2011-01-01
Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I. PMID:21867536
Normal growth and development in the absence of hepatic insulin-like growth factor I
Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek
1999-01-01
The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413
Elevated circulating IGF-I promotes mammary gland development and proliferation.
Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek
2010-12-01
Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.
Santi, A; Genis, L; Torres Aleman, I
2018-06-01
In response to injury, the brain produces different neuroprotective molecules, such as insulin-like growth factor I (IGF-I). However, IGF-I is also taken up by the brain from the circulation in response to physiological stimuli. Herein, we analyzed in mice the relative contribution of circulating and locally produced IGF-I to increased brain IGF-I levels after insult. Traumatic brain injury (TBI) induced by a controlled impact resulted in increased IGF-I levels in the vicinity of the lesion, but mice with low serum IGF-I showed significantly lower increases. Indeed, in normal mice, peripheral IGF-I accumulated at the lesion site after injury, and at the same time serum IGF-I levels decreased. Collectively, these data suggest that serum IGF-I enter into the brain after TBI and contributes to increased brain IGF-I levels at the injury site. This connection between central and circulating IGF-I provides an amenable route for treatment, as subcutaneous administration of IGF-I to TBI mice led to functional recovery. These latter results add further support to the use of systemic IGF-I or its mimetics for treatment of brain injuries.
Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy
2011-01-01
Background Caused by Mycobacterium leprae (ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems. Methods In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method. Results The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I behaved contrary to what was observed during RR episodes in R BL patients. Conclusions Our data revealed important alterations in the IGF system in relation to the status of the host immune-inflammatory response to ML while at the same time pointing to the circulating IGF-I/IGFBP-3 levels as possible predictive biomarkers for ENL in LL patients at diagnosis. PMID:22166091
Patel, Alpa V; Cheng, Iona; Canzian, Federico; Le Marchand, Loïc; Thun, Michael J; Berg, Christine D; Buring, Julie; Calle, Eugenia E; Chanock, Stephen; Clavel-Chapelon, Francoise; Cox, David G; Dorronsoro, Miren; Dossus, Laure; Haiman, Christopher A; Hankinson, Susan E; Henderson, Brian E; Hoover, Robert; Hunter, David J; Kaaks, Rudolf; Kolonel, Laurence N; Kraft, Peter; Linseisen, Jakob; Lund, Eiliv; Manjer, Jonas; McCarty, Catherine; Peeters, Petra H M; Pike, Malcolm C; Pollak, Michael; Riboli, Elio; Stram, Daniel O; Tjonneland, Anne; Travis, Ruth C; Trichopoulos, Dimitrios; Tumino, Rosario; Yeager, Meredith; Ziegler, Regina G; Feigelson, Heather Spencer
2008-07-02
IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.
Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory
2005-07-01
Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.
List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J
2014-05-01
GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.
Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes. PMID:29534073
Botusan, Ileana Ruxandra; Zheng, Xiaowei; Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.
Perice, Leland; Barzilai, Nir; Verghese, Joe; Weiss, Erica F; Holtzer, Roee; Cohen, Pinchas; Milman, Sofiya
2016-10-14
Mutations that reduce somatotropic signaling result in improved lifespan and health-span in model organisms and humans. However, whether reduced circulating insulin-like growth factor-I (IGF-I) level is detrimental to cognitive and muscle function in older adults remains understudied. A cross-sectional analysis was performed in Ashkenazi Jews with exceptional longevity (age ≥95 years). Cognition was assessed using the Mini-Mental State Examination and muscle function with the chair rise test, grip-strength, and gait speed. Muscle mass was estimated using the skeletal muscle index. Serum IGF-I was measured with liquid chromatography mass spectrometry. In gender stratified age-adjusted logistic regression analysis, females with IGF-I levels in the first tertile had lower odds of being cognitively impaired compared to females with IGF-I levels within the upper two tertiles, OR (95% CI) 0.39 (0.19-0.82). The result remained significant after adjustment for multiple parameters. No significant association was identified in males between IGF-I and cognition. No relationship was found between IGF-I tertiles and muscle function and muscle mass in females or males. Lower circulating IGF-I is associated with better cognitive function in females with exceptional longevity, with no detriment to skeletal muscle mass and function.
Fuchs, Charles S; Goldberg, Richard M; Sargent, Daniel J; Meyerhardt, Jeffrey A; Wolpin, Brian M; Green, Erin M; Pitot, Henry C; Pollak, Michael
2008-12-15
Insulin-like growth factor (IGF)-I and IGF-II stimulate neoplastic cell growth and inhibit apoptosis, whereas IGF-binding protein-3 (IGFBP-3) inhibits the bioavailability of IGF-I and has independent proapoptotic activity. We examined the influence of baseline plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide on outcome among patients receiving first-line chemotherapy for metastatic colorectal cancer. The plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide as well as data on prognostic factors and body size were measured at baseline among 527 patients participating in a randomized trial of first-line chemotherapy for metastatic colorectal cancer. Higher baseline plasma IGFBP-3 levels were associated with a significantly greater chemotherapy response rate (P = 0.03) after adjusting for other prognostic factors, whereas neither IGF-I nor IGF-II levels significantly predicted tumor response. Higher levels of IGF-I, IGF-II, and IGFBP-3 were all univariately associated with improved overall survival (P = 0.0001 for all). In a model that mutually adjusted for IGF-I and IGFBP-3, as well as other prognostic factors, increasing baseline-circulating IGFBP-3 was associated with a significantly longer time to tumor progression (P = 0.03), whereas circulating IGF-I was not associated with disease progression (P = 0.95). Levels of C-peptide were not associated with any measure of patient outcome. Among colorectal cancer patients receiving first-line chemotherapy, increasing levels of IGFBP-3, an endogenous antagonist to IGF-I, are associated with an improved objective treatment response and a prolonged time to cancer progression. The IGF pathway may represent an important target for future treatment strategies.
Dearth, Robert K.; Delgado, David A.; Hiney, Jill K; Pathiraja, Thushangi; Oesterreich, Steffi; Medina, Dan; Dees, W. Les; Lee, Adrian V.
2009-01-01
Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is in part linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/IGF-I axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar-Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and aged-matched virgin (AMV) female rats. Mean serum GH levels were significantly decreased (p<0.01) in parous compared to AMV in both rat strains. Changes in GH levels were independent of estrous cycle, indicated by a significant (p<0.05) reduction in circulating levels of GH during estrus and diestrus in both parous strains. Despite the decrease in circulating GH, pituitary GH mRNA levels were unaltered in parous rats. Circulating IGF-I and hepatic IGF-I mRNA were also unaltered by parity in either rat strain. Immunoblot analysis of mammary glands showed decreases in phosphorylation of Stat5A and Jak2, suggesting reduced action of GH in the mammary gland. Therefore, while the parity reduction in circulating GH doesn’t impact upon circulating IGF-I levels, it is possible that reduced GH action directly at the mammary gland and may play a role in pregnancy protection from breast cancer. PMID:20145191
Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice
Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I
2013-01-01
Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648
IGF-I gene variability is associated with an increased risk for AD.
Vargas, Teo; Martinez-Garcia, Ana; Antequera, Desiree; Vilella, Elisabet; Clarimon, Jordi; Mateo, Ignacio; Sanchez-Juan, Pascual; Rodriguez-Rodriguez, Eloy; Frank, Ana; Rosich-Estrago, Marcel; Lleo, Alberto; Molina-Porcel, Laura; Blesa, Rafael; Gomez-Isla, Teresa; Combarros, Onofre; Bermejo-Pareja, Felix; Valdivieso, Fernando; Bullido, Maria Jesus; Carro, Eva
2011-03-01
Insulin-like growth factor I (IGF-I), a neuroprotective factor with a wide spectrum of actions in the adult brain, is involved in the pathogenesis of Alzheimer's disease (AD). Circulating levels of IGF-I change in AD patients and are implicated in the clearance of brain amyloid beta (Aβ) complexes. To investigate this hypothesis, we screened the IGF-I gene for various well known single nucleotide polymorphisms (SNPs) covering % of the gene variability in a population of 2352 individuals. Genetic analysis indicated different distribution of genotypes of 1 single nucleotide polymorphism, and 1 extended haplotype in the AD population compared with healthy control subjects. In particular, the frequency of rs972936 GG genotype was significantly greater in AD patients than in control subjects (63% vs. 55%). The rs972936 GG genotype was associated with an increased risk for disease, independently of apolipoprotein E genotype, and with enhanced circulating levels of IGF-I. These findings suggest that polymorphisms within the IGF-I gene could infer greater risk for AD through their effect on IGF-I levels, and confirm the physiological role IGF-I in the pathogenesis of AD. Copyright © 2011 IBRO. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Objective of this research was to evaluate effects of 2 levels of supplemental feed provided to cows during late gestation and 2 levels of feed provided to their daughters during postweaning development on circulating concentrations of IGF-I in the daughters before calving, after calving and before ...
Ramos-Dias, J C; Yateman, M; Camacho-Hübner, C; Grossman, A; Lengyel, A M
1995-11-01
Several abnormalities in the GH response to pharmacological stimuli have been described in hyperthyroidism. Both normal and high serum IGF-I levels have been reported, as well as a decrease in IGF-I bioactivity. We have evaluated the GH response to GH-releasing hormone (GHRH) in hyperthyroid patients and the effects of hyperthyroidism on serum IGF-I levels. The possible relations between nutritional status, thyroid hormones and IGF-I levels were also investigated. We also studied the influence of long-term beta-adrenoceptor blockade on the GH response to GHRH in these patients. In 18 hyperthyroid patients and in 12 control subjects, GHRH (100 micrograms) was administered as an i.v. bolus injection. Eight hyperthyroid patients and 8 control subjects received 50 micrograms GHRH i.v. Seven hyperthyroid patients were reevaluated after beta-adrenoceptor blockade. IGF-I and albumin levels were measured initially in all hyperthyroid patients and control subjects. Body composition was determined in 11 hyperthyroid patients and in a group of 33 matched normal controls. Hyperthyroid patients were compared to control subjects. GH, TSH and free T4 were measured by immunofluorometric assay. IGF-I, total T3 and total T4 were measured by radioimmunoassay. Body composition was determined using a dual-energy X-ray absorptiometer. The GH response to 100 micrograms GHRH in hyperthyroid patients was blunted compared to control subjects. The mean peak GH levels and the area under the curve were significantly lower in hyperthyroid patients compared to control subjects (11 +/- 1 vs 27 +/- 5 micrograms/l and 820 +/- 113 vs 1879 +/- 355 micrograms/l 120 min, respectively; P < 0.01). IGF-I levels were significantly reduced in hyperthyroid patients compared to controls (131 +/- 10 vs 201 +/- 16 micrograms/l, respectively; P < 0.01). Ideal body weight, serum albumin levels and the lean body mass were also reduced in hyperthyroid patients. After beta-adrenoceptor blockade there were no changes in the blunted GH response to GHRH in hyperthyroid patients. Our data suggest that the blunted GH response to GHRH in hyperthyroidism is apparently not related to circulating IGF-I levels. It is possible that nutritional factors could play a role in the reduced circulating IGF-I levels found in these patients.
D'Addio, Francesca; La Rosa, Stefano; Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Ben Nasr, Moufida; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo
2015-10-01
The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report that T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-I) and its binding protein 3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-I-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-I/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-I/IGFBP3 controls CoSCs and their dysfunction in DE. Copyright © 2015 Elsevier Inc. All rights reserved.
Teumer, Alexander; Qi, Qibin; Nethander, Maria; Aschard, Hugues; Bandinelli, Stefania; Beekman, Marian; Berndt, Sonja I; Bidlingmaier, Martin; Broer, Linda; Cappola, Anne; Ceda, Gian Paolo; Chanock, Stephen; Chen, Ming-Huei; Chen, Tai C; Chen, Yii-Der Ida; Chung, Jonathan; Del Greco Miglianico, Fabiola; Eriksson, Joel; Ferrucci, Luigi; Friedrich, Nele; Gnewuch, Carsten; Goodarzi, Mark O; Grarup, Niels; Guo, Tingwei; Hammer, Elke; Hayes, Richard B; Hicks, Andrew A; Hofman, Albert; Houwing-Duistermaat, Jeanine J; Hu, Frank; Hunter, David J; Husemoen, Lise L; Isaacs, Aaron; Jacobs, Kevin B; Janssen, Joop A M J L; Jansson, John-Olov; Jehmlich, Nico; Johnson, Simon; Juul, Anders; Karlsson, Magnus; Kilpelainen, Tuomas O; Kovacs, Peter; Kraft, Peter; Li, Chao; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lorentzon, Mattias; Lu, Yingchang; Maggio, Marcello; Magi, Reedik; Meigs, James; Mellström, Dan; Nauck, Matthias; Newman, Anne B; Pollak, Michael N; Pramstaller, Peter P; Prokopenko, Inga; Psaty, Bruce M; Reincke, Martin; Rimm, Eric B; Rotter, Jerome I; Saint Pierre, Aude; Schurmann, Claudia; Seshadri, Sudha; Sjögren, Klara; Slagboom, P Eline; Strickler, Howard D; Stumvoll, Michael; Suh, Yousin; Sun, Qi; Zhang, Cuilin; Svensson, Johan; Tanaka, Toshiko; Tare, Archana; Tönjes, Anke; Uh, Hae-Won; van Duijn, Cornelia M; van Heemst, Diana; Vandenput, Liesbeth; Vasan, Ramachandran S; Völker, Uwe; Willems, Sara M; Ohlsson, Claes; Wallaschofski, Henri; Kaplan, Robert C
2016-10-01
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.
2011-01-01
Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689
Laatikainen, T; Anttila, L; Suikkari, A M; Ruutiainen, K; Erkkola, R; Seppälä, M
1990-09-01
Insulin and insulin-like growth factors (IGFs) stimulate ovarian steroidogenesis, and hyperinsulinemia is often accompanied by hyperandrogenemia in women with polycystic ovarian disease (PCOD). Because opioid peptides are involved in the regulation of insulin secretion, we studied the effect of naloxone-induced opiate receptor blockade on the circulating levels of insulin, IGF-I, and IGF binding protein 1 (IGFBP-1) in 13 nonobese and 7 obese PCOD patients and in 6 healthy subjects. In obese PCOD patients, the mean basal insulin concentration was significantly higher and the IGFBP-1 concentration lower than in nonobese PCOD patients. Plasma IGF-I levels were elevated both in obese and nonobese PCOD patients. After an intravenous bolus of 10 mg naloxone, no significant changes were found in the circulating insulin or IGF-I levels, whereas IGFBP-1 levels decreased in nonobese PCOD patients and remained low in obese PCOD patients. No significant decrease was found in healthy subjects. These results suggest that, in addition to insulin, endogenous opioids are involved in the regulation of serum IGFBP-1 level.
Horne, Hisani N; Sherman, Mark E; Pfeiffer, Ruth M; Figueroa, Jonine D; Khodr, Zeina G; Falk, Roni T; Pollak, Michael; Patel, Deesha A; Palakal, Maya M; Linville, Laura; Papathomas, Daphne; Geller, Berta; Vacek, Pamela M; Weaver, Donald L; Chicoine, Rachael; Shepherd, John; Mahmoudzadeh, Amir Pasha; Wang, Jeff; Fan, Bo; Malkov, Serghei; Herschorn, Sally; Hewitt, Stephen M; Brinton, Louise A; Gierach, Gretchen L
2016-02-18
Terminal duct lobular units (TDLUs) are the primary structures from which breast cancers and their precursors arise. Decreased age-related TDLU involution and elevated mammographic density are both correlated and independently associated with increased breast cancer risk, suggesting that these characteristics of breast parenchyma might be linked to a common factor. Given data suggesting that increased circulating levels of insulin-like growth factors (IGFs) factors are related to reduced TDLU involution and increased mammographic density, we assessed these relationships using validated quantitative methods in a cross-sectional study of women with benign breast disease. Serum IGF-I, IGFBP-3 and IGF-I:IGFBP-3 molar ratios were measured in 228 women, ages 40-64, who underwent diagnostic breast biopsies yielding benign diagnoses at University of Vermont affiliated centers. Biopsies were assessed for three separate measures inversely related to TDLU involution: numbers of TDLUs per unit of tissue area ("TDLU count"), median TDLU diameter ("TDLU span"), and number of acini per TDLU ("acini count"). Regression models, stratified by menopausal status and adjusted for potential confounders, were used to assess the associations of TDLU count, median TDLU span and median acini count per TDLU with tertiles of circulating IGFs. Given that mammographic density is associated with both IGF levels and breast cancer risk, we also stratified these associations by mammographic density. Higher IGF-I levels among postmenopausal women and an elevated IGF-I:IGFBP-3 ratio among all women were associated with higher TDLU counts, a marker of decreased lobular involution (P-trend = 0.009 and <0.0001, respectively); these associations were strongest among women with elevated mammographic density (P-interaction <0.01). Circulating IGF levels were not significantly associated with TDLU span or acini count per TDLU. These results suggest that elevated IGF levels may define a sub-group of women with high mammographic density and limited TDLU involution, two markers that have been related to increased breast cancer risk. If confirmed in prospective studies with cancer endpoints, these data may suggest that evaluation of IGF signaling and its downstream effects may have value for risk prediction and suggest strategies for breast cancer chemoprevention through inhibition of the IGF system.
Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M
2014-02-01
The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. © 2013.
Travis, Ruth C.; Appleby, Paul N.; Martin, Richard M.; Holly, Jeff M.P.; Albanes, Demetrius; Black, Amanda; Bueno-de-Mesquita, H.B(as).; Chan, June M.; Chen, Chu; Chirlaque, Maria-Dolores; Cook, Michael B.; Deschasaux, Mélanie; Donovan, Jenny L.; Ferrucci, Luigi; Galan, Pilar; Giles, Graham G.; Giovannucci, Edward L.; Gunter, Marc J.; Habel, Laurel A.; Hamdy, Freddie C.; Helzlsouer, Kathy J.; Hercberg, Serge; Hoover, Robert N.; Janssen, Joseph A.M.J.L.; Kaaks, Rudolf; Kubo, Tatsuhiko; Le Marchand, Loic; Metter, E. Jeffrey; Mikami, Kazuya; Morris, Joan K.; Neal, David E.; Neuhouser, Marian L.; Ozasa, Kotaro; Palli, Domenico; Platz, Elizabeth A.; Pollak, Michael; Price, Alison J.; Roobol, Monique J.; Schaefer, Catherine; Schenk, Jeannette M.; Severi, Gianluca; Stampfer, Meir J.; Stattin, Pär; Tamakoshi, Akiko; Tangen, Catherine M.; Touvier, Mathilde; Wald, Nicholas J.; Weiss, Noel S.; Ziegler, Regina G.
2016-01-01
The role of insulin-like growth factors (IGFs) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the odds ratios (ORs) for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was weakly inversely associated with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval=1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development. PMID:26921328
Nordstrom, Sarah M; Tran, Jennifer L; Sos, Brandon C; Wagner, Kay-Uwe; Weiss, Ethan J
2011-07-01
The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.
Jung, Su Yon; Hursting, Stephen D.; Guindani, Michele; Vitolins, Mara Z.; Paskett, Electra; Chang, Shine
2014-01-01
Background Weight gain, insulin-like growth factor-I (IGF-I) levels, and excess exogenous steroid hormone use are putative cancer risk factors, yet their interconnected pathways have not been fully characterized. This cross-sectional study investigated the relationship between plasma IGF-I levels and weight gain according to body mass index (BMI), leptin levels, and exogenous estrogen use among postmenopausal women. Methods This study included 794 postmenopausal women who enrolled in an ancillary study of the Women's Health Initiative Observational Study between February 1995 and July 1998. The relationship between IGF-I levels and weight gain was analyzed using ordinal logistic regression. We used the molar ratio of IGF-I to IGF binding protein-3 (IGF-I/IGFBP-3) or circulating IGF-I levels adjusting for IGFBP-3 as a proxy of bioavailable IGF-I. The plasma concentrations were expressed as quartiles. Results Among the obese group, women in the third quartile (Q3) of IGF-I and highest quartile of IGF-I/IGFBP-3 were less likely to gain weight (>3% from baseline) than were women in the first quartiles (Q1). Among the normal weight group, women in Q2 and Q3 of IGF-I/IGFBP-3 were 70% less likely than those in Q1 to gain weight. Among current estrogen users, Q3 of IGF-I/IGFBP-3 had 0.5 times the odds of gaining weight than Q1. Conclusions Bioavailable IGF-I levels were inversely related to weight gain overall. Impact Although weight gain was not consistent with increases in IGF-I levels among postmenopausal women in this report, avoidance of weight gain as a strategy to reduce cancer risk may be recommend. PMID:24363252
Hedman, Christina A; Frystyk, Jan; Fridell, Karin; Jönsson, Anna; Flyvbjerg, Allan; Lindström, Torbjörn; Arnqvist, Hans J
2005-08-01
In type 1 diabetes the circulating IGF-system is altered with low IGF-I and changes in levels of IGF-binding proteins (IGFBPs) which may be of importance for the development of diabetes complications. Our aim was to study if IGF-I, as supported by experimental data in animals, can be affected by dietary protein intake. Twelve patients with type 1 diabetes, age 37.5+/-10.0 years (mean+/-SD), diabetes duration 20.1+/-9.3 years and HbA1c 6.3+/-0.6% were allocated to isocaloric diets with either low normal protein content (LNP), (10 E%; 0.9 g protein/kg body weight) or high normal protein content (HNP) (20 E%; 1.8 g protein/kg body weight) in an open randomised cross-over study. Each diet was taken for 10 days with a wash-out period of 11 days in between. Circulating levels of total and free IGF-I and -II, IGFBP-1, -2 and -3 and GH-binding protein (GHBP) as well as ghrelin were measured with validated in-house immunoassays. At day 10, urinary urea excretion was 320+/-75 mmol/24h during LNP diet compared with 654+/-159 mmol/24h during HNP diet (p<0.001). There were no changes in body weight or glycaemic control between the diets. Fasting levels of total IGF-I were 121+/-33 microg/L after LNP and 117+/-28 microg/L after HNP diet (ns) and the corresponding concentrations of IGFBP-1 were 142(141) and 132(157)mug/L [median (IQR)] (ns). There were no differences in plasma concentrations of total IGF-II, free IGF-I and -II, IGFBP-3, GHBP and ghrelin, whereas a small difference was found for IGFBP-2 (302+/-97 vs. 263+/-66 microg/L; LNP vs. HNP; p<0.04). A twofold change of the dietary protein intake does not influence the altered circulating IGF-system in type 1 diabetes. In order to affect the IGF-system other interventions must be used.
Bonilla, Carolina; Lewis, Sarah J; Rowlands, Mari-Anne; Gaunt, Tom R; Davey Smith, George; Gunnell, David; Palmer, Tom; Donovan, Jenny L; Hamdy, Freddie C; Neal, David E; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Grönberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lathrop, Mark; Martin, Richard M; Holly, Jeff M P
2016-10-01
Circulating insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are associated with prostate cancer. Using genetic variants as instruments for IGF peptides, we investigated whether these associations are likely to be causal. We identified from the literature 56 single nucleotide polymorphisms (SNPs) in the IGF axis previously associated with biomarker levels (8 from a genome-wide association study [GWAS] and 48 in reported candidate genes). In ∼700 men without prostate cancer and two replication cohorts (N ∼ 900 and ∼9,000), we examined the properties of these SNPS as instrumental variables (IVs) for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Those confirmed as strong IVs were tested for association with prostate cancer risk, low (< 7) vs. high (≥ 7) Gleason grade, localised vs. advanced stage, and mortality, in 22,936 controls and 22,992 cases. IV analysis was used in an attempt to estimate the causal effect of circulating IGF peptides on prostate cancer. Published SNPs in the IGFBP1/IGFBP3 gene region, particularly rs11977526, were strong instruments for IGF-II and IGFBP-3, less so for IGF-I. Rs11977526 was associated with high (vs. low) Gleason grade (OR per IGF-II/IGFBP-3 level-raising allele 1.05; 95% CI: 1.00, 1.10). Using rs11977526 as an IV we estimated the causal effect of a one SD increase in IGF-II (∼265 ng/mL) on risk of high vs. low grade disease as 1.14 (95% CI: 1.00, 1.31). Because of the potential for pleiotropy of the genetic instruments, these findings can only causally implicate the IGF pathway in general, not any one specific biomarker. © 2016 UICC.
[Physiological significance of IGF-I and its binding proteins on fetal growth and maturation].
Iwashita, M
1994-08-01
Insulin-like growth factor-I (IGF-I) is one of growth factors that circulates bound to specific, high affinity binding proteins (IGFBPs). Physiological significance of IGF-I and IGFBPs on fetal growth is investigated in this study. In mother, circulating levels of IGF-I are increased during pregnancy in which placental hormones take the place of pituitary GH to regulate IGF-I during pregnancy and correlates with fetal birth weight. IGFBPs except IGFBP-1 in the maternal circulation are markedly reduced compared to those of non pregnant women due to increased activity of protease(s) while IGFBP-1 gradually increased throughout pregnancy and negatively correlates with fetal weight. IGF-I stimulated 3H-AIB uptake and release by cultured trophoblast cells in a dose dependent manner. Furthermore, fetal growth and the transfer of 3H-AIB to fetus is inhibited when IGF-I is neutralized by polyclonal antibody. These results indicate that maternal IGF-I stimulates fetal growth by activating placental transport of nutrients to fetus. In contrast, IGFBP-1 inhibits both 125I-IGF-I binding to placental membrane and 3H-glycine uptake of trophoblast cells by IGF-I in a dose dependent manner. Moreover, fetal growth and the transfer of 3H-AIB to fetus are accelerated when IGFBP-1 is neutralized by polyclonal antibody, suggesting that maternal IGFBP-1 inhibits fetal growth by inhibiting IGF-I action on the placenta. IGF-I and four IGFBPs including IGFBP-1, -2, -3, and -4 are localized in cytotrophoblast of term placenta. Similarly IGFBP-1, -2, and -4 are detected in medium conditioned by term decidua cells by Western ligand blot in which release of IGFBP-1 and -4 are diminished by IGF-I and all three IGFBPs are increased by progesterone. Thus, there is a complicated autocrine/paracrine regulation between decidua and placenta and IGF-I action on fetal growth is presumed to be modified by this local regulation. Fetal levels of IGF-I and IGFBP-1 are positively and negatively correlate with fetal weight, respectively. The isomers of phosphorylated IGFBP-1 in cord sera are separated by anion ion exchange chromatography in which one nonphosphorylated and four phosphorylated IGFBP-1 are detected. In pared blood samples from mid-term delivery, percentage of nonphosphorylated IGFBP-1 is higher in fetal blood compared to those in mother. Similarly, percentage of nonphosphorylated IGFBP-1 is elevated in AFD infants than is SFD infants from term delivery. Thus, the proportion of nonphosphorylated and phosphorylated isomers of IGFBP-1 varies corresponding to fetal growth.(ABSTRACT TRUNCATED AT 400 WORDS)
Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard
2007-01-01
This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.
Vitolins, Mara Z.; Paskett, Electra D.; Chang, Shine
2015-01-01
Background. The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race–IGF-I relationship in postmenopausal women. Methods. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women’s Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race–IGF-I relationship, we used the Baron–Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Results. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race–IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Conclusions. Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. PMID:25238773
Gatford, K L; Quinn, K J; Walton, P E; Grant, P A; Hosking, B J; Egan, A R; Owens, P C
1997-10-01
The ontogeny of the IGF endocrine system was investigated in 15 young lambs before and after weaning at 62 days of age. Before weaning, plasma IGF-I concentrations were higher in rams than ewes, and plasma concentrations of IGF-II and IGF-binding protein-3 (IGFBP-3) also tended to be higher in rams than in ewes. Feed intake of ewes and rams was restricted after weaning to remove sex differences in feed intake. Plasma concentrations of IGF-I and IGFBP-3 did not differ between rams and ewes at 100 days of age, but plasma IGF-II was higher in rams than in ewes at this time. Since circulating concentrations of GH were higher in rams than in ewes at 100 days of age, this implies that the restricted feed intake blocked the IGF-I and IGFBP-3 responses to GH. We conclude that sex differences in circulating IGF-I and IGFBP-3 concentrations in the growing lamb alter with age, and are not present when nutrition is restricted.
Kaaks, Rudolf; Johnson, Theron; Tikk, Kaja; Sookthai, Disorn; Tjønneland, Anne; Roswall, Nina; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Rinaldi, Sabina; Romieu, Isabelle; Boeing, Heiner; Schütze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Sacerdote, Carlotta; Panico, Salvatore; Buckland, Genevieve; Argüelles, Marcial; Sánchez, María-José; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Bueno-de-Mesquita, H Bas; van Gils, Carla H; Peeters, Petra H; Andersson, Anne; Sund, Malin; Weiderpass, Elisabete; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Merritt, Melissa A; Gunter, Marc J; Riboli, Elio; Lukanova, Annekatrin
2014-06-01
Experimental evidence shows cross-talk in mammary cells between estrogen, insulin-like growth factor I (IGF-I) and their respective receptors and possible synergistic effects of estrogen receptor (ER) activation and increased IGF-I signaling with regard to breast tumor development, and epidemiological evidence suggests that circulating IGF-I levels may be related more to the risk of ER-positive than ER-negative breast cancer. Using a case-control study nested within the prospective European EPIC cohort (938 breast cancer cases and 1,394 matched control subjects), we analyzed the relationships of prediagnostic serum IGF-I levels with the risk of estrogen and progesterone receptor-positive and -negative breast tumors. IGF-I levels were positively associated with the risk of ER+ breast tumors overall (pre- and postmenopausal women combined, odds ratio (OR)Q4-Q1 = 1.41 [95% confidence interval (CI) 1.01-1.98] for the highest vs. lowest quartile; OR = 1.17 [95% CI 1.04-1.33] per 1-standard deviation (SD) increase in IGF-I, ptrend = 0.01) and among women who were diagnosed with breast cancer at 50 years or older (ORQ3-Q1 = 1.38 [95% CI 1.01-1.89]; OR = 1.19 [95% CI 1.04-1.36] per 1-SD increase in IGF-I, ptrend = 0.01) but not with receptor-positive disease diagnosed at an earlier age. No statistically significant associations were observed for ER- breast tumors overall and by age at diagnosis. Tests for heterogeneity by receptor status of the tumor were not statistically significant, except for women diagnosed with breast cancer at 50 years or older (phet = 0.03 for ER+/PR+ vs. ER-/PR- disease). Our data add to a global body of evidence indicating that higher circulating IGF-I levels may increase risk specifically of receptor-positive, but not receptor-negative, breast cancer diagnosed at 50 years or older. © 2013 UICC.
Yu, H; Mistry, J; Nicar, M J; Khosravi, M J; Diamandis, A; van Doorn, J; Juul, A
1999-01-01
Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. Clinical and epidemiological studies have indicated that measuring IGFs and IGFBPs in blood has potential implications in assessing growth-related abnormalities and risks of certain types of cancer. To facilitate the application, we reported a large collection of reference ranges of IGFs and IGFBPs in normal population and evaluations of these molecules in serum and plasma as well as the impact of freeze-thaw cycles on the measurement. IGF-I, IGFBP-3 andALS showed a similar pattern of change associated with age. Levels of these molecules were low at birth and increased with age through puberty. After puberty the levels declined slowly with age. Overall, IGF-I, IGFBP-3 and ALS were slightly higher in females than in males. Free IGF-I accounted for about 1% of the total IGF-I and its variation with age was similar to total IGF-I. IGF-II levels were also increased with age from birth to puberty, but became stable after puberty. There was little difference in IGF-II levels between genders. IGFBP-2 levels declined with age from birth to puberty. Levels of IGFBP-6 in contrast were increased with age. These IGF binding proteins were higher in males than in females. IGFs, IGFBP-3 and ALS were 5-10% higher in serum than in plasma. IGFBP-2 and IGFBP-6 differed substantially between serum and plasma. Freeze-thaw treatment up to five cycles had little impact on plasma levels of IGFs and IGFBP-3. Our observations suggest that levels of IGFs and their binding proteins are varied with age, gender, and types of specimen and that these variations need to be taken into consideration when IGFs and their binding proteins are utilized in clinic and research.
