Sample records for circulating endothelial precursor

  1. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    PubMed

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  2. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    PubMed Central

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  3. Zoledronic acid induces a significant decrease of circulating endothelial cells and circulating endothelial precursor cells in the early prostate cancer neoadjuvant setting.

    PubMed

    Santini, Daniele; Zoccoli, Alice; Gregorj, Chiara; Di Cerbo, Melania; Iuliani, Michele; Pantano, Francesco; Zamarchi, Rita; Sergi, Federico; Flammia, Gerardo; Buscarini, Maurizio; Rizzo, Sergio; Cicero, Giuseppe; Russo, Antonio; Vincenzi, Bruno; Avvisati, Giuseppe; Tonini, Giuseppe

    2013-01-01

    Published data demonstrated that zoledronic acid (ZOL) exhibits antiangiogenetic effects. A promising tool for monitoring antiangiogenic therapies is the measurement of circulating endothelial cells (CECs) and circulating endothelial precursor cells (CEPs) in the peripheral blood of patients. Our aim was to investigate the effects of ZOL on levels of CECs and CEPs in localized prostate cancer. Ten consecutive patients with a histologic diagnosis of low-risk prostate adenocarcinoma were enrolled and received an intravenous infusion of ZOL at baseline (T0), 28 days (T28) and 56 days (T56). Blood samples were collected at the following times: T0 (before the first infusion of ZOL), T3 (72 h after the first dose), T28, T56 (both just before the ZOL infusion) and T84 (28 days after the last infusion of ZOL) and CEC/CEP levels were directly quantified by flow cytometry at all these time points. Our analyses highlighted a significant reduction of mean percentage of CECs and CEPs after initiation of ZOL treatment [p = 0.014 (at day 3) and p = 0.012 (at day 84), respectively]. These preliminary results demonstrate that ZOL could exert an antiangiogenic effect in early prostate cancer through CEP and CEC modulation.

  4. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis.

    PubMed

    Godoy, C R T; Levy, D; Giampaoli, V; Chamone, D A F; Bydlowski, S P; Pereira, J

    2015-06-01

    We measured circulating endothelial precursor cells (EPCs), activated circulating endothelial cells (aCECs), and mature circulating endothelial cells (mCECs) using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML) patients and 65 healthy controls; and vascular endothelial growth factor (VEGF) by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146%) was significantly higher than in healthy subjects (0.0059%, P<0.01) and in the accelerated phase (0.0059%, P=0.01). There were no significant differences in the percentages of CECs in chronic- or active-phase patients and healthy subjects (P>0.05). In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145). In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  5. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    PubMed

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  6. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    PubMed

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  7. Vascular biology in altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.

    2005-10-01

    The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.

  8. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  9. Endothelial dysfunction: the early predictor of atherosclerosis.

    PubMed

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans

    2012-05-01

    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  10. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  12. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells.

  13. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke

    PubMed Central

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Purpose Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Methods Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Results Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Conclusions Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells. PMID:26815842

  14. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice

    PubMed Central

    Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina

    2018-01-01

    Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868

  15. Sustained apnea induces endothelial activation.

    PubMed

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  16. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells

    PubMed Central

    Sahara, Makoto; Hansson, Emil M; Wernet, Oliver; Lui, Kathy O; Später, Daniela; Chien, Kenneth R

    2014-01-01

    Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14−KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs. PMID:24810299

  17. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.

    PubMed

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future.

  18. Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis.

    PubMed

    Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2014-02-01

    Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Circulating endothelial progenitor cells in obese children and adolescents.

    PubMed

    Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel

    2015-01-01

    This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    PubMed

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. High-Mobility Group Box 1 From Hypoxic Trophoblasts Promotes Endothelial Microparticle Production and Thrombophilia in Preeclampsia.

    PubMed

    Hu, Yae; Yan, Ruhong; Zhang, Ce; Zhou, Zhichao; Liu, Meng; Wang, Can; Zhang, Hong; Dong, Liang; Zhou, Tiantian; Wu, Yi; Dong, Ningzheng; Wu, Qingyu

    2018-04-12

    Thrombophilia is a major complication in preeclampsia, a disease associated with placental hypoxia and trophoblast inflammation. Preeclampsia women are known to have increased circulating microparticles that are procoagulant, but the underlying mechanisms remain unclear. In this study, we sought to understand the mechanism connecting placental hypoxia, circulating microparticles, and thrombophilia. We analyzed protein markers on plasma microparticles from preeclampsia women and found that the increased circulating microparticles were mostly from endothelial cells. In proteomic studies, we identified HMGB1 (high-mobility group box 1), a proinflammatory protein, as a key factor from hypoxic trophoblasts in stimulating microparticle production in human umbilical vein endothelial cells. Immunodepletion or inhibition of HMGB1 in the conditioned medium from hypoxic human trophoblasts abolished the endothelial microparticle-stimulating activity. Conversely, recombinant HMGB1 stimulated microparticle production in cultured human umbilical vein endothelial cells. The microparticles from recombinant HMGB1-stimulated human umbilical vein endothelial cells promoted blood coagulation and neutrophil activation in vitro. Injection of recombinant HMGB1 in pregnant mice increased plasma endothelial microparticles and promoted blood coagulation. In preeclampsia women, elevated placental HMGB1 expression was detected and high levels of plasma HMGB1 correlated with increased plasma endothelial microparticles. Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia. © 2018 American Heart Association, Inc.

  2. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    PubMed

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  3. Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy.

    PubMed

    Yap, Ronald; Veliceasa, Dorina; Emmenegger, Urban; Kerbel, Robert S; McKay, Laura M; Henkin, Jack; Volpert, Olga V

    2005-09-15

    Blocking angiogenesis is a promising approach in cancer therapy. Natural inhibitors of angiogenesis and derivatives induce receptor-mediated signals, which often result in the endothelial cell death. Low-dose chemotherapy, given at short regular intervals with no prolonged breaks (metronomic chemotherapy), also targets angiogenesis by obliterating proliferating endothelial cells and circulating endothelial cell precursors. ABT-510, a peptide derivative of thrombospondin, kills endothelial cell by increasing CD95L, a ligand for the CD95 death receptor. However, CD95 expression itself is unaffected by ABT-510 and limits its efficacy. We found that multiple chemotherapy agents, cyclophosphamide (cytoxan), cisplatin, and docetaxel, induced endothelial CD95 in vitro and in vivo at low doses that failed to kill endothelial cells (cytoxan > cisplatin > docetaxel). Thus, we concluded that some of these agents might complement each other and together block angiogenesis with maximal efficacy. As a proof of principle, we designed an antiangiogenic cocktail combining ABT-510 with cytoxan or cisplatin. Cyclophosphamide and cisplatin synergistically increased in vivo endothelial cell apoptosis and angiosuppression by ABT-510. This synergy required CD95, as it was reversible with the CD95 decoy receptor. In a mouse model, ABT-510 and cytoxan, applied together at low doses, acted in synergy to delay tumor take, to stabilize the growth of established tumors, and to cause a long-term progression delay of PC-3 prostate carcinoma. These antitumor effects were accompanied by major decreases in microvascular density and concomitant increases of the vascular CD95, CD95L, and apoptosis. Thus, our study shows a "complementation" design of an optimal cancer treatment with the antiangiogenic peptide and a metronomic chemotherapy.

  4. Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling

    PubMed Central

    Chang, Linda; Noseda, Michela; Higginson, Michelle; Ly, Michelle; Patenaude, Alexandre; Fuller, Megan; Kyle, Alastair H.; Minchinton, Andrew I.; Puri, Mira C.; Dumont, Daniel J.; Karsan, Aly

    2012-01-01

    Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1+CD31dimvascular endothelial (VE)-cadherin−CD45− precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1+ precursor cell, but not the VE-cadherin+ endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1+ precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1+ local precursor to VSMC in a spatiotemporal fashion across all vascular beds. PMID:22509029

  5. Identification, emergence and mobilization of circulating endothelial cells or progenitors in the embryo.

    PubMed

    Pardanaud, Luc; Eichmann, Anne

    2006-07-01

    Using quail-chick parabiosis and QH1 monoclonal antibody analysis, we have identified circulating endothelial cells and/or progenitors in the embryo. These cells were already present early in ontogeny, before the third embryonic day. Under normal conditions, they integrated into most tissues but remained scarce. When experimental angiogenic responses were induced by wounding or grafts onto the chorioallantoic membrane, circulating endothelial cells were rapidly mobilized and selectively integrated sites of neoangiogenesis. Their mobilization was not dependent on the presence of the bone marrow as it was effective before its differentiation. Surprisingly, mobilization was not effective during sprouting angiogenesis following VEGF treatment of chorioallantoic membrane. Thus, embryonic circulating endothelial cells were efficiently mobilized during the establishment of an initial vascular supply to ischemic tissues following wounding or grafting, but were not involved during classical sprouting angiogenesis.

  6. Increased numbers of circulating ECs are associated with systemic GVHD.

    PubMed

    Yan, Z; Zeng, L; Jia, L; Xu, S; Ding, S

    2011-10-01

    Circulating endothelial cells (ECs) are known to reflect endothelial injury, and endothelial injury is associated with graft-versus-host disease (GVHD). We hypothesised that circulating ECs might be associated with systemic acute graft-versus-host disease (aGVHD). BALB/c (H-2k(d) ) mice were treated with total body irradiation and then infused with C57B/6-derived T-cell-depleted bone marrow (TCD-BM) cells or TCD-BM cells and splenocytes. Cyclosporine was used to prevent aGVHD. Circulating ECs and allogeneic lymphocytes were analysed by flow cytometry at multiple time points. The morphology and ultrastructure of the endothelium were examined by light microscopy or transmission electron microscopy. The results indicated that the number of circulating ECs peaked at day 5 after lethal irradiation in all mice; allogenic transplanted mice (TCD-BM cells and splenocytes) developed typical aGVHD beginning at day 7, exhibiting both histological and clinical symptoms of disease. Circulating ECs peaked a second time at day 9 with aGVHD progression. However, following the administration of CSA, an absence of or a reduction in the amount of subsequent endothelial injury was observed. Circulating ECs might be associated with systemic aGVHD. © 2011 Blackwell Publishing Ltd.

  7. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria

    PubMed Central

    de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.

    2017-01-01

    Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519

  8. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells

    PubMed Central

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future. PMID:27158466

  9. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  10. Circulating platelet aggregates damage endothelial cells in culture.

    PubMed

    Aluganti Narasimhulu, Chandrakala; Nandave, Mukesh; Bonilla, Diana; Singaravelu, Janani; Sai-Sudhakar, Chittoor B; Parthasarathy, Sampath

    2017-06-01

    Presence of circulating endothelial cells (CECs) in systemic circulation may be an indicator of endothelial damage and/or denudation, and the body's response to repair and revascularization. Thus, we hypothesized that aggregated platelets (AgPlts) can disrupt/denude the endothelium and contribute to the presence of CEC and EC-derived particles (ECDP). Endothelial cells were grown in glass tubes and tagged with/without 0.5 μm fluorescent beads. These glass tubes were connected to a mini-pump variable-flow system to study the effect of circulating AgPlts on the endothelium. ECs in glass tube were exposed to medium alone, nonaggregated platelets (NAgPlts), AgPlts, and 90 micron polystyrene beads at a flow rate of 20 mL/min for various intervals. Collected effluents were cultured for 72 h to analyze the growth potential of dislodged but intact ECs. Endothelial damage was assessed by real time polymerase chain reaction (RT-PCR) for inflammatory genes and Western blot analysis for von Willebrand factor. No ECs and ECDP were observed in effluents collected after injecting medium alone and NAgPlts, whereas AgPlts and Polybeads drastically dislodged ECs, releasing ECs and ECDP in effluents as the time increased. Effluents collected when endothelial cell damage was seen showed increased presence of von Willebrand factor as compared to control effluents. Furthermore, we analyzed the presence of ECs and ECDPs in heart failure subjects, as well as animal plasma samples. Our study demonstrates that circulating AgPlts denude the endothelium and release ECs and ECDP. Direct mechanical disruption and shear stress caused by circulating AgPlts could be the underlying mechanism of the observed endothelium damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    PubMed

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-04-08

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  12. Chemical Basis for Qualitative and Quantitative Differences Between ABO Blood Groups and Subgroups: Implications for Organ Transplantation.

    PubMed

    Jeyakanthan, M; Tao, K; Zou, L; Meloncelli, P J; Lowary, T L; Suzuki, K; Boland, D; Larsen, I; Burch, M; Shaw, N; Beddows, K; Addonizio, L; Zuckerman, W; Afzali, B; Kim, D H; Mengel, M; Shapiro, A M J; West, L J

    2015-10-01

    Blood group ABH(O) carbohydrate antigens are carried by precursor structures denoted type I-IV chains, creating unique antigen epitopes that may differ in expression between circulating erythrocytes and vascular endothelial cells. Characterization of such differences is invaluable in many clinical settings including transplantation. Monoclonal antibodies were generated and epitope specificities were characterized against chemically synthesized type I-IV ABH and related glycans. Antigen expression was detected on endomyocardial biopsies (n = 50) and spleen (n = 11) by immunohistochemical staining and on erythrocytes by flow cytometry. On vascular endothelial cells of heart and spleen, only type II-based ABH antigens were expressed; type III/IV structures were not detected. Type II-based ABH were expressed on erythrocytes of all blood groups. Group A1 and A2 erythrocytes additionally expressed type III/IV precursors, whereas group B and O erythrocytes did not. Intensity of A/B antigen expression differed among group A1 , A2 , A1 B, A2 B and B erythrocytes. On group A2 erythrocytes, type III H structures were largely un-glycosylated with the terminal "A" sugar α-GalNAc. Together, these studies define qualitative and quantitative differences in ABH antigen expression between erythrocytes and vascular tissues. These expression profiles have important implications that must be considered in clinical settings of ABO-incompatible transplantation when interpreting anti-ABO antibodies measured by hemagglutination assays with reagent erythrocytes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Serum from Diesel Exhaust-Exposed Rats with Cardiac Dysfunction Alters Aortic Endothelial Cell Function In Vitro: Circulating Mediators as Causative Factors?

    EPA Science Inventory

    Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...

  14. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    PubMed Central

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  15. Endurance capacity is not correlated with endothelial function in male university students.

    PubMed

    Wang, Yan; Zeng, Xian-bo; Yao, Feng-juan; Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Forty-seven healthy male university students (mean age, 20.1 ± 0.6 years; mean height, 172.4 ± 6.3 cm; and mean weight, 60.0 ± 8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator--maximal oxygen uptake (VO2max)--was also measured on a cycle ergometer using a portable gas analyzer. 1000 m run time was correlated with VO2max (r  =  -0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs.

  16. Endurance Capacity Is Not Correlated with Endothelial Function in Male University Students

    PubMed Central

    Wu, Fang; Su, Chen; Fan, Zhen-guo; Zhu, Zhu; Tao, Jun; Huang, Yi-jun

    2014-01-01

    Background Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students. Methods Forty-seven healthy male university students (mean age, 20.1±0.6 years; mean height, 172.4±6.3 cm; and mean weight, 60.0±8.2 kg) were recruited in this study. The measurement procedure of 1000 m run time was followed to Chinese national students Constitutional Health Criterion. Endothelium function was assessed by flow-mediated vasodilation (FMD) in the brachial artery measured by ultrasonic imaging, and the level of circulating EMPs was measured by flow cytometry. Cardiovascular fitness indicator - maximal oxygen uptake (VO2 max) - was also measured on a cycle ergometer using a portable gas analyzer. Results 1000 m run time was correlated with VO2max (r = −0.399, p<0.05). However, there were no correlations between VO2max and FMD or levels of circulating CD31+/CD42- microparticles. Similarly, no correlations were found between 1000 m run time and FMD, and levels of circulating CD31+/CD42- microparticles in these male university students (p>0.05). Conclusion The correlations between endurance capacity or cardiovascular fitness and endothelial function were not found in healthy Chinese male university students. These results suggest that endurance capacity may not reflect endothelial function in healthy young adults with well preserved FMD and low level of circulating CD31+/CD42-EMPs. PMID:25101975

  17. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.

  18. In vitro Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

    PubMed

    Kang, Shin-Ae; Bajana, Sandra; Tanaka, Takemi

    2016-02-20

    Hematogenous metastasis is a primary cause of mortality from metastatic cancer. The shear-resistant adhesion of circulating tumor cells to the vascular endothelial cell surface under blood flow is an essential step in cell extravasation and further tissue invasion. This is similar to a process exploited by leukocytes for adhesion to inflamed blood vessels (leukocyte mimicry). The shear resistant adhesion is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligand expressed on circulating cells. Thus, weak interaction results in a rapid detachment of circulating cells from endothelium. Despite the critical role of vascular adhesion of cancer cells in hematogenous metastasis, our knowledge regarding this process has been limited due to the difficulty of mimicking dynamic flow conditions in vitro . In order to gain better insight into the shear-resistant adhesion of cancer cells to the endothelium, we developed a protocol for measuring the shear resistant adhesion of circulating tumor cells to endothelial cells under physiologic flow conditions by adapting a well established flow adhesion assay for inflammatory cells. This technique is useful to evaluate 1) the shear resistant adhesion competency of cancer cells and 2) the endothelial adhesion molecules necessary to support cancer cell adhesion (Kang et al. , 2015).

  19. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Celine; Fouchet, Pierre; Gauthier, Laurent R.

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelialmore » cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.« less

  20. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells.

    PubMed

    Wilhelm, Eurico N; González-Alonso, José; Parris, Christopher; Rakobowchuk, Mark

    2016-11-01

    The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o 2max )] or heavy (67 ± 2% V̇o 2max ) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41 + ) increased from baseline only during heavy exercise (from 21 ± 1 × 10 3 to 55 ± 8 × 10 3 and 48 ± 6 × 10 3 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E + ) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r 2 = 0.43) and plasma norepinephrine concentrations (r 2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation. Copyright © 2016 the American Physiological Society.

  1. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development.

    PubMed

    Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio

    2016-08-01

    Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  2. Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo

    PubMed Central

    Padrón-Barthe, Laura; Temiño, Susana; Villa del Campo, Cristina; Carramolino, Laura; Isern, Joan

    2014-01-01

    The first blood and endothelial cells of amniote embryos appear in close association in the blood islands of the yolk sac (YS). This association and in vitro lineage analyses have suggested a common origin from mesodermal precursors called hemangioblasts, specified in the primitive streak during gastrulation. Fate mapping and chimera studies, however, failed to provide strong evidence for a common origin in the early mouse YS. Additional in vitro studies suggest instead that mesodermal precursors first generate hemogenic endothelium, which then generate blood cells in a linear sequence. We conducted an in vivo clonal analysis to determine the potential of individual cells in the mouse epiblast, primitive streak, and early YS. We found that early YS blood and endothelial lineages mostly derive from independent epiblast populations, specified before gastrulation. Additionally, a subpopulation of the YS endothelium has hemogenic activity and displays characteristics similar to those found later in the embryonic hemogenic endothelium. Our results show that the earliest blood and endothelial cell populations in the mouse embryo are specified independently, and that hemogenic endothelium first appears in the YS and produces blood precursors with markers related to definitive hematopoiesis. PMID:25139355

  3. CXCR4 pos circulating progenitor cells coexpressing monocytic and endothelial markers correlating with fibrotic clinical features are present in the peripheral blood of patients affected by systemic sclerosis.

    PubMed

    Campioni, Diana; Lo Monaco, Andrea; Lanza, Francesco; Moretti, Sabrina; Ferrari, Luisa; Fotinidi, Maria; La Corte, Renato; Cuneo, Antonio; Trotta, Francesco

    2008-08-01

    There is still controversy regarding the role of circulating endothelial and progenitor cells (CECs/CEPs) in the pathogenesis of systemic sclerosis (SSc). Using a sequential Boolean gating strategy based on a 4-color flow cytometric protocol, an increased number of CD31(pos)/CD184(pos)(CXCR4)/CD34(pos)/CD45(pos) and CD31(pos)/CD117(pos) (c-kit-R) /CD34(pos)/ CD45(pos) hematopoietic circulating progenitor cells (HCPCs) was detected in SSc patients compared with healthy subjects. In SSc, no circulating mature and progenitor endothelial cells were observed, while an enhanced generation of erythroid progenitor cells was found to be correlated with the presence of CD117+ HCPCs. The presence of freshly detected CXCR4posHCPC was correlated either to the in vitro cultured spindle-shaped endothelial like cells (SELC) with an endo/myelomonocytic profile or to SDF-1 and VEGF serum level. These data are related to more fibrotic clinical features of the disease, thus supporting a possible role of these cells in fibrosis.

  4. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Yingbo; Chang Guodong; Zhan Shunli

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, whichmore » implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.« less

  5. [Circulating endothelial cells--markers of blood vessel lesions in patients with diffuse liver disease].

    PubMed

    Dynnik, O B

    2006-01-01

    The increased level of the circulating endothelial cells (CEC) is in direct dependance with a degree of an endothelial trauma. We defined CEC in blood (cells x 104/L) of 67 adults and children with acute and chronic viral hepatitis (A and B) and healthy volontiars. The author obtained reliable results of increased CEC in all groups consisting of patients with diffuse liver deseases (17,4+/-6,5 and 19,8+/-8,4) in comparison with control groups (3,8+/-1,9 and 3,8+/-1,2) thus CEC can be of practical value as a marker of microvessel lesions of the liver. Endotheliocytemia testifies to be a factor during endothelial trauma in pathogenesis of diffuse liver disease.

  6. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  7. Influence of sex on the number of circulating endothelial microparticles and microRNA expression in middle-aged adults.

    PubMed

    Bammert, Tyler D; Hijmans, Jamie G; Kavlich, Philip J; Lincenberg, Grace M; Reiakvam, Whitney R; Fay, Ryan T; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-08-01

    What is the central question of this study? Are there sex-related differences in the number of circulating endothelial microparticles (EMPs) and microparticle microRNA expression in middle-aged adult humans? What is the main finding and its importance? Although the numbers of circulating endothelial microparticles do not differ between middle-aged men and women, there are sex-related differences in the expression of miR-125a in activation-derived EMPs and miR-34a in apoptosis-derived EMPs. Differences in circulating endothelial microparticle microRNA content may provide new insight into the sex-related disparity in the risk and prevalence of vascular disease in middle-aged adults. The aims of this study were to determine: (i) whether circulating concentrations of endothelial microparticles (EMPs) differ in middle-aged men compared with women; and (ii) whether there are sex-related differences in microRNA expression in EMPs. Peripheral blood was collected from 30 sedentary adults: 15 men (56 ± 6 years old) and 15 women (56 ± 5 years old). Endothelial microparticles were defined by markers of activation (CD62e + ) or apoptosis (CD31 + /CD42b - ) by flow cytometry. Expression of microRNA (miR-34a, 92a, 125a and 126) in activation- and apoptosis-derived EMPs was measured by RT-PCR. Circulating activation- (33 ± 31 versus 39 ± 35 microparticles μl -1 ) and apoptosis-derived EMPs (49 ± 54 versus 42 ± 43 microparticles μl -1 ) were not significantly different between men and women. Expression of miR-125a (2.23 ± 2.01 versus 6.95 ± 3.99 a.u.) was lower (∼215%; P < 0.05) in activation-derived EMPs, whereas expression of miR-34a (1.17 ± 1.43 versus 0.38 ± 0.35 a.u.) was higher (∼210%; P < 0.05) in apoptosis-derived EMPs from men compared with women. Expression of microRNA in circulating EMPs may provide new insight into sex-related differences in cardiovascular disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  8. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    PubMed Central

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  9. CD31+ Cells From Peripheral Blood Facilitate Bone Regeneration in Biologically Impaired Conditions Through Combined Effects on Immunomodulation and Angiogenesis.

    PubMed

    Sass, F Andrea; Schmidt-Bleek, Katharina; Ellinghaus, Agnes; Filter, Sebastian; Rose, Alexander; Preininger, Bernd; Reinke, Simon; Geissler, Sven; Volk, Hans-Dieter; Duda, Georg N; Dienelt, Anke

    2017-05-01

    Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  10. Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets.

    PubMed

    Acosta, Juan C; Haas, David M; Saha, Chandan K; Dimeglio, Linda A; Ingram, David A; Haneline, Laura S

    2011-03-01

    The purpose of this study was to examine whether women with gestational diabetes mellitus (GDM) and their offspring have reduced endothelial progenitor cell subsets and vascular reactivity. Women with GDM, healthy control subjects, and their infants participated. Maternal blood and cord blood were assessed for colony-forming unit-endothelial cells and endothelial progenitor cell subsets with the use of polychromatic flow cytometry. Cord blood endothelial colony-forming cells were enumerated. Vascular reactivity was tested by laser Doppler imaging. Women with GDM had fewer CD34, CD133, CD45, and CD31 cells (circulating progenitor cells [CPCs]) at 24-32 weeks' gestation and 1-2 days after delivery, compared with control subjects. No differences were detected in colony-forming unit-endothelial cells or colony-forming unit-endothelial cells. In control subjects, CPCs were higher in the third trimester, compared with the postpartum period. Cord blood from GDM pregnancies had reduced CPCs. Vascular reactivity was not different between GDM and control subjects. The normal physiologic increase in CPCs during pregnancy is impaired in women with GDM, which may contribute to endothelial dysfunction and GDM-associated morbidities. Copyright © 2011 Mosby, Inc. All rights reserved.

  11. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2

    PubMed Central

    Eichmann, Anne; Corbel, Catherine; Nataf, Valérie; Vaigot, Pierre; Bréant, Christiane; Le Douarin, Nicole M.

    1997-01-01

    The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation. PMID:9144204

  12. Circulating Endothelial Cells and Endothelial Progenitor Cells in Pediatric Sepsis.

    PubMed

    Zahran, Asmaa Mohamad; Elsayh, Khalid Ibrahim; Mohamad, Ismail Lotfy; Hassan, Gamal Mohamad; Abdou, Madleen Adel A

    2016-03-01

    The aim of the study was to measure the number of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) in pediatric patients with sepsis and correlating it with the severity of the disease and its outcome. The study included 19 children with sepsis, 26 with complicated sepsis, and 30 healthy controls. The patients were investigated within 48 hours of pediatric intensive care unit admission together with flow cytometric detection of CECs and CEPs. The levels of both CECs and CEPs were significantly higher in patient with sepsis and complicated sepsis than the controls. The levels of CECs were higher in patients with complicated sepsis, whereas the levels of CEPs were lower in patients with complicated sepsis. Comparing the survival and nonsurvival septic patients, the levels of CEPs were significantly higher in the survival than in nonsurvival patients, whereas the levels of CECs were significantly lower in the survival than in nonsurvival patients. Serum albumin was higher in survival than in nonsurvival patients. Estimation of CECs and CEPs and their correlation with other parameters such as serum albumen could add important information regarding prognosis in septic pediatric patients.

  13. Circulating endothelial progenitor cells and cardiovascular outcomes.

    PubMed

    Werner, Nikos; Kosiol, Sonja; Schiegl, Tobias; Ahlers, Patrick; Walenta, Katrin; Link, Andreas; Böhm, Michael; Nickenig, Georg

    2005-09-08

    Endothelial progenitor cells derived from bone marrow are believed to support the integrity of the vascular endothelium. The number and function of endothelial progenitor cells correlate inversely with cardiovascular risk factors, but the prognostic value associated with circulating endothelial progenitor cells has not been defined. The number of endothelial progenitor cells positive for CD34 and kinase insert domain receptor (KDR) was determined with the use of flow cytometry in 519 patients with coronary artery disease as confirmed on angiography. After 12 months, we evaluated the association between baseline levels of endothelial progenitor cells and death from cardiovascular causes, the occurrence of a first major cardiovascular event (myocardial infarction, hospitalization, revascularization, or death from cardiovascular causes), revascularization, hospitalization, and death from all causes. A total of 43 participants died, 23 from cardiovascular causes. A first major cardiovascular event occurred in 214 patients. The cumulative event-free survival rate increased stepwise across three increasing baseline levels of endothelial progenitor cells in an analysis of death from cardiovascular causes, a first major cardiovascular event, revascularization, and hospitalization. After adjustment for age, sex, vascular risk factors, and other relevant variables, increased levels of endothelial progenitor cells were associated with a reduced risk of death from cardiovascular causes (hazard ratio, 0.31; 95 percent confidence interval, 0.16 to 0.63; P=0.001), a first major cardiovascular event (hazard ratio, 0.74; 95 percent confidence interval, 0.62 to 0.89; P=0.002), revascularization (hazard ratio, 0.77; 95 percent confidence interval, 0.62 to 0.95; P=0.02), and hospitalization (hazard ratio, 0.76; 95 percent confidence interval, 0.63 to 0.94; P=0.01). Endothelial progenitor-cell levels were not predictive of myocardial infarction or of death from all causes. The level of circulating CD34+KDR+ endothelial progenitor cells predicts the occurrence of cardiovascular events and death from cardiovascular causes and may help to identify patients at increased cardiovascular risk. Copyright 2005 Massachusetts Medical Society.

  14. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  15. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    PubMed

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  16. Migration of mononuclear cells expressing β-actin through the adventitia into media and intima in coronary arteriogenesis and venogenesis in ischemic myocardium.

    PubMed

    Uchida, Yasuto; Uchida, Yasumi; Maezawa, Yoshiro; Maezawa, Yuko; Tabata, Tsuyoshi

    2012-01-01

    It was previously thought that arteriogenesis and venogenesis are induced not only by proliferation of vessel-resident smooth muscle cells (SMCs) and endothelial cells (ECs) but also by migration of their precursors. However, it is not well understood through what route(s) the precursors migrate into the existing vessels.We examined through what route or routes circulating mononuclear cells expressing β-actin (β-MNCs), which we identified in canine coronary vessels, migrate into coronary vessel walls and cause arteriogenesis and venogenesis at 1, 2, 4 and 8 weeks after induction of myocardial infarction.The following changes were observed: (1) The β-MNCs migrated via coronary microvessels to the interstitial space at one week; (2) β-MNCs traversed the adventitia into the media and settled in parallel with pre-existing smooth muscle cells (SMCs) in arterioles and arteries and lost β-actin and acquired α-smooth muscle actin (α-SMA) to become mature SMCs at 2-4 weeks; (3) at the same time, other β-MNCs migrated across the adventitia and media into the intima and settled in parallel with pre-existing endothelial cells (ECs) and lost β-actin, while acquiring CD(31), to become mature ECs, resulting in arteriogenesis; (4) Similarly, β-MNCs migrated into venular and venous walls and became SMCs or ECs, resulting in venogenesis.β-MNCs in the interstitial space expressed CD(34) but not other major vascular cell markers.β-MNCs, possibly a vascular progenitor, migrate not from the lumen but across the adventitia into the media or intima of coronary vessels and transit to SMCs or ECs, and participate in arteriogenesis and venogenesis in ischemic myocardium.

  17. The effect of acute exposure to coarse particulate matter air pollution in a rural location on circulating endothelial progenitor cells: results from a randomized controlled study

    PubMed Central

    Brook, Robert D.; Bard, Robert L.; Kaplan, Mariana J.; Yalavarthi, Srilakshmi; Morishita, Masako; Dvonch, J. Timothy; Wang, Lu; Yang, Hui-yu; Spino, Catherine; Mukherjee, Bhramar; Oral, Elif A.; Sun, Qinghua; Brook, Jeffrey R.; Harkema, Jack; Rajagopalan, Sanjay

    2015-01-01

    Context Fine particulate matter (PM) air pollution has been associated with alterations in circulating endothelial progenitor cell (EPC) levels, which may be one mechanism whereby exposures promote cardiovascular diseases. However, the impact of coarse PM on EPCs is unknown. Objective We aimed to determine the effect of acute exposure to coarse concentrated ambient particles (CAP) on circulating EPC levels. Methods Thirty-two adults (25.9±6.6 years) were exposed to coarse CAP (76.2±51.5 μgm−3) in a rural location and filtered air (FA) for 2 h in a randomized double-blind crossover study. Peripheral venous blood was collected 2 and 20 h post-exposures for circulating EPC (n=21), white blood cell (n=24) and vascular endothelial growth factor (VEGF) (n=16–19) levels. The changes between exposures were compared by matched Wilcoxon signed-rank tests. Results Circulating EPC levels were elevated 2 [108.29 (6.24–249.71) EPC mL−1; median (25th–75th percentiles), p=0.052] and 20 h [106.86 (52.91–278.35) EPC mL−1, p=0.008] post-CAP exposure compared to the same time points following FA [38.47 (0.00–84.83) and 50.16 (0.00–104.79) EPC mL−1]. VEGF and white blood cell (WBC) levels did not differ between exposures. Conclusions Brief inhalation of coarse PM from a rural location elicited an increase in EPCs that persisted for at least 20 h. The underlying mechanism responsible may reflect a systemic reaction to an acute “endothelial injury” and/or a circulating EPC response to sympathetic nervous system activation. PMID:23919441

  18. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors.

    PubMed

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2(-/-) Cxcr6(Gfp/+) reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow.

  19. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  20. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    PubMed

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  1. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  2. Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis

    PubMed Central

    Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.

    2015-01-01

    Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072

  3. [Establishment and evaluation of extracorporeal circulation model in rats].

    PubMed

    Xie, Xiao-Jun; Tao, Kai-Yu; Tang, Meng-Lin; Du, Lei; An, Qi; Lin, Ke; Gan, Chang-Ping; Chen, You-Wen; Luo, Shu-Hua

    2012-09-01

    To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.

  4. Passive heat stress reduces circulating endothelial and platelet microparticles.

    PubMed

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl -1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia (from 256 ± 43 to 62 ± 14 microparticles μl -1 ). These beneficial reductions in circulating EMPs and PMPs in response to a 2°C increase in core temperature might partly underlie the reported vascular improvements following therapeutic bouts of physiological hyperthermia. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    PubMed Central

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  6. The impact of acute high-intensity interval exercise on biomarkers of cardiovascular health in type 2 diabetes.

    PubMed

    Francois, Monique E; Little, Jonathan P

    2017-08-01

    High-intensity interval training (HIIT) interventions improve cardiovascular health, yet the acute effects on circulating and functional biomarkers of cardiovascular function are unclear in individuals with type 2 diabetes (T2D). To explore this, we conducted two investigations to examine the acute response to HIIT in individuals with T2D. Study 1 measured blood pressure, endothelial-dependent dilation, circulating measures of endothelial activation, and troponin T, 30 min and 2 h after HIIT (7 × 1-min intervals) in T2D (n = 8) and age-matched normoglycemic controls (CTL; n = 8). Study 2 assessed circulating measures of endothelial activation and troponin T, 30 min, and 24 h after HIIT (10 × 1-min intervals) in ten previously trained T2D men. In study 1, markers of endothelial function and activation within the first 2 h after HIIT did not differ from baseline between T2D and CTL participants, except at 30 min after HIIT for glucose, which was reduced more in T2D than CTL (by -0.8 ± 1.2 mmol/L, p = 0.04), and VCAM-1, which was reduced more 30 min after HIIT in CTL compared to T2D (by -187 ± 221 ng/mL, p = 0.05). Study 2 saw no significant difference in any circulating markers of endothelial activation and troponin T, 30 min, and 24 h after HIIT in trained T2D males. Exploratory findings from these two studies suggest that acute HIIT does not substantially alter circulating and functional markers of cardio(vascular) health in individuals with T2D who are unaccustomed (study 1) and accustomed to HIIT (study 2).

  7. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects

    PubMed Central

    Wang, Haibo; Hartnett, M. Elizabeth

    2017-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis. PMID:28587189

  8. Effects of anti-TNF-α agents on circulating endothelial-derived and platelet-derived microparticles in psoriasis.

    PubMed

    Pelletier, Fabien; Garnache-Ottou, Francine; Biichlé, Sabeha; Vivot, Aurore; Humbert, Philippe; Saas, Philippe; Seillès, Estelle; Aubin, François

    2014-12-01

    Psoriasis involves TNF-α secretion leading to release of microparticles into the bloodstream. We investigated the effect of TNF blockers on microparticles levels before and after treatment in patients (twenty treated by anti-TNF-α agents and 6 by methotrexate) with severe psoriasis. Plasmatic microparticles were labelled using fluorescent monoclonal antibodies and were analysed using cytometry. Three months later, 70% of patients treated with anti-TNF-α agents achieved a reduction in PASI score of at least 75%. The clinical improvement in patients treated with anti-TNF-α agents was associated with a significant reduction of the mean number of platelet microparticles (2837/μl vs 1849/μl, P = 0.02) and of endothelial microparticles (64/μl vs 22/μl, P = 0.001). Microparticles are significantly decreased in psoriatic patients successfully treated by anti-TNF-α. Microparticles levels as circulating endothelial cells represent signs of endothelial dysfunction and are elevated in psoriasis. Then, TNF blockade may be effective to reduce cardiovascular risk through the reduction of circulating microparticles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects

    PubMed Central

    Koutroumpi, Matina; Dimopoulos, Stavros; Psarra, Katherini; Kyprianou, Theodoros; Nanas, Serafim

    2012-01-01

    Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. PMID:23272272

  10. Endothelial dysfunction in the regulation of portal hypertension

    PubMed Central

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  11. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors

    PubMed Central

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2 −/− Cxcr6 Gfp/+ reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow. PMID:26494947

  12. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  13. Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease.

    PubMed

    Gardner, Andrew W; Montgomery, Polly S; Casanegra, Ana I; Silva-Palacios, Federico; Ungvari, Zoltan; Csiszar, Anna

    2016-06-01

    The aim of the study was to determine whether gait characteristics were associated with endothelial cell inflammation, oxidative stress, and apoptosis and with circulating biomarkers of inflammation and antioxidant capacity in older patients with symptomatic peripheral artery disease (PAD). Gait measurements of 231 symptomatic men and women with PAD were assessed during a 4-m walk test. Patients were further characterized on endothelial effects of circulating factors present in the sera using a cell culture-based bioassay on primary human arterial endothelial cells and on circulating inflammatory and vascular biomarkers. In a multivariate regression model for gait speed, the significant independent variables were age (p < 0.001), intercellular cell adhesion molecule-1 (ICAM-1) (p < 0.001), diabetes (p = 0.003), sex (p = 0.003), and history of cerebrovascular accidents (p = 0.021). In multivariate analyses for gait cadence, the significant independent predictors included high-sensitivity C-reactive protein (HsCRP) (p < 0.001), diabetes (p = 0.001), and hypertension (p = 0.001). In a multivariate regression model for gait stride length, the significant independent variables were HsCRP (p < 0.001), age (p < 0.001), ICAM-1 (p < 0.001), hypertension (p = 0.002), cellular reactive oxygen species production (p = 0.007), and sex (p = 0.008). Higher levels of circulating biomarkers of inflammation and endothelial cell oxidative stress were associated with slower gait speed, slower cadence, and shorter stride length in older symptomatic patients with PAD. Additionally, this profile of impaired gait was more evident in older patients, in women, and in those with diabetes, hypertension, and history of cerebrovascular accidents.

  14. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction.

    PubMed

    Devaraj, Sridevi; Kumaresan, Pappanaicken R; Jialal, Ishwarlal

    2011-12-01

    Inflammation is pivotal in atherosclerosis. A key early event in atherosclerosis is endothelial dysfunction. C-reactive protein (CRP), the prototypic marker of inflammation in humans, is a risk marker for cardiovascular disease, and there is mounting evidence to support its role in atherothrombosis. CRP has been shown to promote endothelial dysfunction both in vitro and in vivo. Emerging biomarkers of endothelial dysfunction include circulating endothelial cells (CECs) and endothelial microparticles (EMPs). However, there is a paucity of data examining the effect of CRP on CEC and EMP production in vitro and in vivo. In this report, we treated human aortic endothelial cells (HAECs) with increasing concentrations of CRP (0-50 μg/mL) or boiled CRP. We counted CECs and EMPs by flow cytometry. Although CRP treatment resulted in a significant increase in release of both CECs and EMPs, boiled CRP failed to have an effect. Pretreatment of HAECs with sepiapterin or diethylenetriamine NONOate, both of which preserve nitric oxide (NO), resulted in attenuation of CRP's effects on CECs and EMPs. CD32 and CD64 blocking antibodies but not CD16 antibody or lectin-like oxidized LDL receptor 1 small interfering RNA (LOX-1 siRNA) prevented CRP-induced production of CECs and EMPs. Furthermore, delivery of human CRP to Wistar rats compared with human serum albumin resulted in significantly increased CECs and EMPs, corroborating the in vitro findings. We provide novel data that CRP, via NO deficiency, promotes endothelial dysfunction by inducing release of CECs and EMPs, which are biomarkers of endothelial dysfunction.

  15. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    PubMed

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.

  16. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  17. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China.

    PubMed

    Wan, Zhongxiao; Yu, Lugang; Cheng, Jinbo; Zhang, Zengli; Xu, Baohui; Pang, Xing; Zhou, Hui; Lei, Ting

    2016-01-01

    The aim of the present study is (1) to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OH)D] and adiponectin, nonesterified fatty acids (NEFAs), and glycerol and (2) to determine the alterations in circulating endothelial microparticles (EMPs) in Chinese male subjects with increased body mass index (BMI). A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW), and obese (OB), N = 15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs), total and high-molecular weight (HMW) adiponectin, 25(OH)D, nonesterified fatty acids (NEFAs), and glycerol. Circulating 25(OH)D levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b- EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OH)D levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b- EMPs among lean, overweight, and obese subjects.

  18. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    PubMed Central

    Wan, Zhongxiao; Yu, Lugang; Cheng, Jinbo; Zhang, Zengli; Xu, Baohui; Pang, Xing; Zhou, Hui; Lei, Ting

    2016-01-01

    The aim of the present study is (1) to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OH)D] and adiponectin, nonesterified fatty acids (NEFAs), and glycerol and (2) to determine the alterations in circulating endothelial microparticles (EMPs) in Chinese male subjects with increased body mass index (BMI). A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW), and obese (OB), N = 15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs), total and high-molecular weight (HMW) adiponectin, 25(OH)D, nonesterified fatty acids (NEFAs), and glycerol. Circulating 25(OH)D levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OH)D levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects. PMID:27314039

  19. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    NASA Astrophysics Data System (ADS)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  20. Early detection of endothelial injury and dysfunction in conjunction with correction of hemodynamic maladjustment can effectively restore renal function in type 2 diabetic nephropathy.

    PubMed

    Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse

    2006-01-01

    This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.

  1. Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes.

    PubMed

    Felice, Francesca; Di Stefano, Rossella; Pini, Stefano; Mazzotta, Gianfranco; Bovenzi, Francesco M; Bertoli, Daniele; Abelli, Marianna; Borelli, Lucia; Cardini, Alessandra; Lari, Lisa; Gesi, Camilla; Michi, Paola; Morrone, Doralisa; Gnudi, Luigi; Balbarini, Alberto

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) are related to endothelial function and progression of coronary artery disease. There is evidence of decreased numbers of circulating EPCs in patients with a current episode of major depression. We investigated the relationships between the level of circulating EPCs and depression and anxiety in patients with acute coronary syndrome (ACS). Patients with ACS admitted to three Cardiology Intensive Care Units were evaluated by the SCID-I to determine the presence of lifetime and/or current mood and anxiety disorders according to DSM-IV criteria. The EPCs were defined as CD133(+) CD34(+) KDR(+) and evaluated by flow cytometry. All patients underwent standardized cardiological and psychopathological evaluations. Parametric and nonparametric statistical tests were performed where appropriate. Out of 111 ACS patients, 57 were found to have a DSM-IV lifetime or current mood or anxiety disorder at the time of the inclusion in the study. The ACS group with mood or anxiety disorders showed a significant decrease in circulating EPC number compared with ACS patients without affective disorders. In addition, EPC levels correlated negatively with severity of depression and anxiety at index ACS episode. The current study indicates that EPCs circulate in decreased numbers in ACS patients with depression or anxiety and, therefore, contribute to explore new perspectives in the pathophysiology of the association between cardiovascular disorders and affective disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Impact of circulating esterified eicosanoids and other oxylipins on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Eicosanoids including epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic (HETEs) and other oxylipins derived from polyunsaturated fatty acids have emerging roles in endothelial inflammation and its atherosclerotic consequences. Unlike many eicosanoids, they are known to be esterified in c...

  3. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    PubMed

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Elevated circulating endothelial cell-derived microparticle levels in patients with liver cirrhosis: a preliminary report

    PubMed Central

    Simon, Krzysztof Adam; Pazgan-Simon, Monika

    2015-01-01

    Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256

  5. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164

  6. A six-colour flow cytometric method for simultaneous detection of cell phenotype and apoptosis of circulating endothelial cells.

    PubMed

    Mariucci, S; Rovati, B; Chatzileontiadou, S; Bencardino, K; Manzoni, M; Delfanti, S; Danova, M

    2009-01-01

    Blood circulating endothelial cells (CECs), with their resting and activated subsets, (rCECs and aCECs) and circulating progenitors cells (CEPs) are two extremely rare cell populations that are important in tissue vascularization. Their number and function are modulated in diseases involving vascular injury, such as human tumours. Although a consensus on the phenotypic definition of endothelial cells, as well as on the optimal enumeration technique, is still lacking, the number of clinical studies based on assessment of these cells is rapidly expanding, as well as the analytical methods employed. The present study aimed to develop a rapid and sensitive flow cytometric method of quantifying and characterizing CECs (with both their subsets and the apoptotic fraction) and CEPs. We analysed peripheral blood samples from 21 subjects with a six-colour flow cytometric approach allowing detection of the cell phenotype of CECs and CEPs using a monoclonal antibodies panel and a dedicated gating strategy. Apoptotic CECs were detected with Annexin V and dead cells with 7-amino-actinomycin D staining. The described technique proved to be a new, reliable, tool increasing our knowledge of the biology of CECs and CEPs and can readily be applied in the study of many pathological conditions characterized by endothelial damage.

  7. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny.

    PubMed

    Ganuza, Miguel; Hall, Trent; Finkelstein, David; Chabot, Ashley; Kang, Guolian; McKinney-Freeman, Shannon

    2017-10-01

    Current dogma asserts that mammalian lifelong blood production is established by a small number of blood progenitors. However, this model is based on assays that require the disruption, transplantation and/or culture of embryonic tissues. Here, we used the sample-to-sample variance of a multicoloured lineage trace reporter to assess the frequency of emerging lifelong blood progenitors while avoiding the disruption, culture or transplantation of embryos. We find that approximately 719 Flk1 + mesodermal precursors, 633 VE-cadherin + endothelial precursors and 545 Vav1 + nascent blood stem and progenitor cells emerge to establish the haematopoietic system at embryonic days (E)7-E8.5, E8.5-E11.5 and E11.5-E14.5, respectively. We also determined that the spatio-temporal recruitment of endothelial blood precursors begins at E8.5 and ends by E10.5, and that many c-Kit + clusters of newly specified blood progenitors in the aorta are polyclonal in origin. Our work illuminates the dynamics of the developing mammalian blood system during homeostasis.

  8. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure.

    PubMed

    Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M

    2010-09-01

    Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

  9. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    PubMed

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  10. The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial.

