byrd, John C.; Cin, Paola Dal; Dell’ Aquila, Marie L.; Koduru, Prasad; Aviram, Ayala; Smoley, Stephanie; Rassenti, Laura Z.; Greaves, Andrew W.; Brown, Jennifer R.; Rai, Kanti R.; Kipps, Thomas J.; Kay, Neil E.; van Dyke, Daniel
2010-01-01
Cytogenetic abnormalities in CLL are important prognostic indicators. Historically, only interphase cytogenetics was clinically useful in CLL because traditional mitogens are not effective mitotic stimulants. Recently, CpG-oligodeoxynucleotide (ODN) stimulation has shown effectiveness in CLL. The CLL Research Consortium (CRC) tested the effectiveness and reproducibility of CpG-ODN stimulation to detect chromosomally abnormal clones by five laboratories. More clonal abnormalities were observed after culture of CLL cells with CpG-ODN than with pokeweed mitogen (PWM)+12-O-tetradecanoyl-phorobol-13-acetate (TPA). All clonal abnormalities in PWM+TPA cultures were observed in CpG-ODN cultures, whereas CpG-ODN identified some clones not found by PWM+TPA. CpG-ODN stimulation of one normal control and 12 CLL samples showed that excepting clones of del(13q) in low frequencies and one translocation, results in all five laboratories were consistent, and all abnormalities were concordant with FISH. Thus, abnormal clones in CLL are more readily detected with CpG-ODN stimulation than with traditional B-cell mitogens. After CpG-ODN stimulation, abnormalities were reproducible among cytogenetic laboratories. CpG-ODN did not appear to induce aberrations in cell culture and enhanced detection of abnormalities and complexity in CLL. Since karyotypic complexity is prognostic and is not detectable by standard FISH analyses, stimulation with CpG-ODN is useful to identify this additional prognostic factor in CLL. PMID:21156225
Ponader, Sabine; Chen, Shih-Shih; Buggy, Joseph J.; Balakrishnan, Kumudha; Gandhi, Varsha; Wierda, William G.; Keating, Michael J.; O'Brien, Susan; Chiorazzi, Nicholas
2012-01-01
B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent. PMID:22180443
JAK2 mutation in a patient with CLL with coexistent myeloproliferative neoplasm (MPN).
Kodali, Srinivas; Chen, Chi; Rathnasabapathy, Chenthilmurugan; Wang, Jen Chin
2009-12-01
JAK2 mutation has not been described in patients with chronic lymphocytic leukemia (CLL). We found JAK2 mutation in a patient with CLL and coexisting myeloproliferative neoplasm (MPN). In this patient, we demonstrated the presence of the JAK2 mutation in CD34(+) progenitor cells, myeloid lineage cells, megakaryocytes, B lymphocytes but not in T lymphocytes. This case represents the first case report of JAK2 mutation in CLL and may also suggest that, JAK2 mutation most likely represents a secondary event from primary gene mutations involving the primitive stem cells which give rise to MPN and CLL. Furthermore, in this case, we believe that we are the first to demonstrate that JAK2 mutation in myeloid and B lymphoid cells but not T lymphocytes in a case of coexisting CLL and MPN.
Yeh, Yuh-Ying; Ozer, Hatice Gulcin; Lehman, Amy M; Maddocks, Kami; Yu, Lianbo; Johnson, Amy J; Byrd, John C
2015-05-21
Multiple studies show that chronic lymphocytic leukemia (CLL) cells are heavily dependent on their microenvironment for survival. Communication between CLL cells and the microenvironment is mediated through direct cell contact, soluble factors, and extracellular vesicles. Exosomes are small particles enclosed with lipids, proteins, and small RNAs that can convey biological materials to surrounding cells. Our data herein demonstrate that CLL cells release significant amounts of exosomes in plasma that exhibit abundant CD37, CD9, and CD63 expression. Our work also pinpoints the regulation of B-cell receptor (BCR) signaling in the release of CLL exosomes: BCR activation by α-immunoglobulin (Ig)M induces exosome secretion, whereas BCR inactivation via ibrutinib impedes α-IgM-stimulated exosome release. Moreover, analysis of serial plasma samples collected from CLL patients on an ibrutinib clinical trial revealed that exosome plasma concentration was significantly decreased following ibrutinib therapy. Furthermore, microRNA (miR) profiling of plasma-derived exosomes identified a distinct exosome microRNA signature, including miR-29 family, miR-150, miR-155, and miR-223 that have been associated with CLL disease. Interestingly, expression of exosome miR-150 and miR-155 increases with BCR activation. In all, this study successfully characterized CLL exosomes, demonstrated the control of BCR signaling in the release of CLL exosomes, and uncovered a disease-relevant exosome microRNA profile. © 2015 by The American Society of Hematology.
A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia
Perrot, Aurore; Pionneau, Cédric; Nadaud, Sophie; Davi, Frédéric; Leblond, Véronique; Jacob, Frédéric; Merle-Béral, Hélène; Herbrecht, Raoul; Béné, Marie-Christine; Gribben, John G.; Vallat, Laurent
2011-01-01
Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease. PMID:21602524
Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy.
Nwabo Kamdje, A H; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M
2012-05-01
Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL.
Decker, Thomas; Hipp, Susanne; Kreitman, Robert J; Pastan, Ira; Peschel, Christian; Licht, Thomas
2002-02-15
A recombinant anti-CD25 immunotoxin, LMB-2, has shown clinical efficacy in hairy cell leukemia and T-cell neoplasms. Its activity in B-cell chronic lymphocytic leukemia (B-CLL) is inferior but might be improved if B-CLL cells expressed higher numbers of CD25 binding sites. It was recently reported that DSP30, a phosphorothioate CpG-oligodeoxynucleotide (CpG-ODN) induces immunogenicity of B-CLL cells by up-regulation of CD25 and other antigens. The present study investigated the antitumor activity of LMB-2 in the presence of DSP30. To this end, B-CLL cells from peripheral blood of patients were isolated immunomagnetically to more than 98% purity. Incubation with DSP30 for 48 hours augmented CD25 expression in 14 of 15 B-CLL samples, as assessed by flow cytometry. DSP30 increased LMB-2 cytotoxicity dose dependently whereas a control ODN with no CpG motif did not. LMB-2 displayed no antitumor cell activity in the absence of CpG-ODN as determined colorimetrically with an (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. In contrast, B-CLL growth was inhibited in 12 of 13 samples with 50% inhibition concentrations (IC(50)) in the range of LMB-2 plasma levels achieved in clinical studies. Two samples were not evaluable because of spontaneous B-CLL cell death in the presence of DSP30. Control experiments with an immunotoxin that does not recognize hematopoietic cells, and an anti-CD22 immunotoxin, confirmed that sensitization to LMB-2 was specifically due to up-regulation of CD25. LMB-2 was much less toxic to normal B and T lymphocytes compared with B-CLL cells. In summary, immunostimulatory CpG-ODNs efficiently sensitize B-CLL cells to a recombinant immunotoxin by modulation of its target. This new treatment strategy deserves further attention.
Kipps, Thomas J.; Stevenson, Freda K.; Wu, Catherine J.; Croce, Carlo M.; Packham, Graham; Wierda, William G.; O’Brien, Susan; Gribben, John; Rai, Kanti
2017-01-01
Chronic lymphocytic leukaemia (CLL) is a malignancy of CD5+ B cells that is characterized by the accumulation of small, mature-appearing lymphocytes in the blood, marrow and lymphoid tissues. Signalling via surface immunoglobulin, which constitutes the major part of the B cell receptor, and several genetic alterations play a part in CLL pathogenesis, in addition to interactions between CLL cells and other cell types, such as stromal cells, T cells and nurse-like cells in the lymph nodes. The clinical progression of CLL is heterogeneous and ranges from patients who require treatment soon after diagnosis to others who do not require therapy for many years, if at all. Several factors, including the immunoglobulin heavy-chain variable region gene (IGHV) mutational status, genomic changes, patient age and the presence of comorbidities, should be considered when defining the optimal management strategies, which include chemotherapy, chemoimmunotherapy and/or drugs targeting B cell receptor signalling or inhibitors of apoptosis, such as BCL-2. Research on the biology of CLL has profoundly enhanced our ability to identify patients who are at higher risk for disease progression and our capacity to treat patients with drugs that selectively target distinctive phenotypic or physiological features of CLL. How these and other advances have shaped our current understanding and treatment of patients with CLL is the subject of this Primer. PMID:28102226
Cell-intrinsic determinants of ibrutinib-induced apoptosis in Chronic Lymphocytic Leukemia
Amin, Nisar A.; Balasubramanian, Sriram; Saiya-Cork, Kamlai; Shedden, Kerby; Hu, Nan; Malek, Sami N.
2016-01-01
Purpose Ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, is approved for the treatment of relapsed CLL and CLL with del17p. Mechanistically, ibrutinib interferes with BCR signaling as well as multiple CLL cell to microenvironment interactions. Given the importance of ibrutinib in the management of CLL, a deeper understanding of factors governing sensitivity and resistance is warranted. Experimental Design We studied 48 longitudinally sampled paired CLL samples, 42 of which were procured before and after standard CLL chemotherapies, and characterized them for well-studied CLL molecular traits as well as by whole exome sequencing and SNP 6.0 array profiling. We exposed these samples to 0.25 μM – 5 μM of ibrutinib ex vivo and measured apoptosis fractions as well as BCR signaling by immunoblotting. We disrupted TP53 in HG3, PGA1 and PG-EBV cell lines and measured BCR signaling and ibrutinib responses. Results CLL samples demonstrated a surprisingly wide range of ex vivo sensitivities to ibrutinib with IC50 values ranging from 0.4 μM – 9.7 μM. Unmutated IGVH status, elevated ZAP70 expression and trisomy 12 were associated with heightened sensitivity to ibrutinib treatment. Five CLL samples were substantially more resistant to ibrutinib following relapse from chemotherapy; of these, three had acquired a del17p/TP53 mutated status. A validation sample of 15 CLL carrying TP53 mutations, of which 13 carried both del17p and a TP53 mutation confirmed substantially less sensitivity to ibrutinib-induced apoptosis. Conclusions This study identifies that CLL harboring del17p/TP53 mutated cells are substantially less sensitive to ibrutinib-induced apoptosis than del17p/TP53 wild type cells. PMID:27535981
Edwards V, David K; Sweeney, David Tyler; Ho, Hibery; Eide, Christopher A; Rofelty, Angela; Agarwal, Anupriya; Liu, Selina Qiuying; Danilov, Alexey V; Lee, Patrice; Chantry, David; McWeeney, Shannon K; Druker, Brian J; Tyner, Jeffrey W; Spurgeon, Stephen E; Loriaux, Marc M
2018-05-15
In many malignancies, the tumor microenvironment includes CSF1R-expressing supportive monocyte/macrophages that promote tumor cell survival. For chronic lymphocytic leukemia (CLL), these supportive monocyte/macrophages are known as nurse-like cells (NLCs), although the potential effectiveness of selective small-molecule inhibitors of CSF1R against CLL is understudied. Here, we demonstrate the preclinical activity of two inhibitors of CSF1R, GW-2580 and ARRY-382, in primary CLL patient samples. We observed at least 25% of CLL samples showed sub-micromolar sensitivity to CSF1R inhibitors. This sensitivity was observed in samples with varying genetic and clinical backgrounds, although higher white cell count and monocyte cell percentage was associated with increased sensitivity. Depleting CD14-expressing monocytes preferentially decreased viability in samples sensitive to CSF1R inhibitors, and treating samples with CSF1R inhibitors eliminated the presence of NLCs in long-term culture conditions. These results indicate that CSF1R small-molecule inhibitors target CD14-expressing monocytes in the CLL microenvironment, thereby depriving leukemia cells of extrinsic support signals. In addition, significant synergy was observed combining CSF1R inhibitors with idelalisib or ibrutinib, two current CLL therapies that disrupt tumor cell intrinsic B-cell receptor signaling. These findings support the concept of simultaneously targeting supportive NLCs and CLL cells and demonstrate the potential clinical utility of this combination.
Attout, Tarik; Boullet, Heloïse; Herbi, Linda; Vela, Laura; Barbier, Sandrine; Chateau, Danielle; Chapiro, Elise; Nguyen-Khac, Florence; Davi, Frédéric; Le Garff-Tavernier, Magali; Moumné, Roba; Sarfati, Marika; Karoyan, Philippe; Merle-Béral, Hélène; Launay, Pierre; Susin, Santos A.
2015-01-01
Background Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides. Methods and Findings In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1), a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD) pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47, which might be improved to reach the standard requirements in drug development, and the lack of a CLL animal model that fully mimics the human disease. Conclusions Our work provides substantial progress in (i) the development of serum-stable CD47 agonist peptides that are highly effective at inducing PCD in CLL, (ii) the understanding of the molecular events regulating a novel PCD pathway that overcomes CLL apoptotic avoidance, (iii) the identification of PLCγ1 as an over-expressed protein in CLL B cells, and (iv) the description of a novel peptide-based strategy against CLL. PMID:25734483
Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte; Jansson, Mattias; Nilsson, Kenneth; Hultman, Per; Jonasson, Jon; Buhl, Anne Mette; Bredo Pedersen, Lone; Jurlander, Jesper; Klein, Eva; Weit, Nicole; Herling, Marco; Rosenquist, Richard; Rosén, Anders
2013-08-01
Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface membrane receptors determines whether the cells will be proliferating, anergic or apoptotic. To better understand the role of antigen in leukemogenesis, CLL cell lines producing monoclonal antibodies (mAbs) will facilitate structural analysis of antigens and supply DNA for genetic studies. We present here a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA/short tandem repeat (STR) fingerprinting. Innate B-cell features, i.e. natural Ab production and CD5 receptors, were present in most CLL cell lines, but in none of the normal LCLs. This panel of immortalized CLL-derived cell lines is a valuable reference representing a renewable source of authentic Abs and DNA.
Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián
2016-01-01
Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.
Patel, Viralkumar M.; Balakrishnan, Kumudha; Douglas, Mark; Tibbitts, Thomas; Xu, Ethan Y.; Kutok, Jeffery L.; Ayers, Mary; Sarkar, Aloke; Guerrieri, Renato; Wierda, William G.; O’Brien, Susan; Jain, Nitin; Stern, Howard M.; Gandhi, Varsha
2017-01-01
Duvelisib, an oral dual inhibitor of PI3K-δ and PI3K-γ, is in phase III trials for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin’s lymphoma (iNHL). In CLL, duvelisib monotherapy is associated with high iwCLL and nodal response rates, but complete remissions are rare. To characterize the molecular effect of duvelisib, we obtained samples from CLL patients on the duvelisib phase I trial. Gene-expression studies (RNA seq, Nanostring, Affymetrix array, and real time RT-PCR) demonstrated increased expression of BCL2 along with several BH3-only pro-apoptotic genes. In concert with induction of transcript levels, reverse phase protein arrays and immunoblots confirmed increase at the protein level. The BCL2 inhibitor venetoclax induced greater apoptosis in ex-vivo cultured CLL cells obtained from patients on duvelisib compared to pre-treatment CLL cells from the same patients. In vitro combination of duvelisib and venetoclax resulted in enhanced apoptosis even in CLL cells cultured under conditions that simulate the tumor microenvironment. These data provide a mechanistic rationale for testing the combination of duvelisib and venetoclax in the clinic. Such combination regimen (NCT02640833) is being evaluated for patients with B-cell malignancies including CLL. PMID:28017967
Patel, V M; Balakrishnan, K; Douglas, M; Tibbitts, T; Xu, E Y; Kutok, J L; Ayers, M; Sarkar, A; Guerrieri, R; Wierda, W G; O'Brien, S; Jain, N; Stern, H M; Gandhi, V
2017-09-01
Duvelisib, an oral dual inhibitor of PI3K-δ and PI3K-γ, is in phase III trials for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin's lymphoma. In CLL, duvelisib monotherapy is associated with high iwCLL (International Workshop on Chronic Lymphocytic Leukemia) and nodal response rates, but complete remissions are rare. To characterize the molecular effect of duvelisib, we obtained samples from CLL patients on the duvelisib phase I trial. Gene expression studies (RNAseq, Nanostring, Affymetrix array and real-time RT-PCR) demonstrated increased expression of BCL2 along with several BH3-only pro-apoptotic genes. In concert with induction of transcript levels, reverse phase protein arrays and immunoblots confirmed increase at the protein level. The BCL2 inhibitor venetoclax induced greater apoptosis in ex vivo-cultured CLL cells obtained from patients on duvelisib compared with pre-treatment CLL cells from the same patients. In vitro combination of duvelisib and venetoclax resulted in enhanced apoptosis even in CLL cells cultured under conditions that simulate the tumor microenvironment. These data provide a mechanistic rationale for testing the combination of duvelisib and venetoclax in the clinic. Such combination regimen (NCT02640833) is being evaluated for patients with B-cell malignancies including CLL.
Hubmann, Rainer; Hilgarth, Martin; Schnabl, Susanne; Ponath, Elena; Reiter, Marlies; Demirtas, Dita; Sieghart, Wolfgang; Valent, Peter; Zielinski, Christoph; Jäger, Ulrich; Shehata, Medhat
2013-03-01
Chronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)- dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the γ-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor κB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL. © 2012 Blackwell Publishing Ltd.
Ibrutinib (PCI-32765) in Chronic Lymphocytic Leukemia
Jain, Nitin; O’Brien, Susan
2015-01-01
SYNOPSIS B-cell receptor (BCR) signaling is essential for chronic lymphocytic leukemia (CLL) cell survival. Many kinases in the BCR signaling pathway are currently being studied as potential therapeutic targets. These include Lyn, Syk, PI3 and Bruton tyrosine (BTK). Ibrutinib (PCI-32765) is a novel first-in-class selective inhibitor of BTK. Preclinical evidence suggests that ibrutinib inhibits CLL cell survival and proliferation. In addition, it also affects CLL cell migration and homing. Early clinical data in CLL and non-Hodgkin’s lymphoma patients is very encouraging. In relapsed-refractory patients with CLL, a 67% response rate was observed (420mg dose cohort) with single-agent ibrutinib. Long-term follow-up of these studies and other ongoing/planned studies of ibrutinib either as single-agent or in combination with monoclonal antibodies and chemoimmunotherapy is eagerly awaited. It is likely that ibrutinib and other drugs targeting the BCR pathway will become an integral component of CLL therapy. PMID:23915749
Cell-Intrinsic Determinants of Ibrutinib-Induced Apoptosis in Chronic Lymphocytic Leukemia.
Amin, Nisar A; Balasubramanian, Sriram; Saiya-Cork, Kamlai; Shedden, Kerby; Hu, Nan; Malek, Sami N
2017-02-15
Purpose: Ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is approved for the treatment of relapsed chronic lymphocytic leukemia (CLL) and CLL with del17p. Mechanistically, ibrutinib interferes with B-cell receptor (BCR) signaling as well as multiple CLL cell-to-microenvironment interactions. Given the importance of ibrutinib in the management of CLL, a deeper understanding of factors governing sensitivity and resistance is warranted. Experimental Design: We studied 48 longitudinally sampled paired CLL samples, 42 of which were procured before and after standard CLL chemotherapies, and characterized them for well-studied CLL molecular traits as well as by whole-exome sequencing and SNP 6.0 array profiling. We exposed these samples to 0.25 to 5 μmol/L of ibrutinib ex vivo and measured apoptosis fractions as well as BCR signaling by immunoblotting. We disrupted TP53 in HG3, PGA1, and PG-EBV cell lines and measured BCR signaling and ibrutinib responses. Results: CLL samples demonstrated a surprisingly wide range of ex vivo sensitivities to ibrutinib, with IC 50 values ranging from 0.4 to 9.7 μmol/L. Unmutated IGVH status, elevated ZAP70 expression, and trisomy 12 were associated with heightened sensitivity to ibrutinib treatment. Five CLL samples were substantially more resistant to ibrutinib following relapse from chemotherapy; of these, three had acquired a del17p/ TP53 -mutated status. A validation sample of 15 CLL carrying TP53 mutations, of which 13 carried both del17p and a TP53 mutation, confirmed substantially less sensitivity to ibrutinib-induced apoptosis. Conclusions: This study identifies that CLL harboring del17p/ TP53 -mutated cells are substantially less sensitive to ibrutinib-induced apoptosis than del17p/ TP53 wild-type cells. Clin Cancer Res; 23(4); 1049-59. ©2016 AACR . ©2016 American Association for Cancer Research.
Woyach, Jennifer A; Bojnik, Engin; Ruppert, Amy S; Stefanovski, Matthew R; Goettl, Virginia M; Smucker, Kelly A; Smith, Lisa L; Dubovsky, Jason A; Towns, William H; MacMurray, Jessica; Harrington, Bonnie K; Davis, Melanie E; Gobessi, Stefania; Laurenti, Luca; Chang, Betty Y; Buggy, Joseph J; Efremov, Dimitar G; Byrd, John C; Johnson, Amy J
2014-02-20
Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Bruton's tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eμ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.
STAT3-Activated GM-CSFRα Translocates to the Nucleus and Protects CLL Cells from Apoptosis
Li, Ping; Harris, David; Liu, Zhiming; Rozovski, Uri; Ferrajoli, Alessandra; Wang, Yongtao; Bueso-Ramos, Carlos; Hazan-Halevy, Inbal; Grgurevic, Srdana; Wierda, William; Burger, Jan; O'Brien, Susan; Faderl, Stefan; Keating, Michael; Estrov, Zeev
2014-01-01
Here it was determined that Chronic Lymphocytic Leukemia (CLL) cells express the α-subunit but not the β-subunit of the granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR/CSF3R). GM-CSFRα was detected on the surface, in the cytosol, and the nucleus of CLL cells via confocal microscopy, cell fractionation, and GM-CSFRα antibody epitope mapping. Because STAT3 is frequently activated in CLL and the GM-CSFRα promoter harbors putative STAT3 consensus binding sites, MM1 cells were transfected with truncated forms of the GM-CSFRα promoter, then stimulated with IL-6 to activate STAT3 to identify STAT3 binding sites. Chromatin immunoprecipitation (ChIP) and an electoromobility shift assay (EMSA) confirmed STAT3 occupancy to those promoter regions in both IL-6 stimulated MM1 and CLL cells. Transfection of MM1 cells with STAT3 siRNA or CLL cells with STAT3 shRNA significantly down-regulated GM-CSFRα mRNA and protein levels. RNA transcripts, involved in regulating cell-survival pathways, and the proteins KAP1 (TRIM28) and ISG15 co-immunoprecipitated with GM-CSFRα. GM-CSFRα-bound KAP1 enhanced the transcriptional activity of STAT3, whereas ISG15 inhibited the NF-κB pathway. Nevertheless, overexpression of GM-CSFRα protected MM1 cells from dexamethasone-induced apoptosis, and GM-CSFRα knockdown induced apoptosis in CLL cells, suggesting that GM-CSFRα provides a ligand-independent survival advantage. PMID:24836891
Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas
2014-01-01
In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe discovery of non-peptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used for discovery of other classes of antigen surrogates. PMID:25467125
Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells.
Fraietta, Joseph A; Schwab, Robert D; Maus, Marcela V
2016-04-01
Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. Copyright © 2016 Elsevier Inc. All rights reserved.
Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas
2014-12-18
In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vangapandu, Hima V.; Alston, Brandon; Morse, Joshua; Ayres, Mary L.; Wierda, William G.; Keating, Michael J.; Marszalek, Joseph R.; Gandhi, Varsha
2018-01-01
Blood cells from patients with chronic lymphocytic leukemia (CLL) are replicationally quiescent but transcriptionally, translationally, and metabolically active. Recently, we demonstrated that oxidative phosphorylation (OxPhos) is a predominant pathway in CLL for energy production and is further augmented in the presence of the stromal microenvironment. Importantly, CLL cells from patients with poor prognostic markers showed increased OxPhos. From these data, we theorized that OxPhos can be targeted to treat CLL. IACS-010759, currently in clinical development, is a small-molecule, orally bioavailable OxPhos inhibitor that targets mitochondrial complex I. Treatment of primary CLL cells with IACS-010759 greatly inhibited OxPhos but caused only minor cell death at 24 and 48 h. In the presence of stroma, the drug successfully inhibited OxPhos and diminished intracellular ribonucleotide pools. However, glycolysis and glucose uptake were induced as compensatory mechanisms. To mitigate the upregulated glycolytic flux, we used 2-deoxy-D-glucose in combination with IACS-010759. This combination reduced both OxPhos and glycolysis and induced cell death. Consistent with these data, low-glucose culture conditions sensitized CLL cells to IACS-010759. Collectively, these data suggest that CLL cells adapt to use a different metabolic pathway when OxPhos is inhibited and that targeting both OxPhos and glycolysis pathways is necessary for biological effect. PMID:29861847
Ibrutinib treatment improves T cell number and function in CLL patients.
Long, Meixiao; Beckwith, Kyle; Do, Priscilla; Mundy, Bethany L; Gordon, Amber; Lehman, Amy M; Maddocks, Kami J; Cheney, Carolyn; Jones, Jeffrey A; Flynn, Joseph M; Andritsos, Leslie A; Awan, Farrukh; Fraietta, Joseph A; June, Carl H; Maus, Marcela V; Woyach, Jennifer A; Caligiuri, Michael A; Johnson, Amy J; Muthusamy, Natarajan; Byrd, John C
2017-08-01
Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton's tyrosine kinase (BTK) and IL-2-inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. The National Cancer Institute.
Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy
Kamdje, A H Nwabo; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M
2012-01-01
Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL. PMID:22829975
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Acquired initiating mutations in early hematopoietic cells of CLL patients.
Damm, Frederik; Mylonas, Elena; Cosson, Adrien; Yoshida, Kenichi; Della Valle, Véronique; Mouly, Enguerran; Diop, M'boyba; Scourzic, Laurianne; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Kikushige, Yoshikane; Davi, Frederick; Lambert, Jérôme; Gautheret, Daniel; Merle-Béral, Hélène; Sutton, Laurent; Dessen, Philippe; Solary, Eric; Akashi, Koichi; Vainchenker, William; Mercher, Thomas; Droin, Nathalie; Ogawa, Seishi; Nguyen-Khac, Florence; Bernard, Olivier A
2014-09-01
Appropriate cancer care requires a thorough understanding of the natural history of the disease, including the cell of origin, the pattern of clonal evolution, and the functional consequences of the mutations. Using deep sequencing of flow-sorted cell populations from patients with chronic lymphocytic leukemia (CLL), we established the presence of acquired mutations in multipotent hematopoietic progenitors. Mutations affected known lymphoid oncogenes, including BRAF, NOTCH1, and SF3B1. NFKBIE and EGR2 mutations were observed at unexpectedly high frequencies, 10.7% and 8.3% of 168 advanced-stage patients, respectively. EGR2 mutations were associated with a shorter time to treatment and poor overall survival. Analyses of BRAF and EGR2 mutations suggest that they result in deregulation of B-cell receptor (BCR) intracellular signaling. Our data propose disruption of hematopoietic and early B-cell differentiation through the deregulation of pre-BCR signaling as a phenotypic outcome of CLL mutations and show that CLL develops from a pre-leukemic phase. The origin and pathogenic mechanisms of CLL are not fully understood. The current work indicates that CLL develops from pre-leukemic multipotent hematopoietic progenitors carrying somatic mutations. It advocates for abnormalities in early B-cell differentiation as a phenotypic convergence of the diverse acquired mutations observed in CLL. ©2014 American Association for Cancer Research.
Thijssen, R; Ter Burg, J; van Bochove, G G W; de Rooij, M F M; Kuil, A; Jansen, M H; Kuijpers, T W; Baars, J W; Virone-Oddos, A; Spaargaren, M; Egile, C; van Oers, M H J; Eldering, E; Kersten, M J; Kater, A P
2016-02-01
The phosphoinositide 3-kinases (PI3Ks) are critical components of the B-cell receptor (BCR) pathway and have an important role in the pathobiology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3Kδ block BCR-mediated cross-talk between CLL cells and the lymph node microenvironment and provide significant clinical benefit to CLL patients. However, the PI3Kδ inhibitors applied thus far have limited direct impact on leukemia cell survival and thus are unlikely to eradicate the disease. The use of inhibitors of multiple isoforms of PI3K might lead to deeper remissions. Here we demonstrate that the pan-PI3K/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) was more pro-apoptotic to CLL cells--irrespective of their ATM/p53 status--than PI3Kα or PI3Kδ isoform selective inhibitors. Furthermore, SAR245409 blocked CLL survival, adhesion and proliferation. Moreover, SAR245409 was a more potent inhibitor of T-cell-mediated production of cytokines, which support CLL survival. Taken together, our in vitro data provide a rationale for the evaluation of a pan-PI3K inhibitor in CLL patients.
MALT1 Inhibition Is Efficacious in Both Naïve and Ibrutinib-Resistant Chronic Lymphocytic Leukemia.
Saba, Nakhle S; Wong, Deanna H; Tanios, Georges; Iyer, Jessica R; Lobelle-Rich, Patricia; Dadashian, Eman L; Liu, Delong; Fontan, Lorena; Flemington, Erik K; Nichols, Cydney M; Underbayev, Chingiz; Safah, Hana; Melnick, Ari; Wiestner, Adrian; Herman, Sarah E M
2017-12-15
The clinical efficacy displayed by ibrutinib in chronic lymphocytic leukemia (CLL) has been challenged by the frequent emergence of resistant clones. The ibrutinib target, Bruton's tyrosine kinase (BTK), is essential for B-cell receptor signaling, and most resistant cases carry mutations in BTK or PLCG2 , a downstream effector target of BTK. Recent findings show that MI-2, a small molecule inhibitor of the para-caspase MALT1, is effective in preclinical models of another type of BCR pathway-dependent lymphoma. We therefore studied the activity of MI-2 against CLL and ibrutinib-resistant CLL. Treatment of CLL cells in vitro with MI-2 inhibited MALT1 proteolytic activity reduced BCR and NF-κB signaling, inhibited nuclear translocation of RelB and p50, and decreased Bcl-xL levels. MI-2 selectively induced dose and time-dependent apoptosis in CLL cells, sparing normal B lymphocytes. Furthermore, MI-2 abrogated survival signals provided by stromal cells and BCR cross-linking and was effective against CLL cells harboring features associated with poor outcomes, including 17p deletion and unmutated IGHV Notably, MI-2 was effective against CLL cells collected from patients harboring mutations conferring resistance to ibrutinib. Overall, our findings provide a preclinical rationale for the clinical development of MALT1 inhibitors in CLL, in particular for ibrutinib-resistant forms of this disease. Cancer Res; 77(24); 7038-48. ©2017 AACR . ©2017 American Association for Cancer Research.
Capello, D; Fais, F; Vivenza, D; Migliaretti, G; Chiorazzi, N; Gaidano, G; Ferrarini, M
2000-05-01
Although B cell chronic lymphocytic leukemia (B-CLL) has been traditionally viewed as a tumor of virgin B cells, this notion has been recently questioned by data suggesting that a fraction of B-CLL derives from antigen experienced B cells. In order to further clarify the histogenetic derivation of this lymphoproliferation, we have analyzed the DNA sequences of the 5' non-coding region of BCL-6 proto-oncogene in 28 cases of B-CLL. Mutations of BCL-6 proto-oncogene, a zinc finger transcription factor implicated in lymphoma development, represent a histogenetic marker of B cell transit through the germinal center (GC) and occur frequently in B cell malignancies derived from GC or post-GC B cells. For comparison, the same tumor panel was analyzed for somatic mutations of the rearranged immunoglobulin variable (IgV) genes, which are known to be acquired at the time of B cell transit through the GC. Sequence analyses of BCL-6 and IgV genes allowed the definition of three groups of B-CLL. Group I B-CLL displayed mutations of both BCL-6 and IgV genes (10/28; 36%). Group II B-CLL displayed mutated IgV genes, but a germline BCL-6 gene (5/28; 18%). Finally, group III B-CLL included the remaining cases (13/28; 46%) that were characterized by the absence of somatic mutations of both BCL-6 and IgV genes. Overall, the distribution of BCL-6 and IgV mutations in B-CLL reinforce the notion that this leukemia is histogenetically heterogeneous and that a substantial subgroup of these lymphoproliferations derives from post-germinal center B cells.
Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes
NASA Astrophysics Data System (ADS)
Schultz, Christian P.; Liu, Kan-Zhi; Johnston, James B.; Mantsch, Henry H.
1997-06-01
Peripheral mononuclear cells obtained from blood of normal individuals and from patients with chronic lymphocytic leukemia (CLL) were investigated by infrared spectroscopy and multivariate statistical analysis. Not only are the spectra of CLL cells different from those of normal cells, but hierarchical clustering also separated the CLL cells into a number of subclusters, based on their different DNA content, a fact which may provide a useful diagnostic tool for staging (progression of the disease) and multiple clone detection. Moreover, there is evidence for a correlation between the increased amount of DNA in the CLL cells and the in-vivo doubling time of the lymphocytes in a given patient.
Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia
Fraietta, Joseph A.; Beckwith, Kyle A.; Patel, Prachi R.; Ruella, Marco; Zheng, Zhaohui; Barrett, David M.; Lacey, Simon F.; Melenhorst, Jan Joseph; McGettigan, Shannon E.; Cook, Danielle R.; Zhang, Changfeng; Xu, Jun; Do, Priscilla; Hulitt, Jessica; Kudchodkar, Sagar B.; Cogdill, Alexandria P.; Gill, Saar; Porter, David L.; Woyach, Jennifer A.; Long, Meixiao; Johnson, Amy J.; Maddocks, Kami; Muthusamy, Natarajan; Levine, Bruce L.; June, Carl H.; Byrd, John C.
2016-01-01
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749. PMID:26813675
Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia.
Fraietta, Joseph A; Beckwith, Kyle A; Patel, Prachi R; Ruella, Marco; Zheng, Zhaohui; Barrett, David M; Lacey, Simon F; Melenhorst, Jan Joseph; McGettigan, Shannon E; Cook, Danielle R; Zhang, Changfeng; Xu, Jun; Do, Priscilla; Hulitt, Jessica; Kudchodkar, Sagar B; Cogdill, Alexandria P; Gill, Saar; Porter, David L; Woyach, Jennifer A; Long, Meixiao; Johnson, Amy J; Maddocks, Kami; Muthusamy, Natarajan; Levine, Bruce L; June, Carl H; Byrd, John C; Maus, Marcela V
2016-03-03
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749. © 2016 by The American Society of Hematology.
Seiffert, M; Stilgenbauer, S; Döhner, H; Lichter, P
2007-09-01
Accumulation of neoplastic cells in B-cell chronic lymphocytic leukemia (B-CLL) is thought to be due to intrinsic defects in the apoptotic machinery of the leukemic cells or to an altered, survival-stimulating microenvironment in vivo. Despite their long survival in vivo, B-CLL cells undergo rapid spontaneous apoptosis ex vivo. To maintain survival in vitro, we established a coculture system using the human bone marrow-derived stromal cell line HS-5. The microenvironment in these cocultures lead to B-CLL cell survival for at least several months and therefore provided a tool for valid in vitro analysis, mimicking the in vivo situation. Although primary B lymphocytes are notoriously resistant to most gene transfer techniques, we achieved high transfection efficiency and cell viability in this coculture system by using a nucleofection-based strategy. Surprisingly, the introduction of circular plasmid DNA into B cells and B-CLL cells induced rapid apoptosis, which was independent of the type of transgene used, but dependent on the DNA concentration. However, transfection of these cells with mRNA was highly efficient and resulted in sustained cell viability and potent transgene expression. The described procedure represents a new approach to study gene function in primary B cells and B-CLL cells.
Burger, Jan A; Li, Kelvin W; Keating, Michael J; Sivina, Mariela; Amer, Ahmed M; Garg, Naveen; Ferrajoli, Alessandra; Huang, Xuelin; Kantarjian, Hagop; Wierda, William G; O'Brien, Susan; Hellerstein, Marc K; Turner, Scott M; Emson, Claire L; Chen, Shih-Shih; Yan, Xiao-Jie; Wodarz, Dominik; Chiorazzi, Nicholas
2017-01-26
BACKGROUND. Ibrutinib is an effective targeted therapy for patients with chronic lymphocytic leukemia (CLL) that inhibits Bruton's tyrosine kinase (BTK), a kinase involved in B cell receptor signaling. METHODS. We used stable isotopic labeling with deuterated water ( 2 H 2 O) to measure directly the effects of ibrutinib on leukemia cell proliferation and death in 30 patients with CLL. RESULTS. The measured average CLL cell proliferation ("birth") rate before ibrutinib therapy was 0.39% of the clone per day (range 0.17%-1.04%); this decreased to 0.05% per day (range 0%-0.36%) with treatment. Death rates of blood CLL cells increased from 0.18% per day (average, range 0%-0.7%) prior to treatment to 1.5% per day (range 0%-3.0%) during ibrutinib therapy, and they were even higher in tissue compartments. CONCLUSIONS. This study provides the first direct in vivo measurements to our knowledge of ibrutinib's antileukemia actions, demonstrating profound and immediate inhibition of CLL cell proliferation and promotion of high rates of CLL cell death. TRIAL REGISTRATION. This trial was registered at clinicaltrials.gov (NCT01752426). FUNDING. This study was supported by a Cancer Center Support Grant (National Cancer Institute grant P30 CA016672), an NIH grant (CA081554) from the National Cancer Institute, MD Anderson's Moon Shots Program in CLL, and Pharmacyclics, an AbbVie company.
Anderson, Mary Ann; Deng, Jing; Seymour, John F; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R; Westerman, David; Si, Eric G; Majewski, Ian J; Segal, David; Heitner Enschede, Sari L; Huang, David C S; Davids, Matthew S; Letai, Anthony; Roberts, Andrew W
2016-06-23
BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. © 2016 by The American Society of Hematology.
Anderson, Mary Ann; Deng, Jing; Seymour, John F.; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R.; Westerman, David; Si, Eric G.; Majewski, Ian J.; Segal, David; Heitner Enschede, Sari L.; Huang, David C. S.; Davids, Matthew S.; Letai, Anthony
2016-01-01
BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. PMID:27069256
Ibrutinib treatment improves T cell number and function in CLL patients
Long, Meixiao; Do, Priscilla; Mundy, Bethany L.; Gordon, Amber; Lehman, Amy M.; Maddocks, Kami J.; Cheney, Carolyn; Jones, Jeffrey A.; Flynn, Joseph M.; Andritsos, Leslie A.; Fraietta, Joseph A.; June, Carl H.; Maus, Marcela V.; Woyach, Jennifer A.; Caligiuri, Michael A.; Johnson, Amy J.
2017-01-01
BACKGROUND. Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton’s tyrosine kinase (BTK) and IL-2–inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. METHODS. Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. RESULTS. Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. CONCLUSIONS. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. TRIAL REGISTRATION. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. FUNDING. The National Cancer Institute. PMID:28714866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.S.; Dubyak, G.R.
Extracellular adenosine triphosphate (ATP) is known to reversibly increase the cation permeability of a variety of freshly isolated and cultured cell types. In this study the effects of extracellular ATP were studied using peripheral blood lymphocytes (PBL) isolated from both normal subjects and from patients with chronic lymphocytic leukemia (CLL). Changes in the permeability to Na+, Rb+, and Li+ ions were measured using conventional isotope and flame photometry techniques. In addition, changes in cytosolic (Ca2+) were fluorimetrically monitored to assess possible changes in net Ca2+ influx. ATP produced a 12-fold increase in 22Na+ influx into CLL cells but only amore » 3.5-fold increase in this flux in PBL cells. A maximal response was produced by 0.1 mmol/L ATP in the absence of Mg2+, while a twofold molar excess of Mg2+ over ATP abolished the response. ATP had no effect on the passive (ouabain-insensitive) 86Rb+ influx into PBL cells but stimulated this flux by fivefold in the CLL cells. Li+ influx into CLL cells was also stimulated threefold by ATP. Under these same conditions ATP also produced a net increase in total cell Na and a decrease in total cell K in the CLL cells. Exclusion of two normally impermeable dyes, trypan blue and ethidium bromide, was not altered in the ATP-treated CLL cells. Finally, extracellular ATP (3 mmol/L) produced no significant change in the cytosolic (Ca2+) of normal, monocyte-depleted populations of PBL. Conversely, this same concentration of ATP produced a very rapid and a significant (an average threefold peak change) increase in the cytosolic (Ca2+) of cell preparations derived from five out of nine CLL patients. In these latter CLL cells, the ATP-induced elevation in cytosolic (Ca2+) appeared to be due to a net increase in Ca2+ influx, since no elevations were observed when the extracellular (Ca2+) was reduced to less than 0.1 mmol/L.« less
Saba, Nakhle S.; Valdez, Janet; Emson, Claire; Gatmaitan, Michelle; Tian, Xin; Hughes, Thomas E.; Sun, Clare; Arthur, Diane C.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Niemann, Carsten U.; Marti, Gerald E.; Aue, Georg; Soto, Susan; Farooqui, Mohammed Z.H.; Herman, Sarah E.M.; Chiorazzi, Nicholas; Wiestner, Adrian
2016-01-01
Chronic Lymphocytic Leukemia (CLL) is a progressive malignancy of mature B-cells that involves the peripheral blood (PB), lymph nodes (LNs) and bone marrow (BM). While the majority of CLL cells are in a resting state, small populations of proliferating cells exist; however, the anatomical site of active cell proliferation remains to be definitively determined. Based on findings that CLL cells in LNs have increased expression of B-cell activation genes, we tested the hypothesis that the fraction of “newly born” cells would be highest in the LNs. Using a deuterium oxide (2H) in vivo labeling method in which patients consumed deuterated (heavy) water (2H2O), we determined CLL cell kinetics in concurrently obtained samples from LN, PB, and BM. The LN was identified as the anatomical site harboring the largest fraction of newly born cells, compared to PB and BM. In fact, the calculated birth rate in the LN reached as high a 3.3% of the clone per day. Subdivision of the bulk CLL population by flow cytometry identified the subpopulation with the CXCR4dimCD5bright phenotype as containing the highest proportion of newly born cells within each compartment, including the LN, identifying this subclonal population as an important target for novel treatment approaches. PMID:28074063
Steele, Andrew J; Prentice, Archibald G; Hoffbrand, A Victor; Yogashangary, Birunthini C; Hart, Stephen M; Lowdell, Mark W; Samuel, Edward R; North, Janet M; Nacheva, Elisabeth P; Chanalaris, Anastasios; Kottaridis, Panagiotis; Cwynarski, Kate; Wickremasinghe, R Gitendra
2009-08-06
We studied the actions of 2-phenylacetylenesulfonamide (PAS) on B-chronic lymphocytic leukemia (CLL) cells. PAS (5-20 microM) initiated apoptosis within 24 hours, with maximal death at 48 hours asassessed by morphology, cleavage of poly(ADP-ribose) polymerase (PARP), caspase 3 activation, and annexin V staining. PAS treatment induced Bax proapoptotic conformational change, Bax movement from the cytosol to the mitochondria, and cytochrome c release, indicating that PAS induced apoptosis via the mitochondrial pathway. PAS induced approximately 3-fold up-regulation of proapoptotic Noxa protein and mRNA levels. In addition, Noxa was found unexpectedly to be bound to Bcl-2 in PAS-treated cells. PAS treatment of CLL cells failed to up-regulate p53, suggesting that PAS induced apoptosis independently of p53. Furthermore, PAS induced apoptosis in CLL isolates with p53 gene deletion in more than 97% of cells. Normal B lymphocytes were as sensitive to PAS-induced Noxa up-regulation and apoptosis as were CLL cells. However, both T lymphocytes and bone marrow hematopoietic progenitor cells were relatively resistant to PAS. Our data suggest that PAS may represent a novel class of drug that induces apoptosis in CLL cells independently of p53 status by a mechanism involving Noxa up-regulation.
Valdora, Francesca; Cutrona, Giovanna; Matis, Serena; Morabito, Fortunato; Massucco, Carlotta; Emionite, Laura; Boccardo, Simona; Basso, Luca; Recchia, Anna Grazia; Salvi, Sandra; Rosa, Francesca; Gentile, Massimo; Ravina, Marco; Pace, Daniele; Castronovo, Angela; Cilli, Michele; Truini, Mauro; Calabrese, Massimo; Neri, Antonino; Neumaier, Carlo Emanuele; Fais, Franco; Baio, Gabriella; Ferrarini, Manlio
2016-11-01
Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia among adults. Despite its indolent nature, CLL remains an incurable disease. Herein we aimed to monitor CLL disease engraftment and, progression/regression in a xenograft CLL mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Spleen contrast enhancement, quantified as percentage change in signal intensity upon USPIO administration, demonstrated a difference due to a reduced USPIO uptake, in the spleens of mice injected with CLL cells (NSG-CLL, n=71) compared to controls (NSG-CTR, n=17). These differences were statistically significant both after 2 and 4weeks from CLL cells injection. In addition comparison of mice treated with rituximab with untreated controls for changes in spleen iron uptake confirmed that it is possible to monitor treatment efficacy in this mouse model of CLL using USPIO-enhanced MRI. Further applications could include the preclinical in vivo monitoring of new therapies and the clinical evaluation of CLL patients. Copyright © 2016 Elsevier Inc. All rights reserved.
García-Barchino, Maria J; Sarasquete, Maria E; Panizo, Carlos; Morscio, Julie; Martinez, Antonio; Alcoceba, Miguel; Fresquet, Vicente; Gonzalez-Farre, Blanca; Paiva, Bruno; Young, Ken H; Robles, Eloy F; Roa, Sergio; Celay, Jon; Larrayoz, Marta; Rossi, Davide; Gaidano, Gianluca; Montes-Moreno, Santiago; Piris, Miguel A; Balanzategui, Ana; Jimenez, Cristina; Rodriguez, Idoia; Calasanz, Maria J; Larrayoz, Maria J; Segura, Victor; Garcia-Muñoz, Ricardo; Rabasa, Maria P; Yi, Shuhua; Li, Jianyong; Zhang, Mingzhi; Xu-Monette, Zijun Y; Puig-Moron, Noemi; Orfao, Alberto; Böttcher, Sebastian; Hernandez-Rivas, Jesus M; Miguel, Jesus San; Prosper, Felipe; Tousseyn, Thomas; Sagaert, Xavier; Gonzalez, Marcos; Martinez-Climent, Jose A
2018-05-01
The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV - tumours, EBV + DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV + DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV + DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2 -/- IL2γc -/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV + B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV + DLBCL in patients. Accordingly, clonally related and unrelated EBV + DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV + DLBCL. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Fernández Calotti, Paula; Galmarini, Carlos María; Cañones, Cristian; Gamberale, Romina; Saénz, Daniel; Avalos, Julio Sánchez; Chianelli, Mónica; Rosenstein, Ruth; Giordano, Mirta
2008-02-15
Nucleoside transporters (NTs) are essential for the uptake of therapeutic nucleoside analogs, broadly used in cancer treatment. The mechanisms responsible for NT regulation are largely unknown. IL-4 is a pro-survival signal for chronic lymphocytic leukemia (CLL) cells and has been shown to confer resistance to nucleoside analogs. The aim of this study was to investigate whether IL-4 is able to modulate the expression and function of the human equilibrative NT1 (hENT1) in primary cultures of CLL cells and, consequently, to affect cytotoxicity induced by therapeutic nucleosides analogs. We found that treatment with IL-4 (20 ng/ml for 24 h) increased mRNA hENT1 expression in CLL cells without affecting that of normal B cells. Given that the enhanced mRNA levels of hENT1 in CLL cells did not result in increased transport activity, we examined the possibility that hENT1 induced by IL-4 may require post-translational modifications to become active. We found that the acute stimulation of PKC in IL-4-treated CLL cells by short-term incubation with PMA significantly increased hENT1 transport activity and favoured fludarabine-induced apoptosis. By contrast, and in line with previous reports, IL-4 plus PMA protected CLL cells from a variety of cytotoxic agents. Our findings indicate that the combined treatment with IL-4 and PMA enhances hENT1 activity and specifically sensitizes CLL cells to undergo apoptosis induced by fludarabine.
Scialdone, Annarita; Hasni, Muhammad Sharif; Damm, Jesper Kofoed; Lennartsson, Andreas; Gullberg, Urban; Drott, Kristina
2017-01-01
Treatment with anti-CD20 antibodies is only moderately efficient in chronic lymphocytic leukemia (CLL), a feature which has been explained by the inherently low CD20 expression in CLL. It has been shown that CD20 is epigenetically regulated and that histone deacetylase inhibitors (HDACis) can increase CD20 expression in vitro in CLL. To assess whether HDACis can upregulate CD20 also in vivo in CLL, the HDACi valproate was given to three del13q/NOTCH1wt CLL patients and CD20 levels were analysed (the PREVAIL study). Valproate treatment resulted in expected global activating histone modifications suggesting HDAC inhibitory effects. However, although valproate induced expression of CD20 mRNA and protein in the del13q/NOTCH1wt I83-E95 CLL cell line, no such effects were observed in the patients studied. In contrast to the cell line, in patients valproate treatment resulted in transient recruitment of the transcriptional repressor EZH2 to the CD20 promoter, correlating to an increase of the repressive histone mark H3K27me3. This suggests that valproate-mediated induction of CD20 may be hampered by EZH2 mediated H3K27me3 in vivo in CLL. Moreover, valproate treatment resulted in induction of EZH2 and global H3K27me3 in patient cells, suggesting transcriptionally repressive effects of valproate in CLL. Our results suggest new in vivo mechanisms of HDACis which may have implications on the design of future clinical trials in B-cell malignancies. PMID:28445158
Marquez, M-E; Deglesne, P-A; Suarez, G; Romano, E
2011-04-01
The IgV(H) mutational status of B-cell chronic lymphocytic leukemia (B-CLL) is of prognostic value. Expression of ZAP-70 in B-CLL is a surrogate marker for IgV(H) unmutated (UM). As determination of IgV(H) mutational status involves a methodology currently unavailable for most clinical laboratories, it is important to have available a reliable technique for ZAP-70 estimation in B-CLL. Flow cytometry (FC) is a convenient technique for this purpose. However, there is still no adequate way for data analysis, which would prevent the assignment of false positive or negative expression. We have modified the currently most accepted technique, which uses the ratio of the mean fluorescent index (MFI) of B-CLL to T cells. The MFI for parallel antibody isotype staining is subtracted from the ZAP-70 MFI of both B-CLL and T cells. We validated this technique comparing the results obtained for ZAP-70 expression by FC with those obtained with quantitative PCR for the same patients. We applied the technique in a series of 53 patients. With this modification, a better correlation between ZAP-70 expression and IgV(H) UM was obtained. Thus, the MFI ratio B-CLL/T cell corrected by isotype is a reliable analysis technique to estimate ZAP-70 expression in B-CLL. © 2010 Blackwell Publishing Ltd.
Rawstron, Andy C; Green, Michael J; Kuzmicki, Anita; Kennedy, Ben; Fenton, James A L; Evans, Paul A S; O'Connor, Sheila J M; Richards, Stephen J; Morgan, Gareth J; Jack, Andrew S; Hillmen, Peter
2002-07-15
Molecular and cellular markers associated with malignant disease are frequently identified in healthy individuals. The relationship between these markers and clinical disease is not clear, except where a neoplastic cell population can be identified as in myeloma/monoclonal gammopathies of undetermined significance (MGUS). We have used the distinctive phenotype of chronic lymphocytic leukemia (CLL) cells to determine whether low levels of these cells can be identified in individuals with normal complete blood counts. CLL cells were identified by 4-color flow cytometric analysis of CD19/CD5/CD79b/CD20 expression in 910 outpatients over 40 years old. These outpatients were age- and sex-matched to the general population with normal hematologic parameters and no evident history of malignant disease. CLL phenotype cells were detectable in 3.5% of individuals at low level (median, 0.013; range, 0.002- 1.458 x 10(9) cells/L), and represented a minority of B lymphocytes (median, 11%; range, 3%-95%). Monoclonality was demonstrated by immunoglobulin light-chain restriction in all cases with CLL phenotype cells present and confirmed in a subset of cases by consensus-primer IgH-polymerase chain reaction. As in clinical disease, CLL phenotype cells were detected with a higher frequency in men (male-to-female ratio, 1.9:1) and elderly individuals (2.1% of 40- to 59-year-olds versus 5.0% of 60- to 89-year-olds, P =.01). The neoplastic cells were identical to good-prognosis CLL, being CD5+23+20(wk)79b(wk)11a(-)22(wk)sIg(wk)CD38-, and where assessed had a high degree (4.8%-6.6%) of IgH somatic hypermutation. The monoclonal CLL phenotype cells present in otherwise healthy individuals may represent a very early stage of indolent CLL and should be useful in elucidating the mechanisms of leukemogenesis.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-07-09
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.
Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V
2015-01-01
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513
Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA
Otake, Yoko; Soundararajan, Sridharan; Sengupta, Tapas K.; Kio, Ebenezer A.; Smith, James C.; Pineda-Roman, Mauricio; Stuart, Robert K.; Spicer, Eleanor K.
2007-01-01
B-cell chronic lymphocytic leukemia (CLL) is characterized by the accumulation of clonal B cells that are resistant to apoptosis as a result of bcl2 oncogene overexpression. Studies were done to determine the mechanism for the up-regulation of bcl-2 protein observed in CD19+ CLL cells compared with CD19+ B cells from healthy volunteers. The 11-fold higher level of bcl-2 protein in CLL cells was positively correlated with a 26-fold elevation in the cytosolic level of nucleolin, a bcl2 mRNA–stabilizing protein. Measurements of the bcl2 heterogeneous nuclear/bcl2 mRNA (hnRNA)/mRNA ratios and the rates of bcl2 mRNA decay in cell extracts indicated that the 3-fold higher steady-state level of bcl2 mRNA in CLL cells was the result of increased bcl2 mRNA stability. Nucleolin was present throughout the nucleus and cytoplasm of CLL cells, whereas in normal B cells nucleolin was only detected in the nucleus. The addition of recombinant human nucleolin to extracts of normal B cells markedly slowed the rate of bcl2 mRNA decay. SiRNA knockdown of nucleolin in MCF-7 cells resulted in decreased levels of bcl2 mRNA and protein but no change in β-actin. These results indicate that bcl-2 overexpression in CLL cells is related to stabilization of bcl2 mRNA by nucleolin. PMID:17179226
Role of BAFF and APRIL in human B-cell chronic lymphocytic leukaemia
Haiat, Stéphanie; Billard, Christian; Quiney, Claire; Ajchenbaum-Cymbalista, Florence; Kolb, Jean-Pierre
2006-01-01
B-cell chronic lymphocytic leukaemia (B-CLL) is the most prevalent leukaemia in Western countries and is characterized by the gradual accumulation in patients of small mature B cells. Since the vast majority of tumoral cells are quiescent, the accumulation mostly results from deficient apoptosis rather than from acute proliferation. Although the phenomenon is relevant in vivo, B-CLL cells die rapidly in vitro as a consequence of apoptosis, suggesting a lack of essential growth factors in the culture medium. Indeed, the rate of B-CLL cell death in vitro is modulated by different cytokines, some favouring the apoptotic process, others counteracting it. Two related members of the tumour necrosis factor family, BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand), already known for their crucial role in normal B-cell survival, differentiation and apoptosis, were recently shown to be expressed by B-CLL cells. These molecules are able to protect the leukaemic cells against spontaneous and drug-induced apoptosis via autocrine and/or paracrine pathways. This review will focus on the role of BAFF and APRIL in the survival of tumoral cells. It will discuss the expression of these molecules by B-CLL cells, their regulation, transduction pathways and their effects on leukaemic cells. The design of reagents able to counteract the effects of these molecules seems to be a new promising therapeutic approach for B-CLL and is already currently developed in the treatment of autoimmune diseases. PMID:16827889
Francesco, Michelle; De Rooij, Martin F. M.; Magadala, Padmaja; Steggerda, Susanne M.; Huang, Min Mei; Kuil, Annemieke; Herman, Sarah E. M.; Chang, Stella; Pals, Steven T.; Wilson, Wyndham; Wiestner, Adrian; Spaargaren, Marcel; Buggy, Joseph J.; Elias, Laurence
2013-01-01
Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19+CD5+ cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738. PMID:23940282
Chang, Betty Y; Francesco, Michelle; De Rooij, Martin F M; Magadala, Padmaja; Steggerda, Susanne M; Huang, Min Mei; Kuil, Annemieke; Herman, Sarah E M; Chang, Stella; Pals, Steven T; Wilson, Wyndham; Wiestner, Adrian; Spaargaren, Marcel; Buggy, Joseph J; Elias, Laurence
2013-10-03
Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19(+)CD5(+) cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738.
Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A; García-Pardo, Angeles
2014-01-01
Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment.
Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A.; García-Pardo, Angeles
2014-01-01
Background Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. Methods We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. Results In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Conclusions Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment. PMID:24956101
NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.
Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo
2018-01-01
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
Zhang, Ya; Zhou, Xiangxiang; Li, Ying; Xu, Yangyang; Lu, Kang; Li, Peipei; Wang, Xin
2018-06-12
TP53 pathway defects contributed to therapy resistance and adverse clinical outcome in chronic lymphocytic leukemia (CLL), which represents an unmet clinical need with few therapeutic options. Maternal embryonic leucine zipper kinase (MELK) is a novel oncogene, which plays crucial roles in mitotic progression and stem cell maintenance. OTSSP167, an orally administrated inhibitor targeting MELK, is currently in a phase I/II clinical trial in patients with advanced breast cancer and acute myeloid leukemia. Yet, no investigation has been elucidated to date regarding the oncogenic role of MELK and effects of OTSSP167 in chronic lymphocytic leukemia (CLL). Previous studies confirmed MELK inhibition abrogated cancer cell survival via p53 signaling pathway. Thus, we aimed to determine the biological function of MELK and therapeutic potential of OTSSP167 in CLL. Herein, MELK over-expression was observed in CLL cells, and correlated with higher WBC count, advanced stage, elevated LDH, increased β2-MG level, unmutated IGHV, positive ZAP-70, deletion of 17p13 and inferior prognosis of CLL patients. In accordance with functional enrichment analyses in gene expression profiling, CLL cells with depletion or inhibition of MELK exhibited impaired cell proliferation, enhanced fast-onset apoptosis, induced G2/M arrest, attenuated cell chemotaxis and promoted sensitivity to fludarabine and ibrutinib. However, gain-of-function assay showed increased cell proliferation and cell chemotaxis. In addition, OTSSP167 treatment reduced phosphorylation of AKT and ERK1/2. It decreased FoxM1 phosphorylation, expression of FoxM1, cyclin B1 and CDK1, while up-regulating p53 and p21 expression. Taken together, MELK served as a candidate of therapeutic target in CLL. OTSSP167 exhibits potent anti-tumor activities in CLL cells, highlighting a novel molecule-based strategy for leukemic interventions.