Human conditions of insulin-like growth factor-I (IGF-I) deficiency
2012-01-01
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873
Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.
2014-01-01
Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521
Predictors of variation in serum IGFI and IGFBP3 levels in healthy African-American and white men
Grubber, Janet; Demark-Wahnefried, Wendy; Lobaugh, Bruce; Jeffreys, Amy S.; Grambow, Steven C.; Marks, Jeffrey R.; Keku, Temitope O.; Walther, Phillip J.; Schildkraut, Joellen M.
2010-01-01
Background Individual variation in circulating insulin-like growth factor-I (IGF1) and its major binding protein, insulin-like growth factor binding protein-3 (IGFBP3) have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. Methods Multiple linear regression models were used to determine the extent to which socio-demographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3 -202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. Results Predictors of serum IGF1, IGFBP3 and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, respectively, was explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least one IGF1 (CA)19 repeat allele and a high BMI explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. Conclusion If successfully replicated in larger studies, these findings add to recent evidence suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites. PMID:19634593
IGF-I and mammographic density in four geographic locations: a pooled analysis.
Maskarinec, Gertraud; Takata, Yumie; Chen, Zhao; Gram, Inger Torhild; Nagata, Chisato; Pagano, Ian; Hayashi, Kentaro; Arendell, Leslie; Skeie, Guri; Rinaldi, Sabina; Kaaks, Rudolph
2007-10-15
Insulin-like growth factor (IGF-I) and prolactin have been found to be associated with breast cancer risk and with mammographic density. In a pooled analysis from 4 geographic locations, we investigated the association of percent mammographic density with serum levels of IGF-I, IGFBP-3 and prolactin. The pooled data set included 1,327 pre- and postmenopausal women: Caucasians from Norway, Arizona and Hawaii, Japanese from Hawaii and Japan, Latina from Arizona, and Native Hawaiians from Hawaii. Serum samples were assayed for IGF-I, IGFBP-3 and prolactin levels using ELISA assays. Mammographic density was quantified using a computer-assisted density method. After stratification by menopausal status, multiple regression models estimated the relation between serum analytes and breast density. All serum analytes except prolactin among postmenopausal women differed significantly by location/ethnicity group. Among premenopausal subjects, IGF-I levels and the molar ratio were highest in Hawaii, intermediate in Japan and lowest in Arizona. For IGFBP-3, the order was reversed. Among postmenopausal subjects, Norwegian women had the highest IGF-I levels and women in Arizona had the lowest while women in Japan and Hawaii had intermediate levels. We observed no significant relation between percent density and IGF-I or prolactin levels among pre-and postmenopausal women. The significant differences in IGF-I levels by location but not ethnicity suggest that environmental factors influence IGF-I levels, whereas percent breast density varies more according to ethnic background than by location. Based on this analysis, the influence of circulating levels of IGF-I, IGFBP-3, and prolactin on percent density appears to be very small. (c) 2007 Wiley-Liss, Inc.
Gunnell, David; Miller, Laura L; Rogers, Imogen; Holly, Jeff M P
2005-11-01
Insulin-like growth factor I (IGF-I) is a hormone that mediates the effects of growth hormone and plays a critical role in somatic growth regulation and organ development. It is hypothesized that it also plays a key role in human brain development. Previous studies have investigated the association of low IGF-I levels attributable to growth hormone receptor deficiency with intelligence but produced mixed results. We are aware of no studies that investigated the association of IGF-I levels with IQ in population samples of normal children. To investigate the association of circulating levels of IGF-I and its principle binding protein, IGF-binding protein-3 (IGFBP-3), in childhood with subsequent measures of IQ. The cohort study was based on data for 547 white singleton boys and girls, members of the Avon Longitudinal Study of Parents and Children, with IGF-I and IGFBP-3 measurements (obtained at a mean age of 8.0 years) and IQ measured with the Wechsler Intelligence Scale for Children (at a mean age of 8.7 years). We also investigated associations with measures of speech and language based on the Wechsler Objective Reading Dimensions test (measured at an age of 7.5 years) and the Wechsler Objective Language Dimensions test (listening comprehension subtest only, measured at an age of 8.7 years). For some children (n = 407), IGF-I (but not IGFBP-3) levels had been measured at approximately 5 years of age in a previous study. Linear regression models were used to investigate associations of the IGF-I system with the measures of cognitive function. Three hundred one boys and 246 girls were included in the sample. IGF-I levels (mean +/- SD) were 142.6 +/- 53.9 ng/mL for boys and 154.4 +/- 51.6 ng/mL for girls. IQ scores (mean +/- SD) were 106.05 +/- 16.6 and 105.27 +/- 15.6 for boys and girls, respectively. IGF-I levels were associated positively with intelligence. For every 100 ng/mL increase in IGF-I, IQ increased by 3.18 points (95% confidence interval [CI]: 0.52 to 5.84 points). These positive associations were seen in relation to the verbal component (coefficient: 4.27; 95% CI: 1.62 to 6.92), rather than the performance component (coefficient: 1.06; 95% CI: -1.67 to 3.78), of IQ. There was no evidence that associations with overall IQ differed between boys and girls. In a data set with complete information on confounders (n = 484), controlling for birth weight (adjusted for gestation), breastfeeding, and BMI slightly strengthened the associations of IGF-I levels with IQ. Additionally controlling for maternal education and IGFBP-3 levels attenuated the associations (change in IQ for every 100 ng/mL increase in IGF-I levels: 2.51 points; 95% CI: -0.42 to 5.44 points). The weakening of associations in models controlling for markers of parental socioeconomic position and education could reflect shared influences of parental IGF levels on parents' own educational attainment and their offspring's IGF-I levels. In unadjusted models examining associations of Wechsler Objective Reading Dimensions and Wechsler Objective Language Dimensions test scores with IGF-I levels, there was no strong evidence that performance on either of these tests was associated with circulating IGF-I levels, although positive associations were seen with both measures. Associations between IGF-I levels measured at age 5 and Wechsler Intelligence Scale for Children scores (n = 407) were similar to those for IGF-I levels measured at age 7 to 8. For every 100 ng/mL increase in IGF-I levels at 5 years of age, IQ increased by 2.3 points (95% CI: -0.21 to 4.89 points). This study provides some preliminary evidence that IGF-I is associated with brain development in childhood. Additional longitudinal research is required to clarify the role of IGF-I in neurodevelopment. Because IGF-I levels are modifiable through diet and other environmental exposures, this may be one pathway through which the childhood environment may influence neurodevelopment.
Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J
1994-09-01
Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I resistance in target cells at a receptor or postreceptor level, or an inhibitory action of the mutant insulin receptors on IGF-I receptor signaling.
Bradbury, Kathryn E; Balkwill, Angela; Tipper, Sarah J; Crowe, Francesca L; Reeves, Gillian K; Green, Jane; Beral, Valerie; Key, Timothy J
2015-04-01
Higher circulating concentrations of insulin like growth factor (IGF-I) are associated with an increased risk of breast cancer. The objective of this study was to investigate associations between circulating IGF-I concentrations and dietary factors (intakes of protein, dairy protein, and alcohol), lifestyle factors (smoking and HT use), anthropometric indices (height and adiposity) and factors in early life (birth weight, having been breastfed, body size at age 10, and at age 20) in postmenopausal women in the UK. An analysis of plasma IGF-I concentrations (measured by immunoassay) in 1883 postmenopausal women. Multivariate analysis was used to examine correlates of plasma IGF-I concentrations. Women in the highest quintile of total protein and dairy protein intakes had, respectively, 7.6% and 5.5% higher plasma IGF-I concentrations than women in the lowest quintile (p trend <0.05 for both). Other factors significantly (p<0.05) associated with reduced IGF-I concentrations were: consuming 14 or more vs 3-7 alcoholic drinks per week (8.8% lower IGF-I); current vs non-current HT users (9.9% lower IGF-I); current use of oestrogen alone vs oestrogen+progestagen (16.9% lower IGF-I); obese vs overweight (6.8% lower IGF-I); and women who reported wearing larger vs smaller clothes sizes at age 20 (4.9% lower IGF-I). This study in post-menopausal women identified several potentially modifiable determinants of circulating IGF-I concentrations. There is now strong evidence from this and other studies that IGF-I concentrations are associated with dietary protein intakes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E
2012-12-01
IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine
2015-04-01
The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope
2012-01-01
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707
Hoyo, Cathrine; Murphy, Susan K; Schildkraut, Joellen M; Vidal, Adriana C; Skaar, David; Millikan, Robert C; Galanko, Joseph; Sandler, Robert S; Jirtle, Randy; Keku, Temitope
2012-01-01
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9-5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2.
Does soy protein affect circulating levels of unbound IGF-1?
Messina, Mark; Magee, Pamela
2018-03-01
Despite the enormous amount of research that has been conducted on the role of soyfoods in the prevention and treatment of chronic disease, the mechanisms by which soy exerts its physiological effects are not fully understood. The clinical data show that neither soyfoods nor soy protein nor isoflavones affect circulating levels of reproductive hormones in men or women. However, some research suggests that soy protein, but not isoflavones, affects insulin-like growth factor I (IGF-1). Since IGF-1 may have wide-ranging physiological effects, we sought to determine the effect of soy protein on IGF-1 and its major binding protein insulin-like growth factor-binding protein (IGFBP-3). Six clinical studies were identified that compared soy protein with a control protein, albeit only two studies measured IGFBP-3 in addition to IGF-1. Although the data are difficult to interpret because of the different experimental designs employed, there is some evidence that large amounts of soy protein (>25 g/day) modestly increase IGF-1 levels above levels observed with the control protein. The clinical data suggest that a decision to incorporate soy into the diet should not be based on its possible effects on IGF-1.
Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E H; Hård, Anna-Lena; Hellström, Ann
2013-01-01
In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 µg/kg/24 h. Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe.
Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E.; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E.H.; Hård, Anna-Lena; Hellström, Ann
2014-01-01
BACKGROUND In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900–1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47–168) h in dosages between 21 and 111 µg/kg/24 h. RESULTS Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75–100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe. PMID:23095978
Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Nasr, Moufida Ben; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo
2016-01-01
Summary The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-1) and its binding protein-3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-1-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-1/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-1/IGFBP3 control CoSCs and their dysfunction in DE. PMID:26431183
Same Phenotype in Children with Growth Hormone Deficiency and Resistance
Ioimo, Irene; Guarracino, Carmen; Meazza, Cristina; Domené, Horacio M.
2018-01-01
By definition, about 2.5% of children show a short stature due to several causes. Two clinical conditions are characterized by serum IGF-I low levels, idiopathic GH deficiency (IGHD), and GH insensitivity (GHI), and the phenotypic appearance of these patients may be very similar. We studied two children with short stature and similar phenotypes. The first case showed frontal bossing, doll face, acromicria, and truncal obesity, with a GH peak <0.05 ng/ml after stimuli and undetectable serum IGF-I levels. After PCR amplification of the whole GH1 gene, type IA idiopathic GHD was diagnosed. The second case had cranium hypoplasia, a large head, protruding forehead, saddle nose, underdeveloped mandible, and a micropenis. Basal GH levels were high (28.4 ng/ml) while serum IGF-I levels were low and unchangeable during the IGF-I generation test. Laron syndrome was confirmed after the molecular analysis of the GH receptor (GHR) gene. IGHD type IA and Laron syndrome is characterized by opposite circulating levels of GH, while both have reduced levels of IGF-I, with an overlapping clinical phenotype, lacking the effects of IGF-I on cartilage. These classical cases show the importance of differential diagnosis in children with severe short stature. PMID:29850346
Redd, Michael J; Hoffman, Jay R; Gepner, Yftach; Stout, Jeffrey R; Hoffman, Mattan W; Ben-Dov, Daniel; Funk, Shany; Church, David D; Avital, Guy; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay
2017-02-01
Insulin-like growth factor-I (IGF-I) is a metabolic and anabolic biomarker that has been proposed to reflect physiological adaptations resulting from multistressor environments. The bioactivity of IGF-I is regulated by seven different insulin-like growth factor binding proteins (IGFBPs) which act not only as carriers of IGF-1, but also function as a modulator of IGF-I availability and activity. Supplementing with β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance physiological outcomes associated with intense training, and has been reported to augment the IGF-1 response. The purpose of this study was to examine the effect of 23days of HMB supplementation on circulating levels of IGF-I and IGFBPs in combat soldiers during highly intense military training. Thirteen male soldiers from an elite infantry unit volunteered to participate in this double-blind, parallel design study. Soldiers were provided 3g·day -1 of either HMB (n=6) or placebo (PL; n=7). During the study soldiers performed advanced military training with periods of restricted sleep and severe environmental stressors. Blood samples were obtained prior to (PRE) and approximately 18h following the final supplement consumption (POST). No significant differences were observed for circulating IGF-1 concentrations between HMB and PL (p=0.568). In addition, no differences were seen between the groups for IGFBP-1 (p=1.000), IGFBP-2 (p=0.855), IGFBP-3 (p=0.520), IGFBP-4 (p=0.103), IGFBP-5 (p=0.886), or IGFBP-6 (p=0.775). A significant difference was noted between HMB (169.9±23.0ng·ml -1 ) and PL (207.2±28.0ng·ml -1 ) for IGFBP-7 at POST (p=0.042). Although the results of this study do not support the influence of HMB supplementation on circulating concentrations of IGF-1 or IGFBPs1-6 during high intensity military training, it does present initial evidence that it may lower circulating IGFBP-7 concentrations. This may provide some indication of a reduced stress response, but further investigation on the physiological role of IGFBP-7 and military training is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing skeletal maturity by using blood spot insulin-like growth factor I (IGF-I) testing.
Masoud, Mohamed; Masoud, Ibrahim; Kent, Ralph L; Gowharji, Nour; Cohen, Laurie E
2008-08-01
Accurate determination of skeletal maturity and remaining growth is crucial to many orthodontic, orthognathic, and dental-implant timing decisions. Cervical vertebral stages and hand-wrist radiographs are currently used to identify peak mandibular bone growth. These are highly subjective techniques that not only involve radiographic exposure but also lack the ability to determine the intensity of the growth spurt and the end of growth. Insulin-like growth factor I (IGF-I) is a circulating growth hormone-dependent factor whose level correlates with sexual maturity; it is used to diagnose growth hormone deficiency and excess. We hypothesized that IGF-I levels would also correlate with cervical skeletal maturity and would be highest at the cervical stages that correspond to the greatest amount of facial growth. We measured mean blood spot IGF-I levels in a cross-sectional study of 83 patients (44 female, 39 male) on recall to begin orthodontic treatment, in active treatment, or in posttreatment follow-up. Mean blood spot IGF-I levels were significantly higher in the late pubertal stages than in the prepubertal, early pubertal, and postpubertal stages. Linear correlation showed that IGF-I levels had a significant positive correlation with cervical skeletal maturity from the prepubertal to the late pubertal stages, and a significant negative correlation from the late pubertal to the postpubertal stages. In the postpubertal stage, IGF-I levels had a negative linear correlation with increasing time since the onset of puberty and with chronological age. Blood spot IGF-I could be used as a skeletal maturity indicator and might be useful in detecting residual mandibular growth in young adults.
Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M
2016-12-01
Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Keku, Temitope O.; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J.; Omofoye, Seun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S.; Millikan, Robert
2014-01-01
Purpose Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)n repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Methods Participants were African Americans (231cases, 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens, and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5′-exonuclease (Taqman) assay. The IGF-I (CA)n repeat was assayed by PCR, and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. Results The IGF-I (CA)19 repeat was higher in White controls (50%) than African American controls (31%). Whites homozygous for the IGF-I (CA)19 repeat had a nearly two fold increase in risk of colon cancer (OR=1.77; 95%CI=1.15–2.73), but not African Americans (OR= 0.73, 95%CI 0.50–1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR= 0.49, 95%CI 0.28–0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p- trend < 0.05). Conclusions These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans. PMID:22565227
Keku, Temitope O; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J; Omofoye, Oluwaseun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S; Millikan, Robert
2012-07-01
Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.
Kim, Soo-Jeong; Ju, Anes; Lim, Seul-Gi; Kim, Dai-Jin
2013-11-13
Alcohol has deleterious influences on glucose metabolism which may contribute to the development of type 2 diabetes mellitus (T2DM). Insulin-like growth factor I (IGF-I) and growth hormone (GH), which interact with insulin to modulate metabolic control, have been shown to be related to impaired glucose tolerance. This study was conducted to assess the possibility that altered circulating IGF-I and GH levels contribute to the exacerbation of T2DM by alcohol use in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats. OLETF rats were pair-fed a Lieber-DeCarli Regular Ethanol diet and LETO rats were pair-fed a control diet for 6 weeks. At 6 weeks, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and IGF-I and GH levels were evaluated. Prior to an IP-GTT, OLETF-Ethanol (O-E) group had significantly a decrease in the mean glucose levels compared to OLETF-Control (O-C) group. At 120 min post IP-GTT, the O-E group had significantly an increase in the mean glucose levels compared to O-C group. The serum IGF-I levels were significantly lower and the serum GH levels were significantly higher in the O-E group than in L-C group. These results suggest that IGF-I and GH are prominent in defining the risk and development of T2DM, and may be adversely affected by heavy alcohol use, possibly mediating its diabetogenic effects. Thus, the overall glucose intolerance in the setting of alcoholism may be attributable to inappropriate alteration of IGF-I and GH levels. © 2013. Published by Elsevier Inc. All rights reserved.
Role of the insulin-like growth factor family in cancer development and progression.
Yu, H; Rohan, T
2000-09-20
The insulin-like growth factors (IGFs) are mitogens that play a pivotal role in regulating cell proliferation, differentiation, and apoptosis. The effects of IGFs are mediated through the IGF-I receptor, which is also involved in cell transformation induced by tumor virus proteins and oncogene products. Six IGF-binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs. These opposing effects are determined by the structures of the binding proteins. The effects of IGFBPs on IGFs are regulated in part by IGFBP proteases. Laboratory studies have shown that IGFs exert strong mitogenic and antiapoptotic actions on various cancer cells. IGFs also act synergistically with other mitogenic growth factors and steroids and antagonize the effect of antiproliferative molecules on cancer growth. The role of IGFs in cancer is supported by epidemiologic studies, which have found that high levels of circulating IGF-I and low levels of IGFBP-3 are associated with increased risk of several common cancers, including those of the prostate, breast, colorectum, and lung. Evidence further suggests that certain lifestyles, such as one involving a high-energy diet, may increase IGF-I levels, a finding that is supported by animal experiments indicating that IGFs may abolish the inhibitory effect of energy restriction on cancer growth. Further investigation of the role of IGFs in linking high energy intake, increased cell proliferation, suppression of apoptosis, and increased cancer risk may provide new insights into the etiology of cancer and lead to new strategies for cancer prevention.
Mohan, S; Baylink, D J
2010-01-01
Although it is well established that there is considerable inter-individual variation in the circulating levels of IGF-I in normal, healthy individuals and that a genetic component contributes substantially to this variation, the direct evidence that inter-individual variation in IGF-I contributes to differences in peak bone mineral density (BMD) is lacking. To examine if differences in IGF-I expression could contribute to peak BMD differences, we measured skeletal changes at days 23 (prepubertal), 31 (pubertal) and 56 (postpubertal) in mice with haploinsufficiency of IGF-I (+/−) and corresponding control mice (+/+). Mice (MF1/DBA) heterozygous for the IGF-I knockout allele were bred to generate +/+ and +/− mice (n=18–20 per group). Serum IGF-I was decreased by 23% (P<0·001) in mice with IGF-I haploinsufficiency (+/−) group at day 56 compared with the control (+/+) group. Femoral bone mineral content and BMD, as determined by dual energy X-ray absorptiometry, were reduced by 20% (P<0·001) and 12% respectively in the IGF-I (+/−) group at day 56 compared with the control group. The peripheral quantitative computed tomography measurements at the femoral mid-diaphysis revealed that periosteal circumference (7%, P<0·01) and total volumetric BMD (5%, P<0·05) were decreased significantly in the +/− group compared with the +/+ group. Furthermore, serum IGF-I showed significant positive correlations with both areal BMD (r=0·55) and periosteal circumference (r=0·66) in the pooled data from the +/+ and +/− groups. Our findings that haploinsufficiency of IGF-I caused significant reductions in serum IGF-I level, BMD and bone size, together with the previous findings, are consistent with the notion that genetic variations in IGF-I expression could, in part, contribute to inter-individual differences in peak BMD among a normal population. PMID:15930167
The effect of growth hormone on bioactive IGF in overweight/obese women.
Dichtel, Laura E; Bjerre, Mette; Schorr, Melanie; Bredella, Miriam A; Gerweck, Anu V; Russell, Brian M; Frystyk, Jan; Miller, Karen K
2018-03-10
Overweight/obesity is characterized by decreased growth hormone (GH) secretion whereas circulating IGF-I levels are less severely reduced. Yet, the activity of the circulating IGF-system appears to be normal in overweight/obese subjects, as estimated by the ability of serum to activate the IGF-I receptor in vitro (bioactive IGF). We hypothesized that preservation of bioactive IGF in overweight/obese women is regulated by an insulin-mediated suppression of IGF-binding protein-1 (IGFBP-1) and IGFBP-2, and by suppression of IGFBP-3, mediated by low GH. We additionally hypothesized that increases in bioactive IGF would drive changes in body composition with low-dose GH administration. Cross-sectional analysis and 3-month interim analysis of a 6-month randomized, placebo-controlled study of GH administration in 50 overweight/obese women without diabetes mellitus. Bioactive IGF (kinase receptor activation assay) and body composition (DXA) were measured. Prior to treatment, IGFBP-3 (r = -0.33, p = 0.02), but neither IGFBP-1 nor IGFBP-2, associated inversely with bioactive IGF. In multivariate analysis, lower IGFBP-3 correlated with lower peak stimulated GH (r = 0.45, p = 0.05) and higher insulin sensitivity (r = -0.74, p = 0.003). GH administration resulted in an increase in mean serum IGF-I concentrations (144 ± 56 to 269 ± 66 μg/L, p < 0.0001) and bioactive IGF (1.29 ± 0.39 to 2.60 ± 1.12 μg/L, p < 0.0001). The treatment-related increase in bioactive IGF, but not total IGF-I concentration, predicted an increase in lean mass (r = 0.31, p = 0.03) and decrease in total adipose tissue/BMI (r = -0.43, p = 0.003). Our data suggest that in overweight/obesity, insulin sensitivity and GH have opposing effects on IGF bioactivity through effects on IGFBP-3. Furthermore, increases in bioactive IGF, rather than IGF-I concentration, predicted GH administration-related body composition changes. NCT00131378. Copyright © 2018. Published by Elsevier Ltd.
Laron syndrome. First report from Greece.
Galli-Tsinopoulou, Assimina; Nousia-Arvanitakis, Sanda; Tsinopoulos, Ioannis; Bechlivanides, Christos; Shevah, Orit; Laron, Zvi
2003-01-01
Laron-type dwarfism is an autosomal recessive disorder caused by deletions or mutations of the growth hormone receptor gene. It is characterized by high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I). Patients are refractory to both endogenous and exogenous GH, and present severe growth retardation and obesity. Therapy with recombinant human insulin-like growth factor-I (rhIGF-I) accelerates linear growth. We describe a 2-year old girl with Laron syndrome, who presented with postnatal growth failure and hypoglycaemic seizures. Her evaluation disclosed high GH values during a glucagon test (peak GH value 170 ng/ml) and very low IGF I value (0.1 ng/ml) with no rise following GH administration. The growth velocity improved considerably with the administration of IGF I. Molecular analysis showed a heterozygous mutation on exon 4 of the GH receptor gene, inherited from the mother, a rather puzzling finding considering the clinical findings in mother and infant. This case constitutes the first report of Laron syndrome from Greece.
Vitamin D across growth hormone (GH) disorders: From GH deficiency to GH excess.
Ciresi, A; Giordano, C
2017-04-01
The interplay between vitamin D and the growth hormone (GH)/insulin-like growth factor (IGF)-I system is very complex and to date it is not fully understood. GH directly regulates renal 1 alpha-hydroxylase activity, although the action of GH in modulating vitamin D metabolism may also be IGF-I mediated. On the other hand, vitamin D increases circulating IGF-I and the vitamin D deficiency should be normalized before measurement of IGF-I concentrations to obtain reliable and unbiased IGF-I values. Indeed, linear growth after treatment of nutritional vitamin D deficiency seems to be mediated through activation of the GH/IGF-I axis and it suggests an important role of vitamin D as a link between the proliferating cartilage cells of the growth plate and GH/IGF-I secretion. Vitamin D levels are commonly lower in patients with GH deficiency (GHD) than in controls, with a variable prevalence of insufficiency or deficiency, and this condition may worsen the already known cardiovascular and metabolic risk of GHD, although this finding is not common to all studies. In addition, data on the impact of GH treatment on vitamin D levels in GHD patients are quite conflicting. Conversely, in active acromegaly, a condition characterized by a chronic GH excess, both increased and decreased vitamin D levels have been highlighted, and the interplay between vitamin D and the GH/IGF-I axis becomes even more complicated when we consider the acromegaly treatment, both medical and surgical. The current review summarizes the available data on vitamin D in the main disorders of the GH/IGF-I axis, providing an overview of the current state of the art. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frystyk, Jan; Schou, Anders J; Heuck, Carsten; Vorum, Henrik; Lyngholm, Mikkel; Flyvbjerg, Allan; Wolthers, Ole D
2013-01-01
End-point bioassays based on thymidine or sulfate incorporation have demonstrated that glucocorticoid (GC) treatment inhibits serum IGF1 action, but the mechanism is unknown as serum IGF1 concentrations have been reported to either increase or remain unchanged. To investigate whether GC treatment affects the ability of serum to activate the IGF1 receptor (IGF1R) in vitro (i.e. bioactive IGF1), using a specific cell-based IGF1 kinase receptor activation assay. Twenty children with stable asthma (age 7.7-13.8 years) treated for 1 week with 5 mg prednisolone in a randomized, double-blind, placebo-controlled crossover study. Non-fasting serum samples were collected in the afternoon after each 7-day period and assayed for bioactive IGF1, free IGF1, total IGFs, IGF-binding proteins (IGFBPs), and insulin. Prednisolone treatment reduced IGF1 bioactivity by 12.6% from 2.22±0.18 to 1.94±0.15 μg/l (P=0.01) compared with placebo. In contrast, no changes were observed for (μg/l; placebo vs prednisolone) total IGF1 (215±27 vs 212±24), free IGF1 (1.50±0.16 vs 1.43±0.17), total IGF2 (815±26 vs 800±31), IGFBP3 (3140±101 vs 3107±95), IGFBP2 (238±21 vs 220±19), IGFBP1 (32±6 vs 42±10), or IGFBP1-bound IGF1 (24±5 vs 26±7). Insulin remained unchanged as did IGFBP levels as estimated by western ligand blotting. Prednisolone had no direct effects on IGF1R phosphorylation. Our study gives evidence that GC treatment induces a circulating substance that is able to inhibit IGF1R activation in vitro without affecting circulating free or total IGF1. This may be one of the mechanisms by which GC inhibits IGF1 action in vivo. However, the nature of this circulating substance remains to be identified.
Jung, Su Yon; Barrington, Wendy E; Lane, Dorothy S; Chen, Chu; Chlebowski, Rowan; Corbie-Smith, Giselle; Hou, Lifang; Zhang, Zuo-Feng; Paek, Min-So; Crandall, Carolyn J
2017-03-01
Bioavailable insulin-like growth factor-I (IGF-I) interacts with obesity and exogenous estrogen (E) in a racial disparity in obesity-related cancer risk, yet their interconnected pathways are not fully characterized. We investigated whether circulating bioavailable IGF-I acted as a mediator of the racial disparity in obesity-related cancers such as breast and colorectal (CR) cancers and how obesity and E use regulate this relationship. A total of 2,425 white and 164 African American (AA) postmenopausal women from the Women's Health Initiative Observational Study were followed from October 1, 1993 through August 29, 2014. To assess bioactive IGF-I as a mediator of race-cancer relationship, we used the Baron-Kenny method and quantitative estimation of the mediation effect. Compared with white women, AA women had higher IGF-I levels; their higher risk of CR cancer, after accounting for IGF-I, was no longer significant. IGF-I was associated with breast and CR cancers even after controlling for race. Among viscerally obese (waist/hip ratio >0.85) and overall nonobese women (body mass index <30), IGF-I was a strong mediator, reducing the racial disparity in both cancers by 30% and 60%, respectively. In E-only users and nonusers, IGF-I explained the racial disparity in CR cancer only modestly. Bioavailable IGF-I is potentially important in racial disparities in obesity-related breast and CR cancer risk between postmenopausal AA and white women. Body fat distribution and E use may be part of the interconnected hormonal pathways related to racial difference in IGF-I levels and obesity-related cancer risk.
Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina
2018-03-20
The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.
IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.
Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E
2016-02-01
Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life. © 2015 American Society for Bone and Mineral Research.
Jung, Su Yon; Barrington, Wendy E.; Lane, Dorothy S.; Chen, Chu; Chlebowski, Rowan; Corbie-Smith, Giselle; Hou, Lifang; Zhang, Zuo-Feng; Paek, Min-So; Crandall, Carolyn J.
2016-01-01
Objectives Bioavailable insulin-like growth factor (IGF)-I interacts with obesity and exogenous estrogen in a racial disparity in obesity-related cancer risk, yet their interconnected pathways are not fully characterized. We investigated whether circulating bioavailable IGF-I acted as a mediator of the racial disparity in obesity-related cancers such as breast and colorectal (CR) cancers and how obesity and estrogen use regulate this relationship. Methods A total of 2,425 white and 164 African American (AA) postmenopausal women from the Women's Health Initiative Observational Study were followed from October 1, 1993, through August 29, 2014. To assess bioactive IGF-I as a mediator of race–cancer relationship, we used the Baron-Kenny method and quantitative estimation of the mediation effect. Results Compared with white women, AA women had higher IGF-I levels; their higher risk of CR cancer, after accounting for IGF-I, was no longer significant. IGF-I was associated with breast and CR cancers even after controlling for race. Among viscerally obese (waist/hip ratio >0.85) and overall non-obese women (body mass index <30), IGF-I was a strong mediator, reducing the racial disparity in both cancers by 30% and 60%, respectively. In estrogen-only users and nonusers, IGF-I explained the racial disparity in CR cancer only modestly. Conclusions Bioavailable IGF-I is potentially important in racial disparities in obesity-related breast and CR cancer risk between postmenopausal AA and white women. Body fat distribution and estrogen use may be part of the interconnected hormonal pathways related to racial difference in IGF-I levels and obesity-related cancer risk. PMID:27749737
Chennaoui, Mounir; Arnal, Pierrick J; Dorey, Rodolphe; Sauvet, Fabien; Ciret, Sylvain; Gallopin, Thierry; Leger, Damien; Drogou, Catherine; Gomez-Merino, Danielle
2017-11-17
Extended sleep improves sustained attention and reduces sleep pressure in humans. Downregulation of adenosine A₁ receptor (A₁R) and modulation of the neurotrophic factor insulin growth factor-1 (IGF-I) in brain structures controlling attentional capacities could be involved. In the frontal cortex and hippocampus of rats, we measured adenosine A₁R and IGF-I protein concentrations after photoperiod-induced sleep extension. Two groups of twelve rats were adapted over 14 days to a habitual (CON) 12:12 light-dark (LD) schedule and an extended (EXT) 16:8 LD schedule. IGF-I content was also measured in plasma, liver, and skeletal muscle. In EXT, compared to CON rats, A₁R content in the frontal cortex was significantly lower ( p < 0.05), while IGF-I content was higher ( p < 0.001), and no significant change was observed in the hippocampus. IGF-I content in plasma and muscle was higher ( p < 0.001 and p < 0.01), while it was lower in liver ( p < 0.001). The absolute weight and weight gain were higher in EXT rats ( p < 0.01). These data suggest that 14 days under a 16:8 LD photoperiod respectively down- and upregulated cortical A₁R and IGF-I levels. This photoperiod induced an anabolic profile with increased weight gain and circulating and muscular IGF-I levels. An extension of sleep duration might favor cerebral and peripheral anabolism, which may help attentional and physical capacities.