    PubMed

    Chiva-Blanch, Gemma; Condines, Ximena; Magraner, Emma; Roth, Irene; Valderas-Martínez, Palmira; Arranz, Sara; Casas, Rosa; Martínez-Huélamo, Miriam; Vallverdú-Queralt, Anna; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2014-04-01

    Moderate alcohol consumption is associated with a decrease in cardiovascular risk, but fermented beverages seem to confer greater cardiovascular protection due to their polyphenolic content. Circulating endothelial progenitor cells (EPC) are bone-marrow-derived stem cells with the ability to repair and maintain endothelial integrity and function and are considered as a surrogate marker of vascular function and cumulative cardiovascular risk. Nevertheless, no study has been carried out on the effects of moderate beer consumption on the number of circulating EPC in high cardiovascular risk patients. To compare the effects of moderate consumption of beer, non-alcoholic beer and gin on the number of circulating EPC and EPC-mobilizing factors. In this crossover trial, 33 men at high cardiovascular risk were randomized to receive beer (30 g alcohol/d), the equivalent amount of polyphenols in the form of non-alcoholic beer, or gin (30 g alcohol/d) for 4 weeks. Diet and physical exercise were carefully monitored. The number of circulating EPC and EPC-mobilizing factors were determined at baseline and after each intervention. After the beer and non-alcoholic beer interventions, the number of circulating EPC significantly increased by 8 and 5 units, respectively, while no significant differences were observed after the gin period. In correlation, stromal cell derived factor 1 increased significantly after the non-alcoholic and the beer interventions. The non-alcoholic fraction of beer increases the number of circulating EPC in peripheral blood from high cardiovascular risk subjects. http://www.controlled-trials.com/ISRCTN95345245 ISRCTN95345245. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Dietary intake of phytoestrogen is associated with increased circulating endothelial progenitor cells in patients with cardiovascular disease.

    PubMed

    Chan, Yap-Hang; Lam, Tai-Hing; Lau, Kui-Kai; Yiu, Kai-Hang; Siu, Chung-Wah; Li, Sheung-Wai; Chan, Hiu-Ting; Tam, Sidney; Lau, Chu-Pak; Tse, Hung-Fat

    2011-06-01

    Endogenous estrogen is known to positively influence the level and functionality of endothelial progenitor cells (EPC). However, the effect of phytoestrogen on EPC is unknown. Isoflavone is a major component of phytoestrogen. This study aims to investigate if the intake of isoflavone has any impact on the circulating level of EPC. We studied 102 consecutive patients (mean age: 66.5 ± 9.5 years, 78% male, all female post-menopausal) with cardiovascular disease (atherothrombotic stroke 62%, coronary artery disease 38%). Circulating levels of CD133(+) EPC were determined by flow cytometry. Non-invasive pulse wave velocity (PWV) was measured. Long-term intake of isoflavone was determined by a validated food frequency questionnaire. Isoflavone intake was positively associated with circulating CD133(+) EPC (r = 0.31, p = 0.001). Patients with circulating CD133(+) EPC <10th percentile had significantly lower isoflavone intake than patients with CD133(+)EPC ≥10th percentile (4.6 ± 3.7 mg/day versus 19.3 ± 30.2 mg/day, p < 0.001). A significant overall linear trend of circulating EPC across increasing tertiles of isoflavone intake was observed (p = 0.004). Adjusted for potential confounders, increased isoflavone intake from the 1st to the 3rd tertile independently predicted increased circulating CD133(+) EPC level by 221 cells/µl (95%CI: 71.4 to 369.8, relative increase 160%, p = 0.004). Gender was not a significant factor (p > 0.05). Furthermore, circulating CD133(+) EPC <10th percentile was independently predictive of increased PWV by 261.7 cm/s (95% CI: 37.1 to 486.2, p = 0.024). The study demonstrated that circulating EPC increased by more than one fold in patients with cardiovascular disease who had higher intake of isoflavone, suggesting that isoflavone may confer vascular protection through enhanced endothelial repair.

  12. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Ruiz-Romance, Mar; Llurba, Elisa; Vilardell-Tarres, Miquel

    2012-02-01

    The behavior of the circulating microparticles (cMP) in severe preeclampsia (PE) and fetal growth restriction (FGR) is disputed. METHOD OF STUDY  Non-matched case-control study. Seventy cases of severe PE/HELLP/FGR were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women acted as a control. cMP were analyzed using flow cytometry. Results are given as total (annexin-A5-ANXA5+), platelet (CD41+), leukocyte (CD45+), endothelial (CD144+CD31+//CD41-), and CD41-negative cMP/μL of plasma. Antiphospholipid antibodies (aPL) were analyzed through usual methods. Platelet and endothelial cMP increased in healthy pregnant women. PE whole group (PE±FGR) showed an increase in endothelial and CD41-negative, but not in platelet-derived, cMP. Comparing PE whole group versus healthy pregnant, we found cMP levels of endothelial and CD41- had increased. The cMP results obtained in PE group were similar to those of the PE whole group. Comparing PE group to isolated FGR, significant CD41-negative cMP increase was found in PE. According to its aPL positivity, a trend to decrease in leukocyte and endothelial-derived cMP was found in PE group. Normal pregnancy is accompanied by endothelial and platelet cell activation. Endothelial cell activation has been shown in PE but not in isolated FGR. In PE, aPL may contribute to endothelial and possibly to leukocyte cell activation. © 2011 John Wiley & Sons A/S.

  13. Hypothesis: Pentoxifylline explores new horizons in treatment of preeclampsia.

    PubMed

    Azimi, Arsalan; Ziaee, Seyyed Mohyeddin; Farhadi, Pouya; Sagheb, Mohammad Mahdi

    2015-10-01

    Preeclampsia, the leading cause of maternal morbidity and perinatal mortality, initiates as inappropriate immune response to trophoblastic invasion impairs placentation and placental circulation. A poorly perfused placenta generates superoxide anions as well as anti-angiogenic factors and this series of events result in impairment of endothelial function, followed by maternal morbidities such as hypertension, kidney injury and proteinuria. Renal loss of anti-coagulant proteins and subsequent hyper-coagulable state along with endothelial dysfunction accelerates progression of the disease toward eclampsia. Since Pentoxifylline, a methyl-xanthine derivative known for enhancement of vascular endothelial function, down-regulation of many inflammatory cytokines increased during preeclampsia, improvement of placental circulation, reduction of ischemia-reperfusion injury, enhancement of vasodilatation and endothelial function, ameliorating proteinuria, inhibition of platelet aggregation and decreasing risk of preterm labor, which are all amongst morbidities of preeclampsia, here it is hypothesized that Pentoxifylline prevents development of preeclampsia and/or decelerate progression of the disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.

    PubMed

    Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B

    2012-06-21

    The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.

  15. Influence of irradiation on release of endothelial microparticles (EMP) in vitro.

    PubMed

    Neuber, Christin; Pufe, Johanna; Pietzsch, Jens

    2015-01-01

    Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P <  0.01). In conclusion, under the present experimental conditions EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.

  16. Fatty acid carbon is essential for dNTP synthesis in endothelial cells

    PubMed Central

    Missiaen, Rindert; Queiroz, Karla CS; Borgers, Gitte; Elia, Ilaria; Zecchin, Annalisa; Cantelmo, Anna Rita; Christen, Stefan; Goveia, Jermaine; Heggermont, Ward; Goddé, Lucica; Vinckier, Stefan; Van Veldhoven, Paul P.; Eelen, Guy; Schoonjans, Luc; Gerhardt, Holger; Dewerchin, Mieke; Baes, Myriam; De Bock, Katrien; Ghesquière, Bart; Lunt, Sophia Y.; Fendt, Sarah-Maria; Carmeliet, Peter

    2015-01-01

    The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in ECs did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labeling studies in control ECs showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1a silencing reduced these processes and depleted EC stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1a-silenced ECs. Finally, CPT1 blockade inhibited pathological ocular angiogenesis, suggesting a novel strategy for blocking angiogenesis. PMID:25830893

  17. Early Endothelial Bioactivity of Serum after Diesel Exhaust Inhalation: A Driver of Latent Impairment in Left Ventricular Pressure in the Heart?

    EPA Science Inventory

    Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of sys...

  18. Isolation and Characterization of Rat Pituitary Endothelial Cells

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416

  19. Increased plasma levels of big-endothelin-2 and big-endothelin-3 in patients with end-stage renal disease.

    PubMed

    Miyauchi, Yumi; Sakai, Satoshi; Maeda, Seiji; Shimojo, Nobutake; Watanabe, Shigeyuki; Honma, Satoshi; Kuga, Keisuke; Aonuma, Kazutaka; Miyauchi, Takashi

    2012-10-15

    Big endothelins (pro-endothelin; inactive-precursor) are converted to biologically active endothelins (ETs). Mammals and humans produce three ET family members: ET-1, ET-2 and ET-3, from three different genes. Although ET-1 is produced by vascular endothelial cells, these cells do not produce ET-3, which is produced by neuronal cells and organs such as the thyroid, salivary gland and the kidney. In patients with end-stage renal disease, abnormal vascular endothelial cell function and elevated plasma ET-1 and big ET-1 levels have been reported. It is unknown whether big ET-2 and big ET-3 plasma levels are altered in these patients. The purpose of the present study was to determine whether endogenous ET-1, ET-2, and ET-3 systems including big ETs are altered in patients with end-stage renal disease. We measured plasma levels of ET-1, ET-3 and big ET-1, big ET-2, and big ET-3 in patients on chronic hemodialysis (n=23) and age-matched healthy subjects (n=17). In patients on hemodialysis, plasma levels (measured just before hemodialysis) of both ET-1 and ET-3 and big ET-1, big ET-2, and big ET-3 were markedly elevated, and the increase was higher for big ETs (Big ET-1, 4-fold; big ET-2, 6-fold; big ET-3: 5-fold) than for ETs (ET-1, 1.7-fold; ET-3, 2-fold). In hemodialysis patients, plasma levels of the inactive precursors big ET-1, big ET-2, and big ET-3 levels are markedly increased, yet there is only a moderate increase in plasma levels of the active products, ET-1 and ET-3. This suggests that the activity of endothelin converting enzyme contributing to circulating levels of ET-1 and ET-3 may be decreased in patients on chronic hemodialysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein

    PubMed Central

    d'Uscio, Livius V.; Das, Pritam; Santhanam, Anantha V.R.; He, Tongrong; Younkin, Steven G.; Katusic, Zvonimir S.

    2012-01-01

    Aims Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Methods and results Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser1177 in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH4) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH4 and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH4 bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91phox and SODs, thereby reducing production of superoxide anion in the aortas. Conclusion Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production. PMID:22886847

  1. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein.

    PubMed

    d'Uscio, Livius V; Das, Pritam; Santhanam, Anantha V R; He, Tongrong; Younkin, Steven G; Katusic, Zvonimir S

    2012-12-01

    Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.

  2. Oleic acid exposure of cultured endothelial cells alters lipid mediator production

    EPA Science Inventory

    Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...

  3. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome.

    PubMed

    Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria

    2016-08-01

    Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability.

    PubMed

    Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong

    2010-04-01

    Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide availability. Direct incubation of EPC with RW and resveratrol can modify the functions of EPC, including attenuation of senescence and promotion of EPC adhesion, migration, and tube formation. These data suggest that RW ingestion may alter the biology of EPC, and these alterations may contribute to its unique cardiovascular-protective effect.

  5. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Exercise training with dietary restriction enhances circulating irisin level associated with increasing endothelial progenitor cell number in obese adults: an intervention study.

    PubMed

    Huang, Junhao; Wang, Shen; Xu, Fengpeng; Wang, Dan; Yin, Honggang; Lai, Qinhao; Liao, Jingwen; Hou, Xiaohui; Hu, Min

    2017-01-01

    Circulating endothelial progenitor cells (EPCs) correlate negatively with obesity. Previous studies have shown that exercise significantly restores circulating EPC levels in obese people; however, the underlying mechanisms have not been elucidated. Recently, irisin has been reported to have a critical role in the regulation of EPCs. This exercise-induced myokine has been demonstrated to play a therapeutic role in obesity. In this study, we hypothesized that the increase in circulating irisin may form a link with increasing EPC levels in obese people after exercise. Seventeen obese adults completed an 8-week program of combined exercise and dietary intervention. Clinical characteristics, blood biochemistry, and circulating irisin levels of subjects were measured before and after eight weeks of training. EPC levels were evaluated via flow cytometry, and EPC migratory and adhesive functions were also determined. Circulating irisin levels significantly increased following the 8-week training program ( P  < 0.05). We furthermore observed an improvement in EPC numbers ( P  < 0.05), and EPC migratory and adhesive functions ( P  < 0.001 and P  < 0.05, respectively) after the intervention. Additionally, we detected a positive correlation between changes in irisin and changes in EPC number ( r  = 0.52, P  < 0.05). For the first time, a positive correlation between increasing irisin levels and increasing EPC levels has been reported after an 8-week program, consisting of exercise and dietary intervention. This result suggests a novel effect of irisin on the regulation of EPC mobilization, which might contribute to improvement of endothelial function in obese people.

  7. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    PubMed

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  8. Endothelial actions of atrial and B-type natriuretic peptides.

    PubMed

    Kuhn, Michaela

    2012-05-01

    The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the actions of NPs on endothelial permeability and regeneration. © 2012 The Author. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  9. Whole-Body Vibrations Do Not Elevate the Angiogenic Stimulus when Applied during Resistance Exercise

    PubMed Central

    Beijer, Åsa; Rosenberger, André; Bölck, Birgit; Suhr, Frank; Rittweger, Jörn; Bloch, Wilhelm

    2013-01-01

    Knowledge about biological factors involved in exercise-induced angiogenesis is to date still scanty. The present study aimed to investigate the angiogenic stimulus of resistance exercise with and without superimposed whole-body vibrations. Responses to the exercise regimen before and after a 6-week training intervention were investigated in twenty-six healthy male subjects. Serum was collected at the initial and final exercise sessions and circulating levels of matrix metalloproteinases (MMP) -2 and -9, Vascular Endothelial Growth Factor (VEGF) and endostatin were determined via ELISA. Furthermore, we studied the proliferative effect of serum-treated human umbilical vein endothelial cells in vitro via BrdU-incorporation assay. It was found that circulating MMP-2, MMP-9, VEGF and endostatin levels were significantly elevated (P<0.001) from resting levels after both exercise interventions, with higher post-exercise VEGF concentrations in the resistance exercise (RE) group compared to the resistive vibration exercise (RVE) group. Moreover, RE provoked increased endothelial cell proliferation in vitro and higher post-exercise circulating endostatin concentrations after 6 weeks of training. These effects were elusive in the RVE group. The present findings suggest that resistance exercise leads to a transient rise in circulating angiogenic factors and superimposing vibrations to this exercise type might not further trigger a potential signaling of angiogenic stimulation in skeletal muscle. PMID:24260349

  10. Extraembryonic origin of circulating endothelial cells.

    PubMed

    Pardanaud, Luc; Eichmann, Anne

    2011-01-01

    Circulating endothelial cells (CEC) are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  11. Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33

    PubMed Central

    Chen, Wei-Yu; Hong, Jaewoo; Gannon, Joseph; Kakkar, Rahul; Lee, Richard T.

    2015-01-01

    Hypertension increases the pressure load on the heart and is associated with a poorly understood chronic systemic inflammatory state. Interleukin 33 (IL-33) binds to membrane-bound ST2 (ST2L) and has antihypertrophic and antifibrotic effects in the myocardium. In contrast, soluble ST2 appears to act as a decoy receptor for IL-33, blocking myocardial and vascular benefits, and is a prognostic biomarker in patients with cardiovascular diseases. Here we report that a highly local intramyocardial IL-33/ST2 conversation regulates the heart’s response to pressure overload. Either endothelial-specific deletion of IL33 or cardiomyocyte-specific deletion of ST2 exacerbated cardiac hypertrophy with pressure overload. Furthermore, pressure overload induced systemic circulating IL-33 as well as systemic circulating IL-13 and TGF-beta1; this was abolished by endothelial-specific deletion of IL33 but not by cardiomyocyte-specific deletion of IL33. Our study reveals that endothelial cell secretion of IL-33 is crucial for translating myocardial pressure overload into a selective systemic inflammatory response. PMID:25941360

  12. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients.

    PubMed

    Zinger, Anna; Latham, Sharissa L; Combes, Valery; Byrne, Scott; Barnett, Michael H; Hawke, Simon; Grau, Georges E

    2016-12-01

    No molecular marker can monitor disease progression and treatment efficacy in multiple sclerosis (MS). Circulating microparticles represent a potential snapshot of disease activity at the blood brain barrier. To profile plasma microparticles by flow cytometry in MS and determine how fingolimod could impact endothelial microparticles production. In non-treated MS patients compared to healthy and fingolimod-treated patients, endothelial microparticles were higher, while B-cell-microparticle numbers were lower. Fingolimod dramatically reduced tumour necrosis factor (TNF)-induced endothelial microparticle release in vitro. Fingolimod restored dysregulated endothelial and B-cell-microparticle numbers, which could serve as a biomarker in MS. © The Author(s), 2016.

  13. Prostate Cancer Detection by Molecular Urinalysis

    DTIC Science & Technology

    2008-04-01

    proteins.13 We did not specifically assess whether the urinary endoglin we detected was a result of circulating and filtered endoglin or a result of...a marker of pan-endothelial damage and angiogenesis, it is unlikely that circulating endoglin levels would be significantly affected by localized... circulating endoglin is 33 15 increased in metastatic disease states.8,10, 11 Presumably, the angiogenic cascade necessary for metastasis is

  14. Increased Circulating Endothelial Apoptotic Microparticle to Endothelial Progenitor Cell Ratio Is Associated with Subsequent Decline in Glomerular Filtration Rate in Hypertensive Patients

    PubMed Central

    Hsu, Chien-Yi; Huang, Po-Hsun; Chiang, Chia-Hung; Leu, Hsin-Bang; Huang, Chin-Chou; Chen, Jaw-Wen; Lin, Shing-Jong

    2013-01-01

    Background Recent research indicates hypertensive patients with microalbuminuria have decreased endothelial progenitor cells (EPCs) and increased levels of endothelial apoptotic microparticles (EMP). However, whether these changes are related to a subsequent decline in glomerular filtration rate (GFR) remains unclear. Methods and Results We enrolled totally 100 hypertensive out-patients with eGFR ≥30 mL/min/1.73 m2. The mean annual rate of GFR decline (△GFR/y) was −1.49±3.26 mL/min/1.73 m2 per year during the follow-up period (34±6 months). Flow cytometry was used to assess circulating EPC (CD34+/KDR+) and EMP levels (CD31+/annexin V+) in peripheral blood. The △GFR/y was correlated with the EMP to EPC ratio (r = −0.465, p<0.001), microalbuminuria (r = −0.329, p = 0.001), and the Framingham risk score (r = −0.245, p = 0.013). When we divided the patients into 4 groups according to the EMP to EPC ratio, there was an association between the EMP to EPC ratio and the ΔGFR/y (mean ΔGFR/y: 0.08±3.04 vs. −0.50±2.84 vs. −1.25±2.49 vs. −4.42±2.82, p<0.001). Multivariate analysis indicated that increased EMP to EPC ratio is an independent predictor of ΔeGFR/y. Conclusions An increased circulating EMP to EPC ratio is associated with subsequent decline in GFR in hypertensive patients, which suggests endothelial damage with reduced vascular repair capacity may contribute to further deterioration of renal function in patients with hypertension. PMID:23874701

  15. Identification of early B cell precursors (stage 1 and 2 hematogones) in the peripheral blood.

    PubMed

    Kurzer, Jason H; Weinberg, Olga K

    2018-05-25

    Differentiating malignant B-lymphoblasts from early benign B cell precursors (hematogones) is a vital component of the diagnosis of B-lymphoblastic leukaemia. It has been previously reported that only late-stage B cell precursors circulate in the peripheral blood. Consequently, flow cytometric detection of cells with immunophenotypic findings similar to earlier stage precursors in the peripheral blood justifiably raises concern for involvement by B-lymphoblastic leukaemia. We report here, however, that benign early B cell precursors can indeed be detected in the peripheral blood, thus complicating the interpretation of flow cytometric findings derived from these sample types. A retrospective search of our collective databases identified 13 cases containing circulating early stage B cell precursors. The patients ranged in age from 15 days to 85 years old. All positive cases demonstrated that the earlier B cell precursors were associated with later stage precursors, a finding that could help differentiate these cells from B-lymphoblastic leukaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction

    PubMed Central

    Martínez-Sales, Vicenta; Sánchez-Lázaro, Ignacio; Vila, Virtudes; Almenar, Luis; Contreras, Teresa; Reganon, Edelmiro

    2011-01-01

    Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC) have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis. Methods: We studied 32 heart failure patients at hospital admission (acute phase) and at revision after 3 months (stable phase) and 32 controls. Circulating markers of endothelial damage (CEC; von Willebrand factor, vWF and soluble E-selectin, sEsel) and angiogenesis (vascular endothelial growth factor, VEGF and thrombospondin-1) were quantified. Results: Levels of CEC, vWF, sEsel and VEGF are significantly higher in heart failure patients than in controls. Levels of CEC (36.9 ± 15.3 vs. 21.5 ± 10.0 cells/ml; p < 0.001), vWF (325 ± 101 vs. 231 ± 82%; p < 0.001) and VEGF (26.3 ± 15.2 vs. 21.9 ± 11.9 ng/ml; p < 0.001) are significantly higher in the acute phase than in the stable phase of heart failure. CEC levels correlate with vWF and VEGF. Results show than 100% of patients in acute phase and 37.5% in stable phase have levels of CEC higher than the 99th percentile of the distribution of controls (16 cells/ml). Therefore, increases in CEC represent a relative risk of 9.5 for heart failure patients suffering from acute phase. Conclusions: CEC, in addition to being elevated in heart failure, correlate with vWF levels, providing further support for CEC as markers of endothelial damage. Levels of CEC are associated with the acute phase of heart failure and could be used as a marker of the worsening in heart failure. PMID:21897001

  17. Differentially regulated splice variants and systems biology analysis of Kaposi's sarcoma-associated herpesvirus-infected lymphatic endothelial cells.

    PubMed

    Chang, Ting-Yu; Wu, Yu-Hsuan; Cheng, Cheng-Chung; Wang, Hsei-Wei

    2011-09-01

    Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon-intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3'-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34(+) precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.

  18. The Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Liberda, Eric N.

    Introduction. Particulate air pollution, specifically nickel found on or in particulate matter, has been associated with an increased risk of mortality in human population studies and can cause increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiate atherosclerosis in murine exposures. With the discovery of endothelial progenitor cells (EPCs), a door has been opened which may explain these observed cardiovascular effects associated with inhaled air particles and nickel exposure. In order to further quantify the effects of inhaled nickel nanoparticles and attempt to elucidate how the observed findings from other studies may occur, several whole body inhalation exposure experiments to nickel nanoparticles were performed. Methods. Following whole body exposure to approximately 500mug/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells, circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the inhalation exposure. Plasma proteins were assessed using the 2D DIGE proteomic approach and commercially available ELISAs. Results and Conclusions. Exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation. CECs were significantly upregulated suggesting that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. This decrease in EPC function coincided with downregulation of receptors for EPC mobilization and homing. Antioxidant plasma proteins were upregulated post-exposure and transferrin was downregulated. In conclusion, these results indicate that inhalation exposure to Ni nanoparticles below the current OSHA permissible exposure limit for Ni compounds can lead to alterations in bone marrow progenitor cells that may ultimately lead to the development of various cardiovascular diseases.

  19. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction.

    PubMed

    Li, YanGuang; Chen, FuKun; Deng, Long; Lin, Kun; Shi, Xiangmin; Zhaoliang, Shan; Wang, YuTang

    2017-01-01

    Paroxysmal atrial fibrillation (PAF) can increase thrombogenesis risk, especially in the left atrium (LA). The exact mechanism is still unclear. We assessed the effects of PAF on endothelial function, and investigated if febuxostat (FX) can attenuate endothelial dysfunction by inhibition of xanthine oxidase (XO). Eighteen male New Zealand white rabbits were divided randomly into sham-operated (S), PAF (P) or FX+pacing (FP) groups. Group P and group FP received rapid atrial pacing (RAP). Group FP was administered febuxostat (FX) for 7days before RAP. Post-procedure, blood samples were collected from the LA, right atrium (RA) and peripheral circulation. Tissues from the LA and RA were obtained. Endothelial dysfunction (thrombomodulin [TM], von Willebrand factor [VWF], asymmetric dimethylarginine [ADMA]), and indirect thrombin generation (thrombin-antithrombin complex [TAT], prothrombin fragment 1+2 [F1.2]) and oxidative stress in atrial tissue (xanthine oxidase [XO], superoxide dismutase [SOD], malondialdehyde [MDA]) were measured using an Enzyme-linked immunosorbent assay. Atrial endothelial expression of TM and VWF was measured by histology/western blotting. Endothelial dysfunction (TM, VWF, ADMA), TAT generation and oxidative stress (XO, SOD, MDA) in group P were more significant compared with that in group S (p<0.05, respectively). In group P, all of these changes occurred to a greater extent in the LA compared with those in the RA or peripheral circulation. In group FP, FX attenuated endothelial dysfunction and reduced TAT levels by inhibition of XO-mediated oxidative stress. PAF can lead to endothelial dysfunction and TAT generation by XO-mediated oxidative stress. The LA is more susceptible to these effects. FX can attenuate these changes by inhibition XO and XO-mediated oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  20. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    PubMed Central

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the benefits and drawbacks of the potent anti-angiogenic effects of hydroxyurea should be clarified. PMID:25769545

  1. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  2. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  3. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    PubMed

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Endothelial precursor cells promote angiogenesis in hepatocellular carcinoma.

    PubMed

    Sun, Xi-Tai; Yuan, Xian-Wen; Zhu, Hai-Tao; Deng, Zheng-Ming; Yu, De-Cai; Zhou, Xiang; Ding, Yi-Tao

    2012-09-21

    To investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) in the angiogenesis of hepatocellular carcinoma (HCC). The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein (GFP) + bone marrow cells. The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting. Serum and tissue levels of vascular endothelial growth factor (VEGF) and colony-stimulating factor (CSF) were quantified by enzyme-linked immunosorbent assay. The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction. The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry. The proportion of EPCs in vessels was then calculated. The HCC model was successful established. The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively. These values are much higher than in the sham-operation group (0.11% ± 0.13%, 0.05% ± 0.11%, n = 9) at 14 d after modeling. At 21 d, the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%, 0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%, 0.12% ± 0.11% in control. Compared to the transient increase observed in controls, the higher level of circulating EPCs were induced by HCC. In addition, the level of serum VEGF and CSF increased gradually in HCC, reaching its peak 14 d after modeling, then slowly decreased. Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels. Under fluorescence microscopy, the bone-marrow (BM)-derived cells labeled with GFP were concentrated in the same area. The relative levels of CD133 and CD34 gene expression were elevated in tumors, around 5.0 and 3.8 times that of the tumor free area. In frozen liver sections from HCC mice, cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies. In tumor tissue, the double-positive cells were incorporated into vessel walls. In immunofluorescent staining. These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells (VECs) come partly from BM-derived EPCs. The proportion of GFP CD31 double positive VECs (out of all VECs) on day 21 was around 35.3% ± 21.2%. This is much higher than the value recorded on day 7 group (17.1% ± 8.9%). The expression of intercellular adhesion molecule 1, vascular adhesion molecule 1, and VEGF was higher in tumor areas than in tumor-free tissues. Mobilized EPCs were found to participate in tumor vasculogenesis of HCC. Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.

  5. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    PubMed

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  6. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    PubMed

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  7. High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies.

    PubMed

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise

    2009-07-15

    Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors could be of interest.

  8. Increase of endothelial progenitor cells in acute graft-versus-host disease after allogeneic haematopoietic stem cell transplantation for acute myeloid leukaemia.

    PubMed

    Medinger, Michael; Heim, Dominik; Gerull, Sabine; Halter, Jörg; Krenger, Werner; Buser, Andreas; Lengerke, Claudia; Bucher, Christoph; Passweg, Jakob

    2016-08-01

    Circulating endothelial progenitor cells (EPCs; CD31+ CD34(bright)CD133+ CD45(dim) cells) are novel markers of endothelial dysfunction and related to inflammatory processes such as acute graft-versus-host disease (aGvHD). 47 patients with acute myeloid leukaemia (AML) who were in complete remission as they underwent allogeneic hematopoietic stem cell transplantation with myeloablative conditioning with PBSC as stem cell source were enrolled in the study. Blood samples for the quantitative analysis of circulating EPC levels were drawn at different time points in patients with and without aGvHD. CD34+ VEGFR2/KDR+ CD133+ triple-positive cells identified among CD34+ cells by FACS. EPC were quantified and data are presented as cells/ml whole blood. Circulating EPC levels were not significantly different in patients with and without aGvHD prior to conditioning (baseline) and at the time of engraftment. However, at diagnosis of aGvHD≥grade 2, EPC levels increased whereas in patients without aGvHD the EPC levels remained significantly lower (3021±278 versus 2322±195 cells/ml; p<0.001). Patients with steroid-refractory aGvHD had high levels of EPC throughout. EPC levels fell in responding patients. Our results demonstrate that the number of circulating EPCs is increased in patients with aGvHD compared to patients without aGvHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Vasculoprotective Effects of 3-Hydroxybenzaldehyde against VSMCs Proliferation and ECs Inflammation.

    PubMed

    Kong, Byung Soo; Im, Soo Jung; Lee, Yang Jong; Cho, Yoon Hee; Do, Yu Ri; Byun, Jung Woo; Ku, Cheol Ryong; Lee, Eun Jig

    2016-01-01

    3-hydroxybenzaldehyde (3-HBA) is a precursor compound for phenolic compounds like Protocatechuic aldehyde (PCA). From recent reports, PCA has shown vasculoprotective potency, but the effects of 3-HBA remain unclear. The aim of this study is to investigate the vasculoprotective effects of 3-HBA in endothelial cells, vascular smooth muscle cells and various animal models. We tested effects of 3-HBA in both vitro and vivo. 3-HBA showed that it prevents PDGF-induced vascular smooth muscle cells (VSMCs) migration and proliferation from MTS, BrdU assays and inhibition of AKT phosphorylation. It arrested S and G0/G1 phase of VSMC cell cycle in PI staining and it also showed inhibited expression levels of Rb1 and CD1. In human umbilical vein endothelial cells (HUVECs), 3-HBA inhibited inflammatory markers and signaling molecules (VCAM-1, ICAM-1, p-NF-κB and p-p38). For ex vivo, 3-HBA has shown dramatic effects in suppressing the sprouting from aortic ring of Spargue Dawley (SD) rats. In vivo data supported the vasculoprotective effects of 3-HBA as it inhibited angiogenesis from Matrigel Plug assay in C57BL6 mouse, prevented ADP-induced thrombus generation, increased blood circulation after formation of thrombus, and attenuated neointima formation induced by common carotid artery balloon injury of SD rats. 3-HBA, a novel therapeutic agent, has shown vasculoprotective potency in both in vitro and in vivo.

  10. Inorganic nitrite supplementation for healthy arterial aging

    PubMed Central

    DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.

    2014-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999

  11. Type XVIII collagen degradation products in acute lung injury

    PubMed Central

    Perkins, Gavin D; Nathani, Nazim; Richter, Alex G; Park, Daniel; Shyamsundar, Murali; Heljasvaara, Ritva; Pihlajaniemi, Taina; Manji, Mav; Tunnicliffe, W; McAuley, Danny; Gao, Fang; Thickett, David R

    2009-01-01

    Introduction In acute lung injury, repair of the damaged alveolar-capillary barrier is an essential part of recovery. Endostatin is a 20 to 28 kDa proteolytic fragment of the basement membrane collagen XVIII, which has been shown to inhibit angiogenesis via action on endothelial cells. We hypothesised that endostatin may have a role in inhibiting lung repair in patients with lung injury. The aims of the study were to determine if endostatin is elevated in the plasma/bronchoalveolar lavage fluid of patients with acute lung injury and ascertain whether the levels reflect the severity of injury and alveolar inflammation, and to assess if endostatin changes occur early after the injurious lung stimuli of one lung ventilation and lipopolysaccharide (LPS) challenge. Methods Endostatin was measured by ELISA and western blotting. Results Endostatin is elevated within the plasma and bronchoalveolar lavage fluid of patients with acute lung injury. Lavage endostatin reflected the degree of alveolar neutrophilia and the extent of the loss of protein selectivity of the alveolar-capillary barrier. Plasma levels of endostatin correlated with the severity of physiological derangement. Western blotting confirmed elevated type XVIII collagen precursor levels in the plasma and lavage and multiple endostatin-like fragments in the lavage of patients. One lung ventilation and LPS challenge rapidly induce increases in lung endostatin levels. Conclusions Endostatin may adversely affect both alveolar barrier endothelial and epithelial cells, so its presence within both the circulation and the lung may have a pathophysiological role in acute lung injury that warrants further evaluation. PMID:19358707

  12. MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Shiqiang; Fang, Ming; Zhu, Qian

    Coronary collateral circulation (CCC) functions as a natural bypass in the event of coronary obstruction, which markedly improves prognosis in patients with coronary artery disease (CAD). MicroRNAs (miRNAs) have been implicated in multiple physiological and pathological processes, including angiogenesis involved in CCC growth. The roles that miRNA-939 (miR-939) plays in angiogenesis remain largely unknown. We conducted this study to explore the expression of miR-939 in CAD patients and its role in angiogenesis. For the first time, our results indicated that the expression of circulating miR-939 was down-regulated in patients with sufficient CCC compared with patients with poor CCC. Overexpression ofmore » miR-939 in primary human umbilical vein endothelial cells (HUVECs) significantly inhibited the proliferation, adhesion and tube formation, but promoted the migration of cells. In contrast, miR-939 knockdown exerted reverse effects. We further identified that γ-catenin was a novel target of miR-939 by translational repression, which could rescue the effects of miR-939 in HUVECs. In summary, this study revealed that the expression of circulating miR-939 was down-regulated in CAD patients with sufficient CCC. MiR-939 abolished vascular integrity and repressed angiogenesis through directly targeting γ-catenin. It provided a potential biomarker and a therapeutic target for CAD. - Highlights: • Circulating miR-939 is decreased in sufficient coronary collateral circulation. • MiR-939 abolishes vascular integrity in endothelial cells. • MiR-939 represses angiogenesis. • γ-catenin is a novel target of miR-939.« less

  13. Endothelial Progenitor Cells as a Sole Source for Ex Vivo Seeding of Tissue-Engineered Heart Valves

    PubMed Central

    Mettler, Bret A.; Engelmayr, George C.; Aikawa, Elena; Bischoff, Joyce; Martin, David P.; Exarhopoulos, Alexis; Moses, Marsha A.; Schoen, Frederick J.; Sacks, Michael S.

    2010-01-01

    Purposes: We investigated whether circulating endothelial progenitor cells (EPCs) can be used as a cell source for the creation of a tissue-engineered heart valve (TEHV). Methods: Trileaflet valved conduits were fabricated using nonwoven polyglycolic acid/poly-4-hydroxybutyrate polymer. Ovine peripheral blood EPCs were dynamically seeded onto a valved conduit and incubated for 7, 14, and 21 days. Results: Before seeding, EPCs were shown to express CD31+, eNOS+, and VE-Cadherin+ but not α-smooth muscle actin. Histological analysis demonstrated relatively homogenous cellular ingrowth throughout the valved conduit. TEHV constructs revealed the presence of endothelial cell (EC) markers and α-smooth muscle actin+ cells comparable with native valves. Protein levels were comparable with native valves and exceeded those in unseeded controls. EPC-TEHV demonstrated a temporal pattern of matrix metalloproteinases-2/9 expression and tissue inhibitors of metalloproteinase activities comparable to that of native valves. Mechanical properties of EPC-TEHV demonstrated significantly greater stiffness than that of the unseeded scaffolds and native valves. Conclusions: Circulating EPC appears to have the potential to provide both interstitial and endothelial functions and could potentially serve as a single-cell source for construction of autologous heart valves. PMID:19698056

  14. Increased endothelial progenitor cell circulation and VEGF production in a rat model of noise-induced hearing loss.

    PubMed

    Yang, Dong; Zhou, Huifang; Zhang, Jianning; Liu, Li

    2015-06-01

    The vascular endothelial growth factor (VEGF)-mediated mechanism of endothelial progenitor cell (EPC) mobilization, migration, and differentiation may occur in response to noise-induced acoustic trauma of the cochlea, leading to the protection of cochlear function. The purpose of this study was to analyze changes in the cochlear vessel under an intensive noise environment. Sixty male Sprague-Dawley rats were randomly divided into six groups. Acoustic trauma was induced by 120 dB SPL white noise for 4 h. Auditory function was evaluated by the auditory brainstem response threshold. Morphological changes of the cochleae, the expression of VEGF, and the circulation of EPCs in the peripheral blood were studied by immunohistochemistry, Western blotting analysis, scanning electron microscopy, and flow cytometry. Vascular recovery of the cochlea began after noise exposure. The change in the number of EPCs was consistent with the expression of VEGF at different time points after noise exposure. We propose that VEGF evokes specific permeable and chemotactic effects on the vascular endothelial cells. These effects can mobilize EPCs into the peripheral blood, leading the EPCs to target damaged sites and to exert a neoangiogenic effect.

  15. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth

    PubMed Central

    Slebe, Felipe; Rojo, Federico; Vinaixa, Maria; García-Rocha, Mar; Testoni, Giorgia; Guiu, Marc; Planet, Evarist; Samino, Sara; Arenas, Enrique J.; Beltran, Antoni; Rovira, Ana; Lluch, Ana; Salvatella, Xavier; Yanes, Oscar; Albanell, Joan; Guinovart, Joan J.; Gomis, Roger R.

    2016-01-01

    The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids. PMID:27045898

  16. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  17. Possible mechanisms for four regimes associated with cold events over East Asia

    NASA Astrophysics Data System (ADS)

    Yang, Zifan; Huang, Wenyu; Wang, Bin; Chen, Ruyan; Wright, Jonathon S.; Ma, Wenqian

    2017-09-01

    Circulation patterns associated with cold events over East Asia during the winter months of 1948-2014 are classified into four regimes by applying a k-means clustering method based on the area-weighted pattern correlation. The earliest precursor signals for two regimes are anticyclonic anomalies, which evolve into Ural and central Siberian blocking-like circulation patterns. The earliest precursor signals for the other two regimes are cyclonic anomalies, both of which evolve to amplify the East Asian trough (EAT). Both the blocking-like circulation patterns and amplified EAT favor the initialization of cold events. On average, the blocking-related regimes tend to last longer. The lead time of the earliest precursor signal for the central Siberian blocking-related regime is only 4 days, while those for the other regimes range from 16 to 18 days. The North Atlantic Oscillation plays essential roles both in triggering the precursor for the Ural blocking-related regime and in amplifying the precursors for all regimes. All regimes preferentially occur during the positive phase of the Eurasian teleconnection pattern and the negative phase of the El Niño-Southern Oscillation. For three regimes, surface cooling is primarily due to reduced downward infrared radiation and enhanced cold advection. For the remaining regime, which is associated with the southernmost cooling center, sensible and latent heat release and horizontal cold advection dominate the East Asian cooling.

  18. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease.

    PubMed

    Ueno, Hiroki; Koyama, Hidenori; Fukumoto, Shinya; Tanaka, Shinji; Shoji, Takuhito; Shoji, Tetsuo; Emoto, Masanori; Tahara, Hideki; Inaba, Masaaki; Kakiya, Ryusuke; Tabata, Tsutomu; Miyata, Toshio; Nishizawa, Yoshiki

    2011-04-01

    Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Crossing the endothelial barrier during metastasis.

    PubMed

    Reymond, Nicolas; d'Água, Bárbara Borda; Ridley, Anne J

    2013-12-01

    During metastasis, cancer cells disseminate to other parts of the body by entering the bloodstream in a process that is called intravasation. They then extravasate at metastatic sites by attaching to endothelial cells that line blood vessels and crossing the vessel walls of tissues or organs. This Review describes how cancer cells cross the endothelial barrier during extravasation and how different receptors, signalling pathways and circulating cells such as leukocytes and platelets contribute to this process. Identification of the mechanisms that underlie cancer cell extravasation could lead to the development of new therapies to reduce metastasis.

  20. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells.

    PubMed

    Taylor, Melissa; Billiot, Fanny; Marty, Virginie; Rouffiac, Valérie; Cohen, Patrick; Tournay, Elodie; Opolon, Paule; Louache, Fawzia; Vassal, Gilles; Laplace-Builhé, Corinne; Vielh, Philippe; Soria, Jean-Charles; Farace, Françoise

    2012-05-01

    The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization. © 2012 AACR

  1. T-kininogen induces endothelial cell proliferation.

    PubMed

    Pérez, Viviana; Leiva-Salcedo, Elías; Acuña-Castillo, Claudio; Aravena, Mauricio; Gómez, Christian; Sabaj, Valeria; Colombo, Alicia; Nishimura, Sumiyo; Pérez, Claudio; Walter, Robin; Sierra, Felipe

    2006-03-01

    Basal proliferation of endothelial cells increases with age, and this might play a role in the etiology of age-related vascular diseases, as well as angiogenesis. Serum kininogen levels increase during aging in rats and humans, and T-kininogen (T-KG) can affect proliferative homeostasis in several cell models. Both kinins and kininogens have been shown previously to be angiogenic through activation of endothelial cell proliferation, and here we show that exposure of endothelial cells to T-KG results in vigorous cell proliferation, accompanied by ERK/AKT activation. In our experiments, the proliferative response requires B1 and B2 kinin receptors, even though kinins are not released from the precursor. We hypothesize that the age-related increase in T-KG could play a significant role in the age-related dysregulation of vascular physiology and function.

  2. Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes

    PubMed Central

    Kady, Nermin; Yan, Yuanqing; Salazar, Tatiana; Wang, Qi; Chakravarthy, Harshini; Huang, Chao; Beli, Eleni; Navitskaya, Svetlana; Grant, Maria; Busik, Julia

    2017-01-01

    Background Diabetic retinopathy (DR) is a microvascular disease that results from retinal vascular degeneration and defective repair due to diabetes induced endothelial progenitor dysfunction. Objective Understanding key molecular factors involved in vascular degeneration and repair is paramount for developing effective DR treatment strategies. We propose that diabetes-induced activation of acid sphingomyelinase (ASM) plays essential role in retinal endothelial and CD34+ circulating angiogenic cell (CAC) dysfunction in diabetes. Methods Human retinal endothelial cells (HRECs) isolated from control and diabetic donor tissue and human CD34+ CACs from control and diabetic patients were used in this study. ASM mRNA and protein expression was assessed by quantitative PCR and ELISA, respectively. To evaluate the effect of diabetes-induced ASM on HRECs and CD34+ CACs function, tube formation, CAC incorporation into endothelial tubes, and diurnal release of CD34+ CACs in diabetic individuals was determined. Results ASM expression level was significantly increased in HRECs isolated from diabetic compared to control donor tissue, as well as CD34+CACs and plasma of diabetic patients. A significant decrease in tube area was observed in HRECs from diabetic donors as compared to control HRECs. The tube formation deficiency was associated with increased expression of ASM in diabetic HRECs. Moreover, diabetic CD34+ CACs with high ASM showed defective incorporation into endothelial tubes. Diurnal release of CD34+ CACs was disrupted with the rhythmicity lost in diabetic patients. Conclusion Collectively, these findings support that diabetes-induced ASM upregulation has a marked detrimental effect on both retinal endothelial cells and CACs. PMID:28457994

  3. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    PubMed Central

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  4. Deamidated Lipocalin‐2 Induces Endothelial Dysfunction and Hypertension in Dietary Obese Mice

    PubMed Central

    Song, Erfei; Fan, Pengcheng; Huang, Bosheng; Deng, Han‐Bing; Cheung, Bernard Man Yung; Félétou, Michel; Vilaine, Jean‐Paul; Villeneuve, Nicole; Xu, Aimin; Vanhoutte, Paul M.; Wang, Yu

    2014-01-01

    Background Lipocalin‐2 is a proinflammatory adipokine upregulated in obese humans and animals. A pathogenic role of lipocalin‐2 in hypertension has been suggested. Mice lacking lipocalin‐2 are protected from dietary obesity‐induced cardiovascular dysfunctions. Administration of lipocalin‐2 causes abnormal vasodilator responses in mice on a high‐fat diet (HFD). Methods and Results Wild‐type and lipocalin‐2 knockout mice were fed with standard chow or HFD. Immunoassays were performed for evaluating the circulating and tissue contents of lipocalin‐2. The relaxation and contraction of arteries were studied using a wire myograph. Blood pressure was monitored with implantable radio telemetry. Dietary obesity promoted the accumulation of lipocalin‐2 protein in blood and arteries. Deficiency of this adipokine protected mice from dietary obesity‐induced elevation of blood pressure. Mass spectrometry analysis revealed that human and murine lipocalin‐2 were modified by polyamination. Polyaminated lipocalin‐2 was rapidly cleared from the circulation. Adipose tissue was a major site for lipocalin‐2 deamidation. The circulating levels and the arterial accumulation of deamidated lipocalin‐2 were significantly enhanced by treatment with linoleic acid (18:2n−6), which bound to lipocalin‐2 with high affinity and prevented its interactions with matrix metalloproteinase 9 (MMP9). Combined administration of linoleic acid with lipocalin‐2 caused vascular inflammation and endothelial dysfunction and raised the blood pressure of mice receiving standard chow. A human lipocalin‐2 mutant with cysteine 87 replaced by alanine (C87A) contained less polyamines and exhibited a reduced capacity to form heterodimeric complexes with MMP9. After treatment, C87A remained in the circulation for a prolonged period of time and evoked endothelial dysfunction in the absence of linoleic acid. Conclusions Polyamination facilitates the clearance of lipocalin‐2, whereas the accumulation of deamidated lipocalin‐2 in arteries causes vascular inflammation, endothelial dysfunction, and hypertension. PMID:24721803

  5. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series)

    PubMed Central

    Oshima, Kaori; Haeger, Sarah M.; Hippensteel, Joseph A.; Herson, Paco S.

    2017-01-01

    Advances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury. The development of state-of-the-art glycomic techniques, however, has revealed that these circulating heparan sulfate fragments are capable of influencing growth factor and other signaling pathways distant to the site of ESL injury. This review summarizes the current state of knowledge concerning the local (i.e. endothelial injury) and systemic (i.e. para- or endocrine) consequences of ESL degradation and identifies opportunities for future, novel investigations. PMID:29199903

  6. Endothelial Progenitor Cells (EPC) Count by Multicolor Flow Cytometry in Healthy Individuals and Diabetes Mellitus (DM) Patients.

    PubMed

    Falay, Mesude; Aktas, Server

    2016-11-01

    The present study aimed to determine circulating Endothelial Progenitor Cell (EPC) counts by multicolor flow cytometry in healthy individuals and diabetic subjects by means of forming an analysis procedure using a combination of monoclonal antibodies (moAbs), which would correctly detect the circulating EPC count. The circulating EPC count was detected in 40 healthy individuals (20 Female, 20 Male; age range: 26 - 50 years) and 30 Diabetes Mellitus (DM) patients (15 Female, 15 Male; age range: 42 - 55) by multicolor flow cytometry (FCM) in a single-tube panel consisting of 5 CD45/CD31/CD34/CD309/ SYTO® and 16 monoclonal antibodies. Circulating EPC count was 11.33 (7.89 - 15.25) cells/µL in the healthy control group and 4.80 (0.70 - 10.85) cells/µL in the DM group. EPC counts were significantly lower in DM cases that developed coronary artery disease (53.3%) as compared to those that did not (p < 0.001). In the present study, we describe a method that identifies circulating EPC counts by multicolor flow cytometry in a single tube and determines the circulating EPC count in healthy individuals. This is the first study conducted on EPC count in Turkish population. We think that the EPC count found in the present study will be a guide for future studies.