Kondo, K; Shaim, H; Thompson, P A; Burger, J A; Keating, M; Estrov, Z; Harris, D; Kim, E; Ferrajoli, A; Daher, M; Basar, R; Muftuoglu, M; Imahashi, N; Alsuliman, A; Sobieski, C; Gokdemir, E; Wierda, W; Jain, N; Liu, E; Shpall, E J; Rezvani, K
2018-04-01
Ibrutinib, a covalent inhibitor of Bruton Tyrosine Kinase (BTK), is approved for treatment of patients with relapsed/refractory or treatment-naïve chronic lymphocytic leukemia (CLL). Besides directly inhibiting BTK, ibrutinib possesses immunomodulatory properties through targeting multiple signaling pathways. Understanding how this ancillary property of ibrutinib modifies the CLL microenvironment is crucial for further exploration of immune responses in this disease and devising future combination therapies. Here, we investigated the mechanisms underlying the immunomodulatory properties of ibrutinib. In peripheral blood samples collected prospectively from CLL patients treated with ibrutinib monotherapy, we observed selective and durable downregulation of PD-L1 on CLL cells by 3 months post-treatment. Further analysis showed that this effect was mediated through inhibition of the constitutively active signal transducer and activator of transcription 3 (STAT3) in CLL cells. Similar downregulation of PD-1 was observed in CD4+ and CD8+ T cells. We also demonstrated reduced interleukin (IL)-10 production by CLL cells in patients receiving ibrutinib, which was also linked to suppression of STAT3 phosphorylation. Taken together, these findings provide a mechanistic basis for immunomodulation by ibrutinib through inhibition of the STAT3 pathway, critical in inducing and sustaining tumor immune tolerance. The data also merit testing of combination treatments combining ibrutinib with agents capable of augmenting its immunomodulatory effects.
A drive through cellular therapy for CLL in 2015: allogeneic cell transplantation and CARs.
Mato, Anthony; Porter, David L
2015-07-23
Over the past decade the development of safer reduced-intensity conditioning regimens, expanded donor pools, advances in supportive care, and prevention/management of graft-versus-host disease have expanded stem cell transplantation (SCT) availability for chronic lymphocytic leukemia (CLL) patients. However, there are now increasingly active treatment options available for CLL patients with favorable toxicity profiles and convenient administration schedules. This raises the critical issue of whether or not attainment of cure remains a necessary goal. It is now less clear that treatment with curative intention and with significant toxicity is required for long-term survival in CLL. In addition, the demonstrated safety and activity of genetically modified chimeric antigen receptor (CAR) T cells present the opportunity of harnessing the power of the immune system to kill CLL cells without the need for SCT. We attempt to define the role of SCT in the era of targeted therapies and discuss questions that remain to be answered. Furthermore, we highlight the potential for exciting new cellular therapy using genetically modified anti-CD19 CAR T cells and discuss its potential to alter treatment paradigms for CLL. © 2015 by The American Society of Hematology.
Tissino, Erika; Benedetti, Dania; Herman, Sarah E M; Ten Hacken, Elisa; Ahn, Inhye E; Chaffee, Kari G; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Ayed, Ayed; Zaja, Francesco; Chiarenza, Annalisa; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A; Burger, Jan A; Ferrajoli, Alessandra; Shanafelt, Tait D; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole; Gattei, Valter; Zucchetto, Antonella
2018-02-05
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. © 2018 Tissino et al.
Tissino, Erika; Benedetti, Dania; Herman, Sarah E.M.; ten Hacken, Elisa; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Zaja, Francesco; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A.; Burger, Jan A.; Ferrajoli, Alessandra; Shanafelt, Tait D.; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole
2018-01-01
The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. PMID:29301866
Hing, Zachary A; Mantel, Rose; Beckwith, Kyle A; Guinn, Daphne; Williams, Erich; Smith, Lisa L; Williams, Katie; Johnson, Amy J; Lehman, Amy M; Byrd, John C; Woyach, Jennifer A; Lapalombella, Rosa
2015-05-14
Despite the therapeutic efficacy of ibrutinib in chronic lymphocytic leukemia (CLL), complete responses are infrequent, and acquired resistance to Bruton agammaglobulinemia tyrosine kinase (BTK) inhibition is being observed in an increasing number of patients. Combination regimens that increase frequency of complete remissions, accelerate time to remission, and overcome single agent resistance are of considerable interest. We previously showed that the XPO1 inhibitor selinexor is proapoptotic in CLL cells and disrupts B-cell receptor signaling via BTK depletion. Herein we show the combination of selinexor and ibrutinib elicits a synergistic cytotoxic effect in primary CLL cells and increases overall survival compared with ibrutinib alone in a mouse model of CLL. Selinexor is effective in cells isolated from patients with prolonged lymphocytosis following ibrutinib therapy. Finally, selinexor is effective in ibrutinib-refractory mice and in a cell line harboring the BTK C481S mutation. This is the first report describing the combined activity of ibrutinib and selinexor in CLL, which represents a new treatment paradigm and warrants further evaluation in clinical trials of CLL patients including those with acquired ibrutinib resistance. © 2015 by The American Society of Hematology.
Bolger, Gordon T; Licollari, Albert; Tan, Aimin; Greil, Richard; Pleyer, Lisa; Vcelar, Brigitta; Majeed, Muhammad; Sordillo, Peter
2018-01-01
Background/Aim: Curcumin is being widely investigated for its anticancer properties and studies in the literature suggest that curcumin distributes to a higher degree in tumor versus non-tumor cells. In the current study, we report on investigation of the distribution of curcumin and metabolism to THC in PBMC from healthy individuals and chronic lymphocytic leukemia (CLL) patients following exposure to Lipocurc™ (liposomal curcumin). Materials and Methods: The time and temperature-dependent distribution of liposomal curcumin and metabolism to tetrahydrocurcumin (THC) were measured in vitro in human peripheral blood mononuclear cells (PBMC) obtained from healthy individuals, PBMC HI (cryopreserved and freshly isolated PBMC) and CLL patients (cryopreserved PBMC) with lymphocyte counts ranging from 17-58×10 6 cells/ml (PBMC CLL,Grp 1 ) and >150×10 6 cells/ml (PBMC CLL,Grp 2 ). PBMC were incubated in plasma protein supplemented media with Lipocurc™ for 2-16 min at 37°C and 4°C and the cell and medium levels of curcumin determined by LC-MS/MS. Results: PBMC from CLL patients displayed a 2.2-2.6-fold higher distribution of curcumin compared to PBMC HI Curcumin distribution into PBMCCLL, Grp 1/Grp 2 ranged from 384.75 - 574.50 ng/g w.w. of cell pellet and was greater compared to PBMC HI that ranged from 122.27-220.59 ng/g w.w. of cell pellet following incubation for up to 15-16 min at 37°C. The distribution of curcumin into PBMC CLL,Grp 2 was time-dependent in comparison to PBMC HI which did not display a time-dependence and there was no temperature-dependence for curcumin distribution in either cell type. Curcumin was metabolized to THC in PBMC. The metabolism of curcumin to THC was not markedly different between PBMC HI (range=23.94-42.04 ng/g w.w. cell pellet) and PBMC CLL,Grp 1/Grp 2 (range=23.08-48.22 ng/g. w.w. cell pellet). However, a significantly greater time and temperature-dependence was noted for THC in PBMC CLL,Grp 2 compared to PBMC HI Conclusion: Curcumin distribution into PBMC from CLL patients was higher compared to PBMC from healthy individuals, while metabolism to THC was similar. The potential for a greater distribution of curcumin into PBMC from CLL patients may be of therapeutic benefit. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia.
McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S; Oben, Karine Z; Greene, Joseph T; Mani, Rajeswaran; Perry, Kathryn L; Collard, James P; Rivas, Jacqueline R; Hildebrandt, Gerhard; Fleischman, Roger; Durbin, Eric B; Byrd, John C; Wang, Chi; Muthusamy, Natarajan; Rangnekar, Vivek M; Bondada, Subbarao
2018-04-25
Prostate apoptosis response-4 (Par-4), a pro-apoptotic tumor suppressor protein, is down regulated in many cancers including renal cell carcinoma, glioblastoma, endometrial and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from the Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1 to S cell cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with FDA approved drugs caused a decrease in Par-4 mRNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase and Bruton's tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel pro-growth rather than pro-apoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR signaling inhibitors. Copyright © 2018 American Society of Hematology.
2014-01-01
Background Cholesterol plays an important role in cancer development, drug resistance and chemoimmuno-sensitivity. Statins, cholesterol lowering drugs, can induce apoptosis, but also negatively interfere with CD-20 and rituximab-mediated activity. Our goal is to identify the alternative targets that could reduce cholesterol levels but do not interfere with CD-20 in chemo immunotherapy of chronic lymphocytic leukemia (CLL). Methods MEC-2 cells, a CLL cell line, and the peripheral blood mononuclear cells (PBMCs) from CLL patients were treated with cholesterol lowering agents, and analyzed the effect of these agents on cholesterol levels, CD-20 expression and distribution, and cell viability in the presence or absence of fludarabine, rituximab or their combinations. Results We found that MEC-2 cells treated with cholesterol lowering agents (BIBB-515, YM-53601 or TAK-475) reduced 20% of total cellular cholesterol levels, but also significantly promoted CD-20 surface expression. Furthermore, treatment of cells with fludarabine, rituximab or their combinations in the presence of BIBB-515, YM-53601 or TAK-475 enhanced MEC-2 cell chemoimmuno-sensitivity measured by cell viability. More importantly, these cholesterol lowering agents also significantly enhanced chemoimmuno-sensitivity of the PBMCs from CLL patients. Conclusion Our data demonstrate that BIBB-515, YM53601 and TAK-475 render chemoimmuno-therapy resistant MEC-2 cells sensitive to chemoimmuno-therapy and enhance CLL cell chemoimmuno-sensitivity without CD-20 epitope presentation or its downstream signaling. These results provide a novel strategy which could be applied to CLL treatment. PMID:25401046
Benakanakere, Indira; Johnson, Tyler; Sleightholm, Richard; Villeda, Virgilio; Arya, Monika; Bobba, Ravi; Freter, Carl; Huang, Chunfa
2014-01-01
Cholesterol plays an important role in cancer development, drug resistance and chemoimmuno-sensitivity. Statins, cholesterol lowering drugs, can induce apoptosis, but also negatively interfere with CD-20 and rituximab-mediated activity. Our goal is to identify the alternative targets that could reduce cholesterol levels but do not interfere with CD-20 in chemo immunotherapy of chronic lymphocytic leukemia (CLL). MEC-2 cells, a CLL cell line, and the peripheral blood mononuclear cells (PBMCs) from CLL patients were treated with cholesterol lowering agents, and analyzed the effect of these agents on cholesterol levels, CD-20 expression and distribution, and cell viability in the presence or absence of fludarabine, rituximab or their combinations. We found that MEC-2 cells treated with cholesterol lowering agents (BIBB-515, YM-53601 or TAK-475) reduced 20% of total cellular cholesterol levels, but also significantly promoted CD-20 surface expression. Furthermore, treatment of cells with fludarabine, rituximab or their combinations in the presence of BIBB-515, YM-53601 or TAK-475 enhanced MEC-2 cell chemoimmuno-sensitivity measured by cell viability. More importantly, these cholesterol lowering agents also significantly enhanced chemoimmuno-sensitivity of the PBMCs from CLL patients. Our data demonstrate that BIBB-515, YM53601 and TAK-475 render chemoimmuno-therapy resistant MEC-2 cells sensitive to chemoimmuno-therapy and enhance CLL cell chemoimmuno-sensitivity without CD-20 epitope presentation or its downstream signaling. These results provide a novel strategy which could be applied to CLL treatment.
Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia
Belessi, Chrysoula; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Hatzi, Katerina; Smilevska, Tatjana; Stavroyianni, Niki; Marantidou, Fotini; Paterakis, George; Fassas, Athanasios; Anagnostopoulos, Achilles; Laoutaris, Nikolaos
2005-01-01
Immunoglobulin κ (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 κ- and 103 λ-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In κ-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one κ chain cannot be excluded. Twenty-eight κ-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of κ-CLL cases carried biallelic IGK locus rearrangements. In λ-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of λ-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in κ- versus λ-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became λ producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, κ- or λ-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis. PMID:16622520
Wang, Yan-Yu; Chen, Wen-Lian; Weng, Xiang-Qin; Sheng, Yan; Wu, Jing; Hao, Jie; Liu, Zhan-Yun; Zhu, Yong-Mei; Chen, Bing; Xiong, Shu-Min; Chen, Yu; Chen, Qiu-Sheng; Sun, Hui-Ping; Li, Jun-Min; Wang, Jin
2017-10-15
Recent reports state that C-type lectin-like molecule-1 (CLL-1) in acute myeloid leukemia (AML) is expressed primarily on myeloid cells, but there is still no investigation about its prognostic significance on leukemic blast compartment. Hence, this study aimed to evaluate the prognostic value of CLL-1 in 123 patients with de novo CD34 + Non-M3 AML. Multiparameter flow cytometry was used to assess the expression of CLL-1 on immature compartment in AML and control groups. We found that CLL-1 expression level on blast compartment was closely linked to clinical characteristics, treatment response, and survival outcome of patients. Decreased expression of CLL-1 was observed on immature compartment from AML patients as compared with controls (62.6% vs. 86.5%, P < 0.05). Logistic model exhibited that CLL-1 low independently predicted low complete remission rate with an odds ratio of 4.57 (2.53-6.61, P < 0.05). Additionally, CLL-1 expression level at diagnosis was inversely correlated to the residual blast cells (residual leukemia cell) after induction chemotherapy (r = -0.423, P < 0.05). Furthermore, multivariate Cox regression model demonstrated that CLL-1 low was still an independent adverse predictor (P < 0.05 for event-free survival, P < 0.05 for overall survival). Notably, CLL-1 low was able to discriminate poor survival patients from intermediate- and favorable-risk groups. Taken together, CLL-1 is a novel prognostic predictor that could be exploited to supplement the current AML prognostic risk stratification system, and potentially optimize the clinical management of AML.
Alterations of mitochondrial biogenesis in chronic lymphocytic leukemia cells with loss of p53
Ogasawara, Marcia A.; Liu, Jinyun; Pelicano, Helene; Hammoudi, Naima; Croce, Carlo M.; Keating, Michael J.; Huang, Peng
2016-01-01
Deletion of chromosome 17p with a loss of p53 is an unfavorable cytogenetic change in chronic lymphocytic leukemia (CLL) with poor clinical outcome. Since p53 affects mitochondrial function and integrity, we examined possible mitochondrial changes in CLL mice with TCL1-Tg/p53−/− and TCL1-Tg/p53+/+ genotypes and in primary leukemia cells from CLL patients with or without 17p-deletion. Although the expression of mitochondrial COX1, ND2, and ND6 decreased in p53−/−CLL cells, there was an increase in mitochondrial biogenesis as evidenced by higher mitochondrial mass and mtDNA copy number associated with an elevated expression of TFAM and PGC-1α. Surprisingly, the overall mitochondrial respiratory activity and maximum reserved capacity increased in p53−/− CLL cells. Our study suggests that leukemia cells lacking p53 seem able to maintain respiratory function by compensatory increase in mitochondrial biogenesis. PMID:27650502
Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.
2017-01-01
Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620
Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand?
Aguirre Palma, Luis Mario; Gehrke, Iris; Kreuzer, Karl-Anton
2015-03-01
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yu, J; Chen, L; Cui, B; Wu, Christina; Choi, M Y; Chen, Y; Zhang, L; Rassenti, L Z; Widhopf II, G F; Kipps, T J
2017-01-01
Signaling via the B cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). This is underscored by the clinical effectiveness of ibrutinib, an inhibitor of Bruton's tyrosine kinase (BTK) that can block BCR-signaling. However, ibrutinib cannot induce complete responses (CR) or durable remissions without continued therapy, suggesting alternative pathways also contribute to CLL growth/survival that are independent of BCR-signaling. ROR1 is a receptor for Wnt5a, which can promote activation of Rac1 to enhance CLL-cell proliferation and survival. In this study, we found that CLL cells of patients treated with ibrutinib had activated Rac1. Moreover, Wnt5a could induce Rac1 activation and enhance proliferation of CLL cells treated with ibrutinib at concentrations that were effective in completely inhibiting BTK and BCR-signaling. Wnt5a-induced Rac1 activation could be blocked by cirmtuzumab (UC-961), an anti-ROR1 mAb. We found that treatment with cirmtuzumab and ibrutinib was significantly more effective than treatment with either agent alone in clearing leukemia cells in vivo. This study indicates that cirmtuzumab may enhance the activity of ibrutinib in the treatment of patients with CLL or other ROR1+ B-cell malignancies. PMID:27904138
Yu, J; Chen, L; Cui, B; Wu, Christina; Choi, M Y; Chen, Y; Zhang, L; Rassenti, L Z; Widhopf Ii, G F; Kipps, T J
2017-06-01
Signaling via the B cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). This is underscored by the clinical effectiveness of ibrutinib, an inhibitor of Bruton's tyrosine kinase (BTK) that can block BCR-signaling. However, ibrutinib cannot induce complete responses (CR) or durable remissions without continued therapy, suggesting alternative pathways also contribute to CLL growth/survival that are independent of BCR-signaling. ROR1 is a receptor for Wnt5a, which can promote activation of Rac1 to enhance CLL-cell proliferation and survival. In this study, we found that CLL cells of patients treated with ibrutinib had activated Rac1. Moreover, Wnt5a could induce Rac1 activation and enhance proliferation of CLL cells treated with ibrutinib at concentrations that were effective in completely inhibiting BTK and BCR-signaling. Wnt5a-induced Rac1 activation could be blocked by cirmtuzumab (UC-961), an anti-ROR1 mAb. We found that treatment with cirmtuzumab and ibrutinib was significantly more effective than treatment with either agent alone in clearing leukemia cells in vivo. This study indicates that cirmtuzumab may enhance the activity of ibrutinib in the treatment of patients with CLL or other ROR1 + B-cell malignancies.
Shukla, Vipul; Shukla, Ashima; Joshi, Shantaram S.
2016-01-01
Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4−/−Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4−/−Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4−/−Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development. PMID:27232759
Rinaldi, Andrea; Mensah, Afua Adjeiwaa; Kwee, Ivo; Forconi, Francesco; Orlandi, Ester M; Lucioni, Marco; Gattei, Valter; Marasca, Roberto; Berger, Françoise; Cogliatti, Sergio; Cavalli, Franco; Zucca, Emanuele; Gaidano, Gianluca; Rossi, Davide; Bertoni, Francesco
2013-10-01
In a fraction of patients, chronic lymphocytic leukaemia (CLL) can transform to Richter syndrome (RS), usually a diffuse large B-cell lymphoma (DLBCL). We studied genome-wide promoter DNA methylation in RS and clonally related CLL-phases of transformed patients, alongside de novo DLBCL (of non-germinal centre B type), untransformed-CLL and normal B-cells. The greatest differences in global DNA methylation levels were observed between RS and DLBCL, indicating that these two diseases, although histologically similar, are epigenetically distinct. RS was more highly methylated for genes involved in cell cycle regulation. When RS was compared to the preceding CLL-phase and with untransformed-CLL, RS presented a higher degree of methylation for genes possessing the H3K27me3 mark and PRC2 targets, as well as for gene targets of TP53 and RB1. Comparison of the methylation levels of individual genes revealed that OSM, a stem cell regulatory gene, exhibited significantly higher methylation levels in RS compared to CLL-phases. Its transcriptional repression by DNA methylation was confirmed by 5-aza-2'deoxycytidine treatment of DLBCL cells, determining an increased OSM expression. Our results showed that methylation patterns in RS are largely different from de novo DLBCL. Stem cell-related genes and cell cycle regulation genes are targets of DNA methylation in RS. © 2013 John Wiley & Sons Ltd.
Gehrke, Iris; Razavi, Regina; Poll-Wolbeck, Simon Jonas; Berkessel, Albrecht; Hallek, Michael; Kreuzer, Karl-Anton
2011-10-01
Chronic Lymphocytic Leukemia (CLL) is not curable in patients that are not eligible for allogeneic stem cell transplantation. Therefore, new treatment options are highly desirable. Chemically modified nonsteroidal anti-inflammatory drugs (NSAIDs), such as nitric-oxide-donating acetylsalicylic acid (NO-ASA), have been described to possess antineoplastic capacity. Recently, we could demonstrate a potent apoptosis induction in primary CLL cells in vitro and tumor growth inhibition by para-NO-ASA in a xenograft mouse model. However, little is known about the impact of positional isomerism of NO-ASA on its antineoplastic capacity in CLL. Primary CLL cells were treated with the meta-or para-isomer of NO-ASA at varying concentrations and durations. Viability was assessed flow cytometrically by annexin V-FITC/PI staining and by CellTiter-Glo luminescence cell viability assay. Caspase and PARP cleavage as well as involvement of β-catenin/Lef-1 signaling was determined by immunoblotting. For caspase inhibition, BD™ ApoBlock was used. Nude mice were xenografted with JVM3 cells and treated with meta-NO-ASA, para-NO-ASA or vehicle control. The meta-isomer was entirely ineffective in inducing CLL cell apoptosis in concentrations up to 100 μM, while para-NO-ASA acted in the low micromolar range. meta-NO-ASA, in contrast to para-NO-ASA, did not alter caspase activity. While para-NO-ASA action involved inhibition of β-catenin/Lef-1 signaling, meta-NO-ASA did not show any impact on this signaling pathway. Further, meta-NO-ASA did not significantly reduce tumor growth in a CLL xenograft mouse model, while para-NO-ASA was highly potent. We conclude that positional isomerism is crucial for the antineoplastic effect of NO-ASA in CLL. It can be suggested that the para-isomer, but not the meta-isomer, generates a chemical structure which is essential for the neoplastic effect of NO-ASA.
Gehrke, Iris; Razavi, Regina; Poll-Wolbeck, Simon Jonas; Berkessel, Albrecht; Hallek, Michael; Kreuzer, Karl-Anton
2011-01-01
Background: Chronic Lymphocytic Leukemia (CLL) is not curable in patients that are not eligible for allogeneic stem cell transplantation. Therefore, new treatment options are highly desirable. Chemically modified nonsteroidal anti-inflammatory drugs (NSAIDs), such as nitric-oxide-donating acetylsalicylic acid (NO-ASA), have been described to possess antineoplastic capacity. Recently, we could demonstrate a potent apoptosis induction in primary CLL cells in vitro and tumor growth inhibition by para-NO-ASA in a xenograft mouse model. However, little is known about the impact of positional isomerism of NO-ASA on its antineoplastic capacity in CLL. Methods: Primary CLL cells were treated with the meta-or para-isomer of NO-ASA at varying concentrations and durations. Viability was assessed flow cytometrically by annexin V-FITC/PI staining and by CellTiter-Glo luminescence cell viability assay. Caspase and PARP cleavage as well as involvement of β-catenin/Lef-1 signaling was determined by immunoblotting. For caspase inhibition, BD™ ApoBlock was used. Nude mice were xenografted with JVM3 cells and treated with meta-NO-ASA, para-NO-ASA or vehicle control. Results: The meta-isomer was entirely ineffective in inducing CLL cell apoptosis in concentrations up to 100 μM, while para-NO-ASA acted in the low micromolar range. meta-NO-ASA, in contrast to para-NO-ASA, did not alter caspase activity. While para-NO-ASA action involved inhibition of β-catenin/Lef-1 signaling, meta-NO-ASA did not show any impact on this signaling pathway. Further, meta-NO-ASA did not significantly reduce tumor growth in a CLL xenograft mouse model, while para-NO-ASA was highly potent. Conclusion: We conclude that positional isomerism is crucial for the antineoplastic effect of NO-ASA in CLL. It can be suggested that the para-isomer, but not the meta-isomer, generates a chemical structure which is essential for the neoplastic effect of NO-ASA. PMID:23556096
Xia, Liang; Wu, Linlin; Bao, Jing; Li, Qingsheng; Chen, Xiaowen; Xia, Hailong; Xia, Ruixiang
2018-06-15
Circular RNA (circRNA) belongs to the non-coding RNA family and is involved in various human cancers, such as lung cancer and colorectal cancer. Nevertheless, whether circRNA expression is related to chronic lymphocytic leukemia (CLL) progression remains largely unclear. In our study, we investigated the role of circ-CBFB in CLL. We found that circ-CBFB was markedly overexpressed in CLL cells compared to normal controls. Furthermore, we found that circ-CBFB could serve as a diagnostic and prognostic biomarker for CLL patients. We also explored the physiological function of circ-CBFB. We found that circ-CBFB knockdown significantly suppressed CLL cell proliferation, arrested cell cycle progression, and induced cellular apoptosis. In terms of its mechanism, we identified circ-CBFB as a sponge of miR-607, which targeted FZD3. By inhibiting miR-607 availability, circ-CBFB promoted FZD3 expression, leading to the activation of the Wnt/β-catenin pathway and consequent CLL progression. Taken together, our findings revealed that the circ-CBFB/miR-607/FZD3/Wnt/β-catenin regulatory signaling cascade contributes to CLL progression. Copyright © 2018 Elsevier Inc. All rights reserved.
DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam
2012-01-01
The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.
Jaglowski, Samantha M; Byrd, John C
2012-01-01
Over the past decade, numerous advances have been made in elucidating the biology of and improving treatment for chronic lymphocytic leukemia (CLL). These studies have led to identification of select CLL patient groups that generally have short survival dating from time of treatment or initial disease relapse who benefit from more aggressive therapeutic interventions. Allogeneic transplantation represents the only potentially curative option for CLL, but fully ablative regimens applied in the past have been associated with significant morbidity and mortality. Reduced-intensity preparative regimens has made application of allogeneic transplant to CLL patients much more feasible and increased the number of patients proceeding to this modality. Arising from this has been establishment of guidelines where allogeneic stem cell transplantation should be considered in CLL. Introduction of new targeted therapies with less morbidity, which can produce durable remissions has the potential to redefine where transplantation is initiated in CLL. This review briefly summarizes the field of allogeneic stem cell transplant in CLL and the interface of new therapeutics with this modality. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L; Hallek, Michael; Wendtner, Clemens-Martin
2009-10-08
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3' untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis.
Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P.; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L.; Hallek, Michael
2009-01-01
MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3′ untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis. PMID:19692702
ten Hacken, Elisa; Burger, Jan A.
2015-01-01
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078
Dreger, Peter; Montserrat, Emili
2015-03-01
Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (CLL) (i.e., refractory to purine analogs, short response (<24 months) to intensive treatments, and/or presence of 17p/TP53 abnormalities). Currently, new and highly effective therapeutic agents targeting BCR-mediated intracellular signal transduction have been incorporated into the CLL treatment armamentarium. These signal transduction inhibitors (STI) will change the algorithms of high-risk CLL (HR-CLL) management. Despite the limited body of evidence, there is sufficient rationale for withholding alloHSCT in patients with 17p-/TP53mut CLL in first remission. In contrast, the perspectives of patients with relapsed 17p-/TP53mut CLL remain uncertain even if responding to STI. The same accounts for patients with HR-CLL progressing under STI. In both scenarios, it is reasonable to consider alloHSCT, ideally after response to alternative STI regimens.
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles
2012-01-01
We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324
Vincristine activates c-Jun N-terminal kinase in chronic lymphocytic leukaemia in vivo
Bates, Darcy J P; Lewis, Lionel D; Eastman, Alan; Danilov, Alexey V
2015-01-01
Aims The authors’ aim was to conduct a proof-of-principle study to test whether c-Jun N-terminal kinase (JNK) phosphorylation and Noxa induction occur in peripheral blood chronic lymphocytic leukaemia (CLL) cells in patients receiving a vincristine infusion. Methods Patients with CLL received 2 mg vincristine by a 5-min intravenous infusion. Blood samples were collected at baseline and up to 6 h after the vincristine infusion, and assayed for JNK activation, Noxa induction and vincristine plasma concentrations. Results Ex vivo treated peripheral CLL cells activated JNK in response to 10–100 nM vincristine in 6 h. Noxa protein expression, while variable, was also observed over this time frame. In CLL patients, vincristine infusion led to rapid (<1 h) JNK phosphorylation in peripheral blood CLL cells which was sustained for at least 4–6 h after the vincristine infusion. Noxa protein expression was not observed in response to vincristine infusion. Conclusions This study confirmed that vincristine can activate JNK but not induce Noxa in CLL cells in vivo. The results suggest that novel JNK-dependent drug combinations with vincristine warrant further investigation. PMID:25753324
AID induces intraclonal diversity and genomic damage in CD86+ chronic lymphocytic leukemia cells
Huemer, Michael; Rebhandl, Stefan; Zaborsky, Nadja; Gassner, Franz J; Hainzl, Stefan; Weiss, Lukas; Hebenstreit, Daniel; Greil, Richard; Geisberger, Roland
2014-01-01
The activation-induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination of the Ig genes by directly deaminating cytosines to uracils. As AID causes a substantial amount of off-target mutations, its activity has been associated with lymphomagenesis and clonal evolution of B-cell malignancies. Although it has been shown that AID is expressed in B-cell chronic lymphocytic leukemia (CLL), a clear analysis of in vivo AID activity in this B-cell malignancy remained elusive. In this study performed on primary human CLL samples, we report that, despite the presence of a dominant VDJ heavy chain region, a substantial intraclonal diversity was observed at VDJ as well as at IgM switch regions (Sμ), showing ongoing AID activity in vivo during disease progression. This AID-mediated heterogeneity was higher in CLL subclones expressing CD86, which we identified as the proliferative CLL fraction. Finally, CD86 expression correlated with shortened time to first treatment and increased γ-H2AX focus formation. Our data demonstrate that AID is active in CLL in vivo and thus, AID likely contributes to clonal evolution of CLL. PMID:25179679
Palacios, Florencia; Moreno, Pilar; Morande, Pablo; Abreu, Cecilia; Correa, Agustín; Porro, Valentina; Landoni, Ana Ines; Gabus, Raul; Giordano, Mirta; Dighiero, Guillermo; Pritsch, Otto; Oppezzo, Pablo
2010-06-03
Interaction of chronic lymphocytic leukemia (CLL) B cells with tissue microenvironment has been suggested to favor disease progression by promoting malignant B-cell growth. Previous work has shown expression in peripheral blood (PB) of CLL B cells of activation-induced cytidine deaminase (AID) among CLL patients with an unmutated (UM) profile of immunoglobulin genes and with ongoing class switch recombination (CSR) process. Because AID expression results from interaction with activated tissue microenvironment, we speculated whether the small subset with ongoing CSR is responsible for high levels of AID expression and could be derived from this particular microenvironment. In this work, we quantified AID expression and ongoing CSR in PB of 50 CLL patients and characterized the expression of different molecules related to microenvironment interaction. Our results show that among UM patients (1) high AID expression is restricted to the subpopulation of tumoral cells ongoing CSR; (2) this small subset expresses high levels of proliferation, antiapoptotic and progression markers (Ki-67, c-myc, Bcl-2, CD49d, and CCL3/4 chemokines). Overall, this work outlines the importance of a cellular subset in PB of UM CLL patients with a poor clinical outcome, high AID levels, and ongoing CSR, whose presence might be a hallmark of a recent contact with the microenvironment.
Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.
Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N
2006-02-01
Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.
Prinz, Immo; Thamm, Kristina; Port, Matthias; Weissinger, Eva M; Stadler, Michael; Gabaev, Ildar; Jacobs, Roland; Ganser, Arnold; Koenecke, Christian
2013-05-11
γδ T lymphocytes play an important role in immune reactions towards infections and malignancies. In particular, Vγ9-Vδ1+ T lymphocytes are thought to play protective antiviral roles in human CMV infection. Recently, Vδ1+ T lymphocytes were proposed to also have anti- B-CLL reactivity. Here we report a case of 48-year-old man who received allogeneic stem cell transplantation for progressive B-CLL. Within one year after transplantation, lymphoma relapsed despite a dramatic increase of Vδ1+ T cells in the patient's blood. In vitro killing assays revealed activity of patient's γδ cells against CMV target cells, but not against the relapsing lymphoma-cells. This argues for a contribution of Vδ1+ cells in the immune reaction against CMV reactivation, but does not support a strong correlation of expanded Vδ1+ T cells and favorable disease outcome in B-CLL patients.
Palomba, M. Lia; Piersanti, Kelly; Ziegler, Carly G. K.; Decker, Hugo; Cotari, Jesse W.; Bantilan, Kurt; Rijo, Ivelise; Gardner, Jeff R.; Heaney, Mark; Bemis, Debra; Balderas, Robert; Malek, Sami N.; Seymour, Erlene; Zelenetz, Andrew D.
2014-01-01
Purpose Chronic Lymphocytic Leukemia (CLL) is defined by a perturbed B-cell receptor-mediated signaling machinery. We aimed to model differential signaling behavior between B cells from CLL and healthy individuals to pinpoint modes of dysregulation. Experimental Design We developed an experimental methodology combining immunophenotyping, multiplexed phosphospecific flow cytometry, and multifactorial statistical modeling. Utilizing patterns of signaling network covariance, we modeled BCR signaling in 67 CLL patients using Partial Least Squares Regression (PLSR). Results from multidimensional modeling were validated using an independent test cohort of 38 patients. Results We identified a dynamic and variable imbalance between proximal (pSYK, pBTK) and distal (pPLCγ2, pBLNK, ppERK) phosphoresponses. PLSR identified the relationship between upstream tyrosine kinase SYK and its target, PLCγ2, as maximally predictive and sufficient to distinguish CLL from healthy samples, pointing to this juncture in the signaling pathway as a hallmark of CLL B cells. Specific BCR pathway signaling signatures that correlate with the disease and its degree of aggressiveness were identified. Heterogeneity in the PLSR response variable within the B cell population is both a characteristic mark of healthy samples and predictive of disease aggressiveness. Conclusion Single-cell multidimensional analysis of BCR signaling permitted focused analysis of the variability and heterogeneity of signaling behavior from patient-to-patient, and from cell-to-cell. Disruption of the pSYK/pPLCγ2 relationship is uncovered as a robust hallmark of CLL B cell signaling behavior. Together, these observations implicate novel elements of the BCR signal transduction as potential therapeutic targets. PMID:24489640
Redondo-Muñoz, Javier; José Terol, María; García-Marco, José A; García-Pardo, Angeles
2008-01-01
B-cell chronic lymphocytic leukemia (B-CLL) progression is frequently accompanied by clinical lymphadenopathy, and the CCL21 chemokine may play an important role in this process. Indeed, CCR7 (the CCL21 receptor), as well as matrix metalloproteinase-9 (MMP-9), are overexpressed in infiltrating B-CLL cells. We have studied whether MMP-9 is regulated by CCL21 and participates in CCL21-dependent migration. CCL21 significantly increased B-CLL MMP-9 production, measured by gelatin zymography. This was inhibited by blocking extracellular signal-regulated kinase-1/2 (ERK1/2) activity or by cell transfection with CCR7-siRNA. Accordingly, CCL21/CCR7 interaction activated the ERK1/2/c-Fos pathway and increased MMP-9 mRNA. CCL21-driven B-CLL cell migration through Matrigel or human umbilical vein endothelial cells (HUVEC) was blocked by anti-CCR7 antibodies, CCR7-siRNA transfection, or the ERK1/2 inhibitor U0126, as well as by anti-MMP-9 antibodies or tissue inhibitor of metalloproteinase 1 (TIMP-1). These results strongly suggest that MMP-9 is involved in B-CLL nodal infiltration and expand the roles of MMP-9 and CCR7 in B-CLL progression. Both molecules could thus constitute therapeutic targets for this disease.
Rassenti, Laura Z; Huynh, Lang; Toy, Tracy L; Chen, Liguang; Keating, Michael J; Gribben, John G; Neuberg, Donna S; Flinn, Ian W; Rai, Kanti R; Byrd, John C; Kay, Neil E; Greaves, Andrew; Weiss, Arthur; Kipps, Thomas J
2004-08-26
The course of chronic lymphocytic leukemia (CLL) is variable. In aggressive disease, the CLL cells usually express an unmutated immunoglobulin heavy-chain variable-region gene (IgV(H)) and the 70-kD zeta-associated protein (ZAP-70), whereas in indolent disease, the CLL cells usually express mutated IgV(H) but lack expression of ZAP-70. We evaluated the CLL B cells from 307 patients with CLL for ZAP-70 and mutations in the rearranged IgV(H) gene. We then investigated the association between the results and the time from diagnosis to initial therapy. We found that ZAP-70 was expressed above a defined threshold level in 117 of the 164 patients with an unmutated IgV(H) gene (71 percent), but in only 24 of the 143 patients with a mutated IgV(H) gene (17 percent, P<0.001). Among the patients with ZAP-70-positive CLL cells, the median time from diagnosis to initial therapy in those who had an unmutated IgV(H) gene (2.8 years) was not significantly different from the median time in those who had a mutated IgV(H) gene (4.2 years, P=0.07). However, the median time from diagnosis to initial treatment in each of these groups was significantly shorter than the time in patients with ZAP-70-negative CLL cells who had either mutated or unmutated IgV(H) genes (P<0.001). The median time from diagnosis to initial therapy among patients who did not have ZAP-70 was 11.0 years in those with a mutated IgV(H) gene and 7.1 years in those with an unmutated IgV(H) gene (P<0.001). Although the presence of an unmutated IgV(H) gene is strongly associated with the expression of ZAP-70, ZAP-70 is a stronger predictor of the need for treatment in B-cell CLL. Copyright 2004 Massachusetts Medical Society
Lapalombella, Rosa; Sun, Qingxiang; Williams, Katie; Tangeman, Larissa; Jha, Shruti; Zhong, Yiming; Goettl, Virginia; Mahoney, Emilia; Berglund, Caroline; Gupta, Sneha; Farmer, Alicia; Mani, Rajeswaran; Johnson, Amy J.; Lucas, David; Mo, Xiaokui; Daelemans, Dirk; Sandanayaka, Vincent; Shechter, Sharon; McCauley, Dilara; Shacham, Sharon; Kauffman, Michael
2012-01-01
The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the Eμ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies. PMID:23034282
Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S
2017-10-01
Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.
Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.
2017-01-01
Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464
Hematopoietic stem cell transplantation for chronic lymphocytic leukemia.
Gladstone, Douglas E; Fuchs, Ephraim
2012-03-01
Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity.
Patel, Viralkumar; Balakrishnan, Kumudha; Bibikova, Elena; Ayres, Mary; Keating, Michael J.; Wierda, William G.; Gandhi, Varsha
2017-01-01
Purpose Ibrutinib inhibits Bruton tyrosine kinase (BTK) by irreversibly binding to the Cys-481 residue in the enzyme. However, ibrutinib also inhibits several other enzymes that contain cysteine residues homologous to Cys-481 in BTK. Patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia (CLL) demonstrate a high overall response rate to ibrutinib with prolonged survival. Acalabrutinib, a selective BTK inhibitor developed to minimize off-target activity, has shown promising overall response rates in patients with relapsed/refractory CLL. A head-to-head comparison of ibrutinib and acalabrutinib in CLL cell cultures and healthy T cells is needed to understand preclinical biologic and molecular effects. Experimental Design Using samples from patients with CLL, we compared the effects of both BTK inhibitors on biologic activity, chemokine production, cell migration, BTK phosphorylation, and downstream signaling in primary CLL lymphocytes and on normal T-cell signaling to determine effects on other kinases. Results Both BTK inhibitors induced modest cell death accompanied by cleavage of PARP and caspase 3. Production of CCL3 and CCL4 chemokines and pseudoemperipolesis were inhibited by both drugs to a similar degree. These drugs also showed similar inhibitory effects on phosphorylation of BTK and downstream S6 and ERK kinases. By contrast, off-target effects on SRC-family kinases were more pronounced with ibrutinib than acalabrutinib in healthy T lymphocytes. Conclusion Both BTK inhibitors show similar biological and molecular profile in primary CLL cells but appear different on their effect on normal T-cells. PMID:28034907
Park, Jae H; Brentjens, Renier J
2013-01-01
Chronic lymphocytic leukemia (CLL) is the most frequently diagnosed leukemia in the Western world, yet remains essentially incurable. Although initial chemotherapy response rates are high, patients invariably relapse and subsequently develop resistance to chemotherapy. For the moment, allogeneic hematopoietic stem cell transplant (allo-HSCT) remains the only potentially curative treatment for patients with CLL, but it is associated with high rates of treatment-related mortality. Immune-based treatment strategies to augment the cytotoxic potential of T cells offer exciting new treatment options for patients with CLL, and provide a unique and powerful spectrum of tools distinct from traditional chemotherapy. Among the most novel and promising of these approaches are chimeric antigen receptor (CAR)-based cell therapies that combine advances in genetic engineering and adoptive immunotherapy.
Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia
Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas
2004-01-01
Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307
Clinical and Biological Relevance of Genomic Heterogeneity in Chronic Lymphocytic Leukemia
Friedman, Daphne R.; Lucas, Joseph E.; Weinberg, J. Brice
2013-01-01
Background Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical variability is due, in part, to biological heterogeneity between individual patients’ leukemias. While much has been learned about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated biological and clinical heterogeneity in CLL. Methods To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets. We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the subgroups. Results Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences in molecular prognostic markers and clinical outcomes. Conclusions Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways. PMID:23468975
Clinical and biological relevance of genomic heterogeneity in chronic lymphocytic leukemia.
Friedman, Daphne R; Lucas, Joseph E; Weinberg, J Brice
2013-01-01
Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical variability is due, in part, to biological heterogeneity between individual patients' leukemias. While much has been learned about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated biological and clinical heterogeneity in CLL. To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets. We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the subgroups. Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences in molecular prognostic markers and clinical outcomes. Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways.
Dias, Ajoy Lawrence; Jain, Dharamvir
2013-12-01
Chronic lymphocytic leukemia (CLL) is characterized by progressive accumulation of nonfunctional mature B cells in blood, bone marrow and lymphoid tissues. In the last decade, our understanding of CLL and consequently our diagnostic and therapeutic approaches have changed dramatically. Conventional fludarabine based chemotherapy has led to improved disease response and longer survival in young patients with CLL. However its application in elderly patients has been restricted by substantial myelosuppression and infection. Treatment of CLL is now moving towards targeted therapy. The success of new class of agents such as monoclonal antibodies, proteasome inhibitors and immunomodulatory derivatives has sparked further search for treatment agents with novel targets to inhibit. The B cell receptor activating pathway involving the Bruton's tyrosine kinase (BTK) is crucial in B cell production and maintenance and is an attractive therapeutic target. Ibrutinib is an oral covalent inhibitor of the BTK pathway that induces apoptosis of B cells. Early phase studies with Ibrutinib either as a single agent or in combination regimens have shown promising results with an excellent safety profile in patients with high-risk, refractory or relapsed CLL and elderly treatment-naïve patients. This review summarizes the current knowledge of Ibrutinib in the treatment of CLL.
Dias, Ajoy Lawrence; Jain, Dharamvir
2013-01-01
Chronic lymphocytic leukemia (CLL) is characterized by progressive accumulation of nonfunctional mature B cells in blood, bone marrow and lymphoid tissues. In the last decade, our understanding of CLL and consequently our diagnostic and therapeutic approaches have changed dramatically. Conventional fludarabine based chemotherapy has led to improved disease response and longer survival in young patients with CLL. However its application in elderly patients has been restricted by substantial myelosuppression and infection. Treatment of CLL is now moving towards targeted therapy. The success of new class of agents such as monoclonal antibodies, proteasome inhibitors and immunomodulatory derivatives has sparked further search for treatment agents with novel targets to inhibit. The B cell receptor activating pathway involving the Bruton’s tyrosine kinase (BTK) is crucial in B cell production and maintenance and is an attractive therapeutic target. Ibrutinib is an oral covalent inhibitor of the BTK pathway that induces apoptosis of B cells. Early phase studies with Ibrutinib either as a single agent or in combination regimens have shown promising results with an excellent safety profile in patients with high-risk, refractory or relapsed CLL and elderly treatment-naïve patients. This review summarizes the current knowledge of Ibrutinib in the treatment of CLL. PMID:24433470
Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.
Mansouri, Larry; Wierzbinska, Justyna Anna; Plass, Christoph; Rosenquist, Richard
2018-02-07
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hill, Brian T; Ahn, Kwang Woo; Hu, Zhen-Huan; Aljurf, Mahmoud; Beitinjaneh, Amer; Cahn, Jean-Yves; Cerny, Jan; Kharfan-Dabaja, Mohamed A; Ganguly, Siddhartha; Ghosh, Nilanjan; Grunwald, Michael R; Inamoto, Yoshihiro; Kindwall-Keller, Tamila; Nishihori, Taiga; Olsson, Richard F; Saad, Ayman; Seftel, Matthew; Seo, Sachiko; Szer, Jeffrey; Tallman, Martin; Ustun, Celalettin; Wiernik, Peter H; Maziarz, Richard T; Kalaycio, Matt; Alyea, Edwin; Popat, Uday; Sobecks, Ronald; Saber, Wael
2018-03-01
Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy with many highly effective therapies. Chemorefractory disease, often characterized by deletion of chromosome 17p, has historically been associated with very poor outcomes, leading to the application of allogeneic hematopoietic stem cell transplantation (allo-HCT) for medically fit patients. Although the use of allo-HCT has declined since the introduction of novel targeted therapy for the treatment of CLL, there remains significant interest in understanding factors that may influence the efficacy of allo-HCT, the only known curative treatment for CLL. The potential benefit of transplantation is most likely due to the presence of alloreactive donor T cells that mediate the graft-versus-leukemia (GVL) effect. The recognition of potentially tumor-specific antigens in the context of class I and II major histocompatibility complex on malignant B lymphocytes by donor T cells may be influenced by subtle differences in the highly polymorphic HLA locus. Given previous reports of specific HLA alleles impacting the incidence of CLL and the clinical outcomes of allo-HCT for CLL, we sought to study the overall survival and progression-free survival of a large cohort of patients with CLL who underwent allo-HCT from fully HLA-matched related and unrelated donors at Center for International Blood and Marrow Transplant Research transplantation centers. We found no statistically significant association of allo-HCT outcomes in CLL based on previously reported HLA combinations. Additional study is needed to further define the immunologic features that portend a more favorable GVL effect after allo-HCT for CLL. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Pede, Valerie; Rombout, Ans; Vermeire, Jolien; Naessens, Evelien; Mestdagh, Pieter; Robberecht, Nore; Vanderstraeten, Hanne; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Verhasselt, Bruno
2013-01-01
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation. PMID:23560086
Zaborsky, Nadja; Gassner, Franz Josef; Asslaber, Daniela; Reinthaler, Petra; Denk, Ursula; Flenady, Sabine; Hofbauer, Josefina Piñón; Danner, Barbara; Rebhandl, Stefan; Harrer, Andrea; Geisberger, Roland; Greil, Richard; Egle, Alexander
2016-08-02
Chronic lymphocytic leukemia develops within a complex network driven by genetic mutations and microenvironmental interactions. Among the latter a complex interplay with the immune system is established by the clone. Next to a proposed recruitment of support from T and myeloid cells, potential anti-CLL immune reactions need to be subverted. By using TCL1 mice as a CLL model, we show that TCR-Vβ7+ NK1.1+ T cells are overrepresented in this disease model and constitute a main subset of peripheral CD3+ cells with biased TCR usage, showing that these cells account for a major part for T cell skewing in TCL1 mice. Moreover, we show that overrepresentation is dependent on CD1d expression in TCL1 mice, implicating that these cells belong to a NKT-like cell fraction which are restricted to antigen presented by the MHC-like surface marker CD1d. Accordingly, we observed a high fraction of CD161+ cells within overrepresented T cells in CLL patients and we found downregulation of CD1d on the surface of CLL cells, both in TCL1 mice and patients. Finally, we show that in TCL1 mice, CD1d deficiency resulted in shortened overall survival. Our results point to an interaction between CLL and CD161+ T cells that may represent a novel therapeutic target for immune modulation.
Kasar, S; Underbayev, C; Yuan, Y; Hanlon, M; Aly, S; Chang, V; Batish, M; Gavrilova, T; Badiane, F; Degheidy, H; Marti, G; Raveche, E
2014-01-01
Genetic lesions and other regulatory events lead to silencing of the 13q14 locus in a majority of chronic lymphocytic leukemia (CLL) patients. This locus encodes a pair of critical pro-apoptotic microRNAs, miR-15a/16-1. Decreased levels of miR-15a/16-1 are critical for the increased survival exhibited by CLL cells. Similarly, in a de novo murine model of CLL, the NZB strain, germline-encoded regulation of the syntenic region resulted in decreased miR-15a/16-1. In this paper we have identified additional molecular mechanisms regulating miR-15a/16-1 levels and shown that the transcription factor BSAP (B cell Specific Activator Protein) directly interacts with Dleu2, the host gene containing the mir-15a/16-1 loci and via negative regulation of the Dleu2 promoter results in repression of mir-15a/16 expression. CLL patient B cell expression levels of BSAP were increased compared to control sources of B cells. With the use of siRNA mediated repression, the levels of BSAP were decreased in vitro in the NZB derived malignant B1 cell line, LNC, and in ex vivo CLL patient PBMC. BSAP knockdown led to an increase in the expression of miR-15a/16-1 and an increase in apoptosis and a cell cycle arrest in both the cell line and patient PBMC. Moreover, using Dleu2 promoter analysis by chromatin immunoprecipitation (ChIP) assay we have shown that BSAP directly interacts with the Dleu2 promoter. Derepression of the Dleu2 promoter via inhibition of histone deacetylation combined with BSAP knockdown increased miR-15a/16 expression and increased malignant B cell death. In summary, therapy targeting enhanced host gene Dleu2 transcription may augment CLL therapy. PMID:23995789
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles
2014-05-30
(pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Rafiq, Sarwish; Butchar, Jonathon P.; Cheney, Carolyn; Mo, Xiaokui; Trotta, Rossana; Caligiuri, Michael; Jarjoura, David; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C.
2013-01-01
CD20 is a widely validated, B cell specific target for therapy in B cell malignancies. Rituximab is an anti-CD20 antibody that when combined with chemotherapy prolongs survival of CLL patients. Ofatumumab and GA101 (obinutuzumab) are CD20-directed antibodies now being developed as alternative agents to rituximab in CLL based upon different properties of enhanced direct cell death (DCD), NK cell-mediated antibody dependent cellular cytotoxicity (ADCC), or complement-dependent cytotoxicity (CDC). Despite wide spread study, ofatumumab and GA101 have not been directly compared to one another, nor studied for interaction with monocytes and macrophages that are critical to CD20-mediated antibody efficacy in murine models. In CLL cells, we show that DCD is greatest with GA101 and CDC with ofatumumab. GA101 promotes enhanced NK cell activation and ADCC at high antibody concentrations. Ofatumumab has superior antibody dependent cellular phagocytosis (ADCP) with monocyte derived macrophages (MDM). GA101 demonstrated reduced activation of monocytes with diminished pERK, TNF-α release, and FcγRIIa recruitment to lipid rafts. These data demonstrate GA101 and ofatumumab are superior to rituximab against CLL cells via different mechanisms of potential tumor elimination. These findings bear relevance to potential combination strategies with each of these anti-CD20 antibodies in the treatment of CLL. PMID:23418626
Cerutti, Andrea; Zan, Hong; Kim, Edmund C.; Shah, Shefali; Schattner, Elaine J.; Schaffer, András; Casali, Paolo
2015-01-01
Chronic lymphocytic leukemia (CLL) results from the expansion of malignant CD5+ B cells that usually express IgD and IgM. These leukemic cells can give rise in vivo to clonally related IgG+ or IgA+ elements. The requirements and modalities of this process remain elusive. Here we show that leukemic B cells from 14 of 20 CLLs contain the hallmarks of ongoing Ig class switch DNA recombination (CSR), including extrachromosomal switch circular DNAs and circle transcripts generated by direct Sμ→Sγ, Sμ→Sα, and Sμ→Sε as well as sequential Sγ→Sα and Sγ→Sε CSR. Similar CLL B cells express transcripts for activation-induced cytidine deaminase, a critical component of the CSR machinery, and contain germline IH-CH and mature VHDJH-CH transcripts encoded by multiple Cγ, Cα, and Cε genes. Ongoing CSR occurs in only a fraction of the CLL clone, as only small proportions of CD5+CD19+ cells express surface IgG or IgA and lack IgM and IgD. In vivo class-switching CLL B cells down-regulate switch circles and circle transcripts in vitro unless exposed to exogenous CD40 ligand and IL-4. In addition, CLL B cells that do not class switch in vivo activate the CSR machinery and secrete IgG, IgA, or IgE upon in vitro exposure to CD40 ligand and IL-4. These findings indicate that in CLL at least some members of the malignant clone actively differentiate in vivo along a pathway that induces CSR. They also suggest that this process is elicited by external stimuli, including CD40 ligand and IL-4, provided by bystander immune cells. PMID:12444172
Change in IgHV Mutational Status of CLL Suggests Origin From Multiple Clones.
Osman, Afaf; Gocke, Christopher D; Gladstone, Douglas E
2017-02-01
Fluorescence in situ hybridization and immunoglobulin (Ig) heavy-chain variable-region (IgHV) mutational status are used to predict outcome in chronic lymphocytic leukemia (CLL). Although DNA aberrations change over time, IgHV sequences and mutational status are considered stable. In a retrospective review, 409 CLL patients, between 2008 and 2015, had IgHV analysis: 56 patients had multiple analyses performed. Seven patients' IgHV results changed: 2 from unmutated to mutated and 5 from mutated to unmutated IgHV sequence. Three concurrently changed their variable heavy-chain sequence. Secondary to allelic exclusion, 2 of the new variable heavy chains produced were biologically nonplausible. The existence of these new nonplausible heavy-chain variable regions suggests either the CLL cancer stem-cell maintains the ability to rearrange a previously silenced IgH allele or more likely that the cancer stem-cell produced at least 2 subclones, suggesting that the CLL cancer stem cell exists before the process of allelic exclusion occurs. Copyright © 2016 Elsevier Inc. All rights reserved.
Smith, E N; Ghia, E M; DeBoever, C M; Rassenti, L Z; Jepsen, K; Yoon, K-A; Matsui, H; Rozenzhak, S; Alakus, H; Shepard, P J; Dai, Y; Khosroheidari, M; Bina, M; Gunderson, K L; Messer, K; Muthuswamy, L; Hudson, T J; Harismendy, O; Barrett, C L; Jamieson, C H M; Carson, D A; Kipps, T J; Frazer, K A
2015-04-10
We examined genetic and epigenetic changes that occur during disease progression from indolent to aggressive forms of chronic lymphocytic leukemia (CLL) using serial samples from 27 patients. Analysis of DNA mutations grouped the leukemia cases into three categories: evolving (26%), expanding (26%) and static (47%). Thus, approximately three-quarters of the CLL cases had little to no genetic subclonal evolution. However, we identified significant recurrent DNA methylation changes during progression at 4752 CpGs enriched for regions near Polycomb 2 repressive complex (PRC2) targets. Progression-associated CpGs near the PRC2 targets undergo methylation changes in the same direction during disease progression as during normal development from naive to memory B cells. Our study shows that CLL progression does not typically occur via subclonal evolution, but that certain CpG sites undergo recurrent methylation changes. Our results suggest CLL progression may involve developmental processes shared in common with the generation of normal memory B cells.
Kleinstern, Geffen; Camp, Nicola J; Goldin, Lynn R; Vachon, Celine M; Vajdic, Claire M; de Sanjose, Silvia; Weinberg, J Brice; Benavente, Yolanda; Casabonne, Delphine; Liebow, Mark; Nieters, Alexandra; Hjalgrim, Henrik; Melbye, Mads; Glimelius, Bengt; Adami, Hans-Olov; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Cocco, Pier Luigi; Shanafelt, Tait D; Call, Timothy G; Norman, Aaron D; Hanson, Curtis; Robinson, Dennis; Chaffee, Kari G; Brooks-Wilson, Angela R; Monnereau, Alain; Clavel, Jacqueline; Glenn, Martha; Curtin, Karen; Conde, Lucia; Bracci, Paige M; Morton, Lindsay M; Cozen, Wendy; Severson, Richard K; Chanock, Stephen J; Spinelli, John J; Johnston, James B; Rothman, Nathaniel; Skibola, Christine F; Leis, Jose F; Kay, Neil E; Smedby, Karin E; Berndt, Sonja I; Cerhan, James R; Caporaso, Neil; Slager, Susan L
2018-06-07
Inherited loci have been found to be associated with risk of chronic lymphocytic leukemia (CLL). A combined polygenic risk score (PRS) of representative single nucleotide polymorphisms (SNPs) from these loci may improve risk prediction over individual SNPs. Herein, we evaluated the association of a PRS with CLL risk and its precursor, monoclonal B-cell lymphocytosis (MBL). We assessed its validity and discriminative ability in an independent sample and evaluated effect modification and confounding by family history (FH) of hematological cancers. For discovery, we pooled genotype data on 41 representative SNPs from 1499 CLL and 2459 controls from the InterLymph Consortium. For validation, we used data from 1267 controls from Mayo Clinic and 201 CLL, 95 MBL, and 144 controls with a FH of CLL from the Genetic Epidemiology of CLL Consortium. We used odds ratios (ORs) to estimate disease associations with PRS and c-statistics to assess discriminatory accuracy. In InterLymph, the continuous PRS was strongly associated with CLL risk (OR, 2.49; P = 4.4 × 10 -94 ). We replicated these findings in the Genetic Epidemiology of CLL Consortium and Mayo controls (OR, 3.02; P = 7.8 × 10 -30 ) and observed high discrimination (c-statistic = 0.78). When jointly modeled with FH, PRS retained its significance, along with FH status. Finally, we found a highly significant association of the continuous PRS with MBL risk (OR, 2.81; P = 9.8 × 10 -16 ). In conclusion, our validated PRS was strongly associated with CLL risk, adding information beyond FH. The PRS provides a means of identifying those individuals at greater risk for CLL as well as those at increased risk of MBL, a condition that has potential clinical impact beyond CLL.
The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL).