Can IGF-I polymorphism affect power and endurance athletic performance?
Ben-Zaken, Sigal; Meckel, Yoav; Nemet, Dan; Eliakim, Alon
2013-10-01
Insulin-like growth factor-I (IGF-I) plays a key role in exercise-associated muscle growth and development. The regulatory region of the promoter of the IGF-I gene is labile, but changes in this region were studied mostly in the elderly and in relation to pathological states. C-1245T (rs35767) is a genetic variation in the promoter region of the IGF-I gene. The minor allele T was found to be associated with higher circulating IGF-I levels, and possibly with increased muscle mass. The aim of the current study was to analyze the frequency distribution of C-1245T SNP in athletic and nonathletic Israeli populations. One hundred and sixty-five athletes (78 endurance-type athletes, and 87 power-type athletes) and 159 nonathletic healthy individuals participated in the current study. Genomic DNA was extracted from peripheral EDTA treated anti-coagulated blood using a standard protocol. Genotyping of the IGF1 C-1245T polymorphism was performed using polymerase chain reaction (PCR). We found that the endurance and power athletes' allele and genotype frequencies were significantly different from those of the control group. Only 4.8% of the athletes were TT carriers, but none of the controls carried this genotype. The T allele was found to be more frequent in the top-level power athletes (international and Olympic level) compared to national level athletes, but such a difference was not found in endurance athletes. Our findings suggest a possible contribution for the relatively rare IGF-I TT genotype to endurance performance, and in particular to power sport excellence in Israeli athletes. © 2013.
Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A
2001-01-01
Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061
Hevrøy, Ernst M; El-Mowafi, Adel; Taylor, Richard; Norberg, Birgitta; Espe, Marit
2008-12-01
To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.
IGF-1 REGULATES VERTEBRAL BONE AGING THROUGH SEX-SPECIFIC AND TIME-DEPENDENT MECHANISMS
Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L.; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E
2016-01-01
Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, while others report that loss of IGF-1 is beneficial as it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igff/f mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan- early in postnatal development (crossing albumin-Cre mice with Igff/f mice), or early adulthood, and late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using microCT and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NFkB-ligand levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2 fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life. PMID:26260312
Recombinant IGF-I: Past, present and future.
Bright, George M
2016-06-01
Normal linear growth in humans requires GH and IGF-I. Diminished GH action resulting in reduced availability of IGF-I and IGF-binding proteins is the hallmarks of GH Insensitivity Syndromes (GHIS). The deficiencies are the perceived mechanisms for the growth failure of affected patients and the therapeutic targets for the restoration of normal growth. Early treatment attempts with pituitary-derived GH had limited effects in GHIS patients. Recombinant human insulin-like growth factor-I (rhIGF-I) treatment initially provides accelerated growth to GHIS children and provides substantial benefit. But, in general, catch up growth is less substantial with rhIGF-I treatment of GHIS than with rhGH treatment of GH Deficiency. Few classic GHIS patients have reached heights in the normal range (height SD score between -2.0 SD and +2.0 SD) with rhIGF-I monotherapy. A potential explanation is that while rhIGF-I treatment increases circulating concentrations of IGF-1 and IGFBP-3, such treatment reduces endogenous GH levels by negative feedback inhibition of pituitary GH release. In as much as both GH and IGF-I are required for good catch up growth, the loss of any residual GH signaling during IGF-I monotherapy in GHIS patients may attenuate possible catch up growth. Consistent with this explanation is the finding that, as predicted by the preclinical studies by Ross Clark, combination of rhGH & rhIGF-1 provides better growth responses than rhIGF-1 monotherapy in prepubertal children with short stature and low IGF-I levels despite normal stimulated GH responses. In the future, rhGH and rhIGF-I combination therapy can potentially improve growth outcomes over that seen with rhIGF-I monotherapy in all GHIS patients except in those with a total lack of functional GH signaling. Future alternative treatments for GHIS subjects may also include the use of post-growth hormone receptor signaling agonists which restore both GH signaling and IGF-I exposures or the addition of long-acting rhGH species to rhIGF-I. Additional etiologic factors for the growth failure in GHIS should be considered if the growth deficits of GHIS do not resolve with treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guevara-Aguirre, J; Rosenbloom, A L; Fielder, P J; Diamond, F B; Rosenfeld, R G
1993-02-01
We have identified 56 patients with GH receptor deficiency (Laron syndrome) from two provinces in southern Ecuador, one group of 26 (Loja province) with a 4:1 female predominance and 30 patients from neighboring El Oro province with a normal sex ratio. There were no significant differences between the Loja and El Oro populations in stature (-5.3 to -11.5 standard deviation score), other auxologic measures, or in biochemical measures. GH binding protein, the circulating extracellular domain of the GH receptor, was measured by ligand immunofunction assay and found to be comparably low in children and adults. Levels of insulin-like growth factor (IGF)-I and -II and the GH-dependent IGF binding protein-3 (measured by RIA) were significantly greater, and GH and IGF binding protein-2 levels significantly lower in adults than children. Levels of IGF-I (adults) and IGF binding protein-3 (children and adults) correlated inversely with statural deviation from normal (P < 0.01). School performance was at an exceptionally high level, 41 out of 47 who had attended school being in the top 3 in classes of 15-50 persons.
The GH-IGF-I response to typical field sports practices in adolescent athletes: a summary.
Eliakim, Alon; Cooper, Dan M; Nemet, Dan
2014-11-01
The present study compares previous reports on the effect of "real-life" typical field individual (i.e., cross-country running and wrestling--representing combat versus noncombat sports) and team sports (i.e., volleyball and water polo-representing water and land team sports) training on GH and IGF-1, the main growth factors of the GH→IGF axis, in male and female late pubertal athletes. Cross-country running practice and volleyball practice in both males and females were associated with significant increases of circulating GH levels, while none of the practices led to a significant increase in IGF-I levels. The magnitude (percent change) of the GH response to the different practices was determined mainly by preexercise GH levels. There was no difference in the training-associated GH response between individual and team sports practices. The GH response to the different typical practices was not influenced by the practice-associated lactate change. Further studies are needed to better understand the effect of real-life typical training in prepubertal and adolescent athletes and their role in exercise adaptations.
Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly.
Parkinson, C; Renehan, A G; Ryder, W D J; O'Dwyer, S T; Shalet, S M; Trainer, P J
2002-07-01
In patients with acromegaly serum IGF-I is increasingly used as a marker of disease activity. As a result, the relationship between serum GH and IGF-I is of profound interest. Healthy females secrete three times more GH than males but have broadly similar serum IGF-I levels, and women with GH deficiency require 30-50% more exogenous GH to maintain the same serum IGF-I as GH-deficient men. In a selected cohort of patients with active acromegaly, studied off medical therapy using a single fasting serum GH and IGF-I measurement, we have reported previously that, for a given GH level, women have significantly lower circulating IGF-I. To evaluate the influence of age and gender on the relationship between serum GH and IGF-I in an unselected cohort of patients with acromegaly independent of disease control and medical therapy. Sixty (34 male) unselected patients with acromegaly (median age 51 years (range 24-81 years) attending a colonoscopy screening programme were studied. Forty-five had previously received pituitary radiotherapy. Patients had varying degrees of disease control and received medical therapy where appropriate. Mean serum GH was calculated from an eight-point day profile (n = 45) and values obtained during a 75-g oral glucose tolerance test (n = 15). Serum IGF-I, IGFBP-3 and acid-labile subunit were measured and the dependency of these factors on covariates such as log10 mean serum GH, sex, age and prior radiotherapy was assessed using regression techniques. The median calculated GH value was 4.7 mU/l (range 1-104). A significant linear association was observed between serum IGF-I and log10 mean serum GH for the cohort (R = 0.5, P < 0.0001). After simultaneous adjustment of the above covariates a significant difference in the relationship between mean serum GH and IGF-I was observed for males and females. On average, women had serum IGF-I levels 11.44 nmol/l lower than men with the same mean serum GH (P = 0.03, 95% CI 1.33-21.4 nmol/l). Age significantly influenced the relationship and for a given serum GH, IGF-I was estimated to fall by 0.37 nmol/l per year (P = 0.04, 95% CI 0.015-0.72). In keeping with previous observations of relative GH resistance in normal and GH-deficient females we have observed lower serum IGF-I levels for equivalent mean serum GH levels in females patients with acromegaly. This gender-dependent difference is independent of disease activity and the use of concomitant medical therapy. Additionally, we have demonstrated that for a given serum GH level, age significantly influences IGF-I concentrations in patients with acromegaly. These data have important implications for the use of serum IGF-I and GH as markers of disease activity in acromegaly.
Hartog, H; Boezen, H M; de Jong, M M; Schaapveld, M; Wesseling, J; van der Graaf, W T A
2013-12-01
High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood levels and of it's main binding protein, IGFBP-3, on overall survival and occurrence of second primary breast tumors in breast cancer patients, as well as reproductive and lifestyle factors that could modify this risk. Patients were accrued from six hospitals in the Netherlands between 1998 and 2003. Total IGF-1 and IGFBP-3 were measured in 582 plasma samples. No significant association between IGF-1 and IGFBP-3 plasma levels and overall survival was found. However, in a multivariate Cox regression model including standard prognostic variables high IGF-1 levels were related to worse overall survival in patients receiving endocrine therapy (HR = 1.37, 95% CI: 1.11, 1.69, P 0.004). These data at least indicate that higher IGF-1 levels, and as a consequence most likely IGF-1-induced signaling, are related to a less favorable overall survival in breast cancer patients treated with endocrine therapy. Interventions aimed at reducing circulating levels of IGF-1 in hormone receptor positive breast cancer may improve survival. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dossus, Laure; McKay, James D; Canzian, Federico; Wilkening, Stefan; Rinaldi, Sabina; Biessy, Carine; Olsen, Anja; Tjønneland, Anne; Jakobsen, Marianne U; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fournier, Agnes; Linseisen, Jakob; Lukanova, Annekatrin; Boeing, Heiner; Fisher, Eva; Trichopoulou, Antonia; Georgila, Christina; Trichopoulos, Dimitrios; Palli, Domenico; Krogh, Vittorio; Tumino, Rosario; Vineis, Paolo; Quirós, José Ramon; Sala, Núria; Martínez-García, Carmen; Dorronsoro, Miren; Chirlaque, Maria-Dolores; Barricarte, Aurelio; van Duijnhoven, Fränzel J B; Bueno-de-Mesquita, H B; van Gils, Carla H; Peeters, Petra H M; Hallmans, Göran; Lenner, Per; Bingham, Sheila; Khaw, Kay Tee; Key, Tim J; Travis, Ruth C; Ferrari, Pietro; Jenab, Mazda; Riboli, Elio; Kaaks, Rudolf
2008-07-01
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, has two major functions: the stimulation of the growth hormone production and the stimulation of food intake. Accumulating evidence also suggests a role of ghrelin in cancer development. We conducted a case-control study on 1359 breast cancer cases and 2389 matched controls, nested within the European Prospective Investigation into Cancer and Nutrition, to examine the association of common genetic variants in the genes coding for ghrelin (GHRL) and its receptor (GHSR) with anthropometric measures, circulating insulin growth factor I (IGF-I) and insulin-like growth factor-binding protein 3 and breast cancer risk. Pair-wise tagging was used to select the 15 polymorphisms that represent the majority of common genetic variants across the GHRL and GHSR genes. A significant increase in breast cancer risk was observed in carriers of the GHRL rs171407-G allele (odds ratio: 1.2; 95% confidence interval: 1.0-1.4; P = 0.02). The GHRL single-nucleotide polymorphism rs375577 was associated with a 5% increase in IGF-I levels (P = 0.01). A number of GHRL and GHSR polymorphisms were associated with body mass index (BMI) and height (P between <0.01 and 0.04). The false-positive report probability (FPRP) approach suggests that these results are noteworthy (FPRP < 0.20). The results presented here add to a growing body of evidence that GHRL variations are associated with BMI. Furthermore, we have observed evidence for association of GHRL polymorphisms with circulating IGF-I levels and with breast cancer risk. These associations, however, might also be due to chance findings and further large studies are needed to confirm our results.
Chennaoui, Mounir; Arnal, Pierrick J; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle
2016-09-01
Sleep deprivation is known to suppress circulating trophic factors such as insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF). This experiment examined the effect of an intervention involving 6 nights of extended sleep before total sleep deprivation on this catabolic profile. In a randomized crossover design, 14 young men (age range: 26-37 years) were either in an extended (EXT; time in bed: 2100-0700 h) or habitual (HAB: 2230-0700 h) sleep condition, followed by 3 days in the laboratory with blood sampling at baseline (B), after 24 h of sleep deprivation (24h-SD), and after 1 night of recovery sleep (R). In the EXT condition compared with the HAB condition, free IGF-I levels were significantly higher at B, 24h-SD, and R (P < 0.001), and those of total IGF-I at B and 24h-SD (P < 0.05). EXT did not influence growth hormone, IGF binding protein 3, BDNF, insulin, and glucose levels. The only effect of 24 h of sleep deprivation was for insulin levels, which were significantly higher after R compared with B. In a healthy adult, additional sleep over 1 week increased blood concentrations of the anabolic factor IGF-I before and during 24 h of sleep deprivation and after the subsequent recovery night without effects on BDNF. With further research, these findings may prove to be important in guiding effective lifestyle modifications to limit physical or cognitive deficits associated with IGF-I decrease with age.
IGF binding proteins in cancer: mechanistic and clinical insights.
Baxter, Robert C
2014-05-01
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Wan Nazaimoon, W M; Khalid, B A
1998-04-01
Thyroid hormones have been shown to be involved in the regulation of insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3) expression. This is a cross-sectional study to look at the effects of thyroid hormone status on the circulating levels of IGF-I and IGFBP-3 in a group of 127 patients, aged 20-80 years, who were hyperthyroid, hypothyroid, rendered euthyroid and clinically euthyroid with normal free thyroxine (fT4), but suppressed thyroid stimulating hormone (TSH) levels. TSH was measured by the IMx (Abbott) ultrasensitive assay, while radioimmunoassays for total T3 and T4 were performed using kits from ICN, USA; fT4 and fT3 using kits from DPC USA; IGF-I and IGFBP-3 using kits from Nichols Institute Diagnostics B.V., Netherlands. Differences in the levels of IGF-I between the 4 groups of patients were significant only in the patients aged 20-40. Mean (+/-SEM) IGF-I levels of hypothyroid patients (169+/-19ng/ml) was significantly lower than hyperthyroid (315+/-26 ng/ml, p=0.003), euthyroid patients (241+/-19 ng/ml, p=0.002) and patients with suppressed TSH (308+/-29 ng/ml, p=0.02). The IGF-I levels of the hyperthyroid and suppressed TSH patients were, however, comparable to age-matched normal subjects (281+/-86 ng/ml). Although there was no difference in mean IGFBP-3 levels between the 4 groups of patients, the levels in the patients aged 20-40 with hyperthyroidism (3.7+/-0.9 microg/ml) and suppressed TSH (3.9+/-1.2 microg/ml) were significantly higher (p=0.02) than age-matched normal subjects (3.1+/-0.8 microg/ml). The IGF-I levels of the thyroid patients aged 20-40 showed significant negative correlation to TSH and positive correlations to the thyroid hormones. Hence, whilst low IGF-I is associated with hypothyroidism, high IGFBP-3 is associated with hyperthyroidism. Our finding that IGFBP-3 remained significantly elevated in patients with suppressed TSH but normalised fT4 and fT3 is important as it suggests a prolonged tissue effect of thyroid hormones on IFGBP-3. As such patients have been shown to have higher risk for atrial fibrillation, the significance and possible role of IGFBP-3 in these conditions should be further elucidated in future studies.
Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K
2013-07-01
The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P < .001) and IGFBP-3 (P = .01) and the LF diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.
Skottner, A; Clark, R G; Fryklund, L; Robinson, I C
1989-05-01
A new mutant GH-deficient dwarf rat has been used to study the effects of iv infusions of human GH (hGH) and recombinant human insulin-like growth factor I (hIGF-I). This animal has only about 5% of normal pituitary GH content, low circulating GH levels, and no regular GH surges. The defect seems to be specific for GH. Infusions of hIGF-I at 180 micrograms/day for 9 days elevated serum IGF-I concentrations significantly over those in the saline-infused controls (713 +/- 20 ng/ml vs. 395 +/- 31 ng/ml); hGH infusions did not raise IGF-I levels significantly (435 +/- 20 ng/ml). Gel filtration of serum samples showed that the high-dose hIGF-I infusions increased free IGF concentrations, without apparently altering the pattern of IGF-I binding whereas hGH infusions increased the amount of high mol wt IGF-I binding protein. Neither IGF-I nor hGH infusions affected the small amounts of rat GH present in the dwarf rat pituitary glands. Continuous iv infusions of hGH (200 mU/day for 9 days) stimulated body wt gain (2.1 +/- 0.2 g/day) and bone growth (96 +/- 9 microns/day) significantly compared to saline-infused dwarf rats (1.2 +/- 0.3 g/day and 43 +/- 3 microns/day). Infusions of hIGF-I at 180 micrograms/day produced a body wt gain (2.1 +/- 0.5 g/day) similar to that seen in the hGH-infused group but a significantly smaller stimulation of bone growth (63 +/- 3 microns/day). Infusion of a 5-fold lower dose of hIGF-I (36 micrograms/day for 9 days) had no effect on body wt or bone growth. Food intake was unaffected by either hGH or hIGF-I infusions. The pattern of tissue growth was affected differentially by hGH and IGF-I infusions that produced the same overall body wt gain. hGH induced a relatively proportional growth in most of the organs studied, whereas hIGF-I infusion at 180 micrograms/day stimulated a disproportionately greater growth of the kidney, adrenals, and spleen. In some of the animals, tissues were extracted for RIA of IGF-I; the amounts of IGF-I in the liver were similar in control, hGH, or IGF-I-infused animals, whereas kidney and adrenals from IGF-I infused animals contained larger amounts of immunoreactive IGF-I than did those tissues from hGH-treated rats. Thus, both hGH and hIGF-I can promote growth in the mutant dwarf rat, but they differ both quantitatively and qualitatively in their pattern of actions.
Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.
Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A
2012-08-01
IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.
Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S
2012-07-01
Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O₂max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O₂max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O₂max, fat-free mass, and fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O₂max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O₂max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.
Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice.
Trueba-Saiz, A; Fernandez, A M; Nishijima, T; Mecha, M; Santi, A; Munive, V; Aleman, I Torres
2017-02-01
The role of IGF-1 and its receptor (IGF-1R) in brain pathology is still unclear. Thus, either reduction of IGF-IR or treatment with IGF-1, two apparently opposite actions, has proven beneficial in brain diseases such as Alzheimer's dementia. A possible explanation of this discrepancy is that IGF-1 down-regulates brain IGF-1R levels, as previously seen in a mouse Alzheimer's dementia model. We now explored whether under normal conditions IGF-1 modulates its receptor. We first observed that in vitro, IGF-1 reduced IGF-1R mRNA levels in all types of brain cells including neurons, astrocytes, microglia, endothelial cells, and oligodendrocytes. IGF-1 also inhibited its own expression in neurons and brain endothelium. Next, we analyzed the in vivo actions of IGF-1. Because serum IGF-1 can enter the brain, we injected mice with IGF-1 ip. As soon as 1 hour after the injection, decreased hippocampal IGF-1 levels were observed, followed by increased IGF-1 and IGF-1R mRNAs 6 hours later. Because environmental enrichment (EE) stimulates the entrance of serum IGF-1 into the brain, we analyzed whether a physiological entrance of IGF-1 also produced changes in brain IGF-1R. Stimulation of IGF-1R by EE triggered a gradual decrease in hippocampal IGF-1 levels. After 6 hours of EE exposure, IGF-1 levels reached a significant decrease in parallel with increased IGF-1R expression. After longer times, IGF-1R mRNA levels returned to baseline. Thus, under nonpathological conditions, IGF-1 regulates brain IGF-1R. Because baseline IGF-1R levels are rapidly restored, a tight control of brain IGF-1R expression seems to operate under physiological conditions. Copyright © 2017 by the Endocrine Society.
Predictors of variation in serum IGF1 and IGFBP3 levels in healthy African American and white men.
Hoyo, Cathrine; Grubber, Janet; Demark-Wahnefried, Wendy; Lobaugh, Bruce; Jeffreys, Amy S; Grambow, Steven C; Marks, Jeffrey R; Keku, Temitope O; Walther, Phillip J; Schildkraut, Joellen M
2009-07-01
Individual variation in circulating insulinlike growth factor-1 (IGF1) and its major binding protein, insulinlike growth factor binding protein-3 (IGFBP3), have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. Multiple linear regression models were used to determine the extent to which sociodemographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3-202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. Predictors of serum IGF1, IGFBP3, and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, were explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least 1 IGF1 (CA)19 repeat allele and a high body mass index explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. If successfully replicated in larger studies, these findings would add to recent evidence, suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites.
Li, Yulin; Iida, Kaori; O'Neil, Jeff; Zhang, Peichuan; Li, Sheng'ai; Frank, Ami; Gabai, Aryn; Zambito, Frank; Liang, Shun-Hsin; Rosen, Clifford J; Cavener, Douglas R
2003-08-01
Humans afflicted with the Wolcott-Rallison syndrome and mice deficient for PERK (pancreatic endoplasmic reticulum eIF2alpha kinase) show severe postnatal growth retardation. In mice, growth retardation in Perk-/- mutants is manifested within the first few days of neonatal development. Growth parameters of Perk-/- mice, including comparison of body weight to length and organ weights, are consistent with proportional dwarfism. Tibia growth plates exhibited a reduction in proliferative and hypertrophic chondrocytes underlying the longitudinal growth retardation. Neonatal Perk-/- deficient mice show a 75% reduction in liver IGF-I mRNA and serum IGF-I within the first week, whereas the expression of IGF-I mRNA in most other tissues is normal. Injections of IGF-I partially reversed the growth retardation of the Perk-/- mice, whereas GH had no effect. Transgenic rescue of PERK activity in the insulin- secreting beta-cells of the Perk-/- mice reversed the juvenile but not the neonatal growth retardation. We provide evidence that circulating IGF-I is derived from neonatal liver but is independent of GH at this stage. We propose that PERK is required to regulate the expression of IGF-I in the liver during the neonatal period, when IGF-I expression is GH-independent, and that the lack of this regulation results in severe neonatal growth retardation.
IGF-II gene region polymorphisms related to exertional muscle damage.
Devaney, Joseph M; Hoffman, Eric P; Gordish-Dressman, Heather; Kearns, Amy; Zambraski, Edward; Clarkson, Priscilla M
2007-05-01
We examined the association of a novel single-nucleotide polymorphism (SNP) in IGF-I (IGF-I -C1245T located in the promoter) and eight SNPs in the IGF-II gene region with indicators of muscle damage [strength loss, muscle soreness, and increases in circulating levels of creatine kinase (CK) and myoglobin] after eccentric exercise. We also examined two SNPs in the IGF binding protein-3 (IGFBP-3). The age, height, and body mass of the 151 subjects studied were 24.1 +/- 5.2 yr, 170.8 +/- 9.9 cm, and 73.3 +/- 17.0 kg, respectively. There were no significant associations of phenotypes with IGF-I. IGF-II SNP (G12655A, rs3213216) and IGFBP-3 SNP (A8618T, rs6670) were not significantly associated with any variable. The most significant finding in this study was that for men, IGF-II (C13790G, rs3213221), IGF-II (ApaI, G17200A, rs680), IGF-II antisense (IGF2AS) (G11711T, rs7924316), and IGFBP-3 (-C1592A, rs2132570) were significantly associated with muscle damage indicators. We found that men who were 1) homozygous for the rare IGF-II C13790G allele and rare allele for the ApaI (G17200A) SNP demonstrated the greatest strength loss immediately after exercise, greatest soreness, and highest postexercise serum CK activity; 2) homozygous wild type for IGF2AS (G11711T, rs7924316) had the greatest strength loss and most muscle soreness; and 3) homozygous wild type for the IGF2AS G11711T SNP showed the greatest strength loss, highest muscle soreness, and greater CK and myoglobin response to exercise. In women, fewer significant associations appeared.
Rice, Megan S; Tworoger, Shelley S; Rosner, Bernard A; Pollak, Michael N; Hankinson, Susan E; Tamimi, Rulla M
2012-12-01
Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or in 1996-1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m(2), but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.
González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis
2017-01-01
Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.
Aguirre, Gabriel A.; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E.; García-Villalón, Ángel Luis
2017-01-01
Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions. PMID:28806738
Liu, Wentao; Li, Jing; Cai, Yan; Wu, Qiong; Pan, Yue; Chen, Yang; Chen, Yujing; Zheng, Xiao; Li, Wei; Zhang, Xuewen; E, Changyong
2016-02-15
Liver cirrhosis is the common pathological histology manifest among a number of chronic liver diseases and liver cancer. Circulating levels of insulin growth factor-1 (IGF-1) have been recently linked to liver cirrhosis and the development of liver cancer. Herein, we hypothesized that IGF-1R overexpression combining the activation of GSK-3β and FOXO3a were involved in the development of human and murine chronic liver cirrhosis. Liver samples of patients were screened from the Tissue Bank of the China-Japan Union Hospital of Jilin University. Mice liver fibrosis model was performed using intraperitoneal injection of carbon tetrachloride (CCl4) for 12weeks. Serum IGF-1 levels were detected by enzyme-linked immunosorbent assays (ELISA). Microscopical examination of liver parenchyma was performed using conventional H&E and Masson's staining. Moreover, we investigated the IGF-1 receptor (IGF-1R) signaling pathway at different period after CCl4 administration. Serum IGF-1 levels were significantly decreased in patients with liver cirrhosis, which is concomitant with the declined circulating levels of IGF-1 in 8 to 12weeks CCl4-treated mice. Furthermore, the expression of IGF-1R was significantly higher at 12w compared with control group. In addition, activation of the GSK-3β and FOXO3a were activated during the process of murine chronic liver injury. The present study demonstrates that decreased circulating IGF-1 levels are involved in human and murine chronic liver disease. Interestingly, overexpression of the IGF-1R, and activation of GSK3β and FOXO3a might be the molecular mechanisms underlying the development of liver cirrhosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke.
Mattlage, Anna E; Rippee, Michael A; Abraham, Michael G; Sandt, Janice; Billinger, Sandra A
2017-01-01
Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO 2 ) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO 2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO 2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO 2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO 2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO 2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg -1 min -1 ) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg -1 min -1 ; P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function. © The Author(s) 2016.
Saera-Vila, Alfonso; Calduch-Giner, Josep Alvar; Prunet, Patrick; Pérez-Sánchez, Jaume
2009-10-01
The time courses of liver GH/IGF axis and selected stress markers were analyzed in juvenile gilthead sea bream (Sparus aurata) sampled at zero time and at fixed intervals (1.5, 3, 6, 24, 72 and 120 h) after acute confinement (120 kg/m(3)). Fish remained unfed throughout the course of the confinement study, and the fasting-induced increases in plasma growth hormone (GH) levels were partially masked by the GH-stress inhibitory tone. Hepatic mRNA levels of growth hormone receptor-I (GHR-I) were not significantly altered by confinement, but a persistent 2-fold decrease in GHR-II transcripts was found at 24 and 120 h. A consistent decrease in circulating levels of insulin-like growth factor-I (IGF-I) was also found through most of the experimental period, and the down-regulated expression of GHR-II was positively correlated with changes in hepatic IGF-I and IGF-II transcripts. This stress-specific response was concurrent with plasma increases in cortisol and glucose levels, reflecting the cortisol peak (60-70 ng/mL), the intensity and duration of the stressor when data found in the literature were compared. Adaptive responses against oxidative damage were also found, and a rapid enhanced expression was reported in the liver tissue for mitochondrial heat-shock proteins (glucose regulated protein 75). At the same time, the down-regulated expression of proinflammatory cytokines (tumour necrosis factor-alpha) and detoxifying enzymes (cytochrome P450 1A1) might dictate the hepatic depletion of potential sources of reactive oxygen species. These results provide suitable evidence for a functional partitioning of hepatic GHRs under states of reduced IGF production and changing cellular environment resulting from acute confinement.
Besbas, Nesrin; Ozaltin, Fatih; Coşkun, Turgay; Ozalp, Sila; Saatçi, Umit; Bakkaloğlu, Aysin; El Nahas, A Meguid
2003-12-01
Malnutrition is prevalent in patients with end-stage renal disease (ESRD). Elevated serum leptin levels were thought to contribute to the anorexia and poor nutrition in renal failure. However, studies of the relationship between nutritional status and leptin concentration in chronic renal failure have yielded conflicting results. Plasma insulin-like growth factor I (IGF-I) level has been used as an indicator of nutritional status in patients with renal failure. The relationship between leptin and IGF-I is controversial. The present study was conducted with the aim of assessing the relationship between nutritional status, hyperleptinemia, and serum IGF-I. Seventeen ESRD patients (8 male, 9 female), aged 8-18 years (mean 15.3+/-3.3 years) and undergoing standard hemodialysis for 58.8+/-23.1 months were enrolled. Nine age-matched healthy children served as controls. In all patients, energy and protein intakes were 40-70 kcal/kg per day and 1-1.54 g/kg per day, respectively. Predialysis serum leptin and IGF-I levels were measured by radioimmunoassay. Body mass index was decreased in 13 (76%) patients. Triceps skinfold thickness (TST) was reduced (below the 5th percentile) in 7 (41%), whereas mid arm circumference and mid arm muscle circumference were reduced in 14 (82.5%) and 13 (76.5%), respectively. The median serum leptin level was significantly higher in patients than in controls [13.7 interquartile range (IQR) 30.50 pg/ml vs. 6.50 IQR 8.65 pg/ml, P=0.01]. The median serum IGF-I level was lower in the patients (205.1 ng/ml IQR 194.4 ng/l) than controls (418.0 ng/l IQR 310.5 ng/ml) ( P=0.01). IGF-I levels were more decreased in patients with severe malnutrition, defined according to TST (145.0 ng/ml IQR 125.5 ng/l) than patients without malnutrition (301.2 ng/l IQR 218.8 ng/ml) ( P=0.03) and healthy children ( P=0.002). Although statistically not significant, IGF-I levels tended to be decreased, while leptin levels were increased. The median plasma insulin concentration was 15 microU/ml (1.63-45.80) and did not correlate with leptin and IGF-I levels. In conclusion, the results of this study confirm the presence of high circulating plasma leptin levels, which may be one of the many factors involved in the pathogenesis of the malnutrition in children on hemodialysis.