  7. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study.

    PubMed

    Ahmed, Fahad W; Rider, Rachel; Glanville, Michael; Narayanan, Kilimangalam; Razvi, Salman; Weaver, Jolanta U

    2016-08-26

    Type 1 diabetes is associated with increased cardiovascular disease (CVD). Decreased endothelial progenitor cells (EPCs) number plays a pivotal role in reduced endothelial repair and development of CVD. We aimed to determine if cardioprotective effect of metformin is mediated by increasing circulating endothelial progenitor cells (cEPCs), pro-angiogenic cells (PACs) and decreasing circulating endothelial cells (cECs) count whilst maintaining unchanged glycemic control. This study was an open label and parallel standard treatment study. Twenty-three type 1 diabetes patients without overt CVD were treated with metformin for 8 weeks (treatment group-TG). They were matched with nine type 1 diabetes patients on standard treatment (SG) and 23 age- and sex-matched healthy volunteers (HC). Insulin dose was adjusted to keep unchanged glycaemic control. cEPCs and cECs counts were determined by flow cytometry using surface markers CD45(dim)CD34(+)VEGFR-2(+) and CD45(dim)CD133(-)CD34(+)CD144(+) respectively. Peripheral blood mononuclear cells were cultured to assess changes in PACs number, function and colony forming units (CFU-Hill's colonies). At baseline TG had lower cEPCs, PACs, CFU-Hills' colonies and PACs adhesion versus HC (p < 0.001-all variables) and higher cECs versus HC (p = 0.03). Metformin improved cEPCs, PACs, CFU-Hill's colonies number, cECs and PACs adhesion (p < 0.05-all variables) to levels seen in HC whilst HbA1c (one-way ANOVA p = 0.78) and glucose variability (average glucose, blood glucose standard deviation, mean amplitude of glycaemic excursion, continuous overall net glycaemic action and area under curve) remained unchanged. No changes were seen in any variables in SG. There was an inverse correlation between CFU-Hill's colonies with cECs. Metformin has potential cardio-protective effect through improving cEPCs, CFU-Hill's colonies, cECs, PACs count and function independently of hypoglycaemic effect. This finding needs to be confirmed by long term cardiovascular outcome studies in type 1 diabetes. Trial registration ISRCTN26092132.

  8. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells

    PubMed Central

    Ashpole, Nicole M.; Warrington, Junie P.; Mitschelen, Matthew C.; Yan, Han; Sosnowska, Danuta; Gautam, Tripti; Farley, Julie A.; Csiszar, Anna; Ungvari, Zoltan

    2014-01-01

    Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT. PMID:25038144

  9. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-09-08

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.

  10. Circulating endothelial cells in acute ischaemic stroke.

    PubMed

    Nadar, Sunil K; Lip, Gregory Y H; Lee, Kaeng W; Blann, Andrew D

    2005-10-01

    Increased numbers of CD146-bearing circulating endothelial cells (CECs) in the peripheral blood probably represent the most direct evidence of endothelial cell damage. As acute ischaemic strokes are associated with endothelial abnormalities, we hypothesised that these CECs are raised in acute stroke, and that they would correlate with the other indices of endothelial perturbation, i.e. plasma von Willebrand factor (vWf) and soluble E-selectin. We studied 29 hypertensive patients (19 male; mean age 63 years) who presented with an acute stroke and compared them with 30 high risk hypertensive patients (21 male; mean age 62 years) and 30 normotensive controls (16 male; mean age 58 years). CECs were estimated by CD146 immunobead capture, vWf and soluble E-selectin by ELISA. Patients with an acute ischaemic stroke had significantly higher numbers of CECs/ml of blood (p<0.001) plasma vWf (p=0.008) soluble E-selectin (p=0.002) and higher systolic blood pressure (SBP) as compared to the other groups. The number of CECs significantly correlated with soluble E-selectin (r=0.432, p<0.001) and vWf (r=0.349, p=0.001) but not with SBP (r=0.198, p=0.069). However, in multivariate analysis, only disease group (i.e. health, hypertension or stroke) was associated with increased CECs. Acute ischaemic stroke is associated with increased numbers of CECs. The latter correlate well with established plasma markers of endothelial dysfunction or damage, thus unequivocally confirming severe vasculopathy in this condition. However, the greatest influence on CECs numbers was clinical group.

  11. Converging roads: evidence for an adult hemangioblast.

    PubMed

    Bailey, Alexis S; Fleming, William H

    2003-11-01

    Classical studies of the developing embryo first suggested the existence of the hemangioblast, a precursor cell with the potential to differentiate into both blood and blood vessels. Several lines of investigation demonstrated that many of the genes activated during early hematopoietic development are also expressed in the vascular endothelium. Gene-targeting studies using embryonic stem cells have identified Flk-1, SCL, and Runx-1 as important regulatory molecules that specify both hematopoietic and vascular outcomes. Although it was anticipated that the hemangioblast would be present only during the earliest stages of vascular development in the yolk sac, accumulating evidence now indicates that hematopoietic cells with hemangioblast activity persist into adulthood. In the adult, bone marrow-derived, circulating endothelial progenitors contribute to postnatal neovascularization and enhance vascular repair following ischemic injury. Highly purified populations of hematopoietic stem cells from humans and mice can differentiate into both blood cells and vascular tissue at the single cell level. These recent findings suggest that bone marrow-derived hematopoietic stem cells or their progeny may contribute to the maintenance and repair of both the hematopoietic and the vascular systems during adult life.

  12. Marathon running increases circulating endothelial- and thrombocyte-derived microparticles.

    PubMed

    Schwarz, Viktoria; Düsing, Philip; Liman, Thomas; Werner, Christian; Herm, Juliane; Bachelier, Katrin; Krüll, Matthias; Brechtel, Lars; Jungehulsing, Gerhard J; Haverkamp, Wilhelm; Böhm, Michael; Endres, Matthias; Haeusler, Karl Georg; Laufs, Ulrich

    2018-02-01

    Background Acute vascular effects of high intensity physical activity are incompletely characterized. Circulating microparticles are cellular markers for vascular activation and damage. Methods Microparticles were analysed in 99 marathon runners (49 ± 6 years, 22% female) of the prospective Berlin Beat of Running study. Blood samples were taken within three days before, immediately after and within two days after the marathon run. Endothelial-derived microparticles were labelled with CD144, CD31 and CD62E, platelet-derived microparticles with CD62P and CD42b, leukocyte-derived microparticles with CD45 and monocyte-derived microparticles with CD14. Results Marathon running induced leukocytosis (5.9 ± 0.1 to 14.8 ± 0.3 10 9 /l, p < 0.0001) and increased platelet counts (239 ± 4.6 to 281 ± 5.9 10 9 /l, p < 0.0001) immediately after the marathon. Blood monocytes increased and lymphocytes decreased after the run ( p < 0.0001). Endothelial-derived microparticles were acutely increased ( p = 0.008) due to a 23% increase of apoptotic endothelial-derived microparticles ( p = 0.007) and returned to baseline within two days after the marathon. Thrombocyte-derived microparticles acutely increased by 38% accompanied by an increase in activated and apoptotic thrombocyte-derived microparticles ( p ≤ 0.0001) each. Both monocyte- and leukocyte-derived microparticles were decreased immediately after marathon run ( p < 0.0001) and remained below baseline until day 2. Troponin T increased from 12 to 32 ng/l ( p < 0.0001) immediately after the run and returned to baseline after two days. Conclusion Circulating apoptotic endothelial- and thrombocyte-derived microparticles increased after marathon running consistent with an acute pro-thrombotic and pro-inflammatory state. Exercise-induced vascular damage reflected by microparticles could indicate potential mechanisms of post-exertional cardiovascular complications. Further studies are warranted to investigate microparticles as markers to identify individuals prone to such complications.

  13. Circulating endothelial progenitor cells, Th1/Th2/Th17-related cytokines, and endothelial dysfunction in resistant hypertension.

    PubMed

    Magen, Eli; Feldman, Arie; Cohen, Ziona; Alon, Dora Ben; Minz, Evegeny; Chernyavsky, Alexey; Linov, Lina; Mishal, Joseph; Schlezinger, Menacham; Sthoeger, Zev

    2010-02-01

    A possible link between chronic vascular inflammation and arterial hypertension is now an object of intensive studies. To compare Th1/Th2/Th17 cells-related cytokines, circulating endothelial progenitor cells (EPC), and endothelial function in subjects with resistant arterial hypertension (RAH) and controlled arterial hypertension (CAH). Blood pressure was measured by electronic sphygmomanometer. EPC were identified as CD34+/CD133+/kinase insert domain receptor (KDR)+ cells by flow cytometry. Th1/Th2/Th17 cells-related cytokines were identified using the Human Th1/Th2/Th17 Cytokines MultiAnalyte ELISArray Kit. Endothelium-dependent (FMD) vasodilatation of brachial artery was measured by Doppler ultrasound scanning. RAH group (n = 20) and CAH group (n = 20) and 17 healthy individuals (control group) were recruited. In the RAH group, lower blood levels of EPC number (42.4 +/- 16.7 cells/mL) and EPC% (0.19 +/- 0.08%) were observed than in the CAH group (93.1 +/- 88.7 cells/mL; P = 0.017; 0.27 +/- 0.17; P = 0.036) and control group (68.5 +/- 63.6 cells/mL; P < 0.001; 0.28 +/- 0.17%; P = 0.003), respectively. Plasma transforming growth factor-beta1 levels were significantly higher in the RAH group (1767 +/- 364 pg/mL) than in the CAH group (1292 +/- 349; P < 0.001) and in control group (1203 +/- 419 pg/mL; P < 0.001). In the RAH group, statistically significant negative correlation was observed between systolic blood pressure and EPC% (r = -0.72, P < 0.01). FMD in the RAH group was significantly lower (5.5 +/- 0.8%) than in the CAH group (9.2 +/- 1.4; P < 0.001) and in healthy controls (10.1 +/- 1.1%; P < 0.001). RAH is characterized by reduced circulating EPC, substantial endothelial dysfunction, and increased plasma transforming growth factor-beta1 levels.

  14. Modulation of Oxidative Stress by Gamma-Glutamylcysteine (GGC) and Conjugated Linoleic Acid (CLA) Isomer Mixture in Human Umbilical Vein Endothelial Cells

    DTIC Science & Technology

    2012-04-02

    during cutaneous wound healing . Mediators Inflamm. 2010, 342328. Ringseis, R., Muller, A., Herter, C., Gahler, S., Steinhart, H., Eder, K., 2006. CLA...glutamylcysteine (GGC), a dipeptide and precursor of glutathione (GSH), and conjugated linoleic acid (CLA), a trans-fatty acid, exhibit antioxidant properties...synthesis in human endothelial cells. Changes in levels of 8-epi-PGF2a, thiobarbituric acid reac- tive substances (TBARS), GSH, total antioxidants , GSH

  15. Effect of Weight Reduction on Cardiovascular Risk Factors and CD34-positive Cells in Circulation

    PubMed Central

    Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M

    2011-01-01

    Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation. PMID:21850193

  16. Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation.

    PubMed

    Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M

    2011-01-01

    Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation.

  17. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers.

    PubMed

    Heiss, Christian; Kleinbongard, Petra; Dejam, Andrè; Perré, Sandra; Schroeter, Hagen; Sies, Helmut; Kelm, Malte

    2005-10-04

    This study was designed to assess the effect of flavanol-rich food on the circulating pool of bioactive nitric oxide (NO) and endothelial dysfunction in smokers. Studies suggest that smoking-related vascular disease is caused by impaired NO synthesis and that diets rich in flavanols can increase bioactive NO in plasma. In smokers (n = 11), the effects of flavanol-rich cocoa on circulating NO species in plasma (RXNO) measured by reductive gas-phase chemiluminescence and endothelial function as assessed by flow-mediated dilation (FMD) were characterized in a dose-finding study orally administering cocoa containing 88 to 370 mg flavanols and in a randomized double-blind crossover study using 100 ml cocoa drink with high (176 to 185 mg) or low (<11 mg) flavanol content on two separate days. In addition to cocoa drink, ascorbic acid and NO-synthase inhibitor L-NMMA (n = 4) were applied. There were significant increases in RXNO (21 +/- 3 nmol/l to 29 +/- 5 nmol/l) and FMD (4.5 +/- 0.8% to 6.9 +/- 0.9%, each p < 0.05) at 2 h after ingestion of 176 to 185 mg flavanols, a dose potentially exerting maximal effects. These changes correlated with increases in flavanol metabolites. Cocoa-associated increases in RXNO and FMD were reversed by L-NMMA. Ascorbic acid had no effect. The circulating pool of bioactive NO and endothelium-dependent vasodilation is acutely increased in smokers following the oral ingestion of a flavanol-rich cocoa drink. The increase in circulating NO pool may contribute to beneficial vascular health effects of flavanol-rich food.

  18. [Effect of Alloxan-induced diabetes mellitus on the functions of bone marrow-derived and circulating endothelial progenitor cells].

    PubMed

    Tan, Q; Li, G P; Wang, Q S; Zheng, C H; Zhang, S Y

    2017-07-25

    Objective: To explore whether diabetes mellitus (DM) impairs functions of bone marrow-derived endothelial progenitor cells (BM-EPC) and circulating EPC. Methods: Diabetic model of rabbit was induced by Alloxan injection and the rabbits were then randomly divided into three groups: BM-EPC group, circulating EPC group, and DM group, with six rabbits in each group. Another 6 normal rabbits were enrolled as normal control group as well. 8 weeks later, BM-EPC and circulating EPC from diabetic and healthy rabbits were isolated and cultured. Colony number, proliferation, adhesion and tube formation function were detected. Exogenous diabetic BM-EPC and circulating EPC were analyzed for therapeutic efficacy in acute ischemia model of diabetic rabbits. Left ventricular (LV) function was assessed using Echocardiography. Capillary density and fibrosis area were evaluated by confocal laser scanning microscope (CLSM) and Masson-trichrome staining. The mRNA expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was analyzed using real-time quantitive PCR. Results: Colony number, proliferation, adhesion and tube formation function of diabetic circulating EPC were significantly reduced compared with healthy rabbits. DM impaired tube-forming ability of BM-EPC, but did not influence colony number, proliferation and adhesion function. Compared with circulating EPC and control group, BM-EPC group had fewer fibrosis area (6.98%±0.94% vs 13.03%±2.97% and 15.84%±4.74%, both P =0.001), higher capillary density [(792±87) vs (528±71) and (372±77) vessels/mm(2,) both P <0.001], higher mRNA expression of VEGF (6.25±2.33 vs 2.19±1.01 and 1.55±0.52, both P <0.001) and bFGF (6.38±2.65 vs 1.24±0.76 and 1.18±0.82, both P <0.001), higher left ventricular ejection fraction (LVEF) (61%±4% vs 47%±5% and 50%±10%, both P <0.05). Conclusions: DM not only impaired functions of circulating EPC, but also influenced tube formation function of BM-EPC. Auto transplantation of BM-EPC may rescue the ischemic myocardium by neovascularization and paracrine effect in diabetic rabbits.

  19. Morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants.

    PubMed

    Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K

    2016-04-01

    To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.

  20. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  1. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions

    NASA Astrophysics Data System (ADS)

    Qiu, Yongzhi; Tong, Sheng; Zhang, Linlin; Sakurai, Yumiko; Myers, David R.; Hong, Lin; Lam, Wilbur A.; Bao, Gang

    2017-06-01

    The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications.

  2. Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats.

    PubMed

    You, Dong; Cochain, Clément; Loinard, Céline; Vilar, José; Mees, Barend; Duriez, Micheline; Lévy, Bernard I; Silvestre, Jean-Sébastien

    2008-06-01

    Cardiovascular risk factors are associated with reduction in both the number and function of vascular progenitor cells. We hypothesized that 1) hypertension abrogates postnatal vasculogenesis, and 2) antihypertensive treatment based on the combination of perindopril (angiotensin-converting enzyme inhibitor) and indapamide (diuretic) may counteract hypertension-induced alteration in progenitor cell-related effects. Postischemic neovascularization was significantly lower in untreated spontaneously hypertensive rats (SHRs) compared with Wistar Kyoto (WKY) rats (p < 0.05). Treatment of SHRs with perindopril and the combination of perindopril/indapamide reduced the blood pressure levels and normalized vessel growth in ischemic area. Cotreatment with perindopril and indapamide increased vascular endothelial growth factor and endothelial nitric-oxide synthase protein contents, two key proangiogenic factors. It is interesting to note that 14 days after bone marrow mononuclear cell (BM-MNC) transplantation, revascularization was significantly lower in ischemic SHRs receiving BM-MNCs isolated from SHRs compared with those receiving BM-MNCs isolated from WKY rats (p < 0.05). Alteration in proangiogenic potential of SHR BM-MNCs was probably related to the reduction in their ability to differentiate into endothelial progenitor cells in vitro. Furthermore, the number of circulating endothelial progenitor cells (EPCs) was reduced by 3.1-fold in SHRs compared with WKY rats (p < 0.001). Treatments with perindopril or perindopril/indapamide restored the ability of BM-MNCs to differentiate in vitro into EPCs, increased the number of circulating EPCs, and re-established BM-MNC proangiogenic effects. Therefore, hypertension is associated with a decrease in the number of circulating progenitor cells and in the BM-MNC proangiogenic potential, probably leading to vascular complications in this setting. The combination of perindopril and indapamide counteracts hypertension-induced alterations in progenitor cell-related effects and restores blood vessel growth.

  3. Novel INTeraction of MUC4 and galectin: potential pathobiological implications for metastasis in lethal pancreatic cancer.

    PubMed

    Senapati, Shantibhusan; Chaturvedi, Pallavi; Chaney, William G; Chakraborty, Subhankar; Gnanapragassam, Vinayaga S; Sasson, Aaron R; Batra, Surinder K

    2011-01-15

    Several studies have reported aberrant expression of MUC4 in pancreatic cancer (PC), which is associated with tumorigenicity and metastasis. Mechanisms through which MUC4 promote metastasis of PC cells to distant organs are poorly defined. Identification of MUC4-galectin-3 interaction and its effect on the adhesion of cancer cells to endothelial cells were done by immunoprecipitation and cell-cell adhesion assays, respectively. Serum galectin-3 level for normal and PC patients were evaluated through ELISA. In the present study, we have provided clinical evidence that the level of galectin-3 is significantly elevated in the sera of PC patients with metastatic disease compared with patients without metastasis (P = 0.04) and healthy controls (P = 0.00001). Importantly, for the first time, we demonstrate that MUC4 present on the surface of circulating PC cells plays a significant role in the transient and reversible attachment (docking) of circulating tumor cells to the surface of endothelial cells. Further, exogenous galectin-3 at concentrations similar to that found in the sera of PC patients interacts with MUC4 via surface glycans such as T antigens, which results in the clustering of MUC4 on the cell surface and a stronger attachment (locking) of circulating tumor cells to the endothelium. Altogether, these findings suggest that PC cell-associated MUC4 helps in the docking of tumor cells on the endothelial surface. During cancer progression, MUC4-galectin-3 interaction-mediated clustering of MUC4 may expose the surface adhesion molecules, which in turn promotes a stronger attachment (locking) of tumor cells to the endothelial surface. ©2010 AACR.

  4. Number of circulating endothelial progenitor cells and intratumoral microvessel density in non-small cell lung cancer patients: differences in angiogenic status between adenocarcinoma histologic subtypes.

    PubMed

    Maeda, Ryo; Ishii, Genichiro; Ito, Masami; Hishida, Tomoyuki; Yoshida, Junji; Nishimura, Mitsuyo; Haga, Hironori; Nagai, Kanji; Ochiai, Atsushi

    2012-03-01

    Angiogenesis plays a significant role in tumor progression. This study examined the association between the number of circulating endothelial progenitor cells (EPCs), intratumoral microvessel density (MVD) (both of which may be markers for neovascularization), and lung cancer histological types, particularly adenocarcinoma histological subtypes. A total of 83 stage I non-small cell lung cancer (NSCLC) patients underwent complete tumor resection between November 2009 and July 2010. The number of EPCs from the pulmonary artery of the resected lungs was measured by assaying CD34/vascular endothelial growth factor receptor 2 positive cells, and the MVD was assessed immunohistochemically in tumor specimens by staining for CD34. A statistically significant correlation between the number of EPCs from pulmonary artery and intratumoral MVD was found (p < 0.001). No statistically significant differences in the number of EPCs and the MVD were observed between the adenocarcinomas and the squamous cell carcinomas. Among the adenocarcinoma histological subtypes, a higher number of EPCs and MVD were found significantly more frequently in solid adenocarcinomas than in nonsolid adenocarcinomas (p < 0.001 and p = 0.011, respectively). In addition, solid adenocarcinomas showed higher levels of vascular endothelial growth factor using quantitative real-time polymerase chain reaction in the tumor tissue samples than in the nonsolid adenocarcinomas (p = 0.005). The higher number of circulating EPCs and the MVD of solid adenocarcinoma may indicate the presence of differences in the tumor angiogenic status between early-stage adenocarcinoma histological subtypes. Among adenocarcinoma patients, patients with solid adenocarcinoma may be the best candidates for antiangiogenic therapies.

  5. Increased CD39 Nucleotidase Activity on Microparticles from Patients with Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Visovatti, Scott H.; Hyman, Matthew C.; Bouis, Diane; Neubig, Richard; McLaughlin, Vallerie V.; Pinsky, David J.

    2012-01-01

    Background Idiopathic pulmonary arterial hypertension (IPAH) is a devastating disease characterized by increased pulmonary vascular resistance, smooth muscle and endothelial cell proliferation, perivascular inflammatory infiltrates, and in situ thrombosis. Circulating intravascular ATP, ADP, AMP and adenosine activate purinergic cell signaling pathways and appear to induce many of the same pathologic processes that underlie IPAH. Extracellular dephosphorylation of ATP to ADP and AMP occurs primarily via CD39 (ENTPD1), an ectonucleotidase found on the surface of leukocytes, platelets, and endothelial cells [1]. Microparticles are micron-sized phospholipid vesicles formed from the membranes of platelets and endothelial cells. Objectives: Studies here examine whether CD39 is an important microparticle surface nucleotidase, and whether patients with IPAH have altered microparticle-bound CD39 activity that may contribute to the pathophysiology of the disease. Methodology/ Principal Findings Kinetic parameters, inhibitor blocking experiments, and immunogold labeling with electron microscopy support the role of CD39 as a major nucleotidase on the surface of microparticles. Comparison of microparticle surface CD39 expression and nucleotidase activity in 10 patients with advanced IPAH and 10 healthy controls using flow cytometry and thin layer chromatograph demonstrate the following: 1) circulating platelet (CD39+CD31+CD42b+) and endothelial (CD39+CD31+CD42b−) microparticle subpopulations in patients with IPAH show increased CD39 expression; 2) microparticle ATPase and ADPase activity in patients with IPAH is increased. Conclusions/ Significance We demonstrate for the first time increased CD39 expression and function on circulating microparticles in patients with IPAH. Further research is needed to elucidate whether these findings identify an important trigger for the development of the disease, or reflect a physiologic response to IPAH. PMID:22792409

  6. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  7. Endothelial glycocalyx: permeability barrier and mechanosensor.

    PubMed

    Curry, F E; Adamson, R H

    2012-04-01

    Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.

  8. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes.

    PubMed

    Francois, Monique E; Myette-Cote, Etienne; Bammert, Tyler D; Durrer, Cody; Neudorf, Helena; DeSouza, Christopher A; Little, Jonathan P

    2018-01-01

    Postprandial hyperglycemia has deleterious effects on endothelial function. Restricting carbohydrate intake and postmeal walking have each been shown to reduce postprandial hyperglycemia, but their combination and subsequent effects on endothelial function have not been investigated. Here, we sought to examine the effect of blunting postprandial hyperglycemia by following a low-carbohydrate diet, with or without postmeal walking exercise, on markers of vascular health in type 2 diabetes (T2D). In a randomized crossover design, individuals with T2D ( n = 11) completed three 4-day controlled diet interventions consisting of 1) low-carbohydrate diet alone (LC), 2) low-carbohydrate diet with 15-min postmeal walks (LC + Ex), and 3) low-fat control diet (CON). Fasting blood samples and brachial artery flow-mediated dilation (%FMD) were measured before and after each intervention. Total circulating microparticles (MPs), endothelial MPs, platelet MPs, monocyte-platelet aggregates, and adhesion molecules were assessed as biomarkers of vascular health. There was a significant condition × time interaction for %FMD ( P = 0.01), with post hoc tests revealing improved %FMD after LC + Ex (+0.8 ± 1.0%, P = 0.02), with no change after LC or CON. Endothelial MPs were significantly reduced with the LC diet by ~45% (from 99 ± 60 to 44 ± 31 MPs/μl, P = 0.02), with no change after LC + Ex or CON (interaction: P = 0.04). Total MPs were lower (main effect time: P = 0.02), whereas monocyte-platelet aggregates were higher (main effect time: P < 0.01) after all interventions. Plasma adhesion molecules and C-reactive protein were unaltered. Attenuating postprandial hyperglycemic excursions using a low-carbohydrate diet combined with postmeal walking appears to be an effective strategy to improve endothelial function in individuals with T2D. NEW & NOTEWORTHY Carbohydrate restriction and postmeal walking lower postprandial hyperglycemia in individuals with type 2 diabetes. Here, we show that the combination significantly improved endothelial function and that carbohydrate restriction alone reduced circulating endothelial microparticles in individuals with type 2 diabetes. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/low-carb-diet-and-exercise-improve-endothelial-health/ .

  9. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Circulating metabolites of strawberry mediate reductions in vascular inflammation and endothelial dysfunction in db/db mice.

    PubMed

    Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham

    2018-07-15

    Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development.

    PubMed

    Storer, Mekayla A; Gallagher, Denis; Fatt, Michael P; Simonetta, Jaclin V; Kaplan, David R; Miller, Freda D

    2018-05-08

    Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function.

    PubMed

    Yiu, Kai-Hang; Tse, Hung-Fat

    2014-06-01

    The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications. © 2014 American Heart Association, Inc.

  13. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and sPECAM-1 [9.3 (6.2-11.1) vs 6.1 (5.4-7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this.

  14. Clinical CVVH model removes endothelium-derived microparticles from circulation

    PubMed Central

    Abdelhafeez, Abdelhafeez H.; Jeziorczak, Paul M.; Schaid, Terry R.; Hoefs, Susan L.; Kaul, Sushma; Nanchal, Rahul; Jacobs, Elizabeth R.; Densmore, John C.

    2014-01-01

    Background Endothelium-derived microparticles (EMPs) are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI) in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH) reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods EMPs were generated from plasminogen activation inhibitor-1 (PAI-1)-stimulated human umbilical vein endothelial cells (HUVECs). Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL) was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr) for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate) from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI. PMID:24596654

  15. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  16. Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma

    PubMed Central

    Strub, Graham M.; Kirsh, Andrew L.; Whipple, Mark E.; Kuo, Winston P.; Keller, Rachel B.; Kapur, Raj P.; Majesky, Mark W.; Perkins, Jonathan A.

    2016-01-01

    Infantile hemangioma (IH) is the most common vascular tumor of infancy, and it uniquely regresses in response to oral propranolol. MicroRNAs (miRNAs) have emerged as key regulators of vascular development and are dysregulated in many disease processes, but the role of miRNAs in IH growth has not been investigated. We report expression of C19MC, a primate-specific megacluster of miRNAs expressed in placenta with rare expression in postnatal tissues, in glucose transporter 1–expressing (GLUT-1–expressing) IH endothelial cells and in the plasma of children with IH. Tissue or circulating C19MC miRNAs were not detectable in patients having 9 other types of vascular anomalies or unaffected children, identifying C19MC miRNAs as the first circulating biomarkers of IH. Levels of circulating C19MC miRNAs correlated with IH tumor size and propranolol treatment response, and IH tissue from children treated with propranolol or from children with partially involuted tumors contained lower levels of C19MC miRNAs than untreated, proliferative tumors, implicating C19MC miRNAs as potential drivers of IH pathogenesis. Detection of C19MC miRNAs in the circulation of infants with IH may provide a specific and noninvasive means of IH diagnosis and identification of candidates for propranolol therapy as well as a means to monitor treatment response. PMID:27660822

  17. Circulating factors induce coronary endothelial ceIl activation foIlowing exposure to inhaled diesel exhaust and nitrogen dioxide in humans :Evidence from a novel translational in vitro model

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  18. Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling.

    PubMed

    Tai-Nagara, Ikue; Yoshikawa, Yusuke; Numata, Naoko; Ando, Tomofumi; Okabe, Keisuke; Sugiura, Yuki; Ieda, Masaki; Takakura, Nobuyuki; Nakagawa, Osamu; Zhou, Bin; Okabayashi, Koji; Suematsu, Makoto; Kitagawa, Yuko; Bastmeyer, Martin; Sato, Kohji; Klein, Rüdiger; Navankasattusas, Sutip; Li, Dean Y; Yamagishi, Satoru; Kubota, Yoshiaki

    2017-07-01

    The placental labyrinth is the interface for gas and nutrient exchange between the embryo and the mother; hence its proper development is essential for embryogenesis. However, the molecular mechanism underlying development of the placental labyrinth, particularly in terms of its endothelial organization, is not well understood. Here, we determined that fibronectin leucine-rich transmembrane protein 2 (FLRT2), a repulsive ligand of the UNC5 receptor family for neurons, is unexpectedly expressed in endothelial cells specifically in the placental labyrinth. Mice lacking FLRT2 in endothelial cells exhibited embryonic lethality at mid-gestation, with systemic congestion and hypoxia. Although they lacked apparent deformities in the embryonic vasculature and heart, the placental labyrinths of these embryos exhibited aberrant alignment of endothelial cells, which disturbed the feto-maternal circulation. Interestingly, this vascular deformity was related to endothelial repulsion through binding to the UNC5B receptor. Our results suggest that the proper organization of the placental labyrinth depends on coordinated inter-endothelial repulsion, which prevents uncontrolled layering of the endothelium. © 2017. Published by The Company of Biologists Ltd.

  19. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    PubMed

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  20. MIP-2 causes differential activation of RhoA in mouse aortic versus pulmonary artery endothelial cells

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Wagner, Elizabeth M.

    2008-01-01

    Previously, we have shown that endothelial cell chemotaxis to the proangiogenic chemokine MIP-2 (macrophage inflammatory protein-2), is much greater in mouse aortic endothelial cells (EC) than pulmonary arterial endothelial cells (PA EC). This was true despite the observation that both cell types display comparable levels of the ligand receptor, CXCR2 (8). Since the systemic arterial circulation is proangiogenic in the adult lung and the pulmonary circulation is relatively resistant to neovascularization, we questioned whether the observed functional heterogeneity is related to inherent differences in cell signaling cascades of the two EC subtypes. Specifically, we measured activation of Rac1 and RhoA, both thought to be involved in EC cell migration. Rac1 showed inconsistent and minimal changes in both cell types after MIP-2 treatment (p>0.05). However, activated RhoA was increased upon exposure to MIP-2 only in aortic EC (61% increase; p<0.05). Decreased RhoA activation after treatment of aortic EC with specific siRNA for RhoA resulted in a functional decrease in EC chemotaxis to MIP-2 (17% increase; p<0.05). Additionally, increased RhoA activation in PA EC with adenoviral infection of RhoA caused an increase in PA EC chemotaxis to MIP-2 (46% increase; p<0.05). Inhibition of RhoA activity with the Rho kinase inhibitor, Y27632 blocked aortic EC chemotaxis and stress fiber formation. Thus, RhoA activation is increased after MIP-2 treatment in mouse aortic endothelial cells but not in pulmonary artery endothelial cells. We conclude that RhoA is part of a signaling pathway essential for aortic cell migration after CXCR2 ligation. This result provides one explanation for the difference in chemotaxis observed in these two endothelial subtypes that express similar levels of CXCR2. PMID:17662312

  1. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  2. Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review.

    PubMed

    Gohar, Aisha; de Kleijn, Dominique P V; Hoes, Arno W; Rutten, Frans H; Hilfiker-Kleiner, Denise; Ferdinandy, Péter; Sluijter, Joost P G; den Ruijter, Hester M

    2018-05-25

    Left ventricular diastolic dysfunction, the main feature of heart failure with preserved ejection fraction (HFpEF), is thought to be primarily caused by comorbidities affecting the endothelial function of the coronary microvasculature. Circulating extracellular vesicles, released by the endothelium have been postulated to reflect endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in particularly endothelium microparticles, in these comorbidities, including obesity and hypertension, to identify if they may be potential markers of the endothelial dysfunction underlying left ventricular diastolic dysfunction and HFpEF. Copyright © 2017. Published by Elsevier Inc.

  3. The Role of Angiogenesis in Human Non-Hodgkin Lymphomas1

    PubMed Central

    Ribatti, Domenico; Nico, Beatrice; Ranieri, Girolamo; Specchia, Giorgina; Vacca, Angelo

    2013-01-01

    The role of angiogenesis in the growth of lymphomas and survival of patients with leukemias and other hematological malignancies has become evident since 1994. Angiogenic factors, such as vascular endothelial growth factor and its receptors together with other tumor microenvironment components, including myelo-monocytic cell, mast cells, endothelial progenitor cells, and circulating endothelial cells, have been shown to be important in the progression and maintenance of lymphoproliferative disorders. In this review article, we present an overview of the literature focusing on the relationship between angiogenesis and disease progression and the recent advantages in the antiangiogenic treatment in human non-Hodgkin lymphomas. PMID:23479502

  4. Does Bicarbonate Correct Coagulation Function Impaired by Acidosis in Swine?

    DTIC Science & Technology

    2006-07-01

    requires sufficient fibrinogen available in the circulation . At any time, fibrinogen availabil- Fig. 4. Thrombin generation kinetics at baseline (T0... circulation can potentially impact physiologic function. As the precursor in the coagulation process, fibrinogen is primarily involved in maintaining...with different proteins. It is also possible that following acidosis insult, some of the albumin loss from the circulation was compensated for by

  5. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways.

    PubMed

    Abbas, Malak; Jesel, Laurence; Auger, Cyril; Amoura, Lamia; Messas, Nathan; Manin, Guillaume; Rumig, Cordula; León-González, Antonio J; Ribeiro, Thais P; Silva, Grazielle C; Abou-Merhi, Raghida; Hamade, Eva; Hecker, Markus; Georg, Yannick; Chakfe, Nabil; Ohlmann, Patrick; Schini-Kerth, Valérie B; Toti, Florence; Morel, Olivier

    2017-01-17

    Microparticles (MPs) have emerged as a surrogate marker of endothelial dysfunction and cardiovascular risk. This study examined the potential of MPs from senescent endothelial cells (ECs) or from patients with acute coronary syndrome (ACS) to promote premature EC aging and thrombogenicity. Primary porcine coronary ECs were isolated from the left circumflex coronary artery. MPs were prepared from ECs and venous blood from patients with ACS (n=30) and from healthy volunteers (n=4) by sequential centrifugation. The level of endothelial senescence was assessed as senescence-associated β-galactosidase activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, tissue factor activity using an enzymatic Tenase assay, the level of target protein expression by Western blot analysis, platelet aggregation using an aggregometer, and shear stress using a cone-and-plate viscometer. Senescence, as assessed by senescence-associated β-galactosidase activity, was induced by the passaging of porcine coronary artery ECs from passage P1 to P4, and was associated with a progressive shedding of procoagulant MPs. Exposure of P1 ECs to MPs shed from senescent P3 cells or circulating MPs from ACS patients induced increased senescence-associated β-galactosidase activity, oxidative stress, early phosphorylation of mitogen-activated protein kinases and Akt, and upregulation of p53, p21, and p16. Ex vivo, the prosenescent effect of circulating MPs from ACS patients was evidenced only under conditions of low shear stress. Depletion of endothelial-derived MPs from ACS patients reduced the induction of senescence. Prosenescent MPs promoted EC thrombogenicity through tissue factor upregulation, shedding of procoagulant MPs, endothelial nitric oxide synthase downregulation, and reduced nitric oxide-mediated inhibition of platelet aggregation. These MPs exhibited angiotensin-converting enzyme activity and upregulated AT1 receptors and angiotensin-converting enzyme in P1 ECs. Losartan, an AT1 receptor antagonist, and inhibitors of either mitogen-activated protein kinases or phosphoinositide 3-kinase prevented the MP-induced endothelial senescence. These findings indicate that endothelial-derived MPs from ACS patients induce premature endothelial senescence under atheroprone low shear stress and thrombogenicity through angiotensin II-induced redox-sensitive activation of mitogen-activated protein kinases and phosphoinositide 3-kinase/Akt. They further suggest that targeting endothelial-derived MP shedding and their bioactivity may be a promising therapeutic strategy to limit the development of an endothelial dysfunction post-ACS. © 2016 American Heart Association, Inc.

  6. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    PubMed

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Circuit resistance training attenuates acute exertion-induced reductions in arterial function but not inflammation in obese women.

    PubMed

    Franklin, Nina C; Robinson, Austin T; Bian, Jing-Tan; Ali, Mohamed M; Norkeviciute, Edita; McGinty, Patrick; Phillips, Shane A

    2015-06-01

    Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Eighteen obese [body mass index (BMI) 30.0-40.0 kg · m(-2)] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation.

  9. PPARδ agonist GW501516 prevents uncoupling of endothelial nitric oxide synthase in cerebral microvessels of hph-1 mice

    PubMed Central

    Santhanam, Anantha Vijay R.; d’Uscio, Livius V.; He, Tongrong; Katusic, Zvonimir S.

    2012-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH4) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH4-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH4 and increased the ratio of BH4 to 7,8-BH2 (P<0.05, n=6–9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6–9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6–9) and catalase (P<0.05, n=6–8). PPARδ activation increased the total nitrite and nitrate (NO2 + NO3) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH4-deficient cerebral circulation. PMID:22982594

  10. PPARδ agonist GW501516 prevents uncoupling of endothelial nitric oxide synthase in cerebral microvessels of hph-1 mice.

    PubMed

    Santhanam, Anantha Vijay R; d'Uscio, Livius V; He, Tongrong; Katusic, Zvonimir S

    2012-11-05

    Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH₄) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH₄-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH₄ and increased the ratio of BH₄ to 7,8-BH₂ (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO₂+NO₃) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH₄-deficient cerebral circulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    PubMed Central

    Beer, Sandra; Feihl, François; Ruiz, Juan; Juhan-Vague, Irène; Aillaud, Marie-Françoise; Wetzel, Sandrine Golay; Liaudet, Lucas; Gaillard, Rolf C; Waeber, Bernard

    2008-01-01

    Aim: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. Conclusion: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state. PMID:19337558

  12. hCG stimulates angiogenic signals in lymphatic endothelial and circulating angiogenic cells.

    PubMed

    Schanz, Andrea; Lukosz, Margarete; Hess, Alexandra P; Baston-Büst, Dunja M; Krüssel, Jan S; Heiss, Christian

    2015-08-01

    Human chorionic gonadotropin (hCG) has long been associated with the initiation and maintenance of pregnancy, where angiogenesis plays an important role. However, the function of hCG in angiogenesis and the recruitment of vascular active cells are not fully understood. In this study, the role of hCG and its receptor in circulating angiogenic and human endothelial cells, including lymphatic, uterine microvascular, and umbilical vein endothelial cells, was examined. Immunohistochemistry and immunoblot analysis were used to detect LH/hCG receptor expression and the expression of hCG-induced angiogenic molecules. HIF-1α was determined via ELISA and downstream molecules, such as CXCL12 and CXCR4, via real-time PCR. Chemotaxis was analyzed using Boyden chambers. Our results show that the LH/hCG receptor was present in all tested cells. Furthermore, hCG was able to stimulate LH/hCG-receptor-specific migration in a dose-dependent fashion and induce key angiogenic molecules, including HIF-1α, CXCL12, and CXCR4. In conclusion, our findings underscore the importance of hCG as one of the first angiogenic molecules produced by the conceptus. hCG itself alters endothelial motility, recruitment, and expression of pro-angiogenic molecules and may therefore play an important role in vascular adaption during implantation and early placental formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Elevated levels of endothelial cell-derived microparticles following short-term withdrawal of continuous positive airway pressure in patients with obstructive sleep apnea: data from a randomized controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Stradling, John; Kohler, Malcolm

    2013-01-01

    Obstructive sleep apnea has been associated with impaired endothelial function; however, the mechanisms underlying this association are not completely understood. Cell-derived microparticles may provide a link between obstructive sleep apnea and endothelial dysfunction. This randomized controlled trial aimed to examine the effect of a 2-week withdrawal of continuous positive airway pressure (CPAP) therapy on levels of circulating microparticles. Forty-one obstructive sleep apnea patients established on CPAP treatment were randomized to either CPAP withdrawal (subtherapeutic CPAP) or continuing therapeutic CPAP, for 2 weeks. Polysomnography was performed and circulating levels of microparticles were analyzed by flow cytometry at baseline and 2 weeks. CPAP withdrawal led to a recurrence of obstructive sleep apnea. Levels of CD62E+ endothelium-derived microparticles increased significantly in the CPAP withdrawal group compared to the continuing therapeutic CPAP group (median difference in change +32.4 per µl; 95% CI +7.3 to +64.1 per µl, p = 0.010). CPAP withdrawal was not associated with a statistically significant increase in granulocyte, leukocyte, and platelet-derived microparticles when compared with therapeutic CPAP. Short-term withdrawal of CPAP therapy leads to a significant increase in endothelium-derived microparticles, suggesting that microparticle formation may be causally linked to obstructive sleep apnea and may promote endothelial activation. Copyright © 2012 S. Karger AG, Basel.

  14. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    PubMed

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  15. Physical Biology in Cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells

    PubMed Central

    Mitchell, Michael J.

    2013-01-01

    Circulating tumor cells (CTCs) in blood are known to adhere to the luminal surface of the microvasculature via receptor-mediated adhesion, which contributes to the spread of cancer metastasis to anatomically distant organs. Such interactions between ligands on CTCs and endothelial cell-bound surface receptors are sensitive to receptor-ligand distances at the nanoscale. The sugar-rich coating expressed on the surface of CTCs and endothelial cells, known as the glycocalyx, serves as a physical structure that can control the spacing and, thus, the availability of such receptor-ligand interactions. The cancer cell glycocalyx can also regulate the ability of therapeutic ligands to bind to CTCs in the bloodstream. Here, we review the role of cell glycocalyx on the adhesion and therapeutic treatment of CTCs in the bloodstream. PMID:24133067

  16. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Jimenez, Rosario; Pinto, John T.; Ballabh, Praveen; Losonczy, Gyorgy; Pearson, Kevin J.; de Cabo, Rafael; Ungvari, Zoltan

    2009-01-01

    Endothelial-dysfunction, oxidative stress and inflammation are associated with vascular aging and promote the development of cardiovascular-disease. Caloric restriction (CR) mitigates conditions associated with aging, but its effects on vascular dysfunction during aging remain poorly defined. To determine whether CR exerts vasoprotective effects in aging, aortas of ad libitum (AL) fed young and aged and CR-aged F344 rats were compared. Aging in AL-rats was associated with impaired acetylcholine-induced relaxation, vascular oxidative stress and increased NF-κB-activity. Lifelong CR significantly improved endothelial function, attenuated vascular ROS production, inhibited NF-κB activity and down-regulated inflammatory genes. To elucidate the role of circulating factors in mediation of the vasoprotective effects of CR, we determined whether sera obtained from CR-animals can confer anti-oxidant and anti-inflammatory effects in cultured coronary-arterial endothelial cells (CAECs), mimicking the effects of CR. In CAECs cultured in the presence of AL-serum TNFα elicited oxidative-stress, NF-κB-activation and inflammatory gene expression. By contrast, treatment of CAECs with CR-serum attenuated TNFα-induced ROS generation and prevented NF-κB-activation and induction of inflammatory genes. siRNA-knockdown of SIRT1 mitigated the anti-oxidant and anti-inflammatory effects of CR-serum. CR exerts anti-oxidant and anti-inflammatory vascular effects, which are likely mediated by circulating factors, in part, via a SIRT1-dependent pathway. PMID:19549533

  17. Kidney Transplantation in a Patient Lacking Cytosolic Phospholipase A2 Proves Renal Origins of Urinary PGI-M and TX-M.

    PubMed

    Mitchell, Jane A; Knowles, Rebecca B; Kirkby, Nicholas S; Reed, Daniel M; Edin, Matthew L; White, William E; Chan, Melissa V; Longhurst, Hilary; Yaqoob, Magdi M; Milne, Ginger L; Zeldin, Darryl C; Warner, Timothy D

    2018-02-16

    The balance between vascular prostacyclin, which is antithrombotic, and platelet thromboxane A 2 , which is prothrombotic, is fundamental to cardiovascular health. Prostacyclin and thromboxane A 2 are formed after the concerted actions of cPLA 2 α (cytosolic phospholipase A 2 ) and COX (cyclooxygenase). Urinary 2,3-dinor-6-keto-PGF 1α (PGI-M) and 11-dehydro-TXB 2 (TX-M) have been taken as biomarkers of prostacyclin and thromboxane A 2 formation within the circulation and used to explain COX biology and patient phenotypes, despite concerns that urinary PGI-M and TX-M originate in the kidney. We report data from a remarkable patient carrying an extremely rare genetic mutation in cPLA 2 α, causing almost complete loss of prostacyclin and thromboxane A 2 , who was transplanted with a normal kidney resulting in an experimental scenario of whole-body cPLA 2 α knockout, kidney-specific knockin. By studying this patient, we can determine definitively the contribution of the kidney to the productions of PGI-M and TX-M and test their validity as markers of prostacyclin and thromboxane A 2 in the circulation. Metabolites were measured using liquid chromatography-tandem mass spectrometry. Endothelial cells were grown from blood progenitors. Before kidney transplantation, the patient's endothelial cells and platelets released negligible levels of prostacyclin (measured as 6-keto-prostaglandin F 1α ) and thromboxane A 2 (measured as TXB 2 ), respectively. Likewise, the urinary levels of PGI-M and TX-M were very low. After transplantation and the establishment of normal renal function, the levels of PGI-M and TX-M in the patient's urine rose to within normal ranges, whereas endothelial production of prostacyclin and platelet production of thromboxane A 2 remained negligible. These data show that PGI-M and TX-M can be derived exclusively from the kidney without contribution from prostacyclin made by endothelial cells or thromboxane A 2 by platelets in the general circulation. Previous work relying on urinary metabolites of prostacyclin and thromboxane A 2 as markers of whole-body endothelial and platelet function now requires reevaluation. © 2018 The Authors.

  18. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.

    PubMed

    Pluta, R

    2003-01-01

    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  19. Simultaneous detection of circulating immunological parameters and tumor biomarkers in early stage breast cancer patients during adjuvant chemotherapy.

    PubMed

    Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P

    2016-06-01

    Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.

  20. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    PubMed Central

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  1. Alkamides from Echinacea angustifolia Interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels.