García-Muñoz, Ricardo; Feliu, Jesús; Llorente, Luis
2015-01-01
The fundamental task of the immune system is to protect the individual from infectious organisms without serious injury to self. The essence of acquired immunity is molecular self/non self discrimination. Chronic lymphocytic leukemia is characterized by a global failure of immune system that begins with the failure of immunological tolerance mechanisms (autoimmunity) and finish with the incapacity to response to non-self antigens (immunodeficiency). Immunological tolerance mechanisms are involved in chronic lymphocytic leukemia (CLL) development. During B cell development some self-reactive B cells acquire a special BCR that recognize their own BCR. This self-autoantibody-self BCR interaction promotes survival, differentiation and proliferation of self-reactive B cells. Continuous self-autoantibody-self BCR interaction cross-linking induces an increased rate of surface BCR elimination, CD5+ expression, receptor editing and anergy. Unfortunately, some times this mechanisms increase genomic instability and promote additional genetic damage that immortalize self-reactive B cells and convert them into CLL like clones with the capability of clonal evolution and transformed CLL B cells. This review summarizes the immunological effects of continuous self-autoantibody-self BCR interaction cross-linking in the surface of self-reactive B cells and their role in CLL development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miron, Talia; Wilchek, Meir; Shvidel, Lev; Berrebi, Alain; Arditti, Fabian D
2012-12-01
S-allylthio-6-mercaptopurine and its ribose derivative were tested for anti-leukemic activity, using a human- mouse B-CLL model. The novel prodrugs contain two components, a purine analog, which interferes with DNA synthesis, and an S-allylthio, readily engaging in thiol-disulfide exchange reactions. The latter component targets the redox homeostasis which is more sensitive in leukemic cells, than in normal B-cells. Upon administration, the prodrug permeates cells, instantly reacts with free thiol, forming S-allyl mixed disulfides and releasing purine. Several cycles of thiol-disulfide exchange reactions occur, thus extending the duration of the prodrug effects. The concerted action of 2 components, as compared with purine alone, boosted in vitro apoptotis in B-CLL cells from 10% to 38%, and decreased in vivo engraftment of B-CLL from 30% to 0.7%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia.
Maddocks, Kami; Jones, Jeffrey A
2016-04-01
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and remains incurable outside of the setting of allogeneic stem cell transplant. While the standard therapy for both initial and relapsed CLL has traditionally included monoclonal antibody therapy in combination with chemotherapy, there are patients with high-risk disease features including unmutated IgVH, del(11q22) and del(17p13) that are associated with poor overall responses to these therapies with short time to relapse and shortened overall survival. Additionally, many of these therapies have a high rate of infectious toxicity in a population already at increased risk. Targeting the B-cell receptor (BCR) signaling pathway has emerged as a promising therapeutic advance in a variety of B-cell malignancies, including CLL. Bruton agammaglobulinemia tyrosine kinase (Btk) is a tyrosine kinase in the BCR pathway critical to the survival of both normal and malignant B cells and inhibition of this kinase has shown to block the progression of CLL. Ibrutinib, a first in class oral inhibitor of Btk, has shown promise as a very effective agent in the treatment of CLL-in both relapsed and upfront therapy, alone and in combination with other therapies, and in patients of all-risk disease-which has led to its approval in relapsed CLL and as frontline therapy in patients with the high-risk del(17p13) disease. Several studies are ongoing to evaluate the efficacy and safety of ibrutinib in combination with chemotherapy as frontline treatment for CLL and investigation into newer-generation Btk inhibitors is also underway. Copyright © 2016 Elsevier Inc. All rights reserved.
Duzkale, Hatice; Schweighofer, Carmen D.; Coombes, Kevin R.; Barron, Lynn L.; Ferrajoli, Alessandra; O'Brien, Susan; Wierda, William G.; Pfeifer, John; Majewski, Tadeusz; Czerniak, Bogdan A.; Jorgensen, Jeffrey L.; Medeiros, L. Jeffrey; Freireich, Emil J; Keating, Michael J.
2011-01-01
We previously identified LDOC1 as one of the most significantly differentially expressed genes in untreated chronic lymphocytic leukemia (CLL) patients with respect to the somatic mutation status of the immunoglobulin heavy-chain variable region genes. However, little is known about the normal function of LDOC1, its contribution to the pathophysiology of CLL, or its prognostic significance. In this study, we have investigated LDOC1 mRNA expression in a large cohort of untreated CLL patients, as well as in normal peripheral blood B-cell (NBC) subsets and primary B-cell lymphoma samples. We have confirmed that LDOC1 is dramatically down-regulated in mutated CLL cases compared with unmutated cases, and have identified a new splice variant, LDOC1S. We show that LDOC1 is expressed in NBC subsets (naive > memory), suggesting that it may play a role in normal B-cell development. It is also expressed in primary B-cell lymphoma samples, in which its expression is associated with somatic mutation status. In CLL, we show that high levels of LDOC1 correlate with biomarkers of poor prognosis, including cytogenetic markers, unmutated somatic mutation status, and ZAP70 expression. Finally, we demonstrate that LDOC1 mRNA expression is an excellent predictor of overall survival in untreated CLL patients. PMID:21310924
Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich
2012-01-01
Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695
Hallaert, Delfine Y H; Jaspers, Annelieke; van Noesel, Carel J; van Oers, Marinus H J; Kater, Arnon P; Eldering, Eric
2008-12-15
In lymph node (LN) proliferation centers in chronic lymphocytic leukemia (CLL), the environment protects from apoptotic and cytotoxic triggers. Here, we aimed to define the molecular basis for the increased drug resistance and searched for novel strategies to circumvent it. The situation in CLL LN could be mimicked by prolonged in vitro CD40 stimulation, which resulted in up-regulation of antiapoptotic Bcl-xL, A1/Bfl-1, and Mcl-1 proteins, and afforded resistance to various classes of drugs (fludarabine, bortezomib, roscovitine). CD40 stimulation also caused ERK-dependent reduction of Bim-EL protein, but ERK inhibition did not prevent drug resistance. Drugs combined with sublethal doses of the BH3-mimetic ABT-737 displayed partial and variable effects per individual CD40-stimulated CLL. The antiapoptotic profile of CD40-triggered CLL resembled BCR-Abl-dependent changes seen in chronic myeloid leukemia (CML), which prompted application of c-Abl inhibitors imatinib or dasatinib. Both compounds, but especially dasatinib, prevented the entire antiapoptotic CD40 program in CLL cells, and restored drug sensitivity. These effects also occurred in CLL samples with dysfunctional p53. Importantly, ex vivo CLL LN samples also displayed strong ERK activation together with high Bcl-xL and Mcl-1 but low Bim levels. These data indicate that CLL cells in chemoresistant niches may be sensitive to therapeutic strategies that include c-Abl inhibitors.
NASA Astrophysics Data System (ADS)
Ryland, Lindsay K.
Large granular lymphocyte (LGL) leukemia is a rare lymphoproliferative malignancy that involves blood, bone marrow and spleen infiltration. Clinically, LGL leukemia can manifest as a chronic lymphocytosis or as an aggressive leukemia that is fatal within a short period of time. A segment of LGL leukemia patients are unresponsive to immunosuppressive therapy and currently there is no known curative treatment for this disease. Another hematological malignancy, chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in adults in Western countries and accounts for approximately 30% of all diagnosed leukemia cases. Around 95% of all CLL cases involve clonal expansion and abnormal proliferation of neoplastic B lymphocytes in lymphoid organs, bone marrow and peripheral blood. Similar to LGL leukemia, CLL is also incurable with current therapies. Therefore, this represents a need for new therapeutic approaches for treatment of these diseases. Recent advances in nanotechnology have illustrated the feasibility of generating nanoliposomes that encapsulate hydrophobic compounds, like ceramide, to facilitate treatment of LGL leukemia and CLL. Ceramide is an anti-proliferative sphingolipid metabolite that has been shown to selectively induce cell death in cancer cells. However, the use of ceramide as a chemotherapeutic agent is limited due to hydrophobicity. While it is understood how nanoliposomal ceramide induces cell death in several types of cancers and hematological malignancies, the effect of nanoliposomal ceramide treatment in LGL leukemia and CLL remains unclear. In this study, we investigate the differential mechanisms of cell death induction following nanoliposomal C6-ceramide treatment in both LGL leukemia and CLL. We show that nanoliposomal C6-ceramide displays minimal cytotoxicity in normal donors. peripheral blood mononuclear cells (PBMCs) and is a well-tolerated therapy during in vivo treatment in these leukemia models. To further examine this mechanism of selectivity, we utilize CLL as a cancer model which has an increased dependency on glycolysis. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect," we hypothesize that ceramide nanoliposomes selectively target this activated glycolytic pathway in cancer. We demonstrate that nanoliposomal ceramide inhibits both the RNA and protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an intermediate enzyme in the glycolytic pathway, which is overexpressed in a subset of CLL patients. Taken together, our results suggest that C6-ceramide nanoliposomes preferentially inhibit the enhanced metabolism of glucose in leukemic CLL cells, which results in induction of cell death. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for this leukemia by targeting the Warburg effect. In addition, we conclude that nanoliposomal C6-ceramide could also be an effective therapy for patients with LGL leukemia. Collectively, the results of this dissertation emphasize exploitation of sphingolipids and sphingolipid metabolism in design and development of novel chemotherapeutics.
Disseminated Cryptococcal Disease in a Patient with Chronic Lymphocytic Leukemia on Ibrutinib.
Okamoto, Koh; Proia, Laurie A; Demarais, Patricia L
2016-01-01
Cryptococcus is a unique environmental fungus that can cause disease most often in immunocompromised individuals with defective cell-mediated immunity. Chronic lymphocytic leukemia (CLL) is not known to be a risk factor for cryptococcal disease although cases have been described mainly in patients treated with agents that suppress cell-mediated immunity. Ibrutinib is a new biologic agent used for treatment of CLL, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. It acts by inhibiting Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor critical for B-cell survival and proliferation. Ibrutinib use has not been associated previously with cryptococcal disease. However, recent evidence suggested that treatments aimed at blocking the function of Bruton's tyrosine kinase could pose a higher risk for cryptococcal infection in a mice model. Here, we report the first case of disseminated cryptococcal disease in a patient with CLL treated with ibrutinib. When evaluating possible infection in CLL patients receiving ibrutinib, cryptococcal disease, which could be life threatening if overlooked, could be considered.
Blunt, Matthew D; Koehrer, Stefan; Dobson, Rachel; Larrayoz, Marta; Wilmore, Sarah; Hayman, Alice; Parnell, Jack; Smith, Lindsay; Davies, Andrew; Johnson, Peter W; Conley, Pamela B; Pandey, Anjali; Strefford, Jon C; Stevenson, Freda K; Packham, Graham; Forconi, Francesco; Coffey, Greg; Burger, Jan A; Steele, Andrew J
2017-01-01
Purpose B-cell receptor (BCR)-associated kinase inhibitors such as ibrutinib have revolutionised the treatment of chronic lymphocytic leukemia (CLL). However, these agents are not curative and resistance is already emerging in a proportion of patients. Interleukin-4 (IL-4), expressed in CLL lymph nodes, can augment BCR-signalling and reduce the effectiveness of BCR-kinase inhibitors. Therefore simultaneous targeting of the IL-4- and BCR-signalling pathways by cerdulatinib, a novel dual Syk/JAK inhibitor currently in clinical trials (NCT01994382), may improve treatment responses in patients. Experimental Design PBMCs from CLL patients were treated with cerdulatinib alone or in combination with venetoclax. Cell death, chemokine and cell signalling assay were performed and analysed by flow cytometry, immunoblotting, Q-PCR and ELISA as indicated. Results At concentrations achievable in patients, cerdulatinib inhibited BCR- and IL-4-induced downstream signalling in CLL cells using multiple read-outs and prevented anti-IgM- and nurse-like cell (NLC)-mediated CCL3/CCL4 production. Cerdulatinib induced apoptosis of CLL cells, in a time- and concentration-dependent manner, and particularly in IGHV unmutated samples with greater BCR-signalling capacity and response to IL-4, or samples expressing higher levels of sIgM, CD49d+ or ZAP70+. Cerdulatinib overcame anti-IgM, IL-4/CD40L or NLC-mediated protection by preventing upregulation of MCL-1- and BCL-XL, however BCL-2 expression was unaffected. Furthermore in samples treated with IL-4/CD40L, cerdulatinib synergised with venetoclax in vitro to induce greater apoptosis than either drug alone. Conclusion Cerdulatinib is a promising therapeutic for the treatment of CLL either alone or in combination with venetoclax, with the potential to target critical survival pathways in this currently incurable disease. PMID:27697994
Novel treatments for chronic lymphocytic leukemia and moving forward.
Brown, Jennifer R; Porter, David L; O'Brien, Susan M
2014-01-01
The last several years have seen an explosion of novel therapies for chronic lymphocytic leukemia (CLL). These include the antibody obintutuzumab (GA-101), as well as small-molecule inhibitors of key pathways involved in the pathogenesis of CLL, specifically the B-cell receptor (BCR) pathway (especially Bruton's tyrosine kinase [BTK] and P13K), and the antiapoptotic pathway (especially BCL-2). We will consider each in turn, focusing on the molecules most advanced in clinical development. There has also been extensive development in rewiring the patient's own immune system to treat CLL. This has been done through modifying autologous T cells to express a chimeric antigen receptor (CAR). Thus far all CAR-T preparations have targeted the CD19 antigen. This is a good rational for B-cell malignancies as CD19 expression is limited to B-cell malignancies and normal B cells. The in vivo amplification of the transduced T cells relies on signaling and co-signaling domains and provides significant killing of CLL cells. As exciting as these novel agents and approaches are, they obviously beg the question, will chemotherapy as a treatment for CLL soon be obsolete? Although chemotherapy is associated with known short-term toxicities, it has the advantage of being completed in a short period of time and being relatively inexpensive in comparison to novel therapies. In addition, long-term follow-up of results with chemoimmunotherapy have now identified a group of patients whose remissions are maintained for more than 10 years. An important question that will arise going forward is how to incorporate novel agents without eliminating the long term benefits possible with chemoimmunotherapy in a subset of patients with CLL.
de Rooij, Martin F M; Kuil, Annemieke; Geest, Christian R; Eldering, Eric; Chang, Betty Y; Buggy, Joseph J; Pals, Steven T; Spaargaren, Marcel
2012-03-15
Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.
Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia.
Abreu, Cecilia; Moreno, Pilar; Palacios, Florencia; Borge, Mercedes; Morande, Pablo; Landoni, Ana Inés; Gabus, Raul; Dighiero, Guillermo; Giordano, Mirta; Gamberale, Romina; Oppezzo, Pablo
2013-08-01
Among different prognostic factors in chronic lymphocytic leukemia (CLL), we previously demonstrated that lipoprotein lipase (LPL) is associated with an unmutated immunoglobulin profile and clinical poor outcome. Despite the usefulness of LPL for CLL prognosis, its functional role and the molecular mechanism regulating its expression are still open questions. Interaction of CLL B-cells with the tissue microenvironment favors disease progression by promoting malignant B-cell growth. Since tissue methylation can be altered by environmental factors, we investigated the methylation status of the LPL gene and the possibility that overexpression could be associated with microenvironment signals. Our results show that a demethylated state of the LPL gene is responsible for its anomalous expression in unmutated CLL cases and that this expression is dependent on microenvironment signals. Overall, this work proposes that an epigenetic mechanism, triggered by the microenvironment, regulates LPL expression in CLL disease.
Jindra, P; Žejšková, L; Peková, S; Navrátilová, J; Schutzová, M; Vokurka, S; Koza, V
2012-01-01
Donor cell leukemia (DCL) is a relatively rare but well documented complication of hematopoietic stem cell transplantation. So far, publications described only DCL arising de novo in the recipient. In this study, we describe a case of chronic lymphocytic leukemia (B-CLL) developing in a volunteer unrelated donor from the Czech National Marrow Donors Registry (CNMDR) several years after donation. From archival DNA sample, we have retrospectively found that subclinical CLL clone was already present at the time of donation but early death of recipient prevented eventual development of DCL. This case documents well the long period between detection of B-CLL clone and full development of clinical-laboratory symptomatology. The medical and ethical questions posed by an isolated case of detection of hematological malignancy present either only in the donor or only in the recipient are discussed. The case demonstrates the increasing risk of development of various forms of DCL and thus highlights the need for long-term monitoring of stem cell donor, not only in terms of health of donor but also in terms of potential risks for the recipient.
Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia
Audrito, Valentina; Martinelli, Silvia; Hacken, Elisa ten; Zucchini, Patrizia; Grisendi, Giulia; Potenza, Leonardo; Luppi, Mario; Burger, Jan A.; Deaglio, Silvia; Marasca, Roberto
2016-01-01
In lymphoid organs, nurse-like cells (NLCs) show properties of tumor-associated macrophages, playing a crucial role in chronic lymphocytic leukemia (CLL) cell survival. Ibrutinib, a potent inhibitor of Bruton's tyrosine kinase (BTK), is able to counteract pro-survival signals in CLL cells. Since the effects on CLL cells have been studied in the last years, less is known about the influence of ibrutinib on NLCs properties. We sought to determine how ibrutinib modifies NLCs functions focusing on the balance between immunosuppressive and inflammatory features. Our data show that ibrutinib targets BTK expressed by NLCs modifying their phenotype and function. Treatment with ibrutinib reduces the phagocytic ability and increases the immunosuppressive profile of NLCs exacerbating the expression of M2 markers. Accordingly, ibrutinib hampers LPS-mediated signaling, decreasing STAT1 phosphorylation, while allows IL-4-mediated STAT6 phosphorylation. In addition, NLCs treated with ibrutinib are able to protect CLL cells from drug-induced apoptosis partially through the secretion of IL-10. Results from patient samples obtained prior and after 1 month of treatment with ibrutinib show an accentuation of CD206, CD11b and Tie2 in the monocytic population in the peripheral blood. Our study provides new insights into the immunomodulatory action of ibrutinib on monocyte/macrophage population in CLL. PMID:27602755
Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia.
Fiorcari, Stefania; Maffei, Rossana; Audrito, Valentina; Martinelli, Silvia; Ten Hacken, Elisa; Zucchini, Patrizia; Grisendi, Giulia; Potenza, Leonardo; Luppi, Mario; Burger, Jan A; Deaglio, Silvia; Marasca, Roberto
2016-10-04
In lymphoid organs, nurse-like cells (NLCs) show properties of tumor-associated macrophages, playing a crucial role in chronic lymphocytic leukemia (CLL) cell survival. Ibrutinib, a potent inhibitor of Bruton's tyrosine kinase (BTK), is able to counteract pro-survival signals in CLL cells. Since the effects on CLL cells have been studied in the last years, less is known about the influence of ibrutinib on NLCs properties. We sought to determine how ibrutinib modifies NLCs functions focusing on the balance between immunosuppressive and inflammatory features. Our data show that ibrutinib targets BTK expressed by NLCs modifying their phenotype and function. Treatment with ibrutinib reduces the phagocytic ability and increases the immunosuppressive profile of NLCs exacerbating the expression of M2 markers. Accordingly, ibrutinib hampers LPS-mediated signaling, decreasing STAT1 phosphorylation, while allows IL-4-mediated STAT6 phosphorylation. In addition, NLCs treated with ibrutinib are able to protect CLL cells from drug-induced apoptosis partially through the secretion of IL-10. Results from patient samples obtained prior and after 1 month of treatment with ibrutinib show an accentuation of CD206, CD11b and Tie2 in the monocytic population in the peripheral blood. Our study provides new insights into the immunomodulatory action of ibrutinib on monocyte/macrophage population in CLL.
Amir, Shahzada; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Tsimikas, Sotirios; Binder, Christoph J.; Kipps, Thomas J.; Witztum, Joseph L.
2013-01-01
The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde–acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells. PMID:23840319
Ferrand, Christophe; Garnache-Ottou, Francine; Collonge-Rame, Marie Agnès; Larosa, Fabrice; Blanc, Michel; Behar, Catherine; Giannoli, Catherine; Garnier, Frédérico; Tiberghien, Pierre; Deconinck, Eric; Rohrlich, Pierre Simon
2012-03-01
The current screening for eligibility of unrelated volunteer marrow donors comprises a complete clinical check-up, a blood CBC and serum protein immunoelectrophoresis. This allows to eliminate acute leukemias, myeloproliferative and myelodysplastic disorders, myelomas and MGUS. To date, the risk of transmission of chronic lymphocytic leukemia (CLL) disease is only evaluated by the clinical evaluation and CBC. We report here the case of a CLL-type MBL disease occurring in a 12-year-old boy after unrelated BMT. Deep biological investigations, as Immunophenotyping, cytogenetic and molecular biology allow us to determine the donor origin of the CLL clone. In 2010, 14.2% donor (105/737) for unrelated hematopoietic stem cell transplantation were over 45y. It is currently estimated (USA) that 1 in 210 men and women will be diagnosed with CLL during their lifetime. Given the long asymptomatic phase of CLL, this raises the case for a detection strategy analog to that used for MGUS and myeloma through serum protein electrophoresis. This case-report, to our knowledge, of a CLL-type MBL unrelated donor-to-recipient transmission through BMT raises ethical and practical questions, such as the proper information about disease transmission risk. The cost-effectiveness of a systematic peripheral blood Immunophenotyping in donors elder than 40y at time of stem cell donation should be evaluated. © 2012 John Wiley & Sons A/S.
Parikh, Sameer A; Rabe, Kari G; Call, Timothy G; Zent, Clive S; Habermann, Thomas M; Ding, Wei; Leis, Jose F; Schwager, Susan M; Hanson, Curtis A; Macon, William R; Kay, Neil E; Slager, Susan L; Shanafelt, Tait D
2013-09-01
Nearly all information about patients with chronic lymphocytic leukaemia (CLL) who develop diffuse large B-cell lymphoma [Richter syndrome (RS)] is derived from retrospective case series or patients treated on clinical trials. We used the Mayo Clinic CLL Database to identify patients with newly diagnosed CLL between January 2000 and July 2011. Individuals who developed biopsy-proven RS during follow-up were identified. After a median follow-up of 4 years, 37/1641 (2·3%) CLL patients developed RS. The rate of RS was approximately 0·5%/year. Risk of RS was associated with advanced Rai stage at diagnosis (P < 0·001), high-risk genetic abnormalitites on fluorescence in situ hybridization (P < 0·0001), unmutated IGHV (P = 0·003), and expression of ZAP70 (P = 0·02) and CD38 (P = 0·001). The rate of RS doubled in patients after treatment for CLL (1%/year). Stereotyped B-cell receptors (odds-ratio = 4·2; P = 0·01) but not IGHV4-39 family usage was associated with increased risk of RS. Treatment with combination of purine analogues and alkylating agents increased the risk of RS three-fold (odds-ratio = 3·26, P = 0·0003). Median survival after RS diagnosis was 2·1 years. The RS prognosis score stratified patients into three risk groups with median survivals of 0·5 years, 2·1 years and not reached. Both underlying characteristics of the CLL clone and subsequent CLL therapy influence the risk of RS. Survival after RS remains poor and new therapies are needed. © 2013 John Wiley & Sons Ltd.
Shi, Min; Cipollini, Matthew J; Crowley-Bish, Patricia A; Higgins, Anne W; Yu, Hongbo; Miron, Patricia M
2013-05-01
Detection of cytogenetic abnormalities requires successful culture of the clonal population to obtain metaphase chromosomes for study, and as such, has been hampered by low mitotic indices of mature B cells in culture. Our study presents data on the improved abnormality detection rate with the use of a CpG-oligonucleotide/interleukin 2 (OL/IL-2) culture protocol for mature B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and non-CLL specimens. The increased detection rate of abnormalities, compared with unstimulated culture and traditional pokeweed mitogen culture, was statistically significant for both CLL and non-CLL neoplasms. For CLL specimens, our data also showed that for cytogenetically visible aberrations, OL/IL-2 was as, if not more, sensitive than detection with interphase fluorescence in situ hybridization (iFISH). Use of OL/IL-2 allowed a number of abnormalities to be detected, which were not covered by specific iFISH panels, especially balanced translocations. Therefore, OL/IL-2 stimulation improves diagnostic sensitivity and increases discovery rate of novel prognostic findings.
Hampras, Shalaka S; Locke, Frederick L; Chavez, Julio C; Patel, Nishit S; Giuliano, Anna R; Miller, Kyle; Gheit, Tarik; Tommasino, Massimo; Rollison, Dana E
2018-04-01
The role of cutaneous viral infections in the development of non-melanoma skin cancer (NMSC), including cutaneous squamous cell carcinoma (SCC), among chronic lymphocytic leukemia (CLL) and blood and marrow transplant (BMT) patients is not established. CLL (n = 977) and BMT (n = 3587) patients treated at the Moffitt Cancer Center were included in a retrospective cohort study. Human papillomavirus (HPV) and human polyomavirus (HPyV) DNA were examined in a subset of incident SCC tumors. Five-year cumulative incidence of NMSC was 1.42% in both BMT (n = 31 NMSCs) and CLL (n = 18 NMSCs) cohorts. Of the nine SCC tumors examined from each cohort, 22.2% and 33.3% were positive for viral DNA in the transplant (HPV 65, MCV) and CLL (HPV 38, HPV 15, HPyV6) cohort, respectively. Enhanced skin cancer screening of BMT/CLL patients should be conducted to better capture incident NMSCs and examine the role of viral infections in these tumors.
Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas
2011-01-01
B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810
Pontikoglou, Charalampos; Kastrinaki, Maria-Christina; Klaus, Mirjam; Kalpadakis, Christina; Katonis, Pavlos; Alpantaki, Kalliopi; Pangalis, Gerassimos A; Papadaki, Helen A
2013-05-01
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
Bousmail, Danny; Amrein, Lilian; Fakhoury, Johans J.; Fakih, Hassan H.; Hsu, John C. C.
2017-01-01
We report a spherical nucleic acid (SNA) system for the delivery of BKM120, an anticancer drug for treatment of chronic lymphocytic leukemia (CLL). While promising for cancer treatment, this drug crosses the blood–brain barrier causing significant side-effects in patients. The DNA nanoparticle encapsulates BKM120 in high efficiency, and is unparalleled in its monodispersity, ease of synthesis and stability in different biological media and in serum. These DNA nanostructures demonstrate efficient uptake in human cervical cancer (HeLa) cells, and increased internalization of cargo. In vitro studies show that BKM120-loaded nanoparticles promote apoptosis in primary patient CLL lymphocytes, and act as sensitizers of other antitumor drugs, without causing non-specific inflammation. Evaluation of this drug delivery system in vivo shows long circulation times up to 24 hours, full body distribution, accumulation at tumor sites and minimal leakage through the blood–brain barrier. Our results demonstrate the great potential of these delivery vehicles as a general platform for chemotherapeutic drug delivery. PMID:28989655
Dreger, Peter; Döhner, Hartmut; McClanahan, Fabienne; Busch, Raymonde; Ritgen, Matthias; Greinix, Hildegard; Fink, Anna-Maria; Knauf, Wolfgang; Stadler, Michael; Pfreundschuh, Michael; Dührsen, Ulrich; Brittinger, Günter; Hensel, Manfred; Schetelig, Johannes; Winkler, Dirk; Bühler, Andreas; Kneba, Michael; Schmitz, Norbert; Hallek, Michael; Stilgenbauer, Stephan
2012-05-24
The CLL3 trial was designed to study intensive treatment including autologous stem cell transplantation (autoSCT) as part of first-line therapy in patients with chronic lymphocytic leukemia (CLL). Here, we present the long-term outcome of the trial with particular focus on the impact of genomic risk factors, and we provide a retrospective comparison with patients from the fludarabine-cyclophosphamide-rituximab (FCR) arm of the German CLL Study Group (GCLLSG) CLL8 trial. After a median observation time of 8.7 years (0.3-12.3 years), median progression-free survival (PFS), time to retreatment, and overall survival (OS) of 169 evaluable patients, including 38 patients who did not proceed to autoSCT, was 5.7, 7.3, and 11.3 years, respectively. PFS and OS were significantly reduced in the presence of 17p- and of an unfavorable immunoglobulin heavy variable chain mutational status, but not of 11q-. Five-year nonrelapse mortality was 6.5%. When 110 CLL3 patients were compared with 126 matched patients from the FCR arm of the CLL8 trial, 4-year time to retreatment (75% vs 77%) and OS (86% vs 90%) was similar despite a significant benefit for autoSCT in terms of PFS. In summary, early treatment intensification including autoSCT can provide very effective disease control in poor-risk CLL, although its clinical benefit in the FCR era remains uncertain. The trial has been registered with www.clinicaltrials.gov as NCT00275015.
An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia.
Leong, Steven R; Sukumaran, Siddharth; Hristopoulos, Maria; Totpal, Klara; Stainton, Shannon; Lu, Elizabeth; Wong, Alfred; Tam, Lucinda; Newman, Robert; Vuillemenot, Brian R; Ellerman, Diego; Gu, Chen; Mathieu, Mary; Dennis, Mark S; Nguyen, Allen; Zheng, Bing; Zhang, Crystal; Lee, Genee; Chu, Yu-Waye; Prell, Rodney A; Lin, Kedan; Laing, Steven T; Polson, Andrew G
2017-02-02
Acute myeloid leukemia (AML) is a major unmet medical need. Most patients have poor long-term survival, and treatment has not significantly changed in 40 years. Recently, bispecific antibodies that redirect the cytotoxic activity of effector T cells by binding to CD3, the signaling component of the T-cell receptor, and a tumor target have shown clinical activity. Notably, blinatumomab is approved to treat relapsed/refractory acute lymphoid leukemia. Here we describe the design, discovery, pharmacologic activity, pharmacokinetics, and safety of a CD3 T cell-dependent bispecific (TDB) full-length human IgG1 therapeutic antibody targeting CLL-1 that could potentially be used in humans to treat AML. CLL-1 is prevalent in AML and, unlike other targets such as CD33 and CD123, is not expressed on hematopoietic stem cells providing potential hematopoietic recovery. We selected a high-affinity monkey cross-reactive anti-CLL-1 arm and tested several anti-CD3 arms that varied in affinity, and determined that the high-affinity CD3 arms were up to 100-fold more potent in vitro. However, in mouse models, the efficacy differences were less pronounced, probably because of prolonged exposure to TDB found with lower-affinity CD3 TDBs. In monkeys, assessment of safety and target cell depletion by the high- and low-affinity TDBs revealed that only the low-affinity CD3/CLL1 TDB was well tolerated and able to deplete target cells. Our data suggest that an appropriately engineered CLL-1 TDB could be effective in the treatment of AML. © 2017 by The American Society of Hematology.
Ibrutinib in CLL: a focus on adverse events, resistance, and novel approaches beyond ibrutinib.
Kaur, Varinder; Swami, Arjun
2017-07-01
Bruton's tyrosine kinase (BTK), a mediator in B cell receptor signaling has been successfully exploited as a therapeutic target in treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Ibrutinib is a BTK inhibitor that has shown excellent efficacy in treatment-naïve, heavily pre-treated, and high-risk CLL/SLL. With remarkable efficacy, good oral bioavailability, and modest adverse events profile, ibrutinib use is likely to continue to increase. As data with ibrutinib use in CLL matures, concerns regarding adverse events and drug resistance have emerged. New insights into mechanisms of ibrutinib resistance in CLL have uncovered potential therapeutic targets. Several promising novel agents are currently in early phases of development for overcoming ibrutinib resistance in CLL/SLL. We provide a comprehensive analysis of emerging adverse events profile of ibrutinib, summarize our current understanding of ibrutinib resistance in CLL, and review promising novel therapeutic tools to overcome this challenge.
Defective immunoregulatory T-cell function in chronic lymphocytic leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, T.; Ozer, H.; Henderson, E.S.
Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patientmore » with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the ..mu..delta, ..mu cap alpha.., or ..mu.. phenotype had both helper and suppressor cell defects.« less
Chronic lymphocytic leukemia therapy: new targeted therapies on the way
Vitale, Candida; Burger, Jan A
2016-01-01
Introduction The critical role of the tissue microenvironment and B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) pathogenesis, and the clinical success of targeted agents that disrupt BCR signaling are currently changing the CLL landscape. Three new drugs were recently approved for CLL therapy, and other agents are in late development. Areas covered In this review, we summarize data on promising new targeted drugs for CLL. The heterogeneous mechanisms of actions of these molecules are described, such as the inhibition of BCR signaling, direct targeting of CD20 molecules on the CLL cell surface, and BCL-2 inhibition. We present preclinical and clinical data from phase I to III studies in order to describe efficacy and side effect profile of these new drugs. Data are derived from peer-reviewed articles indexed in PubMed and from abstracts presented at major international meetings. Expert opinion Ibrutinib and idelalisib are challenging the role of chemo-immunotherapy in CLL therapy in the frontline and relapsed disease settings. High-risk CLL patients particularly benefit from these new agents. Venetoclax and obinutuzumab are other effective agents added to our therapeutic armamentarium. Studies to better define the optimal use of these drugs, alone, or rather in combination or sequenced are underway. PMID:26988407
Königs, Sonja Katharina; Pallasch, Christian Philipp; Lindner, Lars Hartwin; Schwamb, Janine; Schulz, Alexandra; Brinker, Reinhild; Claasen, Julia; Veldurthy, Aditya; Eibl, Hansjoerg; Hallek, Michael; Wendtner, Clemens-Martin
2010-08-01
The alkylphosphocholine (APC) erufosine is a synthetic phospholipid analogue with antineoplastic activity. APC are known to interact with lipid metabolism and modulate cellular signaling pathways, particularly the phosphorylation of Akt. Here, in primary CLL cells induction of apoptosis was detected with an IC50 of 22muM whereas healthy donor PBMC were less sensitive towards erufosine. Treatment with erufosine caused dose-dependent cleavage of PARP, co-incubation with caspase inhibitor z-VAD almost completely abrogated the cytotoxic effect of erufosine indicating a caspase-dependent mechanism of erufosine. Erufosine was shown to induce apoptosis in primary CLL cells and merits further investigation regarding therapeutic options in CLL. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells
Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E
2009-01-01
Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143
Agarwal, Mohan B; Bhurani, Dinesh; Shah, Chirag; Sood, Nitin; Singhal, Manish; Kamat, Anil; Chezhian, Subash; Mishra, Suryaprakash; Nagrale, Dinesh
2017-01-01
This named patient program evaluated the safety and efficacy of ibrutinib, a selective inhibitor of Bruton's tyrosine kinase in Indian patients with relapsed/refractory chronic lymphocytic leukemia (CLL, with/without chromosome 17 deletion [del17p]) and mantle cell lymphoma (MCL). The eight enrolled patients (relapsed/refractory CLL: n = 6 [4/6 patients with del17p] and relapsed/refractory MCL: n = 2) had median age of 55 years (range, 52-60) and had received a median of 3 (CLL patients) and 4 (MCL patients) prior therapies. Patients received once-daily dose of ibrutinib (420 mg: CLL, 560 mg: MCL). In CLL patients, the median time to response was 3 months (range, 0.5-7) and five of six patients had partial response (PR) whereas one achieved complete response (CR). Median time on treatment was 11.5 months (range, 8-14); five patients continued treatment and one was recommended stem cell transplantation (SCT). Of the two MCL patients, one achieved PR and one showed CR and advanced to SCT. In CLL patients, the median (range) hemoglobin level improved from 9.8 g/dL (7.2-11) at baseline to 12.0 g/dL (9.5-13.2) and median (range) platelet count improved from 150,000 cells/μL (21,000-195,000) at baseline to 190,350 cells/μL (130,000-394,000) at the time of analysis (July 2016). Most adverse events (AEs) reported were infections ( n = 2). No Grade 3-4 or serious AEs, dose reductions, or treatment discontinuation due to AEs were reported. In this first real-world experience in Indian patients, ibrutinib demonstrated therapeutic efficacy in relapsed/refractory CLL (with/without del17p) and MCL. Safety results were consistent with the current known profile of ibrutinib.
Interphase cytogenetics of B-cell chronic lymphocytic leukemia by FISH-technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddanna, N.; Gogineni, S.K.; Rosenthal, C.J.
Chronic lymphocytic leukemia [CLL] accounts for about 30% of all lymphoproliferative disorders. In over 95% of these cases, the leukemia is caused by B-cells, rarely T-cells. Fifty percent of B-CLL have chromosomal aberrations and of such cases, one-third have trisomy 12. Malignant B-cells have a very low mitotic index and those metaphases that can be analyzed usually represent the normal T-cell population. Retrospectively, we decided to identify the additional chromosome 12 (trisomy 12) directly at interphase by the FISH-technique using centrometric 12 specific alphoid probe (Oncor, Gaithersburg, MD). Preparations were made from 9 patients with B-CLL. All cultures except onemore » failed to produce metaphases for conventional karyotyping. Eighty percent of the cells have two dots (normal cells) over the interphase nuclei while the remaining 20% have three dots (trisomy 12). The clinical implication of trisomy 12 in the pathogenesis of CLL including age, staging and duration of disease, differentials and immunological markers are correlated with interphase cytogenetic data. The loss and/or gain of specific chromosomes in human neoplasia is common and rapid evaluation of such cases should be considered as a routine approach.« less
Catera, Rosa; Hatzi, Katerina; Yan, Xiao-Jie; Zhang, Lu; Wang, Xiao Bo; Fales, Henry M.; Allen, Steven L.; Kolitz, Jonathan E.; Rai, Kanti R.; Chiorazzi, Nicholas
2008-01-01
Leukemic B lymphocytes of a large group of unrelated chronic lymphocytic leukemia (CLL) patients express an unmutated heavy chain immunoglobulin variable (V) region encoded by IGHV1-69, IGHD3-16, and IGHJ3 with nearly identical heavy and light chain complementarity-determining region 3 sequences. The likelihood that these patients developed CLL clones with identical antibody V regions randomly is highly improbable and suggests selection by a common antigen. Monoclonal antibodies (mAbs) from this stereotypic subset strongly bind cytoplasmic structures in HEp-2 cells. Therefore, HEp-2 cell extracts were immunoprecipitated with recombinant stereotypic subset-specific CLL mAbs, revealing a major protein band at approximately 225 kDa that was identified by mass spectrometry as nonmuscle myosin heavy chain IIA (MYHIIA). Reactivity of the stereotypic mAbs with MYHIIA was confirmed by Western blot and immunofluorescence colocalization with anti-MYHIIA antibody. Treatments that alter MYHIIA amounts and cytoplasmic localization resulted in a corresponding change in binding to these mAbs. The appearance of MYHIIA on the surface of cells undergoing stress or apoptosis suggests that CLL mAb may generally bind molecules exposed as a consequence of these events. Binding of CLL mAb to MYHIIA could promote the development, survival, and expansion of these leukemic cells. PMID:18812466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldstein, E.A.; Cao, E.H.; Miller, M.E.
Extracts of peripheral lymphocytes from six individuals with chronic lymphocytic leukemia (CLL) were assayed for the ability to remove O/sup 6/-methylguanine (O/sup 6/MeGua) from exogenous DNA. The O/sup 6/MeGua-removing activity in CLL lymphocytes, predominantly B cells, was approximately 7-fold higher than in B lymphocytes of normal individuals and about 2-fold higher than in the unstimulated T type cells of normal persons. The activity measured in extracts of lymphocytes from three blood relatives was in the upper range of the normal distribution. Over 80% of the removal of O/sup 6/MeGua was accomplished by the transfer of the methyl group to cysteinemore » moieties of acceptor proteins in a stoichiometric reaction. If one assumes one acceptor group per acceptor protein, the calculated number of acceptor molecules per CLL lymphocyte falls between 91,000 and 220,000. Thus CLL lymphocytes do not show lower O/sup 6/MeGua-removing activity, in contrast to many tumor cell strains or transformed cell lines, which are reported to have a deficient methyl excision repair phenotype (Mer/sup -/). Instead, the CLL lymphocytes act as if they have a super-Mer/sup +/ phenotype.« less
Choi, Michael Y; Widhopf, George F; Ghia, Emanuela M; Kidwell, Reilly L; Hasan, Md Kamrul; Yu, Jian; Rassenti, Laura Z; Chen, Liguang; Chen, Yun; Pittman, Emily; Pu, Minya; Messer, Karen; Prussak, Charles E; Castro, Januario E; Jamieson, Catriona; Kipps, Thomas J
2018-06-01
Cirmtuzumab is a humanized monoclonal antibody (mAb) that targets ROR1, an oncoembryonic orphan receptor for Wnt5a found on cancer stem cells (CSCs). Aberrant expression of ROR1 is seen in many malignancies and has been linked to Rho-GTPase activation and cancer stem cell self-renewal. For patients with chronic lymphocytic leukemia (CLL), self-renewing, neoplastic B cells express ROR1 in 95% of cases. High-level leukemia cell expression of ROR1 is associated with an unfavorable prognosis. We conducted a phase 1 study involving 26 patients with progressive, relapsed, or refractory CLL. Patients received four biweekly infusions, with doses ranging from 0.015 to 20 mg/kg. Cirmtuzumab had a long plasma half-life and did not have dose-limiting toxicity. Inhibition of ROR1 signaling was observed, including decreased activation of RhoA and HS1. Transcriptome analyses showed that therapy inhibited CLL stemness gene expression signatures in vivo. Cirmtuzumab is safe and effective at inhibiting tumor cell ROR1 signaling in patients with CLL. Copyright © 2018. Published by Elsevier Inc.
Nückel, H; Frey, U H; Dürig, J; Dührsen, U; Siffert, W
2004-11-01
Methylenetetrahydrofolate reductase (MTHFR) regulates the metabolism of folate and methionine, essential components of DNA synthesis and methylation. We investigated whether the two genetic MTHFR polymorphisms (677C>T and 1298A>C) are associated with an increased risk for chronic lymphocytic leukemia (CLL) or may predict disease progression. Moreover, we measured potential genotype effects on apoptosis of B-CLL cells.Allele frequencies and genotype distributions for both polymorphisms were not significantly different in 111 patients vs 92 healthy controls. While progression-free survival (PFS) was not significantly different in individuals with CLL including all stages, in patients with Binet stage A PFS was significantly longer in patients displaying the MTHFR 677CC (P=0.043) and the MTHFR 1298A/C or CC genotypes (P=0.019). In a multivariate analysis, MTHFR haplotype (677CC plus 1298CC or A/C) was the best independent prognostic factor for PFS compared with other known prognostic factors. Spontaneous apoptosis of B-CLL cells in vitro was significantly increased in the favorable risk group with MTHFR 677CC and MTHFR 1298AC, which may constitute the cellular basis of the observed associations. While MTHFR polymorphisms do not affect the risk for B-CLL, they may be independent prognostic markers that influence the PFS in patients with early-stage B-CLL.
Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A
2017-02-15
The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4 + and CD8 + T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. Copyright © 2017 by The American Association of Immunologists, Inc.
Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O’Brien, Susan; Keating, Michael J.; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G.; Burger, Jan A.
2017-01-01
The BTK inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of the malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology we characterized the diversity of TCRβ chains in peripheral blood T cells from 15 CLL patients before and after one year of ibrutinib therapy. We noted elevated CD4+ and CD8+ T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After one year of ibrutinib therapy, elevated PB T cell numbers and T-cell related cytokine levels had normalized and T cell repertoire diversity significantly increased. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones significantly increased during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. PMID:28077600
Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia
Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Fabris, Sonia; Neri, Antonino; Fabbi, Marina; Quintana, Giovanni; Quarta, Giovanni; Ghiotto, Fabio; Fais, Franco; Ferrarini, Manlio
2011-01-01
The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These “stereotyped” BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone. PMID:21541442
Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice.
Haney, Staci L; Upchurch, Garland M; Opavska, Jana; Klinkebiel, David; Appiah, Adams Kusi; Smith, Lynette M; Heavican, Tayla B; Iqbal, Javeed; Joshi, Shantaram; Opavsky, Rene
2016-09-28
Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EμSRα-tTA;Teto-Cre;Dnmt3a fl/fl ; Rosa26LOXP EGFP/EGFP (Dnmt3a Δ/Δ ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3a Δ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.
Zaher, Murhaf; Tang, Ruoping; Bombarda, Isabelle; Merhi, Faten; Bauvois, Brigitte; Billard, Christian
2012-01-01
We previously reported that hyperforin, a phloroglucinol purified from Hypericum perforatum, induces the mitochondrial pathway of caspase-dependent apoptosis in chronic lymphocytic leukemia (CLL) cells ex vivo, and that this effect is associated with upregulation of Noxa, a BH3-only protein of the Bcl-2 family. Here, we investigated the role of this upregulation in the pro-apoptotic activity of hyperforin in the cells of CLL patients and MEC-1 cell line. We found that the increase in Noxa expression is a time- and concentration-dependent effect of hyperforin occurring without change in Noxa mRNA levels. A post-translational regulation is suggested by the capacity of hyperforin to inhibit proteasome activity in CLL cells. Noxa silencing by siRNA reduces partially hyperforin-elicited apoptosis. Furthermore, treatment with hyperforin, which has no effect on the expression of the prosurvival protein Mcl-1, induces the interaction of Noxa with Mcl-1 and the dissociation of Mcl-1/Bak complex, revealing that upregulated Noxa displaces the proapoptotic protein Bak from Mcl-1. This effect is accompanied with Bak activation, known to allow the release of apoptogenic factors from mitochondria. Our data indicate that Noxa upregulation is one of the mechanisms by which hyperforin triggers CLL cell apoptosis. They also favor that new agents capable of mimicking specifically the BH3-only protein Noxa should be developed for apoptosis-based therapeutic strategy in CLL.
Fumi, M; Martins, D; Pancione, Y; Sale, S; Rocco, V
2014-12-01
B-chronic lymphocytic leukemia CLL, a neoplastic clonal disorder with monomorphous small B lymphocytes with scanty cytoplasm and clumped chromatin, can be morphologically differentiated in typical and atypical forms with different prognosis: Smudge cells (Gumprecht's shadows) are one of the well-known features of the typical CLL and are much less inconsistent in other different types CLPD. Abbott Cell-Dyn Sapphire uses the fluorescence after staining with the DNA fluorochrome propidium iodide for the measurement of nucleated red blood cells (NRBCs) and nonviable cells (FL3+ cell fraction): We have studied the possible correlation between presence and number of morphologically identifiable smudge cells on smears and the percentage of nonviable cells produced by Cell-Dyn Sapphire. 305 blood samples from 224 patients with B-cell lymphoproliferative disorders and 40 healthy blood donors were analyzed by CBC performed by Cell-Dyn Sapphire, peripheral blood smear, and immunophenotype characterization. FL3+ fraction in CLPD directly correlated with the percentage of smudge cells and is significantly increased in patients with typical B-CLL. This phenomenon is much less evident in patients with atypical/mixed B-CLL and B-NHL. In small laboratories without FCM and cytogenetic, smudge cells%, can be utilized as a preliminary diagnostic and prognostic tool in differential diagnosis of CLPD. © 2014 John Wiley & Sons Ltd.
Decker, Thomas; Sandherr, Michael; Goetze, Katharina; Oelsner, Madlen; Ringshausen, Ingo; Peschel, Christian
2009-03-01
Although B-cell chronic lymphocytic leukemia (CLL) is treatable, it remains an incurable disease and most patients inevitably suffer relapse. Many therapeutic options exist for those requiring therapy, including monoclonal antibodies and stem cell transplantation, but remissions tend to last shorter in the course of the disease. Targeting the cell cycle has recently been realized to be an attractive therapeutic approach in solid and hematological malignancies, and the proliferative nature of B-CLL is increasingly accepted. Here, we report data on a phase II pilot trial with the oral mammalian target of rapamycin (mTOR) inhibitor RAD001 5 mg/daily in patients with advanced B-CLL who had progressive disease after at least two lines of treatment. After treatment of seven patients, this trial was stopped because of toxicity concerns, although some degree of activity was observed (one partial remission, three patients with stable disease). Interestingly, cyclin E expression decreased in responding patients. Further strategies of mTOR inhibition by RAD001 in B-CLL should focus on different treatment schedules, adequate anti-infectious prophylaxis, or combinations with cytotoxic drugs.
Lenalidomide in the treatment of chronic lymphocytic leukemia.
Gentile, Massimo; Recchia, Anna Grazia; Vigna, Ernesto; Mazzone, Carla; Lucia, Eugenio; Gigliotti, Vincenzo; Bossio, Sabrina; Madeo, Antonio; Morabito, Lucio; Servillo, Pasquale; Franzese, Stefania; Caruso, Nadia; De Stefano, Laura; Bisconte, Maria Grazia; Gentile, Carlo; Morabito, Fortunato
2011-02-01
insights into the role of the tumor microenvironment and of immune dysfunction in chronic lymphocytic leukemia (CLL) have opened the way for further augmenting the therapeutic armamentarium for CLL patients. In this respect, lenalidomide represents an exciting drug since it is able to eliminate CLL cells without immunosuppression. mechanism of action and clinical trials of lenalidomide in CLL, and suggestions for its future utilization are reviewed. The most relevant papers and the meeting abstracts published up to July 2010 were used as sources for this review. This review will help readers understand the mechanism of action of lenalidomide and will provide a comprehensive summary regarding efficacy and safety of this drug in CLL patients. lenalidomide shows good activity against CLL. However, the toxicity profile is significant and can result in serious and potentially life-threatening side effects. Definitive data from ongoing trials will aid better definition of its status in CLL therapy. Moreover, clarification of the exact mechanism(s) of action in CLL will allow more precise use of lenalidomide and design of more efficacious combination therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segel, G.B.; Lichtman, M.A.
Human blood T-lymphocytes increase their potassium (K/sup +/) permeability and active K/sup +/ transport following lectin or antigen stimulation. We have studied the permeability and active transport of K/sup +/ by lymphocytes in chronic lymphocytic leukemia (CLL) to determine if their membrane K/sup +/ transport was similar to resting or lectin-stimulated normal blood lymphocytes. K/sup +/ transport was assessed both by the rate of isotopic /sup 42/K/sup +/ uptake and by the rate of change in cell K/sup +/ concentration after inhibition of the K/sup +/ transport system with ouabain. CLL lymphocytes had a marked decrease in membrane K/sup +/more » permeability and active transport of K/sup +/ when compared to blood T lymphocytes. K/sup +/ transport in five subjects with CLL (10 mmol . 1 cell water/sup -1/ . h/sup -1/) was half that in normal blood T-lymphocytes (20 mmol . 1 cell water/sup -1/ h/sup -1/). Phytohemagglutinin (PHA) treatment of CLL lymphocytes did not increase significantly their active K/sup +/ transport, whereas K/sup +/ transport by normal T-lymphocytes increased by 100%. Since there were 73% T-lymphocytes in normal blood and 14% in CLL blood, the difference in membrane K/sup +/ turnover could be related either to neoplasia or to the proposed B-lymphocyte origin of CLL. We studied human tonsillar lymphocytes which contained a mean of 34% T-cells. In five studies of tonsils, K/sup +/ transport was 14 mmol . 1 cell water/sup -1/ . h/sup -1/ and treatment with PHA increased K/sup +/ transport only 30%. The intermediate values for basal K/sup +/ transport and K/sup +/ transport in response to PHA in tonsillar lymphocytes were consistent with the proportion of T-lymphocytes present. These data sugges t that B-lymphocytes have reduced membrane permeability and active transport of K/sup +/. Thus the marked decrease in CLL lymphocyte membrane K/sup +/ permeability and transport may be a reflection of its presumed B-cell origin, rather than a membrane alteration related to malignant transformation.« less
Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek
2017-05-23
B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.
Link, C S; Teipel, R; Heidenreich, F; Rücker-Braun, E; Schmiedgen, M; Reinhardt, J; Oelschlägel, U; von Bonin, M; Middeke, J M; Muetherig, A; Trautmann-Grill, K; Platzbecker, U; Bornhäuser, M; Schetelig, J
2016-06-01
Ibrutinib, a recently approved inhibitor of Bruton's tyrosine kinase (BTK), has shown great efficacy in patients with high-risk CLL. Nevertheless, there are few data regarding its use in patients who relapsed after allogeneic stem cell transplantation (alloSCT). We report clinical data from five CLL patients treated with ibrutinib for relapse after first or even second allogeneic transplantation. Additionally, we performed analyses on cytokine levels and direct measuring of CD4 Th1 and CD4 Th2 cells to evaluate possible clinically relevant immunomodulatory effects of ibrutinib. All patients achieved partial responses including one minimal residual disease (MRD)-negative remission. Within 1 year of follow-up, no relapse was observed. One patient died of severe pneumonia while on ibrutinib treatment. Beside this, no unexpected adverse events were observed. Flow cytometry and analyses of T cell-mediated cytokine levels (IL10 and TNFα) did not reveal substantial changes in T-cell distribution in favor of a CD4 Th1 T-cell shift in our patients. No acute exacerbation of GvHD was reported. In conclusion, these results support further evaluation of ibrutinib in CLL patients relapsing after alloSCT.
Mraz, Marek; Chen, Liguang; Rassenti, Laura Z.; Ghia, Emanuela M.; Li, Hongying; Jepsen, Kristen; Smith, Erin N.; Messer, Karen; Frazer, Kelly A.; Kipps, Thomas J.
2014-01-01
We examined the microRNAs (miRNAs) expressed in chronic lymphocytic leukemia (CLL) and identified miR-150 as the most abundant, but with leukemia cell expression levels that varied among patients. CLL cells that expressed ζ-chain–associated protein of 70 kDa (ZAP-70) or that used unmutated immunoglobulin heavy chain variable (IGHV) genes, each had a median expression level of miR-150 that was significantly lower than that of ZAP-70–negative CLL cells or those that used mutated IGHV genes. In samples stratified for expression of miR-150, CLL cells with low-level miR-150 expressed relatively higher levels of forkhead box P1 (FOXP1) and GRB2-associated binding protein 1 (GAB1), genes with 3′ untranslated regions having evolutionary-conserved binding sites for miR-150. High-level expression of miR-150 could repress expression of these genes, which encode proteins that enhance B-cell receptor signaling, a putative CLL-growth/survival signal. Also, high-level expression of miR-150 was a significant independent predictor of longer treatment-free survival or overall survival, whereas an inverse association was observed for high-level expression of GAB1 or FOXP1 for overall survival. This study demonstrates that expression of miR-150 can influence the relative expression of GAB1 and FOXP1 and the signaling potential of the B-cell receptor, thereby possibly accounting for the noted association of expression of miR-150 and disease outcome. PMID:24787006
Mraz, Marek; Chen, Liguang; Rassenti, Laura Z; Ghia, Emanuela M; Li, Hongying; Jepsen, Kristen; Smith, Erin N; Messer, Karen; Frazer, Kelly A; Kipps, Thomas J
2014-07-03
We examined the microRNAs (miRNAs) expressed in chronic lymphocytic leukemia (CLL) and identified miR-150 as the most abundant, but with leukemia cell expression levels that varied among patients. CLL cells that expressed ζ-chain-associated protein of 70 kDa (ZAP-70) or that used unmutated immunoglobulin heavy chain variable (IGHV) genes, each had a median expression level of miR-150 that was significantly lower than that of ZAP-70-negative CLL cells or those that used mutated IGHV genes. In samples stratified for expression of miR-150, CLL cells with low-level miR-150 expressed relatively higher levels of forkhead box P1 (FOXP1) and GRB2-associated binding protein 1 (GAB1), genes with 3' untranslated regions having evolutionary-conserved binding sites for miR-150. High-level expression of miR-150 could repress expression of these genes, which encode proteins that enhance B-cell receptor signaling, a putative CLL-growth/survival signal. Also, high-level expression of miR-150 was a significant independent predictor of longer treatment-free survival or overall survival, whereas an inverse association was observed for high-level expression of GAB1 or FOXP1 for overall survival. This study demonstrates that expression of miR-150 can influence the relative expression of GAB1 and FOXP1 and the signaling potential of the B-cell receptor, thereby possibly accounting for the noted association of expression of miR-150 and disease outcome. © 2014 by The American Society of Hematology.
Liptrot, Stuart; O' Brien, David; Langabeer, Stephen E; Quinn, Fiona; Mackarel, A Jill; Elder, Patrick; Vandenberghe, Elisabeth; Hayden, Patrick J
2013-12-01
Hairy cell leukaemia (HCL) and chronic lymphocytic leukaemia (CLL) are distinct clinicopathological B cell chronic lymphoproliferative disorders (B-CLPD). Both diseases have characteristic immunophenotypic and molecular features. The co-existence of two B-CLPD is perhaps more common than previously thought but a composite HCL and CLL has been rarely documented. A case is reported in which the morphology, integrated with an extensive immunophenotyping panel, and incorporation of the recently described HCL-associated BRAF V600E mutation, enabled the prompt diagnosis of composite HCL and CLL thus allowing appropriate treatment selection. This case serves to highlight the benefit of a multidisciplinary approach to the diagnosis of bi-clonal B-CLPD.
Yuan, Chaohui; Chu, Charles C; Yan, Xiao-Jie; Bagnara, Davide; Chiorazzi, Nicholas; MacCarthy, Thomas
2017-01-01
The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients ("IGHV unmutated", or U-CLL) is associated with a poorer prognosis compared to "IGHV mutated" (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into "stereotyped" subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases.