High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.
Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M
2014-05-01
Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (P<0.05), whereas SHBG and IGF binding proteins-1, -2, and -3 increased (P<0.05) during ED. There were no energy-by-protein interactions on any hormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, P<0.05) in 2×-RDA; however, no other relationships were observed. Consuming a high protein diet does not impact the androgenic and IGF-I system response to ED. These data suggest that the protective effects of high protein diets on FFM during ED are likely not influenced by anabolic hormone concentrations. Published by Elsevier Inc.
Bailey-Downs, Lora C.; Mitschelen, Matthew; Sosnowska, Danuta; Toth, Peter; Pinto, John T.; Ballabh, Praveen; Valcarcel-Ares, M.Noa; Farley, Julie; Koller, Akos; Henthorn, Jim C.; Bass, Caroline; Sonntag, William E.; Csiszar, Anna
2012-01-01
Recent studies demonstrate that age-related dysfunction of NF-E2–related factor-2 (Nrf2)–driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress–induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1f/f + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (∼50%). In the aortas of IGF-1–deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1–deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H2O2), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging. PMID:22021391
Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank
2004-01-01
Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated parous and IGF-I-treated parous rats. Conclusion We argue that tumor initiation (transformation and fixation of mutations) may be similar in parous and age-matched virgin animals, suggesting that the main differences in tumor formation lie in differences in tumor progression caused by the altered hormonal environment associated with parity. Furthermore, we provide evidence supporting the notion that tumor growth promotion seen in IGF-I-treated parous rats is caused by activation of estrogen receptor-α via the Raf/Ras/mitogen-activated protein kinase cascade. PMID:15217511
Burchardt, Pawel; Nowak, Witold; Gozdzicka-Jozefiak, Anna; Link, Rafal; Grotowski, Tomasz; Wisniecka, Anna; Siminiak, Tomasz
2009-07-01
Insulin-like growth factor-1 (IGF-1) plays an important role in arterial homeostasis. Its properties seem to depend on circulating IGF-1 level changes. The various IGF-1 levels are caused by varied expression of IGF-1 gene, due to the polymorphic structure of IGF-1 gene or its regulatory sequences. We examined the P1 promoter, being responsible for most IGF-1 transcripts, in patients with stable angina, to evaluate its sequence changes and to assess its influence on protein synthesis as well as on the degree of arteriosclerosis. For that purpose we evaluated the DNA isolated from blood cells. The DNA was amplified by using polymerase chain reaction (PCR), then analyzed using the SSCP (single-strand conformation polymorphism) technique. Products of every stage were verified by electrophoresis on agarose gel. In addition, every patient had coronary angiography performed and IGF-1, IGFBP3, and lipid levels measured. The SSCP in the region between -1115 and -784 nt was less commonly observed among subjects with positive MI (myocardial infarction) familial history (P = 0.0008) and with MI history (P = 0.012) than in patients without these conditions. Subjects with this irregularity tended towards higher circulating IGF-1 levels. In addition high Gensini scores - over 95th percentile, 105 points in our study - were more frequent in SSCP patients (P = 0.03). We presume that presence of SSCP in the P1 region between -1115 and -784 nt may positively affect coronary arteries by increasing circulating IGF-1 levels, but its clinical importance requires molecular verification and further studies.
Melis, Daniela; Pivonello, Rosario; Parenti, Giancarlo; Della Casa, Roberto; Salerno, Mariacarolina; Balivo, Francesca; Piccolo, Pasquale; Di Somma, Carolina; Colao, Annamaria; Andria, Generoso
2010-04-01
To investigate the growth hormone (GH)-insulin-like growth factor (IGF) system in patients with glycogen storage disease type 1 (GSD1). This was a prospective, case-control study. Ten patients with GSD1a and 7 patients with GSD1b who were given dietary treatment and 34 sex-, age-, body mass index-, and pubertal stage-matched control subjects entered the study. Auxological parameters were correlated with circulating GH, either at basal or after growth hormone releasing hormone plus arginine test, insulin-like growth factors (IGF-I and IGF-II), and anti-pituitary antibodies (APA). Short stature was detected in 10.0% of patients with GSD1a, 42.9% of patients with GSD1b (P = .02), and none of the control subjects. Serum IGF-I levels were lower in patients with GSD1b (P = .0001). An impaired GH secretion was found in 40% of patients with GSD1a (P = .008), 57.1% of patients with GSD1b (P = .006), and none of the control subjects. Short stature was demonstrated in 3 of 4 patients with GSD1b and GH deficiency. The prevalence of APA was significantly higher in patients with GSD1b than in patients with GSD1a (P = .02) and control subjects (P = .03). The GH response to the provocative test inversely correlated with the presence of APA (P = .003). Compared with levels in control subjects, serum IGF-II and insulin levels were higher in both groups of patients, in whom IGF-II levels directly correlated with height SD scores (P = .003). Patients with GSD1a have an impaired GH secretion associated with reference range serum IGF-I levels and normal stature, whereas in patients with GSD1b, the impaired GH secretion, probably because of the presence of APA, was associated with reduced IGF-I levels and increased prevalence of short stature. The increased IGF-II levels, probably caused by increased insulin levels, in patients with GSD1 are presumably responsible for the improved growth pattern observed in patients receiving strict dietary treatment. Copyright 2010 Mosby, Inc. All rights reserved.
Prahalada, S; Block, G; Handt, L; DeBurlet, G; Cahill, M; Hoe, C M; van Zwieten, M J
1999-01-01
Elevation in circulating GH levels results in a dose-related increase in serum insulin-like growth factor-1 (IGF-1) levels in dogs. However, it is not known whether elevations in systemic IGF-1 and GH levels contribute to the cerebrospinal fluid (CSF) levels of these hormones. Therefore, a study was designed in dogs to determine if elevated circulating GH levels was a result of a GH secretagogue (MK-0677) or if exogenous GH administration resulted in increased IGF-1 and GH levels in the CSF of dogs. A total of 12 normal, young adult male dogs were randomized to three treatment groups (4 dogs/group) based on body weight. There were 4 vehicle control dogs. A group of 4 dogs were dosed orally with MK-0677 (5 mg/kg/day) dissolved in deionized water. A third group of 4 dogs received subcutaneous injections of porcine GH (pGH) at a dose of 0.1 IU/kg/day. From all dogs, blood and CSF samples were collected prior to the initiation of treatment and on days 7 and 15 of treatment. All samples were assayed using a validated radioimmunoassay. Administration of MK-0677 or pGH resulted in a statistically significant (P < or = 0.05) increased body weight gain and increased serum IGF-1 and GH levels. In contrast, administration of MK-0677 resulted in no significant (P > 0.05) increase in CSF IGF-1 or GH levels on days 7 or 15 of the study. The CSF IGF-1 values ranged from 1.2 to 2.0 ng/ml with minimal variation among three separate samples taken during the course of the study from each dog. Similarly, the CSF GH levels were very low (< 0.98 ng/ml to 2.4 ng/ml) in all dogs irrespective of treatment group. This study has demonstrated that there is no correlation between the circulating levels of IGF-1 or GH and the levels of these hormones in the CSF of normal dogs. An approximately 100-fold difference between serum and CSF IGF-1 levels in vehicle control dogs suggest that there is a blood-brain barrier for the circulating IGF-1. Similarly, failure to see an elevation in CSF GH levels despite increases in serum GH levels shows that there is a blood-brain barrier for GH in normal dogs. These results suggest that the likely source of GH and IGF-1 in the CSF of dogs is from the CNS.
Nindl, Bradley C; Alemany, Joseph A; Rarick, Kevin R; Eagle, Shawn R; Darnell, Mathew E; Allison, Katelyn F; Harman, Everett A
2017-02-01
The purpose of this study was to: 1) evaluate differential responses of the IGF-I system to either a calisthenic- or resistance exercise-based program and 2) determine if this chronic training altered the IGF-I system during an acute resistance exercise protocol. Thirty-two volunteers were randomly assigned into a resistance exercise-based training (RT) group (n=15, 27±5y, 174±6cm, 81±12kg) or a calisthenic-based training group (CT) (n=17, 29±5y, 179±8cm, 85±10kg) and all underwent 8weeks of exercise training (1.5h/d, 5d/wk). Basal blood was sampled pre- (Week 0), mid- (Week 4) and post-training (Week 8) and assayed for IGF-I system analytes. An acute resistance exercise protocol (AREP) was conducted preand post-training consisting of 6 sets of 10 repetitions in the squat with two minutes of rest in between sets and the IGF-I system analytes measured. A repeated measures ANOVA (p≤0.05) was used for statistical analysis. No interaction or within-subject effects were observed for basal total IGF-I, free IGF-I, or IGFBP-1. IGFBP-2 (pre; 578.6±295.7
IGF-I and GH: potential use in gene doping.
Harridge, Stephen D R; Velloso, Cristiana P
2009-08-01
Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.
Cow's milk and linear growth in industrialized and developing countries.
Hoppe, Camilla; Mølgaard, Christian; Michaelsen, Kim F
2006-01-01
The strongest evidence that cow's milk stimulates linear growth comes from observational and intervention studies in developing countries that show considerable effects. Additionally, many observational studies from well-nourished populations also show an association between milk intake and growth. These results suggest that milk has a growth-stimulating effect even in situations where the nutrient intake is adequate. This effect is supported by studies that show milk intake stimulates circulating insulin-like growth factor (IGF)-I, which suggests that at least part of the growth-stimulating effects of milk occur through the stimulation of IGFs. Given that the biological purpose of milk is to support the newborn during a period of high growth velocity, such an effect seems plausible. Adding cow's milk to the diet of stunted children is likely to improve linear growth and thereby reduce morbidity. In well-nourished children, the long-term consequences of an increased consumption of cow's milk, which may lead to higher levels of IGF-I in circulation or an increase in the velocity of linear growth, are likely to be both positive and negative. Based on emerging data that suggest both growth and diet during early life program the IGF axis, the association between milk intake and later health is likely to be complex.
Role of IGF-I in follistatin-induced skeletal muscle hypertrophy
Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul
2015-01-01
Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. PMID:26219865
Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.
Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul
2015-09-15
Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.
Circulating levels of IGF-1 directly regulate bone growth and density
Yakar, Shoshana; Rosen, Clifford J.; Beamer, Wesley G.; Ackert-Bicknell, Cheryl L.; Wu, Yiping; Liu, Jun-Li; Ooi, Guck T.; Setser, Jennifer; Frystyk, Jan; Boisclair, Yves R.; LeRoith, Derek
2002-01-01
IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1–deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis. PMID:12235108
Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M
1995-06-01
A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)
Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma
2009-01-01
Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.
USDA-ARS?s Scientific Manuscript database
Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anti-cancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and c...
Jiang, H; Ge, X
2014-01-01
Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.
Laron, Z; Klinger, B; Silbergeld, A
1999-01-01
Serum IGF-I levels were measured in 14 patients (9 children and 5 adults) with Laron syndrome (LS) during long-term treatment by IGF-I. Recombinant IGF-I (FK-780, Fujisawa Pharmaceutical Co. Ltd., Japan) was administered once daily subcutaneously before breakfast for 3-5 years to the children and for 9 months to the adults. The initial daily dose was 150 micrograms/kg for children and 120 micrograms/kg for adults. Before initiation of treatment the mean overnight fasting levels of serum IGF-I in the children was 3.2 +/- 0.8 nmol/l (mean +/- SEM), rising to 10 +/- 1.7 nmol/l during long-term treatment even on a dose of 120 micrograms/kg/day. The serum IGF-I levels 4 hours after injection rose from 31.2 +/- 3.5 to 48 +/- 2 nmol/l. In the adult patients, the initial basal IGF-I was 4.1 +/- 0.7 nmol/l, rising to 16.1 +/- 3.84 nmol/l after 8-9 months treatment. Serum IGF-I levels at 4 hours after injection rose in the adult patients from 24.1 +/- 5.8 up to 66.8 +/- 15.4 nmol/l. A progressively increasing half-life during long term exogenous administration of IGF-I to patients with Laron syndrome was demonstrated by following serum IGF-I dynamics after injection. Based on the fact that no antibodies to IGF-I were detected and on findings in previous studies, it is speculated that the increasing serum IGF-I levels during long-term IGF-I treatment are caused by an increase in serum IGFBP-3 induced by chronic IGF-I administration. It is concluded that treatment with IGF-I necessitates regular monitoring of serum IGF-I levels; in patients in whom the age adjusted maximal levels are exceeded, a reduction of the daily IGF-I dose is indicated to avoid undesirable effects.
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.
1994-01-01
Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.
McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur
2007-01-01
In order to elucidate the developmental basis for smolting, Atlantic salmon, Salmo salar, parr ( 12.5??cm) were exposed to natural daylength (LDN) and increased daylength (LD16:8) starting in late February and gill Na+,K+-ATPase activity and circulating hormone levels monitored from January to May. Gill Na+,K+-ATPase activity remained low and constant in both groups of parr. In smolts, gill Na+,K+-ATPase began increasing in late February in both photoperiods, but was significantly higher in the LD16:8 group from March through April. Smolts exposed to LD16:8 had dramatically elevated plasma GH within one week of increased daylength that remained high through April, whereas plasma GH of LDN smolts increased steadily beginning in late February and peaking in late April. Plasma GH levels of parr remained low in spring and did not respond to increased daylength. Plasma insulin-like growth factor I (IGF-I) levels were substantially higher in smolts than parr in January. Plasma IGF-I levels of parr increased steadily from January to May, but there was no influence of increased daylength. In smolts, plasma IGF-I of LD16:8 fish initially decreased in early March then increased in late March and April, whereas plasma IGF-I of LDN smolts increased steadily to peak levels in early April. Plasma cortisol was low in parr throughout spring and did not differ between photoperiod treatments. Plasma cortisol of LD16:8 smolts increased in early March and remained elevated through April, whereas in LDN smolts plasma cortisol did not increase until early April and peaked in late April. Plasma thyroid hormones were generally higher in smolts than in parr, but there was no clear effect of increased daylength in parr or smolts. The greater capacity of the GH/IGF-I and cortisol axes to respond to increased daylength may be a critical factor underlying smolt development. ?? 2007 Elsevier B.V. All rights reserved.
2012-01-01
Background It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals, and one of the signs of aging is progressive gonadal dysfunction. Methods To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on ovaries, we analyzed ovaries isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice, with low circulating plasma levels of IGF-1, and 6-month-old bovine growth hormone transgenic (bGHTg) mice, with high circulating plasma levels of IGF-1. The ages of the Laron dwarf mutants employed in our studies were selected based on their overall survival (up to ~ 4 years for Laron dwarf mice and ~ 1 year for bGHTg mice). Results Morphological analysis of the ovaries of mice that reached ~50% of their maximal life span revealed a lower biological age for the ovaries isolated from 2-year-old Laron dwarf mice than their normal-lifespan wild type littermates. By contrast, the ovarian morphology of increased in size 6 month old bGHTg mice was generally normal. Conclusion Ovaries isolated from 2-year-old Laron dwarf mice exhibit a lower biological age compared with ovaries from normal WT littermates at the same age. At the same time, no morphological features of accelerated aging were found in 0.5-year-old bGHTg mice compared with ovaries from normal the same age-matched WT littermates. PMID:22747742
Scacchi, Massimo; Pincelli, Angela Ida; Cavagnini, Francesco
2003-07-01
Growth hormone (GH) plays a key role not only in the promotion of linear growth but also in the regulation of intermediary metabolism, body composition, and energy expenditure. On the whole, the hormone appears to direct fuel metabolism towards the preferential oxidation of lipids instead of glucose and proteins, and to convey the energy derived from metabolic processes towards the synthesis of proteins. On the other hand, body energy stores and circulating energetic substrates take an important part in the regulation of somatotropin release. Finally, central and peripheral peptides participating in the control of food intake and energy expenditure (neuropeptide Y, leptin, and ghrelin) are also involved in the regulation of GH secretion. Altogether, nutritional status has to be regarded as a major determinant in the regulation of the somatotropin-somatomedin axis in animals and humans. In these latter, overweight is associated with marked impairment of spontaneous and stimulated GH release, while acute dietary restriction and chronic undernutrition induce an amplification of spontaneous secretion together with a clear-cut decrease in insulin-like growth factor I (IGF-I) plasma levels. Thus, over- and undernutrition represent two conditions connoted by GH hypersensitivity and GH resistance, respectively. Anorexia nervosa (AN) is a psychiatric disorder characterized by peculiar changes of the GH-IGF-I axis. In these patients, low circulating IGF-I levels are associated with enhanced GH production rate, highly disordered mode of somatotropin release, and variability of GH responsiveness to different pharmacological challenges. These abnormalities are likely due not only to the lack of negative IGF-I feedback, but also to a primary hypothalamic alteration with increased frequency of growth hormone releasing hormone discharges and decreased somatostatinergic tone. Given the reversal of the above alterations following weight recovery, these abnormalities can be seen as secondary, and possibly adaptive, to nutritional deprivation. The model of AN may provide important insights into the pathophysiology of GH secretion, in particular as regards the mechanisms whereby nutritional status effects its regulation.
IGF2 DNA methylation is a modulator of newborn's fetal growth and development.
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-10-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.
IGF2 DNA methylation is a modulator of newborn’s fetal growth and development
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-01-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587
Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2016-08-01
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Yingjie; Sun, Hui; Yakar, Shoshana; LeRoith, Derek
2009-09-01
IGF-I plays a vital role in growth and development and acts in an endocrine and an autocrine/paracrine fashion. The purpose of the current study was to clarify whether elevated levels of IGF-I in serum can rescue the severe growth retardation and organ development and function of igf-I null mice. To address that, we overexpressed a rat igf-I transgene specifically in the liver of igf-I null mice. We found that in the total absence of tissue IGF-I, elevated levels of IGF-I in serum can support normal body size at puberty and after puberty but are insufficient to fully support the female reproductive system (evident by irregular estrous cycle, impaired development of ovarian corpus luteum, reduced number of uterine glands and endometrial hypoplasia, all leading to decreased number of pregnancies and litter size). We conclude that most autocrine/paracrine actions of IGF-I that determine organ growth and function can be compensated by elevated levels of endocrine IGF-I. However, in mice, full compensatory responses are evident later in development, suggesting that autocrine/paracrine IGF-I is critical for neonatal development. Furthermore, we show that tissue IGF-I is necessary for the development of the female reproductive system and cannot be compensated by elevated levels of serum IGF-I.
Thomas, M R; Miell, J P; Taylor, A M; Ross, R J; Arnao, J R; Jewitt, D E; McGregor, A M
1993-06-01
Thyroid hormones are essential for the normal growth and development of many tissues. In the rat, hypothyroidism is associated with growth impairment, and hyperthyroidism with the development of a hypercatabolic state and skeletal muscle wasting but, paradoxically, cardiac hypertrophy. The mechanism by which thyroid hormone produces cardiac hypertrophy and myosin isoenzyme changes remains unclear. The role of IGF-I, an anabolic hormone with both paracrine and endocrine actions, in producing cardiac hypertrophy was investigated during this study in hyperthyroid, hypothyroid and control rats. A treated hypothyroid group was also included in order to assess the effect of acute normalization of thyroid function. Body weight was significantly lower in the hyperthyroid (mean +/- S.E.M.; 535.5 +/- 24.9 g, P < 0.05), hypothyroid (245.3 +/- 9.8 g, P < 0.001) and treated hypothyroid (265.3 +/- 9.8 g, P < 0.001) animals when compared with controls (618.5 +/- 28.6 g). Heart weight/body weight ratios were, however, significantly increased in the hyperthyroid (2.74 +/- 0.11 x 10(-3), P < 0.01) and treated hypothyroid (2.87 +/- 0.07 x 10(-3), P < 0.001) animals when compared with controls (2.26 +/- 0.03 x 10(-3). Serum IGF-I concentrations were similar in the control and hyperthyroid rats (0.91 +/- 0.07 vs 0.78 +/- 0.04 U/ml, P = 0.26), but bioactivity was reduced by 70% in hyperthyroid serum, suggesting a circulating inhibitor of IGF. Serum IGF-I levels (0.12 +/- 0.03 U/ml, P < 0.001) and bioactivity (0.12 +/- 0.04 U/ml, P < 0.001) were significantly lower in the hypothyroid group. Liver IGF-I mRNA levels were not statistically different in the control and hyperthyroid animals, but were significantly reduced in the hypothyroid animals (P < 0.05 vs control). Heart IGF-I mRNA levels were similar in the control and hypothyroid rats, but were significantly increased in the hyperthyroid and treated hypothyroid animals (increased by 32% in hyperthyroidism, P < 0.05; increased by 57% in treated hypothyroidism, P < 0.01). Cardiac IGF-I was significantly elevated in hyperthyroidism (0.16 +/- 0.01 U/mg heart tissue, P < 0.01), was low in hypothyroidism (0.08 +/- 0.01 U/mg, P < 0.01) and was normalized in the treated hypothyroid group (0.11 +/- 0.01 U/mg vs control, 0.13 +/- 0.01 U/mg). Low body mass during both hypothyroidism and hyperthyroidism is therefore associated with reduced systemic IGF bioactivity. In hypothyroidism there is a primary defect in the endocrine function of IGF-I, while in hyperthyroidism serum IGF bioactivity is reduced in the presence of normal endocrine production of this anabolic hormone.(ABSTRACT TRUNCATED AT 400 WORDS)
Van den Berghe, G; Wouters, P; Carlsson, L; Baxter, R C; Bouillon, R; Bowers, C Y
1998-09-01
Prolonged critical illness is characterized by feeding-resistant wasting of protein, whereas reesterification, instead of oxidation of fatty acids, allows fat stores to accrue and associate with a low-activity status of the somatotropic and thyrotropic axis, which seems to be partly of hypothalamic origin. To further unravel this paradoxical metabolic condition, and in search of potential therapeutic strategies, we measured serum concentrations of leptin; studied the relationship with body mass index, insulin, cortisol, thyroid hormones, and somatomedins; and documented the effects of hypothalamic releasing factors, in particular, GH-secretagogues and TRH. Twenty adults, critically ill for several weeks and supported with normocaloric, continuously administered parenteral and/or enteral feeding, were studied for 45 h. They had been randomized to receive one of three combinations of peptide infusions, in random order: TRH (one day) and placebo (other day); TRH + GH-releasing peptide (GHRP)-2 and GHRP-2; TRH + GHRH + GHRP-2 and GHRH + GHRP-2. Peptide infusions were started after a 1-microgram/kg bolus at 0900 h and infused (1 microgram/kg.h) until 0600 h the next morning. Serum concentrations of leptin, insulin, cortisol, T4, T3, insulin-like growth factor (IGF)-I, IGF-binding protein-3 and the acid-labile subunit (ALS) were measured at 0900 h, 2100 h, and 0600 h on each of the 2 study days. Baseline leptin levels (mean +/- SEM: 12.4 +/- 2.1 micrograms/L) were independent of body mass index (25 +/- 1 kg/m2), insulin (18.6 +/- 2.9 microIU/mL), cortisol (504 +/- 43 mmol/L), and thyroid hormones (T4: 63 +/- 5 nmol/L, T3: 0.72 +/- 0.08 nmol/L) but correlated positively with circulating levels of IGF-I [86 +/- 6 micrograms/L, determination coefficient (R2) = 0.25] and ALS (7.2 +/- 0.6 mg/L, R2 = 0.32). Infusion of placebo or TRH had no effect on leptin. In contrast, GH-secretagogues elevated leptin levels within 12 h. Infusion of GHRP-2 alone induced a maximal leptin increase of +87% after 24 h, whereas GHRH + GHRP-2 elevated leptin by up to +157% after 24 h. The increase in leptin within 12 h was related (R2 = 0.58) to the substantial rise in insulin. After 45 h, and having reached a plateau, leptin was related to the increased IGF-I (R2 = 0.37). In conclusion, circulating leptin levels during protracted critical illness were linked to the activity state of the GH/IGF-I axis. Stimulating the GH/IGF-I axis with GH-secretagogues increased leptin levels within 12 h. Because leptin may stimulate oxidation of fatty acids, and because GH, IGF-I, and insulin have a protein-sparing effect, GH-secretagogue administration may be expected to result in increased utilization of fat as preferential substrate and to restore protein content in vital tissues and, consequently, has potential as a strategy to reverse the paradoxical metabolic condition of protracted critical illness.
Chernausek, Steven D; Backeljauw, Philippe F; Frane, James; Kuntze, Joyce; Underwood, Louis E
2007-03-01
Children with severe IGF-I deficiency due to congenital or acquired defects in GH action have short stature that cannot be remedied by GH treatment. The objective of the study was to examine the long-term efficacy and safety of recombinant human IGF-I (rhIGF-I) therapy for short children with severe IGF-I deficiency. Seventy-six children with IGF-I deficiency due to GH insensitivity were treated with rhIGF-I for up to 12 yr under a predominantly open-label design. The study was conducted at general clinical research centers and with collaborating endocrinologists. Entry criteria included: age older than 2 yr, sd scores for height and circulating IGF-I concentration less than -2 for age and sex, and evidence of resistance to GH. rhIGF-I was administered sc in doses between 60 and 120 microg/kg twice daily. Height velocity, skeletal maturation, and adverse events were measured. Height velocity increased from 2.8 cm/yr on average at baseline to 8.0 cm/yr during the first year of treatment (P < 0.0001) and was dependent on the dose administered. Height velocities were lower during subsequent years but remained above baseline for up to 8 yr. The most common adverse event was hypoglycemia, which was observed both before and during therapy. It was reported by 49% of treated subjects. The next most common adverse events were injection site lipohypertrophy (32%) and tonsillar/adenoidal hypertrophy (22%). Treatment with rhIGF-I stimulates linear growth in children with severe IGF-I deficiency due to GH insensitivity. Adverse events are common but are rarely of sufficient severity to interrupt or modify treatment.
Akanji, A O; Suresh, C G; Al-Radwan, R; Fatania, H R
2007-01-01
Insulin-like growth factors (IGF-I, IGF-II) and their binding protein (IGFBP-3) may be risk markers for coronary heart disease (CHD). This study aimed to assess the levels and determinants of the serum levels of IGF-I, IGF-II and IGFBP-3 in Arab patients with established CHD. Two groups of subjects were matched for age, gender, BMI and waist-hip ratio (WHR): (i) CHD (n = 105), median age 51.0 (range 40.0-60.0) years; (ii) controls (n = 97) aged 49.0 (range 37.0-60.0) years. We measured fasting serum levels of glucose and lipoproteins (total cholesterol, triglycerides, LDL, HDL, apo B), insulin, HOMA-IR, IGF-I, IGF-II and IGFBP-3 and compared the results between groups. The effects of body mass and the metabolic syndrome (MS) on IGF levels were also examined, and linear correlations were sought between the various parameters. The levels of IGF-I, IGF-II and IGFBP-3 were significantly lower (all p<0.01) for the CHD group than for the control group. These differences were not influenced by BMI or with the presence of MS. In CHD, there were no significant correlations between levels of IGF-I and IGF-II and age, BMI, WHR, lipoprotein concentrations and insulin sensitivity, although IGFBP-3 had weakly significant relationships with some of the lipoproteins. Levels of IGF-I, IGF-II and IGFBP3 are reduced in male Arab patients with CHD, and did not appear influenced by traditional CHD risk factors such as age, BMI, insulin sensitivity and presence of MS. Perturbations in the IGF/IGFBP-3 axis may be potential additional targets for pharmacological manipulation in CHD.
Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC
Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.
2016-01-01
Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez de Ku, L.M.
1992-01-01
Neonatal exposure to the toxic chemical polychlorinated biphenyl (PCB) induces hypothyroidism and retarded growth. Neonatal rats made hypothyroid by chemical or surgical means experience retarded growth and subnormal activity of choline acetyltransferase (ChAT) This study compared thyroid-, growth-, and neurochemically-related processes altered by hypothyroidism induced by other means, with PCB-induced hypothyroidism: (1) titers of thyroid stimulating hormone (TSH); (2) titers of hormones that regulate growth [growth hormone (GH), insulin-growth like factor-I (IGF-1), growth hormone releasing hormone (GHRH) and somatostatin (SS)]; or (3) brain ChAT activity. Whether PCB-induced growth retardation and other alterations are secondary to accompanying hypothyroidism rather than ormore » in addition to a direct effect of PCB was also examined. Pregnant rats were fed chow containing 0 (controls), 62.5, 125, or 250 ppm PCB (entering offspring through placenta and milk) throughout pregnancy and lactation. Neonates exposed to PCB displayed many alterations similar to those made hypothyroid by other means: depression of overall and skeletal growth, circulating by other means: depression of overall and skeletal growth, circulating T[sub 4] levels and ChAT activity, and no change in hypothalamic GHRH and SS concentrations. Differences included a paradoxical increase in circulating GH levels, and no significant alteration of circulation IGF-1 and TSH levels and pituitary GH and TSH levels (although trends were in the expected direction). Thus, PCB-induced hypothyroidism may partially cause altered skeletal growth, circulating GH and TSH concentrations, and ChAT activity. Both T[sub 4] and T[sub 3] injections returned circulating TSH and GH levels and pituitary TSH content toward control levels; T[sub 3] restored skeletal, but not overall growth; and T[sub 4] elevated ChAT activity.« less
Wan, Aini; Xu, Dongsheng; Liu, Kedong; Peng, Lin; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong
2017-08-09
Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.
Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S
2008-07-01
States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.
Clinical implications of the reduced activity of the GH-IGF-I axis in older men.
Ceda, G P; Dall'Aglio, E; Maggio, M; Lauretani, F; Bandinelli, S; Falzoi, C; Grimaldi, W; Ceresini, G; Corradi, F; Ferrucci, L; Valenti, G; Hoffman, A R
2005-01-01
During the last decade, a significant body of evidence has accumulated, indicating that IGF-I might play a role in several pathological conditions commonly seen during aging, such as atherosclerosis and cardiovascular disease (CVD), cognitive decline, dementia, sarcopenia and frailty. A vascular protective role for IGF-I has been suggested because of its ability to stimulate nitric oxide production from endothelial and vascular smooth muscle cells. In cross sectional studies, low IGF-I levels have been associated with unfavorable CVD risk factors profile, such as atherosclerosis, abnormal lipoprotein levels and hypertension, while in prospective studies, lower IGF-I levels predict future development of ischemic heart disease. The fall in IGF-I levels with aging correlates with cognitive decline and it has been suggested that IGF-I plays a role in the development of dementia. IGF-I is highly expressed within the brain and is essential for normal brain development. IGF-I has anti-apoptotic and neuroprotective effects and promotes projection neuron growth, dendritic arborization and synaptogenesis. Collectively, these data are consistent with a causal link between the age-related decline in GH and IGF-I levels and cognitive deficits in older persons. Finally, there is evidence of a relationship between declining GH and IGF-I levels and age-related changes in body composition and physical function. However, few studies have documented a precise role of IGF-I in the development of sarcopenia, frailty and poor mobility. We have recently documented that serum IGF-I is significantly associated with measures of muscle strength and physical performance in men and to a lesser extent in women. In conclusion, IGF-I is a pleiotropic hormone that in older persons may positively affect the cardiovascular system, the central nervous system and physical function.