    PubMed

    Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas

    2013-03-01

    The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells. Georg Thieme Verlag KG Stuttgart · New York.

  2. RADIOAUTOGRAPHIC DEMONSTRATION OF 5-HYDROXYTRYPTAMINE-3H UPTAKE BY PULMONARY ENDOTHELIAL CELLS

    PubMed Central

    Strum, Judy M.; Junod, Alain F.

    1972-01-01

    The lung is able to rapidly remove 5-hydroxytryptamme (5-HT) from the circulation by a Na+-dependent transport mechanism. In order to identify the sites of uptake, radioautographic studies were done on rat lungs which had been isolated and perfused with 5-HT-3H and 0 5 mM iproniazid, a monoamine oxidase inhibitor. In control experiments 10-4 M imipramine was added to the perfusate to inhibit the membrane transport of 5-HT At the light microscope level, silver grains were seen concentrated near capillaries and in the endothelium of large vessels From electron microscope radioautographs a semiquantitative grain count was made and 90% of the silver grains were observed over capillary endothelial cells. The grains were found over the nucleus and cytoplasm of the cell and shewed no preferential association with any particular cytoplasmic inclusion bodies, organelles, or vesicles Other cell types were unlabeled except for a few mast cells, certain vascular smooth muscle cells, and one nerve ending. This radioautographic demonstration of the cell type responsible for the rapid removal of 5-HT from the lung circulation clearly establishes the existence of a new metabolic role for pulmonary endothelial cells. PMID:5044755

  3. Maternal body-mass index and cord blood circulating endothelial colony-forming cells.

    PubMed

    Moreno-Luna, Rafael; Muñoz-Hernandez, Rocio; Lin, Ruei-Zeng; Miranda, Maria L; Vallejo-Vaz, Antonio J; Stiefel, Pablo; Praena-Fernández, Juan M; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M; Villar, Jose; Melero-Martin, Juan M

    2014-03-01

    Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in nonpathologic pregnancies. We measured the level of ECFCs in the cord blood of neonates (n = 27) born from non-obese healthy mothers with nonpathologic pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. We observed variation in ECFC abundance among subjects and found a positive correlation between prepregnancy maternal BMI and ECFC content (r = 0.51, P = .007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m(2) and BMI between 25-30 kg/m(2), including the ability to form vascular networks in vivo. This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathologic pregnancies. Copyright © 2014 Mosby, Inc. All rights reserved.

  4. Iron overload in myelodysplastic syndromes (MDS).

    PubMed

    Gattermann, Norbert

    2018-01-01

    Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.

  5. Pleiotropy of tissue-specific growth factors: from neurons to vessels via the bone marrow

    PubMed Central

    Duda, Dan G.; Jain, Rakesh K.

    2005-01-01

    Recent evidence has demonstrated that endothelial-specific growth factors affect the development of apparently unrelated organs and cells. Expanding this evidence further, new findings in this issue of the JCI show that neurotrophic factors can affect neovascularization. Neurotrophic factors achieve proangiogenic effects not only by directly affecting endothelial cells, but also by recruiting hematopoietic precursors. Further understanding of the biology of angiogenic factors, as well as of the function of hematopoietic cells in tissue neovascularization, will lead to improved therapeutic strategies for the treatment of diseases ranging from ischemia to cancer. PMID:15765145

  6. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    USDA-ARS?s Scientific Manuscript database

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  7. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  8. Phenotypic heterogeneity in the endothelium of the human vortex vein system.

    PubMed

    Yu, Paula K; Tan, Priscilla E Z; Cringle, Stephen J; McAllister, Ian L; Yu, Dao-Yi

    2013-10-01

    The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play important roles in regulation of the choroidal circulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Saik, Jennifer E.; Gould, Daniel J.; Watkins, Emily M.; Dickinson, Mary E.; West, Jennifer L.

    2011-01-01

    The field of tissue engineering is severely limited by a lack of microvascularization in tissue engineered constructs. Biomimetic poly(ethylene glycol) hydrogels containing covalently immobilized platelet-derived growth factor BB (PDGF-BB) were developed to promote angiogenesis. Poly(ethylene glycol) hydrogels resist protein absorption and subsequent non-specific cell adhesion, thus providing a “blank slate”, which can be modified through the incorporation of cell adhesive ligands and growth factors. PDGF-BB is a key angiogenic protein able to support neovessel stabilization by inducing functional anastomoses and recruiting pericytes. Due to the widespread effects of PDGF in the body and a half-life of only 30 min in circulating blood, immobilization of PDGF-BB may be necessary. In this work bioactive, covalently immobilized PDGF-BB was shown to induce tubulogenesis on two-dimensional modified surfaces, migration in three-dimensional (3D) degradable hydrogels and angiogenesis in a mouse cornea micro-pocket angiogenesis assay. Covalently immobilized PDGF-BB was also used in combination with covalently immobilized fibroblast growth factor-2, which led to significantly increased endothelial cell migration in 3D degradable hydrogels compared with the presentation of each factor alone. When a co-culture of endothelial cells and mouse pericyte precursor 10T1/2 cells was seeded onto modified surfaces tubule formation was independent of surface modifications with covalently immobilized growth factors. Furthermore, the combination of soluble PDGF-BB and immobilized PDGF-BB induced a more robust vascular response compared with soluble PDGF-BB alone when implanted into an in vivo mouse cornea micropocket angiogenesis assay. Based on these results, we believe bioactive hydrogels can be tailored to improve the formation of functional microvasculature for tissue engineering. PMID:20801242

  10. A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells.

    PubMed

    Geti, Imbisaat; Ormiston, Mark L; Rouhani, Foad; Toshner, Mark; Movassagh, Mehregan; Nichols, Jennifer; Mansfield, William; Southwood, Mark; Bradley, Allan; Rana, Amer Ahmed; Vallier, Ludovic; Morrell, Nicholas W

    2012-12-01

    Induced pluripotent stem cells (iPSCs) have the potential to generate patient-specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late-outgrowth endothelial progenitor cells (L-EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L-EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof-of-principle for clinical applications we generated EPC-iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L-EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L-EPC reprogramming allowed for the reliable generation of iPSCs in a 96-well format, which is compatible with high-throughput platforms. Array comparative genome hybridization analysis of L-EPCs versus donor-matched circulating monocytes demonstrated that L-EPCs have normal karyotypes compared with their subject's reference genome. In addition, >80% of EPC-iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L-EPC line. This work identifies L-EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.

  11. Loss of endothelial barrier antigen immunoreactivity as a marker of Clostridium perfringens type D epsilon toxin-induced microvascular damage in rat brain.

    PubMed

    Finnie, J W; Manavis, J; Chidlow, G

    2014-01-01

    The epsilon toxin elaborated by Clostridium perfringens type D in the intestine of domestic livestock is principally responsible for the neurological disease produced after its absorption in excessive quantities into the systemic circulation. The fundamental basis of the cerebral damage induced by epsilon toxin appears to be microvascular injury with ensuing severe, diffuse vasogenic oedema. Endothelial barrier antigen (EBA), which is normally expressed by virtually all capillaries and venules in the rat brain, was used in this study as a marker of blood-brain barrier (BBB) integrity. After exposure to high levels of circulating epsilon toxin, there was substantial loss of EBA in many brain microvessels, attended by widespread plasma albumin extravasation. These results support microvascular injury and subsequent BBB breakdown as a key factor in the pathogenesis of epsilon toxin-induced neurological disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women

    PubMed Central

    Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick

    2015-01-01

    Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686

  13. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a.

    PubMed

    Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J

    2015-03-03

    Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.

  15. Decreased level of cord blood circulating endothelial colony-forming cells in preeclampsia.

    PubMed

    Muñoz-Hernandez, Rocio; Miranda, Maria L; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M; Dominguez-Simeon, Maria J; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M

    2014-07-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation, and migration toward vascular endothelial growth factor-A and fibroblast growth factor-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P=0.04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. © 2014 American Heart Association, Inc.

  16. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation.

    PubMed

    Banz, Yara; Beldi, Guido; Wu, Yan; Atkinson, Ben; Usheva, Anny; Robson, Simon C

    2008-08-01

    Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.

  17. Autoantigens targeted in scleroderma patients with vascular disease are enriched in endothelial lineage cells

    PubMed Central

    McMahan, Zsuzsanna H.; Cottrell, Tricia R.; Wigley, Fredrick M.; Antiochos, Brendan; Zambidis, Elias T.; Park, Tea Soon; Halushka, Marc K.; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-01-01

    Objective Scleroderma patients with autoantibodies to centromere proteins (CENPs) and/or interferon-inducible protein 16 (IFI16) are at increased risk of severe vascular complications. We set out to define whether these autoantigens are enriched in cells of the vasculature. Methods Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI16 and CD31 expression were defined in skin paraffin sections from scleroderma patients and from healthy controls. IFI16 expression was determined by flow cytometry in circulating endothelial cells (CECs) and circulating progenitor cells (CPCs). Results Expression of CENP-A, IFI16 and CD31 was enriched in EBs at days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI16, CD31, CENPs A and-B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of skin paraffin sections showed enrichment of IFI16 in CD31-positive vascular endothelial cells in biopsies from scleroderma patients and normal controls. Flow cytometry analysis revealed IFI16 expression in CPCs, but minimal expression in CECs. Conclusion Expression of scleroderma autoantigens IFI16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. PMID:27159521

  18. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation.

    PubMed

    Johansson, P I; Ostrowski, S R

    2010-12-01

    Acute coagulopathy of trauma predicts a poor clinical outcome. Tissue trauma activates the sympathoadrenal system resulting in high circulating levels of catecholamines that influence hemostasis dose-dependently through immediate effects on the two major compartments of hemostasis, i.e., the circulating blood and the vascular endothelium. There appears to be a dose-dependency with regards to injury severity and the hemostatic response to trauma evaluated in whole blood by viscoelastic assays like thrombelastography (TEG), changing from normal to hypercoagulable, to hypocoagulable and finally hyperfibrinolytic in severely injured patients. Since high catecholamine levels may directly damage the endothelium and thereby promote systemic coagulation activation, we hypothesize that the progressive hypocoagulability and ultimate hyperfibrinolysis observed in whole blood with increasing injury severity, is an evolutionary developed response that counterbalances the injury and catecholamine induced endothelial activation and damage. Given this, the rise in circulating catecholamines in trauma patients may favor a switch from hyper- to hypocoagulability in the blood to keep the progressively more procoagulant microvasculature open. The hypothesis delineated in the present paper thus infers that the state of the fluid phase, including its cellular elements, is a consequence of the degree of the tissue injury and importantly, critically related to the degree of endothelial damage, with a progressively more procoagulant endothelium inducing a gradient of increasing anticoagulation towards the fluid phase. The implications of this hypothesis may include targeted treatment strategies according to the degree of sympathoadrenal response as evaluated by whole blood viscoelastical hemostatic assays in trauma patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Circulating dendritic cell precursors in chronic kidney disease: a cross-sectional study.

    PubMed

    Paul, Katharina; Kretzschmar, Daniel; Yilmaz, Atilla; Bärthlein, Barbara; Titze, Stephanie; Wolf, Gunter; Busch, Martin

    2013-12-10

    Dendritic cells (DC) are professional antigen-presenting cells in the immune system. They patrol the blood as circulating dendritic cell precursors (DCP). Decreased blood DCP count has been shown to be related to atherosclerotic plaque burden. Since chronic kidney disease (CKD) is associated with chronic inflammation and increased cardiovascular risk, the aim of our study was to investigate a potential effect of CKD on circulating DCP numbers especially in patients with a history of cardiovascular disease. The number of circulating myeloid (mDCP), plasmacytoid (pDCP), and total DCP (tDCP) was analysed by flow cytometry in 245 patients with CKD stage 3 (with and without known cardiovascular events) and 85 coronary healthy controls. In addition, data were compared with a historical group of 130 patients with known coronary artery disease (CAD). Compared to controls, patients with CKD 3 revealed a significant decrease in circulating mDCP (-29%), pDCP (-43%), and tDCP (-38%) (P < 0.001, respectively). Compared with CAD-patients, the decrease in circulating DCP in CKD was comparable or even more pronounced indicating a potential role for DCP in cardiovascular risk potentiation due to CKD. Based on previous findings in CAD, the marked decrease of DCP in CKD implicates a potential role for DCP as a mediator of cardiovascular disease. Whether DCP in CKD may act as new cardiovascular biomarkers needs to be established in future prospective trials.

  20. Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension.

    PubMed

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Nagayoshi, Mako; Kadota, Koichiro; Maeda, Takahiro

    2015-11-01

    Serum triglycerides have been reported to be independently associated with the development of chronic kidney disease (CKD), which is known to play a role in vascular disturbance. On the other hand, circulating CD34-positve cells, including endothelial progenitor cells, are reported to contribute to vascular repair. However, no studies have reported on the correlation between triglycerides and the number of CD34-positive cells. Since hypertension is well known factor for vascular impairment, the degree of correlation between serum triglycerides and circulating CD34-positve cells should account for hypertension status. We conducted a cross-sectional study of 274 elderly Japanese men aged ≥ 60 years (range 60-79 years) undergoing general health checkups. Multiple linear regression analysis of non-hypertensive subjects adjusting for classical cardiovascular risk factors showed that although triglyceride levels (1SD increments; 64 mg/dL) did not significantly correlate with glomerular filtration rate (GFR) (β = -2.06, p = 0.163), a significant positive correlation was seen between triglycerides and the number of circulating CD34-positive cells (β = 0.50, p = 0.004). In hypertensive subjects, a significant inverse correlation between triglycerides and GFR was observed (β = -2.66, p = 0.035), whereas no significant correlation between triglycerides and the number of circulating CD34-positive cells was noted (β = -0.004, p = 0.974). Since endothelial progenitor cells (CD34-positive cells) have been reported to contribute to vascular repair, our results indicate that in non-hypertensive subjects, triglycerides may stimulate an increase in circulating CD34-positive cells (vascular repair) by inducing vascular disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution

    PubMed Central

    Yang, Yimu; Haeger, Sarah M.; Suflita, Matthew A.; Zhang, Fuming; Dailey, Kyrie L.; Colbert, James F.; Ford, Joshay A.; Picon, Mario A.; Stearman, Robert S.; Lin, Lei; Liu, Xinyue; Han, Xiaorui; Linhardt, Robert J.

    2017-01-01

    The endothelial glycocalyx is a heparan sulfate (HS)–rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis. We performed intravital microscopy of wild-type and transgenic mice to determine the rapidity of pulmonary endothelial glycocalyx reconstitution after nonseptic (heparinase-III mediated) or septic (cecal ligation and puncture mediated) endothelial glycocalyx degradation. We used mass spectrometry, surface plasmon resonance, and in vitro studies of human and mouse samples to determine the structure of HS fragments released during glycocalyx degradation and their impact on fibroblast growth factor receptor (FGFR) 1 signaling, a mediator of endothelial repair. Homeostatic pulmonary endothelial glycocalyx reconstitution occurred rapidly after nonseptic degradation and was associated with induction of the HS biosynthetic enzyme, exostosin (EXT)-1. In contrast, sepsis was characterized by loss of pulmonary EXT1 expression and delayed glycocalyx reconstitution. Rapid glycocalyx recovery after nonseptic degradation was dependent upon induction of FGFR1 expression and was augmented by FGF-promoting effects of circulating HS fragments released during glycocalyx degradation. Although sepsis-released HS fragments maintained this ability to activate FGFR1, sepsis was associated with the downstream absence of reparative pulmonary endothelial FGFR1 induction. Sepsis may cause vascular injury not only via glycocalyx degradation, but also by impairing FGFR1/EXT1–mediated glycocalyx reconstitution. PMID:28187268

  2. Coagulopathy in patients with acute pulmonary embolism: a pilot study of whole blood coagulation and markers of endothelial damage.

    PubMed

    Lehnert, Per; Johansson, Pär I; Ostrowski, Sisse R; Møller, Christian H; Bang, Lia E; Olsen, Peter Skov; Carlsen, Jørn

    2017-02-01

    Whole blood coagulation and markers of endothelial damage were studied in patients with acute pulmonary embolism (PE), and evaluated in relation to PE severity. Twenty-five patients were enrolled prospectively each having viscoelastical analysis of whole blood done using thrombelastography (TEG) and Multiplate aggregometry. Fourteen of these patients were investigated for endothelial damage by ELISA measurements of Syndecan-1 (endothelial glycocalyx degradation), soluble endothelial Selectin (endothelial cell activation), soluble Thrombomodulin (endothelial cell injury) and Histone Complexed DNA fragments (endothelial cytotoxic histones). The mean values of TEG and Multiplate parameters were all within the reference levels, but a significant difference between patients with high and intermediate risk PE was observed for Ly30 (lytic activity) 1.5% [0-10] vs. 0.2% [0-2.2] p = .04, and ADP (platelet reactivity) 92 U [20-145] vs. 59 U [20-111] p = .03. A similar difference was indicated for functional fibrinogen 21 mm [17-29] vs. 18 mm [3-23] p = .05. Analysis of endothelial markers identified a significant difference in circulating levels between high and intermediate risk PE patients for Syndecan-1 118.6 ng/mL [76-133] vs. 36.3 ng/mL [11.8-102.9] p = .008. In conclusion, patients with acute PE had normal whole blood coagulation, but high risk PE patients had signs of increased activity of the haemostatic system and significantly increased level of endothelial glycocalyx degradation.

  3. Tracking Normalization of Brain Tumor Vasculature by Magnetic Imaging and Proangiogenic Biomarkers

    PubMed Central

    Hormigo, Adília; Gutin, Philip H.; Rafii, Shahin

    2010-01-01

    Clinical assessment of the response to antiangiogenic therapy has been cumbersome. A study in this issue of Cancer Cell demonstrates that a combination of magnetic resonance imaging (MRI) for quantification of normalized vessels with measurements of circulating levels of proangiogenic factors, including FGF2, SDF1, and viable circulating endothelial cells, provides an effective means to evaluate the response of recurrent glioblastoma to a prototypical pan-VEGF receptor tyrosine kinase inhibitor, AZD2171. PMID:17222788

  4. Angiogenic T cell expansion correlates with severity of peripheral vascular damage in systemic sclerosis.

    PubMed

    Manetti, Mirko; Pratesi, Sara; Romano, Eloisa; Bellando-Randone, Silvia; Rosa, Irene; Guiducci, Serena; Fioretto, Bianca Saveria; Ibba-Manneschi, Lidia; Maggi, Enrico; Matucci-Cerinic, Marco

    2017-01-01

    The mechanisms underlying endothelial cell injury and defective vascular repair in systemic sclerosis (SSc) remain unclear. Since the recently discovered angiogenic T cells (Tang) may have an important role in the repair of damaged endothelium, this study aimed to analyze the Tang population in relation to disease-related peripheral vascular features in SSc patients. Tang (CD3+CD31+CXCR4+) were quantified by flow cytometry in peripheral blood samples from 39 SSc patients and 18 healthy controls (HC). Circulating levels of the CXCR4 ligand stromal cell-derived factor (SDF)-1α and proangiogenic factors were assessed in paired serum samples by immunoassay. Serial skin sections from SSc patients and HC were subjected to CD3/CD31 and CD3/CXCR4 double immunofluorescence. Circulating Tang were significantly increased in SSc patients with digital ulcers (DU) compared either with SSc patients without DU or with HC. Tang levels were significantly higher in SSc patients with late nailfold videocapillaroscopy (NVC) pattern than in those with early/active NVC patterns and in HC. No difference in circulating Tang was found when comparing either SSc patients without DU or patients with early/active NVC patterns and HC. In SSc peripheral blood, Tang percentage was inversely correlated to levels of SDF-1α and CD34+CD133+VEGFR-2+ endothelial progenitor cells (EPC), and positively correlated to levels of vascular endothelial growth factor and matrix metalloproteinase-9. Tang were frequently detected in SSc dermal perivascular inflammatory infiltrates. In summary, our findings demonstrate for the first time that Tang cells are selectively expanded in the circulation of SSc patients displaying severe peripheral vascular complications like DU. In SSc, Tang may represent a potentially useful biomarker reflecting peripheral vascular damage severity. Tang expansion may be an ineffective attempt to compensate the need for increased angiogenesis and EPC function. Further studies are required to clarify the function of Tang cells and investigate the mechanisms responsible for their change in SSc.

  5. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women

    PubMed Central

    Pertynska-Marczewska, Magdalena

    2015-01-01

    Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE–RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE–RAGE pathway hold therapeutic potential for CVD in menopausal women. PMID:25228634

  6. Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women.

    PubMed

    Pertynska-Marczewska, Magdalena; Merhi, Zaher

    2015-07-01

    Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE-RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE-RAGE pathway hold therapeutic potential for CVD in menopausal women. © The Author(s) 2014.

  7. Scleroderma Related Lung Disease: Is There a Pathogenic Role for Adipokines?

    PubMed Central

    Haley, Shannon; Shah, Dilip; Romero, Freddy; Summer, Ross

    2013-01-01

    Scleroderma is a systemic autoimmune disease of unknown etiology whose hallmark features include endothelial cell dysfunction, fibroblast proliferation and immune dysregulation. Although virtually any organ can be pathologically involved in scleroderma, lung complications including interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are the leading cause of death in patients with this condition. Currently, the molecular mechanisms leading to development of scleroderma-related lung disease are poorly understood; however, the systemic nature of this condition has led many to implicate circulating factors in the pathogenesis of some of its organ impairment. In this article, we focus on a new class of circulating factors derived from adipose-tissue called adipokines, which are known to be altered in scleroderma. Recently, the adipokines adiponectin and leptin have been found to regulate biological activities in endothelial, fibroblast and immune cell types in lung and in many other tissues. The pleiotropic nature of these circulating factors and their functional activity on many cell types implicated in the pathogenesis of ILD and PAH suggest these hormones may play a mechanistic role in the onset and/or progression of scleroderma-related lung diseases. PMID:24173692

  8. Dynamic release and clearance of circulating microparticles during cardiac stress.

    PubMed

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  9. Size-Based Enrichment Technologies for Non-cancerous Tumor-Derived Cells in Blood.

    PubMed

    Mong, Jamie; Tan, Min-Han

    2018-05-01

    Enumeration of circulating tumor cells (CTCs) in the bloodstream can predict prognosis and survival in cancer patients. However, CTC rarity and heterogeneity pose challenges in using them as biomarkers. Recent publications have reported new classes of circulating, non-cancerous tumor-derived cells present in cancer patients but not in healthy controls; these include cancer-associated macrophages, tumor-endothelial clusters (TECs), and cancer-associated fibroblasts (CAFs). Well-established marker-dependent CTC enrichment technologies will miss this group of circulating cells. To maximize our chance of finding useful circulating biomarkers in cancer patients, we propose the use of size-based enrichment technologies to isolate both cancerous and non-cancerous cells in circulation. We review their biological properties and discuss device features to consider in their enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    for other sources of ECs such as those derived from embryonic and adult progenitor cells ( Rafii ; Lyden 2003). For example, human ES-derived...functional endothelial precursors. Blood, 95, 952-958. Rafii , S., and D. Lyden, 2003: Therapeutic stem and progenitor cell transplantation for

  11. Coronary Heart Disease Alters Intercellular Communication by Modifying Microparticle-Mediated MicroRNA Transport

    PubMed Central

    Finn, Nnenna A.; Eapen, Danny; Manocha, Pankaj; Kassem, Hatem Al; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D.

    2013-01-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. PMID:24042051

  12. Targeting vascular (endothelial) dysfunction

    PubMed Central

    Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago

    2016-01-01

    Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006

  13. Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating endothelial progenitor cells and decreases numbers of microparticles: findings from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study.

    PubMed

    Weech, Michelle; Altowaijri, Hana; Mayneris-Perxachs, Jordi; Vafeiadou, Katerina; Madden, Jacqueline; Todd, Susan; Jackson, Kim G; Lovegrove, Julie A; Yaqoob, Parveen

    2018-06-01

    Endothelial progenitor cells (EPCs) and microparticles are emerging as novel markers of cardiovascular disease (CVD) risk, which could potentially be modified by dietary fat. We have previously shown that replacing dietary saturated fatty acids (SFAs) with monounsaturated or n-6 (ω-6) polyunsaturated fatty acids (MUFAs or PUFAs, respectively) improved lipid biomarkers, blood pressure, and markers of endothelial activation, but their effects on circulating EPCs and microparticles are unclear. The Dietary Intervention and VAScular function (DIVAS) Study investigated the replacement of 9.5-9.6% of total energy (%TE) contributed by SFAs with MUFAs or n-6 PUFAs for 16 wk on EPC and microparticle numbers in United Kingdom adults with moderate CVD risk. In this randomized, controlled, single-blind, parallel-group dietary intervention, men and women aged 21-60 y (n = 190) with moderate CVD risk (≥50% above the population mean) consumed 1 of three 16-wk isoenergetic diets. Target compositions for total fat, SFAs, MUFAs, and n-6 PUFAs (%TE) were as follows: SFA-rich diet (36:17:11:4; n = 64), MUFA-rich diet (36:9:19:4; n = 62), and n-6 PUFA-rich diet (36:9:13:10; n = 66). Circulating EPC, endothelial microparticle (EMP), and platelet microparticle (PMP) numbers were analyzed by flow cytometry. Dietary intake, vascular function, and other cardiometabolic risk factors were determined at baseline. Relative to the SFA-rich diet, MUFA- and n-6 PUFA-rich diets decreased EMP (-47.3%, -44.9%) respectively and PMP (-36.8%, -39.1%) numbers (overall diet effects, P < 0.01). The MUFA-rich diet increased EPC numbers (+28.4%; P = 0.023). Additional analyses that used stepwise regression models identified the augmentation index (measuring arterial stiffness determined by pulse-wave analysis) as an independent predictor of baseline EPC and microparticle numbers. Replacement of 9.5-9.6%TE dietary SFAs with MUFAs increased EPC numbers, and replacement with either MUFAs or n-6 PUFAs decreased microparticle numbers, suggesting beneficial effects on endothelial repair and maintenance. Further studies are warranted to determine the mechanisms underlying the favorable effects on EPC and microparticle numbers after SFA replacement. This trial was registered at www.clinicaltrials.gov as NCT01478958.

  14. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I.

    PubMed

    Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W

    2006-01-06

    Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.

  15. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect.

    PubMed

    Greineder, Colin F; Brenza, Jacob B; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D; Pan, Daniel C; Ding, Bi-Sen; Esmon, Charles T; Chacko, Ann Marie; Muzykantov, Vladimir R

    2015-08-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications. © FASEB.

  16. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  17. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Elevated endothelial progenitor cells during painful sickle cell crisis.

    PubMed

    van Beem, Rachel T; Nur, Erfan; Zwaginga, Jaap Jan; Landburg, Precious P; van Beers, Eduard J; Duits, Ashley J; Brandjes, Dees P; Lommerse, Ingrid; de Boer, Hetty C; van der Schoot, C Ellen; Schnog, John-John B; Biemond, Bart J

    2009-09-01

    Circulating endothelial progenitor cells (EPCs) counts were determined in patients with sickle cell disease (SCD) to elucidate their role in SCD-related ischemia-induced angiogenesis and reendothelialization. Circulating EPC counts (KDR(+)/CD34(+)/Cd45(dim) cells) and their relation to serum levels of EPC mobilizing growth factors erythropoietin, vascular endothelial growth factor, and interleukin-8 were investigated in SCD patients during asymptomatic state (n=66) and painful crisis (n=36) and compared to healthy controls (n=13). EPC counts were comparable between controls (0; range, 0-1.1 cells/mL) and patients (0; range, 0-0 cells/mL) in asymptomatic state, but were significantly higher during painful crisis (41.7; range, 0-186 cells/mL; p<0.05). Also in a paired analysis of 12 patients who were included both during asymptomatic state and painful crisis, EPC counts increased significantly during painful crisis (from 0 [range, 0-0] to 26 [range, 0-149 cell/mL; p<0.05). EPC counts were not related to any of the measured growth factors. The higher EPC counts during painful crisis might indicate a role for EPC mobilization in reendothelialization. As a relationship of EPCs with the established mobilizing growth factors, measured in this study was not observed, the mechanism of EPC mobilization in SCD remains to be elucidated.

  19. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes.

    PubMed

    Altabas, Velimir; Altabas, Karmela; Kirigin, Lora

    2016-10-01

    Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation.

    PubMed

    Patenaude, Alexandre; Woerher, Stefan; Umlandt, Patricia; Wong, Fred; Ibrahim, Rawa; Kyle, Alastair; Unger, Sandy; Fuller, Megan; Parker, Jeremy; Minchinton, Andrew; Eaves, Connie J; Karsan, Aly

    2015-09-01

    Pericytes are perivascular support cells, the origin of which in tumor tissue is not clear. Recently, we identified a Tie1(+) precursor cell that differentiates into vascular smooth muscle, in a Notch-dependent manner. To understand the involvement of Notch in the ontogeny of tumor pericytes we used a novel flow immunophenotyping strategy to define CD146(+)/CD45(-)/CD31(-/lo) pericytes in the tumor stroma. This strategy combined with ex vivo co-culture experiments identified a novel pericyte progenitor cell population defined as Sca1(hi)/CD146(-)/CD45(-)/CD31(-). The differentiation of these progenitor cells was stimulated by co-culture with endothelial cells. Overexpression of the Notch ligand Jagged1 in endothelial cells further stimulated the differentiation of Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells into pericytes, while inhibition of Notch signaling with a γ-secretase inhibitor reduced this differentiation. However, Notch inhibition specifically in Tie1-expressing cells did not change the abundance of pericytes in tumors, suggesting that the pericyte precursor is distinct from the vascular smooth muscle cell precursor. Transplant experiments showed that the bone marrow contributes minimally to tumor pericytes. Immunophenotyping revealed that Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells have greater potential to differentiate into pericytes and have increased expression of classic mesenchymal stem cell markers (CD13, CD44, Nt5e and Thy-1) compared to Sca1(-/lo)/CD146(-)/CD45(-)/CD31(-) cells. Our results suggest that a local Sca1(hi)/CD146(-)/CD45(-)/CD31(-) pericyte progenitor resides in the tumor microenvironment and requires Notch signaling for differentiation into mature pericytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Detecting causal drivers and empirical prediction of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Di Capua, G.; Vellore, R.; Raghavan, K.; Coumou, D.

    2017-12-01

    The Indian summer monsoon (ISM) is crucial for the economy, society and natural ecosystems on the Indian peninsula. Predict the total seasonal rainfall at several months lead time would help to plan effective water management strategies, improve flood or drought protection programs and prevent humanitarian crisis. However, the complexity and strong internal variability of the ISM circulation system make skillful seasonal forecasting challenging. Moreover, to adequately identify the low-frequency, and far-away processes which influence ISM behavior novel tools are needed. We applied a Response-Guided Causal Precursor Detection (RGCPD) scheme, which is a novel empirical prediction method which unites a response-guided community detection scheme with a causal discovery algorithm (CEN). These tool allow us to assess causal pathways between different components of the ISM circulation system and with far-away regions in the tropics, mid-latitudes or Arctic. The scheme has successfully been used to identify causal precursors of the Stratospheric polar vortex enabling skillful predictions at (sub) seasonal timescales (Kretschmer et al. 2016, J.Clim., Kretschmer et al. 2017, GRL). We analyze observed ISM monthly rainfall over the monsoon trough region. Applying causal discovery techniques, we identify several causal precursor communities in the fields of 2m-temperature, sea level pressure and snow depth over Eurasia. Specifically, our results suggest that surface temperature conditions in both tropical and Arctic regions contribute to ISM variability. A linear regression prediction model based on the identified set of communities has good hindcasting skills with 4-5 months lead times. Further we separate El Nino, La Nina and ENSO-neutral years from each other and find that the causal precursors are different dependent on ENSO state. The ENSO-state dependent causal precursors give even higher skill, especially for La Nina years when the ISM is relatively strong. These findings are promising results that might ultimately contribute to both improved understanding of the ISM circulation system and help improving seasonal ISM forecasts.

  2. Biomarkers of coronary endothelial health: correlation with invasive measures of collateral function, flow and resistance in chronically occluded coronary arteries and the effect of recanalization.

    PubMed

    Ladwiniec, Andrew; Ettelaie, Camille; Cunnington, Michael S; Rossington, Jennifer; Thackray, Simon; Alamgir, Farquad; Hoye, Angela

    2016-06-01

    In the presence of a chronically occluded coronary artery, the collateral circulation matures by a process of arteriogenesis; however, there is considerable variation between individuals in the functional capacity of that collateral network. This could be explained by differences in endothelial health and function. We aimed to examine the relationship between the functional extent of collateralization and levels of biomarkers that have been shown to relate to endothelial health. We measured four potential biomarkers of endothelial health in 34 patients with mature collateral networks who underwent a successful percutaneous coronary intervention (PCI) for a chronic total coronary occlusion (CTO) before PCI and 6-8 weeks after PCI, and examined the relationship of biomarker levels with physiological measures of collateralization. We did not find a significant change in the systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor 6-8 weeks after PCI. We did find an association between estimated retrograde collateral flow before CTO recanalization and lower levels of sICAM-1 (r=0.39, P=0.026), sE-selectin (r=0.48, P=0.005) and microparticles (r=0.38, P=0.03). Recanalization of a CTO and resultant regression of a mature collateral circulation do not alter systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor. The identified relationship of retrograde collateral flow with sICAM-1, sE-selectin and microparticles is likely to represent an association with an ability to develop collaterals rather than their presence and extent.

  3. The architecture and biological function of dual antibody-coated dendrimers: enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention.

    PubMed

    Xie, Jingjing; Zhao, Rongli; Gu, Songen; Dong, Haiyan; Wang, Jichuang; Lu, Yusheng; Sinko, Patrick J; Yu, Ting; Xie, Fangwei; Wang, Lie; Shao, Jingwei; Jia, Lee

    2014-01-01

    Dissemination of circulating tumor cells (CTCs) in blood and their hetero-adhesion to vascular endothelial bed of distant metastatic secondary organs are the critical steps to initiate cancer metastasis. The rarity of CTCs made their in vivo capture technically challenging. Current techniques by virtue of nanostructured scaffolds monovalently conjugated with a single antibody and/or drug seem less efficient and specific in capturing CTCs. Here, we report a novel platform developed to re-engineer nanoscale dendrimers for capturing CTCs in blood and interfering their adhesion to vascular endothelial bed to form micrometastatic foci. The nanoscale dendrimers were spatiotemporally accommodated with dual antibodies to target two surface biomarkers of colorectal CTCs. Physiochemical characterization, including spectra, fluorescence, electron microscope, dynamic light scattering, electrophoresis, and chromatography analyses, was conducted to demonstrate the successful conjugation of dual antibodies to dendrimer surface. The dual antibody conjugates were able to specifically recognize and bind CTCs, moderately down-regulate the activity of the captured CTCs by arresting them in S phase. The related adhesion assay displayed that the dual antibody conjugates interfered the hetero-adhesion of CTCs to fibronectin (Fn)-coated substrates and human umbilical vein endothelial cells (HUVECs). The dual antibody conjugates also showed the enhanced specificity and efficiency in vitro and in vivo in restraining CTCs in comparison with their single antibody counterparts. The present study showed a novel means to effectively prevent cancer metastatic initiation by binding, restraining CTCs and inhibiting their hetero-adhesion to blood vessels, not by traditional cytotoxic-killing of cancer cells.

  4. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    PubMed

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  5. Clinical evaluation of the endothelial tie-2 crossmatch in ABO compatible and ABO incompatible renal transplants.

    PubMed

    Kafetzi, Maria L; Boletis, John N; Melexopoulou, Christine A; Tsakris, Athanassios; Iniotaki, Aliki G; Doxiadis, Ilias I N

    2013-11-01

    The necessity of detection of other than the classical major histocompatibility complex (MHC) and MHC class I-related chain A (MICA) directed antibodies prior to organ transplantation has already been repeatedly reported. A commercial flow cytometric endothelial crossmatch (CM) using isolated peripheral blood tie-2 positive cells provides a tool to detect non-MHC antibodies in addition to antibodies directed to MHC class I and II. The vast majority of circulating tie-2 positive cells expresses HLA-DR but not the A, B blood group antigens. Tie-2 cells are circulating surrogate endothelial cells. In this retrospective study we evaluated the endothelial CM in 51 renal transplantations, 30 with ABO compatible grafts and 21 with ABO incompatible grafts. Fifteen of the ABO compatible recipients (group A) developed unexplained rejection episodes (RE) while the remaining 15 had no RE (group B). Five cases of group A and none of group B had a positive tie-2 CM before transplantation (p=0.042). A positive tie-2 CM was also correlated with graft failure in ABO compatible transplants (p=0.02). No significant correlation was found between a positive pre-transplant tie-2 CM and RE in the ABO incompatible group. This study strongly suggest that a positive tie-2 CM may predict post-transplantation complications in ABO compatible grafts while negative reactions are not predictive. The test is not significantly correlated with RE in ABO incompatible grafts possibly due to applied desensitization. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  6. Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi

    We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less

  7. Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia.

    PubMed

    Su, Shiau-Tsz; Yeh, Chiu-Li; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling

    2017-02-01

    Diabetes is a metabolic disorder with increased risk of vascular diseases. Tissue ischemia may occur with diabetic vascular complications. Bone marrow-derived endothelial progenitor cells (EPCs) constitute a reparative response to ischemic injury. This study investigated the effects of oral glutamine (GLN) supplementation on circulating EPC mobilization and expression of tissue EPC-releasing markers in diabetic mice subjected to limb ischemia. Diabetes was induced by a daily intraperitoneal injection of streptozotocin for 5 days. Diabetic mice were divided into 2 nonischemic groups and 6 ischemic groups. One of the nonischemic and 3 ischemic groups were fed the control diet, while the remaining 4 groups received diets with identical components except that part of the casein was replaced by GLN. The respective diets were fed to the mice for 3 weeks, and then the nonischemic mice were sacrificed. Unilateral hindlimb ischemia was created in the ischemic groups, and mice were sacrificed at 1, 7 or 21 days after ischemia. Their blood and ischemic muscle tissues were collected for further analyses. Results showed that plasma matrix metallopeptidase (MMP)-9 and the circulating EPC percentage increased after limb ischemia in a diabetic condition. Compared to groups without GLN, GLN supplementation up-regulated plasma stromal cell-derived factor (SDF)-1 and muscle MMP-9, SDF-1, hypoxia-inducible factor-1 and vascular endothelial growth factor gene expression. The CD31-immunoreactive intensities were also higher in the ischemic limb. These findings suggest that GLN supplementation enhanced circulating EPC mobilization that may promote endothelium repair at ischemic tissue in diabetic mice subjected to limb ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross

    2015-12-04

    The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q(-/-)) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q(-/-) mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers.

    PubMed

    Rusk, Anthony; McKeegan, Evelyn; Haviv, Fortuna; Majest, Sandra; Henkin, Jack; Khanna, Chand

    2006-12-15

    The angiogenic phenotype of malignant cancers has been established as a target for cancer therapy. ABT-526 and ABT-510, two peptide mimetics of thrombospondin-1 (TSP-1), block angiogenesis in vitro and in vivo and slow tumor growth in mice. To guide the clinical development of these drugs, translational studies in dogs with naturally occurring cancers were initiated. A prospective open-label trial using ABT-510 or ABT-526 in pet dogs with measurable malignant spontaneously arising tumors. Endpoints included safety, pharmacokinetics, antitumor activity, and preliminary assessment of changes in circulating endothelial cell populations. Two-hundred and forty-two dogs were sequentially entered to this open-label trial. The elimination half-life for ABT-510 and ABT-526 was 0.7 and 0.8 h, respectively (range, 0.5-1 h). No dose-limiting toxicities were seen in any dogs (N = 242). Forty-two dogs receiving peptide had objective responses (>50% reduction in tumor size; n = 6) or significant disease stabilization. Most objective responses were seen after 60 days of exposure to the TSP-1 peptide. Antitumor activity was similar for both peptides and was seen in several histologies, including mammary carcinoma, head and neck carcinoma, soft tissue sarcoma, cutaneous T-cell lymphoma, and non-Hodgkin's lymphoma. Assessment of circulating endothelial cell populations in a small subset of dogs suggested that effective exposure to TSP-1 peptides may be associated with reductions in circulating endothelial cells. These results support the safety and activity of ABT-526 and ABT-510 in dogs with naturally occurring malignant cancers. Data from this preclinical trial support the development of TSP-1 mimetic peptides as anticancer agents.

  10. C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury*

    PubMed Central

    Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross

    2015-01-01

    The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q−/−) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q−/− mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. PMID:26487714

  11. New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes.

    PubMed

    Saavedra, Paula; Girona, Josefa; Bosquet, Alba; Guaita, Sandra; Canela, Núria; Aragonès, Gemma; Heras, Mercedes; Masana, Lluís

    2015-11-01

    Fatty acid-binding protein 4 (FABP4) is an adipose tissue-secreted adipokine that is involved in the regulation of energetic metabolism and inflammation. Increased levels of circulating FABP4 have been detected in individuals with cardiovascular risk factors. Recent studies have demonstrated that FABP4 has a direct effect on peripheral tissues, specifically promoting vascular dysfunction; however, its mechanism of action is unknown. The objective of this work was to assess the specific interactions between exogenous FABP4 and the plasma membranes of endothelial cells. Immunofluorescence assays showed that exogenous FABP4 localized along the plasma membranes of human umbilical vein endothelial cells (HUVECs), interacting specifically with plasma membrane proteins. Anti-FABP4 immunoblotting revealed two covalent protein complexes containing FABP4 and its putative receptor; these complexes were approximately 108 kDa and 77 kDa in size. Proteomics and mass spectrometry experiments revealed that cytokeratin 1 (CK1) was the FABP4-binding protein. An anti-CK1 immunoblot confirmed the presence of CK1. FABP4-CK1 complexes were also detected in HAECs, HCASMCs, HepG2 cells and THP-1 cells. Pharmacological FABP4 inhibition by BMS309403 results in a slight decrease in the formation of these complexes, indicating that fatty acids may play a role in FABP4 functionality. In addition, we demonstrated that exogenous FABP4 crosses the plasma membrane to enter the cytoplasm and nucleus in HUVECs. These findings indicate that exogenous FABP4 interacts with plasma membrane proteins, specifically CK1. These data contribute to our current knowledge regarding the mechanism of action of circulating FABP4.

  12. The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence.

    PubMed

    Zafar, Mohammad Ishraq; Zheng, Juan; Kong, Wen; Ye, Xiaofeng; Gou, Luoning; Regmi, Anita; Chen, Lu-Lu

    2017-08-31

    It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research. © 2017 The Author(s).

  13. PC12 Cells Differentiate into Chromaffin Cell-Like Phenotype in Coculture with Adrenal Medullary Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.

    1990-08-01

    Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.

  14. Corneal endothelium: developmental strategies for regeneration

    PubMed Central

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-01-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: ‘cornea AND embryology AND transcription factors', ‘human endothelial keratoplasty AND risk factors', ‘(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', ‘mesenchymal stem cells AND cell therapy', ‘mesenchymal stem cells AND cornea', and ‘stem cells AND (cornea OR corneal) AND (endothelial OR endothelium)'. PMID:23470788

  15. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  16. Dietary L-arginine supplementation during mouse gestation enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit

    USDA-ARS?s Scientific Manuscript database

    Regarded as one of the most versatile amino acids, arginine serves as a precursor for many molecules and has been reported to improve the reproductive performance of rats and pigs. To this end, we sought to determine if dietary L-arginine alters fetoplacental vascular endothelial growth factor recep...

  17. Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury

    DTIC Science & Technology

    2015-08-01

    improving muscle healing, thereby reducing joint stiffness and increasing mobility of polytrauma patients. 15. SUBJECT TERMS Skeletal muscle repair...mobility of polytrauma patients. 2. KEYWORDS Skeletal muscle repair, low-intensity vibration, monocytes/macrophages, endothelial precursor cells...innovative, non-invasive and simple treatment for improving muscle healing and thereby reducing joint stiffness and increasing mobility of polytrauma

  18. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses

    PubMed Central

    Cansev, Mehmet; Wurtman, Richard J.; Sakamoto, Toshimasa; Ulus, Ismail H.

    2008-01-01

    Although cognitive performance in humans and experimental animals can be improved by administering the omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or behavior do so by affecting synaptic transmission, usually by changing the quantities of particular neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors or signal-transduction molecules. We find that DHA also affects synaptic transmission in mammalian brain: Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of phosphatides and of specific pre- or post-synaptic proteins. They also exhibit increased numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in animals that have also received the other two circulating precursors for phosphatidylcholine – uridine (which gives rise to brain UTP and CTP), and choline (which gives rise to phosphocholine). The actions of DHA are reproduced by eicosapentaenoic acid (EPA), another omega-3 compound, but not by the omega-6 fatty acid arachidonic acid (AA). Administration of circulating phosphatide precursors can also increase neurotransmitter release (acetylcholine; dopamine) and affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss that characterizes Alzheimer's disease or other neurodegenerative diseases, or occurs after stroke or brain injury. PMID:18631994

  19. In vitro Method to Observe E-selectin-mediated Interactions Between Prostate Circulating Tumor Cells Derived From Patients and Human Endothelial Cells

    PubMed Central

    Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.

    2014-01-01

    Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373

  20. Lipid-Polymer Nanoparticles Encapsulating Curcumin for Modulating the Vascular Deposition of Breast Cancer Cells

    PubMed Central

    Palange, Anna L.; Di Mascolo, Daniele; Carallo, Claudio; Gnasso, Agostino; Decuzzi, Paolo

    2014-01-01

    Vascular adhesion and endothelial transmigration are critical steps in the establishment of distant metastasis by circulating tumor cells (CTCs). Also, vascular inflammation plays a pivotal role in steering CTCs out of the blood stream. Here, long circulating lipid-polymer nanoparticles encapsulating curcumin (NANOCurc) are proposed for modulating the vascular deposition of CTCs. Upon treatment with NANOCurc, the adhesion propensity of highly metastatic breast cancer cells (MDA-MB-231) onto TNF-α stimulated endothelial cells (HUVECs) reduces by ~ 70%, in a capillary flow. Remarkably, the CTC vascular deposition already reduces up to ~ 50% by treating solely the inflamed HUVECs. The CTC arrest is mediated by the interaction between ICAM-1 on HUVECs and MUC-1 on cancer cells, and moderate doses of curcumin down-regulate the expression of both molecules. This suggests that NANOCurc could prevent metastasis and limit the progression of the disease by modulating vascular inflammation and impairing the CTC arrest. PMID:24566270

  1. Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms.

    PubMed

    Godoy, Jaime; Mellado, Patricio; Tapia, Jorge; Santín, Julia

    2009-03-01

    Obstructive Sleep Apnea (OSA) is a prevalent disease that has emerged as a new cerebrovascular disease (CVD) risk factor, which is independent of its association to hypertension, age and other known conditions that increase CVD. The mechanisms involved in this relation are most likely induced by the periodic hypoxia/reoxygenation that characteristically occurs in OSA, which results in oxidative stress, endothelial dysfunction and activation of the inflammatory cascade, all of which favor atherogenesis. Numerous markers of these changes have been reported in OSA patients, including increased circulating free radicals, increased lipid peroxidation, decreased antioxidant capacity, elevation of tumor necrosis factor and interleukines, increased levels of proinflammatory nuclear transcription factor kappa B, decreased circulating nitric oxide, elevation of vascular adhesion molecules and vascular endothelial growth factor. In addition, several authors have described that Continuous Positive Airway Pressure, the standard OSA therapy, reverts these abnormalities. Further research is needed in order to better clarify the complex mechanisms that underlie the relation between OSA, atherogenesis and CVD which most likely will have significant clinical impact.