Yuan, Chaohui; Chu, Charles C.; Yan, Xiao-Jie; Bagnara, Davide; Chiorazzi, Nicholas
2017-01-01
The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots. Human Ig heavy chain (IGHV) genes differ in terms of WGCW numbers, ranging from 4 for IGHV3-48*03 to as many as 12 in IGHV1-69*01. An absence of V-region mutations in CLL patients (“IGHV unmutated”, or U-CLL) is associated with a poorer prognosis compared to “IGHV mutated” (M-CLL) patients. The reasons for this difference are still unclear, but it has been noted that particular IGHV genes associate with U-CLL vs M-CLL. For example, patients with IGHV1-69 clones tend to be U-CLL with a poor prognosis, whereas patients with IGHV3-30 tend to be M-CLL and have a better prognosis. Another distinctive feature of CLL is that ~30% of (mostly poor prognosis) patients can be classified into “stereotyped” subsets, each defined by HCDR3 similarity, suggesting selection, possibly for a self-antigen. We analyzed >1000 IGHV genes from CLL patients and found a highly significant statistical relationship between the number of WGCW hotspots in the germline V-region and the observed mutation frequency in patients. However, paradoxically, this correlation was inverse, with V-regions with more WGCW hotspots being less likely to be mutated, i.e., more likely to be U-CLL. The number of WGCW hotspots in particular, are more strongly correlated with mutation frequency than either non-overlapping (WRC) hotspots or more general models of mutability derived from somatic hypermutation data. Furthermore, this correlation is not observed in sequences from the B cell repertoires of normal individuals and those with autoimmune diseases. PMID:28125682
High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia
Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio
2009-01-01
Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307
Dreger, Peter; Michallet, Mauricette; Bosman, Paul; Dietrich, Sascha; Sobh, Mohamad; Boumendil, Ariane; Nagler, Arnon; Scheid, Christof; Cornelissen, Jan; Niederwieser, Dietger; Müller, Lutz; Vandenberghe, Elizabeth; Scortechini, Ilaria; Schoemans, Helene; Andersen, Niels S; Finke, Jürgen; Russo, Domenico; Ljungman, Per; Passweg, Jakob; van Gelder, Michel; Durakovic, Nadira; Labussiere-Wallet, Helene; Berg, Tobias; Wulf, Gerald; Bethge, Wolfgang; Bunjes, Donald; Stilgenbauer, Stefan; Canepari, Maria Elisa; Schaap, Michel; Fox, Christopher P; Kröger, Nicolaus; Montoto, Silvia; Schetelig, Johannes
2018-05-04
The aim of this retrospective study was to investigate the safety and efficacy of allogeneic hematopoietic cell transplantation (alloHCT) in patients pre-treated with ibrutinib. Eligible were patients aged >18 years allotransplanted for chronic lymphocytic leukemia (CLL) or mantle cell lymphoma (MCL) after prior exposure to ibrutinib who were registered with the EBMT registry. Seventy patients (CLL 48, MCL 22) were included. At the time of alloHCT, 73% of the patients were ibrutinib responsive. All patients except one engrafted, and acute GVHD grade 2-4 (3-4) was observed in 49% (12%) of 68 evaluable patients. The cumulative incidence of chronic GVHD was 54% 1 year after transplant. In the CLL group, 12-month non-relapse mortality, relapse incidence (RI), progression-free survival (PFS), and overall survival (OS) were 10, 30, 60, and 72%, respectively, and in the MCL group 5, 19, 76, and 86%, respectively. Pre-transplant ibrutinib failure and poor performance status predicted inferior RI, PFS and OS in the CLL group. In conclusion, ibrutinib does not affect the safety of a subsequent alloHCT. While the relatively high post-transplant relapse risk in ibrutinib-exposed patients with CLL deserves further study, in patients with MCL consolidating disease responses to ibrutinib with alloHCT seems to be a promising option.
Herriott, Ashleigh; Tudhope, Susan J.; Junge, Gesa; Rodrigues, Natalie; Patterson, Miranda J.; Woodhouse, Laura; Lunec, John; Hunter, Jill E.; Mulligan, Evan A.; Cole, Michael; Allinson, Lisa M.; Wallis, Jonathan P.; Marshall, Scott; Wang, Evelyn; Curtin, Nicola J.; Willmore, Elaine
2015-01-01
In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors. We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 – 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 – 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2′-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function. PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib. PMID:26539646
Brewer, Jerry D; Shanafelt, Tait D; Khezri, Farzaneh; Sosa Seda, Ivette M; Zubair, Adeel S; Baum, Christian L; Arpey, Christopher J; Cerhan, James R; Call, Timothy G; Roenigk, Randall K; Smith, Carin Y; Weaver, Amy L; Otley, Clark C
2015-02-01
Cutaneous malignancy is associated with worse outcomes in patients with chronic lymphocytic leukemia (CLL). We sought to identify the incidence and recurrence rate of nonmelanoma skin cancer (NMSC) in patients with non-Hodgkin lymphoma (NHL). NMSC incidence was calculated and Cox proportional hazards models were used to evaluate associations with risk of recurrence for patients with NHL between 1976 and 2005 who were in the Rochester Epidemiology Project research infrastructure. We identified 282 patients with CLL or small lymphocytic lymphoma and 435 with non-CLL NHL. The incidence of basal cell carcinoma and squamous cell carcinoma was 1829.3 (95% confidence interval [CI] 1306.7-2491.1) and 2224.9 (95% CI 1645.9-2941.6), respectively, in patients with CLL. The cumulative recurrence rate at 8 years after treatment with Mohs micrographic surgery was 8.3% (95% CI 0.0%-22.7%) for basal cell carcinoma and 13.4% (95% CI 0.0%-25.5%) for squamous cell carcinoma in patients with CLL. This was a retrospective cohort study. After Mohs micrographic surgery and standard excision of NMSC, patients with NHL had a skin cancer recurrence rate that was higher than expected. Careful treatment and monitoring of patients with NHL and NMSC are warranted. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E M; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E; Farooqui, Mohammed Z; Notkins, Abner L; Wiestner, Adrian; Aue, Georg
2015-11-05
Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330.
Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E. M.; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E.; Farooqui, Mohammed Z.; Notkins, Abner L.; Aue, Georg
2015-01-01
Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330. PMID:26337493
Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia
Minici, Claudia; Gounari, Maria; Übelhart, Rudolf; Scarfò, Lydia; Dühren-von Minden, Marcus; Schneider, Dunja; Tasdogan, Alpaslan; Alkhatib, Alabbas; Agathangelidis, Andreas; Ntoufa, Stavroula; Chiorazzi, Nicholas; Jumaa, Hassan; Stamatopoulos, Kostas; Ghia, Paolo; Degano, Massimo
2017-01-01
Cell-autonomous B-cell receptor (BcR)-mediated signalling is a hallmark feature of the neoplastic B lymphocytes in chronic lymphocytic leukaemia (CLL). Here we elucidate the structural basis of autonomous activation of CLL B cells, showing that BcR immunoglobulins initiate intracellular signalling through homotypic interactions between epitopes that are specific for each subgroup of patients with homogeneous clinicobiological profiles. The molecular details of the BcR–BcR interactions apparently dictate the clinical course of disease, with stronger affinities and longer half-lives in indolent cases, and weaker, short-lived contacts mediating the aggressive ones. The diversity of homotypic BcR contacts leading to cell-autonomous signalling reconciles the existence of a shared pathogenic mechanism with the biological and clinical heterogeneity of CLL and offers opportunities for innovative treatment strategies. PMID:28598442
Buddula, Aravind; Assad, Daniel
2011-01-01
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults and is associated with increased risk of malignancy. T-cell lymphoma associated with CLL has never been reported. The case report presents a unique case of peripheral T-cell lymphoma on the gingiva of a patient with CLL. A 66-year-old man with a history of CLL was referred to the Mayo Clinic, Department of Dental Specialties, for evaluation of swelling in the upper left posterior sextant. An intraoral examination revealed a soft tissue swelling in the area of teeth number 13 and 15, including the present edentulous ridge between number 13 and 15. An incisional biopsy was performed on the palatal aspect of tooth No. 15 and submitted for histologic evaluation. The histopathology revealed proliferation of large atypical cells beneath the epithelium, positive for antigens CD2, CD3, Beta-F1, TIA-1, and Granzyme B consistent for a diagnosis of a peripheral T-cell lymphoma. A team approach including the hematologist, general dentist and periodontist resulted in timely referrals leading to an early diagnosis and early intervention and treatment.
Sarkar, Mohosin; Liu, Yun; Qi, Junpeng; Peng, Haiyong; Morimoto, Jumpei; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas
2016-04-01
Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2015-10-01
including antigens preferentially expressed by breast cancer stem cells. We will identify both MHC-I- and MHC-II- restricted antigens driving both CD8...even two of them were exclusively targeted by T cells in chronic lymphocytic leukemia ( CLL ) patients (3). This analysis demonstrated both that...lymphocytic leukemia ( CLL ) 7 positive CLLs (23%) 3 Table 1. Immunogenic peptides that have been eluted from the cell surface of breast carcinoma cells
Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Sutton, Lesley-Ann; Minga, Eva; Agathangelidis, Andreas; Nichelatti, Michele; Tsanousa, Athina; Scarfò, Lydia; Davis, Zadie; Yan, Xiao-Jie; Shanafelt, Tait; Plevova, Karla; Sandberg, Yorick; Vojdeman, Fie Juhl; Boudjogra, Myriam; Tzenou, Tatiana; Chatzouli, Maria; Chu, Charles C; Veronese, Silvio; Gardiner, Anne; Mansouri, Larry; Smedby, Karin E; Pedersen, Lone Bredo; van Lom, Kirsten; Giudicelli, Véronique; Francova, Hana Skuhrova; Nguyen-Khac, Florence; Panagiotidis, Panagiotis; Juliusson, Gunnar; Angelis, Lefteris; Anagnostopoulos, Achilles; Lefranc, Marie-Paule; Facco, Monica; Trentin, Livio; Catherwood, Mark; Montillo, Marco; Geisler, Christian H; Langerak, Anton W; Pospisilova, Sarka; Chiorazzi, Nicholas; Oscier, David; Jelinek, Diane F; Darzentas, Nikos; Belessi, Chrysoula; Davi, Frederic; Rosenquist, Richard; Ghia, Paolo; Stamatopoulos, Kostas
2014-11-01
About 30% of cases of chronic lymphocytic leukaemia (CLL) carry quasi-identical B-cell receptor immunoglobulins and can be assigned to distinct stereotyped subsets. Although preliminary evidence suggests that B-cell receptor immunoglobulin stereotypy is relevant from a clinical viewpoint, this aspect has never been explored in a systematic manner or in a cohort of adequate size that would enable clinical conclusions to be drawn. For this retrospective, multicentre study, we analysed 8593 patients with CLL for whom immunogenetic data were available. These patients were followed up in 15 academic institutions throughout Europe (in Czech Republic, Denmark, France, Greece, Italy, Netherlands, Sweden, and the UK) and the USA, and data were collected between June 1, 2012, and June 7, 2013. We retrospectively assessed the clinical implications of CLL B-cell receptor immunoglobulin stereotypy, with a particular focus on 14 major stereotyped subsets comprising cases expressing unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain variable genes. The primary outcome of our analysis was time to first treatment, defined as the time between diagnosis and date of first treatment. 2878 patients were assigned to a stereotyped subset, of which 1122 patients belonged to one of 14 major subsets. Stereotyped subsets showed significant differences in terms of age, sex, disease burden at diagnosis, CD38 expression, and cytogenetic aberrations of prognostic significance. Patients within a specific subset generally followed the same clinical course, whereas patients in different stereotyped subsets-despite having the same immunoglobulin heavy variable gene and displaying similar immunoglobulin mutational status-showed substantially different times to first treatment. By integrating B-cell receptor immunoglobulin stereotypy (for subsets 1, 2, and 4) into the well established Döhner cytogenetic prognostic model, we showed these, which collectively account for around 7% of all cases of CLL and represent both U-CLL and M-CLL, constituted separate clinical entities, ranging from very indolent (subset 4) to aggressive disease (subsets 1 and 2). The molecular classification of chronic lymphocytic leukaemia based on B-cell receptor immunoglobulin stereotypy improves the Döhner hierarchical model and refines prognostication beyond immunoglobulin mutational status, with potential implications for clinical decision making, especially within prospective clinical trials. European Union; General Secretariat for Research and Technology of Greece; AIRC; Italian Ministry of Health; AIRC Regional Project with Fondazione CARIPARO and CARIVERONA; Regione Veneto on Chronic Lymphocytic Leukemia; Nordic Cancer Union; Swedish Cancer Society; Swedish Research Council; and National Cancer Institute (NIH). Copyright © 2014 Elsevier Ltd. All rights reserved.
Prieto, Daniel; Sotelo, Natalia; Seija, Noé; Sernbo, Sandra; Abreu, Cecilia; Durán, Rosario; Gil, Magdalena; Sicco, Estefanía; Irigoin, Victoria; Oliver, Carolina; Landoni, Ana Inés; Gabus, Raúl; Dighiero, Guillermo; Oppezzo, Pablo
2017-08-10
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL. © 2017 by The American Society of Hematology.
Schwaenen, Carsten; Nessling, Michelle; Wessendorf, Swen; Salvi, Tatjana; Wrobel, Gunnar; Radlwimmer, Bernhard; Kestler, Hans A.; Haslinger, Christian; Stilgenbauer, Stephan; Döhner, Hartmut; Bentz, Martin; Lichter, Peter
2004-01-01
B cell chronic lymphocytic leukemia (B-CLL) is characterized by a highly variable clinical course. Recurrent chromosomal imbalances provide significant prognostic markers. Risk-adapted therapy based on genomic alterations has become an option that is currently being tested in clinical trials. To supply a robust tool for such large scale studies, we developed a comprehensive DNA microarray dedicated to the automated analysis of recurrent genomic imbalances in B-CLL by array-based comparative genomic hybridization (matrix–CGH). Validation of this chip in a series of 106 B-CLL cases revealed a high specificity and sensitivity that fulfils the criteria for application in clinical oncology. This chip is immediately applicable within clinical B-CLL treatment trials that evaluate whether B-CLL cases with distinct chromosomal abnormalities should be treated with chemotherapy of different intensities and/or stem cell transplantation. Through the control set of DNA fragments equally distributed over the genome, recurrent genomic imbalances were discovered: trisomy of chromosome 19 and gain of the MYCN oncogene correlating with an elevation of MYCN mRNA expression. PMID:14730057
Jovanovic, Danijela; Djurdjevic, Predrag; Andjelkovic, Nebojsa; Zivic, Ljubica
2014-01-01
Flow cytometry has an important role in diagnosis and classification of B-cell lymphoproliferative disorders (BCLPDs). However, in distinguishing chronic lymphocytic leukemia (CLL) from small lymphocytic lymphoma (SLL) only clinical criteria are available so far. Aim of the study was to determine differences in the expression of common B cell markers (CD22, CD79b and CD20) on the malignant lymphocytes in the peripheral blood samples of CLL and SLL patients. Peripheral blood samples of 56 CLL and 11 SLL patients were analyzed by 5-color flow cytometry on the CD45/CD19/CD5 gate for CD22, CD79b and CD20. In the samples collected from the CLL patients, CD22 expression was detected in only 20% of patients in the low pattern, while in SLL patients the expression was medium and present in 90.9% of patients (p < 0.0001). For CD79b expression, statistical significance is reached both in the expression pattern, which was low/medium for CLL and high for SLL, and expression level (p = 0.006). The expression of CD20 was counted as the CD20/CD19 ratio. The average ratio was 0.512 in the CLL patients vs. 0.931 in the SLL patients (p = 0.0001). The pattern of expression and expression level of CD22, CD79b and CD20 in peripheral blood could be used for distinguishing SLL from CLL patients.
Schetelig, Johannes; van Biezen, Anja; Brand, Ronald; Caballero, Dolores; Martino, Rodrigo; Itala, Maija; García-Marco, José A; Volin, Liisa; Schmitz, Norbert; Schwerdtfeger, Rainer; Ganser, Arnold; Onida, Francesco; Mohr, Brigitte; Stilgenbauer, Stephan; Bornhäuser, Martin; de Witte, Theo; Dreger, Peter
2008-11-01
Patients with chronic lymphocytic leukemia (CLL) and 17p deletion (17p-) have a poor prognosis. Although allogeneic hematopoietic stem-cell transplantation (HCT) has the potential to cure patients with advanced CLL, it is not known whether this holds true for patients with 17p-CLL. Baseline data from patients, for whom information on the presence of 17p-CLL was available, were downloaded from the European Group for Blood and Marrow Transplantation database. Additional information on the course of CLL and follow-up was collected with a questionnaire. A total of 44 patients with 17p-CLL received allogeneic HCT between March 1995 and July 2006 from a matched sibling (n = 24) or an alternative donor (n = 20). 17p-CLL had been diagnosed by fluorescent in situ hybridization in 82% of patients and by conventional banding in 18% of patients. The median age was 54 years. Before HCT, a median of three lines of chemotherapy had been administered. At HCT, 53% of patients were in remission. Reduced-intensity conditioning was applied in 89% of patients. Acute, grade 2 to 4 graft-versus-host disease (GVHD) occurred in 43% of patients, and extensive chronic GVHD occurred in 53% of patients. At last follow-up, 19 patients were alive, with a median observation time of 39 months (range, 18 to 101 months). Three-year overall survival and progression-free survival rates were 44% and 37%, respectively. The cumulative incidence of progressive disease at 4 years was 34%. No late relapse occurred in nine patients with a follow-up longer than 4 years. Allogeneic HCT has the potential to induce long-term disease-free survival in patients with 17p-CLL.
Spaner, David E; Hammond, Caitlin; Mena, Jenny; Foden, Cindy; Deabreu, Andrea
2005-07-01
Based on their activity in patients with advanced stage chronic lymphocytic leukemia (CLL), a phase I/II study was designed to evaluate the feasibility, safety, and efficacy of autologous vaccines made from oxidized tumor cells in patients with earlier stage CLL, and to determine an optimal schedule of injections. Eighteen patients (at risk for disease progression and with white blood cell counts between 15 and 100 x 10(6) cells/ml) were injected intramuscularly with 10 ml of oxidized autologous blood (composed mainly of CLL cells) either 12 times over 6 weeks (group 1), 12 times over 16 days (group 2), or 4 times over 6 weeks (group 3). Fourteen out of eighteen patients had Rai stage 0-II disease, while 4/18 had stage III-IV disease but did not require conventional treatment. Partial clinical responses, associated with enhanced anti-tumor T cell activity in vitro, were observed in 5/18 patients of whom three were in group 2. Stable disease was observed in six patients while disease progression appeared not to be affected in the remaining patients. Toxicity was minimal. Vaccination with oxidized autologous tumor cells appears worthy of further investigation and may be a potential alternative to a "watch and wait" strategy for selected CLL patients.
Manzoni, Delphine; Catallo, Régine; Chebel, Amel; Baseggio, Lucile; Michallet, Anne-Sophie; Roualdes, Olivier; Magaud, Jean-Pierre; Salles, Gilles; Ffrench, Martine
2016-08-01
New B-cell receptor-targeted therapies such as ibrutinib, a Bruton tyrosine kinase inhibitor, are now proposed for lymphoid pathologies. The putative benefits of its combination with glucocorticoids were evaluated here. We compared the effects of dexamethasone (DXM), ibrutinib and their in vitro combination on proliferation and metabolic stress markers in stimulated normal B-lymphocytes and in malignant lymphocytes from chronic lymphocytic leukemia (CLL) patients. In both cellular models, cell cycle progression was globally inhibited by DXM and/or ibrutinib. This inhibition was significantly amplified by DXM addition to ibrutinib and was related to a significant decrease in the expression of the cell cycle regulatory proteins CDK4 and cyclin E. Apoptosis increased especially with DXM/ibrutinib combination and was associated with a significant decrease in Mcl-1 expression. Treatment effects on metabolic stress were evaluated by DNA damage recognition after 53BP1 foci labeling. The percentage of cells with more than five 53BP1 foci decreased significantly with ibrutinib in normal and CLL lymphocytes. This decrease was strongly reinforced, in CLL, by DXM addition. Our data indicated that, in vitro, DXM potentiated antiproliferative effects of ibrutinib and decreased DNA damage in lymphoid B-cells. Thus their combination may be proposed for CLL treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
FDA Expands Approval of Venetoclax for CLL
FDA expanded the approval of venetoclax (Venclexta) for people with chronic lymphocytic leukemia (CLL) to include those whose cancer has progressed after previous treatment, regardless of whether their cancer cells have the deletion 17p gene alteration.
Chronic Lymphocytic Leukemia Treatment (PDQ®)—Health Professional Version
Chronic lymphocytic leukemia (CLL) treatment options can include observation, steroids, chemotherapy, targeted therapy, and/or stem cell transplant. Get detailed information about newly diagnosed and recurrent CLL and available treatment modalities in this summary for clinicians.
Salvage therapy for CLL and the role of stem cell transplantation.
Gribben, John G
2005-01-01
Chronic lymphocytic leukaemia (CLL) remains an incurable disease and, notwithstanding the excellent remission rates now achieved with purine analogs and monoclonal antibodies, the vast majority of patients with CLL are destined to relapse after primary treatment. The management of relapsed CLL patients is then dependent upon a number of factors, most importantly age, performance status, previous therapy administered, the response and duration of response to such therapy, and time from last therapy. Although prior therapy and response to such therapy are important factors in determining next therapy, it is often difficult to determine their importance from published studies. Furthermore, the goal of therapy, whether palliative or aggressive, must also be weighed into the decision when deciding on the next line of treatment. With many potential treatments available, the sequence of treatments and the timing of procedures such as stem cell transplantation remain controversial and are the focus of ongoing clinical trials.
Targeting BTK through microRNA in chronic lymphocytic leukemia
Bottoni, Arianna; Rizzotto, Lara; Lai, Tzung-Huei; Liu, Chaomei; Smith, Lisa L.; Mantel, Rose; Reiff, Sean; El-Gamal, Dalia; Larkin, Karilyn; Johnson, Amy J.; Lapalombella, Rosa; Lehman, Amy; Plunkett, William; Byrd, John C.; Blachly, James S.; Woyach, Jennifer A.
2016-01-01
Bruton’s tyrosine kinase (BTK) is a critical mediator of survival in B-cell neoplasms. Although BTK inhibitors have transformed therapy in chronic lymphocytic leukemia (CLL), patients with high-risk genetics are at risk for relapse and have a poor prognosis. Identification of novel therapeutic strategies for this group of patients is an urgent unmet clinical need, and therapies that target BTK via alternative mechanisms may fill this niche. Herein, we identify a set of microRNAs (miRs) that target BTK in primary CLL cells and show that the histone deacetylase (HDAC) repressor complex is recruited to these miR promoters to silence their expression. Targeting the HDACs by using either RNA interference against HDAC1 in CLL or a small molecule inhibitor (HDACi) in CLL and mantle cell lymphoma restored the expression of the BTK-targeting miRs with loss of BTK protein and downstream signaling and consequent cell death. We have also made the novel and clinically relevant discovery that inhibition of HDAC induces the BTK-targeting miRs in ibrutinib-sensitive and resistant CLL to effectively reduce both wild-type and C481S-mutant BTK. This finding identifies a novel strategy that may be promising as a therapeutic modality to eliminate the C481S-mutant BTK clone that drives resistance to ibrutinib and provides the rationale for a combination strategy that includes ibrutinib to dually target BTK to suppress its prosurvival signaling. PMID:27756747
Targeting BTK through microRNA in chronic lymphocytic leukemia.
Bottoni, Arianna; Rizzotto, Lara; Lai, Tzung-Huei; Liu, Chaomei; Smith, Lisa L; Mantel, Rose; Reiff, Sean; El-Gamal, Dalia; Larkin, Karilyn; Johnson, Amy J; Lapalombella, Rosa; Lehman, Amy; Plunkett, William; Byrd, John C; Blachly, James S; Woyach, Jennifer A; Sampath, Deepa
2016-12-29
Bruton's tyrosine kinase (BTK) is a critical mediator of survival in B-cell neoplasms. Although BTK inhibitors have transformed therapy in chronic lymphocytic leukemia (CLL), patients with high-risk genetics are at risk for relapse and have a poor prognosis. Identification of novel therapeutic strategies for this group of patients is an urgent unmet clinical need, and therapies that target BTK via alternative mechanisms may fill this niche. Herein, we identify a set of microRNAs (miRs) that target BTK in primary CLL cells and show that the histone deacetylase (HDAC) repressor complex is recruited to these miR promoters to silence their expression. Targeting the HDACs by using either RNA interference against HDAC1 in CLL or a small molecule inhibitor (HDACi) in CLL and mantle cell lymphoma restored the expression of the BTK-targeting miRs with loss of BTK protein and downstream signaling and consequent cell death. We have also made the novel and clinically relevant discovery that inhibition of HDAC induces the BTK-targeting miRs in ibrutinib-sensitive and resistant CLL to effectively reduce both wild-type and C481S-mutant BTK. This finding identifies a novel strategy that may be promising as a therapeutic modality to eliminate the C481S-mutant BTK clone that drives resistance to ibrutinib and provides the rationale for a combination strategy that includes ibrutinib to dually target BTK to suppress its prosurvival signaling. © 2016 by The American Society of Hematology.
Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation.
Palacios, F; Abreu, C; Prieto, D; Morande, P; Ruiz, S; Fernández-Calero, T; Naya, H; Libisch, G; Robello, C; Landoni, A I; Gabus, R; Dighiero, G; Oppezzo, P
2015-01-01
Chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal B cells arrested in G0/G1 stages that coexist, in different proportions, with proliferative B cells. Understanding the crosstalk between the proliferative subsets and their milieu could provide clues on CLL biology. We previously identified one of these subpopulations in the peripheral blood from unmutated patients that appears to be a hallmark of a progressive disease. Aiming to characterize the molecular mechanism underlying this proliferative behavior, we performed gene expression analysis comparing the global mRNA and microRNA expression of this leukemic subpopulation, and compared it with their quiescent counterparts. Our results suggest that proliferation of this fraction depend on microRNA-22 overexpression that induces phosphatase and tensin homolog downregulation and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. Transfection experiments demonstrated that miR-22 overexpression in CLL B cells switches on PI3K/AKT, leading to downregulation of p27(-Kip1) and overexpression of Survivin and Ki-67 proteins. We also demonstrated that this pathway could be triggered by microenvironment signals like CD40 ligand/interleukin-4 and, more importantly, that this regulatory loop is also present in lymph nodes from progressive unmutated patients. Altogether, these results underline the key role of PI3K/AKT pathway in the generation of the CLL proliferative pool and provide additional rationale for the usage of PI3K inhibitors.
Darwish, Noureldien H E; Sudha, Thangirala; Godugu, Kavitha; Elbaz, Osama; Abdelghaffar, Hasan A; Hassan, Emad E A; Mousa, Shaker A
2016-09-06
Acute myeloid leukemia (AML) patients show high relapse rates and some develop conventional chemotherapy resistance. Leukemia Stem Cells (LSCs) are the main player for AML relapses and drug resistance. LSCs might rely on the B-cell-specific Moloney murine leukemia virus integration site-1 (BMI-1) in promoting cellular proliferation and survival. Growth of LSCs in microenvironments that are deprived of nutrients leads to up-regulation of the signaling pathways during the progression of the disease, which may illustrate the sensitivity of LSCs to inhibitors of those signaling pathways as compared to normal cells. We analyzed the expression of LSC markers (CD34, CLL-1, TIM-3 and BMI-1) using quantitative RT-PCR in bone marrow samples of 40 AML patients of different FAB types (M1, M2, M3, M4, M5, and M7). We also studied the expression of these markers in 2 AML cell lines (Kasumi-1 and KG-1a) using flow cytometry and quantitative RT-PCR. The overexpression of TIM-3, CLL-1, and BMI-1 was markedly correlated with poor prognosis in these patients. Our in vitro findings demonstrate that targeting BMI-1, which markedly increased in the leukemic cells, was associated with marked decrease in leukemic burden. This study also presents results for blocking LSCs' surface markers CD44, CLL-1, and TIM-3. These markers may play an important role in elimination of AML. Our study indicates a correlation between the expression of markers TIM-3, CLL-1, and especially of BMI-1 and the aggressiveness of AML and thus the potential impact of prognosis and therapies that target LSCs on improving the cure rates.
Guarini, Anna; Chiaretti, Sabina; Tavolaro, Simona; Maggio, Roberta; Peragine, Nadia; Citarella, Franca; Ricciardi, Maria Rosaria; Santangelo, Simona; Marinelli, Marilisa; De Propris, Maria Stefania; Messina, Monica; Mauro, Francesca Romana; Del Giudice, Ilaria; Foà, Robert
2008-08-01
Chronic lymphocytic leukemia (CLL) patients exhibit a variable clinical course. To investigate the association between clinicobiologic features and responsiveness of CLL cells to anti-IgM stimulation, we evaluated gene expression changes and modifications in cell-cycle distribution, proliferation, and apoptosis of IgV(H) mutated (M) and unmutated (UM) samples upon BCR cross-linking. Unsupervised analysis highlighted a different response profile to BCR stimulation between UM and M samples. Supervised analysis identified several genes modulated exclusively in the UM cases upon BCR cross-linking. Functional gene groups, including signal transduction, transcription, cell-cycle regulation, and cytoskeleton organization, were up-regulated upon stimulation in UM cases. Cell-cycle and proliferation analyses confirmed that IgM cross-linking induced a significant progression into the G(1) phase and a moderate increase of proliferative activity exclusively in UM patients. Moreover, we observed only a small reduction in the percentage of subG(0/1) cells, without changes in apoptosis, in UM cases; contrariwise, a significant increase of apoptotic levels was observed in stimulated cells from M cases. These results document that a differential genotypic and functional response to BCR ligation between IgV(H) M and UM cases is operational in CLL, indicating that response to antigenic stimulation plays a pivotal role in disease progression.
A Case of Early Ocular Manifestation of Maculopathy in a 37 year Old Male Patient of CLL.
Mehdi, Syed Riaz; Tandon, Nishi; Khan, Sufia Ahmad; Ahmad, Sharique
2014-09-01
B cell chronic lymphocytic leukemia (CLL) also called chronic lymphocytic leukemia is a disease of elderly, but in rare cases it can occur in young adults. Majority of patients present with no specific symptoms, and CLL is suspected on the basis of high total and relative lymphocyte counts, discovered on routine blood examination. This patient was referred from medicine outpatient in our institute, Era's Lucknow Medical College & Hospital for routine complete blood count. His total leukocyte count came out to be alarmingly high. The general blood picture and bone marrow examinations were consistent with CLL. On immunophenotyping CD5 and CD23 were positive. His cervical lymph nodes biopsy was reported as a case of CLL/small lymphocytic lymphoma. On his complaint of hazy vision his funduscopy revealed maculopathy. This makes our case a unique and rare one, as maculopathy in a young patient of CLL has not yet been reported from India.
Koutroumpakis, Efstratios; Lobe, Montgomery; McCarthy, Lezah; Mehdi, Syed
Hypercalcemia due to malignancy is well described in the literature and a common paraneoplastic finding in certain solid tumors. Hematologic malignancies, however, are less frequently associated with hypercalcemia with the exception of myelomas and T-cell lymphomas. This case report describes a patient with B-cell chronic lymphocytic leukemia (B-CLL) who developed symptomatic hypercalcemia. None of the pathogenetic mechanisms of malignancy-associated hypercalcemia already described in the literature could explain the pathogenesis of hypercalcemia in our patient. Calcium levels were normalized after initial treatment and remained within normal limits following treatment of the underlying B-CLL. The follow-up period was 26 months. The normalization of calcium levels was closely associated with the drop in the absolute lymphocyte count. Symptomatic hypercalcemia in B-CLL is exceedingly rare and only documented a few times in the literature. Hypercalcemia, in the present case, was not caused by any of the mechanisms already described in the literature and responded well to treatment of the underlying B-CLL. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Expression of CD43 in chronic lymphoproliferative leukemias.
Sorigue, Marc; Juncà, Jordi; Sarrate, Edurne; Grau, Javier
2018-01-01
CD43 has been used on histological samples for the differential diagnosis of lymphoproliferative disorders but there is scarce data on its use by flow cytometry (FC). We set out to characterize the expression of CD43 by FC in B-cell lymphoproliferative disorders and to determine its possible role in the differential diagnosis of these malignancies. We analyzed the expression of CD43 in clonal B-cell lymphoproliferative disorders with exclusive peripheral blood and/or bone marrow involvement based on their Moreau chronic lymphocytic leukemia (CLL) score with particular emphasis on Moreau CLL score 3 (MS3) cases, which often present a diagnostic challenge. The cohort included 433 CLL (score 4-5), 34 MS3 and 166 lymphoproliferative disorders with lower scores. Generally, the higher the Moreau CLL score, the higher CD43-positivity (425/443 [96%] for CLL, 23/34 [67%] for MS3 and 18/166 [11%] for cases with lower scores). MS3 cases constituted 5.4% of all cases and were more frequently CD5, CD200, CD43-positive and had del(q13) than score 0-2 cases. Among MS3 cases, del(13q) cases were predominantly CD43-positive (12/13). The frequency of CD43-positivity increases sharply with the Moreau score. MS3 cases seem to include both CLL and non-CLL lymphoproliferative disorders and CD43 could aid in the differential diagnosis between the two. However, studies analyzing the correlation between CD43 expression and the underlying biologic changes of these cases are warranted. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
Dicker, Frank; Schnittger, Susanne; Haferlach, Torsten; Kern, Wolfgang; Schoch, Claudia
2006-11-01
Compared with fluorescence in situ hybridization (FISH), conventional metaphase cytogenetics play only a minor prognostic role in chronic lymphocytic leukemia (CLL) so far, due to technical problems resulting from limited proliferation of CLL cells in vitro. Here, we present a simple method for in vitro stimulation of CLL cells that overcomes this limitation. In our unselected patient population, 125 of 132 cases could be successfully stimulated for metaphase generation by culture with the immunostimulatory CpG-oligonucleotide DSP30 plus interleukin 2. Of 125 cases, 101 showed chromosomal aberrations. The aberration rate is comparable to the rate detected by parallel interphase FISH. In 47 patients, conventional cytogenetics detected additional aberrations not detected by FISH analysis. A complex aberrant karyotype, defined as one having at least 3 aberrations, was detected in 30 of 125 patients, compared with only one such case as defined by FISH. Conventional cytogenetics frequently detected balanced and unbalanced translocations. A significant correlation of the poor-prognosis unmutated IgV(H) status with unbalanced translocations and of the likewise poor-prognosis CD38 expression to balanced translocations and complex aberrant karyotype was found. We demonstrate that FISH analysis underestimates the complexity of chromosomal aberrations in CLL. Therefore, conventional cytogenetics may define subgroups of patients with high risk of progression.
Machaczka, Maciej; Johansson, Jan-Erik; Remberger, Mats; Hallböök, Helene; Lazarevic, Vladimir Lj; Wahlin, Björn Engelbrekt; Omar, Hamdy; Wahlin, Anders; Juliusson, Gunnar; Kimby, Eva; Hägglund, Hans
2013-12-01
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a potentially curative treatment option for eligible patients with chronic lymphocytic leukemia (CLL). However, it is known that cure of CLL is only possible if a graft-versus-leukemia effect is present. Between 1994 and 2007, 48 adults underwent allo-SCT for poor-risk CLL in Sweden. Of these, ten (21%) patients aged 24-53 years (median: 46 years) received myeloablative conditioning (MAC), based on TBI and cyclophosphamide. All MAC patients had refractory, poorly controlled CLL before allo-SCT (partial remission in 9/10 patients and progressive disease in one). The cumulative incidence of acute graft-versus-host disease (GVHD) grades II-IV was 30%. Nine patients developed chronic GVHD; extensive in four. Rates of nonrelapse mortality at 1, 3 and 10 years were 0, 10 and 20%, respectively. Two patients relapsed 36 and 53 months after transplantation. Six patients were still alive after a median follow-up time of 11.5 years (range 5.9-13.7). The probabilities of relapse-free and overall survival from 1, 3 and 5 years after transplantation were 100, 90 and 70%, and 100, 90 and 80%, respectively. Nevertheless, our analysis of long-term outcome after MAC allo-SCT for CLL suggests that younger patients with poorly controlled CLL may benefit from MAC allo-SCT.
Gamonet, Clémentine; Bole-Richard, Elodie; Delherme, Aurélia; Aubin, François; Toussirot, Eric; Garnache-Ottou, Francine; Godet, Yann; Ysebaert, Loïc; Tournilhac, Olivier; Caroline, Dartigeas; Larosa, Fabrice; Deconinck, Eric; Saas, Philippe; Borg, Christophe; Deschamps, Marina; Ferrand, Christophe
2015-01-01
CD20 is a B cell lineage-specific marker expressed by normal and leukemic B cells and targeted by several antibody immunotherapies. We have previously shown that the protein from a CD20 mRNA splice variant (D393-CD20) is expressed at various levels in leukemic B cells or lymphoma B cells but not in resting, sorted B cells from the peripheral blood of healthy donors. Western blot (WB) analysis of B malignancy primary samples showed additional CD20 signals. Deep molecular PCR analysis revealed four new sequences corresponding to in-frame CD20 splice variants (D657-CD20, D618-CD20, D480-CD20, and D177-CD20) matching the length of WB signals. We demonstrated that the cell spliceosome machinery can process ex vivo D480-, D657-, and D618-CD20 transcript variants by involving canonical sites associated with cryptic splice sites. Results of specific and quantitative RT-PCR assays showed that these CD20 splice variants are differentially expressed in B malignancies. Moreover, Epstein-Barr virus (EBV) transformation modified the CD20 splicing profile and mainly increased the D393-CD20 variant transcripts. Finally, investigation of three cohorts of chronic lymphocytic leukemia (CLL) patients showed that the total CD20 splice variant expression was higher in a stage B and C sample collection compared to routinely collected CLL samples or relapsed refractory stage A, B, or C CLL. The involvement of these newly discovered alternative CD20 transcript variants in EBV transformation makes them interesting molecular indicators, as does their association with oncogenesis rather than non-oncogenic B cell diseases, differential expression in B cell malignancies, and correlation with CLL stage and some predictive CLL markers. This potential should be investigated in further studies.
Mechanistic insights into the antileukemic activity of hyperforin.
Billard, C; Merhi, F; Bauvois, B
2013-01-01
Hyperforin is a prenylated phloroglucinol present in the medicinal plant St John's wort (Hypericum perforatum). The compound has many biological properties, including antidepressant, anti-inflammatory, antibacterial and antitumor activities. This review focuses on the in vitro antileukemic effects of purified hyperforin and related mechanisms in chronic lymphoid leukemia (CLL) and acute myeloid leukemia (AML) - conditions that are known for their resistance to chemotherapy. Hyperforin induces apoptosis in both CLL and AML cells. In AML cell lines and primary AML cells, hyperforin directly inhibits the kinase activity of the serine/threonine protein kinase B/AKT1, leading to activation of the pro-apoptotic Bcl-2 family protein Bad through its non-phosphorylation by AKT1. In primary CLL cells, hyperforin acts by stimulating the expression of the pro-apoptotic Bcl-2 family member Noxa (possibly through the inhibition of proteasome activity). Other hyperforin targets include matrix metalloproteinase-2 in AML cells and vascular endothelial growth factor and matrix metalloproteinase-9 in CLL cells - two mediators of cell migration and angiogenesis. In summary, hyperforin targets molecules involved in signaling pathways that control leukemic cell proliferation, survival, apoptosis, migration and angiogenesis. Hyperforin also downregulates the expression of P-glycoprotein, a protein that is involved in the resistance of leukemia cells to chemotherapeutic agents. Lastly, native hyperforin and its stable derivatives show interesting in vivo properties in animal models. In view of their low toxicity, hyperforin and its derivatives are promising antileukemic agents and deserve further investigation in vivo.
Rafiq, Sarwish; Siadak, Anthony; Butchar, Jonathan P.; Cheney, Carolyn; Lozanski, Gerard; Jacob, Naduparambil K.; Lapalombella, Rosa; McGourty, Jackie; Moledor, Meghan; Lowe, Richard; Setter, Ben; Jones, Jeffrey; Flynn, Joseph M.; Andritsos, Leslie; Devine, Steven; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Algate, Paul; Byrd, John C.; Muthusamy, Natarajan
2013-01-01
TRU-016 is a SMIPTM (monospecific protein therapeutic) molecule against the tetraspanin transmembrane family protein CD37 that is currently in Phase 2 trials in Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkin Lymphoma (NHL). In an attempt to enhance the ADCC function of SMIP-016, the chimeric version of TRU-016, SMIP-016GV was engineered with a modification in a glycosylation site in the Fc domain. The wild-type and glycovariant SMIP proteins mediate comparable Type I antibody-like direct cytotoxicity in the presence of anti-human Fc crosslinker and show a similar tyrosine phosphorylation pattern post-treatment. However, NK cells stimulated with the SMIP-016GV exhibit enhanced activation and release 3-fold more interferon-γ compared with SMIP-016. SMIP-016GV shows enhanced ADCC function against cells expressing CD37 with NK cell effectors derived from both normal and CLL-affected individuals. Enhanced ADCC is observed against CLL cells and is sustained at concentrations of SMIP-016GV as low at 5E−6 µg/mL on cells expressing minimal CD37 antigen. In support of the biological relevance of this, SMIP-016GV mediates effective ADCC against primary acute lymphoblastic leukemia (ALL) cells with low surface expression of CD37. Collectively, these data suggest potential use of the novel therapeutic agent SMIP-016GV with enhanced effector function for B cell malignancies, including CLL and ALL therapy. PMID:23883821
Dreger, Peter; Schetelig, Johannes; Andersen, Niels; Corradini, Paolo; van Gelder, Michel; Gribben, John; Kimby, Eva; Michallet, Mauricette; Moreno, Carol; Stilgenbauer, Stephan; Montserrat, Emili
2014-12-18
Allogeneic hematopoietic stem cell transplantation (HSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (HR-CLL; ie, refractory to purine analogs, short response [<24 months] to chemoimmunotherapy, and/or presence of del[17p]/TP53 mutations). Currently, treatment algorithms for HR-CLL are being challenged by the introduction of novel classes of drugs. Among them, BCR signal inhibitors (BCRi) and B-cell lymphoma 2 antagonists (BCL2a) appear particularly promising. As a result of the growing body of favorable outcome data reported for BCRi/BCL2a, uncertainty is emerging on how to advise patients with HR-CLL about indication for and timing of HSCT. This article provides an overview of currently available evidence and theoretical considerations to guide this difficult decision process. Until the risks and benefits of different treatment strategies are settled, all patients with HR-CLL should be considered for treatment with BCRi/BCL2a. For patients who respond to these agents, there are 2 treatment possibilities: (1) performing an HSCT or (2) continuing treatment with the novel drug. Individual disease-specific and transplant-related risk factors, along with patient's preferences, should be taken into account when recommending one of these treatments over the other. © 2014 by The American Society of Hematology.
Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase
Davids, Matthew S; Brown, Jennifer R
2015-01-01
Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton’s tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton’s tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin’s lymphoma, such as diffuse large B-cell lymphoma and Waldenström’s macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies. PMID:24941982
Ibrutinib: a first in class covalent inhibitor of Bruton's tyrosine kinase.
Davids, Matthew S; Brown, Jennifer R
2014-05-01
Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton's tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and Waldenström's macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies.
Clanahan, Fabienne Mc; Dreger, Peter
2011-06-05
Despite substantial advancement in the understanding and treatment of chronic lymphocytic leukemia (CLL), a standard curative approach does not exist. The choice of treatment is generally based on the existence of biological and genetic factors associated with the prediction of prognosis, individual response to therapy, and duration of remission. About 20% of patients that require treatment have an aggressive disease course and die within a few years, despite early initiation of intensive therapy (poor-risk CLL). Poor-risk CLL can be predicted by the presence of genomic markers, and the quality and duration of response to purine-analogue-based treatment. Within this patient subgroup alternative treatment approaches such as alemtuzumab or new substances such as flavopiridol or IMiDs® should be considered. To date, the only treatment bearing curative potential is allogeneic stem cell transplantation; in contrast to conventional immunochemotherapy, it can provide long-term disease control, even in patients with del 17p or other unfavorable biological and clinical risk factors. The aim of this review was to outline the current strategies for the diagnosis and management of CLL, with a focus on high-risk CLL.
CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells.
Deaglio, Silvia; Capobianco, Andrea; Bergui, Luciana; Dürig, Jan; Morabito, Fortunato; Dührsen, Ulrich; Malavasi, Fabio
2003-09-15
The prognosis for patients with B-cell chronic lymphocytic leukemia (B-CLL) is generally less favorable for those expressing CD38. Our working hypothesis is that CD38 is not merely a marker in B-CLL, but that it plays a receptor role with pathogenetic potential ruling the proliferation of the malignant clone. CD38 levels were generally low in the patients examined and monoclonal antibody (mAb) ligation was inefficient in signaling. Other cellular models indicated that molecular density and surface organization are critical for CD38 functionality. Interleukin 2 (IL-2) induced a marked up-modulation and surface rearrangement of CD38 in all the patients studied. On reaching a specific expression threshold, CD38 becomes an efficient receptor in purified B-CLL cells. Indeed, mAb ligation is followed by Ca2+ fluxes and by a markedly increased proliferation. The unsuitability of CD38 to perform as a receptor is obviated through close interaction with the B-cell-receptor (BCR) complex and CD19. On mAb binding, CD38 translocates to the membrane lipid microdomains, as shown by a colocalization with the GM1 ganglioside and with CD81, a raft-resident protein. Finally, CD38 signaling in IL-2-treated B-CLL cells prolonged survival and induced the appearance of plasmablasts, providing a pathogenetic hypothesis for the occurrence of Richter syndrome.
[Ibrutinib: A new drug of B-cell malignancies].
Thieblemont, Catherine
2015-06-01
Ibrutinib (Imbruvica®) is a first-in-class, orally administered once-daily, that inhibits B-cell antigen receptor signaling downstream of Bruton's tyrosine kinase (BTK). Ibrutinib has been approved in USA in February 2014 and in France in October 2014 for the treatment of patients with relapsed/refractory mantle cell lymphoma (MCL) or chronic lymphocytic leukaemia (CLL) and for the treatment of patients with CLL and a chromosome 17 deletion (del 17p) or TP53 mutation. In clinical studies, ibrutinib induced an impressive overall response rate (68%) in patients with relapsed/refractory MCL (phase II study). In CLL, ibrutinib has shown to significantly improve progression-free survival, response rate and overall survival in patients with relapsed/refractory CLL, including in those with del 17p. Ibrutinib had an acceptable tolerability profile. Less than 10% of patients discontinued their treatment because of adverse events. Results are pending in other B-cell lymphomas subtypes such as in diffuse large B-cell lymphoma and in follicular lymphoma. An approval extension has already been enregistered for Waldenström disease in USA in January 2015. Given its efficacy and tolerability, ibrutinib is an emerging treatment option for patients with B-cell malignancies. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.
Evans, H L; Polski, J M; Deshpande, V; Dunphy, C H
2000-11-01
Lymphoplasmacytic lymphoma (LPL) and small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL)are distinct clinicopathologic entities. Although some cases of SLL/CLL may show plasmacytic differentiation and be associated with monoclonal immunoglobulin in serum, such cases appear to be very rare, and if plasma cell differentiation were marked, differentiation of SLL/CLL from LPL could be difficult. We report a rare case of true CD5-positive small lymphocytic lymphoma/chronic lymphocytic leukemia with unequivocal plasmacytic differentiation. This case also showed an abnormality of chromosome 1p36 not previously described in small lymphocytic lymphoma/chronic lymphocytic leukemia.
Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.
Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J
2013-09-01
Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.
Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian; Gadeberg, Ole V; Frank, David A; Petersen, Jørgen; Jurlander, Jesper; Pedersen, Mikkel W
2013-10-01
The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single mAbs and combinations of two mAbs against non-overlapping epitopes on human CD5. The results demonstrated that combinations of two mAbs significantly increased the level of CDC compared to the single mAbs, while no enhancement of ADCC was seen with anti-CD5 mAb combinations. High levels of CDC and ADCC correlated with low levels of Ab-induced CD5 internalization and degradation. Importantly, an anti-CD5 mAb combination enhanced CDC of CLL cells when combined with the anti-CD20 mAbs rituximab and ofatumumab as well as with the anti-CD52 mAb alemtuzumab. These results suggest that an anti-CD5 mAb combination inducing CDC and ADCC may be effective alone, in combination with mAbs against other targets or combined with chemotherapy for CLL and other CD5-expressing haematological or lymphoid malignancies. © 2013 John Wiley & Sons Ltd.
Tiscornia, A C; Cayota, A; Landoni, A I; Brito, C; Oppezzo, P; Vuillier, F; Robello, C; Dighiero, G; Gabús, R; Pritsch, O
2004-01-01
Functional inducible NOS (iNOS) may be involved in the prolonged lifespan of chronic lymphocytic leukemia cells (B-CLL), although the exact mechanisms implicated remain elusive as yet. In this work, we have examined iNOS expression in normal B lymphocytes and B-CLL cells in pro- and antiapoptotic conditions. Our results demonstrate: (1) The existence of a new splice variant characterized by a complete deletion of exon 14 (iNOS 13-16(14del)), which was preferentially detected in normal B lymphocytes and may represent an isoform that could play a role in the regulation of enzyme activity. (2) The existence of another alternatively spliced iNOS mRNA transcript involving a partial deletion of the flavodoxin region (iNOS 13-16(neg)) was correlated to a decreased B-CLL cell viability. The 9-beta-D-arabinofuranosyl-2-fluoradenine or fludarabine (F-ara) treatment induced iNOS 13-16(neg) transcript variants, whereas IL-4 enhanced both the transcription of variants, including these exons (iNOS 13-16(pos)), and the expression of a 122 kDa iNOS protein. These results suggest that in B-CLL, a regulation process involving nitric oxide (.- NO) levels could occur by a post-transcriptional mechanism mediated by soluble factors. Our results also provide an insight into a new complementary proapoptotic action of F-ara in B-CLL by the induction of particular iNOS splice variants, leading to the activation of a caspase-3-dependent apoptotic pathway.
Sanford, David; Wierda, William G.; Burger, Jan A.; Keating, Michael J.; O’Brien, Susan M.
2016-01-01
Three agents have received FDA approval for treatment of chronic lymphocytic leukemia (CLL) within the last year. Ibrutinib and idelalisib block B-cell receptor signaling through inhibition of BTK and PI3Kδ molecules respectively, interfering with several pathways required for leukemia cell survival. Idelalisib has shown efficacy in in the relapsed setting and is currently approved for use in combination with rituximab. Ibrutinib has been studied in patients with relapsed CLL and as frontline therapy. In the relapsed setting, these agents produce durable remissions, and may be preferable to retreatment with chemoimmunotherapy for many patients. Ibrutinib is also effective treatment for patients with deletion 17p and is approved as frontline therapy in this patient group, although it does not appear to completely abrogate this adverse prognostic factor. These agents have a unique side effect profile and longer follow-up is required to further understand tolerability and rare adverse effects. Obinutuzumab is a type-2 monoclonal anti-CD20 antibody which results in direct and antibody-dependent cell-mediated cytotoxicity of leukemia cells. It is approved in combination with chlorambucil, and has shown efficacy in the frontline setting in patients unfit for more intensive chemoimmunotherapy. It produces increased response rates and minimal residual disease (MRD) negativity in comparison with chlorambucil/rituximab and is associated with an advantage in progression free survival but not yet overall survival. These agents underscore our advancement in the understanding of the biology of CLL and will improve outcomes for many patients with CLL. PMID:25817936
Reindl, Lena; Bacher, Ulrike; Dicker, Frank; Alpermann, Tamara; Kern, Wolfgang; Schnittger, Susanne; Haferlach, Torsten; Haferlach, Claudia
2010-10-01
14q-deletions have been repeatedly described in mature B-cell neoplasms, but not yet characterized in a larger cohort. Based on chromosome banding analysis, the present study identified 47 del(14q) cases in 3054 mature B-cell neoplasms (1·5%) (chronic lymphocytic leukaemia [CLL]: 1·9%; CLL/prolymphocytic leukaemia [PL]: 9·0%; others: 0·2%). Interphase fluorescence in situ hybridization was performed with probes for 14q22.1, 14q24.1, 14q32.33, and IGH@ (14q32.3). The del(14q) had heterogeneous size but showed a breakpoint cluster at the centromeric site in 14q24.1 (62% of cases). At the telomeric side, the most frequent breakpoint was within the IGH@ locus (14q32.3) between IGH@ 3'-flanking and IGHV (IgVH) probes (45%). In 16 cases (34%), breakpoints occurred within 14q24.1 and 14q32.3. Eighty-one percent of del(14q) cases showed 1-3 additional cytogenetic alterations (in 45%, +12), and 56% were IGHV-unmutated. In all cases (16/16) with breakpoints in 14q24.1 and 14q32.3, a B-CLL immunophenotype was found. Clinical follow-up in 32 del(14q) patients was compared to 383 CLL and CLL/PL patients without del(14q). While 3-year-overall survival did not differ significantly, time to treatment was significantly shorter in the del(14q) cohort (21·0 months vs. 80·1 months, P = 0·015). In conclusion, the del(14q) is a rare recurrent alteration in diverse mature B-cell neoplasms, shows variable size but distinct clustering of breakpoints, and is associated with short time to treatment. © 2010 Blackwell Publishing Ltd.
Lampson, Benjamin L.; Davids, Matthew S.
2017-01-01
The BCL-2 family of proteins integrates pro- and anti-apoptotic signals within the cell and is responsible for initiation of caspase-dependent apoptosis. Chronic lymphocytic leukemia (CLL) cells are particularly dependent on the anti-apoptotic protein BCL-2 for their survival, making this an attractive therapeutic target in CLL. Several early efforts to create inhibitors of the anti-apoptotic family members faced significant challenges, but eventually the BCL-2 specific inhibitor venetoclax moved forward in CLL. Overall and complete response rates to venetoclax monotherapy in relapsed, refractory CLL are approximately 80% and 20%, respectively, even in patients with high risk 17p deletion. Toxicities have been manageable and include neutropenia, diarrhea, and nausea. The risk of tumor lysis syndrome (TLS), seen in early experience with the drug, has been mitigated by the use of appropriate TLS risk assessment, prophylaxis, and management. Future studies of venetoclax will focus on combination approaches, predictive biomarker discovery, and mechanisms of resistance. PMID:28116634
Ibrutinib as an antitumor immunomodulator in patients with refractory chronic lymphocytic leukemia.
Cubillos-Zapata, Carolina; Avendaño-Ortiz, Jose; Córdoba, Raúl; Hernández-Jiménez, Enrique; Toledano, Victor; Pérez de Diego, Rebeca; López-Collazo, Eduardo
2016-01-01
Ibrutinib has emerged as a promising therapy for patients with chronic lymphocytic leukemia (CLL) who are nonresponsive to standard therapies. The refractory state of monocytes and T-cell exhaustion in patients with CLL could explain the morbidity and mortality reported in these patients. We studied the effect of ibrutinib on the immune response of four relapsed patients with CLL during the first treatment cycle. We observed the ability to recover the standard response against bacterial stimulus in CD14 + cells, improving levels of phospho-Erk1/2 and antigen presentation. Meanwhile, ibrutinib drove Th1-selective pressure in T lymphocytes, thus, reducing the PD-1 and PDL-1 expression. Our data suggest the impact of BTK inhibition along with immunomodulation on the innate immune response and a switch to the specific adaptive immune response, which might help to decrease infectious complications. The potential effect of ibrutinib on CLL patient outcomes is worthy of further study, because infections could be reduced with the use of ibrutinib.
Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells.
Chen, Lisa S; Redkar, Sanjeev; Bearss, David; Wierda, William G; Gandhi, Varsha
2009-11-05
Pim kinases are involved in B-cell development and are overexpressed in B-cell chronic lymphocytic leukemia (CLL). We hypothesized that Pim kinase inhibition would affect B-cell survival. Identified from a screen of imidazo[1,2-b]pyridazine compounds, SGI-1776 inhibits Pim-1, Pim-2, and Pim-3. Treatment of CLL cells with SGI-1776 results in a concentration-dependent induction of apoptosis. To elucidate its mechanism of action, we evaluated the effect of SGI-1776 on Pim kinase function. Unlike in replicating cells, phosphorylation of traditional Pim-1 kinase targets, phospho-Bad (Ser112) and histone H3 (Ser10), and cell-cycle proteins were unaffected by SGI-1776, suggesting an alternative mechanism in CLL. Protein levels of total c-Myc as well as phospho-c-Myc(Ser62), a Pim-1 target site, were decreased after SGI-1776 treatment. Levels of antiapoptotic proteins Bcl-2, Bcl-X(L), XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed that was not caused by caspase-mediated cleavage of Mcl-1 protein. The mechanism of decline in Mcl-1 was at the RNA level and was correlated with inhibition of global RNA synthesis. Consistent with a decline in new RNA synthesis, MCL-1 transcript levels were decreased after treatment with SGI-1776. These data suggest that SGI-1776 induces apoptosis in CLL and that the mechanism involves Mcl-1 reduction.
Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells
Chen, Lisa S.; Redkar, Sanjeev; Bearss, David; Wierda, William G.
2009-01-01
Pim kinases are involved in B-cell development and are overexpressed in B-cell chronic lymphocytic leukemia (CLL). We hypothesized that Pim kinase inhibition would affect B-cell survival. Identified from a screen of imidazo[1,2-b]pyridazine compounds, SGI-1776 inhibits Pim-1, Pim-2, and Pim-3. Treatment of CLL cells with SGI-1776 results in a concentration-dependent induction of apoptosis. To elucidate its mechanism of action, we evaluated the effect of SGI-1776 on Pim kinase function. Unlike in replicating cells, phosphorylation of traditional Pim-1 kinase targets, phospho-Bad (Ser112) and histone H3 (Ser10), and cell-cycle proteins were unaffected by SGI-1776, suggesting an alternative mechanism in CLL. Protein levels of total c-Myc as well as phospho-c-Myc(Ser62), a Pim-1 target site, were decreased after SGI-1776 treatment. Levels of antiapoptotic proteins Bcl-2, Bcl-XL, XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed that was not caused by caspase-mediated cleavage of Mcl-1 protein. The mechanism of decline in Mcl-1 was at the RNA level and was correlated with inhibition of global RNA synthesis. Consistent with a decline in new RNA synthesis, MCL-1 transcript levels were decreased after treatment with SGI-1776. These data suggest that SGI-1776 induces apoptosis in CLL and that the mechanism involves Mcl-1 reduction. PMID:19734450
Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle
2009-01-01
Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016
Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J; Rivière, Isabelle
2009-01-01
On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.
Almeida, Afonso R; Correia, Daniel V; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; da Silva, Maria Gomes; Anjos, Diogo Remechido; Silva-Santos, Bruno
2016-12-01
The Vδ1 + subset of γδ T lymphocytes is a promising candidate for cancer immunotherapy, but the lack of suitable expansion/differentiation methods has precluded therapeutic application. We set out to develop and test (preclinically) a Vδ1 + T-cell-based protocol that is good manufacturing practice compatible and devoid of feeder cells for prompt clinical translation. We tested multiple combinations of clinical-grade agonist antibodies and cytokines for their capacity to expand and differentiate (more than 2-3 weeks) Vδ1 + T cells from the peripheral blood of healthy donors and patients with chronic lymphocytic leukemia (CLL). We characterized the phenotype and functional potential of the final cellular product, termed Delta One T (DOT) cells, in vitro and in vivo (xenograft models of CLL). We describe a very robust two-step protocol for the selective expansion (up to 2,000-fold in large clinical-grade cell culture bags) and differentiation of cytotoxic Vδ1 + (DOT) cells. These expressed the natural cytotoxicity receptors, NKp30 and NKp44, which synergized with the T-cell receptor to mediate leukemia cell targeting in vitro When transferred in vivo, DOT cells infiltrated tumors and peripheral organs, and persisted until the end of the analysis without showing signs of loss of function; indeed, DOT cells proliferated and produced abundant IFNγ and TNFα, but importantly no IL17, in vivo Critically, DOT cells were capable of inhibiting tumor growth and preventing dissemination in xenograft models of CLL. We provide a clinical-grade method and the preclinical proof of principle for application of a new cellular product, DOT cells, in adoptive immunotherapy of CLL. Clin Cancer Res; 22(23); 5795-804. ©2016 AACR. ©2016 American Association for Cancer Research.