β-Cell Hyperplasia Induced by Hepatic Insulin Resistance
Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel
2009-01-01
OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656
2011-01-01
Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells. PMID:21371294
Sumida, Yoshio; Yonei, Yoshikazu; Tanaka, Saiyu; Mori, Kojiroh; Kanemasa, Kazuyuki; Imai, Shunsuke; Taketani, Hiroyoshi; Hara, Tasuku; Seko, Yuya; Ishiba, Hiroshi; Okajima, Akira; Yamaguchi, Kanji; Moriguchi, Michihisa; Mitsuyoshi, Hironori; Yasui, Kohichiroh; Minami, Masahito; Itoh, Yoshito
2015-07-01
Growth hormone (GH) deficiency may be associated with histological progression of non-alcoholic fatty liver disease (NAFLD) which includes non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Insulin-like growth factor 1 (IGF-1) is mainly produced by hepatocytes and its secretion is stimulated by GH. Our aim was to determine whether more histologically advanced NAFLD is associated with low circulating levels of IGF-1 in Japanese patients. Serum samples were obtained in 199 Japanese patients with biopsy-proven NAFLD and in 2911 sex- and age-matched healthy people undergoing health checkups. The serum levels of IGF-1 were measured using a commercially available immunoradiometric assay. The standard deviation scores (SDS) of IGF-1 according to age and sex were also calculated in NAFLD patients. The serum IGF-1 levels in NAFLD patients were significantly lower (median, 112 ng/mL) compared with the control population (median, 121 ng/mL, P < 0.0001). IGF-1 SDS less than -2.0 SD from median were found in 11.6% of 199 patients. NASH patients exhibited significantly lower levels of IGF-1 SDS (n = 130; median, -0.7) compared with NAFL patients (n = 69; median, -0.3; P = 0.026). The IGF-1 SDS values decreased significantly with increasing lobular inflammation (P < 0.001) and fibrosis (P < 0.001). In multiple regressions, the association between the IGF-1 SDS values and the severity of NAFLD persisted after adjusting for age, sex and insulin resistance. Low levels of circulating IGF-1 may have a role in the development of advanced NAFLD, independent of insulin resistance. Supplementation with GH/IGF-1 may be a candidate for the treatment of NASH. © 2014 The Japan Society of Hepatology.
Nindl, Bradley C
2009-01-01
Insulin-like growth factor (IGF)-I is a ubiquitous peptide hormone involved in a host of critical physiological processes (e.g., protein synthesis and glucose homeostasis) and has been suggested to be a biomarker reflecting health and metabolic status. In most cases (muscle, bone, tendon, body composition, and cognitive function), elevated IGF-I concentrations are considered beneficial; however, cancer remains a notable exception. While the fact that both increased and decreased IGF-I can be considered reflective of favorable and beneficial health outcomes may appear as a paradox, it is important to emphasize that, in both cases, measured IGF-I concentrations do offer important insight into physiological processes. The effects of military operational field training on the circulating IGF-I system are discussed within the context of novel measurement technologies that (1) are field expedient and (2) provide more meaningful information. Prospective experimental approaches involving physical activity that sample and measure IGF-I in the body's various biocompartments will provide greater insight into the complex role that IGF-I possesses. Minimally invasive technologies that are field expedient, cost-effective, and allow for continuous and real-time feedback will have the greatest likelihood of being adapted and used in military environments. PMID:20144370
Schmidt, Julie A.; Allen, Naomi E.; Almquist, Martin; Franceschi, Silvia; Rinaldi, Sabina; Tipper, Sarah J.; Tsilidis, Konstantinos K.; Weiderpass, Elisabete; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Dossus, Laure; Mesrine, Sylvie; Kaaks, Rudolf; Lukanova, Annekatrin; Boeing, Heiner; Lagiou, Pagona; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Zanetti, Roberto; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Lund, Eiliv; Menéndez, Virginia; Agudo, Antonio; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Larrañaga, Nerea; Hennings, Joakim; Sandström, Maria; Khaw, Kay-Tee; Wareham, Nick; Romieu, Isabelle; Gunter, Marc J.; Riboli, Elio; Key, Timothy J.; Travis, Ruth C.
2014-01-01
Background Little is known about the causes of thyroid cancer, but insulin-like growth factor-I (IGF-I) might play an important role in its development due to its mitogenic and anti-apoptotic properties. Methods This study prospectively investigated the association between serum IGF-I concentrations and risk of differentiated thyroid carcinoma in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition. 345 incident cases of differentiated thyroid carcinoma were individually matched to 735 controls by study centre, sex, and age, date, time, and fasting status at blood collection, follow-up duration, and for women menopausal status, use of exogenous hormones, and phase of menstrual cycle at blood collection. Serum IGF-I concentrations were measured by immunoassay, and risk of differentiated thyroid cancer in relation to IGF-I concentration was estimated using conditional logistic regression. Results There was a positive association between IGF-I concentrations and risk of differentiated thyroid carcinoma: the odds ratio for a doubling in IGF-I concentration was 1.48 (95% confidence interval: 1.06 – 2.08; ptrend = 0.02). The positive association with IGF-I was stable over time between blood collection and cancer diagnosis. Conclusion These findings suggest that IGF-I concentrations may be positively associated with risk of differentiated thyroid carcinoma. Impact This study provides the first prospective evidence of a potential association between circulating IGF-I concentrations and risk of differentiated thyroid carcinoma and may prompt the further investigations needed to confirm the association. PMID:24646451
Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David
2018-01-01
Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955
Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.
Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle
2011-11-01
To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.
Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan
2014-12-01
Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.
Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying
2015-02-01
In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.
Mechanism of Prostate Cancer Prevention by Down-Regulation of the GH/IGF Axis
2012-07-01
apoptosis. Recent clinical trials indicate that elevated circulating IGF-I confers an increased risk for the development of prostate cancer. Our...hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A 1990;87:5061-5. [6] Kopchick JJ, Parkinson C, Stevens EC, Trainer PJ. Growth
Kinoshita, Yumiko; Kizaki, Zenro; Ishihara, Yasunori; Nakajima, Hisakazu; Adachi, Shinsuke; Kosaka, Kitaro; Kinugasa, Akihiko; Sugimoto, Tohru
2007-01-01
Evidence is accumulating that the promoter region of the insulin-like growth factor I (IGF-I) gene polymorphism and low levels of IGF-I are associated with type 2 diabetes, cardiovascular disease and birth weight; however, the number of wild-type alleles is different in each country. This study aimed to examine the 737/738 marker, a cytosine-adenine repeat in the promoter region of the IGF-I gene polymorphism, and plasma IGF-I levels in Japanese infants and analyze the genetic background. Data were collected for 15 months in Kyoto Prefectural University of Medicine. The body composition parameters of all infants were determined at birth. At 5 days after birth, we took blood samples to measure the product size of the promoter region of the IGF-I gene polymorphism and plasma IGF-I. In a population-based sample of 160 subjects, 6 different alleles and 16 genotypes were identified in the promoter region of the IGF-I gene polymorphism. The existence of a 196-bp allele has proved to result in a low plasma IGF-I level, a small head and chest circumference (p < 0.05) and no significant for premature birth, short-birth height and low-birth weight. This is the first study showing the role of the promoter region of the IGF-I gene polymorphism and the level of plasma IGF-I and body composition parameters in Japanese infants. Our results suggest genetical influence on prenatal growth and serum IGF-I levels.
Karabulut, S; Duranyıldız, D; Tas, F; Gezer, U; Akyüz, F; Serilmez, M; Ozgür, E; Yasasever, C T; Vatansever, S; Aykan, N F
2014-03-01
The principal aim of our study was to investigate the usefulness of serum protein and circulating mRNA of insulin-like growth factor-1 (IGF-1) as a diagnostic and prognostic tool in hepatocellular carcinoma (HCC). Fifty-four HCC patients and age- and sex-matched 20 healthy controls were enrolled into this study. Pretreatment serum IGF-1 and IGF-1 mRNA were determined by the solid-phase sandwich ELISA and quantitative RT-PCR method, respectively. The median age at diagnosis was 60 years, range 36-77 years; where majority of group were male (n = 48, 88.8%). All patients had cirrhotic history. Forty-six percent (n = 25) of patients had Child-Pugh score A, 30% (n = 16) had score B or C. All of the patients were treated with local therapies and none of them received sorafenib. The baseline serum IGF-1 mRNA levels were significantly higher in HCC patients than in the control group (p = 0.04), whereas no significant difference was observed for IGF-1 protein levels between the two group (p = 0.18). Patients with history of HBV infection, who were not treated, and who received multiple palliative treatment for HCC had higher serum IGF-1 mRNA levels (p = 0.03, 0.03, and 0.05, respectively). Poor performance status (p < 0.001), viral etiology of cirrhosis (p = 0.03), larger tumor size (p = 0.01), lower serum hemoglobin levels (p = 0.03), and not be treated for HCC (p = 0.001) related to worse survival. However, neither serum IGF-1 nor serum IGF-1 mRNA had significantly adverse effect on survival (p = 0.53 and 0.42, respectively).
Skeletal unloading induces resistance to insulin-like growth factor I
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.
1994-01-01
In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.
London, Stephanie J; Yuan, Jian-Min; Travlos, Gregory S; Gao, Yu-Tang; Wilson, Ralph E; Ross, Ronald K; Yu, Mimi C
2002-05-15
Insulin-like growth factor I (IGF-I) stimulates cell proliferation and inhibits apoptosis in the lung and other tissues by interacting with the IGF-I receptor. The major binding protein for IGF-I, insulin-like growth factor-binding protein 3 (IGFBP-3), modulates the effects of IGF-I but also inhibits cell growth and induces apoptosis independent of IGF-I and its receptor. In a prospective study of men in Shanghai, China, we examined the association between serum levels of IGF-I and IGFBP-3 and the subsequent risk of lung cancer. From 1986 to 1989, serum was collected from 18,244 men aged 45-64 years living in Shanghai without a history of cancer. We analyzed IGF-I and IGFBP-3 levels in serum from 230 case patients who developed incident lung cancer during follow-up and from 740 control subjects. Among 230 case patients and 659 matched control subjects, increased IGF-I levels were not associated with increased risk of lung cancer. However, for subjects in the highest quartile relative to the lowest quartile of IGFBP-3, the odds ratio (OR) for lung cancer, adjusted for smoking and IGF-I, was 0.50 (95% confidence interval [CI] = 0.25 to 1.02). When the analysis was restricted to ever smokers (184 case patients and 344 matched control subjects), the OR for lung cancer in men in the highest quartile of IGFBP-3 relative to those in the lowest quartile, adjusted for smoking and IGF-I, was 0.41 (95% CI = 0.18 to 0.92). In this prospective study of Chinese men, higher serum levels of IGF-I did not increase the risk of lung cancer. However, subjects with higher serum levels of IGFBP-3 were at reduced risk of lung cancer. This finding is consistent with experimental data that indicate that IGFBP-3 can inhibit cellular proliferation and induce apoptosis independent of IGF-I and the IGF-I receptor.
De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello
2015-01-01
The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression. PMID:25798130
De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello
2015-01-01
The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression.
Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M
2000-06-05
Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle. Copyright 2000 John Wiley & Sons, Inc.
Enhanced production of IGF-I in the lungs of fibroproliferative ARDS patients.
Andonegui, Graciela; Krein, Peter M; Mowat, Connie; Brisebois, Ronald; Doig, Christopher; Green, Francis H Y; Léger, Caroline; Winston, Brent W
2014-11-01
Insulin-Like Growth Factor I (IGF-I) has been identified in the lungs of individuals with fibrotic lung diseases. In a previous retrospective study, we showed enhanced IGF-I immunoreactivity in individuals with fibroproliferative acute respiratory distress syndrome (FP-ARDS), but we were unable to determine if this correlation was causative. This study was undertaken to prospectively investigate whether IGF-I expression correlated with the fibroproliferative process and whether IGF-I was induced and made in the lungs. We measured IGF-I and procollagen III peptide (PCP-III) in the epithelial lining fluid (ELF) from controls, early ALI/ARDS patients and FP-ARDS patients. We also measured IGF-I mRNA and immunoreactivity from controls and FP-ARDS patient lung biopsies. We determined the level of lung permeability by measuring albumin and urea levels in ELF and serum. Our data show that IGF-I is significantly increased in the ELF in FP-ARDS patients. A significant correlation between IGF-I and PCP-III in the ELF of FP-ARDS patients is found. IGF-I mRNA is elevated in the FP-ARDS lung biopsies. Our data suggest that IGF-I found in the lungs of FP-ARDS patients results from both increased lung permeability and local production of IGF-I. The role of IGF-I in the fibroproliferative process in the lungs has recently been confirmed in an animal model of lung fibroproliferation. This study importantly suggest that IGF-I protein is made in the lungs of FP-ARDS patients and correlates with increased levels of ELF PCP-III, implicating a role for IGF-I in the fibroproliferative process in humans. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Xu, Yongjiang; Wang, Bin; Liu, Xuezhou; Shi, Bao; Zang, Kun
2017-04-01
Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and plasma T were observed, respectively. These results suggest that the GH-IGF system may be involved in the ovarian development of starry flounder; GH and IGFs appear to play distinct roles in the regulation of the ovarian development in paracrine/autocrine manners. These findings extend our knowledge of the roles of the GH-IGF axis on reproduction regulation in fish.
Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly.
Denti, Licia; Annoni, Valentina; Cattadori, Evelina; Salvagnini, Maria Angela; Visioli, Sandra; Merli, Maria Francesca; Corradi, Francesco; Ceresini, Graziano; Valenti, Giorgio; Hoffman, Andrew R; Ceda, Gian Paolo
2004-09-01
To examine whether serum insulin-like growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) concentrations, determined early after the onset of stroke, are predictive of clinical outcome in elderly patients. The sample comprised 85 patients (mean [+/- SD] age, 83 +/- 7.4 years; range, 67 to 99 years; 34% male) who were admitted with acute stroke to a geriatric ward between January 1998 and June 2000, and 88 control patients who were similar in age and sex. Clinical and laboratory assessments, computed tomographic scan of the head, carotid ultrasonography, and electrocardiography were employed to define the clinical and etiologic stroke subtype. Fasting blood samples were collected within 24 hours of admission for IGF-I and IGFBP-3 measurement. Univariate and multiple logistic regression analyses, with adjustment for other related clinical covariates, were used to assess the relation of IGF-I and IGFBP-3 to poor outcome, defined as severe disability (Barthel index <60/100) or death, at 1 month (or at discharge), 3 months, and 6 months. Mean (+/- SD) IGF-1 levels were lower in patients with stroke than in controls (69 +/- 45 ng/mL vs. 102 +/- 67 ng/mL, P adjusted for age = 0.001). The mean IGF-1/IGFBP-3 molar ratio was also lower in stroke patients (0.12 +/- 0.07 vs. 0.19 +/- 0.09, P adjusted for age <0.0001). However, there was no relation of hormone levels to either the clinical subtype of stroke or the extent of neurologic impairment. IGF-1 levels were inversely related to poor outcome (mainly death) at 3 and 6 months, independent of other clinical covariates that were highly predictive of outcome, such as age and stroke scale score on admission (hazard ratio for death at 6 months for each 20-ng/mL increase = 0.7; 95% confidence interval: 0.5 to 0.9). An independent association of the molar ratio with death at 3 and 6 months was also found. Low levels of circulating IGF-1 may predict the clinical outcome of stroke in elderly patients.
Serum IGF-1, IGFBP-3 levels and circulating tumor cells (CTCs) in early breast cancer patients.
Papadakis, Georgios Z; Mavroudis, Dimitrios; Georgoulias, Vasilios; Souglakos, John; Alegakis, Athanasios K; Samonis, George; Bagci, Ulas; Makrigiannakis, Antonis; Zoras, Odysseas
2017-04-01
Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs' presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs' presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman's rho=0.361, p<0.001) with each other, while presenting significant differences across age groups (all p values<0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p=0.558) or after completion (p=0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p=0.487) or after (p=0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS and IGF-1(DFI: p=0.499; OS: p=0.220) or IGFBP-3 (DFI: p=0.900; OS: p=0.406) serum levels. IGF-1 and IGFBP-3 serum levels before initiation of adjuvant chemotherapy are not indicative of CTCs' presence in the blood and do not correlate with clinical outcome of women with early-stage breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hoyer-Kuhn, Heike; Höbing, Laura; Cassens, Julia; Schoenau, Eckhard; Semler, Oliver
2016-07-01
Osteogenesis imperfecta (OI) is characterized by bone fragility and short stature. Data about IGF-I/IGFBP-3 levels are rare in OI. Therefore IGF-I/IGFBP-3 levels in children with different types of OI were investigated. IGF-I and IGFBP-3 levels of 60 children (male n=38) were assessed in a retrospective cross-sectional setting. Height/weight was significant different [height z-score type 3 versus type 4: p=0.0011 and weight (p≤0.0001)] between OI type 3 and 4. Mean IGF-I levels were in the lower normal range (mean±SD level 137.4±109.1 μg/L). Mean IGFBP-3 measurements were in the normal range (mean±SD 3.105±1.175 mg/L). No significant differences between OI type 3 and 4 children have been observed (IGF-I: p=0.0906; IGFBP-3: p=0.2042). Patients with different severities of OI have IGF-I and IGFBP-3 levels in the lower normal range. The type of OI does not significantly influence these growth factors.
Arwert, L I; Deijen, J B; Drent, M L
2005-12-01
Insulin-like growth factor I (IGF-I) levels and cognitive functioning decrease with aging. Several studies report positive correlations between IGF-I levels and cognitive functioning in healthy elderly. However, because of controversial data no definitive conclusions can be drawn concerning the relation between IGF-I and cognition. Therefore, we carried out a meta-analysis on studies that report on the relation between IGF-I and cognition in healthy elderly. We searched the electronic databases for articles about IGF-I and cognition. Studies from 1985 to January 2005 are included. Two reviewers independently extracted data on study design and cognitive outcomes. Thirteen studies on IGF-I and cognition in elderly, with a total number of 1981 subjects, met the inclusion criteria. On the data from these studies meta-analyses were carried out by means of the program Comprehensive Meta-analysis using a random effects model. Pooled effects show that IGF-I levels in healthy elderly have a positive correlation with cognitive functioning, which appeared to be mainly measured with the mini mental state examination (MMSE). The effect size is 0.6, which indicates the presence of a large positive relationship between IGF and cognition in healthy elderly. These meta-analyses showed an overall relationship between IGF-I levels and cognitive functioning in healthy elderly. Further studies should be performed to clarify the role of IGF-I substitution in preserving cognitive functions with aging.
Oh, Hannah; Pfeiffer, Ruth M; Falk, Roni T; Horne, Hisani N; Xiang, Jackie; Pollak, Michael; Brinton, Louise A; Storniolo, Anna Maria V; Sherman, Mark E; Gierach, Gretchen L; Figueroa, Jonine D
2018-08-01
Lesser degrees of terminal duct lobular unit (TDLU) involution, as reflected by higher numbers of TDLUs and acini/TDLU, are associated with elevated breast cancer risk. In rodent models, the insulin-like growth factor (IGF) system regulates involution of the mammary gland. We examined associations of circulating IGF measures with TDLU involution in normal breast tissues among women without precancerous lesions. Among 715 Caucasian and 283 African American (AA) women who donated normal breast tissue samples to the Komen Tissue Bank between 2009 and 2012 (75% premenopausal), serum concentrations of IGF-I and binding protein (IGFBP)-3 were quantified using enzyme-linked immunosorbent assay. Hematoxilyn and eosin-stained tissue sections were assessed for numbers of TDLUs ("TDLU count"). Zero-inflated Poisson regression models with a robust variance estimator were used to estimate relative risks (RRs) for association of IGF measures (tertiles) with TDLU count by race and menopausal status, adjusting for potential confounders. AA (vs. Caucasian) women had higher age-adjusted mean levels of serum IGF-I (137 vs. 131 ng/mL, p = 0.07) and lower levels of IGFBP-3 (4165 vs. 4684 ng/mL, p < 0.0001). Postmenopausal IGFBP-3 was inversely associated with TDLU count among AA (RR T3vs.T1 = 0.49, 95% CI = 0.28-0.84, p-trend = 0.04) and Caucasian (RR T3vs.T1 =0.64, 95% CI = 0.42-0.98, p-trend = 0.04) women. In premenopausal women, higher IGF-I:IGFBP-3 ratios were associated with higher TDLU count in Caucasian (RR T3vs.T1 =1.33, 95% CI = 1.02-1.75, p-trend = 0.04), but not in AA (RR T3vs.T1 =0.65, 95% CI = 0.42-1.00, p-trend = 0.05), women. Our data suggest a role of the IGF system, particularly IGFBP-3, in TDLU involution of the normal breast, a breast cancer risk factor, among Caucasian and AA women. © 2018 UICC.
Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate
2012-02-24
Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.
Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate
2012-01-01
Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772
Human blood-brain barrier insulin-like growth factor receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.
1988-02-01
Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less
Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C
1996-12-17
The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.
Piechotta, Marion; Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich
2014-01-01
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-I(high) or IGF-I(low)), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-I(high) cows compared to IGF-I(low) cows. Estradiol concentration tended to be greater in the IGF-I(low) group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study.
IGF-I and NEFA concentrations in fetal fluids of term pregnancy dogs.
Meloni, Tea; Comin, Antonella; Rota, Alessandro; Peric, Tanja; Contri, Alberto; Veronesi, Maria Cristina
2014-06-01
Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11-25 kg; large: 26-40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ between amnion and allantois, but in both fetal fluids, higher NEFA levels were detected in samples belonging to small breeds when compared with medium and large. These data strongly indicated that, also in the dog, a relation between fetal fluids IGF-I and NEFA concentrations and breed size exists. Further research is needed to elucidate the possible role of IGF-I and NEFA in the pathologic conditions related to canine fetal growth. Copyright © 2014 Elsevier Inc. All rights reserved.
Little effects of Insulin-like Growth Factor-I on testicular atrophy induced by hypoxia
Diez-Caballero, Fernando; Castilla-Cortázar, Inma; Garcia-Fernandez, Maria; Puche, Juan Enrique; Diaz-Sanchez, Matias; Casares, Amelia Diaz; Aliaga-Montilla, M Aurelia; Rodriguez-Borrajo, Coronación; Gonzalez-Barón, Salvador
2006-01-01
Background Insulin-like Growth Factor-I (IGF-I) supplementation restores testicular atrophy associated with advanced liver cirrhosis that is a condition of IGF-I deficiency. The aim of this work was to evaluate the effect of IGF-I in rats with ischemia-induced testicular atrophy (AT) without liver disease and consequently with normal serum level of IGF-I. Methods Testicular atrophy was induced by epinephrine (1, 2 mg/Kg intra-scrotal injection five times per week) during 11 weeks. Then, rats with testicular atrophy (AT) were divided into two groups (n = 10 each): untreated rats (AT) receiving saline sc, and AT+IGF, which were treated with IGF-I (2 μg.100 g b.w.-1.day-1, sc.) for 28d. Healthy controls (CO, n = 10) were studied in parallel. Animals were sacrificed on day 29th. Hypophyso-gonadal axis, IGF-I and IGFBPs levels, testicular morphometry and histopathology, immuno-histochemical studies and antioxidant enzyme activity phospholipid hydroperoxide glutathione peroxidase (PHGPx) were assessed. Results Compared to controls, AT rats displayed a reduction in testicular size and weight, with histological testicular atrophy, decreased cellular proliferation and transferrin expression, and all of these alterations were slightly improved by IGF-I at low doses. IGF-I therapy increased signifincantly steroidogenesis and PHGPx activity (p < 0.05). Interestingly, plasma IGF-I did not augment in rats with testicular atrophy treated with IGF-I, while IGFBP3 levels, that reduces IGF-I availability, was increased in this group (p < 0.05). Conclusion In testicular atrophy by hypoxia, condition without IGF-I deficiency, IGF-treatment induces only partial effects. These findings suggest that IGF-I therapy appears as an appropriate treatment in hypogonadism only when this is associated to conditions of IGF-I deficiency (such as Laron Syndrom or liver cirrhosis). PMID:16504030
Parkinson, Craig; Burman, Pia; Messig, Michael; Trainer, Peter J
2007-01-01
To effectively normalize IGF-I in patients with acromegaly, various covariates may affect dosing and plasma concentrations of pegvisomant. We assessed whether sex, age, weight, and previous radiotherapy influence dosing of pegvisomant in patients with active disease. Data from 69 men and 49 women participating in multicenter, open-label trials of pegvisomant were retrospectively evaluated using multiple regression techniques. Sixty-nine subjects (39 men, 30 women) had undergone external beam pituitary radiotherapy. Serum IGF-I was at least 30% above age-related upper limit of normal in all patients at study entry. After a loading dose of pegvisomant (80 mg), patients were commenced on 10 mg/d. Pegvisomant dose was adjusted by 5 mg every eighth week until serum IGF-I was normalized. At baseline, men had significantly higher mean serum IGF-I levels than women despite similar GH levels. After treatment with pegvisomant, IGF-I levels were similar in men and women. A significant correlation between baseline GH, IGF-I, body weight, and the dose of pegvisomant required to normalize serum IGF-I was observed (all P < 0.001). Women required an average of 0.04 mg/kg more pegvisomant than men and a mean weight-corrected dose of 19.2 mg/d to normalize serum IGF-I [14.5 mg/d (men); P < 0.001]. Patients treated with radiotherapy required less pegvisomant to normalize serum IGF-I despite similar baseline GH/IGF-I levels (15.2 vs. 18.5 mg/d for no previous radiotherapy; P = 0.002). Sex, body weight, previous radiotherapy, and baseline GH/IGF-I influence the dose of pegvisomant required to normalize serum IGF-I in patients with active acromegaly.
de Groot, Stefanie; Gelderblom, Hans; Fiocco, Marta; Bovée, Judith Vmg; van der Hoeven, Jacobus Jm; Pijl, Hanno; Kroep, Judith R
2017-01-01
Activation of the insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3) can predict event-free survival (EFS) and overall survival (OS) in Ewing sarcoma patients treated with chemotherapy. Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE) chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t -tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O'Quigley procedure. Survival analyses were performed using Cox regression analysis. High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009-0.602 and HR 0.090, 95% CI 0.011-0.712, respectively) in univariate and multivariate analyses (HR 0.063, 95% CI 0.007-0.590 and HR 0.057, 95% CI 0.005-0.585, respectively). OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy ( P =0.055 and P =0.023, respectively). High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated with improved EFS and a trend for improved OS in Ewing sarcoma patients treated with VIDE chemotherapy. These findings suggest the need for further investigation of the IGF-1 pathway as a biomarker of disease progression in patients with Ewing sarcoma.
Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y
1999-10-01
The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.
Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing
2016-08-01
Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.
Nayak, Subash; Bhad Patil, Wasundhara A; Doshi, Umal Hiralal
2014-09-01
Insulin-like growth factor (IGF-I) has been used as an indicator of growth hormone levels and hence can also be used as a marker of growth. The main objective of the study was to quantify salivary IGF-I levels and its secretion rate at different quantitative cervical maturation (QCVM) stages and evaluate a possible role for salivary IGF-I in evaluating skeletal growth. Forty-five subjects (24 female, 21 male) between the ages of 7 and 23 years were included in the study. Each subject had personal information, a lateral cephalogram, and a parotid saliva sample collected on the same day. Salivary IGF-I levels and salivary secretion rates were lowest at QCVM skeletal stages previously associated with the acceleration phase of mandibular growth. Highest levels were found at the high velocity stage. After this there was gradual drop in salivary IGF-I levels and secretion rate at deceleration and completing velocity stages. Relatively high levels in the decelerating velocity stage may be an indication of residual skeletal growth. There was a negative correlation between patient age and levels of IGF-I and its secretion rate, once growth velocity decreased. Salivary IGF-I levels or its secretion rate can be used as an indicator of skeletal growth but longitudinal data are necessary to confirm salivary IGF-I as a marker for skeletal growth prediction and residual mandibular growth. © 2014 British Orthodontic Society.
Pountos, Ippokratis; Georgouli, Theodora; Henshaw, Karen; Bird, Howard; Giannoudis, Peter V
2013-02-01
The systemic response after fracture is regulated by a complex mechanism involving numerous growth factors. In this study, we analyzed the kinetics of key growth factors following lower-limb long bone fracture. Human serum was isolated from 15 patients suffering from lower-limb long bone fracture (tibia/femur) requiring surgical fixation. The levels of platelet-derived growth factor (PDGF-BB), vascular edothelial growth factor (VEGF), insulin growth factor-I (IGF-I), and transforming growth factor β1 (TGF-β1) were assayed by colorimetric ELISA at different time points during the first week after fracture. 10 healthy volunteers made up the control group of the study. Serum levels of the growth factors measured were compared to age, sex, and injury severity score. We found that there was a decline in the levels of PDGF-BB, IGF-I and TGF-β1 during the first 3 days after fracture. However, VEGF levels remained unchanged. The levels of all the growth factors studied then increased, with the highest concentrations noted at day 7 after surgery. No correlation was found between circulating levels of growth factors and age, injury severity score (ISS), blood loss, or fluid administration. There are systemic mitogenic and osteogenic signals after fracture. Important growth factors are released into the peripheral circulation, but early after surgery it appears that serum levels of key growth factors fall. By 7 days postoperatively, the levels had increased considerably. Our findings should be considered in cases where autologous serum is used for ex vivo expansion of mesenchymal stem cells. There should be further evaluation of the use of these molecules as biomarkers of bone union.
Wang, Qiao; Bian, C E; Peng, Hongling; He, Lei; Zhao, Xia
2015-05-01
Insulin-like growth factor 1 (IGF-1) and its main binding protein (IGFBP-3) in blood have been associated with the risk of several types of cancer. However, epidemiological studies have inconsistent results regarding the association of circulating IGF-1/IGFBP-3 levels with ovarian cancer risk. A systematic review of the prospective studies was conducted using meta-analysis to evaluate the existing evidence. Pubmed and Embase databases were searched to identify the relevant studies published before May 1, 2014. Four highly qualified studies with a total of 627 cases and 1,358 controls were finally included in the meta-analysis. Random effects meta-analysis was conducted by combining study-specific odds ratios (ORs) of ovarian cancer for the highest verses lowest exposure levels. A dose-response association was further assessed by relating the log of ORs for different exposure levels. As a result, the pooled ORs for the highest verses lowest categories of IGF-1/IGFBP-3 were 0.85 [95% confidence interval (CI), 0.51-1.40]/0.78 (95% CI, 0.43-1.40). In the subgroup analyses, the pooled ORs of IGF-1/IGFBP-3 were 1.89 (95% CI, 0.64-5.59)/1.08 (95% CI, 0.50-2.32) for the subgroup with cases diagnosed at <55 years, and 0.74 (95% CI, 0.50-1.08)/0.98 (95% CI, 0.73-1.33) for the subgroup with cases diagnosed at ≥55 years. No linear association between circulating IGF-1/IGFBP-3 levels and ovarian cancer risk was identified. As no significant association of IGF-1/IGFBP-3 with ovarian cancer risk was identified in the present meta-analysis of existing studies, more studies with greater quality are required in the future.