  2. Introduction to the ultrasound targeted microbubble destruction technique.

    PubMed

    Walton, Chad B; Anderson, Cynthia D; Boulay, Rachel; Shohet, Ralph V

    2011-06-12

    In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.

  3. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    PubMed

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Mobilization of Neural Precursors in the Circulating Blood of Patients with Multiple Sclerosis

    DTIC Science & Technology

    2012-07-01

    circulating blood of patients with multiple sclerosis PRINCIPAL INVESTIGATOR: Ernesto R. Bongarzone, Ph.D... multiple sclerosis 5b. GRANT NUMBER W81XWH-09-1-0427 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ernesto R. Bongarzone...NOTES 14. ABSTRACT Relapsing remitting multiple sclerosis (RRMS) is demyelinating disease that affects both men and women and is characterized by

  5. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport.

    PubMed

    Finn, Nnenna A; Eapen, Danny; Manocha, Pankaj; Al Kassem, Hatem; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D

    2013-11-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. Published by Elsevier B.V.

  6. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition.

    PubMed

    Chaturvedi, N; Fuller, J H; Pokras, F; Rottiers, R; Papazoglou, N; Aiello, L P

    2001-04-01

    To determine whether circulating plasma vascular endothelial growth factor (VEGF) is elevated in the presence of diabetic microvascular complications, and whether the impact of angiotensin-converting enzyme (ACE) inhibitors on these complications can be accounted for by changes in circulating VEGF. Samples (299/354 of those with retinal photographs) from the EUCLID placebo-controlled clinical trial of the ACE inhibitor lisinopril in mainly normoalbuminuric non-hypertensive Type 1 diabetic patients were used. Albumin excretion rate (AER) was measured 6 monthly. Geometric mean VEGF levels by baseline retinopathy status, change in retinopathy over 2 years, and by treatment with lisinopril were calculated. No significant correlation was observed between VEGF at baseline and age, diabetes duration, glycaemic control, blood pressure, smoking, fibrinogen and von Willebrand factor. Mean VEGF concentration at baseline was 11.5 (95% confidence interval 6.0--27.9) pg/ml in those without retinopathy, 12.9 (6.0--38.9) pg/ml in those with non-proliferative retinopathy, and 16.1 (8.1--33.5) pg/ml in those with proliferative retinopathy (P = 0.06 for trend). Baseline VEGF was 15.2 pg/ml in those who progressed by at least one level of retinopathy by 2 years compared to 11.8 pg/ml in those who did not (P = 0.3). VEGF levels were not altered by lisinopril treatment. Results were similar for AER. Circulating plasma VEGF concentration is not strongly correlated with risk factor status or microvascular disease in Type 1 diabetes, nor is it affected by ACE inhibition. Changes in circulating VEGF cannot account for the beneficial effect of ACE inhibition on retinopathy.

  7. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice.

    PubMed

    Arumugam, Paritha I; Mullins, Eric S; Shanmukhappa, Shiva Kumar; Monia, Brett P; Loberg, Anastacia; Shaw, Maureen A; Rizvi, Tilat; Wansapura, Janaka; Degen, Jay L; Malik, Punam

    2015-10-08

    Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide "gapmer" to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FII(lox/-) mice (constitutively carrying ∼10% normal FII) and FII(WT) mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies. © 2015 by The American Society of Hematology.

  8. Annual FEV1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study

    PubMed Central

    Takahashi, Toru; Kobayashi, Seiichi; Fujino, Naoya; Suzuki, Takaya; Ota, Chiharu; Tando, Yukiko; Yamada, Mitsuhiro; Yanai, Masaru; Yamaya, Mutsuo; Kurosawa, Shin; Yamauchi, Masanori; Kubo, Hiroshi

    2014-01-01

    Objective Growing evidence suggests that endothelial injury is involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). Circulating endothelial microparticles (EMPs) increase in patients with COPD because of the presence of endothelial injury. We examined the relationship between EMP number and changes in forced expiratory volume in 1 s (FEV1) in patients with COPD. Design Prospective study. Setting One hospital in Japan. Participants A total 48 outpatients with stable COPD coming to the hospital from September 2010 to September 2011. Primary and secondary outcomes measured Blood samples were collected and vascular endothelial (VE)-cadherin EMPs (CD144+ EMPs), E-selectin EMPs (CD62E+ EMPs) and platelet endothelial cell adhesion molecule EMPs (CD31+/CD41− EMPs) were measured using fluorescence-activated cell sorting. Annual FEV1 changes were evaluated using FEV1 data acquired a year before and a year after sample collection. Results The number of E-selectin and VE-cadherin EMPs showed significant negative correlations with annual FEV1 changes (rs=−0.65, p<0.001, rs=−0.43, p=0.003, respectively). Leucocyte counts tended to be correlated with annual FEV1 changes, but this correlation was not significant (rs=−0.28, p=0.057). There were significant differences in annual FEV1 changes between with and without history of frequent exacerbation (p=0.006), and among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages (p=0.009). Multiple linear regression analysis revealed E-selectin EMP to be the only significant parameter associated with annual FEV1 changes, independent of VE-cadherin EMP, GOLD stages, leucocyte counts, and history of frequent exacerbation. Receiver operating characteristic curves showed the optimum E-selectin EMP cut-off level for prediction of rapid FEV1 decline (>66 mL/year) to be 153.0/µL (areas under curve 0.78 (95% CI 0.60 to 0.89); sensitivity, 67%; specificity, 81%). Conclusions The high E-selectin EMP levels in stable patients with COPD are predictive of rapid FEV1 decline. Trial registration number UMIN000005168. PMID:24604485

  9. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football

    PubMed Central

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    American football has unequivocally been linked to elevations in blood pressure and hypertension, especially in linemen. However, the mechanisms of this increase cannot be attributed solely to increased body weight and associated cardiometabolic risk factors (e.g.,dyslipidemia or hyperglycemia). Therefore, understanding the etiology of football-associated hypertension is essential for improving the quality of life in this mostly young population, as well as for lowering the potential for chronic disease in the future. We propose that inflammatogenic damage–associated molecular patterns (DAMPs) released into the circulation from football-induced musculoskeletal trauma activate pattern-recognition receptors of the innate immune system—specifically, high mobility group box 1 protein (HMGB1) and mitochondrial (mt)DNA which activate Toll-like receptor (TLR)4 and -9, respectively. Previously, we observed that circulating levels of these 2 DAMPs are increased in hypertension, and activation of TLR4 and -9 causes endothelial dysfunction and hypertension. Therefore, our novel hypothesis is that musculoskeletal injury from repeated hits in football players, particularly in linemen, leads to elevated circulating HMGB1 and mtDNA to activate TLRs on endothelial cells leading to impaired endothelium-dependent vasodilation, increased vascular tone, and hypertension.—McCarthy, C. G., Webb, R. C. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. PMID:26316270

  10. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  11. Redox Signaling and Persistent Pulmonary Hypertension of the Newborn.

    PubMed

    Sharma, Megha; Afolayan, Adeleye J

    2017-01-01

    Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.

  12. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  13. The Association of Subclinical Hypothyroidism and Pattern of Circulating Endothelial-Derived Microparticles Among Chronic Heart Failure Patients

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Martovitskaya, Yulia V.; Samura, Tatyana A.; Berezina, Tatyana A.

    2015-01-01

    Background: Subclinical hypothyroidism (SH) is diagnosed biochemically by the presence of normal serum free thyroxine concentration, in conjunction with an elevated serum thyroid-stimulating hormone level. Recent studies have demonstrated the frequent association between SH and cardiovascular diseases and risk factors. Objectives: To evaluate the impact of SH on patterns of circulating endothelial-derived microparticles, (EMPs) among chronic heart failure (CHF) patients Patients and Methods: This is a retrospective study involving a cohort of 388 patients with CHF. Fifty-three CHF subjects had SH and 335 patients were free from thyroid dysfunction. Circulating levels of N-terminal-pro brain natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), thyroid-stimulating hormone (TSH), total and free thyroxine (T4), and triiodothyronine (T3), and endothelial apoptotic microparticles (EMPs), were measured at baseline. SH was defined, according to contemporary clinical guidelines, as a biochemical state associated with an elevated serum TSH level of greater 10 μU/L and normal basal free T3 and T4 concentrations. Results: Circulating CD31+/annexin V+ EMPs were higher in patients with SH compared to those without SH. In contrast, activated CD62E+ EMP numbers were not significantly different between both patient cohorts. Using uni (bi) variate and multivariate age- and gender-adjusted regression analysis, we found several predictors that affected the increase of the CD31+/annexin V+ to CD62E+ ratio in the patient study population. The independent impact of TSH per 6.5 μU/L (odds ratio [OR] = 1.23, P = 0.001), SH (OR = 1.22, P = 0.001), NT-proBNP (OR = 1.19, P = 0.001), NYHA class (OR = 1.09, P = 0.001), hs-CRP per 4.50 mg/L (OR = 1.05, P = 0.001), dyslipidemia (OR = 1.06, P = 0.001), serum uric acid per 9.5 mmol/L (OR = 1.04, P = 0.022) on the increase in the CD31+/annexin V+ to CD62E+ ratio, was determined. Conclusions: We believe that the SH state in CHF patients may be associated with the impaired pattern of circulating EMPs, with the predominantly increased number of apoptotic-derived microparticles. PMID:26528453

  14. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    PubMed

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair in coronary artery disease patients must be tested in clinical trials.

  15. Endothelial Microparticles (EMP) for the Assessment of Endothelial Function: An In Vitro and In Vivo Study on Possible Interference of Plasma Lipids

    PubMed Central

    van Ierssel, Sabrina H.; Hoymans, Vicky Y.; Van Craenenbroeck, Emeline M.; Van Tendeloo, Viggo F.; Vrints, Christiaan J.; Jorens, Philippe G.; Conraads, Viviane M.

    2012-01-01

    Background Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. Methods For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b−) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Results Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = −0.707 and −0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = −0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. Conclusion The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP. PMID:22359595

  16. Endothelial microparticles (EMP) for the assessment of endothelial function: an in vitro and in vivo study on possible interference of plasma lipids.

    PubMed

    van Ierssel, Sabrina H; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Van Tendeloo, Viggo F; Vrints, Christiaan J; Jorens, Philippe G; Conraads, Viviane M

    2012-01-01

    Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b-) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = -0.707 and -0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = -0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.

  17. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility.

    PubMed

    Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse

    2017-03-01

    The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.

  18. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect

    PubMed Central

    Greineder, Colin F.; Brenza, Jacob B.; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D.; Pan, Daniel C.; Ding, Bi-Sen; Esmon, Charles T.; Chacko, Ann Marie; Muzykantov, Vladimir R.

    2015-01-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood–tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other’s binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.—Greineder, C. F., Brenza, J. B., Carnemolla, R., Zaitsev, S., Hood, E. D., Pan, D. C., Ding, B.-S., Esmon, C. T., Chacko, A. M., Muzykantov, V. R. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. PMID:25953848

  19. Inhalation of Whole Diesel Exhaust but not Gas-Phase Components Affects In Vitro Platelet Aggregation in Hypertensive Rats

    EPA Science Inventory

    Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...

  20. Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study.

    PubMed

    Oikonomou, Dimitrios; Kopf, Stefan; von Bauer, Rüdiger; Djuric, Zdenka; Cebola, Rita; Sander, Anja; Englert, Stefan; Vittas, Spiros; Hidmark, Asa; Morcos, Michael; Korosoglou, Grigorios; Nawroth, Peter P; Humpert, Per M

    2014-10-11

    Endothelial progenitor cells (EPC) are bone marrow-derived cells which can undergo differentiation into endothelial cells and participate in endothelial repair and angiogenesis. Insulin facilitates this in vitro mediated by the IGF-1 receptor. Clinical trials showed that the number of circulating EPCs is influenced by glucose control and EPC are a predictor of cardiovascular death. To study direct effects of insulin treatment on EPCs in type 2 diabetes patients, add-on basal insulin treatment was compared to an escalation of oral medication aiming at similar glucose control between the groups. 55 patients with type 2 diabetes (61.6±5.9 years) on oral diabetes medication were randomized in a 2:2:1 ratio in 3 groups. Patients were treated additionally with insulin glargine (n=20), NPH insulin (n=22) or escalated with oral medication (n=13). Number of circulating EPC, EPC-outgrowth, intima media thickness, skin microvascular function and HbA1c were documented at baseline and/or after 4 weeks and 4 months. HbA1c at baseline was, 7.3+/-0.7% in the oral group, 7.3+/-0.9% and 7.5+/-0.7% in the glargine and NPH insulin respectively (p=0.713). HbA1c after 4 months decreased to 6.8+/-0.8%, 6.6+/-0.7% and 6.7+/-0.6%, in the oral, glargine and NPH insulin group respectively (p=0.61). FACS analysis showed no difference in number of circulating EPC between the groups after 4 weeks and 4 months. However, the outgrowth of EPCs as detected by colony forming assay was increased in the NPH insulin and glargine groups (29.2+/-6.4 and 29.4+/- 6.7 units respectively) compared to the group on oral medication (23.2+/-6.3, p=0.013) after 4 months of treatment. A significant decrease of IMT from 0.80mm (+/-0.14) at baseline to 0.76mm (+/-0.12) after 4 months could be observed in all patients only (p=0.03) with a trend towards a reduction of IMT after 4 months when all patients on insulin treatment were compared to the oral treatment group (p=0.06). Skin microvascular function revealed no differences between the groups (p=0.74). The study shows that a 4-month treatment with add-on insulin significantly increases the outgrowth of EPC in patients with type 2 diabetes mellitus. (Clinical Trials Identifier: NCT00523393).

  1. Effect of Saxagliptin on Circulating Endothelial Progenitor Cells and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients.

    PubMed

    Li, Fang; Chen, Jiachao; Leng, Fei; Lu, Zhiqiang; Ling, Yan

    2017-06-01

    Endothelial dysfunction is associated with the risk of cardiovascular complications in diabetic patients. Endothelial progenitor cells (EPCs) and flow-mediated dilation (FMD) are common markers of endothelial function. In this study, we aim to investigate whether the DPP-4 inhibitor saxagliptin modulate EPCs number and FMD in newly diagnosed, treatment-naive type 2 diabetic patients. This was a controlled, randomized, open-label clinical trial. Saxagliptin group and metformin group consumed either saxagliptin 5 mg per day or metformin 1 500 mg per day respectively for 12 weeks. Changes of FMD and EPCs number after 12-week intervention were the primary endpoints. 31 patients were initially enrolled and randomized to saxagliptin group (n=16) and metformin group (n=15). 27 patients completed the trial (saxagliptin group n=14 and metformin group n=13), and 4 patients dropped out during the study. FMD and EPCs number increased significantly in both saxagliptin group and metformin group, and there was no significant difference between groups. 2-h postprandial plasma glucose, HbA1c and diastolic blood pressure improved significantly in both groups, and there was no significant difference between groups. Saxagliptin and metformin had comparable beneficial effects on endothelial function. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium.

    PubMed

    Rai, Srijana; Nejadhamzeeigilani, Zaynab; Gutowski, Nicholas J; Whatmore, Jacqueline L

    2015-09-25

    Arrest of metastasising lung cancer cells to the brain microvasculature maybe mediated by interactions between ligands on circulating tumour cells and endothelial E-selectin adhesion molecules; a process likely to be regulated by the endothelial glycocalyx. Using human cerebral microvascular endothelial cells and non-small cell lung cancer (NSCLC) cell lines, we describe how factors secreted by NSCLC cells i.e. cystatin C, cathepsin L, insulin-like growth factor-binding protein 7 (IGFBP7), vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-α), damage the glycocalyx and enhance initial contacts between lung tumour and cerebral endothelial cells. Endothelial cells were treated with tumour secreted-proteins or lung tumour conditioned medium (CM). Surface levels of E-selectin were quantified by ELISA. Adhesion of A549 and SK-MES-1 cells was examined under flow conditions (1 dyne/cm(2)). Alterations in the endothelial glycocalyx were quantified by binding of fluorescein isothiocyanate-linked wheat germ agglutinin (WGA-FITC). A549 and SK-MES-1 CM and secreted-proteins significantly enhanced endothelial surface E-selectin levels after 30 min and 4 h and tumour cell adhesion after 30 min, 4 and 24 h. Both coincided with significant glycocalyx degradation; A549 and SK-MES-1 CM removing 55 ± 12 % and 58 ± 18.7 % of WGA-FITC binding, respectively. Inhibition of E-selectin binding by monoclonal anti-E-selectin antibody completely attenuated tumour cell adhesion. These data suggest that metastasising lung cancer cells facilitate their own adhesion to the brain endothelium by secreting factors that damage the endothelial glycocalyx, resulting in exposure of the previously shielded adhesion molecules and engagement of the E-selectin-mediated adhesion axis.

  3. Maternal Body-Mass Index and Cord Blood Circulating Endothelial Colony-Forming Cells

    PubMed Central

    Lin, Ruei-Zeng; Miranda, Maria L.; Vallejo-Vaz, Antonio J.; Stiefel, Pablo; Praena-Fernández, Juan M.; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M.; Villar, Jose; Melero-Martin, Juan M.

    2013-01-01

    Objective Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in non-pathological pregnancies. Study design We measured the level of ECFCs in the cord blood of neonates (n=27) born from non-obese healthy mothers with non-pathological pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. Results We observed variation in ECFC abundance among subjects and found a positive correlation between pre-pregnancy maternal BMI and ECFC content (r=0.51, P=0.007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m2 and BMI between 25–30 kg/m2, including the ability to form vascular networks in vivo. Conclusions This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathological pregnancies. Endothelial colony-forming cells (ECFCs) are a subset of progenitor cells that circulate in peripheral blood and can give rise to endothelial cells (1,2), contributing to the formation of new vasculature and the maintenance of vascular integrity (3–5). The mechanisms that regulate the abundance of these cells in vivo remain poorly understood. ECFCs are rare in adult peripheral blood (1,2,10). In contrast, there is an elevated number of these cells in fetal blood during the third trimester of pregnancy (11–13). Emerging evidence indicates that deleterious conditions during fetal life can impair ECFC content and function. For instance, offspring of diabetic mothers have been shown to have reduced number of circulating ECFCs and impaired cell functionality (14), which may contribute to the long-term cardiovascular complications. Similar observations have been reported in neonates with bronchopulmonary dysplasia (15,16). The adverse association between maternal weight and the outcome of pregnancy is well known (17,18). Epidemiologic studies have shown that cardiovascular disease may have origins during fetal development (19). Excessive maternal pre-pregnancy weight and gestational weight gain are associated with adverse cardiovascular risk factors in the offspring (20). The fetal adaptations that occur in response to changes in maternal weight during pregnancy and whether these adaptations affect the level of ECFCs is completely unknown. In this study we quantified the baseline variation in ECFC abundance and function among neonates born from non-obese healthy mothers with non-pathological pregnancies and examined whether this normal variation was associated with differences in maternal weight. PMID:24315508

  4. Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.

    1991-08-01

    The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.

  5. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

    PubMed Central

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2017-01-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  6. Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system.

    PubMed

    Hossen, Md Nazir; Kajimoto, Kazuaki; Akita, Hidetaka; Hyodo, Mamoru; Ishitsuka, Taichi; Harashima, Hideyoshi

    2013-03-01

    Because the functional apoptosis-initiating protein, cytochrome C (CytC) is rapidly cleared from the circulation (t1/2 (half-life): 4 minutes), it cannot be used for in vivo therapy. We report herein on a hitherto unreported strategy for delivering exogenous CytC as a potential and safe antiobesity drug for preventing diet-induced obesity, the most common type of obesity in humans. The functional activity of CytC encapsulated in prohibitin (a white fat vessel-specific receptor)-targeted nanoparticles (PTNP) was evaluated quantitatively, as evidenced by the observations that CytC-loaded PTNP causes apoptosis in primary adipose endothelial cells in a dose-dependent manner, whereas CytC alone did not. The delivery of a single dose of CytC through PTNP into the circulation disrupted the vascular structure by the targeted apoptosis of adipose endothelial cells in vivo. Intravenous treatment of CytC-loaded PTNP resulted in a substantial reduction in obesity in high-fat diet (HFD) fed wild-type (wt) mice, as evidenced by the dose-dependent prevention of the percentage of increase in body weight and decrease in serum leptin levels. In addition, no detectable hepatotoxicity was found to be associated with this prevention. Thus, the finding highlights the promising potential of CytC for use as an antiobesity drug, when delivered through a nanosystem.

  7. DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA

    PubMed Central

    Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.

    2014-01-01

    Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434

  8. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    PubMed

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  9. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Marques, Patrice; Collado, Aida; Escudero, Paula; Rius, Cristina; González, Cruz; Servera, Emilio; Piqueras, Laura; Sanz, Maria-Jesus

    2017-01-01

    Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet–leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients (n = 35) presented greater numbers of activated circulating platelets (PAC-1+ and P-selectin+) expressing CXCL16 and CXCR6 as compared with age-matched controls (n = 17), with a higher number of CXCR6+-platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6+-platelet–leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet–leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte–arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients. PMID:29326688

  10. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease.

    PubMed

    Marques, Patrice; Collado, Aida; Escudero, Paula; Rius, Cristina; González, Cruz; Servera, Emilio; Piqueras, Laura; Sanz, Maria-Jesus

    2017-01-01

    Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet-leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients ( n  = 35) presented greater numbers of activated circulating platelets (PAC-1 + and P-selectin + ) expressing CXCL16 and CXCR6 as compared with age-matched controls ( n  = 17), with a higher number of CXCR6 + -platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6 + -platelet-leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet-leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte-arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients.

  11. Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability

    PubMed Central

    Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.

    2015-01-01

    Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088

  12. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults.

    PubMed

    Landers-Ramos, Rian Q; Corrigan, Kelsey J; Guth, Lisa M; Altom, Christine N; Spangenburg, Espen E; Prior, Steven J; Hagberg, James M

    2016-08-01

    Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.

  13. Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan

    PubMed Central

    Cuppini, Lucia; Calleri, Angelica; Bruzzone, Maria Grazia; Prodi, Elena; Anghileri, Elena; Pellegatta, Serena; Mancuso, Patrizia; Porrati, Paola; Di Stefano, Anna Luisa; Ceroni, Mauro; Bertolini, Francesco; Finocchiaro, Gaetano; Eoli, Marica

    2013-01-01

    Background Recent data suggest that circulating endothelial and progenitor cells (CECs and CEPs, respectively) may have predictive potential in cancer patients treated with bevacizumab, the antibody recognizing vascular endothelial growth factor (VEGF). Here we report on CECs and CEPs investigated in 68 patients affected by recurrent glioblastoma (rGBM) treated with bevacizumab and irinotecan and two Independent Datasets of rGBM patients respectively treated with bevacizumab alone (n=32, independent dataset A: IDA) and classical antiblastic chemotherapy (n=14, independent dataset B: IDB). Methods rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. CECs expressing CD109, a marker of tumor endothelial cells, as well as other CEC and CEP subtypes, were investigated by six-color flow cytometry. Results A baseline count of CD109+ CEC higher than 41.1/ml (1st quartile) was associated with increased progression free survival (PFS; 20 versus 9 weeks, P=0.008) and overall survival (OS; 32 versus 23 weeks, P=0.03). Longer PFS (25 versus 8 weeks, P=0.02) and OS (27 versus 17 weeks, P=0.03) were also confirmed in IDA with CD109+ CECs higher than 41.1/ml but not in IDB. Patients treated with bevacizumab with or without irinotecan that were free from MRI progression after two months of treatment had significant decrease of CD109+ CECs: median PFS was 19 weeks; median OS 29 weeks. The presence of two non-contiguous lesions (distant disease) at baseline was an independent predictor of shorter PFS and OS (P<0.001). Conclusions Data encourage further studies on the predictive potential of CD109+ CECs in GBM patients treated with bevacizumab. PMID:24069296

  14. Vasculogenesis and Diabetic Erectile Dysfunction: How Relevant Is Glycemic Control?

    PubMed

    Castela, Angela; Gomes, Pedro; Silvestre, Ricardo; Guardão, Luísa; Leite, Liliana; Chilro, Rui; Rodrigues, Ilda; Vendeira, Pedro; Virag, Ronald; Costa, Carla

    2017-01-01

    Erectile dysfunction (ED) is a complication of diabetes, condition responsible for causing endothelial dysfunction (EDys) and hampering repair mechanisms. However, scarce information is available linking vasculogenesis mediated by Endothelial Progenitor Cells (EPCs) and diabetes-associated ED. Furthermore, it remains to be elucidated if glycemic control plays a role on EPCs functions, EPCs modulators, and penile vascular health. We evaluated the effects of diabetes and insulin therapy on bone marrow (BM) and circulating EPCs, testosterone, and systemic/penile Stromal Derived Factor-1 alpha (SDF-1α) expression. Male Wistar rats were divided into groups: age-matched controls, 8-weeks streptozotocin-induced type 1 diabetics, and insulin-treated 8-weeks diabetics. EPCs were identified by flow cytometry for CD34/CD133/VEGFR2/CXCR4 antigens. Systemic SDF-1α and testosterone levels were evaluated by ELISA. Penile SDF-1α protein expression was assessed, in experimental and human diabetic cavernosal samples, by immunohistochemical techniques. Diabetic animals presented a reduction of BM-derived EPCs and an increase in putative circulating endothelial cells (CECs) sloughed from vessels wall. These alterations were rescued by insulin therapy. In addition, glycemic control promoted an increase in systemic testosterone and SDF-1α levels, which were significantly decreased in animals with diabetes. SDF-1α protein expression was reduced in experimental and human cavernosal diabetic samples, an effect prevented by insulin in treated animals. Insulin administration rescued the effects of diabetes on BM function, CECs levels, testosterone, and plasmatic/penile SDF-1α protein expression. This emphasizes the importance of glycemic control in the prevention of diabetes-induced systemic and penile EDys, by the amelioration of endothelial damage, and increase in protective pathways. J. Cell. Biochem. 118: 82-91, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans.

    PubMed

    Williamson, Kate A; Hamilton, Andrew; Reynolds, John A; Sipos, Peter; Crocker, Ian; Stringer, Sally E; Alexander, Yvonne M

    2013-02-01

    Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  16. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  17. Isolation of a circulating CD45−, CD34dim cell population and validation of their endothelial phenotype

    PubMed Central

    Tropea, Margaret M.; Harper, Bonnie J. A.; Graninger, Grace M.; Phillips, Terry M.; Ferreyra, Gabriela; Mostowski, Howard S.; Danner, Robert L.; Suffredini, Anthony F.; Solomon, Michael A.

    2016-01-01

    Summary Accurately detecting circulating endothelial cells (CECs) is important since their enumeration has been proposed as a biomarker to measure injury to the vascular endothelium. However, there is no single methodology for determining CECs in blood, making comparison across studies difficult. Many methods for detecting CECs rely on characteristic cell surface markers and cell viability indicators, but lack secondary validation. Here, a CEC population in healthy adult human subjects was identified by flow cytometry as CD45−, CD34dim that is comparable to a previously described CD45−, CD31bright population. In addition, nuclear staining with 7-aminoactinomycin D (7-AAD) was employed as a standard technique to exclude dead cells. Unexpectedly, the CD45−, CD34dim, 7-AAD− CECs lacked surface detectable CD146, a commonly used marker of CECs. Furthermore, light microscopy revealed this cell population to be composed primarily of large cells without a clearly defined nucleus. Nevertheless, immunostains still demonstrated the presence of the lectin Ulex europaeus and van Willebrand factor. Ultramicro analytical immunochemistry assays for the endothelial cell proteins CD31, CD34, CD62E, CD105, CD141, CD144 and vWF indicated these cells possess an endothelial phenotype. However, only a small amount of RNA, which was mostly degraded, could be isolated from these cells. Thus the majority of CECs in healthy individuals as defined by CD45−, CD34dim, and 7-AAD− have shed their CD146 surface marker and are senescent cells without an identifiable nucleus and lacking RNA of sufficient quantity and quality for transcriptomal analysis. This study highlights the importance of secondary validation of CEC identification. PMID:25057108

  18. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  19. Endothelial safety of radiological contrast media: why being concerned.

    PubMed

    Scoditti, Egeria; Massaro, Marika; Montinari, Maria Rosa

    2013-01-01

    Iodinated radiocontrast media have been the most widely used pharmaceuticals for intravascular administration in diagnostic and interventional angiographic procedures. Although they are regarded as relatively safe drugs and vascular biocompatibility of contrast media has been progressively improved, severe adverse reactions may occur, among which acute nephropathy is one of the most clinically significant complications after intravascular administration of contrast media and a powerful predictor of poor early and long-term outcomes. Since radiocontrast media are given through the arterial or the venous circulation in vascular procedures, morphological and functional changes of the microvascular and macrovascular endothelial cells substantially contribute to the pathogenesis of organ-specific and systemic adverse reactions of contrast media. Endothelial toxicity of contrast media seems to be the result of both direct proapoptotic effects and morphological derangements, as well as endothelial dysfunction and induction of inflammation, oxidative stress, thrombosis, and altered vasomotor balance, with predominant vasoconstrictive response in atherosclerotic coronary arteries and kidney microcirculation. Further understanding of pathogenetic mechanisms underlying contrast media-induced adverse reactions in cellular targets, including endothelial cells, will hopefully lead to the development of novel preventive strategies appropriately curbing the pathogenesis of contrast media vasotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis

    PubMed Central

    Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.

    2013-01-01

    Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330

  1. Peroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients

    PubMed Central

    Cassuto, James; Dou, Huijuan; Czikora, Istvan; Szabo, Andras; Patel, Vijay S.; Kamath, Vinayak; Belin de Chantemele, Eric; Feher, Attila; Romero, Maritza J.; Bagi, Zsolt

    2014-01-01

    Peroxynitrite (ONOO−) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO− interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO− scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO− reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO−-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose–exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO− reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO− selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients. PMID:24353182

  2. tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis

    PubMed Central

    Day, Yuan-Ji

    2016-01-01

    We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9−/−) BMC (group 2), MMP-9−/− receiving MMP-9−/− BMC (group 3), and MMP-9−/− receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138

  3. Endocan is a predictor of increased cardiovascular risk in women with polycystic ovary syndrome.

    PubMed

    Bicer, Merve; Guler, Aslı; Unal Kocabas, Gokcen; Imamoglu, Cetin; Baloglu, Ali; Bilgir, Oktay; Yuksel, Arif; Bozkaya, Giray; Calan, Mehmet

    2017-05-01

    Endocan is a proteoglycan secreted mainly from endothelial cells. It has been implicated that there is a link between endocan and endothelial dysfunction. Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disease associated with increased risk of cardiovascular events. The aims of this study were to ascertain whether circulating endocan levels are altered in women with PCOS, and whether there is an association between endocan and carotid intima media thickness (cIMT). This cross-sectional study included 80 women with PCOS and 80 age- and BMI-matched controls without PCOS. Circulating endocan levels were measured using ELISA. Metabolic, hormonal parameters and cIMT were determined. 2-h oral glucose tolerance test (2-h OGTT) was performed on all women. Circulating endocan levels were significantly elevated in women with PCOS compared with controls (5.99 ± 2.37 vs. 3.66 ± 1.79 ng/ml, P < 0.001). Endocan levels positively correlated with BMI, homeostasis model assessment of insulin resistance (HOMA-IR), free androgen index (FAI), high-sensitivity C-reactive protein (hs-CRP), and cIMT in both PCOS and control groups. Endocan levels did not correlate with fasting blood glucose, 2-h OGTT, A1 C and lipid parameters. Multiple linear regression analysis revealed that endocan is an independent predictor for cIMT (β = 0.128, 95% CI = 0.118-0.138, P = 0.011). Circulating endocan levels are significantly higher in women with PCOS and endocan is independently associated with cIMT. Elevated endocan levels can be a predictor of increased cardiovascular risk in PCOS subjects.

  4. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure.

    PubMed

    He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di

    2013-10-17

    Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    PubMed

    Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  6. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10

    PubMed Central

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica

    2013-01-01

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients. PMID:23686854

  7. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  8. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    PubMed

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial biogenesis. Copyright © 2015 the American Physiological Society.

  9. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis

    PubMed Central

    Kaur, Savneet; Sehgal, Rashi; Shastry, Saggere M.; McCaughan, Geoffrey; McGuire, Helen M.; Fazekas St de Groth, Barbara; Sarin, Shiv; Trehanpati, Nirupma; Seth, Devanshi

    2018-01-01

    Background and Aim: Endothelial progenitor cells (EPCs) have been implicated in liver injury and repair. However, the phenotype and potential of these heterogenous EPCs remain elusive. In particular, their involvement in the pathogenesis of alcoholic liver cirrhosis (ALC) remains unclear. The current study extensively characterized the phenotype and functions of EPCs to understand their role in ALC pathogenesis. Methods: Circulating EPCs were identified as CD34+CD133+CD31+ cells by flow cytometer in ALC patients (n = 7) and healthy controls (HC, n = 7). A comprehensive characterization of circulating EPCs using more than 30 phenotype markers was performed by mass cytometer time of flight (CyTOF) in an independent cohort of age and gender matched ALC patients (n = 4) and controls (n = 5). Ex vivo cultures of circulating EPCs from ALC patients (n = 20) and controls (n = 18) were also tested for their functions, including colony formation, LDL uptake, lectin binding and cytokine secretion (ELISA). Results: Three distinct populations of circulating EPCs (CD34+CD133+CD31+) were identified, classified on their CD45 expression (negative: CD45−; intermediate: CD45int; high: CD45hi). CD45int and CD45hi EPCs significantly increased in ALC patients compared to controls (p-val = 0.006). CyTOF data showed that CD45hi EPCs were distinct from CD45− and CD45int EPCs, with higher expression of T cell and myeloid markers, including CD3, CD4, HLA-DR, and chemokine receptors, CCR2, CCR5, CCR7, and CX3CR1. Similar to circulating EPCs, percentage of CD45hiCD34+CD31+ EPCs in ex-vivo cultures from patients, were significantly higher compared to controls (p < 0.05). Cultured EPCs from patients also showed increased LDL uptake, lectin binding and release of TNF-alpha, RANTES, FGF-2, and VEGF. Conclusions: We report the first extensive characterization of circulating human EPCs with distinct EPC subtypes. Increase in CD45hi EPC subtype in ALC patients with enhanced functions, inflammatory cytokines and angiogenic mediators in patients suggests an inflammatory role for these cells in ALC. PMID:29872403

  10. The metabolism of N-acetylcysteine by human endothelial cells.

    PubMed

    Cotgreave, I; Moldéus, P; Schuppe, I

    1991-06-21

    When human umbilical endothelial cells were depleted of their glutathione by incubation in a sulfur amino acid-free medium, subsequent incubation of the cells with this deficient medium supplemented with N-acetylcysteine resulted in a dose-dependent stimulation of the synthesis of cellular glutathione. Similarly, the inclusion of N-acetylcysteine in the medium during the period of depletion of glutathione caused a dose-dependent retardation of the depletion kinetics. In contrast, the incubation of control cells in normal medium supplemented with N-acetylcysteine did not increase cellular glutathione levels above controls. These observations indicate the presence of an N-deacetylase in/on the cells with specificity for N-acetylcysteine. Due to the large surface area of the endothelium in the vasculature it seems likely that endothelial cell N-deacetylation plays a role in the metabolic disposition of N-acetylcysteine, particularly when administered intravenously. N-Acetylcysteine is, however, a relatively poor precursor to glutathione biosynthesis in comparison to cystine. Thus, any cytoprotective, antioxidant effect exerted by N-acetylcysteine on the human endothelium is likely to be due to direct scavenging of reactive intermediates rather than by stimulated glutathione synthesis in the endothelial cells themselves.

  11. Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    PubMed

    Hu, Yongfei; Huang, Yan; Yi, Ying; Wang, Hongwei; Liu, Bing; Yu, Jia; Wang, Dong

    2017-04-03

    Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial cells, PTPRC/CD45 - and PTPRC/CD45 + pre-HSCs in the E11 aorta-gonad-mesonephros (AGM) region, mature HSCs in E12 and E14 fetal liver), we explored the dynamic expression of mouse autophagy-related genes in this course at the single-cell level. Our results revealed that the transcription activity of autophagy-related genes had a substantial increase when endothelial cells (ECs) specified into pre-HSCs, and the upregulation of autophagy-essential genes correlated with reduced NOTCH signaling in pre-HSCs, suggesting the autophagy activity may be greatly enhanced during pre-HSC specification from endothelial precursors. In summary, our results presented strong evidence that autophagy plays a critical role in HSC emergence during mouse midgestation.

  12. Magnetizable stent-grafts enable endothelial cell capture

    NASA Astrophysics Data System (ADS)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  13. Endothelial remodelling and intracellular calcium machinery.

    PubMed

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  14. Magnetizable stent-grafts enable endothelial cell capture.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  15. The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.

    PubMed

    Hattermann, Kirsten; Ludwig, Andreas; Gieselmann, Volkmar; Held-Feindt, Janka; Mentlein, Rolf

    2008-09-01

    Chemokines are implicated in developmental and inflammatory processes in the brain. The transmembrane chemokine CXCL16 is produced in brain endothelial and reactive astroglial cells and released by shedding. Its receptor CXCR6 is detected during brain development highest at postnatal day 6, found in glial precursor cells differentiated from neural stem cells and in an A2B5-positive glial precursor cell line. Their stimulation by soluble CXCL16 induces the PI3-kinase/Akt and Erk pathways resulting in the activation of the transcription factor AP-1. As biological responses, soluble CXCL16 upregulates its own receptor, increases cell proliferation, stimulates cell migration in wound-healing and in spheroid confrontation assays. Invasion of CXCR6-positive glial cells into CXCL16-expressing spheroids can be blocked by sheddase inhibitors and CXCL16-antibody. Since CXCL16 is induced by cytokines at sites of inflammation, neurodegeneration, ischemia and malignant transformation, it should attract CXCR6-positive glial precursor cells, enhance their invasion and proliferation and thus favor astrogliosis.

  16. Heterogeneity of Clonal Expansion and Maturation-Linked Mutation Acquisition in Hematopoietic Progenitors in Human Acute Myeloid Leukemia

    PubMed Central

    Walter, Roland B.; Laszlo, George S.; Lionberger, Jack M.; Pollard, Jessica A.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Othus, Megan; Rafii, Shahin; Meshinchi, Soheil; Appelbaum, Frederick R.; Bernstein, Irwin D.

    2014-01-01

    Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML) but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition, and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33− cells revealed polyclonal growth in highly curable AMLs, suggesting mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33− cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications. PMID:24721792

  17. Web-ware bioinformatical analysis and structure modelling of N-terminus of human multisynthetase complex auxiliary component protein p43.

    PubMed

    Deineko, Viktor

    2006-01-01

    Human multisynthetase complex auxiliary component, protein p43 is an endothelial monocyte-activating polypeptide II precursor. In this study, comprehensive sequence analysis of N-terminus has been performed to identify structural domains, motifs, sites of post-translation modification and other functionally important parameters. The spatial structure model of full-chain protein p43 is obtained.

  18. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation.

    PubMed

    Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline

    2016-01-01

    To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.

  19. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction.

    PubMed

    Suzuki, Yuka; Tada-Oikawa, Saeko; Hayashi, Yasuhiko; Izuoka, Kiyora; Kataoka, Misa; Ichikawa, Shunsuke; Wu, Wenting; Zong, Cai; Ichihara, Gaku; Ichihara, Sahoko

    2016-10-13

    The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE -/- ) mice, a model of human atherosclerosis. HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE -/- mice were exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse) once every other week for 10 weeks by pharyngeal aspiration. Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE -/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE -/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE -/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.

  20. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration.

    PubMed

    Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard

    2007-08-01

    Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.

  1. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A.; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N.; Bartke, Andrzej; Ungvari, Zoltan

    2008-01-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress. PMID:18757483

  2. Temporal Patterns of Novel Circulating Biomarkers in IL-2-mediated Vascular Injury in the Rat.

    PubMed

    Keirstead, Natalie D; Bertinetti-Lapatki, Cristina; Knapp, Denise; Albassam, Mudher; Hughes, Valerie; Hong, Feng; Roth, Adrian B; Mikaelian, Igor

    2015-10-01

    Recombinant interleukin-2 (rIL-2) administration in oncology indications is hampered by vascular toxicity, which presents as a vascular leak syndrome. We used this aspect of the toxicity of rIL-2 to evaluate candidate biomarkers of drug-induced vascular injury (DIVI) in rats given 0.36 mg/kg rIL-2 daily. Groups of rats were given either 2 or 5 doses of rIL-2 or 5 doses of rIL-2 followed by a 7-day recovery. The histomorphologic lexicon and grading scheme developed by the Vascular Injury Working Group of the Predictive Safety Testing Consortium of the Critical Path Institute were utilized to enable semiquantitative integration with circulating biomarker levels. The administration of rIL-2 was associated with time-dependent endothelial cell hyperplasia and hypertrophy and perivascular inflammation that correlated with increases in circulating angiopoietin-2, lipocalin-2, monocyte chemotactic protein-1, tissue inhibitor of metalloproteinase-1, vascular endothelial growth factor A, E-selectin, and chemokine (C-X-C motif) ligand-1, and the microRNAs miR-21, miR-132, and miR-155. The dose groups were differentially identified by panels comprising novel candidate biomarkers and traditional hematologic parameters. These results identify biomarkers of the early stages of DIVI prior to the onset of vascular smooth muscle necrosis. © 2015 by The Author(s).

  3. [THE ROLE OF ANGIOGENIC FACTORS IN THE DIAGNOSTICS OF PREGNANCY COMPLICATED WITH PREECLAMPSIA].

    PubMed

    Tagiyeva, I; Aliyeva, S; Bagirova, S; Shamsadinskaya, N; Agaeva, K

    2017-01-01

    The pathophysiology of preeclampsia remains largely unknown. It has been hypothesized that placental ischemia is an early event, leading to placental production of a soluble factor or factors that cause maternal endothelial dysfunction, resulting in the clinical findings of hypertension, proteinuria, and edema. Here, we confirm that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of vascular growth factor (VEGF) and placental growth factor (PIGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt1. Our research demonstrate that increased circulating sFlt1 in III trimester in patients with preeclampsia is associated with decreased circulating levels of free VEGF and PIGF, resulting in endothelial dysfunction, comparing with control group. These observations suggest that excess circulating sFlt1 contributes to the pathogenesis of preeclampsia. 45 pregnant women with preeclampsia of different severity degrees were under observation. Control group included 20 healthy pregnant. Pregnant women with preeclampsia were subdivided into 2 groups. There were 11 (24,4%) pregnant with severe degree of preeclamsia (I group), the II group included 34 pregnant with mild degree of preeclampsia. Increased expression of soluble tyrosine kinase-1 (sFlt-1), together with decreased PIGF and VEGF signaling, were first abnormalities described. Thus, determination of levels angiogenic factors: PIGF, VEGF and sFlt-1 is very important for prediction severity of preeclampsia.

  4. Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients.

    PubMed

    Agouti, Imane; Cointe, Sylvie; Robert, Stéphane; Judicone, Coralie; Loundou, Anderson; Driss, Fathi; Brisson, Alain; Steschenko, Dominique; Rose, Christian; Pondarré, Corinne; Bernit, Emmanuelle; Badens, Catherine; Dignat-George, Françoise; Lacroix, Romaric; Thuret, Isabelle

    2015-11-01

    The level of circulating platelet-, erythrocyte-, leucocyte- and endothelial-derived microparticles detected by high-sensitivity flow cytometry was investigated in 37 β-thalassaemia major patients receiving a regular transfusion regimen. The phospholipid procoagulant potential of the circulating microparticles and the microparticle-dependent tissue factor activity were evaluated. A high level of circulating erythrocyte- and platelet-microparticles was found. In contrast, the number of endothelial microparticles was within the normal range. Platelet microparticles were significantly higher in splenectomized than in non-splenectomized patients, independent of platelet count (P < 0·001). Multivariate analysis indicated that phospholipid-dependent procoagulant activity was influenced by both splenectomy (P = 0·001) and platelet microparticle level (P < 0·001). Erythrocyte microparticles were not related to splenectomy, appear to be devoid of proper procoagulant activity and no relationship between their production and haemolysis, dyserythropoiesis or oxidative stress markers could be established. Intra-microparticle labelling with anti-HbF antibodies showed that they originate only partially (median of 28%) from thalassaemic erythropoiesis. In conclusion, when β-thalassaemia major patients are intensively transfused, the procoagulant activity associated with thalassaemic erythrocyte microparticles is probably diluted by transfusions. In contrast, platelet microparticles, being both more elevated and more procoagulant, especially after splenectomy, may contribute to the residual thrombotic risk reported in splenectomized multi-transfused β-thalassaemia major patients. © 2015 John Wiley & Sons Ltd.

  5. Pathogenesis of preeclampsia.

    PubMed

    Sircar, Monica; Thadhani, Ravi; Karumanchi, S Ananth

    2015-03-01

    Preeclampsia is a gestational kidney disease characterized by glomerular endothelial injury, leading to maternal hypertension and proteinuria. If not addressed promptly, there is significant maternal and fetal morbidity and mortality. When severe, this disorder can cause hepatic and neurologic dysfunction. Understandably, this placental disease enters the focus of the obstetrician first; however, with progression, the nephrologist can also be enlisted. Typical complications include acute kidney injury, refractory hypertension, and acute pulmonary edema. This review summarizes recent literature on the pathogenesis of this condition and will highlight new diagnostic and therapeutic options for preeclampsia. Over the past decade, the role of soluble vascular factors in preeclampsia has shed light on the mechanism underlying this disease. During the last 2 years, several new therapeutics have been developed that target implicated circulating angiogenic factors, including soluble fms-like tyrosine kinase 1, an endogenous vascular endothelial growth factor inhibitor. Serum levels of angiogenic factors have been correlated with a constellation of hemodynamic and pathophysiologic changes. Thus, circulating levels of these factors may serve both diagnostic and prognostic purposes. Overall, our understanding of preeclampsia has developed significantly and the future holds promise for mechanism-based novel diagnostics and therapeutics.

  6. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-09-01

    Increasing evidence support the idea that hyperhomocysteinemia (HHcy) is responsible for pathogenesis underlying cerebral, coronary, renal, and other vascular circulatory disorders and for hypertension. Impaired synthesis of nitric oxide (NO) in the endothelium or increased production of asymmetric dimethylarginine and activated oxygen species are involved in the impairment of vasodilator effects of NO. Impaired circulation in the brain derived from reduced synthesis and actions of NO would be an important triggering factor to dementia and Alzheimer's disease. Reduced actions of NO and brain hypoperfusion trigger increased production of amyloid-β that inhibits endothelial function, thus establishing a vicious cycle for impairing brain circulation. HHcy is involved in the genesis of anginal attack and coronary myocardial infarction. HHcy is also involved in renal circulatory diseases. The homocysteine (Hcy)-induced circulatory failure is promoted by methionine and is prevented by increased folic acid and vitamin B6/B12. Eliminating poor life styles, such as smoking and being sedentary; keeping favorable dietary habits; and early treatment maintaining constitutive NOS functions healthy, reducing oxidative stresses would be beneficial in protecting HHcy-induced circulatory failures.