Maroofi, Farzad; Amini, Sabrieh; Roshani, Daem; Ghaderi, Bayazid; Abdi, Mohammad
2015-04-01
Finding the effects of gene polymorphism on cancer pathogenesis is very desirable. The ATP-binding cassette is involved in drug metabolism, and the polymorphism of this gene may be an important risk factor in B cell chronic lymphocytic leukemia (B-CLL) or progression and/or response to chemotherapy agents. For the first time, the present study was aimed to evaluate the probable effects of ABCB1 T3435C polymorphism on clinical and laboratory features of Kurdish patients with B-CLL. This descriptive analytical case-control study was performed on 50 B-CLL patients and 100 healthy subjects. Serum levels of beta-2-microglobulin (B2M) and lactate dehydrogenase (LDH) and blood WBC, RBC, Plt and ESR were measured. The T3435C polymorphism of the ABCB1 gene was determined by PCR-RFLP. Concentration of serum and blood markers was significantly higher in the malignant group than in the benign subjects. The CC genotype had the highest frequency (66%) in the patient groups. There are no significant differences between the genotypes and type of treatment. Our results demonstrate the high frequency of C allele of ABCB1 T3435C in B-CLL patients with Kurdish ethnicity. We also show that this polymorphism has a significant risk factor in B-CLL. However, the effect of this polymorphism on clinical and laboratory characteristics of B-CLL patients was not significant.
Aghebati-Maleki, Leili; Shabani, Mahdi; Baradaran, Behzad; Motallebnezhad, Morteza; Majidi, Jafar; Yousefi, Mehdi
2017-04-01
Chronic lymphocytic leukemia (CLL) is characterized by reposition of malignant B cells in the blood, bone marrow, spleen and lymph nodes. It remains the most common leukemia in the Western world. Within the recent years, major breakthroughs have been made to prolong the survival and improve the health of patients. Despite these advances, CLL is still recognized as a disease without definitive cure. New treatment approaches, based on unique targets and novel drugs, are highly desired for CLL therapy. The Identification and subsequent targeting of molecules that are overexpressed uniquely in malignant cells not normal ones play critical roles in the success of anticancer therapeutic strategies. In this regard, ROR family proteins are known as a subgroup of protein kinases which have gained huge popularity in the scientific community for the diagnosis and treatment of different cancer types. ROR1 as an antigen exclusively expressed on the surface of tumor cells can be a target for immunotherapy. ROR-1 targeting using different approaches such as siRNA, tyrosine kinase inhibitors, cell therapy and antibody induces tumor growth suppression in cancer cells. In the current review, we aim to present an overview of the efforts and scientific achievements in targeting ROR family, particularly ROR-1, for the diagnosis and treatment of chronic lymphocytic leukemia (CLL). Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Magni, M; Di Nicola, M; Patti, C; Scimè, R; Mulè, A; Rambaldi, A; Intermesoli, T; Viero, P; Tarella, C; Gueli, A; Bergui, L; Trentin, L; Barzan, A; Benedetti, F; Ambrosetti, A; Di Raimondo, F; Chiarenza, A; Parvis, G; Billio, A; Attolico, I; Olivieri, A; Montanari, M; Carlo-Stella, C; Matteucci, P; Devizzi, L; Guidetti, A; Viviani, S; Valagussa, P; Gianni, A M
2014-04-01
The importance of early therapy intensification in B-cell CLL (B-CLL) patients remains to be defined. Even though several studies have been published, no randomized trials comparing directly autologous stem cell transplant (ASCT) and the accepted conventional therapy (that is, rituximab, fludarabine and CY; R-FC) have been reported so far. To assess the benefit of a first-line aggressive therapy, we designed a multicenter, randomized, phase 3 trial comparing R-FC and high-dose chemotherapy supported by ASCT in patients under 65 years of age, with stage B(II) or C B-CLL. Primary end point was CR: 96 patients were enrolled (48 in each arm). On an intent-to-treat basis, the CR rates in the ASCT and R-FC arms were 62.5% and 58%, respectively. After 5 years of follow-up, PFS was 60.4% in the ASCT arm and 65.1% in the R-FC arm, time to progression 65.8 and 70.5%, and overall survival 88% vs 88.1%, respectively. Our trial demonstrates, for the first time in a randomized manner, that frontline ASCT does not translate into a survival advantage when compared with benchmark chemoimmunotherapy in B-CLL patients; the possibility of its clinical benefit in certain subgroups remains uncertain.
Clinical roundtable monograph. New alternatives in CLL therapy: managing adverse events.
Chanan-Khan, Asher; Kipps, Thomas; Stilgenbauer, Stephan
2010-08-01
Chronic lymphocytic leukemia (CLL) is a B-cell leukemia mainly affecting older adults. Historically, CLL has been regarded as an incurable disease, and treatment has been confined to cytotoxic chemotherapy regimens. However, prognosis for patients treated with these agents remained poor, prompting the development of new, targeted agents. The introduction of rituximab, a CD20-targeted monoclonal antibody, revolutionized the treatment for this disease. Rituximab in combination with fludarabine improved response rates and length of progression-free survival. The success of rituximab in this setting has prompted the development of many more investigational agents for CLL, including other antibody agents. However, as with any medication, the potential benefit achieved with CLL therapies is mitigated by the safety risk for the patient. These agents have been associated with adverse events such as immunosuppression, reactivation of cytomegalovirus, and infusion-related reactions that can occur with antibody administration. Adverse events can greatly affect the patient’s quality of life and ability to tolerate therapy. Management of adverse events is a critical component of the overall treatment strategy for CLL, particularly in elderly patients. In this clinical roundtable monograph, 3 expert physicians discuss the latest clinical studies evaluating the treatment of CLL, focusing on the adverse events associated with each agent and the potential interventions that can be used to manage their occurrence.
Rani, Lata; Mathur, Nitin; Gupta, Ritu; Gogia, Ajay; Kaur, Gurvinder; Dhanjal, Jaspreet Kaur; Sundar, Durai; Kumar, Lalit; Sharma, Atul
2017-01-01
In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients. The integration of DNA methylation profile ( n = 14) with the gene expression profile ( n = 21) revealed 142 genes as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially methylated and/or differentially expressed was further examined in early stage CLL patients ( n = 93) by quantitative real time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1 , PMEPA1 , SOX7 , SPRY1 , CDK6 , TBX2 , and SPRY2 genes in CLL cells as compared to B-cells from healthy individuals. The analysis in the IGHV mutation based categories (Unmutated = 39, Mutated = 54) revealed significantly higher mRNA expression of CRY1 and PAX9 genes in the IGHV unmutated subgroup ( p < 0.001). The relative risk of treatment initiation was significantly higher among patients with high expression of CRY1 (RR = 1.91, p = 0.005) or PAX9 (RR = 1.87, p = 0.001). High expression of CRY1 (HR: 3.53, p < 0.001) or PAX9 (HR: 3.14, p < 0.001) gene was significantly associated with shorter time to first treatment. The high expression of PAX9 gene (HR: 3.29, 95% CI 1.172-9.272, p = 0.016) was also predictive of shorter overall survival in CLL. The DNA methylation changes associated with mRNA expression of CRY1 and PAX9 genes allow risk stratification of early stage CLL patients. This comprehensive analysis supports the concept that the epigenetic changes along with the altered expression of genes have the potential to predict clinical outcome in early stage CLL patients.
2017-08-25
Monoclonal Gammopathy of Undetermined Significance (MGUS); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic-Myeloproliferative Diseases; Hematological Malignancies; B-cell Malignancy, Low-grade; Myelodysplastic Syndrome With Low-grade Lesions; IgG Monoclonal Gammopathy of Uncertain Significance; Smoldering Multiple Myeloma; Waldenstrom Macroglobulinemia
Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials.
Brown, Jennifer R
2013-03-01
Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton's tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients.
PCI-32765, the First BTK (Bruton’s Tyrosine Kinase) Inhibitor in Clinical Trials
2013-01-01
Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton’s tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients. PMID:23296407
2015-01-01
Reducing host toxicity is one of the main challenges of cancer chemotherapy. Many tumor cells contain high levels of ROS that make them distinctively different from normal cells. We report a series of ROS-activated aromatic nitrogen mustards that selectively kill chronic lymphocytic leukemia (CLL) over normal lymphocytes. These agents showed powerful DNA cross-linking abilities when coupled with H2O2, one of the most common ROS in cancer cells, whereas little DNA cross-linking was detected without H2O2. Consistent with chemistry observation, in vitro cytotoxicity assay demonstrated that these agents induced 40–80% apoptosis in primary leukemic lymphocytes isolated from CLL patients but less than 25% cell death to normal lymphocytes from healthy donors. The IC50 for the most potent compound (2) was ∼5 μM in CLL cells, while the IC50 was not achieved in normal lymphocytes. Collectively, these data provide utility and selectivity of these agents that will inspire further and effective applications. PMID:24801734
Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia.
Ganguly, Siddhartha; Home, Trisha; Yacoub, Abdulraheem; Kambhampati, Suman; Shi, Huidong; Dandawate, Prasad; Padhye, Subhash; Saluja, Ashok K; McGuirk, Joseph; Rao, Rekha
2015-10-13
CLL is a disease characterized by chromosomal deletions, acquired copy number changes and aneuploidy. Recent studies have shown that overexpression of Heat Shock Factor (HSF) 1 in aneuploid tumor cells can overcome deficiencies in heat shock protein (HSP) 90-mediated protein folding and restore protein homeostasis. Interestingly, several independent studies have demonstrated that HSF1 expression and activity also affects the chaperoning of HSP90 kinase clients, although the mechanism underlying this observation is unclear. Here, we determined how HSF1 regulates HSP90 function using CLL as a model system. We report that HSF1 is overexpressed in CLL and treatment with triptolide (a small molecule inhibitor of HSF1) induces apoptosis in cultured and primary CLL B-cells. We demonstrate that knockdown of HSF1 or its inhibition with triptolide results in the reduced association of HSP90 with its kinase co-chaperone cell division cycle 37 (CDC37), leading to the partial depletion of HSP90 client kinases, Bruton's Tyrosine Kinase (BTK), c-RAF and cyclin-dependent kinase 4 (CDK4). Treatment with triptolide or HSF1 knockdown disrupts the cytosolic complex between HSF1, p97, HSP90 and the HSP90 deacetylase- Histone deacetylase 6 (HDAC6). Consequently, HSF1 inhibition results in HSP90 acetylation and abrogation of its chaperone function. Finally, tail vein injection of Mec-1 cells into Rag2-/-IL2Rγc-/- mice followed by treatment with minnelide (a pro-drug of triptolide), reduced leukemia, increased survival and attenuated HSP90-dependent survival signaling in vivo. In conclusion, our study provides a strong rationale to target HSF1 and test the activity of minnelide against human CLL.
Sak, Katrin; Kasemaa, Kristi; Everaus, Hele
2016-09-14
Despite numerous studies chronic lymphocytic leukemia (CLL) still remains an incurable disease. Therefore, all new compounds and novel strategies which are able to eradicate CLL cells should be considered as valuable clues for a potential future remedy against this malignancy. In the present study, the cytotoxic profiles of natural flavonoids were described in two human CLL cell lines, HG-3 and EHEB, indicating the flavone luteolin as the most potent flavonoid with half-maximal inhibitory constants (IC50) of 37 μM and 26 μM, respectively. Luteolin significantly increased the apoptotic cell population in both cell lines by increasing the activities of caspases-3 and -9 and triggering the intrinsic apoptotic pathway. Two flavonols, fisetin and quercetin, were somewhat less efficient in suppressing cellular viability, whereas baicalein, chrysin, (+)-catechin and hesperetin exerted only a small or no response at doses as high as 100 μM. Both fisetin and quercetin were able to augment the cytotoxic activity of luteolin in both cell lines by reducing the IC50 values up to four fold. As a result of this, luteolin displayed cytotoxicity activity already at low micromolar concentrations that could potentially be physiologically achievable through oral ingestion. No other tested flavonoids were capable of sensitizing CLL cells to luteolin pointing to a specific binding of fisetin and quercetin to the cellular targets which interfere with the signaling pathways induced by luteolin. Although further molecular studies to unravel this potentiating mechanism are certainly needed, this phenomenon could contribute to future remedies for prevention and treatment of chronic lymphocytic leukemia.
ZAP-70 staining in chronic lymphocytic leukemia.
Villamor, Neus
2005-05-01
Chronic lymphocytic leukemia (CLL) is the most common chronic leukemia in Western countries. The disease has an extremely variable clinical course, and several prognostic features have been identified to assess individual risk. The configuration of the immunoglobulin variable heavy-chain gene (IgV(H)) is a strong predictor of the outcome. CLL patients with unmutated IgV(H) status have an aggressive clinical course and a short survival. Unfortunately, analysis of IgV(H) gene configuration is not available in most clinical laboratories. A small number of genes are differentially expressed between unmutated IgV(H) and mutated IgV(H) clinical forms of CLL. One of these genes is ZAP-70, which is detected in leukemic cells from patients with the unmutated IgV(H) form of CLL. Flow cytometry presents advantages over other methods to detect ZAP-70, and its quantification by flow cytometry has proved its predictive value. This unit focuses on protocols to quantify ZAP-70 by flow cytometry in CLL.
Lin, Xiaolan; Chen, Jiadi; Huang, Huifang
2016-07-01
To assess whether immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN) combined with interleukin-2 (IL-2) improves the number of mitotic metaphases and the detection rate of chromosomal abnormalities in chronic lymphocytic leukaemia (CLL). Bone marrow specimens were collected from 36 patients with CLL. CLL cells were cultured with CpG-ODN type DSP30 plus IL-2 for 72 h, following which R-banding analysis was conducted. Conventional culture without the immunostimulant served as the control group. The incidence of genetic abnormalities was measured by fluorescence in situ hybridisation (FISH) using a panel of five specific probes: D13S25 (13q14.3), RB1 (13q14), P53 (17p13), ATM (11q22.3) and CSP12 (trisomy 12, +12). In the control group, chromosome analysis achieved a success rate of only 22.2, and 11.1% of abnormal karyotypes were detected. After immunostimulation with DSP30 plus IL-2, chromosome analysis achieved a success rate of up to 91.6, and 41.6% of abnormal karyotypes were detected. FISH analysis detected 77.7% of abnormalities. FISH combined with CpG-ODN DSP30 plus IL-2 improved the detection rate of chromosomal abnormalities in CLL to 83.3%. CpG-ODN DSP30 combined with IL-2 is effective in improving the detection rate of chromosomal abnormalities in CLL cells. This combination with FISH analysis is conducive to increasing the detection rate of genetic abnormalities in CLL.
Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter
2004-07-01
Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.
Hock, B D; McIntosh, N D; McKenzie, J L; Pearson, J F; Simcock, J W; MacPherson, S A
2016-12-01
Chronic lymphocytic leukaemia (CLL) is associated with an increased incidence and aggressiveness of skin cancers, particularly cutaneous squamous cell carcinoma (cSCC), but little is known about cSCC incidence in Australasian CLL patients. In this retrospective study, we analysed the incidence of cSCC in patients seen at a tertiary hospital in New Zealand (NZ). We retrospectively assessed the clinical history and histology data of CLL patients (n = 371) who presented to the Haematology Department, Christchurch Hospital, NZ during the period 1996-2015. Baseline characteristics, incidence of second cancers, treatment details and overall survival were analysed. During follow-up (median = 11.8 years), 221 second cancers were recorded in 88 patients. Of these cancers, 185 were cSCC, removed from 61 patients. In 56% of these patients, >1 cSCC was removed, and the majority of cSCC occurred following the treatment for CLL. The cumulative incidence of a first cSCC was 11% at 5 years, whereas the cumulative incidence of a subsequent cSCC was 88% at 5 years. The incidence of cSCC in male patients was threefold higher than that reported for the general NZ population. NZ CLL patients have a high incidence of cSCC relative to the levels observed in the general population, which are themselves among the highest in the world. The careful monitoring of CLL patients is warranted, particularly those who have a progressive disease or have had a first cSCC removed. © 2016 Royal Australasian College of Physicians.
How and when I do allogeneic transplant in CLL.
Gribben, John G
2018-05-11
Allogenic stem cell transplantation (allo-SCT) has been considered the treatment of choice for high-risk patients with chronic lymphocytic leukemia (CLL) and the only approach offered with curative intent in this disease. The availability novel agents including the B cell receptor inhibitors (BCRi) ibrutinib, acalabrutinib and idelalisib, as well as venetoclax which targets the BCL2 pathway and the success of these agents in treating high-risk disease patients has made it more difficult to assess who and when in their treatment course allo-SCT should be considered. In this review, I will discuss the different treatment options available for the treatment of high-risk CLL and how allo-SCT fits into the treatment algorithm in the era of novel agents. Copyright © 2018 American Society of Hematology.
[Advances in the treatment of chronic lymphocytic leukaemia].
Mozas, Pablo; Delgado, Julio
2016-11-18
Chronic lymphocytic leukemia (CLL), a proliferation of mature B cells, is one of the most prevalent haematological malignancies. Progress has been made in its treatment during the last few decades, and chemoimmunotherapy based on fludarabine, cyclophosphamide and rituximab is considered the treatment of choice for patients with standard-risk CLL and good performance status. However, due to the characterization of high-risk biological subgroups and its presentation in elderly patients and/or with comorbidities, targeted therapies, such as B-cell receptor inhibitors, have been developed and approved during the last few years. The current review examines traditional therapeutic strategies and focuses on new small molecules that already represent promising elements of the CLL treatment landscape. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Hilal, Talal; Gea Banacloche, Juan C; Leis, Jose F
2018-03-16
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the world. Patient with CLL are at particular risk for infections due to inherent disease-related immune dysfunction in addition to the effect of certain systemic therapies on the immune system. The advent of B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib has led to a practice change that utilizes these targeted agents in the treatment of CLL, either in place of chemoimmunotherapy (CIT) or in later line settings. In this paper, we review the pathophysiology of immune dysfunction in CLL, the spectrum of immunodeficiency with the various therapeutic agents along with prevention strategies with a focus on targeted therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
McClanahan, Fabienne; Gribben, John
2015-09-01
A considerable body of evidence demonstrates that allogeneic hematopoietic stem cell transplantation (HSCT) offers the only potentially curative treatment option for patients with chronic lymphocytic leukemia (CLL). However, this approach is suitable for only a minority of CLL patients, owing to its significant treatment-related mortality and morbidity. Until recently, internationally accepted guidelines suggested that HSCT should be considered in physically fit CLL patients who carry poor-risk features, such as TP53 abnormalities, or who had a short response to previous immunochemotherapy. However, several new agents and alternative treatment strategies are available that demonstrate impressive and durable responses, even in CLL patients who previously might have been candidates for transplant. The decision about which patients merit HSCT therefore remains important, and HSCT must now be considered in light of other less toxic therapies. Until data on the long-term efficacy of novel treatment approaches mature, the choice of HSCT vs alternative strategies must be assessed on a patient-by-patient basis, and treatment in the setting of randomized clinical trials should be pursued whenever possible.
Poon, Michelle L; Fox, Patricia S; Samuels, Barry I; O'Brien, Susan; Jabbour, Elias; Hsu, Yvonne; Gulbis, Alison; Korbling, Martin; Champlin, Richard; Abruzzo, Lynne V; Bassett, Roland L; Khouri, Issa F
2015-03-01
Allogeneic stem cell transplant (alloSCT) can overcome the adverse prognosis of chronic lymphocytic leukemia with 17p deletion (17p- CLL). However, its applicability remains unclear. Since 2007, our leukemia service has referred patients with 17p- CLL for alloSCT at presentation. In this study, the outcomes of these patients were reviewed retrospectively to determine whether they underwent alloSCT and why patients did not undergo alloSCT. Fifty-two patients with 17p- CLL who were referred to the transplant service from 2007 to 2010 were identified. Of these patients, 32 (62%) did not undergo alloSCT, mainly because of treatment- or disease-related complications (n = 15). The 2-year post-referral overall survival rates of the alloSCT and non-SCT groups were 64% and 25%, respectively (p = 0.001). These findings suggest that while alloSCT is an effective therapy in patients with 17p- CLL, pre-SCT complications may preclude a significant proportion of patients from undergoing the procedure.
Robles, Claudia; Casabonne, Delphine; Benavente, Yolanda; Costas, Laura; Gonzalez-Barca, Eva; Aymerich, Marta; Campo, Elias; Tardon, Adonina; Jiménez-Moleón, José J; Castaño-Vinyals, Gemma; Dierssen-Sotos, Trinidad; Michel, Angelika; Kranz, Lena; Aragonés, Nuria; Pollan, Marina; Kogevinas, Manolis; Pawlita, Michael; de Sanjose, Silvia
2015-08-01
Merkel cell polyomavirus (MCPyV) has been suspected to cause chronic lymphocytic leukaemia (CLL) but previous data are inconsistent. We measured seroreactivities of nine polyomaviruses (MCPyV, BKPyV, JCPyV, LPyV, KIPyV, WUPyV, HPyV-6, HPyV-7 and TSPyV) in 359 CLL cases and 370 controls using bead-based multiplex serology technology. We additionally tested two herpesviruses (HSV-1 and CMV). Associations between disease and viral seroreactivities were assessed using logistic regression. All human viruses showed high seroprevalences (69-99%) against structural proteins in controls but significantly lower viral seroprevalences in cases (58-94%; OR range = 0.21-0.70, P value < 0.05), except for MCPyV (OR = 0.79, 95% CI = 0.54-1.16). Lower seroreactivity levels were observed among CLL subjects, with significant differences already observed at early stages of disease, unrelated to treatment status. Seroreactivities against polyomavirus related oncoproteins were almost null. Our data suggest no association for MCPyV polyomavirus with CLL development and an unlikely association for other polyomaviruses tested.
Falchi, Lorenzo; Baron, Jessica M.; Orlikowski, Carrie Anne; Ferrajoli, Alessandra
2016-01-01
The B-cell receptor (BCR) signaling inhibitors ibrutinib and idelalisib are revolutionizing the treatment of chronic lymphocytic leukemia (CLL) and other B-cell malignancies. These oral agents, both alone and in combination with other drugs, have shown remarkable clinical activity in relapsed or refractory CLL across all risk groups, and have been approved by the Food and Drug Administration for this indication. Preliminary data suggest that an even greater benefit can be expected in treatment-naïve CLL patients. Both ibrutinib and idelalisib are well tolerated by most patients, including older, frailer individuals. Toxicities are usually mild and self-resolving. Clinicians must, however, be aware of a number of peculiar adverse events, the effects of which can be severe enough to limit the clinical use of these agents. In this review, we survey the salient aspects of the pharmacology and clinical experience with the use of BCR signaling inhibitors for the treatment of patients with CLL. We next focus on both the most common and the most clinically significant toxicities associated with these drugs. PMID:26977270
Byrd, John C.; Jones, Jeffrey J.; Woyach, Jennifer A.; Johnson, Amy J.; Flynn, Joseph M.
2014-01-01
Purpose Chemoimmunotherapy has been the standard of care for chronic lymphocytic leukemia (CLL). However, the introduction of B-cell receptor (BCR) kinase inhibitors such as ibrutinib has the potential to eliminate the role of chemotherapy in the treatment of CLL. How to best incorporate old and new therapies for CLL in this landscape is increasingly complex. Methods This article reviews current data available to clinicians and integrates these data to provide a strategy that can be used to approach the treatment of CLL in the era of BCR signaling inhibitors. Results Current strategies separate patients based on age or functional status as well as genetics [presence or absence of del(17)(p13.1)]. In the era of targeted therapy, this will likely continue based on current available data. Phase III studies support chemoimmunotherapy as the initial standard therapy for patients without del(17)(p13.1). Choice of chemotherapy (fludarabine plus cyclophosphamide, bendamustine, or chlorambucil) and anti-CD20 antibody (rituximab, ofatumumab, or obinutuzumab) varies based on regimen and patient status. For patients with del(17)(p13.1), no standard initial therapy exists, although several options supported by phase II clinical trials (methylprednisolone plus alemtuzumab or ibrutinib) seem better than chemoimmunotherapy. Treatment of relapsed CLL seems to be best supported by ibrutinib-based therapy. Completion of trials with ibrutinib and other new agents in the near future will offer opportunity for chemotherapy-free treatment across all groups of CLL. Conclusion Therapy for CLL has evolved significantly over the past decade with introduction of targeted therapy for CLL. This has the potential to completely transform how CLL is treated in the future. PMID:25049322
Hoffmann, Jean-Marc; Schubert, Maria-Luisa; Wang, Lei; Hückelhoven, Angela; Sellner, Leopold; Stock, Sophia; Schmitt, Anita; Kleist, Christian; Gern, Ulrike; Loskog, Angelica; Wuchter, Patrick; Hofmann, Susanne; Ho, Anthony D; Müller-Tidow, Carsten; Dreger, Peter; Schmitt, Michael
2017-01-01
Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (T N ) vs. effector (T E ) T cells, T N cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the T N /T E ratio of CART cells. CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. IL-7/IL-15 preferentially induced differentiation into T N , stem cell memory (T SCM : naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (T EM ), CD56+ and CD4+ T regulatory (T Reg ) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CART N cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CART N cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CART N cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CART N cells in untreated CLL patients. Final T N /T E ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CART N expansion. Untreated CLL patients might constitute a challenge for long-lasting CART effects in vivo since only a low number of T N among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the T N /T E ratio within the CART product.
Hatoum, Georges; Meshkin, Cyrus; Alkhunaizi, Sufana; Levene, Richard; Formoso-Onofrio, Julie
2015-01-01
Chronic lymphocytic leukemia (CLL) is a common malignancy which may coexist with other primary cancers. CLL is rarely the cause of solitary bone lesions; such lesions in the context of CLL are believed to result from either Richter’s transformation or metastasis from another primary malignancy. Renal cell carcinoma (RCC), on the other hand, is a malignancy which frequently metastasizes to bone and may cause an osteolytic solitary bone lesion. The origin of a solitary bone lesion in a patient with multiple potential primary malignancies has prognostic implications and affects treatment protocol, and as such must be diagnosed accurately. We describe a patient with CLL and a history of RCC who is found to have an incidental solitary bone lesion of the T11 vertebra. After two separate CT-guided biopsies revealed various lymphoid cell predominance and no evidence of RCC, treatment with low dose external beam radiation therapy (EBRT) was employed. Post-therapy MRI showed further propagation of the lesion. Surgical corpectomy was subsequently performed and postoperative pathology of the lesion was consistent with RCC. The patient was treated with bisphosphonates and a higher dose of EBRT. Our case illustrates the importance of surgical excisional biopsy for accurately diagnosing the primary source metastatic to the bone in a patient with CLL and another potential primary cancer. PMID:29147427
Hahn, M; Böttcher, S; Dietrich, S; Hegenbart, U; Rieger, M; Stadtherr, P; Bondong, A; Schulz, R; Ritgen, M; Schmitt, T; Tran, T H; Görner, M; Herth, I; Luft, T; Schönland, S; Witzens-Harig, M; Zenz, T; Kneba, M; Ho, A D; Dreger, P
2015-10-01
To elucidate factors contributing to the effectiveness of allogeneic hematopoietic stem cell transplantation (alloHCT) in high-risk CLL, immune interventions, GvHD and clinical outcome of 77 consecutive patients allografted for CLL were analyzed. Immune modulation (immunosuppression tapering, rituximab-augmented donor lymphocyte infusions) was guided by minimal residual disease (MRD) monitoring and commenced at a median of 91 (22-273) days after alloHCT, resulting in a probability of being event free and MRD-negative 1 year after transplant of 57% (84% in those encountering chronic GvHD). Patients who were event free and MRD-negative at the 12-month landmark had a 4-year PFS of 77% and largely remained durably MRD-negative if MRD clearance had occurred subsequent to immune modulation. Three-year overall survival, PFS, relapse incidence and non-relapse mortality of all 77 patients were 69, 57, 26 and 24%, respectively. Survival was not affected by EBMT risk category but by active disease at alloHCT, which could not be overcome by intensification of conditioning. Twenty-three patients who experienced relapse post alloHCT had a survival of 56% at 2 years after CLL recurrence. In conclusion, MRD-guided immune modulation after alloHCT for high-risk CLL can provide durable MRD clearance in more than half of the patients.
Bai, Li-Yuan; Ma, Yihui; Kulp, Samuel K.; Wang, Shu-Huei; Chiu, Chang-Fang; Frissora, Frank; Mani, Rajeswaran; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Chen, Ching-Shih; Muthusamy, Natarajan
2013-01-01
Summary Drug resistance and associated immune deregulation limit use of current therapies in chronic lymphocytic leukaemia (CLL), thus warranting alternative therapy development. Herein we demonstrate that OSU-DY7, a novel D-tyrosinol derivative targeting p38 mitogen-activated protein kinase (MAPK), mediates cytotoxicity in lymphocytic cell lines representing CLL (MEC-1), acute lymphoblastic leukaemia (697 cells), Burkitt lymphoma (Raji and Ramos) and primary B cells from CLL patients in a dose- and time-dependent manner. The OSU-DY7-induced cytotoxicity is dependent on caspase activation, as evidenced by induction of caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage and rescue of cytotoxicity by Z-VAD-FMK. Interestingly, OSU-DY7-induced cytotoxicity is mediated through activation of p38 MAPK, as evidenced by increased phosphorylation of p38 MAPK and downstream target protein MAPKAPK2. Pretreatment of B-CLL cells with SB202190, a specific p38 MAPK inhibitor, results in decreased MAPKAPK2 protein level with concomitant rescue of the cells from OSU-DY7-mediated cytotoxicity. Furthermore, OSU-DY7-induced cytotoxicity is associated with down regulation of p38 MAPK target BIRC5, that is rescued at protein and mRNA levels by SB202190. This study provides evidence for a role of OSU-DY7 in p38 MAPK activation and BIRC5 down regulation associated with apoptosis in B lymphocytic cells, thus warranting development of this alternative therapy for lymphoid malignancies. PMID:21470196
Chen, Xu; Gustafsson, Stefan; Whitington, Thomas; Borné, Yan; Lorentzen, Erik; Sun, Jitong; Almgren, Peter; Su, Jun; Karlsson, Robert; Song, Jie; Lu, Yi; Zhan, Yiqiang; Hägg, Sara; Svensson, Per; Smedby, Karin E; Slager, Susan L; Ingelsson, Erik; Lindgren, Cecilia M; Morris, Andrew P; Melander, Olle; Karlsson, Thomas; de Faire, Ulf; Caidahl, Kenneth; Engström, Gunnar; Lind, Lars; Karlsson, Mikael C I; Pedersen, Nancy L; Frostegård, Johan; Magnusson, Patrik K E
2018-05-15
Phosphorylcholine (PC) is an epitope on oxidized low-density lipoprotein (oxLDL), apoptotic cells and several pathogens like Streptococcus pneumoniae. Immunoglobulin M against PC (IgM anti-PC) has the ability to inhibit uptake of oxLDL by macrophages and increase clearance of apoptotic cells. From our genome-wide association studies (GWASs) in four European-ancestry cohorts, six single nucleotide polymorphisms (SNPs) in 11q24.1 were discovered (in 3002 individuals) and replicated (in 646 individuals) to be associated with serum level of IgM anti-PC (the leading SNP rs35923643-G, combined β = 0.19, 95% confidence interval 0.13-0.24, P = 4.3 × 10-11). The haplotype tagged by rs35923643-G (or its proxy SNP rs735665-A) is also known as the top risk allele for chronic lymphocytic leukemia (CLL), and a main increasing allele for general IgM. By using summary GWAS results of IgM anti-PC and CLL in the polygenic risk score (PRS) analysis, PRS on the basis of IgM anti-PC risk alleles positively associated with CLL risk (explained 0.6% of CLL variance, P = 1.2 × 10-15). Functional prediction suggested that rs35923643-G might impede the binding of Runt-related transcription factor 3, a tumor suppressor playing a central role in the immune regulation of cancers. Contrary to the expectations from the shared genetics between IgM anti-PC and CLL, an inverse relationship at the phenotypic level was found in a nested case-control study (30 CLL cases with 90 age- and sex-matched controls), potentially reflecting reverse causation. The suggested function of the top variant as well as the phenotypic association between IgM anti-PC and CLL risk needs replication and motivates further studies.
Severe pneumonia associated with ibrutinib monotherapy for CLL and lymphoma.
Kreiniz, Natalia; Bejar, Jacob; Polliack, Aaron; Tadmor, Tamar
2018-02-01
In recent years, there have been major advances in the treatment of chronic lymphocytic leukemia (CLL) particularly since the development of novel therapeutic agents, mostly "biological drugs." One of the obvious advantages of these agents is the decreased rate of infectious complications occurring during the course of therapy, compared to the use of standard immuno-chemotherapy regimens. Here, we describe 3 patients with CLL and 1 with mantle cell lymphoma who developed severe life-threatening pneumonias, during monotherapy with ibrutinib. The first case was a 70-year-old woman with relapsed CLL who developed bilateral pneumonia with hypoxia 1 week after starting ibrutinib. She did not respond to broad-spectrum antibiotics and was treated empirically with trimethoprim-sulphamethoxazole and improved. In the second case, we describe a 76-year-old woman with relapsed CLL who developed recurrent pneumonia after 3 years of treatment with ibrutinib. Presuming that ibrutinib was the cause of pneumonitis with secondary infection, it was stopped with subsequent improvement. The third patient a 67 year-old man died because of severe bilateral necrotizing pneumonia due to invasive aspergillosis and mucormycosis with pulmonary hemorrhage. The fourth patient with relapsed mantle cell lymphoma died because of severe bilateral pneumonia, caused by pseudomonas and candida, despite receiving appropriate antibiotics. From this experience, we hypothesize that the etiology of severe pneumonia associated with ibrutinib treatment is probably multifactorial, involving factors like preexisting immune-suppression, drug induced pneumonitis and infections. We suggest that patients with CLL or other lymphoproliferative disorders with suspected pneumonia during monotherapy with ibrutinib should be very carefully evaluated and need to undergo complete diagnostic workup to establish an exact diagnosis. Understanding which patients with CLL or lymphoma treated with kinase inhibitors are at a higher risk for developing pulmonary complications could be one of the important future challenges, when selecting the best available therapy for these patients. Copyright © 2017 John Wiley & Sons, Ltd.
Abramenko, Iryna; Bilous, Nadiia; Chumak, Anatolyi; Kostin, Alexey; Martina, Zoya; Dyagil, Iryna
2012-01-01
An association between DNA repair gene polymorphisms, environmental factors, and development of some types of cancer has been suggested by several studies. Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the clean-up workers of the Chernobyl Nuclear Power Plant (NPP) accident and it has some specific features. Therefore, we have studied the possible differences in DNA repair gene polymorphisms in CLL patients depending on ionizing radiation (IR) exposure history and their clinical characterictics. Arg399Gln XRCC1, Thr241Met XRCC3, and Lys751Gln XPD polymorphisms were studied in 64 CLL patients, exposed to IR due to the Chernobyl NPP accident, 114 IR-non-exposed CLL patients, and 103 sex- and age-matched IR-exposed controls using polymerase chain reaction-restriction fragment-length polymorphism analysis. All investigated polymorphisms were equally distributed between two groups of CLL patients and IR-exposed controls, except that that there was a significant reduction of the common homozygous Lys/Lys XPD genotype among IR-exposed CLL patients (23.7%) compared with IR-exposed controls (45.6%), OR = 0.37; 95% CI = 0.18-0.75; (P = 0.005). The number of IR-non-exposed CLL patients (37.4%) with the Lys/Lys XPD genotype was also decreased compared to IR-exposed controls, although this difference was not significant (P = 0.223). These preliminary data suggest a possible modifying role of Lys751Gln XPD polymorphism for the development of CLL, expecially in radiation-exposed persons.
Cytological Diagnosis of Small Cell Carcinoma of Urinary Bladder in a Patient with CLL
Şimşek, Gülçin Güler; Güreşçi, Servet; Oğuz, Ural; Ünsal, Ali
2014-01-01
Small cell carcinoma of the urinary bladder (SCCUB) is an extremely rare bladder malignancy characterized by an aggressive clinical behavior. So, it is important to diagnose this high grade disease by urinary cytology. We report a case of SCCUB in an old man with chronic lymphocytic leukemia (CLL) in remission, while bladder tumor was diagnosed by cytology. With this article, we aimed to review and to update the literature concerning this tumor. PMID:24518979
Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J
2009-01-01
The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL. PMID:18640719
Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J
2009-03-01
The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL.
Mauro, Francesca R; Molica, Stefano; Laurenti, Luca; Cortelezzi, Agostino; Carella, Angelo M; Zaja, Francesco; Chiarenza, Annalisa; Angrilli, Francesco; Nobile, Francesco; Marasca, Roberto; Musolino, Caterina; Brugiatelli, Maura; Piciocchi, Alfonso; Vignetti, Marco; Fazi, Paola; Gentile, Giuseppe; De Propris, Maria S; Della Starza, Irene; Marinelli, Marilisa; Chiaretti, Sabina; Del Giudice, Ilaria; Nanni, Mauro; Albano, Francesco; Cuneo, Antonio; Guarini, Anna; Foà, Robin
2014-02-01
In 45, ≤ 60 years old patients with CLL and an adverse biologic profile, a front-line treatment with Fludarabine and Campath (Alemtuzumab(®)) was given. The overall response rate was 75.5%, the complete response rate (CR) 24.4% with the lowest CR rates, 16.7% and 8.3%, in 11q and 17p deleted cases. The 3-year progression-free survival (PFS) and overall survival were 42.5% and 79.9%, respectively. PFS was significantly influenced by CLL duration, beta2-microglobulin, and improved by post-remissional stem cell transplantation. Front-line fludarabine and alemtuzumab showed a manageable safety profile and evidence of a benefit in a small series of CLL patients with adverse biologic features. Copyright © 2013 Elsevier Ltd. All rights reserved.
Podhorecka, Monika; Macheta, Arkadiusz; Bozko, Maria; Bozko, Andrzej; Malek, Nisar P; Bozko, Przemyslaw
2016-01-01
Chronic lymphocytic leukemia (CLL), a clonal expansion of B CD5+ cells, is the most common type of adult leukemia in western countries. The accumulation of neoplastic B-cells is primarily caused by prolonged life-span of these cells due to deregulation of apoptosis, and only marginally due to a higher proliferation rate. In spite of numerous reports characterizing particular mechanisms of B-CLL cell apoptosis, still relatively little is known about the complex regulation of this process. Therefore, more detailed research is required to understand the complicated mechanisms and regulatory processes of apoptosis in neoplastic B lymphocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, J.B.; Tisch, R.; Falk, J.A.
The accessible Ia molecules on the surface of chronic lymphocytic leukemia (CLL) cells were quantitated in the cellular radioimmunoassay with saturating concentrations of monoclonal antibodies. Monoclonal antibody 21w4, like DA/2 antibody, recognizes monomorphic determinants of human Ia antigens.The amount of 21w4 or DA/2 bound to CLL cells derived from eight patients (varying from 2.6 to 13.9 x 10/sup 5/ molecules/cell) appears to be the maximum observed with the antibodies studied. Two other antibodies, 18d5 and 21r5, although also directed at nonpolymorphic Ia determinants, bind differentially to CLL cells, with the ratios of 21r5/21w4 and 18d5/21w4 varying from 0.08 to 0.90.more » Sequential immunoprecipitation studies have established that the four epitopes 18d5, 21r5, 21w4, and DA/2 were present on the same molecules. All Ia molecules express 21w4 and DA/2 epitopes, whereas only certain subsets of Ia molecules carry accessible 21r5 or 18d5 epitopes. Competitive binding studies showed that the epitopes recognized by the four monoclonal antibodies were different. Monoclonal antibodies 21r5 and 21w4 did not inhibit each other's binding. Furthermore, binding of 21w4 to CLL cells potentiated the binding of /sup 125/I-21r5 IgG to the same cells, suggesting that binding of 21w4 antibody induces a conformational change in the molecule that renders 21r5 epitopes more accessible.« less
Kay, Neil E; Hamblin, Terry J; Jelinek, Diane F; Dewald, Gordon W; Byrd, John C; Farag, Sherif; Lucas, Margaret; Lin, Thomas
2002-01-01
This update of early stage B-cell chronic lymphocytic leukemia (B-CLL) embraces current information on the diagnosis, biology, and intervention required to more fully develop algorithms for management of this disease. Emphasis on early stage is based on the rapid advancement in our understanding of the disease parameters and our increasing ability to predict for a given early stage patient whether there is a need for more aggressive management. In Section I, Dr. Terry Hamblin addresses the nature of the disease, accurate diagnostic procedures, evidence for an early "preclinical" phase, the use of newer prognostic features to distinguish who will be likely to progress or not, and whether it is best to watch or treat early stage disease. In Section II, Dr. Neil Kay and colleagues address the biologic aspects of the disease and how they may relate to disease progression. Review of the newer insights into gene expression, recurring genetic defects, role of cytokines/autocrine pathways, and the interaction of the CLL B cell with the microenvironment are emphasized. The relationship of these events to both trigger disease progression and as opportunities for future therapeutic intervention even in early stage disease is also considered. In Section III, Dr. John Byrd and colleagues review the historical and now current approaches to management of the previously untreated progressive B-CLL patient. They discuss what decision tree could be used in the initial decision to treat a given patient. The use of single agents versus newer combination approaches such as chemoimmunotherapy are discussed here. In addition, the place of marrow transplant and some of the newer antibodies available for treatment of B-CLL are considered. Finally, a challenge to utilize our growing knowledge of the biology of B-CLL in the early stage B-CLL is proffered.
PD-1 expression and clinical PD-1 blockade in B-cell lymphomas.
Xu-Monette, Zijun Y; Zhou, Jianfeng; Young, Ken H
2018-01-04
Programmed cell death protein 1 (PD-1) blockade targeting the PD-1 immune checkpoint has demonstrated unprecedented clinical efficacy in the treatment of advanced cancers including hematologic malignancies. This article reviews the landscape of PD-1/programmed death-ligand 1 (PD-L1) expression and current PD-1 blockade immunotherapy trials in B-cell lymphomas. Most notably, in relapsed/refractory classical Hodgkin lymphoma, which frequently has increased PD-1 + tumor-infiltrating T cells, 9p24.1 genetic alteration, and high PD-L1 expression, anti-PD-1 monotherapy has demonstrated remarkable objective response rates (ORRs) of 65% to 87% and durable disease control in phase 1/2 clinical trials. The median duration of response was 16 months in a phase 2 trial. PD-1 blockade has also shown promise in a phase 1 trial of nivolumab in relapsed/refractory B-cell non-Hodgkin lymphomas, including follicular lymphoma, which often displays abundant PD-1 expression on intratumoral T cells, and diffuse large B-cell lymphoma, which variably expresses PD-1 and PD-L1. In primary mediastinal large B-cell lymphoma, which frequently has 9p24.1 alterations, the ORR was 35% in a phase 2 trial of pembrolizumab. In contrast, the ORR with pembrolizumab was 0% in relapsed chronic lymphocytic leukemia (CLL) and 44% in CLL with Richter transformation in a phase 2 trial. T cells from CLL patients have elevated PD-1 expression; CLL PD-1 + T cells can exhibit a pseudo-exhaustion or a replicative senescence phenotype. PD-1 expression was also found in marginal zone lymphoma but not in mantle cell lymphoma, although currently anti-PD-1 clinical trial data are not available. Mechanisms and predictive biomarkers for PD-1 blockade immunotherapy, treatment-related adverse events, hyperprogression, and combination therapies are discussed in the context of B-cell lymphomas. © 2018 by The American Society of Hematology.
Tetrasomy 8 in a patient with chronic lymphocytic leukemia.
de Oliveira, Fábio Morato; Brandão, Renata Amorim; Leite-Cueva, Sabrina Dias; de Paula Careta, Francisco; Simões, Belinda Pinto; Rego, Eduardo Magalhães; Falcão, Roberto Passetto
2010-04-15
We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable. Copyright 2010 Elsevier Inc. All rights reserved.
Venetoclax: First Global Approval.
Deeks, Emma D
2016-06-01
Venetoclax (Venclexta™) is an oral selective inhibitor of the prosurvival protein BCL-2 and therefore restores the apoptotic ability of malignant cells. The drug arose from research by Abbott Laboratories (now AbbVie) during a collaboration with Genentech and is being co-developed by AbbVie and Genentech/Roche primarily for the treatment of haematological malignancies. Venetoclax is approved in the USA for use as monotherapy in patients with chronic lymphocytic leukaemia (CLL) with the 17p deletion (as detected by an approved FDA test) who have received at least one prior therapy, and is awaiting approval for similar indications in the EU and Canada. Venetoclax is also in phase I-III development as combination therapy for CLL, phase I/II development as monotherapy and/or combination therapy for non-Hodgkin lymphomas (including diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma) and acute myeloid leukaemia, and phase I development for multiple myeloma, systemic lupus erythematosus and breast cancer. This article summarizes the milestones in the development of venetoclax leading to this first approval for CLL.
Vujić, Jelena M; Cvijović, Milica; Kaluderović, Goran N; Milovanović, Marija; Zmejkovski, Bojana B; Volarević, Vladislav; Arsenijević, Nebojsa; Sabo, Tibor J; Trifunović, Srećko R
2010-09-01
Four novel bidentate N,N'-ligand precursors, including O,O'-dialkyl esters (alkyl = ethyl, n-propyl, n-butyl and n-pentyl), L1 x 2 HCl-L4 x 2 HCl, of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride [(S,S)-H(4)eddl]Cl(2) and the corresponding palladium(II) complexes 1-4, were prepared and characterized by IR, (1)H NMR and (13)C NMR spectroscopy and elemental analysis. In vitro cytotoxicity of all compounds was determined against chronic lymphocytic leukemia cells (CLL). The compounds were found to exhibit higher antitumoral activity than cisplatin. The most active compound 2, [PdCl(2){(S,S)-nPr(2)eddl}], was found to be 13.6 times more active than cisplatin on CLL cells. 2010 Elsevier Masson SAS. All rights reserved.
Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765).
Burger, Jan A; Buggy, Joseph J
2013-11-01
Over the past 3 years, ibrutinib (PCI-32765) has emerged as a breakthrough in targeted therapy for patients with certain types of B cell malignancies. Early stage clinical trials found ibrutinib to be particularly active in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), providing the rationale for ongoing phase 3 trials. In contrast to conventional chemo-immunotherapy, ibrutinib is not myelosuppressive, and responses are not affected by disease features that predict failure to respond to or short remission durations after chemo-immunotherapy, such as del17p. In CLL, ibrutinib characteristically causes an early redistribution of tissue-resident CLL cells into the blood, with rapid resolution of enlarged lymph nodes, along with a surge in lymphocytosis. Later, after weeks to months of continuous ibrutinib therapy, the growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the discovery, preclinical and clinical development of ibrutinib, its pathophysiological basis, and outlines perspectives for future use of ibrutinib.
FcγRIIb expression in early stage chronic lymphocytic leukemia.
Bosch, Rosa; Mora, Alba; Vicente, Eva Puy; Ferrer, Gerardo; Jansà, Sonia; Damle, Rajendra; Gorlatov, Sergey; Rai, Kanti; Montserrat, Emili; Nomdedeu, Josep; Pratcorona, Marta; Blanco, Laura; Saavedra, Silvana; Garrido, Ana; Esquirol, Albert; Garcia, Irene; Granell, Miquel; Martino, Rodrigo; Delgado, Julio; Sierra, Jorge; Chiorazzi, Nicholas; Moreno, Carol
2017-11-01
In normal B-cells, B-cell antigen receptor (BCR) signaling can be negatively regulated by the low-affinity receptor FcγRIIb (CD32b). To better understand the role of FcγRIIb in chronic lymphocytic leukemia (CLL), we correlated its expression on 155 samples from newly-diagnosed Binet A patients with clinical characteristics and outcome. FcγRIIb expression was similar in normal B-cells and leukemic cells, this being heterogenous among patients and within CLL clones. FcγRIIb expression did not correlate with well known prognostic markers [disease stage, serum beta-2 microglobulin (B2M), IGHV mutational status, expression of ZAP-70 and CD38, and cytogenetics] except for a weak concordance with CD49d. Moreover, patients with low FcγRIIb expression (69/155, 44.5%) required therapy earlier than those with high FcγRIIb expression (86/155, 55.5%) (median 151.4 months vs. not reached; p=.071). These results encourage further investigation on the role of FcγRIIb in CLL biology and prognostic significance in larger series of patients.
Tadmor, Tamar; Welslau, Manfred; Hus, Iwona
2018-01-01
The majority of patients with CLL will suffer from infections during their disease, accounting for approximately 60% of deaths in CLL. Patients are predisposed to infection due to immune defects related to the primary disease, and as a result of therapy. The range of infectious complications has evolved alongside therapeutic advances in the treatment of CLL. More recently several novel therapeutic compounds have been introduced in CLL, whose unique safety profiles will probably have an impact on the prophylaxis and management of infections in these patients. Areas covered: This review describes the pathogenesis of infections due to intrinsic CLL or therapy-related immunosuppression, and elightens the importance of proactive and reactive infection management as a key focus of patient care. Infections related to conventional chemotherapy, immunochemotherapy with monoclonal antibodies, target therapies with B-cell receptor pathway inhibitors and Bcl-2 antagonists are reviewed. Expert commentary: Despite the importance of infection management and prevention in high-risk patients, there are only limited infection risk-assessment guidelines that can be easily used in clinical practice to guide more appropriate infection prophylaxis and its management. Here we provide an overview of suggested prophylaxis management of infection, and include key prophylactic interventions that we feel should be performed in CLL patients routinely.
Genetic and cytokine changes associated with symptomatic stages of CLL.
Agarwal, Amit; Cooke, Lawrence; Riley, Christopher; Qi, Wenqing; Mount, David; Mahadevan, Daruka
2014-09-01
The pathogenesis and drug resistance of symptomatic CLL patients involves genetic changes associated with the CLL clone as well as changes within the microenvironment. To further understand these processes, we compared early stage CLL to symptomatic late stage using gene expression and serum cytokine profiling to gain insight of the genetic and microenvironment changes associated with the most severe form of the disease. Patients were classified into low stage (Rai stage 0/I/II) and high stage (Rai stage III/IV). Gene expression profiles were obtained on pretreatment samples using the HG-U133A 2.0 Affymetrix platform. A comparison of low versus high stage CLL revealed a set of 21 genes differentially expressed genes. 15 genes were up regulated in the high stage compared to low stage while 6 genes were down regulated. Analysis of GO molecular function revealed 9 of 21 genes were involved in transcription factor activity. Serum cytokine profiles showed six cytokines to be significantly different in high stage patients. Two chemokines, SDF-1/CXCL12 and uPAR known to be involved in stem cell mobilization and homing were increased in serum of high stage patients. This study has identified therapeutic targets for symptomatic CLL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Promsuwicha, Orathai; Kankhao, Supattra; Songmuang, Wayuree; Auewarakul, Chirayu U
2014-12-01
Diagnosis of hematologic malignancies requires a multidisciplinary approach. Flow cytometry (FCM) has become an essential tool for immunophenotypic studies of malignant hematopoietic cells. To evaluate the utilization trend of FCM and its diagnostic yields for hematologic malignancy at a major teaching hospital in Thailand. FCM results of bone marrow (BM) and peripheral blood (PB) specimens during 2000-2013 were analyzed and compared to clinical diagnosis. Overall, 7,982 specimens were submitted for diagnostic FCM including 6,561 BM and 1,421 PB. The number of specimens analyzedwas 121, 142, 164, 299, 491, 431, 690, 611, 719, 744, 725, 863, 955 and 1,027, respectively, from 2000 to 2013. The most common clinical diagnoses requested for FCM were acute leukemia (5,911 cases, 74%) followed by lymphoma (1,419 cases, 17.8%), and chronic lymphocytic leukemia (CLL) (634 cases, 7.94%). The highest diagnostic yield of FCM was found in acute leukemia cases (69.71%) followed by CLL (35.33%). Only 15.43% of clinically suspected lymphoma cases were positive by FCM. Overutilization of PB (35.6% of cases) instead of BM for lymphoma staging significantly contributed to low diagnostic yields of lymphoma by FCM as circulating tumor cells may not be present in such cases. FCM has an increasing role in the diagnosis of hematologic malignancies in Thai patients over the past 14 years with the highest diagnostic yield in acute leukemia. Appropriate specimen types and study indications are required in order to reduce futility of costly diagnostic tests and improve diagnostic yields.
Molica, Stefano
2017-08-16
According to data presented at the 2017 American Society of Oncology (ASCO) Annual Meeting, with more than 4 years of follow-up, ibrutinib continues to provide clinical utility in chronic lymphocytic leukemia (CLL). However, treatment of CLL patients with high-risk cytogenetics features remains a challenge and the outcome of these hard-to-treat patients is dismal. At the 2017 ASCO Meeting, results of the GENUINE phase III trial showed that, by adding ublituximab, a glycoengineered, anti-CD20 type 1 monoclonal antibody, to ibrutinib, the overall response rate (ORR), complete response rate (CRR), and minimal residual disease (MRD) negativity may be improved in high-risk CLL patients. A further way to improve the results obtained with Bruton's tyrosine kinase (BTK) inhibitors is the parallel use of ibrutinib with chimeric antigen receptor (CAR) T-cell therapy. Through this investigational approach, the rate of MRD negativity was shown to be higher, implying potential eradication of CLL. These novel data indicate that ibrutinib continues to have a positive effect in CLL.
Knödgen, Eva; Göckeritz, Elisa; Vondey, Verena; Neumann, Lars; Herter, Sylvia; Klein, Christian; Hallek, Michael
2018-01-01
The antibody-dependent cell-mediated cytotoxicity (ADCC) of the anti-CD20 monoclonal antibodies (mAbs) rituximab and obinutuzumab against the cell line Raji and isolated CLL cells and its potential impairment by kinase inhibitors (KI) was determined via lactate dehydrogenase release or calcein retention, respectively, using genetically modified NK92 cells expressing CD16-176V as effector cells. Compared to peripheral blood mononuclear cells, recombinant effector cell lines showed substantial alloreactivity-related cytotoxicity without addition of mAbs but afforded determination of ADCC with reduced interassay variability. The cytotoxicity owing to alloreactivity was less susceptible to interference by KI than the ADCC of anti-CD20 mAbs, which was markedly diminished by ibrutinib, but not by idelalisib. Compared to rituximab, the ADCC of obinutuzumab against primary CLL cells showed approximately 30% higher efficacy and less interference with KI. Irreversible BTK inhibitors at a clinically relevant concentration of 1 μM only weakly impaired the ADCC of anti-CD20 mAbs, with less influence in combinations with obinutuzumab than with rituximab and by acalabrutinib than by ibrutinib or tirabrutinib. In summary, NK cell line-based assays permitted the sensitive detection of ADCC of therapeutic anti-CD20 mAbs against CLL cells and of the interference of KI with this important killing mechanism. PMID:29750146
Rawstron, A C; Fazi, C; Agathangelidis, A; Villamor, N; Letestu, R; Nomdedeu, J; Palacio, C; Stehlikova, O; Kreuzer, K-A; Liptrot, S; O'Brien, D; de Tute, R M; Marinov, I; Hauwel, M; Spacek, M; Dobber, J; Kater, A P; Gambell, P; Soosapilla, A; Lozanski, G; Brachtl, G; Lin, K; Boysen, J; Hanson, C; Jorgensen, J L; Stetler-Stevenson, M; Yuan, C; Broome, H E; Rassenti, L; Craig, F; Delgado, J; Moreno, C; Bosch, F; Egle, A; Doubek, M; Pospisilova, S; Mulligan, S; Westerman, D; Sanders, C M; Emerson, R; Robins, H S; Kirsch, I; Shanafelt, T; Pettitt, A; Kipps, T J; Wierda, W G; Cymbalista, F; Hallek, M; Hillmen, P; Montserrat, E; Ghia, P
2016-04-01
In chronic lymphocytic leukemia (CLL) the level of minimal residual disease (MRD) after therapy is an independent predictor of outcome. Given the increasing number of new agents being explored for CLL therapy, using MRD as a surrogate could greatly reduce the time necessary to assess their efficacy. In this European Research Initiative on CLL (ERIC) project we have identified and validated a flow-cytometric approach to reliably quantitate CLL cells to the level of 0.0010% (10(-5)). The assay comprises a core panel of six markers (i.e. CD19, CD20, CD5, CD43, CD79b and CD81) with a component specification independent of instrument and reagents, which can be locally re-validated using normal peripheral blood. This method is directly comparable to previous ERIC-designed assays and also provides a backbone for investigation of new markers. A parallel analysis of high-throughput sequencing using the ClonoSEQ assay showed good concordance with flow cytometry results at the 0.010% (10(-4)) level, the MRD threshold defined in the 2008 International Workshop on CLL guidelines, but it also provides good linearity to a detection limit of 1 in a million (10(-6)). The combination of both technologies would permit a highly sensitive approach to MRD detection while providing a reproducible and broadly accessible method to quantify residual disease and optimize treatment in CLL.
Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury
2014-12-19
synergistic effect of treadmill running on stem -cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 2010, 16(3):839–849. 20. Brutsaert...U:::-’ 0:: 0 Uninjured Injured Figure 7 c E 14 w cu12 • SED * (/) Cll < 10 ~ ~ 8 c 6 Cll Cl 4 z ..!!! ::> 0 2 0::: u 0 Uninjured Injured
Chronic Lymphocytic Leukemia in Chornobyl Cleanup Workers.