Yoon, Yeong Sook; Keum, NaNa; Zhang, Xuehong; Cho, Eunyoung; Giovannucci, Edward L
2015-12-01
Insulin-like growth factor-1(IGF-1) promotes cell proliferation and inhibits apoptosis, and is thereby implicated in carcinogenesis. Insulin-like growth factor binding protein-3 (IGFBP-3) may antagonize IGF-1 action, leading to inhibition of the potential tumorigenicity of IGF-1. We conducted this meta-analysis to estimate the association between IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio and the risk of colorectal adenomas (CRAs). Further, we investigated whether this association was different between occurrent and recurrent CRA, by adjustment for obesity, and by advanced CRA. Pubmed and Embase were searched up to April, 2015 to identify relevant observational studies and summary odds ratio (OR) and the corresponding 95% confidence interval (95% CI) was estimated using a random-effects model. A total of 12 studies (11 studies including 3038 cases for IGF-1, 12 studies including 3208 cases for IGFBP-3, and 7 studies including 1867 cases for IGF-1/IGFBP-3 ratio) were included in this meta-analysis. The summary ORs of occurrent CRA for the highest versus lowest category of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio were 1.13 (95% CI: 0.95-1.34), 0.99 (0.84-1.16), and 1.05 (0.86-1.29), respectively. Higher IGF-1 and IGF-1/IGFBP-3 ratio were significantly associated with decreased risk of recurrent CRA (OR for IGF-1=0.60 [95% CI: 0.42-0.85]; IGF-1/IGFBP-3 ratio=0.65 [0.44-0.96]). A stratified analysis by advancement of occurrent CRA produced a significant summary OR of IGF-1 for advanced CRA (OR=2.21 [1.08-4.52]) but not for non-advanced CRA (OR=0.89 [0.55-1.45]). We did not find significant publication bias or heterogeneity. Circulating levels of IGF-1, IGFBP-3 and their molar ratio were not associated with the risk of occurrence of CRA, but IGF-1 was associated with the increased risk for occurrence of advanced CRA. Copyright © 2015. Published by Elsevier Ltd.
Yang, Chuan-Wei; Li, Tsai-Chung; Li, Chia-Ing; Liu, Chiu-Shong; Lin, Chih-Hsueh; Lin, Wen-Yuan; Lin, Cheng-Chieh
2015-05-01
Previous studies have demonstrated the polymorphisms of insulinlike growth factor-1 (IGF-1) and its binding protein-3 (IGFBP3) genes could affect the circulating IGF-1 level. Moreover, the serum IGF-1 level was correlated with muscle size. This study aimed to explore the effect of polymorphisms of IGF1, IGFBP3, and IGFBP5 genes on appendicular skeletal muscle mass in Taiwanese older adults in a metropolitan area. A community-based cross-sectional study. A random sample of 472 elders with complete information of dual energy X-ray absorptiometry examination, genotyping analysis, and serum IGF-1 level from Taichung Community Health Study for Elders (TCHS-E) was included. Low appendicular skeletal muscle mass index (ASMI) was defined as 2 SDs below the mean of young adults from our TCHS study (n = 471). Seven polymorphisms of IGF1, IGFBP3, and IGFBP5 were analyzed by using Illumina GoldenGate Genotyping Assay. The χ(2) test, Student t test, and multiple logistic regression were applied for statistical analysis. The prevalence of low ASMI was 7.1%, 8.8%, and 23.0% in those aged 70 or younger, 71 to 75, and older than 75 years, respectively. We found that serum IGF-1 level (natural logarithmic transformation) was significantly lower in the low ASMI group compared with the normal ASMI group and the SNP rs2854744 near IGFBP3 gene was significantly associated with low ASMI. Moreover, we discovered the SNP rs6214 on the IGF1 gene would significantly affect the serum IGF-1 level. Therefore, the joint effect of rs6214 and rs2854744 was analyzed. Elders with GG genotype of rs6214 and AC or CC genotypes of rs2854744 had a 3.18-fold (95% CI 1.02-9.89) risk of having low ASMI compared with those with the AA and AA genotype, after adjusting for age, gender, smoking, exercise, hyperlipidemia, and albumin level. Our results suggest that rs6214 on the IGF1 gene and rs2854744 near the IGFBP3 gene potentially play an important role with ASMI in Taiwanese older adults in a metropolitan area. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Hoppe, Camilla; Kristensen, Mette; Boiesen, Marlene; Kudsk, Jane; Fleischer Michaelsen, Kim; Mølgaard, Christian
2009-10-01
In the Western world, a trend towards increased consumption of carbonated soft drinks combined with a decreasing intake of milk is observed. This may affect circulating insulin-like growth factor I (IGF-I) and fasting insulin, as seen in pre-pubertal children. The present study was designed to reflect the trend of replacing milk with carbonated beverages in young men and to study the effects of this replacement on IGF-I, IGF-binding protein 3 (IGFBP-3), IGF-I:IGFBP-3 and glucose-insulin metabolism. A randomised, controlled crossover intervention study, in which eleven men aged 22-29 years were given a low-Ca diet in two 10 d periods with 10 d washout in between. In one period, they drank 2.5 litres of Coca Cola(R) per day and the other period 2.5 litres of semi-skimmed milk. Serum IGF-I, IGFBP-3 (RIA), insulin (fluoro immunoassay) and glucose (Cobas) were determined at baseline and end point of each intervention period. Insulin resistance and beta-cell function were calculated with the homeostasis model assessment. A decrease in serum IGF-I was observed in the cola period compared with the milk period (P < 0.05). No effects of treatment were observed on IGFBP-3, IGF-I:IGFBP-3, insulin, glucose, insulin resistance or beta-cell function. The present study demonstrates that high intake of cola over a 10 d period decreases total IGF-I compared with a high intake of milk, with no effect on glucose-insulin metabolism in adult men. It is unknown whether this is a transient phenomenon or whether it has long-term consequences.
Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian
2016-06-28
Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury.
Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian
2016-01-01
Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury. PMID:27175593
van Nieuwpoort, I C; Deijen, J B; Curfs, L M G; Drent, M L
2011-04-01
Mental retardation is one of the clinical characteristics of Prader-Willi syndrome (PWS) and in part of the patients growth hormone deficiency is demonstrable. Cognitive function seems to be influenced by insulin-like growth factor I (IGF-I); however, little is known about cognitive function in relation to IGF-I levels in PWS adults. The aim of the present study was to evaluate cognitive function in adult PWS patients in comparison to healthy siblings and to investigate whether there is a correlation between cognitive function and IGF-I levels. Anthropometric measurements, IGF-I levels, quality of life (QoL), Appetite Assessment Score, IQ (GIT and Raven) and cognitive function (by four subtests of the Cambridge Neuropsychological Automated Testing Battery, CANTAB) were evaluated in PWS patients and their healthy siblings served as control group. PWS patients had significantly lower IGF-I levels, IQ and QoL when compared to controls. Reaction times were longer and performance was worse on CANTAB subtests in PWS adults. IGF-I on one hand and IQ, Appetite Assessment Score and cognitive performance on the other hand seem to be correlated in PWS patients. In conclusion, IGF-I levels, IQ and QoL are significantly lower in PWS subjects when compared to healthy siblings. In PWS adults, temporal as well as prefrontal cognitive functions are impaired. Higher IGF-I levels appear to be related to better intellectual skills and faster temporal memory processing in PWS patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan
2012-06-01
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.
Bailey-Downs, Lora C.; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C.; Ballabh, Praveen; Koller, Akos; Farley, Julie A.; Sonntag, William E.; Csiszar, Anna
2012-01-01
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1–deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity. PMID:22080499
Desai, Namrata Ajaykumar; Patel, Snehal S
2015-10-01
The incidence of cardiovascular disease (CVD) in patients with polycystic ovary syndrome (PCOS) is very high and conventional risk factors only partially explain excessive risk of developing CVD in patients of PCOS. The pathophysiology of PCOS is very unique, and several hormonal and metabolic changes occur. Several observations suggest that serum IGF-1 levels decrease in insulin resistance, which results in IGF-1 deficiency. In patient of PCOS, close relationships have been demonstrated between insulin resistance and serum IGF-1 levels. Hyperinsulinemic insulin resistance results in a general augmentation of steroidogenesis and LH release in PCOS. The action of IGF-1 varies in different tissues possibly via autocrine or paracrine mechanisms. The increase or decrease in IGF-1 in different tissues results in differential outcomes. Several studies suggest that lowered circulating IGF-1 levels play important role in the initiation of the cardiac hypertrophic response which results in the risk of cardiovascular disease. While recent results suggests that individual with elevated IGF-1 is protected against cardiovascular disease. Thus IGF-1 shows versatile pleiotropic actions. This review provides a current perspective on increased level of IGF-1 in PCOS and also adds to the current controversy regarding the roles of IGF-1 in cardiovascular disease.
Varewijck, Aimee J; Lamberts, Steven W J; van der Lely, A J; Neggers, Sebastian J C M M; Hofland, Leo J; Janssen, Joseph A M J L
2015-08-01
Previously we demonstrated that IGF1 receptor stimulating activity (IGF1RSA) offers advantages in diagnostic evaluation of adult GH deficiency (GHD). It is unknown whether IGF1RSA can be used to monitor GH therapy. To investigate the value of circulating IGF1RSA for monitoring GH therapy. 106 patients (54 m; 52 f) diagnosed with GHD were included; 22 were GH-naïve, 84 were already on GH treatment and discontinued therapy 4 weeks before baseline values were established. IGF1RSA was determined by the IGF1R kinase receptor activating assay, total IGF1 by immunoassay (Immulite). GH doses were titrated to achieve total IGF1 levels within the normal range. After 12 months, total IGF1 and IGF1RSA increased significantly (total IGF1 from 8.1 (95% CI 7.3-8.9) to 14.9 (95% CI 13.5-16.4) nmol/l and IGF1RSA from 115 (95% CI 104-127) to 181 (95% CI 162-202) pmol/l). After 12 months, total IGF1 normalized in 81% of patients, IGF1RSA in 51% and remained below normal in more than 40% of patients in whom total IGF1 had normalized. During 12 months of GH treatment, changes in IGF1RSA did not parallel changes in total IGF1. Despite normalization of total IGF1, IGF1RSA remained subnormal in a considerable proportion of patients. At present our results have no short-term consequences for GH therapy of GHD patients. However, based on our findings we propose future studies to examine whether titrating GH dose against IGF1RSA results in a better clinical outcome than titrating against total IGF1. © 2015 European Society of Endocrinology.
Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter
2011-01-01
Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.
E-Peptides Control Bioavailability of IGF-1
Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia
2012-01-01
Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442
Akanji, Abayomi O; Ohaeri, Jude U; Al-Shammri, Suhail A; Fatania, Hasmukh R
2007-01-01
Insulin-like growth factors (IGFs) are believed to be important in brain development and repair following neuronal damage. It is also speculated that IGFs are involved in the association of foetal and pre-adult growth with schizophrenia (SZ). The aim of this study was to assess levels of IGF-I, IGF-II and IGF binding protein (IGFBP)-3 and their associations in male Arab patients with SZ (n=53) and healthy control subjects (HC; n=52). Anthropometric and demographic data were collected for each subject for whom blood specimens were analysed for serum lipoproteins, apolipoprotein B (apoB), IGF-I, IGF-II and IGFBP-3. The SZ group had lower serum total cholesterol, apoB and uric acid levels than the HC group (p<0.05). IGF-II levels were significantly higher in the SZ group (p=0.02) and correlated positively with levels of atherogenic lipoproteins--total cholesterol, low-density lipoprotein, apoB--and IGFBP-3. The pattern of correlations between the IGFs and the various parameters differed somewhat between the HC and SZ groups. These results demonstrate that IGF-II levels are increased in patients with SZ and show significant associations with atherogenic lipoproteins. We suggest a possible link between IGF-II metabolism and atherogenesis in SZ.
Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng
2018-05-01
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.
Léger, Juliane; Mohamed, Damir; Dos Santos, Sophie; Ben Azoun, Myriam; Zénaty, Delphine; Simon, Dominique; Paulsen, Anne; Martinerie, Laetitia; Chevenne, Didier; Alberti, Corinne; Carel, Jean-Claude; Guilmin-Crepon, Sophie
2017-09-01
Regular monitoring of serum IGF-I levels during growth hormone (GH) therapy has been recommended, for assessing treatment compliance and safety. To investigate serum IGF-I SDS levels during GH treatment in children with GH deficiency, and to identify potential determinants of these levels. This observational cohort study included all patients ( n = 308) with childhood-onset non-acquired or acquired GH deficiency (GHD) included in the database of a single academic pediatric care center over a period of 10 years for whom at least one serum IGF-I SDS determination during GH treatment was available. These determinations had to have been carried out centrally, with the same immunoradiometric assay. Serum IGF-I SDS levels were determined as a function of sex, age and pubertal stage, according to our published normative data. Over a median of 4.0 (2-5.8) years of GH treatment per patient, 995 serum IGF-I SDS determinations were recorded. In addition to BMI SDS, height SDS and GH dose ( P < 0.01), etiological group ( P < 0.01) had a significant effect on serum IGF-I SDS levels, with patients suffering from acquired GHD having higher serum IGF-I SDS levels than those with non-acquired GHD, whereas sex, age, pubertal stage, treatment duration, hormonal status (isolated GHD (IGHD) vs multiple pituitary hormone deficiency (MPHD)) and initial severity of GHD, had no effect. These original findings have important clinical implications for long-term management and highlight the need for careful and appropriate monitoring of serum IGF-I SDS and GH dose, particularly in patients with acquired GHD, to prevent the unnecessary impact of potential comorbid conditions. © 2017 European Society of Endocrinology.
Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults.
Vestergaard, Poul Frølund; Hansen, Mette; Frystyk, Jan; Espelund, Ulrick; Christiansen, Jens S; Jørgensen, Jens Otto Lunde; Fisker, Sanne
2014-02-01
Senescent changes in body composition and muscle strength are accompanied by reduced production of GH and IGF1, but the causal relationship remains elusive. We speculate that serum bioactive IGF1, measured by the IGF1 kinase receptor activation assay, is closer related to human physiological ageing than total IGF1 measured by immunoassay. We conducted a cross-sectional study in 150 adult males and females, between 20 and 70 years. After an overnight fasting, serum levels of bioactive IGF1, total IGF1 and IGF-binding protein 1 (IGFBP1) and IGFBP3 were assessed. Furthermore, body composition and muscle strength was measured. Total IGF1 levels were higher in females (P=0.048). Bioactive IGF1 were identical in males and females (P=0.31), decreasing with age. Total IGF1 tended to decrease more with age compared with bioactive IGF1 (-1.48 vs -0.89 percent/year, P=0.052). Total body fat (TBF) was lower and BMI was higher in males (P<0.001 and P=0.005), and both increased with age. Knee extension and elbow flexion force were higher in males (P=0.001 and P=0.001), but decreased with age in both genders. Total but not bioactive IGF1 was positively correlated to TBF, knee extension and muscle function in males. In multiple linear regression, only age predicted total IGF1, whereas age and IGFBP1 predicted bioactive IGF1. Bioactive IGF1 tends to decrease to a lesser extent than total IGF1 with age and was not correlated with measures of body composition or muscle strength. Therefore, levels of circulating bioactive IGF1 does not appear to be a better biomarker of physiological ageing than total IGF1.
Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna
2016-08-01
Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the deleterious late-life cardiovascular effects known to occur with developmental IGF-1 deficiency.
Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich
2014-01-01
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study. PMID:24962413
Fox, B K; Riley, L G; Hirano, T; Grau, E G
2006-09-15
Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.
Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Wei; Ru, Shaoguo
2016-09-01
There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.
Bereket, Abdullah; Turan, Serap; Omar, Anjumanara; Berber, Mustafa; Ozen, Ahmet; Akbenlioglu, Cengiz; Haklar, Goncagul
2006-01-01
We established age- and sex-related reference ranges for serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels in 807 healthy Turkish children (428 boys, 379 girls), and constructed a model for calculation of standard deviation scores of IGF-I and IGFBP-3 according to age, sex and pubertal stage. Serum IGF-I and IGFBP-3 concentrations tended to be higher in girls compared to boys of the same ages, but the differences were statistically significant only in pubertal ages (9-14 years) for IGF-I and only in prepubertal ages for IGFBP-3 (6-8 years) (p < 0.05). Peak IGF-I concentrations were observed earlier in girls than boys (14 vs. 15 years, Tanner stage IV vs. V) starting to decline thereafter. IGFBP-3 levels peaked at age 13 and at Tanner stage IV in both sexes with a subsequent fall. Serum levels of IGF-I and IGFBP-3 increased steadily with age in the prepubertal stage followed by a rapid increase in IGF-I in the early pubertal stages. A relatively steeper increase in IGF-I but not in IGFBP-3 levels was observed at age 10-11 years in girls and at 12-13 years in boys which preceded the reported age of pubertal growth spurt. At late pubertal stages, both IGF-I and IGFBP-3 either did not change or decreased by increasing age. Interrelationships between growth factors and anthropometric measurements have been described, and the physiologic consequences of these have been discussed in detail. Differences in the pattern of IGF-I and IGFBP-3 in the present paper and those reported in other studies emphasize the importance of locally established reference ranges. Establishment of this reference data and a standard deviation score prediction model based on age, sex and puberty will enhance the diagnostic power and utility of IGF-I and IGFBP-3 in evaluating growth disorders in our population. Copyright 2006 S. Karger AG, Basel
2011-01-01
Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I. PMID:21486461
Fenwick, M A; Llewellyn, S; Fitzpatrick, R; Kenny, D A; Murphy, J J; Patton, J; Wathes, D C
2008-01-01
Negative energy balance (NEB) during early lactation in dairy cows leads to an altered metabolic state that has major effects on the production of IGF family members. Low IGF-I concentrations are associated with poor fertility and therefore we aimed to determine whether NEB exerts a direct effect on IGF expression in the postpartum oviduct. Multiparous Holstein cows were allocated to two treatments (each n=6) designed using differential feeding and milking regimes to produce either mild NEB (MNEB) or severe NEB (SNEB). Animals were slaughtered in week 2 of lactation when divergent metabolic profiles were evident. Oviducts were collected for RNA analysis by real-time RT-PCR and in situ hybridisation. Quantitative measures in oviduct gene expression were obtained for all members of the IGF family (IGF-I/II, IGF-binding proteins (IGFBP) 1–6 and receptors for IGF types 1 and 2), insulin A/B, GH, glucocorticoid and oestrogen α/β. Expression of IGFBP-2 and IGFBP-6 (both of which have a high affinity for IGF-II) was decreased in SNEB relative to MNEB (P<0.05). No other gene was altered by NEB, but IGF-II, IGFBP-3, IGFBP-5 and IGFBP-6 all showed differential expression in different regions of the oviduct. These results indicate that, in addition to low circulating IGF-I after calving, NEB may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression. It is possible that the predicted increased signalling by IGF-II may perturb embryo development, contributing to the high rates of embryonic mortality in dairy cows. PMID:18159084
IGF-I levels reflect hypopituitarism severity in adults with pituitary dysfunction.
Tirosh, Amit; Toledano, Yoel; Masri-Iraqi, Hiba; Eizenberg, Yoav; Tzvetov, Gloria; Hirsch, Dania; Benbassat, Carlos; Robenshtok, Eyal; Shimon, Ilan
2016-08-01
To evaluate the utility of Insulin-like growth factor I (IGF-I) standard deviation score (SDS) as a surrogate marker of severity of hypopituitarism in adults with pituitary pathology. We performed a retrospective data analysis, including 269 consecutive patients with pituitary disease attending a tertiary endocrine clinic in 1990-2015. The medical files were reviewed for the complete pituitary hormone profile, including IGF-I, and clinical data. Age-adjusted assay reference ranges of IGF-I were used to calculate IGF-I SDS for each patient. The main outcome measures were positive and negative predictive values of low and high IGF-I SDS, respectively, for the various pituitary hormone deficiencies. IGF-I SDS correlated negatively with the number of altered pituitary axes (p < 0.001). Gonadotropin was affected in 76.6 % of cases, followed by thyrotropin (58.4 %), corticotropin (49.1 %), and prolactin (22.7 %). Positive and negative predictive values yielded a clear trend for the probability of low/high IGF-I SDS for all affected pituitary axes. Rates of diabetes insipidus correlated with IGF-I SDS values both for the full study population, and specifically for patients with non-functioning pituitary adenomas. IGF-I SDS can be used to evaluate the somatotroph function, as a valid substitute to absolute IGF-I levels. Moreover, IGF-I SDS predicted the extent of hypopituitarism in adults with pituitary disease, and thus can serve as a marker of hypopituitarism severity.
Al-Daghri, Nasser M; Yakout, Sobhy M; Wani, Kaiser; Khattak, Malak Nawaz Khan; Garbis, Spiro D; Chrousos, George P; Al-Attas, Omar S; Alokail, Majed S
2018-05-01
Vitamin D deficiency is common in the Kingdom of Saudi Arabia (KSA). Therefore, it is significant to recognize which biochemical markers modulate serum 25 hydroxyvitamin D (25(OH)D) in response to vitamin D supplementation in such a population. Our aim was to study the correlation of insulin-like growth factor (IGF) and insulin growth factor binding protein (IGFBP) with serum 25(OH)D in response to vitamin D supplementation in a Saudi population. A total of 199 (89 males/110 females) vitamin D deficient subjects (25(OH)D level <50 nmol/L), aged 40.4 ± 11.4 years, were given vitamin D supplements (50,000 IU/mL every week) for the first 2 months, then twice a month for 2 months, followed by daily 1000 IU in the last 2 months. Fasting blood samples were taken at baseline and 6 months after the final dose of vitamin D. Serum 25(OH)D, IGF-1 and IGF-2, and IGFBPs 2-5 were measured. Vitamin D response was computed for all subjects as the difference in levels of serum 25(OH)D concentration at the end of 6 months compared to baseline. After intervention, serum 25(OH)D concentration significantly increased from 35.6 nmol/L (26.6-43.5) to 61.8 nmol/L (54.8-73.3) in responder subjects (P < .01) and from 35.1 nmol/L (21.2-58.2) to 38.3 nmol/L (25.5-48.3) in nonresponders (P = .13). Subjects with lower baseline serum IGF-II, IGFBP-2, and IGF-1/IGFBP-3 ratio are more sensitive to acute vitamin D status changes. IGF1 and IGF-1/IGFBP-3 ratio significantly increased in all subjects after 6 months (P = .01). Changes in 25(OH)D was significantly associated with changes in IGFBP-2 and IGF-1/IGFBP-3 ratio in responders only. This study proposes that changes in circulating IGF-I and IGFBP-3 are modulated by vitamin D supplementation and can be taken into consideration in investigations involving vitamin D correction. Moreover, increase in serum 25(OH)D and IGF-I/IGFBP-3 molar ratio are more sensitive markers for the response to vitamin D supplementation in Saudi population.
NASA Technical Reports Server (NTRS)
Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.
1998-01-01
This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.
Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna
2016-08-01
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Midyett, L Kurt; Rogol, Alan D; Van Meter, Quentin L; Frane, James; Bright, George M
2010-02-01
Short stature in children may be associated with low IGF-I despite normal stimulated GH levels and without other causes. Our objective was to assess the safety and efficacy of recombinant human IGF-I (rhIGF-I) in short children with low IGF-I levels. This was a 1-yr, randomized, open-label trial (MS301). The study was conducted at 30 U.S. pediatric endocrinology clinics. A total of 136 short, prepubertal subjects with low IGF-I (height and IGF-I sd scores <-2, stimulated GH > or =7 ng/ml); 124 completed the study, and six withdrew for adverse events and six for other reasons. rhIGF-I was administered sc, twice daily using weight-based dosing (40, 80, or 120 microg/kg; n = 111) or subjects were observed (n = 25). First-year height velocity (centimeters per year, cm/yr), height sd score, IGF-I, and adverse events were prespecified outcomes. First-year height velocities for subjects completing the trial were increased for the 80- and 120-microg/kg twice-daily vs. the untreated group (7.0 +/- 1.0, 7.9 +/- 1.4, and 5.2 +/- 1.0 cm/yr, respectively; all P < 0.0001) and for the 120- vs. 80-microg/kg group (P = 0.0002) and were inversely related to age. They were not predicted by GH stimulation or IGF-I generation test results and were not correlated with IGF-I antibody status. The most commonly reported adverse events of special interest during treatment were headache (38% of subjects), vomiting (25%), and hypoglycemia (14%). rhIGF-I treatment was associated with age- and dose-dependent increases in first-year height velocity. Adverse events during treatment were less common than in previous studies and were generally transient, easily managed, and without known sequelae.
Rinaldi, Sabina; Biessy, Carine; de la Luz Hernandez, Maria; Lajous, Martin; Ortiz-Panozo, Eduardo; Yunes, Elsa; Lopez-Ridaura, Ruy; Torres-Mejia, Gabriela; Romieu, Isabelle
2015-03-01
Obesity is a major risk factor for several cancers, including female cancers. Endogenous hormones and inflammatory factors may mediate the association between anthropometric measures and cancer risk, although these associations have been studied mainly in Caucasians. The aim of the current study was to explore the association of circulating hormones, adipokines, and inflammatory factors with obesity and overweight in premenopausal Mexican women. We conducted a cross-sectional analysis of 504 premenopausal women from the large Mexican Teachers' Cohort (MTC, ESMaestras) study to determine the association of insulin-like growth factor I (IGF-I), its major circulating binding protein (IGFBP-3), leptin, adiponectin, C-peptide, and C-reactive protein with comprehensive measures of body size. Biomarkers were measured by immunoassays. Multivariate regression analyses were performed to compare geometric mean biomarker concentrations with measured markers of body size and adiposity. Mean IGF-I and IGFBP-3 concentrations significantly increased with increasing height and leg length. Concentrations of IGF-I, adiponectin, and the IGF-I/IGFBP-3 ratio strongly decreased with increasing BMI, weight, waist and hip circumferences, waist-to-hip ratio (WHpR), and waist-to-height ratio (WHtR), while CRP, leptin, C-peptide concentrations, and the leptin/adiponectin ratio strongly increased. Adiponectin and the leptin/adiponectin ratio remained significantly related to measures of central adiposity (waist circumference, WHpR, and WHtR) after adjustment by body mass index. The results of our study suggest a strong relation between biomarkers and body size in this study population and suggest that different fat depots may have different metabolic properties.
Johansen, Peter B; Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan
2003-01-01
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 +/- 35 microg/L and 62 +/- 11 microg/L in the diabetic compared to the nondiabetic mice (P <.05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.
Soriano-Guillén, Leandro; Barrios, Vicente; Lechuga-Sancho, Alfonso; Chowen, Julie A; Argente, Jesús
2004-05-01
Ghrelin is secreted primarily by the stomach, although other tissues such as the pancreas synthesize a minor proportion. The discovery of a new cell type that produces ghrelin in the human pancreas and that this organ expresses GHS-R opens new perspectives in the understanding of the control of glucose metabolism. We have studied 22 children with newly diagnosed type 1 diabetes mellitus at four different points: at diagnosis before insulin therapy, after 48-60 h of insulin therapy, and after 1 and 4 mo of insulin treatment. At each point circulating levels of ghrelin, leptin, IGF-I, IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, and glucose were determined. Ghrelin levels were significantly decreased at diagnosis (573 +/- 68 pg/mL, p < 0.01) compared with controls (867 +/- 38 pg/mL) and remained decreased after insulin therapy (d 2: 595 +/- 68 pg/mL; 1 mo: 590 +/- 61 pg/mL; 4 mo: 538 +/- 67 pg/mL) with no differences before or after insulin treatment. There was a negative correlation between ghrelin levels and body mass index at all of the study points, whereas a negative correlation between ghrelin and glucose concentrations was only observed after insulin therapy. No correlation between ghrelin and HbA1c was found at any point. A positive correlation between ghrelin and IGFBP-1 was found after insulin therapy, but no correlation with other members of the IGF system or leptin was found. In conclusion, these data could indicate a possible link between glucose concentrations and ghrelin; hence, the persisting low ghrelin levels in diabetic children may suggest a defensive mechanism against hyperglycemia.
Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D
1996-04-19
The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.
Ashpole, Nicole M; Logan, Sreemathi; Yabluchanskiy, Andriy; Mitschelen, Matthew C; Yan, Han; Farley, Julie A; Hodges, Erik L; Ungvari, Zoltan; Csiszar, Anna; Chen, Sixia; Georgescu, Constantin; Hubbard, Gene B; Ikeno, Yuji; Sonntag, William E
2017-04-01
Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.
PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis
Vella, Veronica; Nicolosi, Maria Luisa; Giuliano, Stefania; Bellomo, Maria; Belfiore, Antonino; Malaguarnera, Roberta
2017-01-01
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments. PMID:28275367
Wathes, D Claire; Cheng, Zhangrui; Fenwick, Mark A; Fitzpatrick, Richard; Patton, Joe
2011-01-01
Postpartum dairy cows enter a period of negative energy balance (NEB) associated with low circulating IGF1, during which the uterus must undergo extensive repair following calving. This study investigated the effects of NEB on expression of IGF family members and related genes in the involuting uterus. Cows were allocated to two treatments using differential feeding and milking regimes to produce mild NEB or severe NEB (SNEB). Uterine endometrial samples collected 2 weeks post partum were analysed by quantitative PCR. The expression of IGF-binding protein 4 (IGFBP4) mRNA increased in the endometrium of SNEB cows, with trends towards increased IGFBP1 and reduced IGFBP6 expression. There were no significant differences between treatments in mRNA expression of IGF1, IGF2 or of any hormone receptor studied, but significant correlations across all cows in the expression levels of groups of receptors suggested common regulatory mechanisms: type 1 IGF receptor (IGF1R), IGF2R and insulin receptor (INSR); GHR with ESR1; and ESR2 with NR3C1. The expression of IGF1R and INSR also positively correlated with the circulating urea concentration. Matrix metalloproteinases (MMPs) are important in tissue remodelling and can affect IGF signalling via interaction with IGFBPs. The expression levels of MMP1, MMP3, MMP9 and MMP13 mRNAs all showed major upregulation in the endometrium of cows in SNEB and all except MMP9 were highly correlated with expression of IGFBP4. Alpha(2)-HS-glycoprotein (AHSG) and PDK4, two genes implicated in insulin resistance, were also highly expressed in SNEB. These results suggest that cows in SNEB experience alterations to the IGF and insulin signalling pathways in the postpartum endometrium. This may affect the rate of tissue repair with a possible negative impact on subsequent fertility. PMID:21123519
Circulating insulin-like growth factors and Alzheimer disease: A mendelian randomization study.
Williams, Dylan M; Karlsson, Ida K; Pedersen, Nancy L; Hägg, Sara
2018-01-23
To examine whether genetically predicted variation in circulating insulin-like growth factor 1 (IGF1) or its binding protein, IGFBP3, are associated with risk of Alzheimer disease (AD), using a mendelian randomization study design. We first examined disease risk by genotypes of 9 insulin-like growth factor (IGF)-related single nucleotide polymorphisms (SNPs) using published summary genome-wide association statistics from the International Genomics of Alzheimer's Project (IGAP; n = 17,008 cases; 37,154 controls). We then assessed whether any SNP-disease results replicated in an independent sample derived from the Swedish Twin Registry (n = 984 cases; 10,304 controls). Meta-analyses of SNP-AD results did not suggest that variation in IGF1, IGFBP3, or the molar ratio of these affect AD risk. Only one SNP appeared to affect AD risk in IGAP data. This variant is located in the gene FOXO3, implicated in human longevity. In a meta-analysis of both IGAP and secondary data, the odds ratio of AD per FOXO3 risk allele was 1.04 (95% confidence interval 1.01-1.08; p = 0.008). These findings suggest that circulating IGF1 and IGFBP3 are not important determinants of AD risk. FOXO3 function may influence AD development via pathways that are independent of IGF signaling (i.e., pleiotropic actions). Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
IGF-1R mRNA expression is increased in obese children.
Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo
2018-04-01
Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing
2018-05-09
Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms underlying HBV-related HCC and may lead to the development of effective therapies. © 2018 The Author(s). Published by S. Karger AG, Basel.
Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women
Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E
2011-01-01
The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370
Lin, Feng; Suhr, Julie; Diebold, Stephanie; Heffner, Kathi L
2014-04-01
Accumulating evidence suggests an adverse association between depressive symptoms and cognition, but a positive association between insulin-like growth factor (IGF)-1 and cognition. The present study examined the influence of IGF-1 in the relationship between depressive symptoms and learning and memory. A cross-sectional study of 94 healthy fit older adults. Blood was collected and plasma IGF-1 was measured. Depressive symptoms were assessed with the Geriatric Depression Scale (GDS), and learning and memory were assessed using the Rey Auditory Verbal Learning Test (AVLT). Among older adults with lower IGF-1 levels, higher depressive symptoms scores were associated with lower AVLT delayed recall and recognition. Older adults with higher IF-1 levels showed no associations between depressive symptoms and memory. The association between depressive symptoms and cognition is stronger among older adults with lower levels of circulating IGF-1. Further validation studies on groups with depression or different stages of cognitive impairment are needed. IGF-1 may be a novel intervention target for slowing cognitive decline in older adults with depressive symptoms. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.
2001-01-01
Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.
Serum IGF-1 linking visceral obesity with esophageal adenocarcinoma: unconvincing evidence.
McColl, K E L
2012-02-01
There is a strong positive association between body mass index (BMI) and risk of esophageal adenocarcinoma. This is likely to be largely or entirely explained by the established association between central obesity and gastroesophageal reflux and between the latter and risk of esophageal adenocarcinoma. Visceral fat is also metabolically active and there is interest in the possibility that humoral factors released by this fat might promote esophageal carcinogenesis. Insulin growth factor I (IGF-1) has been studied but current data do not support circulating total IGF-1 as a humoral factor linking BMI and esophageal carcinogenesis.
Cianfarani, Stefano; Tondinelli, Tiziana; Spadoni, Gian Luigi; Scirè, Giuseppe; Boemi, Sergio; Boscherini, Brunetto
2002-08-01
The diagnosis of GH insufficiency (GHI) in childhood is not straightforward. Our aim was to test the sensitivity and specificity of height velocity (HV), IGF-I, IGFBP-3 and GH stimulation tests alone or in combination in the diagnosis of GHI. A retrospective review of patients with GHI and idiopathic short stature (ISS) diagnosed in our centre and followed up to the completion of linear growth. Thirty-three GHI children and 56 children with ISS were evaluated. GHI diagnosis was based on fulfilment of anthropometric, endocrine and neuroradiological criteria: stature < or = -2 z-score, delayed bone age (at least 1 year), GH peak response to at least two different provocative tests < 10 micro g/l (20 mU/l), brain MRI positive for hypothalamus-pituitary abnormalities, catch-up growth during the first year of GH replacement therapy > or = 75th centile, peak GH response to a third provocative test after growth completion < 10 micro g/l (20 mU/l). Children with anthropometry resembling that of GHI but with peak GH responses > 10 micro g/l (20 mU/l) were diagnosed as ISS. All subjects underwent standard anthropometry. GH secretory status was assessed by clonidine, arginine and GHRH plus arginine stimulation tests. IGF-I and IGFBP-3 circulating levels were measured by immunoradiometric assay (IRMA). The following cut-off values were chosen to discriminate between GHI and nonGHI short children: HV < 25th centile over the 6-12 months prior to the initiation of GH therapy, peak GH responses < 10 or < 7 micro g/l (< 20 or < 14 mU/l) and IGF-I and IGFBP-3-values < -1.9 z-score. Sensitivity (true positive ratio) and specificity (true negative ratio) were evaluated. Taking 10 micro g/l (20 mU/l) as the cut-off value, sensitivity was 100% and specificity 57% for GH provocative tests, whereas taking 7 as the cut-off value, sensitivity was 66% and specificity rose to 78%. Sensitivity was 73% for IGF-I and 30% for IGFBP-3 measurement, whilst specificity was 95% for IGF-I and 98% for IGFBP-3 evaluation. HV assessment revealed a sensitivity of 82% and a specificity of 43%. When HV and IGF-I evaluations were used in combination, sensitivity reached 95% and specificity 96%. When both HV and IGF-I are normal (26% of our subjects) GHI may be ruled out, whereas when both the indices are subnormal (23%) GHI is so highly likely that the child may undergo only one GH provocative test and brain MRI and, thereafter, may begin GH therapy without any further test. In case of discrepancy, when IGF-I is normal and HV < 25th centile (44% of children), due to the relatively low sensitivity of IGF-I assessment and low specificity of HV, the patient should undergo GH tests and brain MRI. Finally, in the rare case of HV > 25th centile and subnormal IGF-I-values (7%), due to the high specificity of IGF-I measurement, the child should undergo one provocative test and brain MRI for the high suspicion of GHI. Our results suggest that a simple assessment of HV and basal IGF-I may exclude or, in association with only one stimulation test, confirm the diagnosis of GH insufficiency in more than half of patients with short stature.
Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.
1994-01-01
Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.
Sirotkin, Alexander V; Florkovičová, Iveta Koničková; Švarcová, Olga Østrup; Rafay, Jan; Laurincik, Jozef; Harrath, Abdel Halim
2017-03-01
The aim of these in vivo and in vitro studies was to examine the influence of caloric restriction (CR), and the administration of insulin-like growth factor (IGF-I), on rabbit fecundity and to understand the interrelationships between CR and IGF-I, as well as the endocrine and intracellular mechanisms of their effects. Female rabbits were subjected to 50% CR, injections of IGF-I (20 μg/animal/day) and a combination of the two for 10 d before and 2 d after ovulation induced by 25 IU PMSG and 0.25 IU hCG. On the day of ovulation blood samples were collected and analyzed IGF-I, leptin, progesterone (P 4 ) and estradiol (E 2 ) concentrations by RIA. Some animals from each group were killed in their periovulatory period and weighed, as were their ovaries. Granulosa cells isolated from ovaries of does subjected or not to CR were cultured for 2 d with and without IGF-I (100 ng/mL). Accumulation of markers of cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA) and IGF-I were evaluated by immunocytochemistry. In addition, E 2 release by cells isolated from ovaries of animals subjected or not to CR and cultured with and without IGF-I (1, 10, 100, 1000 or 10000 ng/mL) was assessed by RIA. The remaining animals were kept until parturition, when the number of pups was recorded. CR did not affect animal and ovarian weight, but significantly increased the number of pups per litter and plasma levels of IGF-I and decreased plasma leptin and P 4 , but not E 2 concentration. Injections of IGF-I did not influence body and ovarian weights, but increased the number of pups per litter and plasma IGF-I and leptin concentration and reduced plasma E 2 but not P 4 level. IGF-I administration did not modify the main effects of CR, although it prevented the CR-induced decrease in plasma P 4 level. CR reduced accumulation of PCNA, bax, promoted accumulation of cyclin B1 but not of MAPK, PKA or IGF-I within ovarian granulosa cells. Addition of IGF-I to culture medium reduced accumulation of bax, MAPK, and IGF-I and promoted PKA accumulation and E 2 release. CR promoted the stimulatory effect of IGF-I on E 2 output. Thus, CR can increase rabbit fecundity, probably via changes in IGF-I, leptin and steroid hormones released, which in turn can affect ovarian cell cycle, apoptosis, and response to IGF-I. Furthermore, they demonstrate the stimulatory influence of IGF-I on rabbit fecundity, which was associated with changes in plasma leptin, E 2 and ovarian cell apoptosis, PKA, MAPK, IGF-I and E 2 release. The promotion of IGF-I output by CR and the ability of IGF-I to mimic/replace but not to modify CR effects on fecundity, plasma IGF-I, and ovarian cell apoptosis suggest that IGF can mediate the action of CR on these reproductive indexes. In contrast, differences in the action of CR and IGF-I on other hormones, ovarian cell proliferation, protein kinases and IGF-I suggest that CR action on these indexes is not mediated by IGF-I. We thus demonstrate that both CR and IGF-I administration can increase rabbit fecundity, and that their effects can be mediated by changes in reproductive hormones, ovarian cell proliferation, apoptosis, and the response of ovarian cells to IGF-I. Copyright © 2016 Elsevier Inc. All rights reserved.
Rosen, C J; Glowacki, J; Craig, W
1998-01-01
Aging is associated with profound changes in the growth hormone/insulin-like growth factor (IGF) regulatory system. These include reductions in growth hormone, IGF-I, IGFBP3, and IGFBP-5 and an increase in IGFBP-4. These changes, coupled with rather marked declines in sex steroid production from both the ovary and adrenals may combine to have very deleterious effects on several organ systems in the postmenopausal woman. In particular, the prevalence of two very common diseases, osteoporosis and coronary artery disease, increase dramatically after the cessation of gonadal steroid production. The complex interrelationship between the IGF regulatory system and estrogens/androgens in the postmenopausal period may provide important clues as to the pathophysiology of both these disorders. In this paper, we begin to define the role of IGF-I (and its constituent IGF binding proteins) in skeletal and vascular tissue. Recent experimental data show the effects of estrogen on circulating and tissue IGFs in older individuals. Finally, estrogen replacement therapy affects the IGF regulatory system in postmenopausal women. Although conclusions from early studies remain somewhat preliminary, it is likely that the IGF regulatory system will be a prime target for future studies into the pathogenesis of several age and sex hormone related degenerative disorders.
Aging, Atherosclerosis, and IGF-1
Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung
2012-01-01
Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965
Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan
2003-01-01
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats. PMID:14630569
Piotrowska, Katarzyna; Borkowska, Sylwia J.; Wiszniewska, Barbara; Laszczyńska, Maria; Słuczanowska-Głąbowska, Sylwia; Havens, Aaron M.; Kopchick, John J.; Bartke, Andrzej; Taichman, Russel S.; Kucia, Magda; Ratajczak, Mariusz Z.
2014-01-01
Summary It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals. To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on the morphology of major organs, we analyzed lung, heart, liver, kidney, bone marrow, and spleen isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice (with low circulating plasma levels of IGF-1) and 6-month-old bovine growth hormone transgenic (bGHTg) mice (with high circulating plasma levels of IGF-1). The ages of the two mutant strains employed in our studies were selected based on their overall ~50% survival (Laron dwarf mice live up to ~4 years and bGHTg mice up to ~1 year). Morphological analysis of the organs of long-living 2-year-old Laron dwarf mice revealed a lower biological age for their organs compared with normal littermates, with more brown adipose tissue (BAT) surrounding the main body organs, lower levels of steatosis in liver, and a lower incidence of leukocyte infiltration in different organs. By contrast, the organs of 6-month-old, short-living bGHTg mice displayed several abnormalities in liver and kidney and a reduced content of BAT around vital organs. PMID:23613169
Córdova, Claudio; Boullosa, Daniel A; Custódio, Misael R M; Quaglia, Luiz A; Santos, Simone N; Freitas, Wladimir M; Sposito, Andrei C; Nóbrega, Otávio T
2016-10-01
Our aim was to investigate whether physiological levels of soluble insulin-like growth factor-1 (IGF-1) associate with coronary and carotid atherosclerotic burden and physical fitness in the oldest old by means of a cross-sectional study including 100 community-dwelling individuals with no previous cardiovascular events. Linear correlation was found between IGF-1 and intima-media thickness, number of carotid plaques, and walking speed. Individuals in the upper IGF-1 tertile had smaller right and left intima-media thickness compared with the intermediate and lower tertiles, along with reduced atherosclerotic plaques. Also, walking speed was greater in the upper IGF-1 tertile. On the other hand, a nonlinear correlation was observed between IGF-1 and coronary calcification scores, with the intermediate IGF-1 tertile associated to the lowest scores of calcification and participants with lower circulating levels of IGF-1 showing higher frequency of high-risk morphology plaques. All in all, our report supports a territory-dependent, atherorefractory phenotype in the oldest old carrying middle and/or higher serum levels of IGF-1. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu
2011-08-01
Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.
Cohen, Adi; Kousteni, Stavroula; Bisikirska, Brygida; Shah, Jayesh G; Manavalan, J Sanil; Recker, Robert R; Lappe, Joan; Dempster, David W; Zhou, Hua; McMahon, Donald J; Bucovsky, Mariana; Kamanda-Kosseh, Mafo; Stubby, Julie; Shane, Elizabeth
2017-06-01
We have previously reported that premenopausal women with idiopathic osteoporosis (IOP) have profound microarchitectural deficiencies and heterogeneous bone remodeling. Those with the lowest bone formation rate have higher baseline serum insulin-like growth factor-1 (IGF-1) levels and less robust response to teriparatide. Because IGF-1 stimulates bone formation and is critical for teriparatide action on osteoblasts, these findings suggest a state of IGF-1 resistance in some IOP women. To further investigate the hypothesis that osteoblast and IGF-1-related mechanisms mediate differential responsiveness to teriparatide in IOP, we studied circulating osteoblast progenitor (COP) cells and their IGF-1 receptor (IGF-1R) expression. In premenopausal women with IOP, peripheral blood mononuclear cells (PBMCs) were obtained at baseline (n = 25) and over 24 months of teriparatide treatment (n = 11). Flow cytometry was used to identify and quantify COPs (non-hematopoetic lineage cells expressing osteocalcin and RUNX2) and to quantify IGF-1R expression levels. At baseline, both the percent of PBMCs that were COPs (%COP) and COP cell-surface IGF-1R expression correlated directly with several histomorphometric indices of bone formation in tetracycline-labeled transiliac biopsies. In treated subjects, both %COP and IGF-1R expression increased promptly after teriparatide, returning toward baseline by 18 months. Although neither baseline %COP nor increase in %COP after 3 months predicted the bone mineral density (BMD) response to teriparatide, the percent increase in IGF-1R expression on COPs at 3 months correlated directly with the BMD response to teriparatide. Additionally, lower IGF-1R expression after teriparatide was associated with higher body fat, suggesting links between teriparatide resistance, body composition, and the GH/IGF-1 axis. In conclusion, these assays may be useful to characterize bone remodeling noninvasively and may serve to predict early response to teriparatide and possibly other bone formation-stimulating medications. These new tools may also have utility in the mechanistic investigation of teriparatide resistance in premenopausal IOP and perhaps in other populations. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats.
Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan; Junnila, Riia; Sustarsic, Elahu; Herbach, Nadja; Fanelli, Flaminia; Mezzullo, Marco; Milz, Stefan; Bidlingmaier, Martin; Bielohuby, Maximilian
2016-10-01
Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay. Trabecular bone volume, serum IGF-I and the bone formation marker P1NP were lower in male rats fed both LC-HF diets versus CD. LC-HF diets did not impair bone health in female rats, with no change in trabecular or cortical bone volume nor in serum markers of bone turnover between CD versus both LC-HF diet groups. Pituitary GH secretion was lower in female rats fed LC-HF diet, with no difference in circulating IGF-I. Circulating sex hormone concentrations remained unchanged in male and female rats fed LC-HF diets. A 4-week consumption of LC-HF diets has sex-specific effects on bone health-with no effects in adult female rats yet negative effects in adult male rats. This response seems to be driven by a sex-specific effect of LC-HF diets on the GH/IGF system.
Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U
2017-05-01
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.
Pedersen, Henrik D; Falk, Torkel; Häggström, Jens; Tarnow, Inge; Olsen, Lisbeth H; Kvart, Clarence; Nielsen, Mette O
2005-01-01
Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentrations has been found in several studies. In dogs with HF, few studies have focused on IGF-1. We examined circulating IGF-1 concentrations in dogs with mitral regurgitation (MR) caused by myxomatous mitral valve disease. Study 1 included 88 Cavalier King Charles Spaniels (CKCSs) with a broad range of asymptomatic MR (median serum IGF-1: 76.7 microg/L; 25-75 percentile, 59.8-104.9 microg/L). As expected, standard body weight and percentage under- or overweight correlated directly with IGF-1. MR (assessed in 4 different ways) did not correlate with IGF-1. In study 2, 28 dogs with severe MR and stable, treated congestive HF had similar serum IGF-1 concentrations (median, 100.8 g/L; 25-75 percentile, 74.9-156.5 microg/L) as 11 control dogs (79.6 microg/L; 25-75 percentile, 64.1-187.4 microg/L; P = .84). In study 3, the plasma IGF-1 concentration of 15 untreated CKCSs with severe MR was 16.4 +/- 24.2 microg/L lower (P = .02) at the examination when decompensated HF had developed (80.8 +/- 30.9 microg/L) than at a visit 1-12 months earlier (97.2 +/- 39.8 microg/L), possibly in part due to an altered state of nutrition. The studies document that circulating IGF-1 concentrations are not altered before development of congestive HF in dogs with naturally occurring MR, but decrease by approximately 20% with the development of untreated HE In treated HF, circulating IGF-1 concentrations apparently return to within the reference range.
Gifford, A H; Nymon, A B; Ashare, A
2014-04-01
Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.
Insulin-like growth factor I enhances the expression of aromatase P450 by inhibiting autophagy.
Zhang, Bo; Shozu, Makio; Okada, Masahiko; Ishikawa, Hiroshi; Kasai, Tadayuki; Murakami, Kouich; Nomura, Kazuhito; Harada, Nobuhiro; Inoue, Masaki
2010-10-01
Aromatase, a key enzyme of estrogen biosynthesis, is transcriptionally regulated by many growth factors. IGF-I enhances aromatase activity in a variety of cells, but the mechanism of action has not been determined. We herein report our finding of a novel mechanism of action for IGF-I. IGF-I enhanced the dexamethasone (DEX)-induced aromatase activity by 30% in serum-starved THP-1 cells. The increase was associated with a corresponding increase in the level of aromatase protein but not with any change in the mRNA level. Metabolic labeling experiments revealed that IGF-I inhibited the degradation of aromatase. We identified pepstatin A as the most effective inhibitor of aromatase degradation by in vitro assay. Using a nontoxic concentration of pepstatin A, we examined IGF-I's action on aromatase distribution in microsomes and lysosomes. In the presence of pepstatin A, DEX caused an increase in the amount of aromatase in both microsomes and lysosomes, and IGF-I attenuated the DEX-induced accumulation of aromatase in lysosomes and, conversely, enhanced its accumulation in the microsomes. The addition of serum abolished the IGF-I-induced changes. The transport from microsome to lysosome was fluorescently traced in cells using a recombinant aromatase. IGF-I selectively reduced the aromatase signal in the lysosomes. Finally, we observed that IGF-I enhanced the aromatase activity by 50% as early as 1 h after treatment; furthermore, rapamycin, an enhancer of autophagy, completely negated the effect of IGF-I on the enzyme. These results indicate that IGF-I enhances aromatase by the inhibition of autophagy.
Mitterberger, Maria C; Mattesich, Monika; Klaver, Elise; Piza-Katzer, Hildegunde; Zwerschke, Werner
2011-11-01
Life-span extension in laboratory rodents induced by long-term caloric restriction correlates with decreased serum insulin-like growth factor-I (IGF-I) levels. Reduced activity of the growth hormone/IGF-I signaling system slows aging and increases longevity in mutant mouse models. In the present study, we show that long-term caloric restriction achieved by two different interventions for 4 years, either laparoscopic-adjustable gastric banding or reducing diet, leads to reduced IGF-I serum levels in formerly obese women relative to normal-weight women eating ad libitum. Moreover, we present evidence that the long-term caloric restriction interventions reduce fasting growth hormone serum levels. The present study indicates that the activity of the growth hormone/IGF-I axis is reduced in long-term calorically restricted formerly obese humans. Furthermore, our findings suggest that the duration and severity of the caloric restriction intervention are important for the outcome on the growth hormone/IGF-I axis in humans.
Human antral fluid IGF-I and oocyte maturity: effect of stimulation therapy.
Roussi, M; Royère, M; GuillonueauM; Lansac, J; Muh, J P
1989-07-01
Studies in animals have highlighted a possible role for growth factors, particularly IGF-I on cellular replication and cytodifferentiation in the ovary. At this time, few studies have been performed about IGF-I in the human ovary. From 38 women undergoing in Vitro Fertilization 293 antral antral fluids were collected and assessed for steroids (estradiol and progesterone), FSH and IGF-I. Two induction treatments were compared: clomiphene citrate hMG (group A,N = 15), triptoreline/hMG (group B,N = 23). We also studied relationships between quantitative parameters and oocyte collection or oocyte corona cumulus complex maturity, In group B, the highest antral estradiol levels were found in follicles yielding an oocyte (p less than 0.05). Concerning antral progesterone, higher levels were observed in follicles collected from group A than follicles collected from group B (p less than 0.05): for this parameter, the highest levels were observed when an oocyte was harvested, whatever the treatment (p less than 0.05). Highest antral FSH levels were observed in group B (p less than 0.05). IGF-I levels were higher in follicles collected from group B than in follicles collected from group A (p less than 0.05) and antral IGF-I levels differed between mature and immature oocyte corona cumulus complex in group B (p less than 0.05). These results, which are in keeping with studies about biological action of IGF-I in animal or human follicles or granulosa cells, led us to hypothesize a role for IGF-I in human follicular recruitment and maturation, a role that possible is enhanced during GnRH analogue and gonadotropin therapy.
Elevated serum IGF-I, but unaltered sex steroid levels, in healthy boys with pubertal gynaecomastia.
Mieritz, Mikkel G; Sorensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Hagen, Casper P; Hilsted, Linda; Andersson, Anna-Maria; Juul, Anders
2014-05-01
Pubertal gynaecomastia is a very common condition. Although the underlying aetiology is poorly understood, it is generally accepted that excess of oestrogens and deficit of androgens are involved in the pathogenesis. Furthermore, adiposity as well as the GH/IGF-I axis may play a role. In this study, we elucidate the association of adiposity and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), testosterone, oestrogen, IGF-I and IGFBP-3 with the presence of pubertal gynaecomastia in a large cohort of healthy boys. A total of 501 healthy Danish school boys (aged 6·1-19·8 year) from the COPENHAGEN Puberty Study. Anthropometry and pubertal stages (PH1-6 and G1-5) were evaluated, and the presence of gynaecomastia was assessed. Body fat percentage was calculated by means of four skin folds and impedance. Nonfasting blood samples were analysed for FSH, LH, testosterone, SHBG, oestradiol, IGF-I, IGFBP-3 and prolactin. We found that 23% (31/133) of all pubertal boys had gynaecomastia. More specifically, 63% (10/16) of boys in genital stage 4 had gynaecomastia. Boys with gynaecomastia had significantly higher IGF-I levels compared with controls (IGF-I SD-score 0·72 vs -0·037, P < 0·001). This difference was maintained after adjusting for confounders (age and pubertal stage). Sex steroid levels, oestradiol/testosterone ratio or free testosterone were not associated with the presence of gynaecomastia with or without adjustment for confounders. IGF-I levels were elevated in healthy boys with pubertal gynaecomastia compared with boys without gynaecomastia, whereas sex steroid levels did not differ. We speculate that the GH-IGF-I axis may be involved in the pathogenesis of pubertal gynaecomastia. © 2013 John Wiley & Sons Ltd.
Place of cabergoline in acromegaly: a meta-analysis.
Sandret, Laure; Maison, Patrick; Chanson, Philippe
2011-05-01
Cabergoline is widely considered to be poorly effective in acromegaly. The aim of this study was to obtain a more accurate picture of the efficacy of cabergoline in acromegaly, both alone and in combination with somatostatin analogs. We systematically reviewed all trials of cabergoline therapy for acromegaly published up to 2009 in four databases (PubMed, Pascal, Embase, and Google Scholar). We identified 15 studies (11 prospective) with a total of 237 patients; none were randomized or placebo-controlled. A meta-analysis was conducted on individual data (n = 227). Cabergoline was used alone in nine studies. Fifty-one (34%) of the 149 patients achieved normal IGF-I levels. In multivariate analysis, the decline in IGF-I was related to the baseline IGF-I concentration (β = 1.16; P <0.001), treatment duration (β = 0.28; P < 0.001), and baseline prolactin concentration (β = -0.18; P = 0.01), and with a trend toward a relation with the cabergoline dose (β = 0.38; P =0.07). In five studies, cabergoline was added to ongoing somatostatin analog treatment that had failed to normalize IGF-I. Forty patients (52%) achieved normal IGF-I levels. The change in IGF-I was significantly related to the baseline IGF-I level (β = 0.74; P < 0.001) but not to the dose of cabergoline, the duration of treatment, or the baseline prolactin concentration. This meta-analysis suggests that cabergoline single-agent therapy normalizes IGF-I levels in one third of patients with acromegaly. When a somatostatin analog fails to control acromegaly, cabergoline adjunction normalizes IGF-I in about 50% of cases. This effect may occur even in patients with normoprolactinemia.
Cancerous leptomeningitis and familial congenital hypopituitarism.
Vujovic, S; Vujosevic, S; Kavaric, S; Sopta, J; Ivovic, M; Saveanu, A; Brue, T; Korbonits, M; Popovic, V
2016-05-01
People are at higher risk of cancer as they get older or have a strong family history of cancer. The potential influence of environmental and behavioral factors remains poorly understood. Earlier population and case control studies reported that upper quartile of circulating IGF-I is associated with a higher risk of developing cancer suggesting possible involvement of the growth hormone (GH)/IGF system in initiation or progression of cancer. Since GH therapy increases IGF-1 levels, there have been concerns that GH therapy in hypopituitarism might increase the risk of cancer. We report a 42-year-old female patient who presented with subacute onset of symptoms of meningitis and with the absence of fever which resulted in death 70 days after the onset of symptoms. The patient together with her younger brother was diagnosed at the age of 5 years with familial congenital hypopituitarism, due to homozygous mutation c.150delA in PROP1 gene. Due to evolving hypopituitarism, she was replaced with thyroxine (from age 5), hydrocortisone (from age 13), GH (from age 13 until 17), and sex steroids in adolescence and adulthood. Her consanguineous family has a prominent history of malignant diseases. Six close relatives had malignant disease including her late maternal aunt with breast cancer. BRCA 1 and BRCA 2 mutational analysis in the patient's mother was negative. Histology after autopsy disclosed advanced ovarian cancer with multiple metastases to the brain, leptomeninges, lungs, heart, and adrenals. Low circulating IGF-1 did not seem to protect this patient from cancer initiation and progression in the context of strong family history of malignancies.
Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice
Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A.; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N.; Bartke, Andrzej; Ungvari, Zoltan
2008-01-01
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress. PMID:18757483
NASA Astrophysics Data System (ADS)
Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang
2015-04-01
The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.
Bielohuby, Maximilian; Zarkesh-Esfahani, Sayyed Hamid; Manolopoulou, Jenny; Wirthgen, Elisa; Walpurgis, Katja; Toghiany Khorasgani, Mohaddeseh; Aghili, Zahra Sadat; Wilkinson, Ian Robert; Hoeflich, Andreas; Thevis, Mario; Ross, Richard J.; Bidlingmaier, Martin
2014-01-01
The development of new growth hormone (GH) agonists and growth hormone antagonists (GHAs) requires animal models for pre-clinical testing. Ideally, the effects of treatment are monitored using the same pharmacodynamic marker that is later used in clinical practice. However, intact rodents are of limited value for this purpose because serum IGF-I, the most sensitive pharmacodynamic marker for the action of GH in humans, shows no response to treatment with recombinant human GH and there is little evidence for the effects of GHAs, except when administered at very high doses or when overexpressed. As an alternative, more suitable model, we explored pharmacodynamic markers of GH action in intact rabbits. We performed the first validation of an IGF-I assay for the analysis of rabbit serum and tested precision, sensitivity, linearity and recovery using an automated human IGF-I assay (IDS-iSYS). Furthermore, IGF-I was measured in rabbits of different strains, age groups and sexes, and we monitored IGF-I response to treatment with recombinant human GH or the GHA Pegvisomant. For a subset of samples, we used LC-MS/MS to measure IGF-I, and quantitative western ligand blot to analyze IGF-binding proteins (IGFBPs). Although recovery of recombinant rabbit IGF-I was only 50% in the human IGF-I assay, our results show that the sensitivity, precision (1.7–3.3% coefficient of variation) and linearity (90.4–105.6%) were excellent in rabbit samples. As expected, sex, age and genetic background were major determinants of IGF-I concentration in rabbits. IGF-I and IGFBP-2 levels increased after single and multiple injections of recombinant human GH (IGF-I: 286±22 versus 434±26 ng/ml; P<0.01) and were highly correlated (P<0.0001). Treatment with the GHA lowered IGF-I levels from the fourth injection onwards (P<0.01). In summary, we demonstrated that the IDS-iSYS IGF-I immunoassay can be used in rabbits. Similar to rodents, rabbits display variations in IGF-I depending on sex, age and genetic background. Unlike in rodents, the IGF-I response to treatment with recombinant human GH or a GHA closely mimics the pharmacodynamics seen in humans, suggesting that rabbits are a suitable new model to test human GH agonists and antagonists. PMID:25239917
TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia
Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner
2011-01-01
Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075
Demographic factors influencing the GH system: Implications for the detection of GH doping in sport.
Nelson, Anne E; Ho, Ken K Y
2009-08-01
Application of methods for detecting GH doping depend on being able to discriminate between abnormal levels due to doping and normal physiological levels of circulating proteins that change in response to exogenous administration. Constituents of the IGF and collagen systems have been shown to be promising markers of GH abuse. Their ultimate utility, however, depends on identification of the factors that regulate their concentrations in blood. Among these are demographic factors that are known to influence these markers in the general population. In a large cross-sectional study of the GH-responsive markers in over 1000 elite athletes from 12 countries representing 4 major ethnic groups and 10 sport types, we have shown that there is a significant negative correlation between age and all the IGF and collagen markers we studied, with a rapid decrease in early adolescence. Age was the major contribution to the variability, equivalent to >80% of the attributable variation in IGF-I and the collagen markers. The IGF axis markers were all significantly higher in women, and the collagen markers significantly higher in men, however, the contribution of gender was smaller than that of age, except for IGFBP-3 and ALS. BMI had a minor contribution to variability of the GH-responsive markers. After adjustment for the confounding influences of age, gender and BMI, the effect of ethnicity in elite athletes was trivial except for IGFBP-3 and ALS, which were both lower in Africans and higher in Caucasians. Compared to age and gender, the contribution of sport type was also modest. Our findings on the influence of age, gender, BMI and sport type have also been confirmed in a study of mostly Caucasian elite athletes in the post-competition setting. In conclusion, age and gender are the major determinants of variability for IGF-I and the collagen markers, whereas ethnicity and sport type have a minor influence. Therefore, a test based on IGF-I and the collagen markers must take age into account for men and women, and ethnicity and sport type are unlikely to be confounders for these markers.
Insulin-like growth factor-I (lGF-l): safety and efficacy.