  7. Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes

    NASA Astrophysics Data System (ADS)

    Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.

    2013-12-01

    The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about precursors of drought in the previous year. The Drought Monitor data indicated that the 2011 drought remains stronger than the 2012 one in the ';exceptional' category. This feature reflects the different scales in the atmospheric teleconnection pattern and the comparison of the two events can help determine the soil moisture (or lack of) impact on 2012's widespread drought that persisted into 2013. Our hypothesis is that even if one cannot predict the future atmospheric circulation patterns with much certainty for a given year, we may still be able to make some assessment of whether or not a drought may be likely to occur. We refer to this as anticipating drought. As precursors such as soil moisture and snowpack become important in potentially enhancing and prolonging the drought as it occurs, the actual drought that does subsequently occur will depend closely in magnitude and duration on the atmospheric circulation that unfolds.

  8. The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences

    PubMed Central

    Cipolla, Marilyn J

    2013-01-01

    The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood–brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin. PMID:23321787

  9. Rac1-Regulated Endothelial Radiation Response Stimulates Extravasation and Metastasis That Can Be Blocked by HMG-CoA Reductase Inhibitors

    PubMed Central

    Hamalukic, Melanie; Huelsenbeck, Johannes; Schad, Arno; Wirtz, Stefan; Kaina, Bernd; Fritz, Gerhard

    2011-01-01

    Radiotherapy (RT) plays a key role in cancer treatment. Although the benefit of ionizing radiation (IR) is well established, some findings raise the possibility that irradiation of the primary tumor not only triggers a killing response but also increases the metastatic potential of surviving tumor cells. Here we addressed the question of whether irradiation of normal cells outside of the primary tumor augments metastasis by stimulating the extravasation of circulating tumor cells. We show that IR exposure of human endothelial cells (EC), tumor cells (TC) or both increases TC-EC adhesion in vitro. IR-stimulated TC-EC adhesion was blocked by the HMG-CoA reductase inhibitor lovastatin. Glycyrrhizic acid from liquorice root, which acts as a Sialyl-Lewis X mimetic drug, and the Rac1 inhibitor NSC23766 also reduced TC-EC adhesion. To examine the in vivo relevance of these findings, tumorigenic cells were injected into the tail vein of immunodeficient mice followed by total body irradiation (TBI). The data obtained show that TBI dramatically enhances tumor cell extravasation and lung metastasis. This pro-metastatic radiation effect was blocked by pre-treating mice with lovastatin, glycyrrhizic acid or NSC23766. TBI of mice prior to tumor cell transplantation also stimulated metastasis, which was again blocked by lovastatin. The data point to a pro-metastatic trans-effect of RT, which likely rests on the endothelial radiation response promoting the extravasation of circulating tumor cells. Administration of the widely used lipid-lowering drug lovastatin prior to irradiation counteracts this process, likely by suppressing Rac1-regulated E-selectin expression following irradiation. The data support the concern that radiation exposure might increase the extravasation of circulating tumor cells and recommend co-administration of lipid-lowering drugs to avoid this adverse effect of ionizing radiation. PMID:22039482

  10. Cholecalciferol, Calcitriol, and Vascular Function in CKD: A Randomized, Double-Blind Trial.

    PubMed

    Kendrick, Jessica; Andrews, Emily; You, Zhiying; Moreau, Kerrie; Nowak, Kristen L; Farmer-Bailey, Heather; Seals, Douglas R; Chonchol, Michel

    2017-09-07

    High circulating vitamin D levels are associated with lower cardiovascular mortality in CKD, possibly by modifying endothelial function. We examined the effect of calcitriol versus cholecalciferol supplementation on vascular endothelial function in patients with CKD. We performed a prospective, double-blind, randomized trial of 128 adult patients with eGFR=15-44 ml/min per 1.73 m 2 and serum 25-hydroxyvitamin D level <30 ng/ml at the University of Colorado. Participants were randomly assigned to oral cholecalciferol (2000 IU daily) or calcitriol (0.5 μ g) daily for 6 months. The primary end point was change in brachial artery flow-mediated dilation. Secondary end points included changes in circulating markers of mineral metabolism and circulating and cellular markers of inflammation. One hundred and fifteen patients completed the study. The mean (SD) age and eGFR of participants were 58±12 years old and 33.0±10.2 ml/min per 1.73 m 2 , respectively. There were no significant differences between groups at baseline. After 6 months, neither calcitriol nor cholecalciferol treatment resulted in a significant improvement in flow-mediated dilation (mean±SD percentage flow-mediated dilation; calcitriol: baseline 4.8±3.1%, end of study 5.1±3.6%; cholecalciferol: baseline 5.2±5.2%, end of study 4.7±3.6%); 25-hydroxyvitamin D levels increased significantly in the cholecalciferol group compared with the calcitriol group (cholecalciferol: 11.0±9.5 ng/ml; calcitriol: -0.8±4.8 ng/ml; P <0.001). Parathyroid hormone levels decreased significantly in the calcitriol group compared with the cholecalciferol group (median [interquartile range]; calcitriol: -22.1 [-48.7-3.5] pg/ml; cholecalciferol: -0.3 [-22.6-16.9] pg/ml; P =0.004). Six months of therapy with calcitriol or cholecalciferol did not improve vascular endothelial function or improve inflammation in patients with CKD. Copyright © 2017 by the American Society of Nephrology.

  11. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    PubMed Central

    Grassi, Davide; Draijer, Richard; Schalkwijk, Casper; Desideri, Giovambattista; D’Angeli, Anatolia; Francavilla, Sandro; Mulder, Theo; Ferri, Claudio

    2016-01-01

    (1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001). Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001). Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest. PMID:27854314

  12. Tissue factor expression by endothelial cells in sickle cell anemia.

    PubMed

    Solovey, A; Gui, L; Key, N S; Hebbel, R P

    1998-05-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.

  13. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor

    PubMed Central

    Smith, Randall J.; Koobatian, Maxwell T.; Shahini, Aref; Swartz, Daniel D.; Andreadis, Stelios T.

    2015-01-01

    We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-L-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm2) to physiological (15 dyne/cm2). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC. PMID:25771020

  14. Impact of vitamin D supplementation on endothelial and inflammatory markers in adults: A systematic review.

    PubMed

    Agbalalah, Tari; Hughes, Stephen F; Freeborn, Ellen J; Mushtaq, Sohail

    2017-10-01

    This systematic review aims to evaluate randomised controlled trials (RCTs) investigating the effect of vitamin D supplementation on endothelial function and inflammation in adults. An electronic search of published randomised controlled trials, using Cochrane, Pubmed and Medline databases was conducted, with the search terms related to vitamin D and endothelial function. Inclusion criteria were RCTs in adult humans with a measure of vitamin D status using serum/plasma 25(OH)D and studies which administered the intervention through the oral route. Among the 1107 studies retrieved, 29 studies met the full inclusion criteria for this systematic review. Overall, 8 studies reported significant improvements in the endothelial/inflammatory biomarkers/parameters measured. However, in 2 out of the 8 studies, improvements were reported at interim time points, but improvements were absent post-intervention. The remaining 21 trial studies did not show significant improvements in the markers of interest measured. Evidence from the studies included in this systematic review did not demonstrate that vitamin D supplementation in adults, results in an improvement in circulating inflammatory and endothelial function biomarkers/parameters. This systematic review does not therefore support the use of vitamin D supplementation as a therapeutic or preventative measure for CVD in this respect. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Endothelial cells and hematopoiesis: a light microscopic study of fetal, normal, and pathologic human bone marrow in plastic-embedded sections.

    PubMed

    Islam, A; Glomski, C; Henderson, E S

    1992-07-01

    The origin and morphological identity of hematopoietic progenitor cells, as well as their precursor, the pleuripotential hematopoietic stem cell (HSC), has not been established. Our studies of 2 microns sectioned undecalcified plastic-embedded bone marrow (BM) from healthy human fetuses; normal adults; patients with acute myeloblastic leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic granulocytic leukemia (CGL) in various stages (chronic, accelerated, acute blastic phase, and after autografting); and patients recovering from therapy-induced marrow hypoplasia suggest that proliferative hematopoietic zones exist near the endosteum (endosteal marrow) and the vascular endothelium (capillary and sinus-lining endothelium) and a maturational zone distal to these regions. In some of these areas, morphologically recognizable hematopoietic cells were seen and interpreted as emerging and maturing in a sequential progression, suggesting an origin from the endosteal or endothelial progenitors. In other loci, early hematopoietic cells were seen in close contact with the endosteal or vascular endothelial (VE) cells. This latter relationship suggested that these areas of cellular contact were important and represented sites of cell to cell interaction that may be associated with the liberation of growth factors by endosteal and endothelial cells and their action on hematopoietic progenitor cells. Following treatment-induced hypoplasia, the endosteal and VE cells were seen to modulate, transform, and migrate into the surrounding empty and edematous marrow space as fibroblasts. Later, as hemopoietic regeneration began, clusters of regenerating hematopoietic cells were seen adjacent to bone trabecule (BT) and near the vascular endothelium. We postulate that endosteal and VE cells are the equivalent of embryonal-stage, undifferentiated mesenchyme and, under the appropriate regulatory influence, are capable of modulation and transformation (differentiation) into stromal (fibroblast-like) cells and precursors of hematopoietic cells in normal (physiologic) and stressed (pathologic) conditions. Recently, human endothelial cells have been shown to express a large number of cell surface antigens in common with hematopoietic (myeloid and lymphoid) cells. It is also possible that, in some situations, the VE cells act to establish a microenvironment and liberate growth factor(s), enabling pleuripotential and progenitor cell differentiation into mature hematopoietic cells adjacent to the vascular endothelium. Indeed, vascular endothelium has been shown to elaborate growth factors that participate in normal hematopoiesis.

  16. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.

  17. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone.

    PubMed

    Harazin, András; Bocsik, Alexandra; Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos; Deli, Maria A; Vecsernyés, Miklós

    2018-01-01

    The blood-brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB.

  18. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone

    PubMed Central

    Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos

    2018-01-01

    The blood–brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB. PMID:29780671

  19. [Coronary disease extension determines mobilization of endothelial progenitor cells and cytokines after a first myocardial infarction with ST elevation].

    PubMed

    Jiménez-Navarro, Manuel F; González, Francisco Jesús; Caballero-Borrego, Juan; Marchal, Juan Antonio; Rodríguez-Losada, Noela; Carrillo, Esmeralda; García-Pinilla, José Manuel; Hernández-García, José M; Pérez-González, Rita; Ramírez, Gemma; Aránega, Antonia; de Teresa Galván, Eduardo

    2011-12-01

    Multivessel coronary disease is still a postinfarction prognostic marker despite new forms of reperfusion, such as primary angioplasty. The aim of this study was to determine the time sequence of various sets of endothelial progenitor cells and angiogenic cytokines (vascular endothelial growth factor, hepatocyte growth factor) according to the degree of extension of the postinfarction coronary disease. We studied the release kinetics in 32 patients admitted for a first myocardial infarction with ST elevation, grouped according to whether they had single or multivessel disease, and 26 controls. The patients had a higher number of endothelial progenitor cells and angiogenic cytokines than the controls at all 3 measurements (admission, day 3, and day 7) of the following subsets: CD34, CD34+CD133+, CD34+KDR+, and CD34+CD133+KDR+CD45+(weak); this latter was higher on day 7. The levels of these cell subsets were all higher in the patients with single-vessel disease and at all 3 measurements. The vascular endothelial growth factor levels were raised during the first week and the hepatocyte growth factor showed an early peak on admission for infarction. No significant differences were seen in the cytokines according to coronary disease extension. Although the release kinetics of different subsets of endothelial progenitor cells in patients with a first acute myocardial infarction with ST elevation was similar in those with single vessel disease to those with multivessel disease, the number of circulating endothelial progenitor cells was greater in the patients with single vessel disease. The vascular endothelial growth factor levels were raised during the first postinfarction week and the hepatocyte growth factor were higher on admission. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  20. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  1. Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after CPAP

    PubMed Central

    Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C.; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    Study objectives This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Design Observational study, before and after CPAP therapy. Setting and Patients We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. Measurements and results After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. Conclusions CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage. PMID:25815511

  2. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue

    PubMed Central

    Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin

    2010-01-01

    Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962

  3. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    PubMed

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  4. Detecting primary precursors of January surface air temperature anomalies in China

    NASA Astrophysics Data System (ADS)

    Tan, Guirong; Ren, Hong-Li; Chen, Haishan; You, Qinglong

    2017-12-01

    This study aims to detect the primary precursors and impact mechanisms for January surface temperature anomaly (JSTA) events in China against the background of global warming, by comparing the causes of two extreme JSTA events occurring in 2008 and 2011 with the common mechanisms inferred from all typical episodes during 1979-2008. The results show that these two extreme events exhibit atmospheric circulation patterns in the mid-high latitudes of Eurasia, with a positive anomaly center over the Ural Mountains and a negative one to the south of Lake Baikal (UMLB), which is a pattern quite similar to that for all the typical events. However, the Eurasian teleconnection patterns in the 2011 event, which are accompanied by a negative phase of the North Atlantic Oscillation, are different to those of the typical events and the 2008 event. We further find that a common anomalous signal appearing in early summer over the tropical Indian Ocean may be responsible for the following late-winter Eurasian teleconnections and the associated JSTA events in China. We show that sea surface temperature anomalies (SSTAs) in the preceding summer over the western Indian Ocean (WIO) are intimately related to the UMLB-like circulation pattern in the following January. Positive WIOSSTAs in early summer tend to induce strong UMLB-like circulation anomalies in January, which may result in anomalously or extremely cold events in China, which can also be successfully reproduced in model experiments. Our results suggest that the WIOSSTAs may be a useful precursor for predicting JSTA events in China.

  5. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation.

    PubMed

    Uryash, Arkady; Wu, Heng; Bassuk, Jorge; Kurlansky, Paul; Sackner, Marvin A; Adams, Jose A

    2009-06-01

    Low-amplitude pulses to the vasculature increase pulsatile shear stress to the endothelium. This activates endothelial nitric oxide (NO) synthase (eNOS) to promote NO release and endothelial-dependent vasodilatation. Descent of the dicrotic notch on the arterial pulse waveform and a-to-b ratio (a/b; where a is the height of the pulse amplitude and b is the height of the dicrotic notch above the end-diastolic level) reflects vasodilator (increased a/b) and vasoconstrictor effects (decreased a/b) due to NO level change. Periodic acceleration (pG(z)) (motion of the supine body head to foot on a platform) provides systemic additional pulsatile shear stress. The purpose of this study was to determine whether or not pG(z) applied to rats produced endothelial-dependent vasodilatation and increased NO production, and whether the latter was regulated by the Akt/phosphatidylinositol 3-kinase (PI3K) pathway. Male rats were anesthetized and instrumented, and pG(z) was applied. Sodium nitroprusside, N(G)-nitro-l-arginine methyl ester (l-NAME), and wortmannin (WM; to block Akt/PI3K pathway) were administered to compare changes in a/b and mean aortic pressure. Descent of the dicrotic notch occurred within 2 s of initiating pG(z). Dose-dependent increase of a/b and decrease of mean aortic pressure took place with SNP. l-NAME produced a dose-dependent rise in mean aortic pressure and decrease of a/b, which was blunted with pG(z). In the presence of WM, pG(z) did not decrease aortic pressure or increase a/b. WM also abolished the pG(z) blunting effect on blood pressure and a/b of l-NAME-treated animals. eNOS expression was increased in aortic tissue after pG(z). This study indicates that addition of low-amplitude pulses to circulation through pG(z) produces endothelial-dependent vasodilatation due to increased NO in rats, which is mediated via activation of eNOS, in part, by the Akt/PI3K pathway.

  6. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study.

    PubMed

    Markus, Hugh S; Hunt, Beverley; Palmer, Kiran; Enzinger, Christian; Schmidt, Helena; Schmidt, Reinhold

    2005-07-01

    The pathogenesis of cerebral small vessel disease (SVD) is poorly understood, but endothelial activation and dysfunction may play a causal role. Cross-sectional studies have found increased circulating markers of endothelial activation, but this study design cannot exclude causality from secondary elevations. Confluent white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) appear to represent asymptomatic cerebral SVD. In a prospective study, we determined whether circulating markers of endothelial activation predicted progression of WMH. In the community-based Austrian Stroke Prevention Study, MRI was performed at baseline in 296 subjects and repeated at 3 and 6 years. The following were measured on baseline plasma samples: intercellular adhesion molecule (ICAM), thrombomodulin, tissue factor plasma inhibitor, prothrombin fragments 1 and 2, and D-dimers. ICAM was associated with age- and gender-adjusted WMH lesion progression at both 3 and 6 years, respectively; (odds ratio [OR], 1.007; 95% confidence interval [CI], 1.002 to 1.012; P=0.004; and OR, 1.004; 95% CI, 1.000 to 1.009 per ng/mL; P=0.057). After multivariate analysis controlling for other cardiovascular risk factors and C-reactive protein, 3-year OR was 1.010 (95% CI, 1.004 to 1.017; P=0.001) and 6-year OR was 1.008 (1.002 to 1.014 per ng/mL; P=0.006). Baseline log lesion volume was a strong independent predictor of progression but associations remained after controlling for this (3-year OR, 1.011; 95% CI, 1.002 to 1.020; P=0.013; and 6-year OR, 1.009; 95% CI, 1.000 to 1.017; P=0.039 per ng/mL). There was no association between WMH progression and other markers. ICAM levels are related to progression of WMH on MRI. The prospective study design increases the likelihood that this association is causal and supports a role of endothelial cell activation in disease pathogenesis. In contrast, we found no evidence for coagulation activation being important.

  7. Circulating osteogentic precursor cells in non-hereditary heterotopic ossification.

    PubMed

    Egan, Kevin P; Duque, Gustavo; Keenan, Mary Ann; Pignolo, Robert J

    2018-04-01

    Non-hereditary heterotopic ossification (NHHO) may occur after musculoskeletal trauma, central nervous system (CNS) injury, or surgery. We previously described circulating osteogenic precursor (COP) cells as a bone marrow-derived type 1 collagen + CD45 + subpopulation of mononuclear adherent cells that are able of producing extraskeletal ossification in a murine in vivo implantation assay. In the current study, we performed a tissue analysis of COP cells in NHHO secondary to defined conditions, including traumatic brain injury, spinal cord injury, cerebrovascular accident, trauma without neurologic injury, and joint arthroplasty. All bone specimens revealed the presence of COP cells at 2-14 cells per high power field. COP cells were localized to early fibroproliferative and neovascular lesions of NHHO with evidence for their circulatory status supported by their presence near blood vessels in examined lesions. This study provides the first systematic evaluation of COP cells as a contributory histopathological finding associated with multiple forms of NHHO. These data support that circulating, hematopoietic-derived cells with osteogenic potential can seed inflammatory sites, such as those subject to soft tissue injury, and due to their migratory nature, may likely be involved in seeding sites distant to CNS injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    PubMed

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  9. Fatty acids rather than hormones restore in vitro angiogenesis in human male and female endothelial cells cultured in charcoal-stripped serum

    PubMed Central

    Vanetti, Claudia; Bifari, Francesco; Vicentini, Lucia M.

    2017-01-01

    Charcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hormones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mechanism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown. In addition, whether there is any sexual dimorphism in the CSS-induced EC phenotype remains to be determined. Here, by independently studying human male and female ECs, we found that CSS inhibited both male and female EC growth and in vitro angiogenesis, with a more pronounced effect on male EC sprouting. Reconstitution of CSS with 17-β estradiol, dihydrotestosterone, or the lipophilic thyroid hormone did not restore EC functions in both sexes. On the contrary, supplementation with palmitic acid or the acetyl-CoA precursor acetate significantly rescued the CSS-induced inhibition of growth and sprouting in both male and female ECs. We can conclude that the loss of metabolic precursors (e.g., fatty acids) rather than of hormones is involved in the impairment of in vitro proliferative and angiogenic properties of male and female ECs cultured with CSS. PMID:29232396

  10. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    PubMed Central

    2012-01-01

    Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs) and left ventricular ejection fraction (LVEF). Methods High fat diet (45 Kcal% fat) was given to 8-week-old C57BL/6 J mice (n = 8) for 20 weeks to induce obesity (group 1). Another age-matched group (n = 8) were fed with control diet for 20 weeks as controls (group 2). The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p<0.01). The circulating level of EPCs (C-kit/CD31, Sca-1/KDR, CXCR4/CD34) was significantly lower in group 1 than in group 2 (p<0.03) at 18 h after critical limb ischemia induction. The angiogenesis and migratory ability of bone marrow-derived EPCs was remarkably impaired in group 1 compared to that in group 2 (all p<0.01). The repair ability of aortic endothelium damage by lipopolysaccharide was notably attenuated in group 1 compared with that in group 2 (p<0.01). Collagen deposition (Sirius red staining) and fibrotic area (Masson's Trichrome staining) in LV myocardium were notably increased in group 1 compared with group 2 (p<0.001). LVEF was notably lower, whereas LV end-diastolic and end-systolic dimensions were remarkably higher in group 1 than in group 2 (all p<0.001). Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling. PMID:22747715

  11. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Latshang, Tsogyal D; Lo Cascio, Christian M; Sadler, Ross; Stadelmann, Katrin; Tesler, Noemi; Huber, Reto; Achermann, Peter; Bloch, Konrad E; Kohler, Malcolm

    2014-05-01

    Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.

  12. A plant-based diet, atherogenesis, and coronary artery disease prevention.

    PubMed

    Tuso, Phillip; Stoll, Scott R; Li, William W

    2015-01-01

    A plant-based diet is increasingly becoming recognized as a healthier alternative to a diet laden with meat. Atherosclerosis associated with high dietary intake of meat, fat, and carbohydrates remains the leading cause of mortality in the US. This condition results from progressive damage to the endothelial cells lining the vascular system, including the heart, leading to endothelial dysfunction. In addition to genetic factors associated with endothelial dysfunction, many dietary and other lifestyle factors, such as tobacco use, high meat and fat intake, and oxidative stress, are implicated in atherogenesis. Polyphenols derived from dietary plant intake have protective effects on vascular endothelial cells, possibly as antioxidants that prevent the oxidation of low-density lipoprotein. Recently, metabolites of L-carnitine, such as trimethylamine-N-oxide, that result from ingestion of red meat have been identified as a potential predictive marker of coronary artery disease (CAD). Metabolism of L-carnitine by the intestinal microbiome is associated with atherosclerosis in omnivores but not in vegetarians, supporting CAD benefits of a plant-based diet. Trimethylamine-N-oxide may cause atherosclerosis via macrophage activation. We suggest that a shift toward a plant-based diet may confer protective effects against atherosclerotic CAD by increasing endothelial protective factors in the circulation while reducing factors that are injurious to endothelial cells. The relative ratio of protective factors to injurious endothelial exposure may be a novel approach to assessing an objective dietary benefit from a plant-based diet. This review provides a mechanistic perspective of the evidence for protection by a plant-based diet against atherosclerotic CAD.

  13. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications

    PubMed Central

    Kumar VR, Santhosh; Darisipudi, Murthy N.; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P.; Mulay, Shrikant R.; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D.; Lindenmeyer, Maja T.; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W.; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido

    2016-01-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia–induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68+ intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage–derived circulating PAR2 agonist and mediator of endothelial dysfunction–related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  14. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    DTIC Science & Technology

    2007-02-01

    characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453-463. 14. Rafii S, Lyden D. Therapeutic stem and progenitor cell... Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362-367. 32. Hristov M, Erl W, Weber PC

  15. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.

    PubMed

    Xia, Zhengyuan; Nagareddy, Prabhakara R; Guo, Zhixin; Zhang, Wei; McNeill, John H

    2006-02-01

    Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.

  16. [Outlook for clinical hemorheology].

    PubMed

    Stoltz, J F

    1996-01-01

    Harvey may be considered to be the precursor of modern hemorheology, but it was not until the pioneering work of Loewenhoeck, Poiseuille, Fahraeus and Copley that the essential role of the hemorheological properties of blood and its cellular components was recognized. Before the advent of modern hemorheology in the 70s, studies were mainly focussed on microcirculation and validation of global hemorheological equations applied to blood circulation. Parallel studies on the microrheological properties (erythrocyte deformability and aggregation) explained analytically the non-Newtonian behavior of blood, and the essential contribution of these parameters to the understanding hyperviscosity syndromes. The development of clinical hemorheology in fact started at the international conferences held in Reykjavik (1966) and Heidelberg (1969), and with the initiation of the periodical European Microcirculation (since Nancy in 1960) and Clinical Hemorheology (since Nancy in 1979) Conferences. The current main avenues of research involve flow modelling, studies of cell-cell interaction mechanisms (aggregation and adhesion), in relation to the associated pathophysiological phenomena, such as cellular activation (platelets and leukocytes in particular), gene expression linked to blood flow (e.g. endothelial cells)... Clinically and therapeutically, it is crucial that pathophysiological studies be undertaken on the relationship existing between rheological parameters and objective clinical data (local flow rates, ischemic markers, hemostatic parameters, tissue oxygen, clinical symptoms,...). The main clinical application fields are cardiovascular diseases, thrombosis, diabetes, hypercholesterolemia... Also, studies on new therapeutics or on biomaterials should also be given priority.

  17. A Non-Lethal Traumatic/Hemorrhagic Insult Strongly Modulates the Compartment-Specific PAI-1 Response in the Subsequent Polymicrobial Sepsis

    PubMed Central

    Raeven, Pierre; Salibasic, Alma; Drechsler, Susanne; Weixelbaumer, Katrin Maria; Jafarmadar, Mohammad; van Griensven, Martijn; Bahrami, Soheyl; Osuchowski, Marcin Filip

    2013-01-01

    Introduction Plasminogen activator inhibitor 1 (PAI-1) is a key factor in trauma- and sepsis-induced coagulopathy. We examined how trauma-hemorrhage (TH) modulates PAI-1 responses in subsequent cecal ligation and puncture (CLP)-induced sepsis, and the association of PAI-1 with septic outcomes. Methods Mice underwent TH and CLP 48 h later in three separate experiments. In experiment 1, mice were sacrificed pre- and post-CLP to characterize the trajectory of PAI-1 in plasma (protein) and tissues (mRNA). Post-CLP dynamics in TH-CLP (this study) and CLP-Only mice (prior study) were then compared for modulatory effects of TH. In experiment 2, to relate PAI-1 changes to outcome, mice underwent TH-CLP and were sampled daily and followed for 14 days to compare non-survivors (DEAD) and survivors (SUR). In experiment 3, plasma and tissue PAI-1 expression were compared between mice predicted to die (P-DIE) and to live (P-LIVE). Results In experiment 1, an early post-TH rise of circulating PAI-1 was contrasted by a delayed (post-TH) decrease of PAI-1 mRNA in organs. In the post-CLP phase, profiles of circulating PAI-1 were similar between TH-CLP and CLP-Only mice. Conversely, PAI-1 mRNA declined in the liver and heart of TH-CLP mice versus CLP-Only. In experiment 2, there were no DEAD/SUR differences in circulating PAI-1 prior to CLP. Post-CLP, circulating PAI-1 in DEAD was 2–4-fold higher than in SUR. PAI-1 increase heralded septic deaths up to 48 h prior but DEAD/SUR thrombomodulin (endothelial injury marker) levels were identical. In experiment 3, levels of circulating PAI-1 and its hepatic gene expression were higher in P-DIE versus P-LIVE mice and those increases closely correlated with liver dysfunction. Conclusions Trauma modulated septic PAI-1 responses in a compartment-specific fashion. Only post-CLP increases in circulating PAI-1 predicted septic outcomes. In posttraumatic sepsis, pre-lethal release of PAI-1 was mostly of hepatic origin and was independent of endothelial injury. PMID:23408987

  18. Erythropoietin withdrawal alters interactions between young red blood cells, splenic endothelial cells, and macrophages: an in vitro model of neocytolysis

    NASA Technical Reports Server (NTRS)

    Trial, J.; Rice, L.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.

  19. The use of plasma-activated covalent attachment of early domains of tropoelastin to enhance vascular compatibility of surfaces

    PubMed Central

    Hiob, Matti A.; Wise, Steven G.; Kondyurin, Alexey; Waterhouse, Anna; Bilek, Marcela M.; Ng, Martin K. C.; Weiss, Anthony S.

    2013-01-01

    All current metallic vascular prostheses, including stents, exhibit suboptimal biocompatibility. Improving the re-endothelialization and reducing the thrombogenicity of these devices would substantially improve their clinical efficacy. Tropoelastin (TE), the soluble precursor of elastin, mediates favorable endothelial cell interactions while having low thrombogenicity. Here we show that constructs of TE corresponding to the first 10 (“N10”) and first 18 (“N18”) N-terminal domains of the molecule facilitate endothelial cell attachment and proliferation equivalent to the performance of full-length TE. This N-terminal ability contrasts with the known role of the C-terminus of TE in facilitating cell attachment, particularly of fibroblasts. When immobilized on a plasma-activated coating (“PAC”), N10 and N18 retained their bioactivity and endothelial cell interactive properties, demonstrating attachment and proliferation equivalent to full-length TE. In whole blood assays, both N10 and N18 maintained the low thrombogenicity of PAC. Furthermore, these N-terminal constructs displayed far greater resistance to protease degradation by blood serine proteases kallikrein and thrombin than did full-length TE. When immobilized onto a PAC surface, these shorter constructs form a modified metal interface to establish a platform technology for biologically compatible, implantable cardiovascular devices. PMID:23863453

  20. Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation.

    PubMed

    Orbe, Josune; Rodríguez, José A; Calvayrac, Olivier; Rodríguez-Calvo, Ricardo; Rodríguez, Cristina; Roncal, Carmen; Martínez de Lizarrondo, Sara; Barrenetxe, Jaione; Reverter, Juan C; Martínez-González, José; Páramo, José A

    2009-12-01

    Thrombin is a multifunctional serine protease that promotes vascular proinflammatory responses whose effect on endothelial MMP-10 expression has not previously been evaluated. Thrombin induced endothelial MMP-10 mRNA and protein levels, through a protease-activated receptor-1 (PAR-1)-dependent mechanism, in a dose- and time-dependent manner. This effect was mimicked by a PAR-1 agonist peptide (TRAP-1) and antagonized by an anti-PAR-1 blocking antibody. MMP-10 induction was dependent on extracellular regulated kinase1/2 (ERK1/2) and c-jun N-terminal kinase (JNK) pathways. By serial deletion analysis, site-directed mutagenesis and electrophoretic mobility shift assay an AP-1 site in the proximal region of MMP-10 promoter was found to be critical for thrombin-induced MMP-10 transcriptional activity. Thrombin and TRAP-1 upregulated MMP-10 in murine endothelial cells in culture and in vivo in mouse aorta. This effect of thrombin was not observed in PAR-1-deficient mice. Interestingly, circulating MMP-10 levels (P<0.01) were augmented in patients with endothelial activation associated with high (disseminated intravascular coagulation) and moderate (previous acute myocardial infarction) systemic thrombin generation. Thrombin induces MMP-10 through a PAR-1-dependent mechanism mediated by ERK1/2, JNK, and AP-1 activation. Endothelial MMP-10 upregulation could be regarded as a new proinflammatory effect of thrombin whose pathological consequences in thrombin-related disorders and plaque stability deserve further investigation.

  1. Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability.

    PubMed

    Panchatcharam, Manikandan; Salous, Abdel K; Brandon, Jason; Miriyala, Sumitra; Wheeler, Jessica; Patil, Pooja; Sunkara, Manjula; Morris, Andrew J; Escalante-Alcalde, Diana; Smyth, Susan S

    2014-04-01

    Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk of coronary artery disease in humans. Herein, we investigate the function of endothelial LPP3 to understand its role in the development and human disease. We developed mouse models with selective LPP3 deficiency in endothelial and hematopoietic cells. Tyrosine kinase Tek promoter-mediated inactivation of Ppap2b resulted in embryonic lethality because of vascular defects. LPP3 deficiency in adult mice, achieved using a tamoxifen-inducible Cre transgene under the control of the Tyrosine kinase Tek promoter, enhanced local and systemic inflammatory responses. Endothelial, but not hematopoietic, cell LPP3 deficiency led to significant increases in vascular permeability at baseline and enhanced sensitivity to inflammation-induced vascular leak. Endothelial barrier function was restored by pharmacological or genetic inhibition of either LPA production by the circulating lysophospholipase D autotaxin or of G-protein-coupled receptor-dependent LPA signaling. Our results identify a role for the autotaxin/LPA-signaling nexus as a mediator of endothelial permeability in inflammation and demonstrate that LPP3 limits these effects. These findings have implications for therapeutic targets to maintain vascular barrier function in inflammatory states.

  2. An affordable method to obtain cultured endothelial cells from peripheral blood

    PubMed Central

    Bueno-Betí, Carlos; Novella, Susana; Lázaro-Franco, Macarena; Pérez-Cremades, Daniel; Heras, Magda; Sanchís, Juan; Hermenegildo, Carlos

    2013-01-01

    The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media-2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell-like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above-mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols. PMID:24118735

  3. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging.

    PubMed

    Bolduc, Virginie; Thorin-Trescases, Nathalie; Thorin, Eric

    2013-09-01

    Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.

  4. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  5. Endothelial Cell-Derived Microparticles from Patients with Obstructive Sleep Apnea Hypoxia Syndrome and Coronary Artery Disease Increase Aortic Endothelial Cell Dysfunction.

    PubMed

    Jia, Lixin; Fan, Jingyao; Cui, Wei; Liu, Sa; Li, Na; Lau, Wayne Bond; Ma, Xinliang; Du, Jie; Nie, Shaoping; Wei, Yongxiang

    2017-01-01

    Obstructive sleep apnea hypoxia syndrome (OSAHS) is an independent risk factor for coronary artery disease (CAD). Treatment of OSAHS improves clinical outcome in some CAD patients, but the relationship between OSAHS and CAD is complex. Microparticles (MPs) are shed by the plasma membrane by either physiologic or pathologic stimulation. In the current study, we investigated the role of MPs in the context of OSAHS. 54 patients with both suspected coronary artery stenosis and OSAHS were recruited and underwent both coronary arteriography and polysomnography. Circulating MPs were isolated and analyzed by flow cytometry. CAD+OSAHS patients exhibited greater levels of total MPs (Annexin V+), erythrocyte-derived MPs (CD235+ Annexin V+), platelet-derived MPs (CD41+ Annexin V+), and leukocyte-derived MPs (CD45+ Annexin V+) compared to CAD alone patients or control. CAD+OSAHS patients expressed the greatest level of endothelial-derived MPs of all cellular origin types (CD144+ Annexin V +). Treatment of human aortic endothelial cells (HAECs) with MPs isolated from CAD+OSAHS patients markedly increased HAEC permeability (as detected by FITC-dextran), and significantly upregulated mRNA levels of ICAM-1, VCAM-1, and MCP-1. OSAHS+CAD patients harbor increased levels of MPs, particularly the endothelial cell-derived subtype. When administered to HAECs, OSAHS+CAD patients MPs increase endothelial cell permeability and dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration.

    PubMed

    Pugia, Michael; Magbanua, Mark Jesus M; Park, John W

    2017-01-01

    The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.

  7. Therapeutic Efficacy of Autologous Non-Mobilized Enriched Circulating Endothelial Progenitors in Patients With Critical Limb Ischemia - The SCELTA Trial.

    PubMed

    Liotta, Francesco; Annunziato, Francesco; Castellani, Sergio; Boddi, Maria; Alterini, Brunetto; Castellini, Giovanni; Mazzanti, Benedetta; Cosmi, Lorenzo; Acquafresca, Manlio; Bartalesi, Filippo; Dilaghi, Beatrice; Dorigo, Walter; Graziani, Gabriele; Bartolozzi, Benedetta; Bellandi, Guido; Carli, Giulia; Bartoloni, Alessandro; Fargion, Aaron; Fassio, Filippo; Fontanari, Paolo; Landini, Giancarlo; Lucente, Eleonora A M; Michelagnoli, Stefano; Orsi Battaglini, Carolina; Panigada, Grazia; Pigozzi, Clara; Querci, Valentina; Santarlasci, Veronica; Parronchi, Paola; Troisi, Nicola; Baggiore, Cristiana; Romagnani, Paola; Mannucci, Edoardo; Saccardi, Riccardo; Pratesi, Carlo; Gensini, Gianfranco; Romagnani, Sergio; Maggi, Enrico

    2018-05-25

    The therapeutic efficacy of bone marrow mononuclear cells (BM-MNC) autotransplantation in critical limb ischemia (CLI) has been reported. Variable proportions of circulating monocytes express low levels of CD34 (CD14 + CD34 low cells) and behave in vitro as endothelial progenitor cells (EPCs). The aim of the present randomized clinical trial was to compare the safety and therapeutic effects of enriched circulating EPCs (ECEPCs) with BM-MNC administration.Methods and Results:ECEPCs (obtained from non-mobilized peripheral blood by immunomagnetic selection of CD14 + and CD34 + cells) or BM-MNC were injected into the gastrocnemius of the affected limb in 23 and 17 patients, respectively. After a mean of 25.2±18.6-month follow-up, both groups showed significant and progressive improvement in muscle perfusion (primary endpoint), rest pain, consumption of analgesics, pain-free walking distance, wound healing, quality of life, ankle-brachial index, toe-brachial index, and transcutaneous PO 2 . In ECEPC-treated patients, there was a positive correlation between injected CD14 + CD34 low cell counts and the increase in muscle perfusion. The safety profile was comparable between the ECEPC and BM-MNC treatment arms. In both groups, the number of deaths and major amputations was lower compared with eligible untreated patients and historical reference patients. This study supports previous trials showing the efficacy of BM-MNC autotransplantation in CLI patients and demonstrates comparable therapeutic efficacy between BM-MNC and EPEPCs.

  8. Systemic and myocardial inflammatory response in coronary artery bypass graft surgery with miniaturized extracorporeal circulation: differences with a standard circuit and off-pump technique in a randomized clinical trial.

    PubMed

    Formica, Francesco; Mariani, Silvia; Broccolo, Francesco; Caruso, Rosa; Corti, Fabrizio; D'Alessandro, Stefano; Amigoni, Pietro; Sangalli, Fabio; Paolini, Giovanni

    2013-01-01

    Inflammatory response and hemodilution are the main drawbacks of extracorporeal circulation. We hypothesize that the use of miniaturized extracorporeal circulation (MECC) might lower the systemic and myocardial inflammatory patterns compared with a standard system (SECC) and off-pump coronary artery bypass grafting (OPCABG). Sixty-one patients undergoing isolated coronary artery bypass graft were prospectively randomized to MECC (n = 19), SECC (n = 20), or OPCABG (n = 22). Blood samples were collected from radial artery and coronary sinus to analyze blood lactate, hemodilution, and markers for inflammation and endothelial activation such as tumor necrosis factor (TNF)-α, interleukin-6, monocyte chemotactic protein-1, and E-selectin. No differences were observed in early clinical outcome. Interleukin -6 levels increased in every group during and after cardiac surgery, whereas TNF-α values grew in the SECC group (p = 0.05). E-selectin systemic values decreased during and after operation (p = 0.001) in every group. Monocyte chemotactic protein-1 systemic and cardiac levels raised only in SECC group (p = 0.014). In conclusion, MECC is comparable to SECC and OPCABG in the clinical outcome of low-risk patients, and it might be extensively used with no additional intraoperative risk. The analysis of the inflammatory patterns of endothelial activation shows MECC as effective as OPCABG, suggesting further studies to clarify MECC recommendation in high-risk patients.

  9. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    PubMed

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  10. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    PubMed

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum factor which increases endothelial cell [Ca2+]i and enhances adhesion molecule expression.

  11. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    PubMed

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the cardiovascular risk factor obesity may have relevant therapeutic implications. © 2017 American Heart Association, Inc.

  12. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development.

    PubMed

    Kazanskaya, Olga; Ohkawara, Bisei; Heroult, Melanie; Wu, Wei; Maltry, Nicole; Augustin, Hellmut G; Niehrs, Christof

    2008-11-01

    The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.

  13. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of atherosclerotic plaques or the disorder Ehler-Danlos syndrome, which is caused by a defect in collagen synthesis and is associated with fragile blood vessels. This review will focus on the role of the subendothelial matrix in haemostasis and thrombosis, highlighting its potential as a target for novel antithrombotics.

  14. Quantification of circulating mature endothelial cells using a whole blood four-color flow cytometric assay.

    PubMed

    Jacques, Nathalie; Vimond, Nadege; Conforti, Rosa; Griscelli, Franck; Lecluse, Yann; Laplanche, Agnes; Malka, David; Vielh, Philippe; Farace, Françoise

    2008-09-15

    Circulating endothelial cells (CEC) are currently proposed as a potential biomarker for measuring the impact of anti-angiogenic treatments in cancer. However, the lack of consensus on the appropriate method of CEC measurement has led to conflicting data in cancer patients. A validated assay adapted for evaluating the clinical utility of CEC in large cohorts of patients undergoing anti-angiogenic treatments is needed. We developed a four-color flow cytometric assay to measure CEC as CD31(+), CD146(+), CD45(-), 7-amino-actinomycin-D (7AAD)(-) events in whole blood. The distinctive features of the assay are: (1) staining of 1 ml whole blood, (2) use of a whole blood IgPE control to measure accurately background noise, (3) accumulation of a large number of events (almost 5 10(6)) to ensure statistical analysis, and (4) use of 10 microm fluorescent microbeads to evaluate the event size. Assay reproducibility was determined in duplicate aliquots of samples drawn from 20 metastatic cancer patients. Assay linearity was tested by spiking whole blood with low numbers of HUVEC. Five-color flow cytometric experiments with CD144 were performed to confirm the endothelial origin of the cells. CEC were measured in 20 healthy individuals and 125 patients with metastatic cancer. Reproducibility was good between duplicate aliquots (r(2)=0.948, mean difference between duplicates of 0.86 CEC/ml). Detected HUVEC correlated with spiked HUVEC (r(2)=0.916, mean recovery of 100.3%). Co-staining of CD31, CD146 and CD144 confirmed the endothelial nature of cells identified as CEC. Median CEC levels were 6.5/ml (range, 0-15) in healthy individuals and 15.0/ml (range, 0-179) in patients with metastatic carcinoma (p<0.001). The assay proposed here allows reproducible and sensitive measurement of CEC by flow cytometry and could help evaluate CEC as biomarkers of anti-angiogenic therapies in large cohorts of patients.

  15. Circulating Tumor Cells from Prostate Cancer Patients Interact with E-Selectin under Physiologic Blood Flow

    PubMed Central

    Gakhar, Gunjan; Navarro, Vicente N.; Jurish, Madelyn; Lee, Guang Yu.; Tagawa, Scott T.; Akhtar, Naveed H.; Seandel, Marco; Geng, Yue; Liu, He; Bander, Neil H.; Giannakakou, Paraskevi; Christos, Paul J.; King, Michael R.; Nanus, David M.

    2013-01-01

    Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm2. CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLex) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLex expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis. PMID:24386459

  16. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin.

    PubMed

    Cao, Ying; Hoeppner, Luke H; Bach, Steven; E, Guangqi; Guo, Yan; Wang, Enfeng; Wu, Jianmin; Cowley, Mark J; Chang, David K; Waddell, Nicola; Grimmond, Sean M; Biankin, Andrew V; Daly, Roger J; Zhang, Xiaohui; Mukhopadhyay, Debabrata

    2013-07-15

    Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional nonkinase receptor for semaphorins, vascular endothelial growth factor (VEGF), and other growth factors, expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular extravasation and metastasis in zebrafish and murine xenograft models of clear cell renal cell carcinoma (RCC) and pancreatic adenocarcinoma. In tissue from patients with RCC, NRP-2 expression is positively correlated with tumor grade and is highest in metastatic tumors. In a prospectively acquired cohort of patients with pancreatic cancer, high NRP-2 expression cosegregated with poor prognosis. Through biochemical approaches as well as Atomic Force Microscopy (AFM), we describe a unique mechanism through which NRP-2 expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular adhesion and extravasation. Taken together, our studies reveal a clinically significant role of NRP-2 in cancer cell extravasation and promotion of metastasis. ©2013 AACR.

  17. Endothelial progenitor cells and rheumatic disease modifying therapy.

    PubMed

    Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino

    2018-05-26

    Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Circulating cell-derived microparticles in women with pregnancy loss.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  19. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  20. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  1. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells.

    PubMed

    Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J

    2017-04-01

    Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less

  4. Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.

    PubMed

    Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li

    2014-01-01

    Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.

  5. Serum Shiga toxin 2 values in patients during the acute phase of diarrhoea-associated hemolytic uremic syndrome

    USDA-ARS?s Scientific Manuscript database

    Aim: Shiga toxins, Stx-1 and Stx-2, by injuring endothelial cells mainly of the glomeruli, are considered as the cause of D+HUS. After passing through the intestinal wall, Stxs have to be delivered via the systemic circulation to the target organs. This study was aimed at measuring free Stx-2 in ser...

  6. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    PubMed

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  7. Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects.

    PubMed

    Rousseau, Alexandra; Ayoubi, Fida; Deveaux, Christel; Charbit, Beny; Delmau, Catherine; Christin-Maitre, Sophie; Jaillon, Patrice; Uzan, Georges; Simon, Tabassome

    2010-02-01

    To assess the level of circulating endothelial progenitor cells (CEPC) in cycling women compared with men and menopausal women. Controlled clinical study. Healthy, nonsmoking volunteers. Twelve women, aged 18-40 years, with regular menstrual cycles, 12 menopausal women, and two groups of 12 age-matched men were recruited. Women did not receive any hormone therapy. Collection of 20 mL of peripheral blood. The number of CEPC, defined as (Lin-/7AAD-/CD34+/CD133+/KDR+) cells per 10(6) mononuclear cells (MNC), was measured by flow cytometry. The number of CEPC was significantly higher in cycling women than in age-matched men and menopausal women (26.5 per 10(6) MNC vs. 10.5 per 10(6) MNC vs. 10 per 10(6) MNC, respectively). The number of CEPC was similar in menopausal women, age-matched, and young men. The number of CEPC is influenced by an age-gender interaction. This phenomenon may explain in part the better vascular repair and relative cardiovascular protection in younger women as compared with age-matched men. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  9. Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

    NASA Astrophysics Data System (ADS)

    Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen

    2017-12-01

    The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.

  10. Circulating endothelial cells and their progenitors in acute myeloid leukemia

    PubMed Central

    Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121

  11. Smoking, COPD and 3-Nitrotyrosine Levels of Plasma Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hongjun; Webb-Robertson, Bobbie-Jo M.; Peterson, Elena S.