Bazyka, Dimitry; Gudzenko, Natalya; Dyagil, Iryna; Goroh, Eugeny; Polyschuk, Oksana; Trotsuk, Natalya; Babkina, Nataly; Romanenko, Anatoly
2016-08-01
This paper describes the chronic lymphocytic leukemia (CLL) incidence in a cohort of 110,645 (enlarged later to 152,520) male Ukrainian cleanup workers of the Chornobyl (Chernobyl) accident who were exposed to a range of radiation doses over the 1986-1990 time period. The standardized incidence rates are presented for a 27-y period after the exposure. For 2007-2012 period, the authors have identified the incident CLL cases in an enlarged cohort of 152,520 persons by linkage of the cohort file with the Ukrainian National Cancer Registry (NCRU). CLL data for the previous period (1987-2006) were identified in a frame of the Ukrainian-American leukemia study in the original cohort of 110,645 male clean-up workers. A significant CLL incidence excess was shown for the entire study period 1987-2012, with more prominent levels for the earliest years (1987-1996) when the standardized incidence rate (SIR) value was estimated to be 3.61 with 95% confidence interval from 2.32 to 4.91. In 2007-2012, the CLL incidence decreased substantially but still exceeded the national level although not significantly. In parallel, the several studies were performed at the National Research Center for Radiation Medicine (NRCRM) to explore if any clinical and cytogenetic features of CLL existed in the clean-up workers. The clinical study included 80 exposed and 70 unexposed CLL cases. Among the major clinical differences of the CLL course in the clean-up workers were a shorter period of white blood cells (WBC) doubling (10.7 vs. 18.0; p<0.001), frequent infectious episodes, lymphoadenopathy and hepatosplenomegaly (37 vs. 16), higher expression for CD38, and lower expression for ZAP-70 antigen.
Novacco, Marilisa; Martini, Valeria; Grande, Carmen; Comazzi, Stefano
2015-09-01
A blood sample from a 14-year-old dog was submitted to the veterinary diagnostic laboratory of the University of Milan for marked leukocytosis with atypical cells. A diagnosis of chronic T-cell lymphocytic leukemia (CLL) was made based on blood smear evaluation and flow cytometric phenotyping. A CBC by Sysmex XT-2000iV revealed a moderate normocytic normochromic anemia. Red blood cells counted by optic flow cytometry (RBC-O) resulted in a higher value than using electrical impedance (RBC-I). The relative reticulocyte count based on RNA content and size was 35.3%, while the manual reticulocyte count was < 1%. The WBC count of 1,562,680 cells/μL was accompanied by a flag. Manual counts for RBC and WBC using the Bürker chamber confirmed the Sysmex impedance results. Finally the manual PCV was lower than HCT by Sysmex. While Sysmex XT can differentiate between RBC and WBC by impedance, even in the face of extreme lymphocytosis due to CLL, RBC-O can be affected by bias, resulting in falsely increased RBC and reticulocyte numbers. Overestimation of RBC-O may be due to incorrect Sysmex classification of leukemic cells or their fragments as reticulocytes. This phenomenon is known as pseudoreticulocytosis and can lead to misinterpretation of regenerative anemia. On the other side PCV can be affected by bias in CLL due to the trapping of RBC in the buffy coat, resulting in a pink hue in the separation area. As HGB concentration is not affected by flow cytometric or other cell-related artifacts it may represent the most reliable variable to assess the degree of anemia in cases of CLL. © 2015 American Society for Veterinary Clinical Pathology.
Walter, Harriet S; Rule, Simon A; Dyer, Martin J S; Karlin, Lionel; Jones, Ceri; Cazin, Bruno; Quittet, Philippe; Shah, Nimish; Hutchinson, Claire V; Honda, Hideyuki; Duffy, Kevin; Birkett, Joseph; Jamieson, Virginia; Courtenay-Luck, Nigel; Yoshizawa, Toshio; Sharpe, John; Ohno, Tomoya; Abe, Shinichiro; Nishimura, Akihisa; Cartron, Guillaume; Morschhauser, Franck; Fegan, Christopher; Salles, Gilles
2016-01-28
We report the results of a multicenter phase 1 dose-escalation study of the selective Bruton tyrosine kinase (BTK) inhibitor ONO/GS-4059 in 90 patients with relapsed/refractory B-cell malignancies. There were 9 dose-escalation cohorts ranging from 20 mg to 600 mg once daily with twice-daily regimens of 240 mg and 300 mg. Twenty-four of 25 evaluable chronic lymphocytic leukemia (CLL) patients (96%) responded to ONO/GS-4059, with a median treatment duration of 80 weeks; 21 CLL patients remain on treatment. Lymph node responses were rapid and associated with a concurrent lymphocytosis. Eleven of 12 evaluable patients with mantle cell lymphoma (92%) responded (median treatment duration, 40 weeks). Eleven of 31 non-germinal center B-cell diffuse large B-cell lymphoma patients (35%) responded but median treatment duration was 12 weeks due to development of progressive disease. ONO/GS-4059 was very well tolerated with 75% of adverse events (AEs) being Common Toxicity Criteria for Adverse Events version 4.0 grade 1 or grade 2. Grade 3/4 AEs were mainly hematologic and recovered spontaneously during therapy. One CLL patient experienced a grade 3 treatment-related bleeding event (spontaneous muscle hematoma) but no clinically significant diarrhea, cardiac dysrhythmias, or arthralgia were observed. No maximal tolerated dose (MTD) was reached in the CLL cohort. In the non-Hodgkin lymphoma cohort, 4 patients developed a dose-limiting toxicity, yielding an MTD of 480 mg once daily. ONO/GS-4059 has significant activity in relapsed/refractory B-cell malignancies without major drug-related toxicity. The selectivity of ONO/GS-4059 should confer advantages in combination therapies. This trial was registered at www.clinicaltrials.gov as #NCT01659255. © 2016 by The American Society of Hematology.
Ryan, Christine E; Sahaf, Bita; Logan, Aaron C; O'Brien, Susan; Byrd, John C; Hillmen, Peter; Brown, Jennifer R; Dyer, Martin J S; Mato, Anthony R; Keating, Michael J; Jaglowski, Samantha; Clow, Fong; Rezvani, Andrew R; Styles, Lori; Coutre, Steven E; Miklos, David B
2016-12-22
Ibrutinib, a potent and irreversible small-molecule inhibitor of both Bruton's tyrosine kinase and interleukin-2 inducible kinase (ITK), has been used to treat relapsed/refractory chronic lymphocytic leukemia (CLL) with prolongation of progression-free and overall survival. Here, we present 27 patients with relapsed CLL following allogeneic hematopoietic cell transplant (HCT) who subsequently received ibrutinib salvage therapy. Sixteen of these patients were part of multi-institutional clinical trials and achieved an overall response rate of 87.5%. An additional 11 patients were treated at Stanford University following US Food and Drug Administration approval of ibrutinib; 7 (64%) achieved a complete response, and 3 (27%) achieved a partial response. Of the 9 patients treated at Stanford who had mixed chimerism-associated CLL relapse, 4 (44%) converted to full donor chimerism following ibrutinib initiation, in association with disease response. Four of 11 (36%) patients evaluated by ClonoSeq achieved minimal residual disease negativity with CLL <1/10 000 white blood cells, which persisted even after ibrutinib was discontinued, in 1 case even after 26 months. None of the 27 patients developed graft-versus-host-disease (GVHD) following ibrutinib initiation. We postulate that ibrutinib augments the graft-versus-leukemia (GVL) benefit through a T-cell-mediated effect, most likely due to ITK inhibition. To investigate the immune modulatory effects of ibrutinib, we completed comprehensive immune phenotype characterization of peripheral B and T cells from treated patients. Our results show that ibrutinib selectively targets pre-germinal B cells and depletes Th2 helper cells. Furthermore, these effects persisted after drug discontinuation. In total, our results provide evidence that ibrutinib effectively augments GVL without causing GVHD. © 2016 by The American Society of Hematology.
Zucchetto, Antonella; Bomben, Riccardo; Bo, Michele Dal; Nanni, Paola; Bulian, Pietro; Rossi, Francesca Maria; Del Principe, Maria Ilaria; Santini, Simone; Del Poeta, Giovanni; Degan, Massimo; Gattei, Valter
2006-07-15
Expression of T cell specific zeta-associated protein 70 (ZAP-70) by B-cell chronic lymphocytic leukemia (B-CLL) cells, as investigated by flow cytometry, has both prognostic relevance and predictive power as surrogate for immunoglobulin heavy chain variable region (IgV(H)) mutations, although a standardization of the cytometric protocol is still lacking. Flow cytometric analyses for ZAP-70 were performed in peripheral blood samples from 145 B-CLL (124 with IgV(H) mutations) by a standard three-color protocol. Identification of ZAP-70(+) cell population was based on an external negative control, i.e., the isotypic control (ISO method) or an internal positive control, i.e., the population of residual normal T/NK cells (TNK method). A comparison between these two approaches was performed. While 86/145 cases were concordant as for ZAP-70 expression according to the two methods (ISO(+)TNK(+) or ISO(-)TNK(-)), 59/145 cases had discordant ZAP-70 expression, mainly (56/59) showing a ISO(+)TNK(-) profile. These latter cases express higher levels of ZAP-70 in their normal T cell component. Moreover, discordant ISO(+)TNK(-) cases had a IgV(H) gene mutation profile similar to that of concordantly positive cases and different from ZAP-70 concordantly negative B-CLL. Analysis of ZAP-70 expression by B-CLL cells by using the ISO method allows to overcome the variability in the expression of ZAP-70 by residual T cells and yields a better correlation with IgV(H) gene mutations. A receiver operating characteristic analysis suggests to employ a higher cut-off than the commonly used 20%. A parallel evaluation of the prognostic value of ZAP-70 expression, as determined according to the ISO and TNK methods, is still needed. (c) 2006 International Society for Analytical Cytology.
MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias
Calin, George Adrian; Liu, Chang-Gong; Sevignani, Cinzia; Ferracin, Manuela; Felli, Nadia; Dumitru, Calin Dan; Shimizu, Masayoshi; Cimmino, Amelia; Zupo, Simona; Dono, Mariella; Dell'Aquila, Marie L.; Alder, Hansjuerg; Rassenti, Laura; Kipps, Thomas J.; Bullrich, Florencia; Negrini, Massimo; Croce, Carlo M.
2004-01-01
Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673–676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253–258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia. PMID:15284443
Niemann, Carsten U; Mora-Jensen, Helena I; Dadashian, Eman L; Krantz, Fanny; Covey, Todd; Chen, Shih-Shih; Chiorazzi, Nicholas; Izumi, Raquel; Ulrich, Roger; Lannutti, Brian J; Wiestner, Adrian; Herman, Sarah E M
2017-10-01
Purpose: Targeting the B-cell receptor (BCR) pathway with inhibitors of Bruton tyrosine kinase (BTK) and PI3Kδ is highly effective for the treatment of chronic lymphocytic leukemia (CLL). However, deep remissions are uncommon, and drug resistance with single-agent therapy can occur. In vitro studies support the effectiveness of combing PI3Kδ and BTK inhibitors. Experimental Design: As CLL proliferation and survival depends on the microenvironment, we used murine models to assess the efficacy of the BTK inhibitor acalabrutinib combined with the PI3Kδ inhibitor ACP-319 in vivo We compared single-agent with combination therapy in TCL1-192 cell-injected mice, a model of aggressive CLL. Results: We found significantly larger reductions in tumor burden in the peripheral blood and spleen of combination-treated mice. Although single-agent therapy improved survival compared with control mice by a few days, combination therapy extended survival by over 2 weeks compared with either single agent. The combination reduced tumor proliferation, NF-κB signaling, and expression of BCL-xL and MCL-1 more potently than single-agent therapy. Conclusions: The combination of acalabrutinib and ACP-319 was superior to single-agent treatment in a murine CLL model, warranting further investigation of this combination in clinical studies. Clin Cancer Res; 23(19); 5814-23. ©2017 AACR . ©2017 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Law, Philip J.; Sud, Amit; Mitchell, Jonathan S.; Henrion, Marc; Orlando, Giulia; Lenive, Oleg; Broderick, Peter; Speedy, Helen E.; Johnson, David C.; Kaiser, Martin; Weinhold, Niels; Cooke, Rosie; Sunter, Nicola J.; Jackson, Graham H.; Summerfield, Geoffrey; Harris, Robert J.; Pettitt, Andrew R.; Allsup, David J.; Carmichael, Jonathan; Bailey, James R.; Pratt, Guy; Rahman, Thahira; Pepper, Chris; Fegan, Chris; von Strandmann, Elke Pogge; Engert, Andreas; Försti, Asta; Chen, Bowang; Filho, Miguel Inacio Da Silva; Thomsen, Hauke; Hoffmann, Per; Noethen, Markus M.; Eisele, Lewin; Jöckel, Karl-Heinz; Allan, James M.; Swerdlow, Anthony J.; Goldschmidt, Hartmut; Catovsky, Daniel; Morgan, Gareth J.; Hemminki, Kari; Houlston, Richard S.
2017-01-01
B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, N = 1,842), Hodgkin lymphoma (HL, N = 1,465) and multiple myeloma (MM, N = 3,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, P = 1.60 × 10-9) with opposing effects between CLL (P = 1.97 × 10-8) and HL (P = 3.31 × 10-3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37 + Phe37 in HLA-DRB1 (P = 1.84 × 10-12) was associated with increased CLL and HL risk (P = 4.68 × 10-12), and reduced MM risk (P = 1.12 × 10-2), and Gly70 in HLA-DQB1 (P = 3.15 × 10-10) showed opposing effects between CLL (P = 3.52 × 10-3) and HL (P = 3.41 × 10-9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.
Bonina, Silvia; Messina, Monica; Chiaretti, Sabina; Ilari, Caterina; Cafforio, Luciana; Raponi, Sara; Mauro, Francesca Romana; Di Maio, Valeria; De Propris, Maria Stefania; Nanni, Mauro; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Guarini, Anna; Rabadan, Raul; Foà, Robin
2015-01-01
Summary Whole exome sequencing and copy number aberration (CNA) analysis was performed on cells taken from peripheral blood (PB) and lymph nodes (LN) of patients with chronic lymphocytic leukaemia (CLL). Of 64 non-silent somatic mutations, 54 (84.4%) were clonal in both compartments, 3 (4.7%) were PB-specific and 7 (10.9%) were LN-specific. Most of the LN- or PB-specific mutations were subclonal in the other corresponding compartment (variant frequency 0.5-5.3%). Of 41 CNAs, 27 (65.8%) were shared by both compartments and 7 (17.1%) were LN- or PB-specific. Overall, 6 of 9 cases (66.7%) showed genomic differences between the compartments. At subsequent relapse, Case 10, with 6 LN-specific lesions, and Case 100, with 6 LN-specific and 8 PB-specific lesions, showed, in the PB, the clonal expansion of LN-derived lesions with an adverse impact: SF3B1 mutation, BIRC3 deletion, del8(p23.3-p11.1), del9(p24.3-p13.1) and gain 2(p25.3-p14). CLL shows an intra-patient clonal heterogeneity according to the disease compartment, with both LN and PB-specific mutations/CNAs. The LN microenvironment might contribute to the clonal selection of unfavourable lesions, as LN-derived mutations/CNAs can appear in the PB at relapse. PMID:26597680
Liu, Qiong; Xu, Wei; Qiu, Hai-rong; Wang, Rong; Yu, Hui; Fan, Lei; Miao, Kou-rong; Li, Jian-yong
2009-09-01
To explore the effect of CpG-oligodeoxynucleotides (ODN) in chromosome study of chronic lymphocytic leukemia (CLL). Blood or bone marrow cells of 70 CLL patients were cultured for 72 h with PHA, CpG-ODN and CpG-ODN combined with IL-2, respectively. Routine karyotype analysis with R banding technique and interphase fluorescence in situ hybridization (FISH) were performed. The metaphase number>or=20 was considered as successful stimulation, which in PHA, CpG-ODN and CpG-ODN combined IL-2 groups were 90.0%, 68.6% and 68.6%, respectively, and the detection rates of chromosome aberrations were 3.2%, 43.6% and 43.6%, respectively. The aberrations rates detected by interphase FISH with a panel of probes was 64.3%. CpG-ODN DSP30 can effectively raise the detection rate of chromosome aberrations in CLL patients.
Venetoclax: Bcl-2 inhibition for the treatment of chronic lymphocytic leukemia.
Del Poeta, G; Postorino, M; Pupo, L; Del Principe, M I; Dal Bo, M; Bittolo, T; Buccisano, F; Mariotti, B; Iannella, E; Maurillo, L; Venditti, A; Gattei, V; de Fabritiis, P; Cantonetti, M; Amadori, S
2016-04-01
Venetoclax (ABT-199) is a small-molecule selective oral inhibitor of the antiapoptotic protein Bcl-2 that promotes programmed cell death of chronic lymphocytic leukemia (CLL) cells regulating the release of proapoptotic factors, such as Smac/Diablo, apoptosis-inducing factor (AIF) and cytochrome c. In April 2016, the U.S. Food and Drug Administration (FDA) granted accelerated approval to venetoclax for patients diagnosed with CLL with 17p deletion, as detected by an FDA-approved test, who have received at least one prior therapy. This review will focus on the mechanism of action, preclinical studies and clinical development of venetoclax both as a monotherapy and in combination with other drugs for CLL in the current milieu of therapy dominated by novel tyrosine kinase inhibitors such as ibrutinib and idelalisib. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Sanchez-Quintana, Ana; Breña-Atienza, Joaquín; Marrero-Santos, Carmen; Alvarez-Acosta, Luis
2013-08-05
We describe a case of progressive multifocal leucoencephalopathy (PML) in a 39-year-old patient diagnosed with chronic lymphocytic leukaemia (CLL) who underwent two allogenic matched-sibling stem cell transplantations. PML was confirmed just after the first transplantation with cerebral MRI and by PCR in the cerebrospinal fluid. After immunosuppression withdrawal and cidofovir treatment, he achieved a reversal of clinical symptoms, John Cunningham (JC) virus positivity and MRI lesions regression. He remained asymptomatic for 5 years with no signs of infection activity, even though he received three new chemotherapy regimens due to a CLL relapse. However, after the second stem cell transplantation, new neurological symptoms began and a reactivation of the JC virus infection was detected. This time, treatment with mefloquine was started, but he experienced a progressive neurological deterioration and died 1 month after the symptoms began.
Cheng, S; Guo, A; Lu, P; Ma, J; Coleman, M; Wang, Y L
2015-04-01
The Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has produced remarkable clinical response in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. We previously reported the identification of BTK(C481S) mutation in a CLL patient who progressed following 21-month ibrutinib therapy. Initial characterization at structural and biochemical levels revealed that the mutation disrupts the covalent binding of ibrutinib to BTK, reduces its binding affinity and diminishes its ability to inhibit the BTK enzymatic activity. Herein, we further characterized the functional consequences of BTK(C481S) in terms of molecular signaling, gene expression and cellular behavior in the patient, as well as in lymphoma cells transfected with either the wild-type or the mutant BTK constructs. Further, using an in vitro CLL proliferation model, alternative kinase inhibitors that have the potential to overcome ibrutinib resistance were explored.
miR in CLL: more than mere markers of prognosis?
Kater, Arnon P; Eldering, Eric
2014-07-03
In this issue of Blood, Mraz et al show that microRNA-150 (miR-150) is the most abundantly expressed miR in chronic lymphocytic leukemia (CLL) and affects the threshold for B-cell receptor (BCR) signaling by repressing expression levels of GAB1 and FOXP1. This functional link might explain the described association between expression levels of miR-150 and prognosis.
Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia with Novel Targeted Agents.
Cheson, Bruce D; Heitner Enschede, Sari; Cerri, Elisa; Desai, Monali; Potluri, Jalaja; Lamanna, Nicole; Tam, Constantine
2017-11-01
Tumor lysis syndrome (TLS) is an uncommon but potentially life-threatening complication associated with the treatment of some cancers. If left untreated, TLS may result in acute renal failure, cardiac dysrhythmia, neurologic complications, seizures, or death. Tumor lysis syndrome is most commonly observed in patients with hematologic malignancies with a high proliferation rate undergoing treatment with very effective therapies. In chronic lymphocytic leukemia (CLL), historically, TLS has been observed less often, owing to a low proliferation rate and slow response to chemotherapy. New targeted therapies have recently been approved in the treatment of CLL, including the oral kinase inhibitors, idelalisib and ibrutinib, and the B-cell lymphoma-2 protein inhibitor, venetoclax. Several others are also under development, and combination strategies of these agents are being explored. This review examines the diagnosis, prevention, and management of TLS and summarizes the TLS experience in CLL clinical trials with newer targeted agents. Overall, the risk of TLS is small, but the consequences may be fatal; therefore, patients should be monitored carefully. Therapies capable of eliciting rapid response and combination regimens are increasingly being evaluated for treatment of CLL, which may pose a higher risk of TLS. For optimal management, patients at risk for TLS require prophylaxis and close monitoring with appropriate tests and appropriate management to correct laboratory abnormalities, which allows for safe and effective disease control. Tumor lysis syndrome (TLS) is a potentially fatal condition observed with hematologic malignancies, caused by release of cellular components in the bloodstream from rapidly dying tumor cells. The frequency and severity of TLS is partly dependent upon the biology of the disease and type of therapy administered. Novel targeted agents highly effective at inducing rapid cell death in chronic lymphocytic leukemia (CLL) may pose a risk for TLS in patients with tumors characterized by rapid growth, high tumor burden, and/or high sensitivity to treatment. In this review, prevention strategies and management of patients with CLL who develop TLS are described. © 2017 The Authors The Oncologist published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Development of venetoclax for therapy of lymphoid malignancies.
Zhu, Huayuan; Almasan, Alexandru
2017-01-01
B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications.
Development of venetoclax for therapy of lymphoid malignancies
Zhu, Huayuan; Almasan, Alexandru
2017-01-01
B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications. PMID:28331288
Gluzman, D F; Sklyarenko, L M; Nadgornaya, V A; Zavelevich, M P
2011-03-01
The data on the verified cases of mature B-cell neoplasms (chronic lymphocytic leukemia - CLL, B-prolymphocytic leukemia, non-Hodgkin's lymphoma in leukemization phase and multiple myeloma - MM; 146 cases in total) in the consecutive group of Ukrainian clean-up workers within 10-25 years after Chernobyl accident are summarized. B-cell neoplasms represent the most prevalent group among all diagnosed neoplasms of hematopoietic and lymphoid tissues in clean-up worker patients under study (49.4%). MM percentage in the patients of Chernobyl clean-up worker group turned out to be significantly higher than in the patients of the general populations studied at the same period. While the percentage of B-CLL is similar in clean-up worker patients and patients of general population, the trend towards younger age of patients with mature B-cell neoplasms in clean-up worker group is evident. The current concepts on the possible association between mature B-cell neoplasms (mainly B-CLL) and radiation exposure are briefly outlined. Only the precise diagnosis of hematopoietic malignancies combining with large-scale analytical epidemiological studies with careful dose assessment and long-term follow-up may represent the basis for resolving the question whether mature B-cell neoplasms may be radiogenic.
Minimal residual disease in chronic lymphocytic leukaemia.
García Vela, José Antonio; García Marco, José Antonio
2018-02-23
Minimal residual disease (MRD) assessment is an important endpoint in the treatment of chronic lymphocytic leukaemia (CLL). It is highly predictive of prolonged progression-free survival (PFS) and overall survival and could be considered a surrogate for PFS in the context of chemoimmunotherapy based treatment. Evaluation of MRD level by flow cytometry or molecular techniques in the era of the new BCR and Bcl-2 targeted inhibitors could identify the most cost-effective and durable treatment sequencing. A therapeutic approach guided by the level of MRD might also determine which patients would benefit from an early stop or consolidation therapy. In this review, we discuss the different MRD methods of analysis, which source of tumour samples must be analysed, the future role of the detection of circulating tumour DNA, and the potential role of MRD negativity in clinical practice in the modern era of CLL therapy. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Lilienthal, Nils; Lohmann, Gregor; Crispatzu, Giuliano; Vasyutina, Elena; Zittrich, Stefan; Mayer, Petra; Herling, Carmen Diana; Tur, Mehmet Kemal; Hallek, Michael; Pfitzer, Gabriele; Barth, Stefan; Herling, Marco
2016-05-01
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR. ©2016 American Association for Cancer Research.
Ryan, Christine E.; Sahaf, Bita; Logan, Aaron C.; O’Brien, Susan; Byrd, John C.; Hillmen, Peter; Brown, Jennifer R.; Dyer, Martin J. S.; Mato, Anthony R.; Keating, Michael J.; Jaglowski, Samantha; Clow, Fong; Rezvani, Andrew R.; Styles, Lori; Coutre, Steven E.
2016-01-01
Ibrutinib, a potent and irreversible small-molecule inhibitor of both Bruton’s tyrosine kinase and interleukin-2 inducible kinase (ITK), has been used to treat relapsed/refractory chronic lymphocytic leukemia (CLL) with prolongation of progression-free and overall survival. Here, we present 27 patients with relapsed CLL following allogeneic hematopoietic cell transplant (HCT) who subsequently received ibrutinib salvage therapy. Sixteen of these patients were part of multi-institutional clinical trials and achieved an overall response rate of 87.5%. An additional 11 patients were treated at Stanford University following US Food and Drug Administration approval of ibrutinib; 7 (64%) achieved a complete response, and 3 (27%) achieved a partial response. Of the 9 patients treated at Stanford who had mixed chimerism–associated CLL relapse, 4 (44%) converted to full donor chimerism following ibrutinib initiation, in association with disease response. Four of 11 (36%) patients evaluated by ClonoSeq achieved minimal residual disease negativity with CLL <1/10 000 white blood cells, which persisted even after ibrutinib was discontinued, in 1 case even after 26 months. None of the 27 patients developed graft-versus-host-disease (GVHD) following ibrutinib initiation. We postulate that ibrutinib augments the graft-versus-leukemia (GVL) benefit through a T-cell–mediated effect, most likely due to ITK inhibition. To investigate the immune modulatory effects of ibrutinib, we completed comprehensive immune phenotype characterization of peripheral B and T cells from treated patients. Our results show that ibrutinib selectively targets pre–germinal B cells and depletes Th2 helper cells. Furthermore, these effects persisted after drug discontinuation. In total, our results provide evidence that ibrutinib effectively augments GVL without causing GVHD. PMID:27802969
The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia.
Itchaki, Gilad; Brown, Jennifer R
2016-10-01
Venetoclax (VEN, ABT-199/GDC-0199) is an orally bioavailable BH3-mimetic that specifically inhibits the anti-apoptotic B-cell lymphoma/leukemia 2 (BCL2) protein. Although BCL2 overexpression is not genetically driven in chronic lymphocytic leukemia (CLL), it is nearly universal and represents a highly important and prevalent mechanism of apoptosis evasion, making it an attractive therapeutic target. This review summarizes the role of BCL2 in CLL pathogenesis, the development path targeting its inhibition prior to VEN, and the preclinical and clinical data regarding the effectiveness and safety of VEN. We further strive to contextualize VEN in the current CLL treatment landscape and discuss potential mechanisms of resistance.
A Phase II Study of Doxycycline in Relapsed NHL
2016-10-27
Adult Diffuse Large B-Cell Lymphoma; Mantle Cell Lymphoma Recurrent; Lymphoma, Follicular; Marginal Zone B-Cell Lymphoma; Malignant Lymphoma - Lymphoplasmacytic; Waldenstrom Macroglobulinemia; Small Lymphocytic Lymphoma; Chronic Lymphocytic Leukemia (CLL); T-Cell Lymphoma
Venetoclax for the treatment of chronic lymphocytic leukemia.
Gentile, Massimo; Petrungaro, Annamaria; Uccello, Giuseppina; Vigna, Ernesto; Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; De Stefano, Laura; Palummo, Angela; Storino, Francesca; Martino, Massimo; Morabito, Fortunato
2017-11-01
Venetoclax, an orally bioavailable inhibitor of BCL-2, was approved in 2016 by the United States Food and Drug Administration (FDA) for the treatment of chronic lymphocytic leukemia (CLL) patients with 17p deletion [del(17p)], who have received at least one prior therapy. Areas covered: We focus on the mechanism of action of venetoclax and on the clinical trial data that led to the approval of venetoclax for CLL patients. We also review the studies in which this drug has being explored in combination with other anti-CLL drugs. Expert opinion: Data from early clinical trials have shown that venetoclax, as a single agent, is highly effective for relapsed/refractory CLL patients, including those cases with high-risk features. Furthermore, venetoclax seems to be an appropriate option for patients who progress on B-cell receptor (BCR) pathway kinase inhibitors. Venetoclax is also safe, with the most common serious adverse events being neutropenia. The risk of tumor lysis syndrome (TLS) can be reduced by a slow dose ramp-up, careful monitoring, and adequate prophylaxis. Ongoing trials will further clarify the safety and efficacy of venetoclax in combination with other drugs in both relapsed/refractory and untreated CLL patients.
Kersting, Sabina; Neppelenbroek, Suzanne I M; Visser, Hein P J; van Gelder, Michel; Levin, Mark-David; Mous, Rogier; Posthuma, Ward; van der Straaten, Hanneke M; Kater, Arnon P
2018-01-01
In recent years, considerable progress has been made in the treatment of patients with chronic lymphocytic leukemia (CLL), and new potent drugs have become available. Therefore, the CLL working party revised the Dutch guidelines. Not only efficacy but also quality of life and socio-economic impact were taken into account in the formulation of treatment recommendations. The working party discussed a set of questions regarding diagnostic tests and treatment and wrote the draft guideline. This was evidence-based whenever possible, but in cases of low evidence, an expert-based recommendation was formulated with input of the entire working party. The draft guideline was sent to all hematologists in the Netherlands for comment and was subsequently approved. Recommendations were formulated on diagnostic tests and work-up before treatment. Also, recommendations were made for treatment with fludarabine-cyclophosphamide-rituximab, bendamustine-rituximab, chlorambucil with anti-CD20 antibody, ibrutinib, idelalisib-rituximab, venetoclax, and allogeneic stem cell transplantation. In the revised Dutch CLL guidelines, chemo-immunotherapy is still the cornerstone of CLL treatment with novel targeted drugs for specific risk groups. Copyright © 2017 Elsevier Inc. All rights reserved.
Gribben, John G
2010-01-14
Although chronic lymphocytic leukemia (CLL) remains incurable, over the past decade there have been major advances in understanding the pathophysiology of CLL and in the treatment of this disease. This has led to greatly increased response rates and durations of response but not yet improved survival. Advances in the use of prognostic factors that identify patients at high risk for progression have led us to the question whether there is still a role for a "watch and wait" approach in asymptomatic high-risk patients or whether they should be treated earlier in their disease course. Questions remain, including, what is the optimal first-line treatment and its timing and is there any role of maintenance therapy or stem cell transplantation in this disease? CLL is a disease of the elderly and not all patients are eligible for aggressive up-front chemoimmunotherapy regimens, so what is the optimal treatment approach for more frail elderly patients? It is highly likely that our treatment approaches will continue to evolve as the results of ongoing clinical trials are released and that further improvements in the outcome of this disease will result from identification of therapies that target the underlying pathophysiology of CLL.
Miller, M K; Strauchen, J A; Nichols, K T; Phelps, R G
2001-08-01
Patients who have chronic lymphocytic leukemia (CLL) are known to have a high frequency of second malignant neoplasms. However, acute myelogenous leukemia (AML) occurring concurrent with or after a diagnosis of CLL is extremely rare. In this article we report a case of AML developing in a 55-year-old male with a 6-year history of untreated CLL. The diagnosis was facilitated by touch preparation of a skin punch biopsy specimen. The patient presented with a two-week history of fever, weakness, anasarca, and a skin rash. Physical examination revealed pink to skin-colored firm papules, which coalesced into indurated plaques on his trunk, upper extremities, and face. The lesions, in combination with generalized edema, produced a leonine facies. Touch prep of the biopsy showed medium to large blasts, large monocytoid cells, and numerous small mature lymphocytes, providing the preliminary diagnosis of a second, previously undiagnosed myelomonocytic malignancy in this patient. The initial diagnosis was subsequently confirmed by histologic, cytochemical, immunohistochemical and flow cytometry studies. This is the first reported case of CLL with concurrent AML in which rapid touch prep of a skin punch biopsy facilitated diagnosis.
Co-existence of t(6;13)(p21;q14.1) and trisomy 12 in chronic lymphocytic leukemia.
de Oliveira, Fábio Morato; de Figueiredo Pontes, Lorena Lobo; Bassi, Sarah Cristina; Dalmazzo, Leandro Felipe Figueiredo; Falcão, Roberto Passetto
2012-06-01
We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.
Miller, Cecelia R; Ruppert, Amy S; Heerema, Nyla A; Maddocks, Kami J; Labanowska, Jadwiga; Breidenbach, Heather; Lozanski, Gerard; Zhao, Weiqiang; Gordon, Amber L; Jones, Jeffrey A; Flynn, Joseph M; Jaglowski, Samantha M; Andritsos, Leslie A; Blum, Kristie A; T Awan, Farrukh; Rogers, Kerry A; Grever, Michael R; Johnson, Amy J; Abruzzo, Lynne V; Hertlein, Erin K; Blachly, James S; Woyach, Jennifer A; Byrd, John C
2017-08-22
Ibrutinib is a highly effective targeted therapy for chronic lymphocytic leukemia (CLL). However, ibrutinib must be discontinued in a subset of patients due to progressive CLL or transformation to aggressive lymphoma (Richter transformation). Transformation occurs early in the course of therapy and has an extremely poor prognosis. Thus, identification of prognostic markers associated with transformation is of utmost importance. Near-tetraploidy (4 copies of most chromosomes within a cell) has been reported in various lymphomas, but its incidence and significance in CLL has not been described. Using fluorescence in situ hybridization, we detected near-tetraploidy in 9 of 297 patients with CLL prior to beginning ibrutinib treatment on 1 of 4 clinical trials (3.0%; 95% confidence interval [CI], 1.4%-5.7%). Near-tetraploidy was associated with aggressive disease characteristics: Rai stage 3/4 ( P = .03), deletion 17p ( P = .03), and complex karyotype ( P = .01). Near-tetraploidy was also associated with ibrutinib discontinuation due to Richter transformation ( P < .0001), but not due to progressive CLL ( P = .41). Of the 9 patients with near-tetraploidy, 6 had Richter transformation with diffuse large B-cell lymphoma. In a multivariable model, near-tetraploidy (hazard ratio [HR], 8.66; 95% CI, 3.83-19.59; P < .0001) and complex karyotype (HR, 4.77; 95% CI, 1.42-15.94; P = .01) were independent risk factors for discontinuing ibrutinib due to transformation. Our results suggest that near-tetraploidy is a potential prognostic marker for Richter transformation to assess in patients going on ibrutinib.
Schetelig, Johannes; de Wreede, Liesbeth C; Andersen, Niels S; Moreno, Carol; van Gelder, Michel; Vitek, Antonin; Karas, Michal; Michallet, Mauricette; Machaczka, Maciej; Gramatzki, Martin; Beelen, Dietrich; Finke, Jürgen; Delgado, Julio; Volin, Liisa; Passweg, Jakob; Dreger, Peter; Schaap, Nicolaas; Wagner, Eva; Henseler, Anja; van Biezen, Anja; Bornhäuser, Martin; Iacobelli, Simona; Putter, Hein; Schönland, Stefan O; Kröger, Nicolaus
2017-08-01
The best approach for allogeneic haematopoietic stem cell transplantations (alloHCT) in patients with chronic lymphocytic leukaemia (CLL) is unknown. We therefore analysed the impact of procedure- and centre-related factors on 5-year event-free survival (EFS) in a large retrospective study. Data of 684 CLL patients who received a first alloHCT between 2000 and 2011 were analysed by multivariable Cox proportional hazards models with a frailty component to investigate unexplained centre heterogeneity. Five-year EFS of the whole cohort was 37% (95% confidence interval [CI], 34-42%). Larger numbers of CLL alloHCTs (hazard ratio [HR] 0·96, P = 0·002), certification of quality management (HR 0·7, P = 0·045) and a higher gross national income per capita (HR 0·4, P = 0·04) improved EFS. In vivo T-cell depletion (TCD) with alemtuzumab compared to no TCD (HR 1·5, P = 0·03), and a female donor compared to a male donor for a male patient (HR 1·4, P = 0·02) had a negative impact on EFS, but not non-myeloablative versus more intensive conditioning. After correcting for patient-, procedure- and centre-characteristics, significant variation in centre outcomes persisted. In conclusion, further research on the impact of centre and procedural characteristics is warranted. Non-myeloablative conditioning appears to be the preferable approach for patients with CLL. © 2017 John Wiley & Sons Ltd.
Nückel, Holger; Frey, Ulrich H; Bau, Maja; Sellmann, Ludger; Stanelle, Jens; Dürig, Jan; Jöckel, Karl-Heinz; Dührsen, Ulrich; Siffert, Winfried
2007-01-01
Bcl-2 plays a key role in the regulation of apoptosis. We investigated the role of a novel regulatory single-nucleotide polymorphism (-938C>A) in the inhibitory P2 BCL2 promoter in B-cell chronic lymphocytic leukemia (B-CLL). The -938C allele displayed significantly increased BCL2 promoter activity and binding of nuclear proteins compared with the A allele. Concomitantly, Bcl-2 protein expression in B cells from CLL patients carrying the -938 AA genotype was significantly increased compared with CC genotypes. Genotype distribution between 123 CLL patients (42 AA, 55 AC, 26 CC) and 120 genotyped healthy controls (36 AA, 63 AC, 21 CC) was not significantly different, suggesting that genotypes of this polymorphism do not increase the susceptibility for B-CLL. However, median time from first diagnosis to initiation of chemotherapy and median overall survival were significantly shorter in patients with -938AA genotype (38 and 199 months, respectively) compared with AC/CC genotypes (120 and 321 months, respectively; P = .008 and P = .003, respectively). Multivariable Cox regression identified the BCL2-938AA genotype as an independent prognostic factor for the time to first treatment (hazard ratio [HR] 1.9; P = .034) together with disease stage at diagnosis (HR 2.5; P = .004) and ZAP-70 status (HR 3.0; P = .001). The BCL2-938AA genotype is associated with increased Bcl-2 expression and a novel unfavorable genetic marker in patients with B-CLL.
van Gorkom, Gwendolyn; van Gelder, Michel; Eikema, Dirk-Jan; Blok, Henric-Jan; van Lint, M T; Koc, Yener; Ciceri, Fabio; Beelen, Dietrich; Chevallier, Patrice; Selleslag, Dominik; Blaise, Didier; Foá, Roberto; Corradini, Paolo; Castagna, Luca; Moreno, Carol; Solano, Carlos; Müller, Lutz Peter; Tischer, Johanna; Hilgendorf, Inken; Hallek, Michael; Bittenbring, Jörg; Theobald, Matthias; Schetelig, Johannes; Kröger, Nicolaus
2018-03-01
Allogeneic hematopoietic stem cell transplantation (HCT) may result in long-term disease control in high-risk chronic lymphocytic leukemia (CLL). Recently, haploidentical HCT is gaining interest because of better outcomes with post-transplantation cyclophosphamide (PTCY). We analyzed patients with CLL who received an allogeneic HCT with a haploidentical donor and whose data were available in the EBMT registry. In total 117 patients (74% males) were included; 38% received PTCY as GVHD prophylaxis. For the whole study cohort OS at 2 and 5 yrs was 48 and 38%, respectively. PFS at 2 and 5 yrs was 38 and 31%, respectively. Cumulative incidence (CI) of NRM in the whole group at 2 and 5 years were 40 and 44%, respectively. CI of relapse at 2 and 5 yrs were 22 and 26%, respectively. All outcomes were not statistically different in patients who received PTCY compared to other types of GVHD prophylaxis. In conclusion, results of haploidentical HCT in CLL seem almost identical to those with HLA-matched donors. Thereby, haploidentical HCT is an appropriate alternative in high risk CLL patients with a transplant indication but no available HLA-matched donor. Despite the use of PTCY, the CI of relapse seems not higher than observed after HLA-matched HCT.
Reduced intensity versus full myeloablative stem cell transplant for advanced CLL.
Peres, E; Braun, T; Krijanovski, O; Khaled, Y; Levine, J E; Yanik, G; Kato, K; Mineishi, S
2009-11-01
CLL remains incurable with the standard therapy. Allogeneic hematopoietic stem cell transplant may be curative. We examined 50 patients with advanced CLL who underwent allogeneic HCT at the University of Michigan between 1996 and 2006. Twenty-one patients received reduced-intensity conditioning (RIC) and twenty-nine patients received full-intensity conditioning (FIC) consisting of CY, etoposide and BCNU (n=20) or BU and CY (n=9). RIC recipients were older than FIC recipients (median age 54 vs 51, P=0.009). There were no statistically significant differences between groups in terms of the number of earlier therapies or patients with adverse cytogenetics. There were more unrelated donors in the RIC group 62% than in the FIC group 31% (P=0.030). Despite their older age and greater use of URD, the 5-year overall survival (OS) rate was 63% in the RIC group as compared with 18% in the FIC group (P=0.006). The primary cause of inferior survival in the FIC recipients was TRM, which was twice as high at day 100 for the FIC group 27% compared with the RIC group 14% (P=0.005). The relapse rate was 15% regardless with the majority of relapses occurring after day 100. These results suggest a favorable outcome for advanced CLL who undergo a RIC regimen compared with FIC.
Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.
Chen, Shih-Shih; Chiorazzi, Nicholas
2014-07-01
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.
Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan
2006-07-15
ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.
CARs in Chronic Lymphocytic Leukemia – Ready to Drive
Wierda, William; Jena, Bipulendu; Cooper, Laurence J. N.; Shpall, Elizabeth
2013-01-01
Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR+ T cell therapy. PMID:23225251
Tsakou, Eugenia; Agathagelidis, Andreas; Boudjoghra, Myriam; Raff, Thorsten; Dagklis, Antonis; Chatzouli, Maria; Smilevska, Tatjana; Bourikas, George; Merle-Beral, Helene; Manioudaki-Kavallieratou, Eleni; Anagnostopoulos, Achilles; Brüggemann, Monika; Davi, Frederic; Stamatopoulos, Kostas; Belessi, Chrysoula
2012-01-01
The frequent occurrence of stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences among unrelated cases with chronic lymphocytic leukemia (CLL) is widely taken as evidence for antigen selection. Stereotyped VH CDR3 sequences are often defined by the selective association of certain immunoglobulin heavy diversity (IGHD) genes in specific reading frames with certain immunoglobulin heavy joining (IGHJ ) genes. To gain insight into the mechanisms underlying VH CDR3 restrictions and also determine the developmental stage when restrictions in VH CDR3 are imposed, we analyzed partial IGHD-IGHJ rearrangements (D-J) in 829 CLL cases and compared the productively rearranged D-J joints (that is, in-frame junctions without junctional stop codons) to (a) the productive immunoglobulin heavy variable (IGHV )-IGHD-IGHJ rearrangements (V-D-J) from the same cases and (b) 174 D-J rearrangements from 160 precursor B-cell acute lymphoblastic leukemia cases (pre-B acute lymphoblastic leukemia [ALL]). Partial D-J rearrangements were detected in 272/829 CLL cases (32.8%). Sequence analysis was feasible in 238 of 272 D-J rearrangements; 198 of 238 (83.2%) were productively rearranged. The D-J joints in CLL did not differ significantly from those in pre-B ALL, except for higher frequency of the IGHD7-27 and IGHJ6 genes in the latter. Among CLL carrying productively rearranged D-J, comparison of the IGHD gene repertoire in productive V-D-J versus D-J revealed the following: (a) overuse of IGHD reading frames encoding hydrophilic peptides among V-D-J and (b) selection of the IGHD3-3 and IGHD6-19 genes in V-D-J junctions. These results document that the IGHD and IGHJ gene biases in the CLL expressed VH CDR3 repertoire are not stochastic but are directed by selection operating at the immunoglobulin protein level. PMID:21968789
[CD22 signal abnormalities in the pathogenesis of immune related pancytopenia].
Wu, Xiaojing; Shao, Zonghong; Ruan, Erbao; Fu, Rong; Wang, Guojin; Liu, Hong; Wu, Yuhong; Song, Jia; Xing, Limin; Qu, Wen; Cuan, Jing; Li, Lijuan; Wang, Xiaoming; Liu, Hui; Wang, Yihao; Wang, Huaquan
2015-07-14
To investigate the expression of CD22 and its downstream signal molecule spleen tyrosine kinase (SYK) and their phosphorylation of B lymphocytes in patients with immune related pancytopenia(IRP), and to explore the role of CD22 in pathogenesis of IRP. The expression of CD22, SYK and their phosphorylation, along with the expression of IgG and IgM, which obtained from B lymphocytes in peripheral blood of 46 patients with IRP(22 new diagnosed and 24 remitted patients returned to normal after treatment), 22 healthy controls and 12 chronic lymphocytic leukemia(CLL) patients from February to December 2014 were analyzed by flow cytometry. And the mRNA expression of CD22 in peripheral blood mononuclear cell was determined by real-time quantitative PCR. The ratios of CD22+ cells and phosphorylated CD22(pCD22)+ cells of B lymphocytes in new diagnosed group (60. 03% ± 20. 94% 71. 32% ± 11. 16%) were significantly higher than those in remission group (46. 92% ± 20. 04%, 55. 82% ± 14. 42%), normal control group (46. 86% ± 17. 78%, 53. 28% ± 14. 76%) and CLL group (39. 74% ± 18. 96%, 59. 07% ± 17.09%) (all P <0.05). The ratios of phosphorylated SYK( pSYK) + cells in the four groups had the same trend (all P <0. 05). The ratio of pCD22+ cells/pSYK+ cells in new diagnosed group was significantly lower than that in normal control group and CLL group (27. 39 (5. 06 - 102. 70) vs 55. 95 (15. 25 - 298. 53), 56. 92(5. 60 - 228. 96), both P <0. 05), and pCD22+ cells positively correlated to pSYK+ cells ( r = 0. 341, P < 0. 05). The expression of IgG in new diagnosed group and remission group was significantly higher than that in normal control group, and the expression of IgM in new diagnosed group was significantly higher than that in normal control group and CLL group (all P <0. 05). The expression levels of CD22 mRNA in new diagnosed group was significantly higher than that in remission group, normal control group and CLL group (all P <0. 05). The BCR signal pathway of B lymphocyte in IRP patients is enhanced, and the quantity and function of CD22 are increased, while which are still insufficient to inhibit B cell proliferation, and these may have some relationships with the pathogenesis of IRP. [Key words] Pancytopenia; Antigens, CD22; Immune related pancytopenia; Spleen tyrosine kinase; Phosphorylation
Mobilization of peripheral blood stem cells in CLL patients after front-line fludarabine treatment.
Lysak, D; Koza, V; Steinerova, K; Jindra, P; Vozobulova, V; Schutzova, M
2005-07-01
Autologous peripheral blood stem cell transplantation is performed in an increasing number of chronic lymphocytic leukaemia (CLL) patients who are in the first remission following fludarabine treatment. There are contradictory data about the adverse impact of fludarabine on stem cell harvest. We analysed retrospectively mobilization results in 56 poor-risk CLL patients (median age: 56 years) who underwent first-line treatment with fludarabine and cyclophosphamide. The mobilization, consisting of cyclophosphamide 3 g/m(2) and granulocyte colony-stimulating factor (G-CSF) 10 microg/kg per day, was performed with a median of 77 days following the last fludarabine course. The target yield was >or=2.0x10(6) CD34+ cells/kg. The procedure was successful in 23 (41%) patients. A median of 3.3x10(6) CD34+ cells/kg was collected per patient. The successful mobilization was associated with a longer interval from the last chemotherapy (>2 months). The mobilization result was not influenced by the number of fludarabine cycles. No correlation was found in other parameters such as disease stage at diagnosis, disease status at stimulation or age. The poorly mobilized patients had significantly lower prestimulation blood counts (platelets, WBC and haemoglobin). Our data show that fludarabine does not generally prevent the stem cell mobilization; nevertheless, mechanisms related to the impact of fludarabine on stem cell harvest must be further investigated.
What is the best frontline therapy for patients with CLL and 17p deletion?
Badoux, Xavier C; Keating, Michael J; Wierda, William G
2011-03-01
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease with significant variation in disease progression, response to therapy, and survival outcome. Deletions of 17p or mutations of TP53 have been identified as one of the poorest prognostic factors, being predictive of short time for disease progression, lack of response to therapy, short response duration, and short overall survival. The treatment of patients with CLL has improved significantly with the development of chemoimmunotherapy, but this benefit was not pronounced in patients with 17p deletion. We compare various treatment strategies used in these patients, including FCR-like chemoimmunotherapy, alemtuzumab, other antibody combinations, or novel targeted therapies with promising results. Allogeneic stem cell transplantation offers the possibility for long-term disease control in these patients and should be considered early in younger, transplant-eligible patients. The current state of therapy is far from optimal and resources should be applied to studying therapeutic options for patients who have CLL with loss of p53 function.
Non-coding recurrent mutations in chronic lymphocytic leukaemia.
Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías
2015-10-22
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
Morton, Lindsay M.; Curtis, Rochelle E.; Linet, Martha S.; Bluhm, Elizabeth C.; Tucker, Margaret A.; Caporaso, Neil; Ries, Lynn A.G.; Fraumeni, Joseph F.
2010-01-01
Purpose Previous studies have shown increased risks of second malignancies after non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL); however, no earlier investigation has quantified differences in risk of new malignancy by lymphoma subtype. Patients and Methods We evaluated second cancer and leukemia risks among 43,145 1-year survivors of CLL/small lymphocytic lymphoma (SLL), diffuse large B-cell lymphoma (DLBCL), or follicular lymphoma (FL) from 11 Surveillance, Epidemiology, and End Results (SEER) population-based registries during 1992 to 2006. Results Among patients without HIV/AIDS–related lymphoma, lung cancer risks were significantly elevated after CLL/SLL and FL but not after DLBCL (standardized incidence ratio [SIR], CLL/SLL = 1.42, FL = 1.28, DLBCL = 1.00; Poisson regression P for difference among subtypes, PDiff = .001). A similar pattern was observed for risk of cutaneous melanoma (SIR: CLL/SLL = 1.92, FL = 1.60, DLBCL = 1.06; PDiff = .004). Acute nonlymphocytic leukemia risks were significantly elevated after FL and DLBCL, particularly among patients receiving initial chemotherapy, but not after CLL/SLL (SIR: CLL/SLL = 1.13, FL = 5.96, DLBCL = 4.96; PDiff < .001). Patients with HIV/AIDS–related lymphoma (n = 932) were predominantly diagnosed with DLBCL and had significantly and substantially elevated risks for second anal cancer (SIR = 120.50) and Kaposi's sarcoma (SIR = 138.90). Conclusion Our findings suggest that differing immunologic alterations, treatments (eg, alkylating agent chemotherapy), genetic susceptibilities, and other risk factors (eg, viral infections, tobacco use) among lymphoma subtypes contribute to the patterns of second malignancy risk. Elucidating these patterns may provide etiologic clues to lymphoma as well as to the second malignancies. PMID:20940199
CAR T-cells merge into the fast lane of cancer care.
Frey, Noelle V; Porter, David L
2016-01-01
Chimeric antigen receptors (CARs) can be introduced into T-cells redirecting them to target specific tumor antigens. CAR-modified T cells targeting CD19 have shown remarkable activity against CD19+ malignancies including B cell acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphomas (NHL). Complete remission rates as high as 90% have been observed for patients with relapsed and refractory ALL and greater than 50% response rates have been seen in heavily pre-treated CLL and NHL. Excitingly, some remissions have been durable without any additional therapy, a finding which correlates with in-vivo T-cell persistence and B-cell aplasia. The major treatment related toxicities include B-cell aplasia, neurologic toxicities, and a potentially severe cytokine release syndrome. This review summarizes outcomes for patients treated with CD19-CAR T-cells while exploring the field's challenges and future directions. © 2015 Wiley Periodicals, Inc.
Marcatili, Paolo; Ghiotto, Fabio; Tenca, Claudya; Chailyan, Anna; Mazzarello, Andrea N; Yan, Xiao-Jie; Colombo, Monica; Albesiano, Emilia; Bagnara, Davide; Cutrona, Giovanna; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Chiorazzi, Nicholas; Tramontano, Anna; Fais, Franco
2013-06-01
Ag selection has been suggested to play a role in chronic lymphocytic leukemia (CLL) pathogenesis, but no large-scale analysis has been performed so far on the structure of the Ag-binding sites (ABSs) of leukemic cell Igs. We sequenced both H and L chain V(D)J rearrangements from 366 CLL patients and modeled their three-dimensional structures. The resulting ABS structures were clustered into a small number of discrete sets, each containing ABSs with similar shapes and physicochemical properties. This structural classification correlates well with other known prognostic factors such as Ig mutation status and recurrent (stereotyped) receptors, but it shows a better prognostic value, at least in the case of one structural cluster for which clinical data were available. These findings suggest, for the first time, to our knowledge, on the basis of a structural analysis of the Ab-binding sites, that selection by a finite quota of antigenic structures operates on most CLL cases, whether mutated or unmutated.
Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.
Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew
2018-06-01
Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.
Palanca-Wessels, Maria Corinna A; Czuczman, Myron; Salles, Gilles; Assouline, Sarit; Sehn, Laurie H; Flinn, Ian; Patel, Manish R; Sangha, Randeep; Hagenbeek, Anton; Advani, Ranjana; Tilly, Herve; Casasnovas, Olivier; Press, Oliver W; Yalamanchili, Sreeni; Kahn, Robert; Dere, Randall C; Lu, Dan; Jones, Surai; Jones, Cheryl; Chu, Yu-Waye; Morschhauser, Franck
2015-06-01
Patients with relapsed or refractory B-cell non-Hodgkin lymphoma (NHL) have an unfavourable prognosis with few treatment options. Polatuzumab vedotin is an antibody-drug conjugate containing an anti-CD79B monoclonal antibody conjugated to the microtubule-disrupting agent monomethyl auristatin E. We aimed to assess the safety and clinical activity of polatuzumab vedotin in relapsed or refractory B-cell NHL and chronic lymphocytic leukaemia (CLL). In this phase 1, multicentre, open-label study, we enrolled patients with documented NHL or CLL expected to express CD79B (confirmation of CD79B expression was not required) and for whom no suitable therapy of curative intent or higher priority existed from 13 centres. The primary endpoints of the study were to assess safety and tolerability, determine the maximum tolerated dose, and identify the recommended phase 2 dose of polatuzumab vedotin as a single agent and in combination with rituximab. A 3 + 3 dose-escalation design was used in which we treated patients with polatuzumab vedotin (0·1-2·4 mg/kg every 21 days) in separate dose-escalation cohorts for NHL and CLL. After determination of the recommended phase 2 dose, we enrolled patients with relapsed or refractory diffuse large B-cell lymphoma and relapsed or refractory indolent NHL into indication-specific cohorts. We also enrolled patients with relapsed or refractory NHL into an additional cohort to assess the feasibility of the combination of polatuzumab vedotin and rituximab 375 mg/m(2). Patients who received any dose of polatuzumab vedotin were available for safety analyses. This study is registered with ClinicalTrials.gov, number NCT01290549. Between March 21, 2011, and Nov 30, 2012, we enrolled 95 patients (34 to the NHL dose-escalation cohort, 18 to the CLL dose-escalation cohort, 34 with NHL to the expansion cohort at the recommended phase 2 dose, and nine with NHL to the rituximab combination cohort; no expansion cohort of CLL was started due to lack of activity in the dose-escalation cohort). The recommended phase 2 dose in NHL was 2·4 mg/kg as a single agent and in combination with rituximab; the maximum tolerated dose in CLL was 1·0 mg/kg as a result of dose-limiting toxic effects reported in two of five patients given 1·8 mg/kg. Grade 3-4 adverse events were reported in 26 (58%) of 45 patients with NHL treated at the single-agent recommended phase 2 dose, and the most common grade 3-4 adverse events were neutropenia (18 [40%] of 45), anaemia (five [11%]), and peripheral sensory neuropathy (four [9%]). Serious adverse events were reported in 17 (38%) of 45 patients, and included diarrhoea (two patients), lung infection (two patients), disease progression (two patients), and lung disorder (two patients). Seven (77%) of nine patients in the rituximab combination cohort had a grade 3-4 adverse event, with neutropenia (five [56%]), anaemia (two [22%]), and febrile neutropenia (two [22%]) reported in more than one patient. 11 (12%) of 95 patients died during the study: eight with relapsed or refractory diffuse large B-cell lymphoma (due to progressive disease in four patients, infections in three patients [two treatment related], and treatment-related worsening ascites in one patient) and three with relapsed or refractory CLL (due to progressive disease, pulmonary infection, and pneumonia; none thought to be treatment-related). At the recommended phase 2 dose, objective responses were noted in 23 of 42 activity-evaluable patients with NHL given single-agent polatuzumab vedotin (14 of 25 with diffuse large B-cell lymphoma, seven of 15 with indolent NHL, and two with mantle-cell lymphoma) and seven of nine patients treated with polatuzumab vedotin combined with rituximab. No objective responses were observed in patients with CLL. Polatuzumab vedotin has an acceptable safety and tolerability profile in patients with NHL but not in those with CLL. Its clinical activity should be further assessed in NHL. Genentech. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koczkodaj, Dorota; Popek, Sylwia; Zmorzyński, Szymon; Wąsik-Szczepanek, Ewa; Filip, Agata A
2016-04-01
One of the research methods of prognostic value in chronic lymphocytic leukemia (CLL) is cytogenetic analysis. This method requires the presence of appropriate B-cell mitogens in cultures in order to obtain a high mitotic index. The aim of our research was to determine the most effective methods of in vitro B-cell stimulation to maximize the number of metaphases from peripheral blood cells of patients with CLL for classical cytogenetic examination, and then to correlate the results with those obtained using fluorescence in situ hybridization (FISH). The study group involved 50 consecutive patients with CLL. Cell cultures were maintained with the basic composition of culture medium and addition of respective stimulators. We used the following stimulators: Pokeweed Mitogen (PWM), 12-O-tetradecanoylphorbol 13-acetate (TPA), ionophore, lipopolysaccharide (LPS), and CpG-oligonucleotide DSP30. We received the highest mitotic index when using the mixture of PWM+TPA+I+DSP30. With classical cytogenetic tests using banding techniques, numerical and structural aberrations of chromosomes were detected in 46 patients, and no change was found in only four patients. Test results clearly confirmed the legitimacy of using cell cultures enriched with the mixture of cell stimulators and combining classical cytogenetic techniques with the FISH technique in later patient diagnosing. Copyright © 2016 American Federation for Medical Research.
Voltan, Rebecca; Rimondi, Erika; Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola
2016-10-25
The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL.
Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola
2016-01-01
Objective The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. Methods The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Results Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Conclusions Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL. PMID:27661115
Wang, Li; Miao, Kourong; Fan, Lei; Xu, Ji; Wu, Hanxin; Li, Jianyong; Xu, Wei
2016-04-01
To investigate the effectiveness and safety of reduced intensity conditioning allogeneic hematopoietic stem cell transplantation (RIC allo-HSCT) in ultra high risk chronic lymphocytic leukemia (CLL) patients with the deletion of p53 to deepen the understanding of allo-HSCT in the treatment of CLL. In this retrospective study, a total of 4 ultra high risk CLL patients with the deletion of p53 in our center between July 2012 and Jan 2014 were enrolled. The RIC regimen was administered and the hematopoietic reconstitution, transplantation related mortality (TRM), overall survival (OS), progress free survival (PFS) were evaluated. We registered 4 patients with the median age of 56 years (49-61 years), including 3 males and 1 female. The median mononuclear cells (MNC) and CD34(+) cells were 6.54 (2.85-14.7) × 10(8)/kg (recipient body weight) and 5.81 (2.85-7.79) × 10(6)/kg (recipient body weight), respectively. The median time of the neutrophil recovery was 11 days (range of 9-12 days), and the median time of the platelet recovery 5.5 days (range of 0-11 days). Three patients (75%) attained a full donor chimerism at day 28 after transplantation and one (25%) got a mixed chimerism of donor and recipient. During the follow-up at a median time of 26.5 months (range of 21-39 months), 2 (50%) patients developed acute graft versus host disease (aGVHD) grade I and 2 (50%) patients got CMV infection. One patient got herpes zoster virus and EB virus infections. No transplantation related mortality was found in the 4 patients. One patient who was in partial response status progressed 5 months after transplantation, and the other 3 patients remained in durable remission after allo-HSCT. These results suggested that RIC allo-HSCT showed durable remission, good tolerance and acceptable toxicity, which could be a better option for the treatment of ultra high risk CLL patients with the deletion of p53 and was worth to be investigated and applied widely in future.
Ojha, Juhi; Dyagil, Iryna; Finch, Stuart C; Reiss, Robert F; de Smith, Adam J; Gonseth, Semira; Zhou, Mi; Hansen, Helen M; Sherborne, Amy L; Nakamura, Jean; Bracci, Paige M; Gudzenko, Nataliya; Hatch, Maureen; Babkina, Nataliya; Little, Mark P; Chumak, Vadim V; Walsh, Kyle M; Bazyka, Dimitry; Wiemels, Joseph L; Zablotska, Lydia B
2018-05-02
Chronic lymphocytic leukemia (CLL) was the predominant leukemia in a recent study of Chornobyl cleanup workers from Ukraine exposed to radiation (UR-CLL). Radiation risks of CLL significantly increased with increasing bone marrow radiation doses. Current analysis aimed to clarify whether the increased risks were due to radiation or to genetic mutations in the Ukrainian population. A detailed characterization of the genomic landscape was performed in a unique sample of 16 UR-CLL patients and age- and sex-matched unexposed general population Ukrainian-CLL (UN-CLL) and Western-CLL (W-CLL) patients (n = 28 and 100, respectively). Mutations in telomere-maintenance pathway genes POT1 and ATM were more frequent in UR-CLL compared to UN-CLL and W-CLL (both p < 0.05). No significant enrichment in copy-number abnormalities at del13q14, del11q, del17p or trisomy12 was identified in UR-CLL compared to other groups. Type of work performed in the Chornobyl zone, age at exposure and at diagnosis, calendar time, and Rai stage were significant predictors of total genetic lesions (all p < 0.05). Tumor telomere length was significantly longer in UR-CLL than in UN-CLL (p = 0.009) and was associated with the POT1 mutation and survival. No significant enrichment in copy-number abnormalities at CLL-associated genes was identified in UR-CLL compared to other groups. The novel associations between radiation exposure, telomere maintenance and CLL prognosis identified in this unique case series provide suggestive, though limited data and merit further investigation.
Morphologic identification of atypical chronic lymphocytic leukemia by digital microscopy.
Marionneaux, S; Maslak, P; Keohane, E M
2014-08-01
Atypical chronic lymphocytic leukemia (aCLL) is a morphologic variant found in approximately 25% of patients with chronic lymphocytic leukemia (CLL). Although aCLL has a more aggressive course compared to typical CLL (tCLL), it is not usually reported. This retrospective study used digital microscopy to morphologically classify CLL patients as aCLL or tCLL, and determined the prevalence of prognostic markers in each group. CellaVision AB (Lund, Sweden) was used to evaluate lymphocyte morphology on archived blood films of 97 CLL patients, and results of their prognostic marker analysis at diagnosis were obtained. The unpaired t-test, Chi-square, or Fisher's Exact test were used for statistical analysis. 27% of CLL cases were morphologically classified as aCLL. The aCLL group had a higher prevalence of trisomy 12, unmutated IgVH, and CD38 expression (markers associated with poor prognosis), and a lower prevalence of 13q14 deletions compared to tCLL; this was statistically significant. Using digital imaging to identify aCLL is feasible, economical, and may provide clinically relevant prognostic information at diagnosis and during periodic monitoring. Further study of a larger number of patients is needed to assess the clinical utility of reporting aCLL morphology. © 2013 John Wiley & Sons Ltd.
Venetoclax in Patients with Previously Treated Chronic Lymphocytic Leukemia.
Roberts, Andrew W; Stilgenbauer, Stephan; Seymour, John F; Huang, David C S
2017-08-15
Venetoclax is the first BCL2 inhibitor to enter routine clinical practice. It is an orally bioavailable small molecule that binds BCL2 very specifically. Acting as a pharmacologic mimic of the proteins that initiate apoptosis (a so-called BH3 mimetic), venetoclax rapidly induces apoptosis in chronic lymphocytic leukemia (CLL) cells, which express high levels of BCL2 and rely on it to maintain their survival. As a single agent, daily venetoclax treatment induced durable responses in 79% of patients with relapsed or refractory CLL or small lymphocytic lymphoma in a phase I study, including complete remissions in 20% of patients. Its use was approved by the FDA in April 2016 for patients with previously treated del(17p) CLL on the basis of a single-arm phase II trial demonstrating a 79% response rate and an estimated 1-year progression-free survival of 72% with 400 mg/day continuous therapy. This review focuses on venetoclax, its mechanism of action, pharmacology, and clinical trial data and seeks to place it in the context of rapid advances in therapy for patients with relapsed CLL, especially those with del(17p) CLL. Clin Cancer Res; 23(16); 4527-33. ©2017 AACR . ©2017 American Association for Cancer Research.
Bendamustine added to allogeneic conditioning improves long-term outcomes in patients with CLL.
Khouri, I F; Sui, D; Jabbour, E J; Samuels, B I; Turturro, F; Alatrash, G; Anderlini, P; Ahmed, S; Oran, B; Ciurea, S O; Marin, D; Olson, A; Patel, K K; Popat, U R; Ledesma, C; Kadia, T M; Ferrajoli, A; Burger, J A; Jorgensen, J L; Medeiros, L J; Bassett, R L; Gulbis, A M
2017-01-01
Bendamustine has shown a favorable safety profile when included in chemotherapy regimens for several types of lymphoma, including CLL. This study investigated the long-term effect of adding bendamustine to a conditioning regimen on survival, rate of engraftment, immune recovery and GvHD after allogeneic stem cell transplantation (alloSCT) in CLL patients. These outcomes were compared with the fludarabine, cyclophosphamide and rituximab (FCR) conditioning regimen. We reviewed the data for 89 CLL patients treated on three trials at our institution. Twenty-six (29%) patients received bendamustine, fludarabine and rituximab (BFR) and 63 (71%) received FCR. Patient characteristics were similar in both groups. Ten (38%) BFR-treated patients vs only two (3%) FCR-treated patients did not experience severe neutropenia (P=<0.001). The 3-year overall survival estimates for the BFR and FCR groups were 82 and 51% (P=0.03), and the 3-year PFS estimates were 63% and 27% (P=0.001), respectively. The 2-year treatment-related mortality was 8 and 23% and the incidence of grade 3 or 4 GvHD was 4% and 10%, respectively. This study is the first to report that addition of bendamustine to alloSCT conditioning for CLL patients is associated with improved survival and lower mortality, myelosuppression, and GvHD.
Dilley, Robert L.; Poh, Weijie; Gladstone, Douglas E.; Herman, James G.; Showel, Margaret M.; Karp, Judith E.; McDevitt, Michael A.; Pratz, Keith W.
2014-01-01
DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. PMID:24439051
Targeting malignant B cells with an immunotoxin against ROR1
Baskar, Sivasubramanian; Wiestner, Adrian; Wilson, Wyndham H.; Pastan, Ira; Rader, Christoph
2012-01-01
The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes. A ROR1- immunotoxin (BT-1) consisting of truncated Pseudomonas exotoxin A (PE38) and the VH and VL fragments of 2A2-IgG was made recombinantly. Both 2A2-IgG and BT-1 showed dose-dependent and selective binding to primary CLL and MCL cells and MCL cell lines. Kinetic analyses revealed 0.12-nM (2A2-IgG) to 65-nM (BT-1) avidity/affinity to hROR1, depicting bivalent and monovalent interactions, respectively. After binding to cell surface ROR1, 2A2-IgG and BT-1 were partially internalized by primary CLL cells and MCL cell lines, and BT-1 induced profound apoptosis of ROR1-expressing MCL cell lines in vitro (EC50 = 16 pM–16 nM), but did not affect ROR1-negative cell lines. Our data suggest that ROR1-immunotoxins such as BT-1 could serve as targeted therapeutic agents for ROR1-expressing B cell malignancies and other cancers. PMID:22531447
Landau, Dan A.; Clement, Kendell; Ziller, Michael J.; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M.; Livak, Kenneth J.; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S.; Brown, Jennifer R.; Neuberg, Donna; Kharchenko, Peter V.; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J.
2014-01-01
SUMMARY Intra-tumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLL). Compared to 26 normal B cell samples, CLLs consistently displayed higher intra-sample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. PMID:25490447
Herman, Sarah E M; Montraveta, Arnau; Niemann, Carsten U; Mora-Jensen, Helena; Gulrajani, Michael; Krantz, Fanny; Mantel, Rose; Smith, Lisa L; McClanahan, Fabienne; Harrington, Bonnie K; Colomer, Dolors; Covey, Todd; Byrd, John C; Izumi, Raquel; Kaptein, Allard; Ulrich, Roger; Johnson, Amy J; Lannutti, Brian J; Wiestner, Adrian; Woyach, Jennifer A
2017-06-01
Purpose: Acalabrutinib (ACP-196) is a novel, potent, and highly selective Bruton tyrosine kinase (BTK) inhibitor, which binds covalently to Cys481 in the ATP-binding pocket of BTK. We sought to evaluate the antitumor effects of acalabrutinib treatment in two established mouse models of chronic lymphocytic leukemia (CLL). Experimental Design: Two distinct mouse models were used, the TCL1 adoptive transfer model where leukemic cells from Eμ-TCL1 transgenic mice are transplanted into C57BL/6 mice, and the human NSG primary CLL xenograft model. Mice received either vehicle or acalabrutinib formulated into the drinking water. Results: Utilizing biochemical assays, we demonstrate that acalabrutinib is a highly selective BTK inhibitor as compared with ibrutinib. In the human CLL NSG xenograft model, treatment with acalabrutinib demonstrated on-target effects, including decreased phosphorylation of PLCγ2, ERK, and significant inhibition of CLL cell proliferation. Furthermore, tumor burden in the spleen of the mice treated with acalabrutinib was significantly decreased compared with vehicle-treated mice. Similarly, in the TCL1 adoptive transfer model, decreased phosphorylation of BTK, PLCγ2, and S6 was observed. Most notably, treatment with acalabrutinib resulted in a significant increase in survival compared with mice receiving vehicle. Conclusions: Treatment with acalabrutinib potently inhibits BTK in vivo , leading to on-target decreases in the activation of key signaling molecules (including BTK, PLCγ2, S6, and ERK). In two complementary mouse models of CLL, acalabrutinib significantly reduced tumor burden and increased survival compared with vehicle treatment. Overall, acalabrutinib showed increased BTK selectivity compared with ibrutinib while demonstrating significant antitumor efficacy in vivo on par with ibrutinib. Clin Cancer Res; 23(11); 2831-41. ©2016 AACR . ©2016 American Association for Cancer Research.
Herman, Sarah E. M.; Montraveta, Arnau; Niemann, Carsten U.; Mora-Jensen, Helena; Gulrajani, Michael; Krantz, Fanny; Mantel, Rose; Smith, Lisa L.; McClanahan, Fabienne; Harrington, Bonnie K.; Colomer, Dolors; Covey, Todd; Byrd, John C.; Izumi, Raquel; Kaptein, Allard; Ulrich, Roger; Johnson, Amy J.; Lannutti, Brian J.; Wiestner, Adrian; Woyach, Jennifer A.
2017-01-01
Purpose Acalabrutinib (ACP-196) is a novel, potent, and highly selective BTK inhibitor, which binds covalently to Cys481 in the ATP-binding pocket of BTK. We sought to evaluate the anti-tumor effects of acalabrutinib treatment in two established mouse models of chronic lymphocytic leukemia (CLL). Experimental Design Two distinct mouse models were used, the TCL1 adoptive transfer model where leukemic cells from Eμ-TCL1 transgenic mice are transplanted into C57BL/6 mice, and the human NSG primary CLL xenograft model. Mice received either vehicle or acalabrutinib formulated into the drinking water. Results Utilizing biochemical assays we demonstrate that acalabrutinib is a highly selective BTK inhibitor as compared to ibrutinib. In the human CLL NSG xenograft model, treatment with acalabrutinib demonstrated on-target effects including decreased phosphorylation of PLCγ2, ERK and significant inhibition of CLL cell proliferation. Further, tumor burden in the spleen of the mice treated with acalabrutinib was significantly decreased compared to vehicle treated mice. Similarly, in the TCL1 adoptive transfer model, decreased phosphorylation of BTK, PLCγ2 and S6 was observed. Most notably, treatment with acalabrutinib resulted in a significant increase in survival compared to mice receiving vehicle. Conclusions Treatment with acalabrutinib potently inhibits BTK in vivo, leading to on-target decreases in the activation of key signaling molecules (including BTK, PLCγ2, S6 and ERK). In two complementary mouse models of CLL acalabrutinib significantly reduced tumor burden and increased survival compared to vehicle treatment. Overall, acalabrutinib showed increased BTK selectivity compared to ibrutinib while demonstrating significant anti-tumor efficacy in vivo on par with ibrutinib. PMID:27903679
The Next Generation of Targeted Molecules for the Treatment of Chronic Lymphocytic Leukemia.
Jeyakumar, Deepa; O'Brien, Susan
2016-11-15
With the recent approval of several new targeted therapies for chronic lymphocytic leukemia (CLL), there are now multiple options for its treatment. Inhibitors of Bruton tyrosine kinase (with ibrutinib being the first-in-class US Food and Drug Administration-approved agent) and phosphoinositide 3-kinase (with idelalisib as the first-in-class approved agent) are promising because they are generally well tolerated and highly effective against this malignancy. These agents may be particularly important in the treatment of older patients who are less able to tolerate the myelosuppression (and subsequent infections) associated with chemoimmunotherapy. As a class of medications, B-cell receptor inhibitors have some unique side effects, including redistribution lymphocytosis. Toxicities associated specifically with ibrutinib include increased risk for bleeding and atrial fibrillation. Idelalisib also has some unique toxicities: transaminitis, colitis, and pneumonitis. Targeted therapies recently approved for use in CLL include the novel anti-CD20 monoclonal antibodies obinutuzumab and ofatumumab, and the B-cell lymphoma 2 inhibitor venetoclax. This article describes the clinical data that led to approval of these B-cell receptor inhibitors for the treatment of CLL, and highlights newer agents in clinical development that target the same kinases as the currently available therapies.
Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia
Gribben, John G.; Zahrieh, David; Stephans, Katherine; Bartlett-Pandite, Lini; Alyea, Edwin P.; Fisher, David C.; Freedman, Arnold S.; Mauch, Peter; Schlossman, Robert; Sequist, Lecia V.; Soiffer, Robert J.; Marshall, Blossom; Neuberg, Donna; Ritz, Jerome; Nadler, Lee M.
2005-01-01
We report here on the long-term follow-up on 162 patients with high-risk chronic lymphocytic leukemia (CLL) who have undergone hematopoietic stem cell transplantation (SCT) at a single center from 1989 to 1999. Twenty-five patients with human leukocyte antigen (HLA)-matched sibling donors underwent T-cell-depleted allogeneic SCT, and 137 patients without HLA-matched sibling donors underwent autologous SCT. The 100-day mortality was 4% for both groups, but later morbidity and mortality were negatively affected on outcome. Progression-free survival was significantly longer following autologous than allogeneic SCT, but there was no difference in overall survival and no difference in the cumulative incidence of disease recurrence or deaths without recurrence between the 2 groups. At a median follow-up of 6.5 years there is no evidence of a plateau of progression-free survival. The majority of patients treated with donor lymphocyte infusions after relapse responded, demonstrating a significant graft-versus-leukemia effect in CLL. From these findings we have altered our approach for patients with high-risk CLL and are currently exploring the role of related and unrelated allogeneic SCT following reduced-intensity conditioning regimens. PMID:16131571
Bystry, Vojtech; Agathangelidis, Andreas; Bikos, Vasilis; Sutton, Lesley Ann; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Stamatopoulos, Kostas; Darzentas, Nikos
2015-12-01
An ever-increasing body of evidence supports the importance of B cell receptor immunoglobulin (BcR IG) sequence restriction, alias stereotypy, in chronic lymphocytic leukemia (CLL). This phenomenon accounts for ∼30% of studied cases, one in eight of which belong to major subsets, and extends beyond restricted sequence patterns to shared biologic and clinical characteristics and, generally, outcome. Thus, the robust assignment of new cases to major CLL subsets is a critical, and yet unmet, requirement. We introduce a novel application, ARResT/AssignSubsets, which enables the robust assignment of BcR IG sequences from CLL patients to major stereotyped subsets. ARResT/AssignSubsets uniquely combines expert immunogenetic sequence annotation from IMGT/V-QUEST with curation to safeguard quality, statistical modeling of sequence features from more than 7500 CLL patients, and results from multiple perspectives to allow for both objective and subjective assessment. We validated our approach on the learning set, and evaluated its real-world applicability on a new representative dataset comprising 459 sequences from a single institution. ARResT/AssignSubsets is freely available on the web at http://bat.infspire.org/arrest/assignsubsets/ nikos.darzentas@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kharfan-Dabaja, M A; Pidala, J; Kumar, A; Terasawa, T; Djulbegovic, B
2012-09-01
Despite therapeutic advances, relapsed/refractory CLL, particularly after fludarabine-based regimens, remains a major challenge for which optimal therapy is undefined. No randomized comparative data exist to suggest the superiority of reduced-toxicity allogeneic hematopoietic cell transplantation (RT-allo-HCT) over conventional chemo-(immuno) therapy (CCIT). By using estimates from a systematic review and by meta-analysis of available published evidence, we constructed a Markov decision model to examine these competing modalities. Cohort analysis demonstrated superior outcome for RT-allo-HCT, with a 10-month overall life expectancy (and 6-month quality-adjusted life expectancy (QALE)) advantage over CCIT. Although the model was sensitive to changes in base-case assumptions and transition probabilities, RT-allo-HCT provided superior overall life expectancy through a range of values supported by the meta-analysis. QALE was superior for RT-allo-HCT compared with CCIT. This conclusion was sensitive to change in the anticipated state utility associated with the post-allogeneic HCT state; however, RT-allo-HCT remained the optimal strategy for values supported by existing literature. This analysis provides a quantitative comparison of outcomes between RT-allo-HCT and CCIT for relapsed/refractory CLL in the absence of randomized comparative trials. Confirmation of these findings requires a prospective randomized trial, which compares the most effective RT-allo-HCT and CCIT regimens for relapsed/refractory CLL.
Delgado, Julio; Espinet, Blanca; Oliveira, Ana C; Abrisqueta, Pau; de la Serna, Javier; Collado, Rosa; Loscertales, Javier; Lopez, Montserrat; Hernandez-Rivas, Jose A; Ferra, Christelle; Ramirez, Angel; Roncero, Josep M; Lopez, Cristina; Aventin, Anna; Puiggros, Anna; Abella, Eugenia; Carbonell, Felix; Costa, Dolors; Carrio, Anna; Gonzalez, Marcos
2012-04-01
Patients with chronic lymphocytic leukaemia (CLL) whose tumour cells harbour a 17p deletion (17p-) are universally considered to have a poor prognosis. The deletion can be detected at diagnosis or during the evolution of the disease, particularly in patients who have received chemotherapy. We sought to evaluate the natural history of patients with 17p- CLL, identify predictive factors within this prognostic subgroup, and evaluate the results of different therapeutic approaches. Data from 294 patients with 17p- CLL followed up at 20 different institutions was retrospectively collected and analysed. Median age was 68 (range 27-98) years at the time of fluorescence in situ hybridization analysis. After 17p- documentation, 52% received treatment, achieving an overall response rate of 50%. Median overall survival was 41 months, and was significantly shorter in patients with elevated beta(2)-microglobulin concentration (P < 0·001), B symptoms (P = 0·016), higher percentage of cells with deletion (P < 0·001), and acquired deletions (P = 0·012). These findings suggest that patients with 17p- CLL have a variable prognosis that can be refined using simple clinical and laboratory features, including 17p- clone size, beta2-microglobulin concentration, presence of B symptoms and type of deletion (de novo versus acquired). © 2012 Blackwell Publishing Ltd.
Immunological changes with kinase inhibitor therapy for chronic lymphocytic leukemia.
Pleyer, Christopher; Wiestner, Adrian; Sun, Clare
2018-05-15
Ibrutinib and idelalisib are kinase inhibitors that have revolutionized the treatment of chronic lymphocytic leukemia (CLL). Capable of inducing durable remissions, these agents also modulate the immune system. Both ibrutinib and idelalisib abrogate the tumor-supporting microenvironment by disrupting cell-cell interactions, modulating the T-cell compartment, and altering the cytokine milieu. Ibrutinib also partially restores T-cell and myeloid defects associated with CLL. In contrast, immune-related adverse effects, including pneumonitis, colitis, hepatotoxicity, and infections are of particular concern with idelalisib. While opportunistic infections and viral reactivations occur with both ibrutinib and idelalisib, these complications are less common and less severe with ibrutinib, especially when used as monotherapy without additional immunosuppressive agents. This review discusses the impact of ibrutinib and idelalisib on the immune system, including infectious and auto-immune complications as well as their specific effects on the B-cell, T-cell, and myeloid compartment.
Serum level of CD26 predicts time to first treatment in early B-chronic lymphocytic leukemia.
Molica, Stefano; Digiesi, Giovanna; Mirabelli, Rosanna; Cutrona, Giovanna; Antenucci, Anna; Molica, Matteo; Giannarelli, Diana; Sperduti, Isabella; Morabito, Fortunato; Neri, Antonino; Baldini, Luca; Ferrarini, Manlio
2009-09-01
We analyzed the correlation between well-established biological parameters of prognostic relevance in B-cell chronic lymphocytic leukemia (CLL) [i.e. mutational status of the immunoglobulin heavy chain variable region (IgV(H)), ZAP-70- and CD38-expression] and serum levels of CD26 (dipeptidyl peptidase IV, DPP IV) by evaluating the impact of these variables on the time to first treatment (TFT) in a series of 69 previously untreated Binet stage A B-cell CLL patients. By using a commercial ELISA we found that with exception of a borderline significance for ZAP-70 (P = 0.07) and CD38 (P = 0.08), circulating levels of CD26 did not correlate with either Rai substages (P = 0.520) or other biomarker [beta2-microglobulin (P = 0.933), LDH (P = 0.101), mutational status of IgV(H) (P = 0.320)]. Maximally selected log-rank statistic plots identified a CD26 serum concentration of 371 ng/mL as the best cut-off. This threshold allowed the identification of two subsets of patients with CD26 serum levels higher and lower that 371 ng/mL respectively, whose clinical outcome was different with respect to TFT (i.e. 46% and 71% at 5 yr respectively; P = 0.005). Along with higher serum levels of CD26, the univariate Cox proportional hazard model identified absence of mutation in IgV(H) (P < 0.0001) as predictor of shorter TFT. As in multivariate analysis all these parameters maintained their discriminating power (mutational status of IgV(H,)P < 0.0001; soluble CD26, P = 0.02) their combined effect on clinical outcome was assessed. When three groups were considered: (1) Low-risk group (n = 31), patients with concordant IgVH(mut) and low level of soluble CD26; (2) intermediate risk group (n = 26), patients with discordant pattern; (3) high-risk group (n = 12), patients with concordant IgVH(unmut) and high level of soluble CD26, differences in the TFT were statistically significant, with a TFT at 5 yr of respectively 88%, 51% and 43% (P < 0.0001). Our results indicate that in early B-cell CLL biological profile including among other parameters soluble CD26 may provide a useful insight into the complex interrelationship of prognostic variables. Furthermore, CD26 along with mutational status of IgV(H) can be adequately used to predict clinical behavior of patients with low risk disease.
Zada, Mor; Lerner, Daniele; Piltz, Yuval; Perry, Chava; Avivi, Irit; Herishanu, Yair
2017-07-01
Relatives of patients with chronic lymphocytic leukemia (CLL) are at increased risk of developing CLL. Familial CLL is defined as more than one case of CLL among blood relatives, a phenomenon reported in approximately 5%-10% of all CLL patients. Given the known predisposition of CLL among Ashkenazi Jews, we studied the features of familial CLL in an Israeli population. This is a retrospective study, in which we reviewed the demographics, clinical characteristics, and outcomes of a total of 332 patients with CLL/small lymphocytic lymphoma. Familial CLL was recorded in 41 cases (12.3%) of the patients. The age at diagnosis was younger in patients with familial CLL (by almost 3.5 years). Familial CLL was strongly associated with Ashkenazi Jewish origin. Patients with familial CLL more commonly presented with higher hemoglobin and lower serum β-2-microglobulin levels. No significant differences were detected between sporadic and familial CLL in disease stage, time to treatment, second cancers, or overall survival. Familial cases of CLL in an Israeli population show a disproportionate ethnic distribution toward Jews of Ashkenazi origin. The clinical characteristics and the overall outcome are not substantially different from sporadic cases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
Tucker, David L; Rule, Simon A
2015-01-01
Although chemo-immunotherapy remains at the forefront of first-line treatment for mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), small molecules, such as ibrutinib, are beginning to play a significant role, particularly in patients with multiply relapsed or chemotherapy-refractory disease and where toxicity is an overriding concern. Ibrutinib is a first-in-class, oral inhibitor of Bruton’s tyrosine kinase, which functions by irreversible inhibition of the downstream signaling pathway of the B-cell receptor, which normally promotes cell survival and proliferation. Early clinical trials have demonstrated excellent tolerability and a modest side-effect profile even in elderly and multiply pretreated patient cohorts. Although the majority of disease responses tend to be partial, efficacy data have also been encouraging with more than two-thirds of patients with CLL and MCL demonstrating a durable response, even in the high-risk disease setting. Resistance mechanisms are only partially understood and appear to be multifactorial, including the binding site mutation C481S, and escape through other common cell-signaling pathways. This article appraises the currently available data on safety and efficacy from clinical trials of ibrutinib in the management of MCL and CLL, both as a single agent and in combination with other therapies, and considers how this drug is likely to be used in future clinical practice. PMID:26150724
Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia.
Tam, Constantine S; Seymour, John F; Roberts, Andrew W
2016-04-01
The prosurvival protein BCL2 is uniformly expressed in chronic lymphocytic leukemia (CLL), and enables leukemia cell survival in the face of cytotoxic treatment and increasing genomic, metabolic, and oxidative stresses. The therapeutic potential of BCL2 inhibition was first observed in the clinic following BCL2 antisense therapy. Subsequently, a number of small molecule inhibitors were developed to mimic the function of the pro-apoptotic BH3-only proteins (BH3-mimetics). These molecules are now in late-phase clinical trials and demonstrate potent activity, including the occurrence of acute tumor lysis syndrome in subjects with multiply relapsed, chemorefractory CLL. In this review, we discuss the history and summarize current knowledge regarding BCL2 inhibition as therapy of CLL. Copyright © 2016 Elsevier Inc. All rights reserved.
Kamihira, S; Hirakata, Y; Atogami, S; Sohda, H; Tsuruda, K; Yamada, Y; Tomonaga, M
1996-06-01
To characterize CD5+ B-cell neoplasms in Japan, where chronic lymphocytic leukemia (CLL) is rare and of different subtypes in comparison with Western countries, we collected 58 cases of CD5+ B-cell lymphomas/leukemias and analyzed their clinicopathologic features. According to the French-American-British (FAB) and standard histologic classification, the cases corresponded to small lymphocytic lymphoma (SLL, group I; n = 22, consisting of CLL, n = 10, CLL/PL, n = 3, and CLLmixed, n = 7); intermediate differentiated lymphoma/mantle cell lymphoma (IDL/MCL, group II, n = 18); and others with CD5-positive lymphomas (group III, n = 18). The CD5+ B-cell lymphomas showed morphologic and prognostic variability among the three groups. The clinical and immunophenotypic features were remarkably consistent in leukemic disease being seen in 73% of all cases, splenomegaly in 63%, and intense CD19, CD20, surface membrane immunogobulin M (SmIgM) or SmIgM and SmIgD, light-chain expression, and no CD10 expression. The median survival time of groups I, II, and III was 7.8, 3.3, and 0.8 years, respectively. These findings suggest that CD5 antigens may serve as valid markers for the prognosis and clinical features of B-cell lymphomas and that CD5+ B-cell lymphomas with an overall poor prognosis occurs at a relatively high frequency in Japan. This also suggests that a combination of immunophenotypic and morphologic features is of value for characterizing CD5+ B-cell neoplasms.
Haferlach, C; Dicker, F; Schnittger, S; Kern, W; Haferlach, T
2007-12-01
In CLL data from chromosome banding analysis (CBA) have been scarce due to the low proliferative activity of CLL cells in vitro. We improved the cultivation technique using an immunostimulatory CpG-oligonucleotide DSP30 and IL-2. A total of 506 CLL samples were analysed with CBA and interphase FISH using probes for the detection of trisomy 12, IgH rearrangements and deletions of 6q21, 11q22.3 (ATM), 13q14 (D13S25 and D13S319) and 17p13 (TP53). A total of 500 of 506 (98.8%) cases were successfully stimulated for metaphase generation and are subject to this study. Aberrations were detected in 415 of 500 (83.0%) cases by CBA and in 392 of 500 (78.4%) cases by FISH. CBA detected 832 abnormalities and FISH only 502. Therefore, CBA offers important information in addition to FISH. (1) CLL is characterized mainly by genomic imbalances and reciprocal translocations are rare. (2) A subgroup with complex aberrant karyotype (16.4%) is identified which is associated with an unmutated IgV(H) status and CD38 expression (P=0.034 and 0.02, respectively). (3) Additional abnormalities are detectable providing new biological insights into different CLL subclasses revealing a much more heterogeneous pattern of cytogenetic abnormalities as assumed so far based on FISH data only. Therefore, prospective clinical trials should evaluate the prognostic impact of newly available CBA data.
Management of chronic lymphocytic leukemia.
Stilgenbauer, Stephan; Furman, Richard R; Zent, Clive S
2015-01-01
Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is usually diagnosed in asymptomatic patients with early-stage disease. The standard management approach is careful observation, irrespective of risk factors unless patients meet the International Workshop on CLL (IWCLL) criteria for "active disease," which requires treatment. The initial standard therapy for most patients combines an anti-CD20 antibody (such as rituximab, ofatumumab, or obinutuzumab) with chemotherapy (fludarabine/cyclophosphamide [FC], bendamustine, or chlorambucil) depending on multiple factors including the physical fitness of the patient. However, patients with very high-risk CLL because of a 17p13 deletion (17p-) with or without mutation of TP53 (17p-/TP53mut) have poor responses to chemoimmunotherapy and require alternative treatment regimens containing B-cell receptor (BCR) signaling pathway inhibitors. The BCR signaling pathway inhibitors (ibrutinib targeting Bruton's tyrosine kinase [BTK] and idelalisib targeting phosphatidyl-inositol 3-kinase delta [PI3K-delta], respectively) are currently approved for the treatment of relapsed/refractory CLL and all patients with 17p- (ibrutinib), and in combination with rituximab for relapsed/refractory patients (idelalisib). These agents offer great efficacy, even in chemotherapy refractory CLL, with increased tolerability, safety, and survival. Ongoing studies aim to determine the best therapy combinations with the goal of achieving long-term disease control and the possibility of developing a curative regimen for some patients. CLL is associated with a wide range of infectious, autoimmune, and malignant complications. These complications result in considerable morbidity and mortality that can be minimized by early detection and aggressive management. This active monitoring requires ongoing patient education, provider vigilance, and a team approach to patient care.
Miao, Yi; Cao, Lei; Sun, Qian; Li, Xiao-Tong; Wang, Yan; Qiao, Chun; Wang, Li; Wang, Rong; Qiu, Hai-Rong; Xu, Wei; Li, Jian-Yong; Wu, Yu-Jie; Fan, Lei
2018-02-01
The incidence of B-cell chronic lymphoproliferative disorders (B-CLPDs) is significantly lower in China than that in western countries. There have been studies involving small cohorts with conflicting results regarding the spectrum of B-CLPDs in China, and the types and immunophenotyping of B-CLPDs in China remain largely unexplored. We conducted a retrospective analysis of 653 cases of B-CLPDs seen in our centre from 2011 to 2015. Four-colour flow cytometry was used to determine the expression of each immunological marker, and the diagnostic values of the immunological markers were also investigated. Chronic lymphocytic leukaemia (CLL) was the most common type of B-CLPD, which was consistent with that in west countries. However, the proportions of CLL (55.9%), follicular lymphoma (2.6%), and hairy cell leukaemia (0.2%) were lower, while the proportion of lymphoplasmacytic lymphoma/WaldenstrÖm macroglobulinaemia (5.4%) was higher in China, as compared with western countries. With respect to immunophenotypic characteristics, CD23 (31.7%) was more frequently expressed in mantle cell lymphoma (MCL) in our cohort than that in western countries. Immunophenotyping was useful in differentiating MCL from CLL or B-cell prolymphocytic leukaemia and lymphoplasmacytic lymphoma/WaldenstrÖm macroglobulinaemia from splenic marginal zone lymphoma. CD200 was of better diagnostic performance (accuracy: 94.6%) in differentiating CLL from MCL compared with CD23 (accuracy: 93.3%). Some cases of B-CPLDs, however, had no definite diagnoses, which were diagnosed as CD5 + B-CPLDs unclassified (7.7%) and CD5 - B-CPLDs unclassified (15.8%). This is the largest study that systematically explores the spectrum and immunophenotyping of B-CLPDs in Asia, confirming that spectrum of B-CLPDs in China was different from that in western countries. The immunophenotypic features of B-CLPDs were similar between China and western countries, although a few disparities exist. Cases with no definite diagnoses warrant further studies in the future. Copyright © 2017 John Wiley & Sons, Ltd.
Kay, Neil E.; Eckel-Passow, Jeanette E.; Braggio, Esteban; VanWier, Scott; Shanafelt, Tait D.; Van Dyke, Daniel L.; Jelinek, Diane F.; Tschumper, Renee C.; Kipps, Thomas; Byrd, John C.; Fonseca, Rafael
2010-01-01
To better understand the implications of genomic instability and outcome in B-cell CLL, we sought to address genomic complexity as a predictor of chemosensitivity and ultimately clinical outcome in this disease. We employed array-based comparative genomic hybridization (aCGH), using a one-million probe array and identified gains and losses of genetic material in 48 patients treated on a chemoimmunotherapy (CIT) clinical trial. We identified chromosomal gain or loss in ≥6% of the patients on chromosomes 3, 8, 9, 10, 11, 12, 13, 14 and 17. Higher genomic complexity, as a mechanism favoring clonal selection, was associated with shorter progression-free survival and predicted a poor response to treatment. Of interest, CLL cases with loss of p53 surveillance showed more complex genomic features and were found both in patients with a 17p13.1 deletion and in the more favorable genetic subtype characterized by the presence of 13q14.1 deletion. This aCGH study adds information on the association between inferior trial response and increasing genetic complexity as CLL progresses. PMID:21156228
Hyperdiploidy in CLL/SLL: A Rare Cytogenetic Event Associated with Poor Prognosis.
DeNicola, Matthew; Pullarkat, Sheeja; Yea, Steven; Rao, Nagesh; Yang, Lynn; Tirado, Carlos A
2014-01-01
Hyperdiploidy has been described in a variety of malignancies including acute lymphoblastic leukemia and plasma cell myeloma, in which the abnormality is associated with a very good prognosis. Herein, we describe a 61-year-old female that was diagnosed with atypical chronic lymphocytic leukemia (CLL). Initial chromosome analysis of a lymph node specimen showed an abnormal karyotype described as 46-48,XX,add(3)(q12),+16,+mar[cp3]/46,XX[1]. Chromosome analysis of the bone marrow a week later showed a pseudodiploid and normal diploid clone described as: 46,X,-X,-3,-6,+7,+9,-14,-15,+16,+17,+17,+20,-22[1]/46,XX[19]. Concurrent FISH studies of peripheral blood samples using the CLL FISH panel showed nuclei with an extra copy of chromosome 13 and an extra copy of the short arm of chromosome 17. FISH for t(11;14) was negative. These results suggest the presence of an underlying complex hyperdiploid karyotype. Hyperdiploidy is a rare event in SLL/CLL and is usually associated with a poor prognosis.
Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.
Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr
2016-07-30
Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.
Pereira, Daniel S.; Guevara, Claudia I.; Jin, Liqing; Mbong, Nathan; Verlinsky, Alla; Hsu, Ssucheng J.; Aviña, Hector; Karki, Sher; Abad, Joseph D.; Yang, Peng; Moon, Sung-Ju; Malik, Faisal; Choi, Michael Y.; An, Zili; Morrison, Kendall; Challita-Eid, Pia M.; Doñate, Fernando; Joseph, Ingrid B.J.; Kipps, Thomas J.; Dick, John E.; Stover, David R.
2015-01-01
CD37 is a tetraspanin expressed on malignant B cells. Recently, CD37 has gained interest as a therapeutic target. We developed AGS67E, an antibody–drug conjugate that targets CD37 for the potential treatment of B/T-cell malignancies. It is a fully human monoclonal IgG2 antibody (AGS67C) conjugated, via a protease-cleavable linker, to the microtubule-disrupting agent mono-methyl auristatin E (MMAE). AGS67E induces potent cytotoxicity, apoptosis, and cell-cycle alterations in many non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL) cell lines and patient-derived samples in vitro. It also shows potent antitumor activity in NHL and CLL xenografts, including Rituxan-refractory models. During profiling studies to confirm the reported expression of CD37 in normal tissues and B-cell malignancies, we made the novel discovery that the CD37 protein was expressed in T-cell lymphomas and in AML. AGS67E bound to >80% of NHL and T-cell lymphomas, 100% of CLL and 100% of AML patient-derived samples, including CD34+CD38− leukemic stem cells. It also induced cytotoxicity, apoptosis, and cell-cycle alterations in AML cell lines and antitumor efficacy in orthotopic AML xenografts. Taken together, this study shows not only that AGS67E may serve as a potential therapeutic for B/T-cell malignancies, but it also demonstrates, for the first time, that CD37 is well expressed and a potential drug target in AML. PMID:25934707
Comprehensive Reproductive System Care Program - Clinical Breast Care Project (CRSCP-CBCP)
2013-04-01
tumor heterogeneity. The tumor microenvironment and stromal interactions, metastasis and recurrence, as well as the role of cancer stem cells and tumor...biospecimens (Figure BB-1) donated by 5,977 fully consented subjects to our IRB approved tissue and blood protocols. (Figure BB-2) 10 1/1 c Cll ...E ’(3 Cll c. 1/1 c;; 0 1- CBCP Total Biological Specimens, Cumulative Annual Total thru 3/31/13 60000 50000 40000 30000 20000 10000 0
Al-Hamadani, Mohammed; Habermann, Thomas M; Cerhan, James R; Macon, William R; Maurer, Matthew J; Go, Ronald S
2015-09-01
The World Health Organization classification of non-Hodgkin lymphoma (NHL) was introduced in 2001. However, its incorporation into clinical practice is not well-described. We studied the distribution of NHL subtypes in adults diagnosed from 1998 to 2011, evaluated time trends, geo-demographic correlates, and changes in 5-year overall survival (OS). We obtained data prospectively collected by the National Cancer Data Base, which covers 70% of US cancer cases. There were 596,476 patients diagnosed with NHL. The major subtypes were diffuse large B-cell (32.5%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 18.6%), follicular (17.1%), marginal zone (8.3%), mantle cell (4.1%), peripheral T-cell not-otherwise-specified (1.7%), Burkitt (1.6%), hairy cell (1.1%), lymphoplasmacytic (1.1%), and NHL not-otherwise-specified (10.8%). Over the study period, the proportion of NHL not-otherwise-specified declined by half, while marginal zone lymphoma doubled. The distribution of major and rare NHL subtypes varied according to demographics but less so geographically or by type of treatment facility. We noted several novel findings among Hispanics (lower proportion of CLL/SLL, but higher Burkitt lymphoma and nasal NK/T-cell lymphoma), Asians (higher enteropathy-associated T-cell and angioimmunoblastic T-cell lymphomas), Blacks (higher hepatosplenic T-cell lymphoma), and Native Americans (similar proportions of CLL/SLL and nasal NK/T-cell lymphoma as Asians). With the exception of peripheral T-cell not-otherwise-specified and hairy cell leukemia, 5-year OS has improved for all the major NHL subtypes. © 2015 Wiley Periodicals, Inc.
Dilley, Robert L; Poh, Weijie; Gladstone, Douglas E; Herman, James G; Showel, Margaret M; Karp, Judith E; McDevitt, Michael A; Pratz, Keith W
2014-03-01
DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deng, Jingyu; Liang, Han; Dong, Qiuping; Hou, Yachao; Xie, Xingming; Yu, Jun; Fan, Daiming; Hao, Xishan
2014-07-01
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.
Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia.
Byrd, John C; Furman, Richard R; Coutre, Steven E; Flinn, Ian W; Burger, Jan A; Blum, Kristie A; Grant, Barbara; Sharman, Jeff P; Coleman, Morton; Wierda, William G; Jones, Jeffrey A; Zhao, Weiqiang; Heerema, Nyla A; Johnson, Amy J; Sukbuntherng, Juthamas; Chang, Betty Y; Clow, Fong; Hedrick, Eric; Buggy, Joseph J; James, Danelle F; O'Brien, Susan
2013-07-04
The treatment of relapsed chronic lymphocytic leukemia (CLL) has resulted in few durable remissions. Bruton's tyrosine kinase (BTK), an essential component of B-cell-receptor signaling, mediates interactions with the tumor microenvironment and promotes the survival and proliferation of CLL cells. We conducted a phase 1b-2 multicenter study to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of ibrutinib (PCI-32765), a first-in-class, oral covalent inhibitor of BTK designed for treatment of B-cell cancers, in patients with relapsed or refractory CLL or small lymphocytic lymphoma. A total of 85 patients, the majority of whom were considered to have high-risk disease, received ibrutinib orally once daily; 51 received 420 mg, and 34 received 840 mg. Toxic effects were predominantly grade 1 or 2 and included transient diarrhea, fatigue, and upper respiratory tract infection; thus, patients could receive extended treatment with minimal hematologic toxic effects. The overall response rate was the same in the group that received 420 mg and the group that received 840 mg (71%), and an additional 20% and 15% of patients in the respective groups had a partial response with lymphocytosis. The response was independent of clinical and genomic risk factors present before treatment, including advanced-stage disease, the number of previous therapies, and the 17p13.1 deletion. At 26 months, the estimated progression-free survival rate was 75% and the rate of overall survival was 83%. Ibrutinib was associated with a high frequency of durable remissions in patients with relapsed or refractory CLL and small lymphocytic lymphoma, including patients with high-risk genetic lesions. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01105247.).
Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies
Ahmed, Wesam; Van Etten, Richard A.
2013-01-01
The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472
Zhang, Jin-Yan; Zhang, Ju-Shun; Xu, Zhen-Shu
2015-08-01
To investigate the expression of Notch gene in chronic lymphocytic leukemia cells and to explore the change of Notch protein after the therapy with cytosine arabinoside or dexmethasone, and the mechanism of Notch mediated anti-apoptosis and drug-resistance in chronic lymphocytic leukemia cells. The mononuclear cells from bone marrow or peripheral blood of chronic lymphocytic leukemia patients (24 cases) and healthy donors (14 cases) were collected, then the expression of Notch gene, BCL-2, as well as NF-κB gene were detected by real-time fluorescent quantitative PCR (qRT-PCR) at the level of transcription. The change of Notch protein in L1210 cell lines after therapy with cytosine arabinoside and dexmethasone was determined by Western blot. mRNA expression levels of Notch1, Notch2, BCL-2 and NF-κB gene in CLL group were significantly higher than those in healthy control group (0.8556 ± 0.8726 vs 0.6731 ± 0.5334, P = 0.0182; 1.2273 ± 0.8207 vs 0.6577 ± 0.6424, P < 0.0001; 8.0960 ± 7.5661 vs 0.5969 ± 0.4976, P < 0.0001; 1.0966 ± 0.6925 vs 0.5373 ± 0.7180, P < 0.0001, respectively), but no significant difference was found between Notch3 and Notch4 gene (1.1914 ± 2.4219 vs 0.8713 ± 0.7937, P = 0.3427; 0.8174 ± 1.0869 vs 0.9752 ± 1.3446, P = 0.2402, respectively). Notch1 protein expression in L1210 cells were significantly decreased after treating with cytosine arabinoside of low and middle concentrations, but increased after treating with cytosine arabinoside of high concentration or prolonging time of cytosine arabinoside of middle con-centration. Notch1 protein expression in L1210 cells dereased after treating with dexamethasone, but did not be changed with the different concentrations and different times of dexmethason. The transcription level of Notch gene in CLL patients significantly higher than that in normal controls. The Notch1 protein expression is down-regulated in process of inhibiting L1210 cell proliferation by Ara-C and dexmethason. Notch signaling pathway may mediated anti-apoptosis and drug resistance of CLL cells. Notch molecule possibly plays an important role in the anti-apoptosis and drug-resistance of CLL cells.
Chemotactic Cues for NOTCH1-Dependent Leukemia
Piovan, Erich; Tosello, Valeria; Amadori, Alberto; Zanovello, Paola
2018-01-01
The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL. PMID:29666622
Cardiac Surgery Outcomes in Patients With Chronic Lymphocytic Leukemia.
Zhu, Yuanjia; Toth, Andrew J; Lowry, Ashley M; Blackstone, Eugene H; Hill, Brian T; Mick, Stephanie L
2018-04-01
Surgical outcomes of patients with chronic lymphocytic leukemia (CLL) undergoing cardiac surgery are limited. Our objectives were to investigate hospital morbidity and mortality after open cardiac surgery in CLL versus non-CLL patients. From May 1995 to May 2015, 157 patients with CLL and 55,917 without and older than 47 years underwent elective cardiac surgery at Cleveland Clinic. By Rai criteria, 79 CLL patients (56%) were low risk (class 0), 13 (9.1%) intermediate risk (classes I and II), and 38 (27%) high risk (classes III and IV); 12 (8.5%) were in remission. Mean age of CLL patients was 72 ± 9.0 years, and 18% were women. CLL patients were propensity-score matched to 3 non-CLL patients to compare surgical outcomes. High-risk CLL patients received more blood products than matched non-CLL patients (33/38 [87%] versus 74/114 [65%], p = 0.01), but were less likely to receive cryoprecipitate (0% versus 15/114 [13%], p = .02). Intermediate-risk CLL patients received more platelet units, mean 12 versus 4.6 (p = 0.008). Occurrence of deep sternal wound infection (0% versus 5/471 [1.1%]), septicemia (5/157 [3.2%] versus 14/471 [3.0%]), and hospital mortality (4/157 [2.5%] versus 14/471 [3.0%]) were similar (p > 0.3), independent of prior chemotherapy treatment for CLL. Although CLL patients did not have higher hospital mortality than non-CLL patients, high-risk CLL patients were more likely to receive blood products. Risks associated with transfusion should be considered when evaluating CLL patients for elective cardiac surgery. Appropriate preoperative management, such as blood product transfusions, and alternative treatment options that decrease blood loss, should be considered for high-risk patients. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.
2012-01-01
Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988
Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C; Brauer, Patrick M; Zúñiga-Pflücker, Juan C; Leber, Brian; Spaner, David E; Andrews, David W
2016-08-18
Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. © 2016 by The American Society of Hematology.
Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C.; Brauer, Patrick M.; Zúñiga-Pflücker, Juan C.; Leber, Brian; Spaner, David E.
2016-01-01
Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leu, Y.; Grander, D.; Linder, S.
The authors have previously shown that 30% of patients with B-cell chronic lymphocytic leukemia (B-CLL) have hemizygous deletions of the retinoblastoma (RB1) gene at 13q14. RB1 gene deletions may thus participate in malignant transformation of B-CLL, but is it also possible that a neighboring gene on 13q is the relevant one. To answer this question the remaining RB1 allele of eight clones with hemizygous deletions was studied by reverse transcription-polymerase chain reaction (RT-PCR), single-strand conformation polymorphism (SSCP) analysis, and immunofluorescense techniques. Cells from 10 patients without RB1 gene deletions were also studied by these methods. Lack of RB1 mRNA andmore » RB protein expression was seen in leukemia cells from one of the patients. All other cases were found to be normal with regard to immunofluorescense, RT-PCR, and SSCP analysis, indicating at least one functional RB1 allele and supporting the importance of another gene in the 13q14 deletions. The authors then performed extended Southern blot analysis of the 13q region, using probes for 10 different loci. In 14 of 31 CLL clones (45%), deletions of a region telomeric to the RB1 gene (D13S25) were observed. In 4 of the cases the deletions were homozygous. Hemizygous deletions of the RB1 gene were observed in 11 of these patients and in one of the patients without D13S25 deletions. These data thus indicate that a gene(s) telomeric to RB1 is involved in the malignant transformation of CLL clones and that deletions of this region are a common event in this disease. 20 refs., 3 figs., 3 tabs.« less
2018-06-27
B-Cell Chronic Lymphocytic Leukemia; Monoclonal B-Cell Lymphocytosis; Lymhoma, Small Lymphocytic; Chronic Lymphocytic Leukemia; Lymphoplasmacytic Lymphoma; Waldenstrom Macroglobulinemia; Splenic Marginal Zone Lymphoma
Strati, Paolo; Parikh, Sameer A; Chaffee, Kari G; Kay, Neil E; Call, Timothy G; Achenbach, Sara J; Cerhan, James R; Slager, Susan L; Shanafelt, Tait D
2017-08-01
The ultimate cause of death for most patients with newly diagnosed chronic lymphocytic leukaemia (CLL) and its relationship to co-morbid health conditions is poorly defined. We conducted a prospective cohort study that systematically followed 1143 patients diagnosed with CLL between June 2002 and November 2014. Comorbid health conditions at the time of CLL diagnosis and their relationship to survival and cause of death were evaluated. Collectively, 1061 (93%) patients had at least one co-morbid health condition at the time of CLL diagnosis (median number 3). Despite this, 89% of patients had a low-intermediate Charlson Comorbidity Index score (CCI) at diagnosis. After a median follow-up of 6 years, 225 patients have died. Death was due to CLL progression in 85 (46%) patients, infection in 14 (8%) patients, other cancer in 35 (19%) patients and comorbid health conditions in 50 (27%) patients. Higher CCI score and a greater number of major comorbid health conditions at the time of CLL diagnosis was associated with shorter non-CLL specific survival, but not with shorter CLL-specific survival on multivariate analysis. In conclusion, CLL and CLL-related complications (infections and second cancers) are the overwhelming cause of death in patients with CLL, regardless of CCI score and number of comorbid health conditions at diagnosis. © 2017 John Wiley & Sons Ltd.
Rodríguez-Vicente, Ana Eugenia; Grossmann, Vera; Collado, Rosa; Heras, Cecilia; Puiggros, Anna; Martín, Ana África; Puig, Noemí; Benito, Rocío; Robledo, Cristina; Delgado, Julio; González, Teresa; Queizán, José Antonio; Galende, Josefina; de la Fuente, Ignacio; Martín-Núñez, Guillermo; Alonso, José María; Abrisqueta, Pau; Luño, Elisa; Marugán, Isabel; González-Gascón, Isabel; Bosch, Francesc; Kohlmann, Alexander; González, Marcos; Espinet, Blanca; Hernández-Rivas, Jesús María
2015-01-01
To analyze the impact of the 11q deleted (11q-) cells in CLL patients on the time to first therapy (TFT) and overall survival (OS), 2,493 patients with CLL were studied. 242 patients (9.7%) had 11q-. Fluorescence in situ hybridization (FISH) studies showed a threshold of 40% of deleted cells to be optimal for showing that clinical differences in terms of TFT and OS within 11q- CLLs. In patients with ≥40% of losses in 11q (11q-H) (74%), the median TFT was 19 months compared with 44 months in CLL patients with <40% del(11q) (11q-L) (P<0.0001). In the multivariate analysis, only the presence of 11q-L, mutated IGHV status, early Binet stage and absence of extended lymphadenopathy were associated with longer TFT. Patients with 11q-H had an OS of 90 months, while in the 11q-L group the OS was not reached (P = 0.008). The absence of splenomegaly (P = 0.02), low LDH (P = 0.018) or β2M (P = 0.006), and the presence of 11q-L (P = 0.003) were associated with a longer OS. In addition, to detect the presence of mutations in the ATM, TP53, NOTCH1, SF3B1, MYD88, FBXW7, XPO1 and BIRC3 genes, a select cohort of CLL patients with losses in 11q was sequenced by next-generation sequencing of amplicons. Eighty % of CLLs with 11q- showed mutations and fewer patients with low frequencies of 11q- had mutations among genes examined (50% vs 94.1%, P = 0.023). In summary, CLL patients with <40% of 11q- had a long TFT and OS that could be associated with the presence of fewer mutated genes. PMID:26630574
Hernández, José Ángel; Hernández-Sánchez, María; Rodríguez-Vicente, Ana Eugenia; Grossmann, Vera; Collado, Rosa; Heras, Cecilia; Puiggros, Anna; Martín, Ana África; Puig, Noemí; Benito, Rocío; Robledo, Cristina; Delgado, Julio; González, Teresa; Queizán, José Antonio; Galende, Josefina; de la Fuente, Ignacio; Martín-Núñez, Guillermo; Alonso, José María; Abrisqueta, Pau; Luño, Elisa; Marugán, Isabel; González-Gascón, Isabel; Bosch, Francesc; Kohlmann, Alexander; González, Marcos; Espinet, Blanca; Hernández-Rivas, Jesús María
2015-01-01
To analyze the impact of the 11q deleted (11q-) cells in CLL patients on the time to first therapy (TFT) and overall survival (OS), 2,493 patients with CLL were studied. 242 patients (9.7%) had 11q-. Fluorescence in situ hybridization (FISH) studies showed a threshold of 40% of deleted cells to be optimal for showing that clinical differences in terms of TFT and OS within 11q- CLLs. In patients with ≥40% of losses in 11q (11q-H) (74%), the median TFT was 19 months compared with 44 months in CLL patients with <40% del(11q) (11q-L) (P<0.0001). In the multivariate analysis, only the presence of 11q-L, mutated IGHV status, early Binet stage and absence of extended lymphadenopathy were associated with longer TFT. Patients with 11q-H had an OS of 90 months, while in the 11q-L group the OS was not reached (P = 0.008). The absence of splenomegaly (P = 0.02), low LDH (P = 0.018) or β2M (P = 0.006), and the presence of 11q-L (P = 0.003) were associated with a longer OS. In addition, to detect the presence of mutations in the ATM, TP53, NOTCH1, SF3B1, MYD88, FBXW7, XPO1 and BIRC3 genes, a select cohort of CLL patients with losses in 11q was sequenced by next-generation sequencing of amplicons. Eighty % of CLLs with 11q- showed mutations and fewer patients with low frequencies of 11q- had mutations among genes examined (50% vs 94.1%, P = 0.023). In summary, CLL patients with <40% of 11q- had a long TFT and OS that could be associated with the presence of fewer mutated genes.
Venetoclax for the treatment of patients with chronic lymphocytic leukemia.
Crombie, Jennifer; Davids, Matthew S
2017-06-01
Venetoclax is a potent, selective inhibitor of BCL-2, a key regulator of the intrinsic pathway of apoptosis. In preclinical studies, venetoclax bound to BCL-2 with high affinity and rapidly induced apoptosis in chronic lymphocytic leukemia (CLL) cells. In early-phase clinical trials in CLL, venetoclax treatment led to tumor lysis syndrome in some patients with a large tumor burden, but this risk was subsequently mitigated by a revised study design that included lower initial dosing with intrapatient dose ramp up and close tumor lysis syndrome monitoring and prophylaxis. Other toxicities, such as neutropenia and gastrointestinal adverse events, were manageable. Venetoclax monotherapy resulted in durable and deep responses in patients with relapsed, refractory CLL, including for those with deletion 17p, leading to the approval of venetoclax by the US FDA for relapsed or refractory deletion 17p CLL, and recently to additional approvals in Europe and Canada. Trials also suggest that venetoclax induces deeper and more durable responses when used in combination with rituximab, and combination studies with other agents are ongoing. Phase III trials are also underway, and will provide data on the efficacy and safety of venetoclax in combination with monoclonal antibodies and targeted therapies in larger patient populations.