    BACKGROUND: Nitric oxide is a physiologically regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of cigarette smoke, although it is not clear if this effect results from decreased nitric oxide production or oxidation of nitric oxide to reactive, nitrating, species. These processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we determine the effects of smoking and chronic obstructivemore » pulmonary disease (COPD) on circulating levels of nitrotyrosine, and thereby gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was used to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. Plasma samples from 458 individuals were analyzed. RESULTS: Nitrotyrosine levels in circulating proteins were uniformly reduced in smokers but increased in COPD patients. We also observed a persistent suppression of nitrotyrosine in former smokers. CONCLUSIONS: Smoking broadly suppresses the levels of 3-nitrotyrosine in plasma proteins, suggesting that cigarette smoke suppresses endothelial nitric oxide production. In contrast, the increase in nitrotyrosine levels in COPD patients most likely results from inflammatory processes. This study provides the first evidence that smoking has irreversible effects on endothelial production of nitric oxide, and provides insight into how smoking could induce a loss of elasticity in the vasculature and a long-term increase in the risk of cardiovascular disease.« less

  12. Circulating cell-derived microparticles in patients with minimally symptomatic obstructive sleep apnoea.

    PubMed

    Ayers, L; Ferry, B; Craig, S; Nicoll, D; Stradling, J R; Kohler, M

    2009-03-01

    Moderate-severe obstructive sleep apnoea (OSA) has been associated with several pro-atherogenic mechanisms and increased cardiovascular risk, but it is not known if minimally symptomatic OSA has similar effects. Circulating cell-derived microparticles have been shown to have pro-inflammatory, pro-coagulant and endothelial function-impairing effects, as well as to predict subclinical atherosclerosis and cardiovascular risk. In 57 patients with minimally symptomatic OSA, and 15 closely matched control subjects without OSA, AnnexinV-positive, platelet-, leukocyte- and endothelial cell-derived microparticles were measured by flow cytometry. In patients with OSA, median (interquartile range) levels of AnnexinV-positive microparticles were significantly elevated compared with control subjects: 2,586 (1,566-3,964) microL(-1) versus 1,206 (474-2,501) microL(-1), respectively. Levels of platelet-derived and leukocyte-derived microparticles were also significantly higher in patients with OSA (2,267 (1,102-3,592) microL(-1) and 20 (14-31) microL(-1), respectively) compared with control subjects (925 (328-2,068) microL(-1) and 15 (5-23) microL(-1), respectively). Endothelial cell-derived microparticle levels were similar in patients with OSA compared with control subjects (13 (8-25) microL(-1) versus 11 (6-17) microL(-1)). In patients with minimally symptomatic obstructive sleep apnoea, levels of AnnexinV-positive, platelet- and leukocyte-derived microparticles are elevated when compared with closely matched control subjects without obstructive sleep apnoea. These findings suggest that these patients may be at increased cardiovascular risk, despite being minimally symptomatic.

  13. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  14. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway1[S

    PubMed Central

    Latham Birt, Sally H.; Purcell, Robert; Botham, Kathleen M.; Wheeler-Jones, Caroline P. D.

    2016-01-01

    Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs—artificial TG-rich CMR-like particles (A-CRLPs)—containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction. PMID:27185859

  15. Mechanotransduction Effects on Endothelial Cell Proliferation via CD31 and VEGFR2: Implications for Immunomagnetic Separation.

    PubMed

    Mahajan, Kalpesh D; Nabar, Gauri M; Xue, Wei; Anghelina, Mirela; Moldovan, Nicanor I; Chalmers, Jeffrey J; Winter, Jessica O

    2017-09-01

    Immunomagnetic separation is used to isolate circulating endothelial cells (ECs) and endothelial progenitor cells (EPCs) for diagnostics and tissue engineering. However, potentially detrimental changes in cell properties have been observed post-separation. Here, the effect of mechanical force, which is naturally applied during immunomagnetic separation, on proliferation of human umbilical vein endothelial cells (HUVEC), kinase insert domain-positive receptor (KDR) cells, and peripheral blood mononuclear cells (PBMCs). Cells are exposed to CD31 or Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) targeted MACSi beads at varying bead to cell ratios and compared to free antibody and unconjugated beads. A vertical magnetic gradient is applied to static 2D cultures, and a magnetic cell sorter is used to analyze cells in dynamic flow. No significant difference in EC proliferation is observed for controls or VEGFR2-targeting beads, whereas CD31-conjugated beads increase proliferation in a dose dependent manner in static 2-D cultures. This effect occurs in the absence of magnetic field, but is more pronounced with magnetic force. After flow sorting, similar increases in proliferation are seen for CD31 targeting beads. Thus, the effects of targeting antibody and magnetic force applied should be considered when designing immunomagnetic separation protocols for ECs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Early Endothelial Bioactivity of Serum after Diesel Exhaust ...

    EPA Pesticide Factsheets

    Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of systemic inflammation and precedes multiple cardiovascular pathologies. The purpose of this study was to examine the plausibility of serum-bound factors as initiators of an air pollution-induced pathologic sequelae beginning with endothelial injury, and later, cardiac dysfunction. We hypothesized that serum taken from diesel exhaust (DE)-exposed rats that develop cardiac dysfunction would alter aortic endothelial cell function in vitro. To assess cardiac function in vivo, left ventricular pressure (LVP) assessments were conducted in rats one day after a single 4 hour whole body exposure to 150 or 500 μg/m3 DE or filtered air. Rat aortic endothelial cells (RAEC) were then exposed to diluted serum (10%) collected 1 hour after exposure from a separate cohort of similarly exposed rats for measures of VCAM-1, cell viability, nitric oxide synthase (NOS) levels, and mRNA expression of key mediators of inflammation. Exposure of rats to 150 or 500 μg/m3 DE increased heart rate (HR) after exposure relative to rats exposed to filtered air, suggesting a shift towards increased sympathetic tone. LVP and HR in DE-exposed rats (500 μg/m3 DE) failed to recover to normal levels after challenge with the

  17. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies.

    PubMed

    Escudero, Carlos A; Herlitz, Kurt; Troncoso, Felipe; Acurio, Jesenia; Aguayo, Claudio; Roberts, James M; Truong, Grace; Duncombe, Gregory; Rice, Gregory; Salomon, Carlos

    2016-01-01

    Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.

  18. MiR-422a as a Potential Cellular MicroRNA Biomarker for Postmenopausal Osteoporosis

    PubMed Central

    Cao, Zheng; Moore, Benjamin T.; Wang, Yang; Peng, Xian-Hao; Lappe, Joan M.; Recker, Robert R.; Xiao, Peng

    2014-01-01

    Background MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. Methodology/Principal Findings We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression. Conclusions/Significance Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis. PMID:24820117

  19. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis.

    PubMed

    Cao, Zheng; Moore, Benjamin T; Wang, Yang; Peng, Xian-Hao; Lappe, Joan M; Recker, Robert R; Xiao, Peng

    2014-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression. Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis.

  20. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.

  2. Vascular endothelial growth factor-D is a key molecule that enhances lymphatic metastasis of soft tissue sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagawa, Takashi, E-mail: tyanagaw@med.gunma-u.ac.jp; Shinozaki, Tetsuya; Watanabe, Hideomi

    2012-04-15

    Studies on lymph node metastasis of soft tissue sarcomas are insufficient because of its rarity. In this study, we examined the expressions of vascular endothelial growth factor (VEGF)-C and VEGF-D in soft tissue sarcomas metastasized to lymph nodes. In addition, the effects of the two molecules on the barrier function of a lymphatic endothelial cell monolayer against sarcoma cells were analyzed. We examined 7 patients who had soft tissue sarcomas with lymph node metastases and who had undergone neither chemotherapy nor radiotherapy before lymphadenectomy. Immunohistochemistry revealed that 2 of 7 sarcomas that metastasized to lymph nodes expressed VEGF-C both inmore » primary and metastatic lesions. On the other hand, VEGF-D expression was detected in 4 of 7 primary and 7 of 7 metastatic lesions, respectively. Interestingly, 3 cases that showed no VEGF-D expression at primary sites expressed VEGF-D in metastatic lesions. Recombinant VEGF-C at 10{sup -8} and VEGF-D at 10{sup -7}and 10{sup -8} g/ml significantly increased the random motility of lymphatic endothelial cells compared with controls. VEGF-D significantly increased the migration of sarcoma cells through lymphatic endothelial monolayers. The fact that VEGF-D induced the migration of fibrosarcomas through the lymphatic endothelial monolayer is the probable reason for the strong relationship between VEGF-D expression and lymph node metastasis in soft tissue sarcomas. The important propensities of this molecule for the increase of lymph node metastases are not only lymphangiogenesis but also down-regulation of the barrier function of lymphatic endothelial monolayers, which facilitates sarcoma cells entering the lymphatic circulation.« less

  3. Associations between endothelial dysfunction and clinical and laboratory parameters in children and adolescents with sickle cell anemia

    PubMed Central

    Ferreira, Tatiane Anunciação; Machado, Vinícius Ramos; Perdiz, Marya Izadora; Lyra, Isa Menezes; Nascimento, Valma Lopes; Boa-Sorte, Ney; Andrade, Bruno B.; Ladeia, Ana Marice

    2017-01-01

    Background Hematological changes can drive damage of endothelial cells, which potentially lead to an early endothelial dysfunction in patients with sickle cell anemia (SCA). An association may exist between endothelial dysfunction and several clinical manifestations of SCA. The present study aims to evaluate the links between changes in endothelial function and clinical and laboratory parameters in children and adolescents with SCA. Methods This study included 40 children and adolescents with stable SCA as well as 25 healthy children; aged 6–18 years. All study subjects were evaluated for endothelial function using Doppler ultrasonography. In addition, a number of laboratory assays were performed, including reticulocyte and leukocyte counts as well as measurement of circulating levels of total bilirubin, C-reactive protein (CRP), glucose, lipoproteins and peripheral oxyhemoglobin saturation. These parameters were also compared between SCA patients who were undertaking hydroxyurea (HU) and those who were not. Results Flow-mediated vasodilation (FMD) values were found to be reduced in SCA patients compared with those detected in healthy controls. SCA individuals with lower FMD values exhibited higher number of hospital admissions due to vaso-occlusive events. Additional analyses revealed that patients who had decreased FMD values exhibited higher odds of acute chest syndrome (ACS) episodes. A preliminary analysis with limited number of individuals failed to demonstrate significant differences in FMD values between SCA individuals who were treated with HU and those who were not. Conclusions Children and adolescents with SCA exhibit impaired endothelial function. Reductions in FMD values are associated with ACS. These findings underline the potential use of FMD as screening strategy of SCA patients with severe prognosis at early stages. PMID:28863145

  4. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Franklin, Bernardo S; Hoelscher, Marion; Schmitz, Theresa; Bedorf, Jörg; Nickenig, Georg; Werner, Nikos

    2013-04-01

    Diabetes is a major risk factor for cardiovascular diseases. Circulating endothelial microparticles (EMP) are increased in diabetic patients, but their potential contribution in atherogenesis is unclear. We sought to determine the role of EMP derived under high glucose conditions in the development of atherosclerosis. EMP were generated from human coronary endothelial cells (HCAEC) exposed to high glucose concentrations in order to mimic diabetic conditions. These EMP were defined as 'injured' EMP (iEMP) and their effects were compared with EMP generated from 'healthy' untreated HCAEC. iEMP injection significantly impaired endothelial function in ApoE(-/-) mice compared with EMP and vehicle treatment. Immunofluorescent experiments showed increased macrophage infiltration and adhesion protein expression in atherosclerotic lesions of iEMP-treated ApoE(-/-) mice compared with controls. To further investigate the underlying mechanism of iEMP-induced vascular inflammation, additional in vitro experiments were performed. iEMP, but not EMP, induced activation of HCAEC in a time- and dose-dependent manner and increased monocyte adhesion. Further experiments demonstrated that iEMP induced activation of HCAEC by phosphorylation of p38 into its biologically active form phospho-p38. Inhibition of p38 activation abrogated iEMP-dependent induction of adhesion proteins and monocyte adhesion on HCAEC. Moreover, we could demonstrate that iEMP show increased NADPH oxidase activity and contain significantly higher level of reactive oxygen species (ROS) than EMP. iEMP triggered ROS production in HCAEC and thereby activate p38 in an ROS-dependent manner. High glucose condition increases NADPH oxidase activity in endothelial microparticles that amplify endothelial inflammation and impair endothelial function by promoting activation of the endothelium. These findings provide new insights into the pathogenesis of diabetes-associated atherosclerosis.

  5. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486

  6. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction.

    PubMed

    Berezin, Alexander E; Kremzer, Alexander A; Martovitskaya, Yulia V; Berezina, Tatyana A; Gromenko, Elena A

    2016-02-01

    Chronic heart failure (HF) remains a leading cause of cardiovascular (CV) mortality and morbidity worldwide. The aim of the study was to investigate whether the pattern of angiogenic endothelial progenitor cells (EPCs) and apoptotic endothelial cell-derived microparticles (EMPs) would be able to differentiate HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction. One hundred sixty four chronic HF subjects met inclusion criteria. Patients with global left ventricular ejection fraction ≥ 50% were categorized as the HFpEF group (n = 79) and those with ≤ 45% as the HFrEF group (n = 85). Therefore, to compare the circulating levels of biological markers 35 control subjects without HF were included in the study. All control individuals were age- and sex-matched chronic HF patients. The serum level of biomarkers was measured at baseline. The flow cytometric technique was used for predictably distinguishing circulating cell subsets depending on expression of CD45, CD34, CD14, Tie-2, and CD309 antigens and determining endothelial cell-derived microparticles. CD31(+)/annexin V(+) was defined as apoptotic endothelial cell-derived MPs, MPs labeled for CD105(+) or CD62E(+) were determined as MPs produced due to activation of endothelial cells. In multivariate logistic regression model T2DM (R(2) = 0.26; P = 0.001), obesity (R(2) = 0.22; P = 0.001), previous MI (R(2) = 0.17; P = 0.012), galectin-3 (R(2) = 0.67; P = 0.012), CD31(+)/annexin V(+) EMPs (R(2) = 0.11; P = 0.001), NT-proBNP (R(2) = 0.11; P = 0.046), CD14(+) CD309(+) cells (R(2) = 0.058; P = 0.001), and CD14(+) СD309(+) Tie-2(+) cells (R(2) = 0.044; P = 0.028) were found as independent predictors of HFpEF. Using multivariate Cox-regression analysis adjusted etiology (previous myocardial infarction), cardiovascular risk factors (obesity, type 2 diabetes mellitus) we found that NT-proBNP (OR 1.08; 95% CI = 1.03-1.12; P = 0.001) and CD31(+)/annexin V(+) EMPs to CD14(+) CD309(+) cell ratio (OR 1.06; 95% CI = 1.02-1.11; P = 0.02) were independent predictors for HFpEF. We found that CD31(+)/annexin V(+) EMPs to CD14(+) CD309(+) cell ratio added to NT-proBNP, clinical data, and cardiovascular risk factors has exhibited the best discriminate value and higher reliability to predict HFpEF compared with NT-proBNP and clinical data/cardiovascular risk factors alone.

  7. Brain mesenchymal stem cells: physiology and pathological implications.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  8. Optical studies of oxidative stress in pulmonary artery endothelial cells

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Sepehr, Reyhaneh; Eis, Annie; Kondouri, Ganesh; Ranji, Mahsa

    2015-03-01

    Reactive oxygen species (ROS) play an essential role in facilitating signal transduction processes within the cell and modulating the injuries. However, the generation of ROS is tightly controlled both spatially and temporally within the cell, making the study of ROS dynamics particularly difficult. This study present a novel protocol to quantify the dynamic of the mitochondrial superoxide as a precursor of reactive oxygen species. To regulate the mitochondrial superoxide level, metabolic perturbation was induced by administration of potassium cyanide (KCN). The presented method was able to monitor and measure the superoxide production rate over time. Our results demonstrated that the metabolic inhibitor, potassium cyanide (KCN) induced a significant increase in the rate of superoxide production in mitochondria of fetal pulmonary artery endothelial cells (FPAEC). Presented method sets the stage to study different ROS mediated injuries in vitro.

  9. Effect of Vandetanib on Andes virus survival in the hamster model of Hantavirus pulmonary syndrome.

    PubMed

    Bird, Brian H; Shrivastava-Ranjan, Punya; Dodd, Kimberly A; Erickson, Bobbie R; Spiropoulou, Christina F

    2016-08-01

    Hantavirus pulmonary syndrome (HPS) is a severe disease caused by hantavirus infection of pulmonary microvascular endothelial cells leading to microvascular leakage, pulmonary edema, pleural effusion and high case fatality. Previously, we demonstrated that Andes virus (ANDV) infection caused up-regulation of vascular endothelial growth factor (VEGF) and concomitant downregulation of the cellular adhesion molecule VE-cadherin leading to increased permeability. Analyses of human HPS-patient sera have further demonstrated increased circulating levels of VEGF. Here we investigate the impact of a small molecule antagonist of the VEGF receptor 2 (VEGFR-2) activation in vitro, and overall impact on survival in the Syrian hamster model of HPS. Copyright © 2016. Published by Elsevier B.V.

  10. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence.

    PubMed

    Jäger, Marianne; Hubert, Astrid; Gogiraju, Rajinikanth; Bochenek, Magdalena L; Münzel, Thomas; Schäfer, Katrin

    2018-02-01

    Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl 3 ) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ER T2 -Cre × PTP1B fl/fl ; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia. Antioxid. Redox Signal. 00, 000-000.

  11. Hypoxic stress, brain vascular system, and β-amyloid: a primary cell culture study.

    PubMed

    Muche, Abebe; Bürger, Susanne; Arendt, Thomas; Schliebs, Reinhard

    2015-01-01

    This study stresses the hypothesis whether hypoxic events contribute to formation and deposition of β-amyloid (Aβ) in cerebral blood vessels by affecting the processing of endothelial amyloid precursor protein (APP). Therefore, cerebral endothelial cells (ECs) derived from transgenic Tg2576 mouse brain, were subjected to short periods of hypoxic stress, followed by assessment of formation and secretion of APP cleavage products sAPPα, sAPPβ, and Aβ as well as the expression of endothelial APP. Hypoxic stress of EC leads to enhanced secretion of sAPPβ into the culture medium as compared to normoxic controls, which is accompanied by increased APP expression, induction of vascular endothelial growth factor (VEGF) synthesis, nitric oxide production, and differential changes in endothelial p42/44 (ERK1/2) expression. The hypoxia-mediated up-regulation of p42/44 at a particular time of incubation was accompanied by a corresponding down-regulation of the phosphorylated form of p42/44. To reveal any role of hypoxia-induced VEGF in endothelial APP processing, ECs were exposed by VEGF. VEGF hardly affected the amount of sAPPβ and Aβ(1-40) secreted into the culture medium, whereas the suppression of the VEGF receptor action by SU-5416 resulted in decreased release of sAPPβ and Aβ(1-40) in comparison to control incubations, suggesting a role of VEGF in controlling the activity of γ-secretase, presumably via the VEGF receptor-associated tyrosine kinase. The data suggest that hypoxic stress represents a mayor risk factor in causing Aβ deposition in the brain vascular system by favoring the amyloidogenic route of endothelial APP processing. The hypoxic-stress-induced changes in β-secretase activity are presumably mediated by altering the phosphorylation status of p42/44, whereas the stress-induced up-regulation of VEGF appears to play a counteracting role by maintaining the balance of physiological APP processing.

  12. Flavonoid metabolites reduce tumor necrosis factor‐α secretion to a greater extent than their precursor compounds in human THP‐1 monocytes

    PubMed Central

    di Gesso, Jessica L.; Kerr, Jason S.; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D.; O'Connell, Maria A.

    2015-01-01

    1 Scope Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti‐inflammatory effects of flavonoid metabolites relative to their precursor structures. 2 Methods and results Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1–10 μM) were screened for their ability to reduce LPS‐induced tumor necrosis factor‐α (TNF‐α) secretion in THP‐1 monocytes. One micromolar peonidin‐3‐glucoside, cyanidin‐3‐glucoside, and the metabolites isovanillic acid (IVA), IVA‐glucuronide, vanillic acid‐glucuronide, protocatechuic acid‐3‐sulfate, and benzoic acid‐sulfate significantly reduced TNF‐α secretion when in isolation, while there was no effect on TNF‐α mRNA expression. Four combinations of metabolites that included 4‐hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF‐α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS‐induced IL‐1β and IL‐10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL‐1β secretion but none of the flavonoids or metabolites significantly modified IL‐10 secretion. 3 Conclusion This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. PMID:25801720

  13. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.

    PubMed

    di Gesso, Jessica L; Kerr, Jason S; Zhang, Qingzhi; Raheem, Saki; Yalamanchili, Sai Krishna; O'Hagan, David; Kay, Colin D; O'Connell, Maria A

    2015-06-01

    Flavonoids are generally studied in vitro, in isolation, and as unmetabolized precursor structures. However, in the habitual diet, multiple flavonoids are consumed together and found present in the circulation as complex mixtures of metabolites. Using a unique study design, we investigated the potential for singular or additive anti-inflammatory effects of flavonoid metabolites relative to their precursor structures. Six flavonoids, 14 flavonoid metabolites, and 29 combinations of flavonoids and their metabolites (0.1-10 μM) were screened for their ability to reduce LPS-induced tumor necrosis factor-α (TNF-α) secretion in THP-1 monocytes. One micromolar peonidin-3-glucoside, cyanidin-3-glucoside, and the metabolites isovanillic acid (IVA), IVA-glucuronide, vanillic acid-glucuronide, protocatechuic acid-3-sulfate, and benzoic acid-sulfate significantly reduced TNF-α secretion when in isolation, while there was no effect on TNF-α mRNA expression. Four combinations of metabolites that included 4-hydroxybenzoic acid (4HBA) and/or protocatechuic acid also significantly reduced TNF-α secretion to a greater extent than the precursors or metabolites alone. The effects on LPS-induced IL-1β and IL-10 secretion and mRNA expression were also examined. 4HBA significantly reduced IL-1β secretion but none of the flavonoids or metabolites significantly modified IL-10 secretion. This study provides novel evidence suggesting flavonoid bioactivity results from cumulative or additive effects of circulating metabolites. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function.

    PubMed

    Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S

    2017-08-15

    The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

  15. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.

    PubMed

    Santos-Parker, Jessica R; Strahler, Talia R; Bassett, Candace J; Bispham, Nina Z; Chonchol, Michel B; Seals, Douglas R

    2017-01-03

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBF ACh ; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBF ACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBF ACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.

  16. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress

    PubMed Central

    Santos-Parker, Jessica R.; Strahler, Talia R.; Bassett, Candace J.; Bispham, Nina Z.; Chonchol, Michel B.; Seals, Douglas R.

    2017-01-01

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBFACh; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBFACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBFACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function. PMID:28070018

  17. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  19. The number and function of circulating CD34+CD133+ progenitor cells decreased in stable coronary artery disease but not in acute myocardial infarction

    PubMed Central

    Kondo, Takahisa; Shintani, Satoshi; Maeda, Kengo; Hayashi, Mutsuharu; Inden, Yasuya; Numaguchi, Yasushi; Sugiura, Kaichiro; Morita, Yasuhiro; Kitamura, Tomoya; Kamiya, Haruo; Sone, Takahito; Ohno, Miyoshi; Murohara, Toyoaki

    2010-01-01

    Objective Circulating CD34+CD133+ cells are one of the main sources of circulating endothelial progenitor cells (EPCs). Age is inversely related to the number and function of CD34+CD133+ progenitor cells in stable coronary artery disease (CAD), but the relationship remains unclear in acute myocardial infarction (AMI). The authors aimed to clarify how ageing affects the number and function of mobilised CD34+CD133+ progenitor cells in AMI. Design and results Circulating CD34+CD133+ progenitor cells were measured by flow cytometry. Measurements were made at admission for CAD, or on day 7 after the onset of AMI. In stable CAD (n=131), circulating CD34+CD133+ cells decreased with age (r=−0.344, p<0.0001). In AMI, circulating CD34+CD133+ cells did not correlate with age (n=50), and multivariate analysis revealed that the decreased number of circulating CD34+CD133+ cells was associated with male sex and higher peak creatinine kinase. The ability to give rise to functional EPCs, which show good migratory and tube-forming capabilities, deteriorated among stable CAD subjects (n=10) compared with AMI subjects (N=6). Conclusions In stable CAD, the number and function of circulating CD34+CD133+ progenitor cells decreased with age, whereas those mobilised and circulating in AMI did not. PMID:27325937

  20. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  1. Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity.

    PubMed

    Palmer, Kirsten R; Kaitu'u-Lino, Tu'uhevaha J; Hastie, Roxanne; Hannan, Natalie J; Ye, Louie; Binder, Natalie; Cannon, Ping; Tuohey, Laura; Johns, Terrance G; Shub, Alexis; Tong, Stephen

    2015-12-01

    In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a-specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a. © 2015 American Heart Association, Inc.

  2. Lineage Analysis in Pulmonary Arterial Hypertension

    DTIC Science & Technology

    2012-06-01

    undergo pneunomectomy followed one week later by intravenous injection of monocrotaline pyrrole . The fate of GFP-expressing cells of endothelial lineage...pneumonectomy followed one week later by jugular vein injection of monocrotaline pyrrole in dimethyl formamide. Expression of smooth muscle alpha actin in...cells. We induced experimental pulmonary hypertension in SM22 Cre x mT/mG mice, by injecting monocrotaline pyrrole into the pulmonary circulation of

  3. Sleep-disordered breathing is associated with depletion of circulating endothelial progenitor cells and elevation in pulmonary arterial pressure in patients with decompensated systolic heart failure.

    PubMed

    Zhang, Han; Feng, Liu; Wan, Qi-Lin; Hong, Yan; Li, Yan-Ming; Cheng, Guan-Chang; Han, Xin-Qiang

    2015-07-01

    Sleep-disordered breathing (SDB) is known to occur frequently in and may predict worsening progression of patients with congestive heart failure (CHF). SDB is also known to play an important role in the development of idiopathic pulmonary arterial hypertension (PAH) via inducing endothelial dysfunction and vascular remodeling, a pathological process that can be significantly influenced by factors such as osteoprotegerin (OPG) and endothelial progenitor cells (EPCs). The objective of this study is to determine if CHF with SDB is associated with changes in OPG, EPCs, and PAH. EPCs were isolated, cultured, and quantified from CHF patients with SDB (n = 52), or without SDB (n = 68). OPG and N-terminal pro-brain natriuretic peptide (NT-proBNP) from each group was analyzed and correlated with EPCs and the mean pulmonary artery pressure (mPAP) measured by right heart catheterization. A significant decrease in circulating EPCs (29.30 ± 9.01 vs. 45.17 ± 10.51 EPCs/× 200 field; P < 0.05) was found in CHF patients with SDB compared to those without SDB. Both OPG (789.83 ± 89.38 vs. 551.29 ± 42.12 pg/mL; P < 0.05) and NT-proBNP (5946.50 ± 1434.50 vs. 3028.60 ± 811.90 ng/mL; P < 0.05) were also significantly elevated in SDB CHF patients who also had significantly elevated mPAP (50.2 ± 9.5 vs. 36.4 ± 4.1 mm Hg; P < 0.05). EPC numbers correlated inversely with the episodes of apnea and hypopnea per hour (RDI, r = -0.45, P = 0.037) and blood level of OPG (r = -0.53, P = 0.011). Although NT-proBNP was also increased significantly in patients with SDB, it had no correlation with either EPCs or RDI. SDB due to hypoxemia from decompensated CHF is associated with (1) OPG elevation, (2) EPC depletion, and (3) mPAP elevation. The inverse relationship of circulating OPG with EPCs suggests a likely mechanism for hypoxemia and OPG in the development of pulmonary vascular dysfunction via depleting EPCs, thus worsening prognosis of CHF.

  4. Circulating Bone Marrow-Derived CD45-/CD34+/CD133+/VEGF+ Endothelial Progenitor Cells in Adults with Crohn's Disease.

    PubMed

    Boltin, Doron; Kamenetsky, Zvi; Perets, Tsachi Tsadok; Snir, Yifat; Sapoznikov, Boris; Schmilovitz-Weiss, Hemda; Ablin, Jacob Nadav; Dickman, Ram; Niv, Yaron

    2017-03-01

    Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells. Altered EPC level and function have been described in various inflammatory diseases and have been shown to augment vasculogenesis in murine models. Previous studies of EPC in the context of Crohn's disease (CD) have yielded conflicting results. To determine whether the circulating levels of EPCs are changed in the context of CD. CD patients and healthy controls were recruited. Disease activity was assessed by CDAI. Peripheral blood mononuclear cells were isolated and EPC numbers evaluated by FACS analysis using anti-CD34, anti-VEGF receptor-2, anti-CD133, and anti-CD45 markers. Eighty-three subjects, including 32 CD patients and 51 controls were recruited, including 19 (59.4 %) and 23 (45 %) males (p = 0.26), aged 34.8 ± 14.9 and 43.3 ± 18.5 years (p = 0.64), in cases and controls, respectively. Mean CDAI was 147 ± 97, disease duration was 12.7 ± 11.1 years, and 28 (87.5 %) were receiving biologics for a mean duration of 21.7 ± 16.8 months. The mean level of peripheral EPCs in CD patients was 0.050 ± 0.086 percent and 0.007 ± 0.013 % in controls (p < 0.01). There was no significant correlation between EPC levels and age (r = -0.13, p = 0.47), CDAI (r = -0.26, p = 0.15), disease duration (r = -0.04, p = 0.84), or duration of treatment with biologics (r = 0.004, p = 0.99). EPCs are elevated in patients with CD. Further studies are needed to examine the function of EPCs and their possible role as a marker of disease severity or therapeutic response.

  5. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus.

    PubMed

    Nie, Zhihong; Xu, Limin; Li, Chuanyuan; Tian, Tao; Xie, Pingping; Chen, Xia; Li, Bojing

    2016-05-01

    The present study aimed to investigate the association between endothelial progenitor cells (EPCs) and peptic ulcers in patients with or without type 2 diabetes mellitus (T2DM), in association with the efficiency of peptic ulcer treatment. The study recruited healthy subjects and peptic ulcer patients with or without T2DM. All the ulcer patients, including those with and without T2DM, were administered omeprazole for 8 weeks. Peptic ulcer patients with T2DM were additionally treated with glipizide and novolin. Blood samples were then obtained from the three groups following ulcer treatment. CD133 + cells were isolated from the blood samples using magnetic bead selection, and cultured in complete medium 199. Morphological and quantity changes in EPCs were observed by light and fluorescence microscopy. In addition, flow cytometric analysis was used to quantify the number of vascular endothelial cells. The treatment was partially effective in 7 of the 32 peptic ulcer patients without T2DM and 12 of the 32 peptic ulcer patients with T2DM. However, this treatment was ineffective in 20 of the 32 peptic ulcer patients with T2DM. Notably, 25 peptic ulcer patients without T2DM were defined as completely recovered following treatment. In addition, the number of circulating EPCs as well as their colony forming ability was significantly reduced (P<0.05) in the peptic ulcer patients with T2DM following ulcer treatment, compared with the other groups. Circulating EPC counts were significantly increased in peptic ulcer patients without T2DM, as compared with the healthy controls. With regards to colony formation, peptic ulcer patients without T2DM did not exhibit improved colony formation ability. In conclusion, the number of circulating EPCs and their colony-forming ability was significantly reduced in peptic ulcer patients with T2DM following ulcer treatment when compared with the other groups. This suggests that the poor curative effect of peptic ulcer treatment in these patients is associated with impairment of EPCs.

  6. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus

    PubMed Central

    NIE, ZHIHONG; XU, LIMIN; LI, CHUANYUAN; TIAN, TAO; XIE, PINGPING; CHEN, XIA; LI, BOJING

    2016-01-01

    The present study aimed to investigate the association between endothelial progenitor cells (EPCs) and peptic ulcers in patients with or without type 2 diabetes mellitus (T2DM), in association with the efficiency of peptic ulcer treatment. The study recruited healthy subjects and peptic ulcer patients with or without T2DM. All the ulcer patients, including those with and without T2DM, were administered omeprazole for 8 weeks. Peptic ulcer patients with T2DM were additionally treated with glipizide and novolin. Blood samples were then obtained from the three groups following ulcer treatment. CD133+ cells were isolated from the blood samples using magnetic bead selection, and cultured in complete medium 199. Morphological and quantity changes in EPCs were observed by light and fluorescence microscopy. In addition, flow cytometric analysis was used to quantify the number of vascular endothelial cells. The treatment was partially effective in 7 of the 32 peptic ulcer patients without T2DM and 12 of the 32 peptic ulcer patients with T2DM. However, this treatment was ineffective in 20 of the 32 peptic ulcer patients with T2DM. Notably, 25 peptic ulcer patients without T2DM were defined as completely recovered following treatment. In addition, the number of circulating EPCs as well as their colony forming ability was significantly reduced (P<0.05) in the peptic ulcer patients with T2DM following ulcer treatment, compared with the other groups. Circulating EPC counts were significantly increased in peptic ulcer patients without T2DM, as compared with the healthy controls. With regards to colony formation, peptic ulcer patients without T2DM did not exhibit improved colony formation ability. In conclusion, the number of circulating EPCs and their colony-forming ability was significantly reduced in peptic ulcer patients with T2DM following ulcer treatment when compared with the other groups. This suggests that the poor curative effect of peptic ulcer treatment in these patients is associated with impairment of EPCs. PMID:27168776

  7. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    PubMed Central

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.

    2015-01-01

    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  8. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Elevated Lipoprotein-Associated Phospholipase A2 Plasma Activity Levels.

    PubMed

    Kheirandish-Gozal, Leila; Philby, Mona F; Qiao, Zhuanghong; Khalyfa, Abdelnaby; Gozal, David

    2017-02-09

    Obstructive sleep apnea (OSA) is a highly prevalent condition, especially in obese children, and has been associated with increased risk for endothelial dysfunction and dislipidemia, which are precursors of atherosclerosis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is recognized as an independent risk factor for cardiovascular risk and atheromatous plaque activity. We hypothesized that Lp-PLA2 levels would be elevated in children with OSA, particularly among obese children who also manifest evidence of endothelial dysfunction. One hundred sixty children (mean age 7.1±2.3 years), either nonobese with (n=40) and without OSA (n=40) or obese with (n=40) and without OSA (n=40) underwent overnight polysomnographic and postocclusive reperfusion evaluation and a fasting blood draw the morning after the sleep study. In addition to lipid profile, Lp-PLA2 plasma activity was assessed using a commercial kit. Obese children and OSA children had significantly elevated plasma Lp-PLA2 activity levels compared to controls. Furthermore, when both obesity and OSA were concurrently present or when endothelial function was present, Lp-PLA2 activity was higher. Treatment of OSA by adenotonsillectomy resulted in reductions of Lp-PLA2 activity (n=37; P <0.001). Lp-PLA2 plasma activity is increased in pediatric OSA and obesity, particularly when endothelial dysfunction is present, and exhibits decreases on OSA treatment. The short-term and long-term significance of these findings in relation to cardiovascular risk remain undefined. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Endothelial Cell Hyperproliferation and Stratification in Uteroplacental Blood Vessels of the Black Mastiff Bat, Molossus rufus

    PubMed Central

    Rasweiler IV, J.J.; Badwaik, N.K.; Salame, G.; Abulafia, O.

    2011-01-01

    Placentation was studied histologically and immunocytochemically in black mastiff bats obtained at frequent intervals throughout pregnancy. These were bred in a captive colony or collected from a reproductively-synchronized wild population. During late pregnancy, the single fetus was largely sustained by a discoidal, hemochorial placenta located at the cranial end of the right uterine horn. This invariant positioning was determined by a vascular tuft that developed there both during early pregnancy and non-pregnant cycles. This provided a scaffold for early placental morphogenesis. As development proceeded, small arterioles and venules serving the tuft were converted to large uteroplacental vessels. Within the base of the placenta, these became lined by an unusual vascular epithelium composed of intermingled patches of multilayered endothelial cells and cytotrophoblast. Initially, the endothelium became multilayered by hypertrophy, proliferation, and infolding of its basal lamina. These created endothelial bilayers usually insinuated between basal laminae. The development of temporary gaps in the laminae then permitted further enlargement of the vessels and proliferation of the endothelial cells as monolayer sheets or chains. The latter were interconnected, forming a complex, stratified, cellular network associated with a prominent meshwork of basal laminae. Throughout much of pregnancy, these endothelial cells were cuboidal to columnar and possessed an abundance of basal glycoprotein granules presumably containing basal lamina precursors. The cells also expressed vimentin and frequently von Willebrand factor, but not cytokeratins or desmin. Pronounced thickening of the endothelia and amplification of their basal laminae likely evolved to greatly strengthen the walls of the uteroplacental vessels. PMID:21764447

  10. Alterations in cholesterol absorption and synthesis characterize Framingham offspring study participants with coronary heart disease

    USDA-ARS?s Scientific Manuscript database

    Data is limited on measures influencing cholesterol homeostasis in subjects at high risk of developing cardiovascular disease (CVD) relative to established risk factors. To address this, we quantified circulating indicators of cholesterol homeostasis (plasma phytosterols and cholesterol precursor co...

  11. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation

    PubMed Central

    Cuff, Antonia O.; Robertson, Francis P.; Stegmann, Kerstin A.; Pallett, Laura J.; Maini, Mala K.; Davidson, Brian R.

    2016-01-01

    Human liver contains an Eomeshi population of NK cells that is not present in the blood. In this study, we show that these cells are characterized by a molecular signature that mediates their retention in the liver. By examining liver transplants where donors and recipients are HLA mismatched, we distinguish between donor liver–derived and recipient-derived leukocytes to show that Eomeslo NK cells circulate freely whereas Eomeshi NK cells are unable to leave the liver. Furthermore, Eomeshi NK cells are retained in the liver for up to 13 y. Therefore, Eomeshi NK cells are long-lived liver-resident cells. We go on to show that Eomeshi NK cells can be recruited from the circulation during adult life and that circulating Eomeslo NK cells are able to upregulate Eomes and molecules mediating liver retention under cytokine conditions similar to those in the liver. This suggests that circulating NK cells are a precursor of their liver-resident counterparts. PMID:27798170

  12. Local over-expression of VEGF-DΔNΔC in the uterine arteries of pregnant sheep results in long-term changes in uterine artery contractility and angiogenesis.

    PubMed

    Mehta, Vedanta; Abi-Nader, Khalil N; Shangaris, Panicos; Shaw, S W Steven; Filippi, Elisa; Benjamin, Elizabeth; Boyd, Michael; Peebles, Donald M; Martin, John; Zachary, Ian; David, Anna L

    2014-01-01

    The normal development of the uteroplacental circulation in pregnancy depends on angiogenic and vasodilatory factors such as vascular endothelial growth factor (VEGF). Reduced uterine artery blood flow (UABF) is a common cause of fetal growth restriction; abnormalities in angiogenic factors are implicated. Previously we showed that adenovirus (Ad)-mediated VEGF-A165 expression in the pregnant sheep uterine artery (UtA) increased nitric oxide synthase (NOS) expression, altered vascular reactivity and increased UABF. VEGF-D is a VEGF family member that promotes angiogenesis and vasodilatation but, in contrast to VEGF-A, does not increase vascular permeability. Here we examined the effect of Ad.VEGF-DΔNΔC vector encoding a fully processed form of VEGF-D, on the uteroplacental circulation. UtA transit-time flow probes and carotid artery catheters were implanted in mid-gestation pregnant sheep (n = 5) to measure baseline UABF and maternal haemodynamics respectively. 7-14 days later, after injection of Ad.VEGF-DΔNΔC vector (5×10(11) particles) into one UtA and an Ad vector encoding β-galactosidase (Ad.LacZ) contralaterally, UABF was measured daily until scheduled post-mortem examination at term. UtAs were assessed for vascular reactivity, NOS expression and endothelial cell proliferation; NOS expression was studied in ex vivo transduced UtA endothelial cells (UAECs). At 4 weeks post-injection, Ad.VEGF-DΔNΔC treated UtAs showed significantly lesser vasoconstriction (Emax144.0 v/s 184.2, p = 0.002). There was a tendency to higher UABF in Ad.VEGF-DΔNΔC compared to Ad.LacZ transduced UtAs (50.58% v/s 26.94%, p = 0.152). There was no significant effect on maternal haemodynamics. An increased number of proliferating endothelial cells and adventitial blood vessels were observed in immunohistochemistry. Ad.VEGF-DΔNΔC expression in cultured UAECs upregulated eNOS and iNOS expression. Local over-expression of VEGF-DΔNΔC in the UtAs of pregnant mid-gestation sheep reduced vasoconstriction, promoted endothelial cell proliferation and showed a trend towards increased UABF. Studies in cultured UAECs indicate that VEGF-DΔNΔC may act in part through upregulation of eNOS and iNOS.

  13. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers.

    PubMed

    Bahra, M; Kapil, V; Pearl, V; Ghosh, S; Ahluwalia, A

    2012-05-15

    Ingestion of inorganic nitrate elevates blood and tissue levels of nitrite via bioconversion in the entero-salivary circulation. Nitrite is converted to NO in the circulation, and it is this phenomenon that is thought to underlie the beneficial effects of inorganic nitrate in humans. Our previous studies have demonstrated that oral ingestion of inorganic nitrate decreases blood pressure and inhibits the transient endothelial dysfunction caused by ischaemia-reperfusion injury in healthy volunteers. However, whether inorganic nitrate might improve endothelial function per se in the absence of a pathogenic stimulus and whether this might contribute to the blood pressure lowering effects is yet unknown. We conducted a randomised, double-blind, crossover study in 14 healthy volunteers to determine the effects of oral inorganic nitrate (8 mmol KNO(3)) vs. placebo (8 mmol KCl) on endothelial function, measured by flow-mediated dilatation (FMD) of the brachial artery, prior to and 3h following capsule ingestion. In addition, blood pressure (BP) was measured and aortic pulse wave velocity (aPWV) determined. Finally, blood, saliva and urine samples were collected for chemiluminescence analysis of [nitrite] and [nitrate] prior to and 3h following interventions. Inorganic nitrate supplementation had no effect on endothelial function in healthy volunteers (6.9±1.1% pre- to 7.1±1.1% post-KNO(3)). Despite this, there was a significant elevation of plasma [nitrite] (0.4±0.1 μM pre- to 0.7±0.2 μM post-KNO(3), p<0.001). In addition these changes in [nitrite] were associated with a decrease in systolic BP (116.9±3.8mm Hg pre- vs. 112.1±3.4 mm Hg post-KNO(3), p<0.05) and aPWV (6.5±0.1 m/s pre- to 6.2±0.1 post-KNO(3), p<0.01). In contrast KCl capsules had no effect on any of the parameters measured. These findings demonstrate that although inorganic nitrate ingestion does not alter endothelial function per se, it does appear to improve blood flow, in combination with a reduction in blood pressure. It is likely that these changes are due to the intra-vascular production of NO. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Mitochondrial Aldehyde Dehydrogenase 2 Regulates Revascularization in Chronic Ischemia: Potential Impact on the Development of Coronary Collateral Circulation.

    PubMed

    Liu, Xiangwei; Sun, Xiaolei; Liao, Hua; Dong, Zhen; Zhao, Jingjing; Zhu, Hong; Wang, Peng; Shen, Li; Xu, Lei; Ma, Xin; Shen, Cheng; Fan, Fan; Wang, Cong; Hu, Kai; Zou, Yunzeng; Ge, Junbo; Ren, Jun; Sun, Aijun

    2015-10-01

    Revascularization is an essential process to compensate for cardiac underperfusion and, therefore, preserves cardiac function in the face of chronic ischemic injury. Recent evidence suggested a vital role of aldehyde dehydrogenase 2 (ALDH2) in cardiac protection after ischemia. This study was designed to determine whether ALDH2 regulates chronic ischemia-induced angiogenesis and to explore the underlying mechanism involved. Moreover, the clinical impact of the ALDH2 mutant allele on the development of coronary collateral circulation (CCC) was evaluated. Mice limb ischemia was performed. Compared with wild-type, ALDH2 deletion significantly reduced perfusion recovery, small artery and capillary density, and increased muscle atrophy in this ischemic model. In vitro, ALDH2-knockdown reduced proliferation, migration and hypoxia triggered endothelial tube formation of endothelial cells, the effects of which were restored by ALDH2 transfection. Further examination revealed that ALDH2 regulated angiogenesis possibly through hypoxia-inducible factor-1α/vascular endothelial growth factor pathways. To further discern the role of ALDH2 deficiency in the function of bone marrow stem/progenitor cells, cross bone marrow transplantation was performed between wild-type and ALDH2-knockout mice. However, there was no significant improvement for wild-type bone marrow transplantation into knockout mice. ALDH2 genotyping was screened in 139 patients with chronic total occlusion recruited to Zhongshan Hospital (2011.10-2014.4). Patients with poor CCC (Rentrop 0-1; n=51) exhibited a higher frequency of the AA genotype than those with enriched CCC (Rentrop 2-3; n=88; 11.76% versus 1.14%; P=0 0.01). However, the AA group displayed less enriched CCC frequency in Logistic regression model when compared with the GG group (odds ratio=0.08; 95% confidence interval, 0.009-0.701; P=0 0.026). Furthermore, serum vascular endothelial growth factor level tended to be lower in patients with ALDH2 mutation. This study demonstrated that ALDH2 possesses an intrinsic capacity to regulate angiogenesis via hypoxia-inducible factor-1α and vascular endothelial growth factor. Patients with ALDH2-deficient genotype displayed a higher risk of developing poor CCC. Therapeutic individualization based on ALDH2 allele distribution may thus improve the therapeutic benefit, especially in the East Asian decedents. © 2015 American Heart Association, Inc.

  15. Evidence of Mobilization of Pluripotent Stem Cells into Peripheral Blood of Patients with Myocardial Ischemia

    PubMed Central

    Abdel-Latif, Ahmed; Zuba-Surma, Ewa K.; Ziada, Khaled M.; Kucia, Magdalena; Cohen, Donald A.; Kaplan, Alan M.; Zant, Gary Van; Selim, Samy; Smyth, Susan S.; Ratajczak, Mariusz Z.

    2010-01-01

    Objective The ischemic myocardium releases multiple chemotactic factors responsible for the mobilization and recruitment of bone marrow-derived cells to injured myocardium. However, the mobilization of primitive pluripotent stem cells (PSCs) enriched in Very Small Embryonic-Like stem cells (VSELs) in various cardiac ischemic scenarios is not well understood. Methods Fifty four ischemic heart disease patients, including subjects with stable angina, non-ST elevation (NSTME) myocardial infarction (MI) and ST elevation myocardial infarction (STEMI), and twelve matched controls were enrolled. The absolute numbers of circulating stem/primitive cells in samples of peripheral blood (PB) were quantitated by Image Stream Analysis and conventional flow cytometry. Gene expression of PSC (Oct-4 and Nanog), early cardiomyocyte (Nkx-2.5 and GATA-4), and endothelial (vWF) markers was analyzed by real-time PCR. Results The absolute numbers of PSCs, stem cell populations enriched in VSELs and hematopoietic stem cells (HSCs) present in PB were significantly higher in STEMI patients at presentation and declined over time. There was a corresponding increase in pluripotent, cardiac and endothelial gene expression in unfractionated PB cells and sorted PB-derived primitive CD34+ cells. The absolute numbers of circulating VSELs and HSCs in STEMI correlated negatively with patients' age. Conclusions Myocardial ischemia mobilizes primitive PSCs including pluripotent VSELs into the circulation. The peak of mobilization occurs within 12 hours in patients presenting with STEMI, which may represent a therapeutic window for future clinical applications. Reduced stem cell mobilization with advancing age could explain, in part, the observation that age is associated with poor prognosis in patients with MI. PMID:20800644

  16. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy

    PubMed Central

    Grisar, Johannes; Aletaha, Daniel; Steiner, Carl W; Kapral, Theresa; Steiner, Sabine; Säemann, Marcus; Schwarzinger, Ilse; Buranyi, Barbara; Steiner, Günter; Smolen, Josef S

    2007-01-01

    Objectives To study the effects of short‐term intermediate dose glucocorticoid (GC) therapy in patients with active rheumatoid arthritis (RA) on circulating endothelial progenitor cells (EPC), which are known to influence cardiovascular risk, and to elucidate mechanisms potentially responsible for the reduction of EPCs in patients with active RA. Methods EPCs were quantified in 29 patients with active RA by flow cytometry, colony forming unit (CFU) and circulating angiogenic cell (CAC) assays before and after 7 days of intermediate dose GC therapy. CFU from patients with RA and from healthy referents (HR) were cultured in vitro in the absence or presence of dexamethasone (Dex) and/or TNF. Results After 1 week of GC therapy, EPC increased from 0.026 (SD 0.003)% to 0.053 (SD 0.010)% (p<0.01), and from 12 (SD 4) to 27 (SD 7) CFU/well (p<0.02); CAC also increased from 7 (SD 2) to 29 (SD 8) cells/high power field (p<0.05). In parallel, disease activity decreased significantly after GC treatment. TNF serum levels also decreased from 36 (SD 10) to 14 (SD 6) pg/ml (p<0.0001). Addition of Dex to the RA CFU led to a significant increase of mean CFU counts, whereas addition of TNF induced a decrease of CFU. Conclusions Our data indicate that TNF may be at least partly responsible for the reduction of EPC seen in patients with RA. Intermediate doses of GCs for a short period of time, apart from reducing disease activity, significantly increase circulating EPC. PMID:17293363

  17. Early accelerated senescence of circulating endothelial progenitor cells in premature coronary artery disease patients in a developing country - a case control study.