García-Marco, José A; Delgado, Julio; Hernández-Rivas, José A; Ramírez Payer, Ángel; Loscertales Pueyo, Javier; Jarque, Isidro; Abrisqueta, Pau; Giraldo, Pilar; Martínez, Rafael; Yáñez, Lucrecia; Terol, Mª José; González, Marcos; Bosch, Francesc
2017-04-21
The broad therapeutic arsenal and the biological heterogeneity of patients with chronic lymphocytic leukemia (CLL) makes it difficult to standardize treatment for CLL patients with specific clinical settings in routine clinical practice. These considerations prompted us to elaborate the present consensus document, which constitutes an update of the previous version published in 2013, mainly focusing on novel treatment strategies that have been developed over last 5 years, namely B-cell receptor inhibitors (ibrutinib and idelalisib), anti-CD20 monoclonal antibodies (ofatumumab and obinutuzumab), and Bcl-2 inhibitors (venetoclax). A group of experts from the Spanish Chronic Lymphocytic Leukemia Group reviewed all published literature from January 2010 to January 2016, in order to provide recommendations based on clinical evidence. For those areas without strong scientific evidence, the panel of experts established consensus criteria based on their clinical experience. The project has resulted in several practical recommendations that will facilitate the diagnosis, treatment, and follow-up of patients with CLL. There are many controversial issues in the management of CLL with no appropriate studies for making consensus recommendations. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Criado, Ignacio; Muñoz-Criado, Santiago; Rodríguez-Caballero, Arancha; Nieto, Wendy G.; Romero, Alfonso; Fernández-Navarro, Paulino; Alcoceba, Miguel; Contreras, Teresa; González, Marcos; Orfao, Alberto; Almeida, Julia
2017-01-01
Patients diagnosed with chronic lymphocytic leukemia (CLL) display a high incidence of infections due to an associated immunodeficiency that includes hypogammaglobulinemia. A higher risk of infections has also been recently reported for high-count monoclonal B-cell lymphocytosis, while no information is available in low-count monoclonal B-cell lymphocytosis. Here, we evaluated the status of the humoral immune system in patients with chronic lymphocytic leukemia (n=58), as well as in low- (n=71) and high- (n=29) count monoclonal B-cell lymphocytosis versus healthy donors (n=91). Total free plasma immunoglobulin titers and specific levels of antibodies against cytomegalovirus, Epstein-Barr virus, influenza and S.pneumoniae were measured by nephelometry and ELISA-based techniques, respectively. Overall, our results show that both CLL and high-count monoclonal B-cell lymphocytosis patients, but not low-count monoclonal B-cell lymphocytosis subjects, present with relatively high levels of antibodies specific for the latent viruses investigated, associated with progressively lower levels of S.pneumoniae-specific immunoglobulins. These findings probably reflect asymptomatic chronic reactivation of humoral immune responses against host viruses associated with expanded virus-specific antibody levels and progressively decreased protection against other micro-organisms, denoting a severe humoral immunodeficiency state not reflected by the overall plasma immunoglobulin levels. Alternatively, these results could reflect a potential role of ubiquitous viruses in the pathogenesis of the disease. Further analyses are necessary to establish the relevance of such asymptomatic humoral immune responses against host viruses in the expansion of the tumor B-cell clone and progression from monoclonal B-cell lymphocytosis to CLL. PMID:28385786
Wei, Ju; Wang, Chun; Qin, You-Wen; Zhu, Jun; Gao, Yang-Rong; Cai, Qi; Yan, Shi-Ke
2012-06-01
Coexistence of chronic lymphocytic leukemia (CLL) and essential thrombocythemia (ET) in a patient is extremely rare, with only 10 cases reported thus far in literature. This paper describes a 94-year-old male having atypical B-CLL with CD5⁻ (CD5⁻) phenotype and ET. In this patient, we performed interphase fluorescence in situ hybridization (FISH) analysis which revealed 13q14.3 deletion in 31% of B-lymphocyte nuclei and RB1 deletion in 27% of B-lymphocyte nuclei, but not in neutrophils and T-lymphocytes. Furthermore, we identified JAK2 V617F mutation in the peripheral blood nucleated cells and neutrophils, but not in the B- and T-lymphocyte populations. Therefore, it was concluded that the occurrence of CD5− B-CLL and ET in this patient was pathogenically independent.
The clinical safety of ibrutinib in chronic lymphocytic leukemia.
Molica, Stefano
2015-10-01
Ibrutinib , a targeted inhibitor of B-cell receptor signaling, achieved impressive clinical results for patients with chronic lymphocytic leukemia (CLL). These results allowed the approval of ibrutinib for the treatment of patients with CLL who have received at least one prior therapy and those with a 17p deletion regardless of line of therapy. Comprehensive data from either Phase I-II or randomized Phase III studies are analyzed in this article. In addition, we reviewed data on the prevalence and the clinical management of some peculiar toxicities ibrutinib related such as lymphocytosis, major bleeding and atrial fibrillation. Ibrutinib has radically changed the scenery of relapsed/refractory CLL treatment and established an important paradigm in the molecularly targeted approach of this disease. Discontinuation of ibrutinib is rarely due to adverse events related to the drug. Patients who discontinue treatment represent a challenge to the physicians because treatment options are very limited.
Petersen, Line; Roug, Anne S; Skovbo, Anni; Thysen, Anna H; Eskelund, Christian W; Hokland, Marianne E
2009-10-01
Human cytomegalovirus (HCMV) manipulates the host immune system in various ways. Allegedly, HCMV infection is associated with increased percentages of a particular natural killer (NK) cell subset expressing the activating receptor CD94/NKG2C in both healthy individuals and in patients infected with human immunodeficiency virus (HIV). Whether the HCMV-mediated induction of this specific NK cell subset is also apparent for other diseases characterized by abnormal immune responses, such as malignant blood diseases, is unknown. By comparing the fractions of CD94/NKG2C(+) NK cells in B-cell chronic lymphocytic leukemia (B-CLL) patients having either positive or negative HCMV serostatus, a proportional increase of this cell subset was obvious in the HCMV-seropositive subjects. Therapeutic intervention in the patients with positive HCMV serostatus did not seem to reduce the percentage of CD94/NKG2C-expressing NK cells. Thus, HCMV infection seemingly shapes the NK cell system in healthy individuals, HIV patients, and B-CLL patients in a uniform manner, even though these involve different immunological challenges.
Kavakiotis, Ioannis; Xochelli, Aliki; Agathangelidis, Andreas; Tsoumakas, Grigorios; Maglaveras, Nicos; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Vlahavas, Ioannis; Chouvarda, Ioanna
2016-06-06
Somatic Hypermutation (SHM) refers to the introduction of mutations within rearranged V(D)J genes, a process that increases the diversity of Immunoglobulins (IGs). The analysis of SHM has offered critical insight into the physiology and pathology of B cells, leading to strong prognostication markers for clinical outcome in chronic lymphocytic leukaemia (CLL), the most frequent adult B-cell malignancy. In this paper we present a methodology for integrating multiple immunogenetic and clinocobiological data sources in order to extract features and create high quality datasets for SHM analysis in IG receptors of CLL patients. This dataset is used as the basis for a higher level integration procedure, inspired form social choice theory. This is applied in the Towards Analysis, our attempt to investigate the potential ontogenetic transformation of genes belonging to specific stereotyped CLL subsets towards other genes or gene families, through SHM. The data integration process, followed by feature extraction, resulted in the generation of a dataset containing information about mutations occurring through SHM. The Towards analysis performed on the integrated dataset applying voting techniques, revealed the distinct behaviour of subset #201 compared to other subsets, as regards SHM related movements among gene clans, both in allele-conserved and non-conserved gene areas. With respect to movement between genes, a high percentage movement towards pseudo genes was found in all CLL subsets. This data integration and feature extraction process can set the basis for exploratory analysis or a fully automated computational data mining approach on many as yet unanswered, clinically relevant biological questions.
Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder
2017-05-01
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.
Lampson, Benjamin L; Brown, Jennifer R
2017-11-01
The efficacy of the prototypical phosphatidylinositol-3-kinase (PI3K) inhibitor idelalisib for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphoma (iNHL) has led to development of multiple compounds targeting this pathway. Areas Covered: We review the hypothesized therapeutic mechanisms of PI3K inhibitors, including abrogation of B cell receptor signaling, blockade of microenvironmental pro-survival signals, and enhancement of anti-tumor immunity. We examine toxicities of idelalisib, including bacterial infections (possibly secondary to drug-induced neutropenia), opportunistic infections (possibly attributable to on-target inhibition of T cell function), and organ toxicities such as transaminitis and enterocolitis (possibly autoimmune, secondary to on-target inhibition of p110δ in regulatory T cells). We evaluate PI3K inhibitors that have entered trials for the treatment of lymphoma, focusing on agents with selectivity for PI3Kα and PI3Kδ. Expert Opinion: PI3K inhibitors, particularly those that target p110δ, have robust efficacy in the treatment of CLL and iNHL. However, idelalisib has infectious and autoimmune toxicities that limit its use. Outside of trials, idelalisib should be restricted to CLL patients with progression on ibrutinib or iNHL patients with progression on two prior therapies. Whether newer PI3K inhibitors will demonstrate differentiated toxicity profiles in comparable patient populations while retaining efficacy remains to be seen.
Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M
2004-10-01
The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.
Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, E.C.; Barondes, S.H.
Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In bothmore » muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found.« less
Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia
... a 1-page fact sheet that offers an introduction to CLL. This fact sheet is available as a PDF, so it is easy to print out. Cancer.Net Patient Education Video: View a short video led by an ASCO expert in leukemia ...
González-Gascón Y Marín, Isabel; Hernández-Sánchez, María; Rodríguez-Vicente, Ana-Eugenia; Sanzo, Carmen; Aventín, Anna; Puiggros, Anna; Collado, Rosa; Heras, Cecilia; Muñoz, Carolina; Delgado, Julio; Ortega, Margarita; González, María-Teresa; Marugán, Isabel; de la Fuente, Ignacio; Recio, Isabel; Bosch, Francesc; Espinet, Blanca; González, Marcos; Hernández-Rivas, Jesús-María; Hernández, José-Ángel
2016-06-01
The prognosis of chronic lymphocytic leukemia (CLL) patients displaying trisomy 12 (+12) remains unclear. In this study, we analyzed the influence of the proportion of cells with +12, and other clinical and biologic factors, in time to first therapy (TTFT) and overall survival (OS), in 289 patients diagnosed with CLL carrying +12. Median OS was 129 months. One hundred seventy-four patients (60.2%) presented +12 in <60% of cells. TTFT and OS for this subgroup were longer than for the subgroup with +12 in ≥60% of cells, with a median TTFT of 49 months (CI95%, 39-58) vs 30 months (CI95%, 22-38) (P = 0.001); and a median OS of 159 months (CI95%, 119-182), vs 96 months (CI95%, 58-134) (P = 0.015). Other factors associated with a shorter TTFT were: Binet stage, B symptoms, lymphadenopathy, splenomegaly, high lymphocyte count, 11q-, high β2 microglobulin, and high LDH. In the multivariate analysis, clinical stage, +12 in ≥60% of cells, high lymphocyte count, B symptoms, and 11q- in addition, resulted of significance in predicting shorter TTFT. Significant variables for OS were: Binet stage, lymphadenopathy, splenomegaly, high LDH, high β2 microglobulin, 11q-, and CD38. In the multivariate analysis, only Binet stage, 11q-, and high β2microglobulin significantly predicted shorter OS. CLL with +12 entails a heterogeneous group with intermediate prognosis. However, a high proportion of cells carrying +12 separates a subgroup of patients with poor outcome. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
Haploidentical Allogeneic Transplant With Post-transplant Infusion of Regulatory T-cells
2018-06-01
Leukemia, Acute; Chronic Myelogenous Leukemia (CML); Myelodysplastic Syndrome (MDS); Non-Hodgkin Lymphoma (NHL); Chronic Lymphocytic Leukemia (CLL); Acute Myelogenous Leukemia (AML); Acute Lymphoblastic Leukemia (ALL)
Analysis of alterations of oncogenes and tumor suppressor genes in chronic lymphocytic leukemia.
Gaidano, G.; Newcomb, E. W.; Gong, J. Z.; Tassi, V.; Neri, A.; Cortelezzi, A.; Calori, R.; Baldini, L.; Dalla-Favera, R.
1994-01-01
B cell chronic lymphocytic leukemia (B-CLL) represents the most frequent adult leukemia in the Western world. The molecular pathogenesis of B-CLL is largely unknown. Although initial reports on small panels of cases had suggested a role for Bcl-1 and Bcl-2 oncogene activation in B-CLL, later investigations failed to confirm these data. Among tumor suppressor genes, p53 mutations have been reported in a fraction of cases. In this study, we have attempted a conclusive definition of the involvement of dominantly acting oncogenes (Bcl-1 and Bcl-2) and tumor suppressor loci (p53, 6q-) in 100 cases of B-CLL selected for their CD5 positivity and Rai's stage (0 to IV). Rearrangements of Bcl-1 and Bcl-2 and deletions of 6q and 17p were analyzed by Southern blot using multiple probes. Mutational analysis (single strand conformation polymorphism and polymerase chain reaction direct sequencing) was used to assay p53 inactivation. No alterations of Bcl-1 or Bcl-2 were detected in the 100 cases tested. Mutations of p53 were found in 10/100 cases without any significant association with clinical stage. Deletions of 6q were present in 4/100 cases. Overall, our data indicate that: 1) contrary to previous reports, Bcl-1 and Bcl-2 rearrangements are not involved in CD5+ B-CLL pathogenesis and 2) p53 mutations are present in 10% of cases at all stages of the disease. Images Figure 1 Figure 2 Figure 3 PMID:8203469
Visco, Carlo; Falisi, Erika; Young, Ken H.; Pascarella, Michela; Perbellini, Omar; Carli, Giuseppe; Novella, Elisabetta; Rossi, Davide; Giaretta, Ilaria; Cavallini, Chiara; Scupoli, Maria Teresa; De Rossi, Anita; D'Amore, Emanuele Stefano Giovanni; Rassu, Mario; Gaidano, Gianluca; Pizzolo, Giovanni; Ambrosetti, Achille; Rodeghiero, Francesco
2015-01-01
The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an independent retrospective cohort of 112 patients with CLL. EBV DNA load was detectable in 59%, and high (≥2000 copies/µg DNA) in 19% of patients, but it was negative in plasma samples. EBV DNA load was significantly higher in CLL patients than in healthy subjects (P < .0001). No relation was found between high EBV load and clinical stage or biological variables, except for 11q deletion (P = .004), CD38 expression (P = .003), and NOTCH1 mutations (P = .05). High EBV load led to a 3.14-fold increase in the hazard ratio of death and to a shorter overall survival (OS; P = .001). Poor OS was attributable, at least in part, to shorter time-to-first-treatment (P = .0008), with no higher risk of Richter's transformation or second cancer. Multivariate analysis selected high levels of EBV load as independent predictor of OS after controlling for confounding clinical and biological variables. EBV DNA load at presentation is an independent predictor of OS in patients with CLL. PMID:26087198
Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud
2014-10-01
Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.
Kreuzer, Karl‐Anton; Soosapilla, Asha; Spacek, Martin; Stehlikova, Olga; Gambell, Peter; McIver‐Brown, Neil; Villamor, Neus; Psarra, Katherina; Arroz, Maria; Milani, Raffaella; de la Serna, Javier; Cedena, M. Teresa; Jaksic, Ozren; Nomdedeu, Josep; Moreno, Carol; Rigolin, Gian Matteo; Cuneo, Antonio; Johansen, Preben; Johnsen, Hans E.; Rosenquist, Richard; Niemann, Carsten Utoft; Kern, Wolfgang; Westerman, David; Trneny, Marek; Mulligan, Stephen; Doubek, Michael; Pospisilova, Sarka; Hillmen, Peter; Oscier, David; Hallek, Michael; Ghia, Paolo; Montserrat, Emili
2018-01-01
The diagnostic criteria for CLL rely on morphology and immunophenotype. Current approaches have limitations affecting reproducibility and there is no consensus on the role of new markers. The aim of this project was to identify reproducible criteria and consensus on markers recommended for the diagnosis of CLL. ERIC/ESCCA members classified 14 of 35 potential markers as “required” or “recommended” for CLL diagnosis, consensus being defined as >75% and >50% agreement, respectively. An approach to validate “required” markers using normal peripheral blood was developed. Responses were received from 150 participants with a diagnostic workload >20 CLL cases per week in 23/150 (15%), 5–20 in 82/150 (55%), and <5 cases per week in 45/150 (30%). The consensus for “required” diagnostic markers included: CD19, CD5, CD20, CD23, Kappa, and Lambda. “Recommended” markers potentially useful for differential diagnosis were: CD43, CD79b, CD81, CD200, CD10, and ROR1. Reproducible criteria for component reagents were assessed retrospectively in 14,643 cases from 13 different centers and showed >97% concordance with current approaches. A pilot study to validate staining quality was completed in 11 centers. Markers considered as “required” for the diagnosis of CLL by the participants in this study (CD19, CD5, CD20, CD23, Kappa, and Lambda) are consistent with current diagnostic criteria and practice. Importantly, a reproducible approach to validate and apply these markers in individual laboratories has been identified. Finally, a consensus “recommended” panel of markers to refine diagnosis in borderline cases (CD43, CD79b, CD81, CD200, CD10, and ROR1) has been defined and will be prospectively evaluated. © 2017 International Clinical Cytometry Society PMID:29024461
Rawstron, Andy C; Kreuzer, Karl-Anton; Soosapilla, Asha; Spacek, Martin; Stehlikova, Olga; Gambell, Peter; McIver-Brown, Neil; Villamor, Neus; Psarra, Katherina; Arroz, Maria; Milani, Raffaella; de la Serna, Javier; Cedena, M Teresa; Jaksic, Ozren; Nomdedeu, Josep; Moreno, Carol; Rigolin, Gian Matteo; Cuneo, Antonio; Johansen, Preben; Johnsen, Hans E; Rosenquist, Richard; Niemann, Carsten Utoft; Kern, Wolfgang; Westerman, David; Trneny, Marek; Mulligan, Stephen; Doubek, Michael; Pospisilova, Sarka; Hillmen, Peter; Oscier, David; Hallek, Michael; Ghia, Paolo; Montserrat, Emili
2018-01-01
The diagnostic criteria for CLL rely on morphology and immunophenotype. Current approaches have limitations affecting reproducibility and there is no consensus on the role of new markers. The aim of this project was to identify reproducible criteria and consensus on markers recommended for the diagnosis of CLL. ERIC/ESCCA members classified 14 of 35 potential markers as "required" or "recommended" for CLL diagnosis, consensus being defined as >75% and >50% agreement, respectively. An approach to validate "required" markers using normal peripheral blood was developed. Responses were received from 150 participants with a diagnostic workload >20 CLL cases per week in 23/150 (15%), 5-20 in 82/150 (55%), and <5 cases per week in 45/150 (30%). The consensus for "required" diagnostic markers included: CD19, CD5, CD20, CD23, Kappa, and Lambda. "Recommended" markers potentially useful for differential diagnosis were: CD43, CD79b, CD81, CD200, CD10, and ROR1. Reproducible criteria for component reagents were assessed retrospectively in 14,643 cases from 13 different centers and showed >97% concordance with current approaches. A pilot study to validate staining quality was completed in 11 centers. Markers considered as "required" for the diagnosis of CLL by the participants in this study (CD19, CD5, CD20, CD23, Kappa, and Lambda) are consistent with current diagnostic criteria and practice. Importantly, a reproducible approach to validate and apply these markers in individual laboratories has been identified. Finally, a consensus "recommended" panel of markers to refine diagnosis in borderline cases (CD43, CD79b, CD81, CD200, CD10, and ROR1) has been defined and will be prospectively evaluated. © 2017 International Clinical Cytometry Society. © 2017 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.
Coutré, Steven E; Furman, Richard R; Flinn, Ian W; Burger, Jan A; Blum, Kristie; Sharman, Jeff; Jones, Jeffrey; Wierda, William; Zhao, Weiqiang; Heerema, Nyla A; Johnson, Amy J; Tran, Anh; Zhou, Cathy; Bilotti, Elizabeth; James, Danelle F; Byrd, John C; O'Brien, Susan
2017-03-01
Purpose: Ibrutinib, a first-in-class, once-daily, oral inhibitor of Bruton tyrosine kinase, promotes apoptosis, and inhibits B-cell proliferation, adhesion, and migration. Ibrutinib has demonstrated single-agent efficacy and acceptable tolerability at doses of 420 and 840 mg in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) who were treatment-naïve (TN) or had relapsed/refractory (R/R) CLL after ≥1 prior therapy in a phase Ib/II study (PCYC-1102). Subsequently, the ibrutinib 420 mg dose was approved in CLL. Experimental Design: We report data with 44 months of follow-up on 94 patients with TN and R/R CLL/SLL receiving ibrutinib 420 mg once-daily in PCYC-1102 and the long-term extension study PCYC-1103. Results: Ninety-four CLL/SLL patients (27 TN, 67 R/R) were treated with ibrutinib (420 mg/day). Patients with R/R disease had received a median of four prior therapies (range, 1-12). Responses were rapid and durable and median duration of response was not reached. Best overall response was 91% [85% TN (complete response, CR 26%) and 94% R/R (9% CR)]. Median progression-free survival (PFS) was not reached in either group. The 30-month PFS rate was 96% and 76% for TN and R/R patients, respectively. Ibrutinib was well tolerated with extended follow-up; rates of grade ≥3 cytopenias and fatigue, as well as discontinuations due to toxicities decreased over time. Conclusions: Single-agent ibrutinib at 420 mg once-daily resulted in durable responses and was well tolerated with up to 44 months follow-up in patients with TN and R/R CLL/SLL. Currently, 66% of patients continue on ibrutinib. Clin Cancer Res; 23(5); 1149-55. ©2017 AACR . ©2017 American Association for Cancer Research.
Tambaro, Francesco Paolo; Garcia-Manero, Guillermo; O’Brien, Susan M.; Faderl, Stefan H.; Ferrajoli, Alessandra; Burger, Jan A.; Pierce, Sherry; Wang, Xuemei; Do, Kim-Anh; Kantarjian, Hagop M.; Keating, Michael J.; Wierda, William G.
2016-01-01
Acute leukemia (AL) and myelodysplastic syndrome (MDS) are uncommon in CLL. We retrospectively identified 95 patients with CLL also diagnosed with AL (n=38) or MDS (n=57), either concurrently (n=5) or subsequent (n=90) to CLL diagnosis and report their outcomes. Median number of CLL treatments prior to AL and MDS was 2(0–9) and 1(0–8), respectively; the most common regimen was purine analogue combined with alkylating agent±CD20 mAb. Twelve had no prior CLL treatment. Among 38 with AL, 33 had AML, 3 had ALL (1Ph+), 1 had biphenotypic, and 1 had extramedullary (bladder) AML. Unfavorable AML karyotype was noted in 26, intermediate-risk in 7. There was no association between survival from AL and number of prior CLL regimens or karyotype. Expression of CD7 on blasts was associated with shorter survival. Among MDS cases, all IPSS were represented; karyotype was unfavorable in 36, intermediate in 6, and favorable in 12 patients; 10 experienced transformation to AML. Shorter survival from MDS correlated with higher-risk IPSS, poor-risk karyotype, and increased number of prior CLL treatments. Overall, outcomes for patients with CLL subsequently diagnosed with AL or MDS were poor; AL/MDS occurred without prior CLL treatment. Effective therapies for these patients are desperately needed. PMID:26290497
Myelodysplastic Syndromes (MDS)
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
Lindström, Vesa; Aittoniemi, Janne; Salmenniemi, Urpu; Käyhty, Helena; Huhtala, Heini; Itälä-Remes, Maija; Sinisalo, Marjatta
2018-02-08
Patients with chronic lymphocytic leukemia (CLL) are at a high risk for infections caused by Streptococcus pneumoniae. A pneumococcal conjugate vaccine (PCV) can induce a significant antibody response for some CLL patients. In this study we investigated antibody persistence after PCV7 in patients with CLL. The study material comprised 24 patients with CLL and 8 immunocompetent controls. The median antibody concentrations five years after PCV7 were lower for six pneumococcal serotypes in patients with CLL compared to controls, but the difference was not statistically significant. Depending on the serotype, the percentage of the CLL patients with antibody levels suggested to provide protection against invasive pneumococcal disease (IPD) varied from 29 to 71% five years after vaccination. This data suggests that PCV could result in antibody persistence at least five years in CLL patients.
Delgado, Julio; Doubek, Michael; Baumann, Tycho; Kotaskova, Jana; Molica, Stefano; Mozas, Pablo; Rivas-Delgado, Alfredo; Morabito, Fortunato; Pospisilova, Sarka; Montserrat, Emili
2017-04-01
Rai and Binet staging systems are important to predict the outcome of patients with chronic lymphocytic leukemia (CLL) but do not reflect the biologic diversity of the disease nor predict response to therapy, which ultimately shape patients' outcome. We devised a biomarkers-only CLL prognostic system based on the two most important prognostic parameters in CLL (i.e., IGHV mutational status and fluorescence in situ hybridization [FISH] cytogenetics), separating three different risk groups: (1) low-risk (mutated IGHV + no adverse FISH cytogenetics [del(17p), del(11q)]); (2) intermediate-risk (either unmutated IGHV or adverse FISH cytogenetics) and (3) high-risk (unmutated IGHV + adverse FISH cytogenetics). In 524 unselected subjects with CLL, the 10-year overall survival was 82% (95% CI 76%-88%), 52% (45%-62%), and 27% (17%-42%) for the low-, intermediate-, and high-risk groups, respectively. Patients with low-risk comprised around 50% of the series and had a life expectancy comparable to the general population. The prognostic model was fully validated in two independent cohorts, including 417 patients representative of general CLL population and 337 patients with Binet stage A CLL. The model had a similar discriminatory value as the CLL-IPI. Moreover, it applied to all patients with CLL independently of age, and separated patients with different risk within Rai or Binet clinical stages. The biomarkers-only CLL prognostic system presented here simplifies the CLL-IPI and could be useful in daily practice and to stratify patients in clinical trials. © 2017 Wiley Periodicals, Inc.
2013-09-01
8217Z ~ 50 -1------------------------------- s::: Cll ~ 40 -1----------------------------- Cll ~ 30 +-----;- ----1 ::::s a. E...20 ~ ~ 10 ::::s II) IU 0 Cll ~ ComTAC Ill ComTACIIIARC ComTAC IV TCAPS Device b) Key: FP = E*A*R Classic al70 ~----------------------1 TF...Ultra Fit Triple Flange SS = Skull Screws ~ -g 60 +-----------------------------------’ ... lrW-1’""""ŕ--- ’.P ~50 s::: Cll ~ 40 Cll ~ 30
Severe Combined Immunodeficiency (SCID)
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
Chronic Myelogenous Leukemia (CML)
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
... Rasuvo, Xatmep, others) to treat the symptoms of rheumatoid arthritis (RA; a condition in which the body attacks ... and CLL by killing cancer cells. It treats rheumatoid arthritis, granulomatosis with polyangiitis, and microscopic polyangiitis by blocking ...
Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia
Byrd, John C.; Furman, Richard R.; Coutre, Steven E.; Flinn, Ian W.; Burger, Jan A.; Blum, Kristie A.; Grant, Barbara; Sharman, Jeff P.; Coleman, Morton; Wierda, William G.; Jones, Jeffrey A.; Zhao, Weiqiang; Heerema, Nyla A.; Johnson, Amy J.; Sukbuntherng, Juthamas; Chang, Betty Y.; Clow, Fong; Hedrick, Eric; Buggy, Joseph J.; James, Danelle F.; O'Brien, Susan
2013-01-01
BACKGROUND The treatment of relapsed chronic lymphocytic leukemia (CLL) has resulted in few durable remissions. Bruton's tyrosine kinase (BTK), an essential component of B-cell–receptor signaling, mediates interactions with the tumor microenvironment and promotes the survival and proliferation of CLL cells. METHODS We conducted a phase 1b–2 multicenter study to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of ibrutinib (PCI-32765), a first-in-class, oral covalent inhibitor of BTK designed for treatment of B-cell cancers, in patients with relapsed or refractory CLL or small lymphocytic lymphoma. A total of 85 patients, the majority of whom were considered to have high-risk disease, received ibrutinib orally once daily; 51 received 420 mg, and 34 received 840 mg. RESULTS Toxic effects were predominantly grade 1 or 2 and included transient diarrhea, fatigue, and upper respiratory tract infection; thus, patients could receive extended treatment with minimal hematologic toxic effects. The overall response rate was the same in the group that received 420 mg and the group that received 840 mg (71%), and an additional 20% and 15% of patients in the respective groups had a partial response with lymphocytosis. The response was independent of clinical and genomic risk factors present before treatment, including advanced-stage disease, the number of previous therapies, and the 17p13.1 deletion. At 26 months, the estimated progression-free survival rate was 75% and the rate of overall survival was 83%. CONCLUSIONS Ibrutinib was associated with a high frequency of durable remissions in patients with relapsed or refractory CLL and small lymphocytic lymphoma, including patients with high-risk genetic lesions. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01105247.) PMID:23782158
Tadmor, Tamar; Shvidel, Lev; Bairey, Osnat; Goldschmidt, Neta; Ruchlemer, Rosa; Fineman, Riva; Rahimi-Levene, Naomi; Herishanu, Yair; Yuklea, Mona; Arad, Ariela; Aviv, Ariel; Polliack, Aaron
2014-11-01
Richter's syndrome (RS) is the rare development of an aggressive lymphoid malignancy in a patient with pre-existing chronic lymphocytic leukemia (CLL). Data on RS is sparse and mostly derived from case reports or small series of patients and only a few larger cohorts have been published. The purpose of this large retrospective study was to summarize our national experience with RS in CLL, examine possible risk factors, and analyze relevant demographic, laboratory and clinical parameters, including results of therapy and outcome. We first evaluated data obtained from 119 patients with RS diagnosed during 1971-2010 from 12 medical centers in Israel. The final cohort summarized consisted of 81 patients with RS who developed only diffuse large B-cell lymphoma (DLBCL) after exclusion all cases with insufficient data and those who were not DLBCL. Median overall survival from time of diagnosis of RS was 8 months; after applying the Richter score, patients could be stratified into three prognostic groups, while all other clinical and laboratory parameters evaluated had no prognostic significance. Prior therapy for CLL had no impact on RS survival (P = 0.8) and patients with therapy "naïve" RS and those who had already received chemotherapy prior to developing RS, had the same survival. The addition of rituximab to chemotherapy for RS improved 2 years overall survival from 19% in the chemotherapy alone arm to 42% (P value of 0.001). Although prognosis of patients with RS remains dismal, this retrospective observation provides support for the use of chemo-immunotherapy in DLBCL-RS. © 2014 Wiley Periodicals, Inc.
Albitar, Adam; Ma, Wanlong; DeDios, Ivan; Estella, Jeffrey; Ahn, Inhye; Farooqui, Mohammed; Wiestner, Adrian; Albitar, Maher
2017-03-14
Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). We developed a high sensitivity (HS) assay utilizing wild-type blocking polymerase chain reaction achieved via bridged and locked nucleic acids. We used this high sensitivity assay in combination with Sanger sequencing and next generation sequencing (NGS) and tested cellular DNA and cell-free DNA (cfDNA) from patients with CLL treated with the BTK inhibitor, ibrutinib. We also tested ibrutinib-naïve patients with CLL. HS testing achieved 100x greater sensitivity than Sanger. HS Sanger sequencing was capable of detecting < 1 mutant allele in background of 1000 wild-type alleles (1:1000). Similar sensitivity was achieved with HS NGS. No BTK or PLCγ2 mutations were detected in any of the 44 ibrutinib-naïve CLL patients. We demonstrate that without the HS testing 56% of positive samples would have been missed for BTK and 85% of PLCγ2 would have been missed. With the use of HS, we were able to detect multiple mutant clones in the same sample in 37.5% of patients; most would have been missed without HS testing. We also demonstrate that with HS sequencing, plasma cfDNA is more reliable than cellular DNA in detecting mutations. Our studies indicate that wild-type blocking and HS sequencing is necessary for proper and early detection of BTK or PLCγ2 mutations in monitoring patients treated with BTK inhibitors. Furthermore, cfDNA from plasma is very reliable sample-type for testing.
Hussain, Syed Rizwan; Naqvi, Hena; Raza, Syed Tasleem; Ahmed, Faisal; Babu, Sunil G; Kumar, Ashutosh; Zaidi, Zeashan Haider; Mahdi, Farzana
2012-08-01
Leukaemia is a heterogeneous disease in which haematopoietic progenitor cells acquire genetic lesions that lead to a block in differentiation, increased self-renewal, and unregulated proliferation. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR), involved in folate metabolism, plays a crucial role in cells because folate availability is important for DNA integrity. The aim of this case-control study was to evaluate the association of the C677T MTHFR gene polymorphism with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML) and chronic lymphocytic leukaemia (CLL). A total of 275 leukaemia cases - including AML (n = 112), ALL (n = 81), CML (n = 43), CLL (n = 39) - and 251 age/sex-matched healthy control individuals participated in this study. MTHFR C677T polymorphisms in the cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The average MTHFR 677CC, 677CT, 677TT genotype frequencies of total leukaemia cases were 68.73%, 19.64%, and 11.64% in cases, and 71.71%, 24.30%, and 3.98% in healthy controls, respectively. The average frequency of the MTHFR 677T allele was 21.45% among the cases compared to 16.13% among the controls. In the present case-control study we have observed a higher frequency of the MTHFR 677TT genotype in cases of leukaemia (AML, ALL, CML and CLL) as compared with controls; this might be due to ethnic and geographic variation. As per our findings, although the frequency of the MTHFR 677T allele is moderately high in AML, ALL and CLL, no statistically significant association was found; on the other hand statistically significant association was found in the context of CML cases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G
2002-02-01
Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.
Matesan, Manuela; Rajendran, Joseph; Press, Oliver W.; Maloney, David G.; Storb, Rainer F.; Cassaday, Ryan D.; Pagel, John M.; Oliveira, George; Gopal, Ajay K.
2014-01-01
Biodistribution data to-date using 111In- ibritumomab tiuxetan has been initially obtained in patients with <25% lymphomatous bone marrow involvement and adequate hematopoietic synthetic function. In this article we present the results of an analysis of the biodistribution data obtained from a cohort of patients with extensive bone marrow involvement, baseline cytopenias, and chronic lymphocytic leukemia (CLL). Thirty nine patients with diagnosis of B-cell lymphoma or CLL expressing the CD20 antigen, who had failed at least one prior regimen, and had evidence of persistent disease were included in this analysis, however only 38 of these completed the treatment. Semiquantitative analysis of the biodistribution was performed using regions of interest (ROI) over the liver, lungs, kidneys, spleen and sacrum. The observed interpatient variability including higher liver uptake in 4 patients is discussed. No severe solid organs toxicity was observed at the maximum administered activity of 1184 MBq (32 mCi) 90Yibritumomab tiuxetan. After accounting for differences in marrow involvement, patients with CLL exhibit comparable biodistributions to those with B-NHL. We found that the estimated sacral marrow uptake on 48 hour images in patients with bone marrow involvement may be an indicator of bone marrow involvement. There was no correlation between tumor visualization and response to treatment. These data suggest that the imaging step is not critical when the administered activity is below 1184 MBq (32 mCi). However our analysis confirms that the semiquantitative imaging data can be used to identify patients at risk for liver toxicity when higher doses of 90Y- ibritumomab tiuxetan are used. Patients with CLL can have excellent targeting of disease by 111Inibritumomab tiuxetan, indicating potential efficacy in this patient population. PMID:25076159
Göbel, Maria; Eisele, Lewin; Möllmann, Michael; Hüttmann, Andreas; Johansson, Patricia; Scholtysik, René; Bergmann, Manuela; Busch, Raymonde; Döhner, Hartmut; Hallek, Michael; Seiler, Till; Stilgenbauer, Stephan; Klein-Hitpass, Ludger; Dührsen, Ulrich; Dürig, Jan
2013-01-01
Progranulin (Pgrn) is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN), is significantly higher expressed in aggressive CD38+ZAP-70+ as compared to indolent CD38−ZAP-70− chronic lymphocytic leukemia (CLL) cases. Here, we measured Pgrn plasma concentrations by enzyme-linked immunosorbent assay (ELISA) in the Essen CLL cohort of 131 patients and examined Pgrn for association with established prognostic markers and clinical outcome. We found that high Pgrn plasma levels were strongly associated with adverse risk factors including unmutated IGHV status, expression of CD38 and ZAP-70, poor risk cytogenetics (11q-, 17p-) as detected by flourescence in situ hybridization (FISH) and high Binet stage. Pgrn as well as the aforementioned risk factors were prognostic for time to first treatment and overall survival in this series. Importantly, these results could be confirmed in the independent multicentric CLL1 cohort of untreated Binet stage A patients (n = 163). Here, multivariate analysis of time to first treatment revealed that high risk Pgrn (HR = 2.06, 95%-CI = 1.13–3.76, p = 0.018), unmutated IGHV status (HR = 5.63, 95%-CI = 3.05–10.38, p<0.001), high risk as defined by the study protocol (HR = 2.06, 95%-CI = 1.09–3.89, p = 0.026) but not poor risk cytogenetics were independent prognostic markers. In summary our results suggest that Pgrn is a novel, robust and independent prognostic marker in CLL that can be easily measured by ELISA. PMID:24009671
Göbel, Maria; Eisele, Lewin; Möllmann, Michael; Hüttmann, Andreas; Johansson, Patricia; Scholtysik, René; Bergmann, Manuela; Busch, Raymonde; Döhner, Hartmut; Hallek, Michael; Seiler, Till; Stilgenbauer, Stephan; Klein-Hitpass, Ludger; Dührsen, Ulrich; Dürig, Jan
2013-01-01
Progranulin (Pgrn) is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN), is significantly higher expressed in aggressive CD38(+)ZAP-70(+) as compared to indolent CD38(-)ZAP-70(-) chronic lymphocytic leukemia (CLL) cases. Here, we measured Pgrn plasma concentrations by enzyme-linked immunosorbent assay (ELISA) in the Essen CLL cohort of 131 patients and examined Pgrn for association with established prognostic markers and clinical outcome. We found that high Pgrn plasma levels were strongly associated with adverse risk factors including unmutated IGHV status, expression of CD38 and ZAP-70, poor risk cytogenetics (11q-, 17p-) as detected by flourescence in situ hybridization (FISH) and high Binet stage. Pgrn as well as the aforementioned risk factors were prognostic for time to first treatment and overall survival in this series. Importantly, these results could be confirmed in the independent multicentric CLL1 cohort of untreated Binet stage A patients (n = 163). Here, multivariate analysis of time to first treatment revealed that high risk Pgrn (HR = 2.06, 95%-CI = 1.13-3.76, p = 0.018), unmutated IGHV status (HR = 5.63, 95%-CI = 3.05-10.38, p<0.001), high risk as defined by the study protocol (HR = 2.06, 95%-CI = 1.09-3.89, p = 0.026) but not poor risk cytogenetics were independent prognostic markers. In summary our results suggest that Pgrn is a novel, robust and independent prognostic marker in CLL that can be easily measured by ELISA.
2011-01-01
Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757
Present and future of personalized medicine in CLL.
Montserrat, Emili; Bauman, Tycho; Delgado, Julio
2016-03-01
Medicine has been 'personalized' (i.e. centred in persons) since its foundation. Recently, however, the term 'personalized medicine' (or, better, 'precision medicine') has been introduced to define 'a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, and treat disease'. This concept has gained momentum thanks to next-generation-sequencing (NGS) techniques that allow identification of molecular characteristics unique to the patient and to the tumour. It is hoped that NGS will not only contribute to a better understanding of chronic lymphocytic leukaemia (CLL), but will identify disease subsets that could benefit from specific treatment interventions. Recent advances in diagnosis (e.g. high-resolution immunophenotyping, markers of genetic abnormalities), prognosis (e.g. biomarkers), response predictors [e.g. del(17p)/TP53 mutations even at subclonal level], treatment (e.g. BCR signalling inhibitors, BCL2 antagonists, CAR-T cells) and methods to evaluate minimal residual disease constitute good examples of tools facilitating 'personalized' management of patients with CLL. Copyright © 2016. Published by Elsevier Ltd.
Dielectrophoretic Isolation and Detection of cfc-DNA Nanoparticulate Biomarkers and Virus from Blood
Sonnenberg, Avery; Marciniak, Jennifer Y.; McCanna, James; Krishnan, Rajaram; Rassenti, Laura; Kipps, Thomas J.; Heller, Michael J.
2015-01-01
Dielectrophoretic (DEP) microarray devices allow important cellular nanoparticulate biomarkers and virus to be rapidly isolated, concentrated and detected directly from clinical and biological samples. A variety of sub-micron nanoparticulate entities including cell free circulating (cfc) DNA, mitochondria and virus can be isolated into DEP high-field areas on microelectrodes, while blood cells and other micron-size entities become isolated into DEP low-field areas between the microelectrodes. The nanoparticulate entities are held in the DEP high-field areas while cells are washed away along with proteins and other small molecules which are not affected by the DEP electric fields. DEP carried out on 20 µL of whole blood obtained from Chronic Lymphocytic Leukemia (CLL) patients showed a considerable amount of SYBR Green stained DNA fluorescent material concentrated in the DEP high-field regions. Whole blood obtained from healthy individuals showed little or no fluorescent DNA materials in the DEP high-field regions. Fluorescent T7 bacteriophage virus could be isolated directly from blood samples, and fluorescently stained mitochondria could be isolated from biological buffer samples. Using newer DEP microarray devices, high molecular weight (hmw) DNA could be isolated from serum and detected at levels as low as 8–16 ng/mL. PMID:23436471
Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood
NASA Astrophysics Data System (ADS)
Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery
2010-08-01
The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... radiation exposure and CLL mortality.'' \\26\\ Another limitation stems from the low incidence of CLL... treat chronic lymphocytic leukemia (CLL) as a radiogenic cancer under the Energy Employees Occupational... regulations in 2002, all types of cancers except for CLL are treated as being potentially caused by radiation...
Walliser, Claudia; Hermkes, Elisabeth; Schade, Anja; Wiese, Sebastian; Deinzer, Julia; Zapatka, Marc; Désiré, Laurent; Mertens, Daniel; Stilgenbauer, Stephan; Gierschik, Peter
2016-10-14
Mutations in the gene encoding phospholipase C-γ 2 (PLCγ 2 ) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ 2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca 2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ 2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ 2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ 2 F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ 2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ 2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Automatic classification of atypical lymphoid B cells using digital blood image processing.
Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J
2014-08-01
There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.
Goodwin, B J; Moore, J O; Weinberg, J B
1984-02-01
Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12-myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5-10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.
A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies.
Kim, S Y; Theunissen, J-W; Balibalos, J; Liao-Chan, S; Babcock, M C; Wong, T; Cairns, B; Gonzalez, D; van der Horst, E H; Perez, M; Levashova, Z; Chinn, L; D'Alessio, J A; Flory, M; Bermudez, A; Jackson, D Y; Ha, E; Monteon, J; Bruhns, M F; Chen, G; Migone, T-S
2015-05-29
Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody-drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs.
A novel antibody–drug conjugate targeting SAIL for the treatment of hematologic malignancies
Kim, S Y; Theunissen, J-W; Balibalos, J; Liao-Chan, S; Babcock, M C; Wong, T; Cairns, B; Gonzalez, D; van der Horst, E H; Perez, M; Levashova, Z; Chinn, L; D‘Alessio, J A; Flory, M; Bermudez, A; Jackson, D Y; Ha, E; Monteon, J; Bruhns, M F; Chen, G; Migone, T-S
2015-01-01
Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody–drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs. PMID:26024286
Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia
2016-02-20
Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)
Therapeutics targeting Bcl-2 in hematological malignancies.
Ruefli-Brasse, Astrid; Reed, John C
2017-10-23
Members of the B-cell lymphoma 2 ( BCL-2 ) gene family are attractive targets for cancer therapy as they play a key role in promoting cell survival, a long-since established hallmark of cancer. Clinical utility for selective inhibition of specific anti-apoptotic Bcl-2 family proteins has recently been realized with the Food and Drug Administration (FDA) approval of venetoclax (formerly ABT-199/GDC-0199) in relapsed chronic lymphocytic leukemia (CLL) with 17p deletion. Despite the impressive monotherapy activity in CLL, such responses have rarely been observed in other B-cell malignancies, and preclinical data suggest that combination therapies will be needed in other indications. Additional selective antagonists of Bcl-2 family members, including Bcl-X L and Mcl-1, are in various stages of preclinical and clinical development and hold the promise of extending clinical utility beyond CLL and overcoming resistance to venetoclax. In addition to direct targeting of Bcl-2 family proteins with BH3 mimetics, combination therapies that aim at down-regulating expression of anti-apoptotic BCL-2 family members or restoring expression of pro-apoptotic BH3 family proteins may provide a means to deepen responses to venetoclax and extend the utility to additional indications. Here, we review recent progress in direct and selective targeting of Bcl-2 family proteins for cancer therapy and the search for rationale combinations. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Ibrutinib: A Review in Chronic Lymphocytic Leukaemia.
Deeks, Emma D
2017-02-01
Ibrutinib (Imbruvica ® ) is an oral irreversible inhibitor of Bruton's tyrosine kinase, a B-cell receptor (BCR) signalling kinase expressed by various haematopoietic cells, B-cell lymphomas and leukaemias. The drug is indicated for the treatment of certain haematological malignancies, including chronic lymphocytic leukaemia (CLL)/small lymphocytic lymphoma (SLL), which are the focus of this review. In phase III CLL/SLL trials, ibrutinib monotherapy was more effective than chlorambucil in the first-line treatment of elderly patients (RESONATE-2) and more effective than ofatumumab in previously-treated adults (RESONATE). Likewise, a combination of ibrutinib, bendamustine and rituximab was more effective in previously-treated adults than bendamustine plus rituximab in a phase III placebo-controlled study (HELIOS). These ibrutinib regimens were associated with significantly better progression-free survival, overall response rates, and overall survival than the comparators (in protocol-specified or planned analyses), with ibrutinib therapy providing benefit regardless of adverse prognostic factors, such as del(17p)/TP53 mutation and del(11q). Ibrutinib has an acceptable tolerability profile, although certain adverse events (e.g. bleeding and atrial fibrillation) require consideration. Redistribution lymphocytosis can occur, but is not indicative of disease progression. Although longer-term data would be beneficial, ibrutinib is a welcome treatment option for patients with CLL, including those who have higher-risk disease or are less physically fit. Indeed, current EU and US guidelines recommend/prefer the drug for the first- and/or subsequent-line treatment of certain patients, including those with del(17p)/TP53 mutation.
ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development.
Cang, Shundong; Iragavarapu, Chaitanya; Savooji, John; Song, Yongping; Liu, Delong
2015-11-20
With the advent of new agents targeting CD20, Bruton's tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.
Pharmacokinetics of venetoclax in patients with 17p deletion chronic lymphocytic leukemia.
Salem, Ahmed Hamed; Dunbar, Martin; Agarwal, Suresh K
2017-09-01
Venetoclax is a first-in-class orally available, B-cell lymphoma (BCL)-2 inhibitor indicated for the treatment of patients with relapsed/refractory chronic lymphocytic leukemia (CLL) harboring the 17p deletion. We used a novel approach for evaluating venetoclax pharmacokinetics using only sparse sampling in 155 patients enrolled in a phase 2, multicenter, open-label study in CLL patients with the 17p deletion. Patients received venetoclax doses within 30 min after the completion of breakfast or the first meal of the day, with no specific recommendations for the fat content in the meal. Blood samples for venetoclax assay were collected during the ramp-up period and on day 1 of weeks 8, 12, 16, 24, and every 12 weeks thereafter. The mean postdose (8 h) plasma venetoclax concentrations increased with increasing weekly venetoclax dose during the ramp-up period to reach 1.89 µg/ml on week 5 day 1 at the 400 mg dose. The mean predose concentration at the 400 mg dose ranged between 0.69 and 0.99 µg/ml across visits between weeks 8 and 120. Repeated-measures analysis detected no statistical significance (P≥0.05) for the mean predose concentrations at any of the times tested from weeks 8 to 24. The study shows that the pharmacokinetic profile of venetoclax in CLL patients with the 17p deletion is comparable to the overall CLL as well as non-Hodgkin's lymphoma patient populations. Furthermore, no specific recommendation in terms of fat content in the meal is needed for the intake of venetoclax in patients with CLL.
Machaczka, Maciej; Johansson, Jan-Erik; Remberger, Mats; Hallböök, Helene; Malm, Claes; Lazarevic, Vladimir Lj; Wahlin, Anders; Omar, Hamdy; Juliusson, Gunnar; Kimby, Eva; Hägglund, Hans
2012-09-01
Thirty-eight adult patients with chronic lymphocytic leukemia (CLL) underwent reduced-intensity conditioning (RIC) allogeneic stem cell transplant (allo-SCT) in Sweden between 1999 and 2007. The cumulative incidences of acute graft-versus-host disease (GVHD) grades II-IV and chronic GVHD were 29% and 47%, respectively. Rates of non-relapse mortality, progression-free survival (PFS) and overall survival (OS) were 18%, 47% and 74% at 1 year, and 21%, 25% and 45% at 5 years, respectively. T-cell chimerism after transplant was measured in 31 out of 34 patients (91%) surviving beyond day +100. Seventeen patients achieved >90% donor T-cell engraftment at 3 months after allo-SCT and, compared with the 12 patients with ≤90% donor T-cell engraftment, they showed favorable PFS at 1 year (82% vs. 33%, p =0.002) and better long-term PFS and OS (p =0.002 and 0.046, respectively). Donor T-cell engraftment of >90% at 3 months after RIC allo-SCT for CLL seems to predict favorable short-term and long-term outcome.
Development of the Bruton's tyrosine kinase inhibitor ibrutinib for B cell malignancies.
Gayko, Urte; Fung, Mann; Clow, Fong; Sun, Steven; Faust, Elizabeth; Price, Samiyeh; James, Danelle; Doyle, Margaret; Bari, Samina; Zhuang, Sen Hong
2015-11-01
Ibrutinib is a first-in-class oral covalent inhibitor of Bruton's tyrosine kinase that has demonstrated clinical benefit for many patients with B cell malignancies. Positive results in initial trials led the U.S. Food and Drug Administration to grant ibrutinib three breakthrough therapy designations for mantle cell lymphoma (MCL), del17p chronic lymphocytic leukemia (CLL), and Waldenström's macroglobulinemia (WM). Ibrutinib was approved for these three cancers within 14 months of the original U.S. approval. Additionally, ibrutinib is approved for patient subsets with MCL and/or CLL in >45 other countries. Via a unique mechanism of action, ibrutinib inhibits B cell signaling pathways that regulate the survival, proliferation, adhesion, and homing of cancerous cells. This marks a paradigm shift from the conventional cytotoxic chemotherapy approach to treating B cell malignancies. Ibrutinib continues to be evaluated across a range of B cell malignancies, either as single-agent therapy or in combination with other therapies, and continues to transform the lives of these patients. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Using prognostic models in CLL to personalize approach to clinical care: Are we there yet?
Mina, Alain; Sandoval Sus, Jose; Sleiman, Elsa; Pinilla-Ibarz, Javier; Awan, Farrukh T; Kharfan-Dabaja, Mohamed A
2018-03-01
Four decades ago, two staging systems were developed to help stratify CLL into different prognostic categories. These systems, the Rai and the Binet staging, depended entirely on abnormal exam findings and evidence of anemia and thrombocytopenia. Better understanding of biologic, genetic, and molecular characteristics of CLL have contributed to better appreciating its clinical heterogeneity. New prognostic models, the GCLLSG prognostic index and the CLL-IPI, emerged. They incorporate biologic and genetic information related to CLL and are capable of predicting survival outcomes and cases anticipated to need therapy earlier in the disease course. Accordingly, these newer models are helping develop better informed surveillance strategies and ultimately tailor treatment intensity according to presence (or lack thereof) of certain prognostic markers. This represents a step towards personalizing care of CLL patients. We anticipate that as more prognostic factors continue to be identified, the GCLLSG prognostic index and CLL-IPI models will undergo further revisions. Copyright © 2017 Elsevier Ltd. All rights reserved.
State-of-the-Art Treatment and Novel Agents in Chronic Lymphocytic Leukemia.
Cramer, Paula; Hallek, Michael; Eichhorst, Barbara
2016-01-01
Chemoimmunotherapy is the established first-line treatment of patients with chronic lymphocytic leukemia (CLL) who do not display the high-risk genetic features del(17p) and/or TP53 mutation: Physically fit patients without or with only mild comorbidities should receive fludarabine, cyclophosphamide and rituximab, while bendamustine and rituximab can be considered in fit elderly patients of over 65 years and in patients with a higher risk of infections. Patients with relevant coexisting conditions should receive chlorambucil with a CD20 antibody, preferably obinutuzumab. Patients with a del(17p) and/or TP53 mutation respond poorly to conventional chemo(immuno)therapies. However, the recently approved BTK and PI3K inhibitors ibrutinib and idelalisib have the best efficacy ever documented in patients with these high-risk genomic alterations and/or refractory CLL. The choice between ibrutinib and idelalisib should be based on the patients' comorbidities and concomitant medications since both agents have a distinct toxicity profile, although they are generally well tolerated in the majority of patients. For treatment of patients with a late relapse, chemoimmunotherapy instead of kinase inhibitors is still a reasonable approach, but has to be determined for every patient individually. Further targeted drugs and their combinations are currently being evaluated in clinical trials and have the potential to eradicate all residual CLL cells and thus lead to a cure of CLL. © 2016 S. Karger GmbH, Freiburg.
Furman, Richard R.; Coutre, Steven E.; Burger, Jan A.; Blum, Kristie A.; Coleman, Morton; Wierda, William G.; Jones, Jeffrey A.; Zhao, Weiqiang; Heerema, Nyla A.; Johnson, Amy J.; Shaw, Yun; Bilotti, Elizabeth; Zhou, Cathy; James, Danelle F.; O'Brien, Susan
2015-01-01
Ibrutinib is an orally administered inhibitor of Bruton tyrosine kinase that antagonizes B-cell receptor, chemokine, and integrin-mediated signaling. In early-phase studies, ibrutinib demonstrated high response rates and prolonged progression-free survival (PFS) in chronic lymphocytic leukemia (CLL). The durable responses observed with ibrutinib relate in part to a modest toxicity profile that allows the majority of patients to receive continuous therapy for an extended period. We report on median 3-year follow-up of 132 patients with symptomatic treatment-naïve and relapsed/refractory CLL or small lymphocytic lymphoma. Longer treatment with ibrutinib was associated with improvement in response quality over time and durable remissions. Toxicity with longer follow-up diminished with respect to occurrence of grade 3 or greater cytopenias, fatigue, and infections. Progression remains uncommon, occurring primarily in some patients with relapsed del(17)(p13.1) and/or del(11)(q22.3) disease. Treatment-related lymphocytosis remains largely asymptomatic even when persisting >1 year and does not appear to alter longer-term PFS and overall survival compared with patients with partial response or better. Collectively, these data provide evidence that ibrutinib controls CLL disease manifestations and is well tolerated for an extended period; this information can help direct potential treatment options for different subgroups to diminish the long-term risk of relapse. PMID:25700432
Puła, Bartosz; Budziszewska, Bożena Katarzyna; Rybka, Justyna; Gil, Lidia; Subocz, Edyta; Długosz-Danecka, Monika; Zawirska, Daria; Waszczuk-Gajda, Anna; Iskierka-Jażdżewska, Elżbieta; Kopacz, Agnieszka; Szymczyk, Agnieszka; Czyż, Jarosław; Lech-Marańda, Ewa; Warzocha, Krzysztof; Jamroziak, Krzysztof
2018-05-01
There is limited amount of data available on the comparative efficacy of ibrutinib and idelalisib, the B-cell receptor inhibitors (BCRi) newly approved for relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (r/r CLL/SLL) treatment. The aim of our study was to analyze and compare the outcomes of real-world r/r CLL/SLL patients treated with these two BCRi in outside clinical trials. A comparative case matched 1:2 analysis was performed on idelalisib combined with rituximab and ibrutinib efficacy in 102 patients with r/r CLL/SLL from two observational studies of the Polish Adult Leukemia Group (PALG). Both therapies produced similar overall response rates (idelalisib plus rituximab 76.4% and ibrutinib 72.1%). Median progression-free survival (PFS) and overall survival (OS) in both groups were not reached. Furthermore, no significant difference was observed between both BCRi regimens in regard to PFS (HR=0.75, 95% CI=0.30-1.86, p=0.55) and OS (HR=0.65, 95%CI=0.26-1.68, p=0.39). In summary, the results of this retrospective analysis suggest that idelalisib combined with rituximab and ibrutinib therapies have comparable activity in r/r CLL/SLL in daily clinical practice. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Schwartz, Gary G; Klug, Marilyn G
2016-01-01
Environmental risk factors for chronic lymphocytic leukemia (CLL) have not been consistently identified. An etiologic role for ionizing radiation in CLL is controversial. Because most of the ionizing radiation to which individuals are exposed comes from radon at home, we examined CLL incidence rates in relation to residential radon levels. We used population-based rates for CLL for US states from 2007 to 2011 and measurements of residential radon made by the US Environmental Protection Agency. Incidence rates for CLL were significantly correlated with residential radon levels among whites (both genders together and each gender separately; p < 0.005) and among blacks (p < 0.05). We speculate that radon increases CLL risk and that the mechanisms may be similar to those by which radon causes lung cancer.
Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells
Geyer, Mark B.; Brentjens, Renier J.
2016-01-01
The past several years have been marked by extraordinary advances in clinical applications of immunotherapy. In particular, adoptive cellular therapy utilizing chimeric antigen receptor (CAR) modified T cells targeted to CD19 has demonstrated substantial clinical efficacy in children and adults with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL), and durable clinical benefit in a smaller subset of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or B cell non-Hodgkin lymphoma (B-NHL). Early phase clinical trials are presently assessing CAR T cell safety and efficacy in additional malignancies. Herein, we discuss clinical results from the largest series to date investigating CD19-targeted CAR T cells in B-ALL, CLL, and B-NHL, including discussion of differences in CAR T cell design and production and treatment approach, as well as clinical efficacy, nature of severe cytokine release syndrome and neurologic toxicities, and CAR T cell expansion and persistence. We additionally review the current and forthcoming use of CAR T cells in multiple myeloma and several solid tumors, and highlight challenges and opportunities afforded by the current state of CAR T cell therapies, including strategies to overcome inhibitory aspects of the tumor microenvironment and enhance antitumor efficacy. PMID:27592405