    PubMed

    Vemparala, Kranthi; Roy, Ambuj; Bahl, Vinay Kumar; Prabhakaran, Dorairaj; Nath, Neera; Sinha, Subrata; Nandi, Pradipta; Pandey, Ravindra Mohan; Reddy, Kolli Srinath; Manhapra, Ajay; Lakshmy, Ramakrishnan

    2013-11-19

    The decreased number and senescence of circulating endothelial progenitor cells (EPCs) are considered markers of vascular senescence associated with aging, atherosclerosis, and coronary artery disease (CAD) in elderly. In this study, we explore the role of vascular senescence in premature CAD (PCAD) in a developing country by comparing the numerical status and senescence of circulating EPCs in PCAD patients to controls. EPCs were measured by flow cytometry in 57 patients with angiographically documented CAD, and 57 controls without evidence of CAD, recruited from random patients ≤ 50 years of age at All India Institute of Medical Sciences. EPC senescence as determined by telomere length (EPC-TL) and telomerase activity (EPC-TA) was studied by real time polymerase chain reaction (q PCR) and PCR- ELISA respectively. The number of EPCs (0.18% Vs. 0.039% of total WBCs, p < 0.0001), and EPC-TL (3.83 Vs. 5.10 kb/genome, p = 0.009) were markedly lower in PCAD patients compared to controls. These differences persisted after adjustment for age, sex, BMI, smoking and medications. EPC-TA was reduced in PCAD patients, but was statistically significant only after adjustment for confounding factors (1.81 Vs. 2.20 IU/cell, unadjusted p = 0.057, adjusted p = 0.044). We observed an association between increased vascular cell senescence with PCAD in a sample of young patients from India. This suggests that early accelerated vascular cell senescence may play an important mechanistic role in CAD epidemic in developing countries like India where PCAD burden is markedly higher compared to developed countries.

  18. Point-of-care diagnostic tools to detect circulating microRNAS as biomarkers of disease.

    PubMed

    Vaca, Luis

    2014-05-22

    MicroRNAs or miRNAs are a form of small non-coding RNAs (ncRNAs) of 19-22 nucleotides in length in their mature form. miRNAs are transcribed in the nucleus of all cells from large precursors, many of which have several kilobases in length. Originally identified as intracellular modulators of protein synthesis via posttranscriptional gene silencing, more recently it has been found that miRNAs can travel in extracellular human fluids inside specialized vesicles known as exosomes. We will be referring to this miRNAs as circulating microRNAs. More interestingly, the miRNA content inside exosomes changes during pathological events. In the present review we analyze the literature about circulating miRNAs and their possible use as biomarkers. Furthermore, we explore their future in point-of-care (POC) diagnostics and provide an example of a portable POC apparatus useful in the detection of circulating miRNAs.

  19. Nutritional modifiers of aging brain function: Increasing the formation of brain synapses by administering uridine and other phosphatide precursors

    PubMed Central

    Wurtman, R.J.; Cansev, M; Sakamoto, T; Ulus, I.H.

    2010-01-01

    Brain phosphatide synthesis requires three circulating compounds: docosahexaenoic acid (DHA), uridine and choline. Oral administration of these phosphatide precursors to experimental animals increases the levels of phosphatides and synaptic proteins in the brain and per brain cell, as well as the numbers of dendritic spines on hippocampal neurons. Arachidonic acid (AA) fails to reproduce these effects of DHA. If similar increases occur in human brain, giving these compounds to patients with diseases – like Alzheimer’s disease – which cause the loss of brain synapses – could be beneficial. PMID:21091953

  20. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice.

    PubMed

    Noels, Heidi; Zhou, Baixue; Tilstam, Pathricia V; Theelen, Wendy; Li, Xiaofeng; Pawig, Lukas; Schmitz, Corinna; Akhtar, Shamima; Simsekyilmaz, Sakine; Shagdarsuren, Erdenechimeg; Schober, Andreas; Adams, Ralf H; Bernhagen, Jürgen; Liehn, Elisa A; Döring, Yvonne; Weber, Christian

    2014-06-01

    The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. β-Galactosidase staining using bone marrow x kinase (Bmx)-CreER(T2) reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreER(T2+) compared with Bmx-CreER(T2-) Cxcr4-floxed apolipoprotein E-deficient (Apoe(-/-)) mice (referred to as Cxcr4(EC-KO)ApoE(-/-) and Cxcr4(EC-WT) ApoE(-/-), respectively). Endothelial Cxcr4 deficiency significantly increased wire injury-induced neointima formation in carotid arteries from Cxcr4(EC-KO)ApoE(-/-) mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4(EC-KO)ApoE(-/-) carotids compared with Cxcr4(EC-WT)ApoE(-/-) controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1(+)Flk1(+)Cd31(+) and of Lin(-)Sca1(+) progenitors in Cxcr4(EC-KO) ApoE(-/-) mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4(EC-KO)ApoE(-/-) mice. Endothelial Cxcr4 is crucial for efficient reendothelialization after vascular injury through endothelial wound healing and proliferation, and through the mobilization of Sca1(+)Flk1(+)Cd31(+) cells, often referred to as circulating endothelial progenitor cells. © 2014 American Heart Association, Inc.

  1. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. © 2016 John Wiley & Sons Ltd.

  2. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population.

    PubMed

    Fadini, Gian Paolo; Coracina, Anna; Baesso, Ilenia; Agostini, Carlo; Tiengo, Antonio; Avogaro, Angelo; de Kreutzenberg, Saula Vigili

    2006-09-01

    Disruption of the endothelial layer is the first step in the atherogenic process. Experimental studies have shown that endothelial progenitor cells (EPCs) are involved in endothelial homeostasis and repair. Conversely, EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether variations in the number of EPCs are associated with subclinical atherosclerosis in healthy subjects. Carotid intima-media thickness (IMT), high-sensitive C-reactive protein (hsCRP), levels of circulating EPCs, and cardiovascular risk were compared in 137 healthy subjects. Six subpopulations of progenitor cells were determined by flow cytometry on the basis of the surface expression of CD34, CD133, and KDR antigens: CD34(+), CD133(+), CD34(+)CD133(+), CD34(+)KDR(+), CD133(+)KDR(+), and CD34(+)CD133(+)KDR(+). Among different antigenic profiles of EPCs, only CD34(+)KDR(+) cells were significantly reduced in subjects with increased IMT. Specifically, CD34(+)KDR(+) cells were inversely correlated with IMT, even after adjustment for hsCRP and 10-year Framingham risk and independently of other cardiovascular parameters. Depletion of CD34(+)KDR(+) EPCs is an independent predictor of early subclinical atherosclerosis in healthy subjects and may provide additional information beyond classic risk factors and inflammatory markers.

  3. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-06-12

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.

  4. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229

  5. Generation and characterization of Tbx1-AmCyan1 transgenic reporter mouse line that selectively labels developing thymus primordium.

    PubMed

    Kimura, Wataru; Sharkar, Mohammad Tofael Kabir; Sultana, Nishat; Islam, Mohammod Johirul; Uezato, Tadayoshi; Miura, Naoyuki

    2013-06-01

    Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.

  6. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis.

    PubMed

    Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong

    2018-01-01

    Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P <0.01). However, there was no significant difference in resting CEC levels between healthy subjects and cancer patients ( P =0.193). We integrated and comprehensively addressed significant technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.

  7. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men.

    PubMed

    Wang, Jong-Shyan; Lee, Mei-Yi; Lien, Hen-Yu; Weng, Tzu-Pin

    2014-01-01

    Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors. Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks. After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells). The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells.

    PubMed

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-08-15

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of a riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with K(m) and V(max) values of 19 ± 3 μM and 0.235 ± 0.012 pmol/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca(++)/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-riboflavin. Apical and baso-lateral uptake of [3H]-riboflavin clearly indicates that a riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to a riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. The blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    PubMed

    Lin, Yi-Wen; Huang, Chun-Yao; Chen, Yung-Hsiang; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Cheng-Yen; Chang, Nen-Chung; Tsai, Chien-Sung; Tsai, Hsiao-Ya; Tsai, Jui-Chi; Huang, Po-Hsun; Li, Chi-Yuan; Lin, Feng-Yen

    2013-01-01

    The number and function of endothelial progenitor cells (EPCs) are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4) mutation) mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS) in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  10. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    PubMed

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  11. Local Oxidative Stress Expansion through Endothelial Cells – A Key Role for Gap Junction Intercellular Communication

    PubMed Central

    Feine, Ilan; Pinkas, Iddo; Salomon, Yoram; Scherz, Avigdor

    2012-01-01

    Background Major circulation pathologies are initiated by oxidative insult expansion from a few injured endothelial cells to distal sites; this possibly involves mechanisms that are important to understanding circulation physiology and designing therapeutic management of myocardial pathologies. We tested the hypothesis that a localized oxidative insult of endothelial cells (ECs) propagates through gap junction inter-cellular communication (GJIC). Methodology/Principal Findings Cultures comprising the bEnd.3 cell line, that have been established and recognized as suitable for examining communication among ECs, were used to study the propagation of a localized oxidative insult to remote cells. Spatially confined near infrared illumination of parental or genetically modified bEnd.3 cultures, pretreated with the photosensitizer WST11, generated O2•− and •OH radicals in the illuminated cells. Time-lapse fluorescence microscopy, utilizing various markers, and other methods, were used to monitor the response of non-illuminated bystander and remote cells. Functional GJIC among ECs was shown to be mandatory for oxidative insult propagation, comprising de-novo generation of reactive oxygen and nitrogen species (ROS and RNS, respectively), activation and nuclear translocation of c-Jun N-terminal kinase, followed by massive apoptosis in all bystander cells adjacent to the primarily injured ECs. The oxidative insult propagated through GJIC for many hours, over hundreds of microns from the primary photogeneration site. This wave is shown to be limited by intracellular ROS scavenging, chemical GJIC inhibition or genetic manipulation of connexin 43 (a key component of GJIC). Conclusion/Significance Localized oxidative insults propagate through GJIC between ECs, while stimulating de-novo generation of ROS and RNS in bystander cells, thereby driving the insult's expansion. PMID:22911831

  12. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor

    PubMed Central

    Aragon, Mario; Erdely, Aaron; Bishop, Lindsey; Salmen, Rebecca; Weaver, John; Liu, Jim; Hall, Pamela; Eye, Tracy; Kodali, Vamsi; Zeidler-Erdely, Patti; Stafflinger, Jillian E.; Ottens, Andrew K.; Campen, Matthew J.

    2016-01-01

    Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9−/− mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9−/− mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose–response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36. PMID:26801584

  13. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  14. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less

  15. Increased kinin levels and decreased responsiveness to kinins during aging.

    PubMed

    Pérez, Viviana; Velarde, Victoria; Acuña-Castillo, Claudio; Gómez, Christian; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2005-08-01

    Kinins are vasoactive peptides released from precursors called kininogens, and serum levels of both T- and K-kininogens increase dramatically as rats age. Kinin release is tightly regulated, and here we show that serum kinin levels also increase with age, from 63 +/- 16 nmol/L in young Fisher 344 rats to 398 +/- 102 nmol/L in old animals. Both K- and T-kininogens contribute sequentially to this increase, with the increase in middle-aged animals being driven primarily by K-kininogen, whereas the further augmentation in older rats occurs by increasing T-kininogen. By measuring ERK activation, we show that aorta endothelial cells from old animals are hyporesponsive to exogenous bradykinin. However, if serum kinin levels are experimentally decreased by lipopolysaccharide treatment, then the endothelial response to bradykinin is re-established. These results indicate that serum levels of kinins increase with age, whereas the responsiveness of target cells to kinins is reduced in these same animals.

  16. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films

    NASA Astrophysics Data System (ADS)

    Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan

    2012-02-01

    For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.

  17. NITRIC OXIDE FOR THE ADJUNCTIVE TREATMENT OF SEVERE MALARIA: HYPOTHESIS AND RATIONALE

    PubMed Central

    Hawkes, Michael; Opoka, Robert Opika; Namasopo, Sophie; Miller, Christopher; Conroy, Andrea L.; Serghides, Lena; Kim, Hani; Thampi, Nisha; Liles, W. Conrad; John, Chandy C.; Kain, Kevin C.

    2011-01-01

    We hypothesize that supplemental inhaled nitric oxide (iNO) will improve outcomes in children with severe malaria receiving standard antimalarial therapy. The rationale for the hypothesized efficacy of iNO rests on: (1) biological plausibility, based on known actions of NO in modulating endothelial activation; (2) pre-clinical efficacy data from animal models of experimental cerebral malaria; and (3) a human trial of the NO precursor L-arginine, which improved endothelial function in adults with severe malaria. iNO is an attractive new candidate for the adjunctive treatment of severe malaria, given its proven therapeutic efficacy in animal studies, track record of safety in clinical practice and numerous clinical trials, inexpensive manufacturing costs, and ease of administration in settings with limited healthcare infrastructure. We plan to test this hypothesis in a randomized controlled trial (ClinicalTrials.gov Identifier: NCT01255215). PMID:21745716

  18. Biologic properties of endothelial progenitor cells and their potential for cell therapy.

    PubMed

    Young, Pampee P; Vaughan, Douglas E; Hatzopoulos, Antonis K

    2007-01-01

    Recent studies indicate that portions of ischemic and tumor neovasculature are derived by neovasculogenesis, whereby bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) home to sites of regenerative or malignant growth and contribute to blood vessel formation. Recent data from animal models suggest that a variety of cell types, including unfractionated BM mononuclear cells and those obtained by ex vivo expansion of human peripheral blood or enriched progenitors, can function as EPCs to promote tissue vasculogenesis, regeneration, and repair when introduced in vivo. The promising preclinical results have led to several human clinical trials using BM as a potential source of EPCs in cardiac repair as well as ongoing basic research on using EPCs in tissue engineering or as cell therapy to target tumor growth.

  19. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat.

    PubMed

    Qaiser, M Zeeshan; Dolman, Diana E M; Begley, David J; Abbott, N Joan; Cazacu-Davidescu, Mihaela; Corol, Delia I; Fry, Jonathan P

    2017-09-01

    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. © 2017 International Society for Neurochemistry.

  20. Emerging treatment options for refractory angina pectoris: ranolazine, shock wave treatment, and cell-based therapies.

    PubMed

    Gennari, Marco; Gambini, Elisa; Bassetti, Beatrice; Capogrossi, Maurizio; Pompilio, Giulio

    2014-01-01

    A challenge of modern cardiovascular medicine is to find new, effective treatments for patients with refractory angina pectoris, a clinical condition characterized by severe angina despite optimal medical therapy. These patients are not candidates for surgical or percutaneous revascularization. Herein we review the most up-to-date information regarding the modern approach to the patient with refractory angina pectoris, from conventional medical management to new medications and shock wave therapy, focusing on the use of endothelial precursor cells (EPCs) in the treatment of this condition. Clinical limitations of the efficiency of conventional approaches justify the search for new therapeutic options. Regenerative medicine is considered the next step in the evolution of organ replacement therapy. It is driven largely by the same health needs as transplantation and replacement therapies, but it aims further than traditional approaches, such as cell-based therapy. Increasing knowledge of the role of circulating cells derived from bone marrow (EPCs) on cardiovascular homeostasis in physiologic and pathologic conditions has prompted the clinical use of these cells to relieve ischemia. The current state of therapeutic angiogenesis still leaves many questions unanswered. It is of paramount importance that the treatment is delivered safely. Direct intramyocardial and intracoronary administration has demonstrated acceptable safety profiles in early trials, and may represent a major advance over surgical thoracotomy. The combined efforts of bench and clinical researchers will ultimately answer the question of whether cell therapy is a suitable strategy for treatment of patients with refractory angina.

  1. Synoptic evolution of Atmospheric River landfalls in Northern California and the pre-conditioning of their characteristics by the climate state

    NASA Astrophysics Data System (ADS)

    Gershunov, A.; Guirguis, K.; Shulgina, T.; Clemesha, R.; Ralph, M.

    2017-12-01

    Atmospheric Rivers (ARs) contribute the lion's share of water resources for California, but can also cause flooding and draw heavily on emergency resources of state and local governments. Comprehensive probabilistic tools relating landfalling ARs to pre-existing weather/climate conditions could be useful for subseasonal forecasting, emergency preparedness and water resource management. We examine ARs targeting the Northern California coast using long-term observations of synoptic-scale circulation, high-resolution precipitation, and a seven-decade-long catalog of AR landfalls to quantify distinct orientations of landfalling ARs. Using a probabilistic approach to relate these historic events to precursor weather patterns, we identify synoptic circulation patterns that precede AR landfalls at various lead times in the range of 0-30 days. Examination of the evolution of these precursor patterns reveals subtle but important differences in the atmospheric states that lead to AR landfalls versus those that don't. Synoptic precursors can also differentiate between orientations of ARs at landfall, which produce rather different precipitation patterns over the region's complex topography. Moreover, low-frequency climate forcing appears to modulate the likelihood of AR landfalls, as well as their preferred orientations. These results provide a link between seasonal and subseasonal timescales and suggest a new approach toward extended-range prediction of land-falling atmospheric rivers and their related precipitation.

  2. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction.

    PubMed Central

    Joris, I.; Majno, G.; Corey, E. J.; Lewis, R. A.

    1987-01-01

    This study identifies the microvascular target of leukotriene E4 (LTE4) by vascular labeling with carbon black and establishes the mechanism of its action at the cellular level by electron microscopy. LTE4 and its tripeptide precursor, leukotriene C4 (LTC4) were injected subcutaneously in guinea pigs. With LTE4, venular labeling was intense at 1000 and 100 ng and slight at 10 ng, with extinction at 1 ng. LTC4 induced a ring of labeled venules around a blank central area, suggestive of vasospasm. The nonpeptidyl leukotriene LTB4 induced no labeling. Histamine (1000 ng) induced an area of vascular labeling about equal to that by 1000 ng LTE4, but the labeling of individual venules was more intense. By electron microscopy, LTE4 was found to induce gaps in the endothelium of the venules; the endothelial cells adjacent to the gaps bulged into the lumen and showed wrinkled nuclei, consistent with cellular contraction. This ultrastructural evidence suggests that LTE4 increases vascular permeability by contraction of endothelial cells selectively, in the postcapillary venules, as was previously demonstrated for other inflammatory mediators, including histamine, serotonin, and bradykinin. Images Figure 2 Figure 3 Figure 4 PMID:3028143

  3. Leptin administered in physiological or pharmacological doses does not regulate circulating angiogenesis factors in humans.

    PubMed

    Aronis, K N; Diakopoulos, K N; Fiorenza, C G; Chamberland, J P; Mantzoros, C S

    2011-09-01

    Leptin has been shown to regulate angiogenesis in animal and in vitro studies by upregulating the production of several pro-angiogenic factors, but its role in regulating angiogenesis has never been studied in humans. The potential angiogenic effect of two doses of metreleptin (50 and 100 ng/ml) was evaluated in vitro, using a novel three-dimensional angiogenesis assay. Fifteen healthy, normoleptinaemic volunteers were administered both a physiological (0.1 mg/kg) and a pharmacological (0.3 mg/kg) single dose of metreleptin, in vivo, on two different inpatient admissions separated by 1-12 weeks. Serum was collected at 0, 6, 12 and 24 h after metreleptin administration. Twenty lean women, with leptin levels <5 ng/ml, were randomised in a 1:1 fashion to receive either physiological replacement doses of metreleptin (0.04-0.12 mg/kg q.d.) or placebo for 32 weeks. Serum was collected at 0, 8, 20 and 32 weeks after randomisation. Proteomic angiogenesis array analysis was performed to screen for angiogenic factors. Circulating concentrations of angiogenin, angiopoietin-1, platelet derived endothelial factor (PDGF)-AA, matrix metalloproteinase (MMP) 8 and 9, endothelial growth factor (EGF) and vascular EGF (VEGF) were also measured. Both metreleptin doses failed to induce angiogenesis in the in vitro model. Although leptin levels increased significantly in response to both short-term and long-term metreleptin administration, circulating concentrations of angiogenesis markers did not change significantly in vivo. This is the first study that examines the effect of metreleptin administration in angiogenesis in humans. Metreleptin administration does not regulate circulating angiogenesis related factors in humans. ClinicalTrials.gov NCT00140205 and NCT00130117. This study was supported by National Institutes of Health-National Center for Research Resources grant M01-RR-01032 (Harvard Clinical and Translational Science Center) and grant number UL1 RR025758. Funding was also received from the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785, 79929 and 81913, and AG032030.

  4. Circulating endothelial progenitor cells are inversely correlated with in-stent restenosis in patients with non-ST-segment elevation acute coronary syndromes treated with EPC-capture stents (JACK-EPC trial).

    PubMed

    Wojakowski, W; Pyrlik, A; Król, M; Buszman, P; Ochała, A; Milewski, K; Smolka, G; Kawecki, D; Rudnik, A; Pawłowski, T; Jadczyk, T; Wyderka, R; Cybulski, W; Dworowy, S; Tendera, M

    2013-06-01

    Aim of the study was to evaluate the association between circulating endothelial progenitor cells (EPCs) and angiographic outcomes after implantation of GenousTM stent in patients with non-ST-segment elevation acute coronary syndromes (ACS) (NSTE-ACS) undergoing urgent percutaneous coronary intervention (PCI). Sixty patients treated with EPC-capture stent (N.=30) or bare metal stents (BMS) (N.=30) receiving 80 mg atorvastatin and dual antiplatelet therapy (DAT) for 12 months. Restenosis was assessed after 6 months by quantitative coronary angiography (QCA) and major acute coronary events (MACE) evaluated after 6 and 12 months. de novo lesion >70% in native vessel, diameter 2.5-4 mm, lesion length <30 mm. diabetes, previous revascularization, significant left main stenosis, chronic total occlusions (CTO) and multivessel disease. Majority of patients in EPC-capture stent and BMS groups presented with NSTEMI (73.3% and 70%, respectively). Mean stent length was 20.1±8 and 19.9±10 mm, diameter 3±0.97 and 3.1±0.88 mm in respective groups. The binary restenosis was significantly lower in GenousTM (13 vs. 26.6%, P=0.04). Risk of MACE after 6 and 12 months were comparable in both groups. There was no stent thrombosis. Numbers of circulating EPCs were significantly approximately 2-fold higher during the ACS than after 6 months. Mobilization of EPCs during acute ischemia was significantly lower in patients who developed restenosis after 6 months (3 vs. 4.5 cells/μL, P=0.002) and it was negatively correlated with late-loss after 6 months (R=-0.42; P<0.03). Use of GenousTM stents in NSTE-ACS is associated with lower restenosis rate than BMS at 6 months. There was no ST through 1 year. The number of circulating EPCs is inversely correlated with in-stent late loss (LL).

  5. The effect of angiotensin-2 receptor blocker valsartan on circulating level of endothelial progenitor cells in diabetic patients with asymptomatic coronary artery disease.

    PubMed

    Berezin, Alexander E; Kremzer, Alexander A; Martovitskaya, Yulia V; Samura, Tatyana A

    2015-01-01

    Decreased circulating endothelial progenitor cells (EPCs) are considered as strong and robust biomarkers for the prediction of cardiovascular outcomes in diabetic populations. The perspectives for modulating EPCs levels in T2DM with known coronary artery disease (CAD) with different drugs, affected mechanisms of improving mobilization of EPCs from tissue, are not still understood. To evaluate an effect of angiotensin-2 receptor blocker valsartan on circulating level of EPCs in diabetic patients with asymptomatic CAD. The study population was structured retrospectively after determining the CAD by contrast-enhanced spiral computed tomography angiography in 126 asymptomatic subjects. All subjects were distributed into two cohorts depending on daily doses of valsartan given. Low (80-160 mg daily orally) and high doses (240-320 mg daily orally) of valsartan were used and they were adjusted depending on achieving BP level less than 140/80 mmHg. The change from baseline in CD34(+) subset cells (frequencies and absolute values) was not significantly different between treatment cohorts. We found a significant increase of circulating level of CD14(+)CD309(+) cells in two patient cohorts. But more prominent change of CD14(+)CD309(+) cells was verified in subjects who were given valsartan in high daily doses when compared with persons who were included into cohort with low daily doses of the drug (1.96% versus 2.59%, respectively; P<0.05). Therefore, both frequencies and absolute values in CD14(+)CD309(+)Tie(2+) were increased significantly in patients who were treated with high doses of valsartan only. We found positive influence of angiotensin-2 receptor blocker valsartan in escalation doses on bone marrow-derived EPCs phenotyped as CD14(+)CD309(+) and CD14(+)CD309(+)Tie(2+) in T2DM patients with known asymptomatic CAD. Copyright © 2014 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  6. Hypothermia inhibits expression of CD11b (MAC-1) and CD162 (PSGL-1) on monocytes during extracorporeal circulation.

    PubMed

    Swoboda, Stefanie; Gruettner, Joachim; Lang, Siegfried; Wendel, Hans-Peter; Beyer, Martin E; Griesel, Eva; Hoffmeister, Hans-Martin; Walter, Thomas

    2013-01-01

    The aim of the present study was to investigate the effect of different hypothermic temperatures on the expression of cellular adhesion molecules on leukocytes. Circulation of blood from six volunteers was performed in an extracorporeal circulation model at 36°C, 28°C and 18°C for 30 minutes. Expression of CD11b, CD54 and CD162 on monocytes was measured using flow cytometry. Expression of CD11b significantly decreased at 18°C and at 28°C compared to 36°C. A significant reduction of CD162 expression was found at 18°C compared to 28°C and 36°C and at 28°C compared to 36°C. No association was found between temperature and expression of CD54. Expression of CD11b and CD162 on monocytes has a temperature-dependent regulation, with decreased expression during hypothermia, which may result in an inhibition of leukocyte-endothelial and leukocyte-platelet interaction. This beneficial effect may influence the extracorporeal circulation-related inflammatory response and tissue damage.

  7. Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option?

    PubMed

    Ortiz, Gustavo; Salica, Juan P; Chuluyan, Eduardo H; Gallo, Juan E

    2014-11-18

    Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.

  8. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.

    PubMed

    Camus, Stéphane M; De Moraes, João A; Bonnin, Philippe; Abbyad, Paul; Le Jeune, Sylvain; Lionnet, François; Loufrani, Laurent; Grimaud, Linda; Lambry, Jean-Christophe; Charue, Dominique; Kiger, Laurent; Renard, Jean-Marie; Larroque, Claire; Le Clésiau, Hervé; Tedgui, Alain; Bruneval, Patrick; Barja-Fidalgo, Christina; Alexandrou, Antigoni; Tharaux, Pierre-Louis; Boulanger, Chantal M; Blanc-Brude, Olivier P

    2015-06-11

    Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD. © 2015 by The American Society of Hematology.

  9. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    PubMed

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-03

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.

  10. Targeting stem cell niches and trafficking for cardiovascular therapy

    PubMed Central

    Kränkel, Nicolle; Spinetti, Gaia; Amadesi, Silvia; Madeddu, Paolo

    2010-01-01

    Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair. PMID:20965213

  11. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?

    PubMed

    Rousseau, Aurélie; Favier, Rémi; Van Dreden, Patrick

    2009-09-01

    One of the most frequently proposed mechanisms for pre-eclampsia refers to uteroplacental thrombosis. However, the contribution of classical thrombotic risk factors remains questionable. The aims of this study were to investigate the activities of thrombomodulin, tissue factor and procoagulant phospholipids to assess endothelial cell injury in pregnant women with pre-eclampsia and to compare them with other classical markers of vascular injury and thrombotic risk. Using three new functional assays we studied the plasma levels of these new markers in 35 healthy women, 30 healthy pregnant women, and 35 women with pre-eclampsia. We found that plasma levels of thrombomodulin activity, tissue factor activity and procoagulant phospholipids were significantly elevated in women with pre-eclampsia versus normal pregnant and non-pregnant women. It is thus suggested that elevated levels of these parameters in pre-eclampsia may reflect vascular endothelium damage, and may be a more valuable biomarker than antigen for the assessment of endothelial damage in pre-eclampsia. The high increased levels of procoagulant phospholipids and tissue factor activities in pre-eclampsia could suggest that the procoagulant potential may be implicated in this complication and makes these markers very promising for the understanding, follow-up and therapeutic handling of complicated pregnancy.

  12. Placental stress and pre-eclampsia: a revised view.

    PubMed

    Redman, C W G; Sargent, I L

    2009-03-01

    In pre-eclampsia, poor placentation causes both oxidative and endoplasmic reticulum stress of the placenta. It is believed placental hypoxia stimulates excessive production of soluble fms-like tyrosine kinase 1 (sFlt-1), which binds and deactivates circulating vascular endothelial growth factor (VEGF). When maternal endothelium is deprived of VEGF it becomes dysfunctional hence leading to the clinical syndrome of the mother. In this paper the previous claim that poor placentation may predispose more to placental oxidative stress than hypoxia is reiterated. We show why pre-eclampsia is not only an endothelial disease, but also a disorder of systemic inflammation. We question that hypoxia is the only or indeed the main stimulus to release of sFlt-1; and emphasise the role of inflammatory mechanisms. Hypoxia cannot be assumed simply because hypoxia-inducible transcription factors (HIF) are upregulated. Concurrent assessments of nuclear factor-kappaB (NF-kappaB), a transcription factor for inflammatory responses are desirable to obtain a more complete picture. We point out that the pre-eclampsia placenta is the source of bioactive circulating factors other than sFlt-1 in concentrations that are much higher than in normal pregnancy. These may also contribute to the final inflammatory syndrome. We propose a modified version of the two-stage model for pre-eclampsia.

  13. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    PubMed

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  14. Loss of the Liver X Receptors Disrupts the Balance of Hematopoietic Populations, With Detrimental Effects on Endothelial Progenitor Cells.

    PubMed

    Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L

    2018-05-08

    The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    PubMed Central

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  16. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.

    PubMed

    Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing

    2015-12-01

    The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Endothelial ischemia-reperfusion injury in humans: association with age and habitual exercise.

    PubMed

    Devan, Allison E; Umpierre, Daniel; Harrison, Michelle L; Lin, Hsin-Fu; Tarumi, Takashi; Renzi, Christopher P; Dhindsa, Mandeep; Hunter, Stacy D; Tanaka, Hirofumi

    2011-03-01

    Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age.

  18. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans.

    PubMed

    Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D

    2013-11-01

    The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.

  19. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors.

    PubMed

    Rehman, Jalees; Li, Jingling; Orschell, Christie M; March, Keith L

    2003-03-04

    Endothelial progenitor cells (EPCs) have been isolated from peripheral blood and can enhance angiogenesis after infusion into host animals. It is not known whether the proangiogenic effects are a result of such events as endothelial differentiation and subsequent proliferation of EPCs or secondary to secretion of angiogenic growth factors. Human EPCs were isolated as previously described, and their phenotypes were confirmed by uptake of acetylated LDL and binding of ulex-lectin. EPC proliferation and surface marker expression were analyzed by flow cytometry, and conditioned medium was assayed for growth factors. The majority of EPCs expressed monocyte/macrophage markers such as CD14 (95.7+/-0.3%), Mac-1 (57.6+/-13.5%), and CD11c (90.8+/-4.9%). A much lower percentage of cells expressed the specific endothelial marker VE-cadherin (5.2+/-0.7%) or stem/progenitor-cell markers AC133 (0.16+/-0.05%) and c-kit (1.3+/-0.7%). Compared with circulating monocytes, cultured EPCs showed upregulation of monocyte activation and macrophage differentiation markers. EPCs did not demonstrate any significant proliferation but did secrete the angiogenic growth factors vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Our findings suggest that acetylated LDL(+)ulex-lectin(+) cells, commonly referred to as EPCs, do not proliferate but release potent proangiogenic growth factors. The majority of acetylated LDL(+)ulex-lectin(+) cells are derived from monocyte/macrophages. The findings of low proliferation and endothelial differentiation suggest that their angiogenic effects are most likely mediated by growth factor secretion. These findings may allow for development of novel angiogenic therapies relying on secreted growth factors or on recruitment of endogenous monocytes/macrophages to sites of ischemia.

  20. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism

    PubMed Central

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-01-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516

  1. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm.

    PubMed

    Chuaiphichai, Surawee; Rashbrook, Victoria S; Hale, Ashley B; Trelfa, Lucy; Patel, Jyoti; McNeill, Eileen; Lygate, Craig A; Channon, Keith M; Douglas, Gillian

    2018-07-01

    GTPCH (GTP cyclohydrolase 1, encoded by Gch1 ) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient ( Gch1 fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1 fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H 2 O 2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1 fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1 fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1 fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta. © 2018 The Authors.

  3. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate

    PubMed Central

    Chung, Ivy; Montecinos, Viviana P.; Buttyan, Ralph; Johnson, Candace S.; Smith, Gary J.

    2013-01-01

    Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182–1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous “antiangiogenic” agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients. PMID:23548616

  4. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker Trimethylamine N-oxide from dietary precursors

    PubMed Central

    Petriello, Michael C; Hoffman, Jessie B; Sunkara, Manjula; Wahlang, Banrida; Perkins, Jordan T; Morris, Andrew J; Hennig, Bernhard

    2016-01-01

    The etiology of cardiovascular disease (CVD) is impacted by multiple modifiable and non-modifiable risk factors including dietary choices, genetic predisposition, and environmental exposures. However, mechanisms linking diet, exposure to pollutants, and CVD risk are largely unclear. Recent studies identified a strong link between plasma levels of nutrient-derived Trimethylamine N-oxide (TMAO) and coronary artery disease. Dietary precursors of TMAO include carnitine and phosphatidylcholine, which are abundant in animal-derived foods. Dioxin-like pollutants can upregulate a critical enzyme responsible for TMAO formation, hepatic flavin containing monooxygenase 3 (FMO3), but a link between dioxin-like PCBs, upregulation of FMO3, and increased TMAO has not been reported. Here, we show that mice exposed acutely to dioxin-like PCBs exhibit increased hepatic FMO3 mRNA, protein, as well as an increase in circulating levels of TMAO following oral administration of its metabolic precursors. C57BL/6 mice were exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg). At 48 h post-PCB exposure, mice were subsequently given a single gavage of phosphatidylcholine dissolved in corn oil. Exposure to 5 μmole/kg PCB 126 resulted in greater than 100-fold increase in FMO3 mRNA expression, robust induction of FMO3 protein, and a 5-fold increase in TMAO levels compared with vehicle treated mice. We made similar observations in mice exposed to PCB 77 (49.6 mg/kg twice); stable isotope tracer studies revealed increased formation of plasma TMAO from an orally administered precursor trimethylamine (TMA). Taken together, these observations suggest a novel diet-toxicant interaction that results in increased production of a circulating biomarker of cardiovascular disease risk. PMID:27155921

  5. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    PubMed

    Lopez-Quintero, Sandra V; Cancel, Limary M; Pierides, Alexis; Antonetti, David; Spray, David C; Tarbell, John M

    2013-01-01

    Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  6. High Glucose Attenuates Shear-Induced Changes in Endothelial Hydraulic Conductivity by Degrading the Glycocalyx

    PubMed Central

    Lopez-Quintero, Sandra V.; Cancel, Limary M.; Pierides, Alexis; Antonetti, David; Spray, David C.; Tarbell, John M.

    2013-01-01

    Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques. PMID:24260138

  7. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration.

    PubMed

    Sackstein, Robert

    2009-07-01

    During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.

  8. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?☆

    PubMed Central

    Cortese-Krott, Miriam M.; Kelm, Malte

    2014-01-01

    Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO sinks”, but exert an erythrocrine function – i.e an endocrine function of RBC – by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology. PMID:24494200

  9. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    PubMed

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  10. Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    PubMed Central

    Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756

  11. Two barriers for sodium in vascular endothelium?

    PubMed Central

    Oberleithner, Hans

    2012-01-01

    Vascular endothelium plays a key role in blood pressure regulation. Recently, it has been shown that a 5% increase of plasma sodium concentration (sodium excess) stiffens endothelial cells by about 25%, leading to cellular dysfunction. Surface measurements demonstrated that the endothelial glycocalyx (eGC), an anionic biopolymer, deteriorates when sodium is elevated. In view of these results, a two-barrier model for sodium exiting the circulation across the endothelium is suggested. The first sodium barrier is the eGC which selectively buffers sodium ions with its negatively charged prote-oglycans.The second sodium barrier is the endothelial plasma membrane which contains sodium channels. Sodium excess, in the presence of aldosterone, leads to eGC break-down and, in parallel, to an up-regulation of plasma membrane sodium channels. The following hypothesis is postulated: Sodium excess increases vascular sodium permeability. Under such con-ditions (e.g. high-sodium diet), day-by-day ingested sodium, instead of being readily buffered by the eGC and then rapidly excreted by the kidneys, is distributed in the whole body before being finally excreted. Gradually, the sodium overload damages the organism. PMID:22471931

  12. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Martovitskaya, Yulia V.; Berezina, Tatyana A.; Gromenko, Elena A.

    2016-01-01

    Background Chronic heart failure (HF) remains a leading cause of cardiovascular (CV) mortality and morbidity worldwide. The aim of the study was to investigate whether the pattern of angiogenic endothelial progenitor cells (EPCs) and apoptotic endothelial cell-derived microparticles (EMPs) would be able to differentiate HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction. Methods One hundred sixty four chronic HF subjects met inclusion criteria. Patients with global left ventricular ejection fraction ≥ 50% were categorized as the HFpEF group (n = 79) and those with ≤ 45% as the HFrEF group (n = 85). Therefore, to compare the circulating levels of biological markers 35 control subjects without HF were included in the study. All control individuals were age- and sex-matched chronic HF patients. The serum level of biomarkers was measured at baseline. The flow cytometric technique was used for predictably distinguishing circulating cell subsets depending on expression of CD45, CD34, CD14, Tie-2, and CD309 antigens and determining endothelial cell-derived microparticles. CD31+/annexin V+ was defined as apoptotic endothelial cell-derived MPs, MPs labeled for CD105+ or CD62E+ were determined as MPs produced due to activation of endothelial cells. Results In multivariate logistic regression model T2DM (R2 = 0.26; P = 0.001), obesity (R2 = 0.22; P = 0.001), previous MI (R2 = 0.17; P = 0.012), galectin-3 (R2 = 0.67; P = 0.012), CD31+/annexin V+ EMPs (R2 = 0.11; P = 0.001), NT-proBNP (R2 = 0.11; P = 0.046), CD14+ CD309+ cells (R2 = 0.058; P = 0.001), and CD14+ СD309+ Tie-2+ cells (R2 = 0.044; P = 0.028) were found as independent predictors of HFpEF. Using multivariate Cox-regression analysis adjusted etiology (previous myocardial infarction), cardiovascular risk factors (obesity, type 2 diabetes mellitus) we found that NT-proBNP (OR 1.08; 95% CI = 1.03–1.12; P = 0.001) and CD31+/annexin V+ EMPs to CD14+ CD309+ cell ratio (OR 1.06; 95% CI = 1.02–1.11; P = 0.02) were independent predictors for HFpEF. Conclusion We found that CD31+/annexin V+ EMPs to CD14+ CD309+ cell ratio added to NT-proBNP, clinical data, and cardiovascular risk factors has exhibited the best discriminate value and higher reliability to predict HFpEF compared with NT-proBNP and clinical data/cardiovascular risk factors alone. PMID:26981573

  13. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-08-01

    Exposure to ambient air pollution has been associated with endothelial dysfunction as reflected by short-term alterations in circulating biomarkers, but the chemical constituents and pollution sources behind the association has been unclear. We investigated the associations between various ambient air pollutants including gases and 31 chemical constituents and seven sources of fine particles (PM2.5) and biomarkers of endothelial function, including endothelin-1 (ET-1), E-selectin, soluble intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), based on 462 repeated measurements in a panel of 40 college students who were followed for three study periods before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. Air pollution data were obtained from central air-monitoring stations. Linear mixed-effects models were used to estimate the changes in biomarkers associated with exposures. Total PM2.5 mass showed few appreciable associations with examined biomarkers. However, several PM2.5 constituents and related sources showed significant associations with examined biomarkers. PM2.5 from dust/soil and several crustal and transition metals, including strontium, iron, titanium, cobalt and magnesium, were significantly associated with increases in ET-1 at 1-day average; manganese and potassium were significantly associated with increases in ICAM-1 at 2-day average; and PM2.5 from industry and metal cadmium were significantly associated with decreases in VCAM-1 at 1-day average. In addition, carbon monoxide was significantly associated with increasing ICAM-1 at 1-day and 2-day averages, whereas nitric oxide was significantly associated with decreasing ICAM-1 at 1-day and 3-day averages. Our results suggest that certain PM2.5 metal constituents were more closely associated with circulating biomarkers of endothelial function than PM2.5, and therefore highlight the research necessity to examine pollution chemical constituents in future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris

    PubMed Central

    Chen, Shuiyu; Sun, Yukun; Neoh, Kuang Hong; Chen, Anqi; Li, Weiju; Yang, Xiaorui

    2017-01-01

    Background Circulating endothelial cells (CECs) are widely reported as a promising biomarker of endothelial damage/dysfunction in coronary artery disease (CAD). The two popular methods of CEC quantification include the use of immunomagnetic beads separation (IB) and flow cytometry analysis (FC); however, they suffer from two main shortcomings that affect their diagnostic and prognostic responses: non-specific bindings of magnetic beads to non-target cells and a high degree of variability in rare cell identification, respectively. We designed a microfluidic chip with spatially staggered micropillars for the efficient harvesting of CECs with intact cellular morphology in an attempt to revisit the diagnostic goal of CEC counts in CAD patients with angina pectoris. Methods A label-free microfluidic assay that involved an in-situ enumeration and immunofluorescent identification (DAPI+/CD146+/VEGFR1+/CD45-) of CECs was carried out to assess the CEC count in human peripheral blood samples. A total of 55 CAD patients with angina pectoris [16 with chronic stable angina (CSA) and 39 with unstable angina (UA)], together with 15 heathy controls (HCs) were enrolled in the study. Results CEC counts are significantly higher in both CSA and UA groups compared to the HC group [respective medians of 6.9, 10.0 and 1.5 cells/ml (p < 0.01)]. Further, a significant elevation of CEC count was observed in the three UA subgroups [low risk (5.3) vs. intermediate risk (10.8) vs. high risk (18.0) cells/ml, p < 0.001) classified in accordance to the TIMI NSTEMI/UA risk score system. From the receiver-operating characteristic curve analysis, the AUCs for distinguishing CSA and UA from HC were 0.867 and 0.938, respectively. The corresponding sensitivities were 87.5% and 84.6% and the specificities were 66.7% and 86.7%, respectively. Conclusions Our microfluidic assay system is efficient and stable for CEC capture and enumeration. The results showed that the CEC count has the potential to be a promising clinical biomarker for the assessment of endothelial damage/dysfunction in CAD patients with angina pectoris. PMID:28704506

  15. Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris.

    PubMed

    Chen, Shuiyu; Sun, Yukun; Neoh, Kuang Hong; Chen, Anqi; Li, Weiju; Yang, Xiaorui; Han, Ray P S

    2017-01-01

    Circulating endothelial cells (CECs) are widely reported as a promising biomarker of endothelial damage/dysfunction in coronary artery disease (CAD). The two popular methods of CEC quantification include the use of immunomagnetic beads separation (IB) and flow cytometry analysis (FC); however, they suffer from two main shortcomings that affect their diagnostic and prognostic responses: non-specific bindings of magnetic beads to non-target cells and a high degree of variability in rare cell identification, respectively. We designed a microfluidic chip with spatially staggered micropillars for the efficient harvesting of CECs with intact cellular morphology in an attempt to revisit the diagnostic goal of CEC counts in CAD patients with angina pectoris. A label-free microfluidic assay that involved an in-situ enumeration and immunofluorescent identification (DAPI+/CD146+/VEGFR1+/CD45-) of CECs was carried out to assess the CEC count in human peripheral blood samples. A total of 55 CAD patients with angina pectoris [16 with chronic stable angina (CSA) and 39 with unstable angina (UA)], together with 15 heathy controls (HCs) were enrolled in the study. CEC counts are significantly higher in both CSA and UA groups compared to the HC group [respective medians of 6.9, 10.0 and 1.5 cells/ml (p < 0.01)]. Further, a significant elevation of CEC count was observed in the three UA subgroups [low risk (5.3) vs. intermediate risk (10.8) vs. high risk (18.0) cells/ml, p < 0.001) classified in accordance to the TIMI NSTEMI/UA risk score system. From the receiver-operating characteristic curve analysis, the AUCs for distinguishing CSA and UA from HC were 0.867 and 0.938, respectively. The corresponding sensitivities were 87.5% and 84.6% and the specificities were 66.7% and 86.7%, respectively. Our microfluidic assay system is efficient and stable for CEC capture and enumeration. The results showed that the CEC count has the potential to be a promising clinical biomarker for the assessment of endothelial damage/dysfunction in CAD patients with angina pectoris.

  16. Inflammatory response and extracorporeal circulation.

    PubMed

    Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander

    2015-06-01

    Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    PubMed

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  18. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults.

    PubMed

    Wilson, Carole L; Gough, Peter J; Chang, Cindy A; Chan, Christina K; Frey, Jeremy M; Liu, Yonggang; Braun, Kathleen R; Chin, Michael T; Wight, Thomas N; Raines, Elaine W

    2013-01-01

    Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf(-/-) valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Role of homocysteinylation of ACE in endothelial dysfunction of arteries

    PubMed Central

    Huang, An; Pinto, John T.; Froogh, Ghezal; Kandhi, Sharath; Qin, Jun; Wolin, Michael S.; Hintze, Thomas H.

    2014-01-01

    The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1–0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE. PMID:25416191

  20. Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.

    PubMed

    Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng

    2016-12-01

    The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.

Top