Laron, Zvi
2004-11-01
Insulin-like growth factor I (IGF-I) is a peptide synthesized mainly in the liver by stimulation by pituitary growth hormone (GH). It circulates almost entirely bound to its binding proteins. It is the anabolic effector hormone of GH. It is the only treatment in states of GH resistance such as Laron syndrome and blocking antibodies to human GH. As it suppresses insulin and GH secretion it has been used in states of insulin resistance including Type II diabetes mellitus. IGF-I is administered by once or twice daily injections. Adverse effects are mostly caused by overdosage. The usual daily dose in children ranges from 100-200 microg/kg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prado, Paula S.; Pinheiro, Ana Paula B.; Bazzoli, Nilo
2014-05-01
Field studies evaluating the effects of endocrine disruption chemicals (EDCs) on the fish reproduction are scarce worldwide. The goal of this study was to assess hepatic levels of vitellogenin (Vtg), zona radiata proteins (Zrp) and insulin-like growth factors (IGF-I and IGF-II), and relating them to reproductive endpoints in a wild fish population habiting a reservoir that receive domestic sewage, agricultural and industrial residues. Adult fish Astyanax fasciatus were sampled during the reproductive season in five sites from the Furnas Reservoir, Grande River, and Paraguay–Paraná basin. As a control to field data, fish were experimentally exposed via dietary intake, to oestradiolmore » benzoate (OB) for 7 days. Fish from site with little anthropogenic interference showed hepatic levels of Vtg, Zrp and IGF-I and IGF-II similar to those from the non-treated experimental group. In sites located immediately downstream from the municipal wastewater discharges, the water total oestrogen was >120 ng/l, and male fish displayed increased Vtg and Zrp and decreased IGF-I levels similar to OB treated fish. In females, levels of Vtg, Zrp, IGF-I and IGF-II suggest an impairment of final oocyte maturation and spawning, as also detected by frequency of over-ripening, follicular atresia and fecundity. At the sites that receive agricultural and industrial residues, the water total oestrogen was <50 ng/l and females showed decreased Zrp and increased IGF-II levels associated to reduced diameter of vitellogenic follicles, indicating an inhibition of oocyte growth. Overall, the current study reports oestrogenic contamination impairing the reproduction of a wild fish from a hydroeletric reservoir and, the data contribute to improving the current knowledge on relationship between hepatic Vtg, Zrp and IGF-I and IGF-II, and reproductive endpoints in a teleost fish. In addition, our data point out novel reproductive biomarkers (IGF-I, IGF-II and over-ripening) to assessing xenoestrogenic contamination in freshwater ecosystems. - Highlights: • We point out novel reproductive biomarkers to assess xenoestrogenic contamination. • Field captured fish showed altered hepatic Vtg and Zrp. • Hepatic IGF-I and II levels were associated to reproductive disturbances. • Over-ripening is a better xenoestrogen biomarker than follicular atresia.« less
Characterization of insulin-like growth factor I receptor on human erythrocytes.
Hizuka, N; Takano, K; Tanaka, I; Honda, N; Tsushima, T; Shizume, K
1985-12-01
[125I]Insulin-like growth factor I (IGF-I) specifically bound to erythrocytes; the binding was saturable, and time and temperature dependent. Steady state binding was reached at 16 h at 4 C, and specific binding averaged 14.3 +/- 0.7% (+/- SEM) at a concentration of 3.6 X 10(9) cells/ml in seven normal subjects. [125I]IGF-I binding to the cells was displaced by unlabeled IGF-I in a dose-dependent manner. Scatchard analysis indicated a linear plot, and Ka and number of binding sites/cell were 1.43 +/- 0.07 X 10(9) M-1 and 20.7 +/- 2.2, respectively. Compared to IGF-I, the relative potencies of multiplication-stimulating activity and insulin for displacing [125I]IGF-I binding were 20% and 1%, respectively. [125I]IGF-I binding to erythrocytes from patients with acromegaly was lower than binding to cells from pituitary dwarfs. An inverse correlation between plasma IGF-I level and the number of IGF-I-binding sites per cell was found (r = -0.75; P less than 0.005). These results demonstrate that [125I]IGF-I binding to erythrocytes can be used for clinical measurement of the IGF-I receptor.
Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model.
Lim, WonBong; Choi, Hongran; Kim, Jisun; Kim, Sangwoo; Jeon, SangMi; Zheng, Hui; Kim, DoMan; Ko, Youngjong; Kim, Donghwi; Sohn, HongMoon; Kim, OkJoon
2015-02-01
Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief. As during laser treatment it is possible to irradiate only a small area of the surface body or wound and, correspondingly, of a very small volume of the circulating blood, it is necessary to explain how its photomodification can lead to a wide spectrum of therapeutic effects. To establish the experimental model for indirect irradiation, irradiation with 635 nm was performed on immortalized human gingival fibroblasts (IGFs) in the presence of Porphyromonas gingivalis lipopolysaccharides (LPS). The irradiated medium was transferred to non-irradiated IGFs which were compared with direct irradiated IGFs. The protein expressions were assessed by Western blot, and prostaglandin E2 (PGE2 ) was measured using an enzyme-linked immunoassay. Reactive oxygen species (ROS) were measured by DCF-DA; cytokine profiles were assessed using a human inflammation antibody array. Cyclooxygenase-2 (COX-2) protein expression and PGE2 production were significantly increased in the LPS-treated group and decreased in both direct and indirect irradiated IGFs. Unlike direct irradiated IGFs, ROS level in indirect irradiated IGFs was decreased by time-dependent manners. There were significant differences of released granulocyte colony-stimulating factor (G-CSF), regulated on activated normal T-cell expressed and secreted (RANTES), and I-TAC level observed compared with direct and indirect irradiated IGFs. In addition, in the indirect irradiation group, phosphorylations of C-Raf and Erk1/2 increased significantly compared with the direct irradiation group. Thus, we suggest that not only direct exposure with 635 nm light, but also indirect exposure with 635 nm light can inhibit activation of pro-inflammatory mediators and may be clinically useful as an anti-inflammatory tool. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genetics of Isolated Growth Hormone Deficiency
2010-01-01
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin−like Growth Factor−I (IGF−I) plays a pivotal role, GHD could also be considered as a form of IGF−I deficiency (IGFD). Although IGFD can develop at any level of the GH−releasing hormone (GHRH)−GH−IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD. Conflict of interest:None declared. PMID:21274339
Röjdmark, S; Brismar, K
2001-01-01
IGF-I stimulates protein synthesis, lowers blood glucose, and affects cell differentiation. The main production site of IGF-I is the liver. One of its binding proteins, IGFBP-1, is also produced by the liver. It is well known that ethanol affects the function of the human liver. Long-term alcohol abuse may therefore not only cause considerable IGF-I and IGFBP-1 production changes, but also changes in IGF-I bioavailability, which at least in part is determined by the IGF-I/IGFBP-1 ratio. Not much is known about how the bioavailability of IGF-I is changed in alcohol abusers. Therefore, the objective of this investigation was to study that matter, and to elucidate how abstinence affects IGF-I bioavailability in man. Three study groups were formed: group N including normal non-addicted subjects, group E ethanol abusers without gross liver insufficiency, and group C alcohol abusers with liver cirrhosis and ascites. Serum concentrations of insulin, GH, IGF-1, and IGFBP-1 were determined in the morning in all participants, and the IGF-I/IGFBP-1 ratios were calculated. These values were compared in the three study groups. In group E comparison was also made between values recorded in the ethanol intoxicated and in the detoxicated states. Patients in group C had low IGF-I levels, high IGFBP-1 levels, and low IGF-I bioavailability as reflected by the IGF-I/IGFBP-1 ratios, which were several-fold reduced compared with subjects in group N (0.6+/-0.2 vs 10.2+/-2.3; p<0.001). Patients in group E had also a low IGF-I/IGFBP-1 ratio in the acute ethanol intoxicated state, which increased after detoxication (from 1.5+/-0.4 to 5.6+/-1.2; p<0.01). It is concluded that alcohol abuse lowers the hepatic production of IGF-I and increases the production of IGFBP-1. This results in a reduced IGF-I bioavailability. However, in patients with not yet clinically apparent liver damage the IGF-I bioavailability increases if the alcohol abuse is stopped. These findings could reflect an important, physiological adaptation, since hypoglycemia may be induced if the blood glucose-lowering power of IGF-I remains strong at a time of ethanol-induced inhibition of the hepatic gluconeogenesis. Chronic alcohol abuse, causing liver cirrhosis, also leads to markedly reduced IGF-I bioavailability, which appears to become permanent, since it prevails more than one week after stopping the alcohol abuse.
2005-08-01
Doctoral Students 1998 Jeff Volek "Fasting and postprandial serum lipoprotein responses to a hypocaloric low carbohydrate diet rich in...serum estrone. IGF-I did not change significantly either, indicating that chronic exercise and dieting do not result in favorable changes in two...role of physical activity and or diet in the risk of breast cancer, the battery of metabolic hormones that comprise the proposed method must be
Derous, Davina; Mitchell, Sharon E; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex
2016-04-01
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
IGFBP-1 and IGF-I as markers for advanced fibrosis in NAFLD - a pilot study.
Hagström, Hannes; Stål, Per; Hultcrantz, Rolf; Brismar, Kerstin; Ansurudeen, Ishrath
2017-12-01
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease globally. Advanced fibrosis (stage 3-4) is the most robust marker for future mortality, but diagnosis requires liver biopsy. Current non-invasive scoring systems aimed to identify advanced fibrosis are imperfect. Insulin-like growth factor I (IGF-I) and its binding protein IGFBP-1 are liver derived proteins, that are involved in various liver disorders. The aim of this study was to examine the possible association between advanced fibrosis and IGF-I and IGFBP-1 in NAFLD. Fasting blood samples were obtained from 52 patients diagnosed with NAFLD by liver biopsy. Total IGF-I and IGFBP-1 concentrations were determined in serum by in-house radio-immuno-assays. IGF-I levels were age-standardized (IGF-SD). A logistic regression model was used to investigate the association of IGF-SD and IGFBP-1 with advanced fibrosis (stage 3-4). Patients with advanced fibrosis (stage 3-4 vs. 0-2) had lower IGF-SD (-1.17 vs. 0.11, p = .01) and higher mean levels of IGFBP-1 (29.9 vs. 18.8 µg/l, p = .02). IGFBP-1 was associated with presence of advanced fibrosis (OR 1.04 per unit increase, 95%CI 1.0-1.07, p = .05), while IGF-1 was negatively associated with advanced fibrosis (OR 0.63 per standard deviation, 95%CI 0.44-0.92, p = .02). This pilot study suggests an association between serum IGFBP-1 and IGF-I levels with advanced fibrosis in NAFLD patients. IGFBP1 and IGF-1 could be of interest as future biomarkers. Similar studies in larger cohorts are needed.
Schneider, Harald Jörn; Saller, Bernhard; Klotsche, Jens; März, Winfried; Erwa, Wolfgang; Wittchen, Hans-Ullrich; Stalla, Günter Karl
2006-05-01
Insulin-like growth factor-I (IGF-I) has been suggested to be a prognostic marker for the development of cancer and, more recently, cardiovascular disease. These diseases are closely linked to obesity, but reports of the association of IGF-I with measures of obesity are divergent. In this study, we assessed the association of age-dependent IGF-I standard deviation scores with body mass index (BMI) and intra-abdominal fat accumulation in a large population. A cross-sectional, epidemiological study. IGF-I levels were measured with an automated chemiluminescence assay system in 6282 patients from the DETECT study. Weight, height, and waist and hip circumference were measured according to the written instructions. Standard deviation scores (SDS), correcting IGF-I levels for age, were calculated and were used for further analyses. An inverse U-shaped association of IGF-I SDS with BMI, waist circumference, and the ratio of waist circumference to height was found. BMI was positively associated with IGF-I SDS in normal weight subjects, and negatively associated in obese subjects. The highest mean IGF-I SDS were seen at a BMI of 22.5-25 kg/m2 in men (+0.08), and at a BMI of 27.5-30 kg/m2 in women (+0.21). Multiple linear regression models, controlling for different diseases, medications and risk conditions, revealed a significant negative association of BMI with IGF-I SDS. BMI contributed most to the additional explained variance to the other health conditions. IGF-I standard deviation scores are decreased in obesity and underweight subjects. These interactions should be taken into account when analyzing the association of IGF-I with diseases and risk conditions.
Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong
2017-07-04
Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.
Zhao, Juan; Harada, Naoaki; Okajima, Kenji
2011-10-01
We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping
2007-11-01
Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.
Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.
Postprandial hyperglycemia corrected by IGF-I (Increlex®) in Laron syndrome.
Latrech, Hanane; Simon, Albane; Beltrand, Jacques; Souberbielle, Jean-Claude; Belmejdoub, Ghizlane; Polak, Michel
2012-01-01
Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (-9 SDs); weight, 10 kg (-4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose. Copyright © 2012 S. Karger AG, Basel.
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M.; Paolisso, Giuseppe; Semba, Richard D.; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi
2011-01-01
Background and Aims Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Methods Selenium and total IGF-1 were measured in 951 men and women ≥65 years from the InCHIANTI study, Tuscany, Italy. Results Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) µmol/L and 113.4 (31.2) ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (ß ± SE: 43.76±11.2, p=0.0001).After further adjustment for total energy and alcohol intake, serum alanine amino transferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β ± SE: 36.7 ± 12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β ± SE: 40.1 ± 12.0, p=0.0008). Conclusions We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. PMID:20416996
Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia
2009-12-10
Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.
Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C.; Ladurner, Andreas G.; Rosenthal, Nadia
2010-01-01
Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD+-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic. PMID:20228935
Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?
Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C
2016-03-01
Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. © Georg Thieme Verlag KG Stuttgart · New York.
USDA-ARS?s Scientific Manuscript database
In an effort to determine whether tropical adaptation influences circulating concentrations of the growth-related hormone, insulin-like growth factor-I (IGF-I), 3-breed diallel matings were conducted using temperate Bos taurus (A; Angus), tropical Bos indicus (B; Brahman), and tropical Bos taurus (R...
Investigational agents for the treatment of growth hormone-insensitivity syndrome.
Kemp, Stephen F; Thrailkill, Kathryn M
2006-04-01
Growth hormone-insensitivity syndrome (GHIS) is usually caused by mutations in the growth hormone receptor. Recombinant IGF-I has been used to treat GHIS either alone (mecasermin) or in combination with IGF-binding protein (IGFBP)-3 (mecasermin rinfabate). IGF-I increases the growth velocity of children with IGF deficiency, which is either as a result of GHIS or an IGF-I gene deletion. Hypoglycaemia has been reported with administration of unbound IGF-I and, in addition, the serum half-life of unbound IGF-I is shorter when administered to patients with GHIS (who have low serum concentrations of its binding protein IGFBP-3) than when administered to normal volunteers or to patients with an IGF-I gene deletion (but normal IGFBP-3 levels). The IGF-I-IGFBP-3 combination was developed to prolong the half-life and counteract the acute adverse events (particularly hypoglycaemia) that are associated with administration of IGF-I. It seems that the IGF-I-IGFBP-3 combination has a longer half-life in patients with GHIS than unbound IGF-I, with fewer reports of adverse events (including hypoglycaemia) when administered to patients with diabetes. There are no studies comparing the efficacy of mecasermin with mecasermin rinfabate; both drugs have been shown to be effective but cannot be differentiated in terms of efficacy.
Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping
2007-08-01
Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.
Body shape throughout life and correlations with IGFs and GH.
Schernhammer, Eva S; Tworoger, Shelley S; Eliassen, A Heather; Missmer, Stacey A; Holly, Jeff M; Pollak, Michael N; Hankinson, Susan E
2007-09-01
Both insulin-like growth factors (IGF) and body size have been linked to premenopausal breast cancer risk. However, observational studies of IGF have not been consistent, and they suggest that perhaps earlier levels of IGF might be more strongly related to breast cancer than those measured at mid-age. We therefore sought to explore associations between several measures of body size throughout life and IGF levels in premenopausal women. We examined cross-sectional associations of birth weight, body shape (or somatotype) at ages 5 and 10, body mass index (BMI) at age 18 and adulthood, bra cup size at age 20, adult waist circumference and waist-to-hip ratio (WHR), and attained height with plasma levels of IGF-I, IGF binding protein 3 (IGFBP-3), IGFBP-1, and GH. Participants were 592 healthy premenopausal women aged 34-52 from the Nurses' Health Study II. Using multiple linear regression, we computed least-square mean hormone levels across the categories of early life anthropometric factors. We observed consistent and strong inverse associations between body shape at various stages in life and IGF levels. Somatotype at ages 5 and 10 was inversely associated with IGF-I (P for difference, < 0.01) and positively with IGFBP-3 measured later in adulthood. Further, comparing women with a BMI > or = 25 kg/m(2) at age 18 vs < 19 kg/m(2), similar associations were observed for IGF-I (P for trend, 0.005) and IGFBP-3 (P for trend, 0.01), which were even stronger for BMI at blood collection (BMI< 20 versus BMI > or = 30, mean IGF-I 254 ng/ml, 95% CI, 239-271 vs 208 ng/ml, 95% CI, 195-222). Both waist circumference and WHR were strongly and inversely related to IGFBP-1 levels (top versus bottom quartile of waist circumference: 14.5 vs 40.0 ng/ml, P for trend 0.0005; WHR: 18.3 vs 39.4 ng/ml, P for trend 0.002), with similar results for bra cup size at age 20 although they did not reach statistical significance. There was no association between height and IGF or GH levels. Birth weight, on the other hand, was weakly positively associated with both IGF-I and IGFBP-1 levels, and inversely with GH. Our results suggest that childhood and adult body size may affect premenopausal breast cancer risk differently than birth weight, through associations with IGF and GH levels.
Assaf, Hanan A.; Abdel-Maged, Wafaa M.; Elsadek, Bakheet E. M.; Adly, Mohamed A.; Ali, Soher A.
2016-01-01
Survivin, a member of the inhibitor of apoptosis protein family, has an important role in cell cycle regulation. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone with wide range of biologic effects including stimulation of lipogenesis in sebaceous glands. Their overexpression in some fibrotic disorders suggests a possible implication of both IGF-I and survivin in the pathogenesis of acne and/or acne scars. The current study aimed to assess and correlate serum levels of IGF-I and survivin in patients with active acne vulgaris and postinflammatory acne scars and to evaluate their lesional expressions in comparison to healthy controls. Serum IGF-I and survivin were estimated using commercially available ELISA kits and their tissues expressions were investigated using Western blotting. Our findings suggest that IGF-I and survivin could play potential roles in the pathogenesis of active acne vulgaris and more importantly in postinflammatory acne scars with significant positive correlation coefficient between serum levels of IGF-I and survivin which support IGF-I-/PI3K-/AKT-mediated downregulation of nuclear expression of FoxO transcription factors resulting in enhanced survivin expression. PMID:27803511
Assaf, Hanan A; Abdel-Maged, Wafaa M; Elsadek, Bakheet E M; Hassan, Mohammed H; Adly, Mohamed A; Ali, Soher A
2016-01-01
Survivin, a member of the inhibitor of apoptosis protein family, has an important role in cell cycle regulation. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone with wide range of biologic effects including stimulation of lipogenesis in sebaceous glands. Their overexpression in some fibrotic disorders suggests a possible implication of both IGF-I and survivin in the pathogenesis of acne and/or acne scars. The current study aimed to assess and correlate serum levels of IGF-I and survivin in patients with active acne vulgaris and postinflammatory acne scars and to evaluate their lesional expressions in comparison to healthy controls. Serum IGF-I and survivin were estimated using commercially available ELISA kits and their tissues expressions were investigated using Western blotting. Our findings suggest that IGF-I and survivin could play potential roles in the pathogenesis of active acne vulgaris and more importantly in postinflammatory acne scars with significant positive correlation coefficient between serum levels of IGF-I and survivin which support IGF-I-/PI3K-/AKT-mediated downregulation of nuclear expression of FoxO transcription factors resulting in enhanced survivin expression.
The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.
Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F
2005-12-01
During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.
Gomez-Merino, D; Chennaoui, M; Drogou, C; Guezennec, C Y
2004-07-01
The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.
PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma
Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan
2015-01-01
Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825
Akcali, Aylin; Bal, Berrin; Erbagci, Binnur
2017-07-01
Improving the proficiency of oligodendrocytes in their ability to repair myelin damage is one of the major goals of multiple sclerosis treatment. Insulin-like growth factor-1 (IGF-1) is one of several polypeptides that are considered to have potential benefits in that sense. In the present study, we aimed to determine serum levels of IGF-1 and insulin-like growth factor binding protein-3 (IGFBP-3), thyroid stimulating hormone (TSH) and growth hormone (GH) among treated and non-treated patients with Relapsing-Remitting Multiple Sclerosis (RRMS) and a healthy control group. The study enrolled 100 RRMS patients and 100 age- and sex-matched control subjects diagnosed with definite multiple sclerosis (MS). Serum GH, IGF-1, IGFBP-3, and TSH levels were studied. The number of relapses and Expanded Disability Status Scale were negatively correlated and IGFBP-3 and GH were positively correlated with IGF-1. A statistically significant difference was not observed when patients were divided into two subgroups as patients treated with a MS-specific therapy (n = 54) and non-treated patients (n = 46). TSH and IGFBP-3 values were significantly lower in patient group vs. While no difference was determined with in IGF-1 levels, low levels of IGF-1 was in correlation with the least levels of IGFBP-3. To understand the relation between IGF-1 and IGFBP-3, the role of low levels of IGFBP-3 and TSH may be studied with clinic isolated syndrome patients and the evolution of these patients to definite MS.
Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang
2014-05-01
In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yuen, Kevin C J; Bennett, Robert M; Hryciw, Cheryl A; Cook, Marie B; Rhoads, Sharon A; Cook, David M
2007-02-01
Fibromyalgia (FM) is characterized by diffuse pain, fatigue, and sleep disturbances; symptoms that resemble the adult growth hormone (GH) deficiency syndrome. Many FM patients have low serum GH levels, with a hypothesized aetiology of dysregulated GH/insulin-like growth factor (IGF)-I axis. The aim of this study was to assess the GH reserve in FM patients with low serum IGF-I levels using the GH-releasing hormone (GHRH)-arginine test. We retrospectively reviewed the GHRH-arginine data of 77 FM patients with low serum IGF-I levels referred to our tertiary unit over a 4-year period. Of the 77 FM patients, 13 patients (17%) failed the GHRH-arginine test. Further evaluation with pituitary imaging revealed normal pituitary glands (n=7), coincident microadenomas (n=4), empty sella (n=1) and pituitary cyst (n=1), and relevant medical histories such as previous head injury (n=4), Sheehan's syndrome (n=1), and whiplash injury (n=1). In contrast, the remaining 64 patients (83%) that responded to the GHRH-arginine test demonstrated higher peak GH levels compared to age and BMI-matched controls (n=24). Our data shows that a subpopulation of FM patients with low serum IGF-I levels will fail the GHRH-arginine test. We, thus, recommend that the GH reserve of these patients should be evaluated further, as GH replacement may potentially improve the symptomatology of those with true GH deficiency. Additionally, the increased GH response rates to GHRH-arginine stimulation in the majority of FM patients with low serum IGF-I levels further supports the hypothesis of a dysregulated GH/IGF-I axis in the pathophysiology of FM.
Thankamony, Ajay; Capalbo, Donatella; Marcovecchio, M Loredana; Sleigh, Alison; Jørgensen, Sine Wanda; Hill, Nathan R; Mooslehner, Katrin; Yeo, Giles S H; Bluck, Les; Juul, Anders; Vaag, Allan; Dunger, David B
2014-06-01
Low serum IGF-1 levels have been linked to increased risk for development of type 2 diabetes. However, the physiological role of IGF-1 in glucose metabolism is not well characterized. Our objective was to explore glucose and lipid metabolism associated with variations in serum IGF-1 levels. IGF-1 levels were measured in healthy, nonobese male volunteers aged 18 to 50 years from a biobank (n = 275) to select 24 subjects (age 34.8 ± 8.9 years), 12 each in the lowest (low-IGF) and highest (high-IGF) quartiles of age-specific IGF-1 SD scores. Evaluations were undertaken after a 24-hour fast and included glucose and glycerol turnover rates using tracers, iv glucose tolerance test to estimate peripheral insulin sensitivity (IS) and acute insulin and C-peptide responses (indices of insulin secretion), magnetic resonance spectroscopy to measure intramyocellular lipids (IMCLs), calorimetry, and gene expression studies in a muscle biopsy. Acute insulin and C-peptide responses, IS, and glucose and glycerol rate of appearance (Ra) were evaluated. Fasting insulin and C-peptide levels and glucose Ra were reduced (all P < .05) in low-IGF compared with high-IGF subjects, indicating increased hepatic IS. Acute insulin and C-peptide responses were lower (both P < .05), but similar peripheral IS resulted in reduced insulin secretion adjusted for IS in low-IGF subjects (P = 0.044). Low-IGF subjects had higher overnight levels of free fatty acids (P = .028) and β-hydroxybutyrate (P = .014), increased accumulation of IMCLs in tibialis anterior muscle (P = .008), and a tendency for elevated fat oxidation rates (P = .058); however, glycerol Ra values were similar. Gene expression of the fatty acid metabolism pathway (P = .0014) was upregulated, whereas the GLUT1 gene was downregulated (P = .005) in the skeletal muscle in low-IGF subjects. These data suggest that serum IGF-1 levels could be an important marker of β-cell function and glucose as well as lipid metabolic responses during fasting.
Dissociation between plasma concentrations of thyroxine and insulin-like growth factor-I.
Dauncey, M J; Morovat, A; Rudd, B T; Shakespear, R A
1990-09-01
The relation between plasma concentrations of thyroxine (T4) and insulin-like growth factor-I (IGF-I) has been examined in young, growing pigs under controlled conditions of energy intake. Compared with euthyroid controls, plasma levels of IGF-I were significantly elevated (P less than 0.005) both in hypothyroid animals on the same food intake and in hyperthyroid animals on double the food intake. There was however no increase in IGF-I in a hyperthyroid group on the control level of intake. Contrary to previous reports in which energy intake was not controlled, it is concluded that there is no simple correlation between plasma concentrations of T4 and IGF-I.
Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V
2013-01-01
Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.
Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640
IGF-II Promotes Stemness of Neural Restricted Precursors
Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.
2016-01-01
Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020
Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J
2016-05-01
GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.
Milk consumption and the prepubertal somatotropic axis.
Rich-Edwards, Janet W; Ganmaa, Davaasambuu; Pollak, Michael N; Nakamoto, Erika K; Kleinman, Ken; Tserendolgor, Uush; Willett, Walter C; Frazier, A Lindsay
2007-09-27
Nutrients, hormones and growth factors in dairy foods may stimulate growth hormone (GH), insulin-like growth factor I (IGF-I), and raise the ratio of IGF-I to its binding protein, IGFBP-3. We conducted pilot studies in Mongolia and Massachusetts to test the extent to which milk intake raised somatotropic hormone concentrations in prepubertal children. In Ulaanbaatar, we compared plasma levels before and after introducing 710 ml daily whole milk for a month among 46 10-11 year old schoolchildren. In a randomized cross-over study in Boston, we compared plasma hormone levels of 28 6-8 year old girls after one week of drinking 710 ml low fat (2%) milk with their hormone levels after one week of consuming a macronutrient substitute for milk. After a month of drinking whole milk, Mongolian children had higher mean plasma levels of IGF-I (p < 0.0001), IGF-I/IGFBP-3 (p < 0.0001), and 75th percentile of GH levels (p = 0.005). After a week of drinking low fat milk, Boston girls had small and non-significant increases in IGF-1, IGF-1/IGFBP-3 and GH. Milk drinking may cause increases in somatotropic hormone levels of prepubertal girls and boys. The finding that milk intake may raise GH levels is novel, and suggests that nutrients or bioactive factors in milk may stimulate endogenous GH production.
Bot, Mariska; Milaneschi, Yuri; Penninx, Brenda W J H; Drent, Madeleine L
2016-06-01
It has been postulated that many peripheral and (neuro)biological systems are involved in psychiatric disorders such as depression. Some studies found associations of depression and antidepressant treatment with insulin-like growth factor 1 (IGF-I) - a pleiotropic hormone affecting neuronal growth, survival and plasticity - but evidence is mixed. We therefore studied whether depressive and anxiety disorders were associated with plasma IGF-I, and explored the role of antidepressant medication in this association in a large observational study. The sample consisted of 2714 participants enrolled in The Netherlands Study of Depression and Anxiety, classified as healthy controls (n=602), antidepressant users (76 remitted and 571 with current depressive and/or anxiety disorder(s), n=647), persons having remitted depressive and/or anxiety disorder(s) without antidepressant use (n=502), and persons having current depressive and/or anxiety disorder(s) without antidepressant use (n=963). Associations with IGF-I concentrations were studied and adjusted for socio-demographic, health, and lifestyle variables. Relative to healthy controls, antidepressant-free individuals with current disorders had significantly higher IGF-I levels (Cohen's d=0.08, p=0.006), whereas antidepressant-free individuals with remitted disorders had a trend towards higher IGF-I levels (d=0.06, p=0.09). Associations were evident for depressive and for anxiety disorders. In contrast, antidepressant users had significantly lower IGF-I levels compared to healthy controls (d=-0.08, p=0.028). Our findings suggests that antidepressant medication use modifies the association between depressive/anxiety disorders and plasma IGF-I. These results corroborate with findings of some previous small-scale case-control and intervention studies. The higher IGF-I levels related to depression and anxiety might point to a compensatory mechanism to counterbalance the impaired neurogenesis, although future studies are needed to support this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Divergent mechanisms of insulin-like growth factor I and II on rat hepatocyte proliferation.
Raper, S; Kothary, P; Ishoo, E; Dikin, M; Kokudo, N; Hashimoto, M; DeMatteo, R P
1995-07-21
Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.
Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa
2006-08-01
Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.
Cheng, Chia-Wei; Adams, Gregor B; Perin, Laura; Wei, Min; Zhou, Xiaoying; Lam, Ben S; Da Sacco, Stefano; Mirisola, Mario; Quinn, David I; Dorff, Tanya B; Kopchick, John J; Longo, Valter D
2014-06-05
Immune system defects are at the center of aging and a range of diseases. Here, we show that prolonged fasting reduces circulating IGF-1 levels and PKA activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration. Multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias in mice, in agreement with preliminary data on the protection of lymphocytes from chemotoxicity in fasting patients. The proregenerative effects of fasting on stem cells were recapitulated by deficiencies in either IGF-1 or PKA and blunted by exogenous IGF-1. These findings link the reduced levels of IGF-1 caused by fasting to PKA signaling and establish their crucial role in regulating hematopoietic stem cell protection, self-renewal, and regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.
Aneke-Nash, Chino S; Parrinello, Christina M; Rajpathak, Swapnil N; Rohan, Thomas E; Strotmeyer, Elsa S; Kritchevsky, Stephen B; Psaty, Bruce M; Bůžková, Petra; Kizer, Jorge R; Newman, Anne B; Strickler, Howard D; Kaplan, Robert C
2015-05-01
To determine whether changes in insulin-like growth factor (IGF) protein levels are greater in participants with type 2 diabetes mellitus or worsening glycemia than in normoglycemic individuals over a 9-year follow-up period. Retrospective analysis of a cohort study. Participants were recruited from North Carolina, California, Maryland, and Pennsylvania. Cardiovascular Health Study All Stars participants, a cohort study of community-dwelling adults aged 65 and older (N=897). Plasma IGF-I, IGF binding protein (IGFBP)-1, and IGFBP-3 levels were assessed and American Diabetes Association cut-points for impaired glucose tolerance (IGT), impaired fasting glucose (IFG), and diabetes mellitus were used to classify participants at baseline (1996-97) and follow-up (2005-06). At baseline, mean age was 76.3±3.6, and 18.5% had diabetes mellitus. Participants with IFG alone and IGT plus IFG had higher IGF-I levels and lower IGFBP-1 levels than those with normoglycemia or diabetes mellitus. The greatest percentage change in IGF levels occurred in those who had diabetes mellitus at baseline (9-year changes: -9.3% for IGF-I, 59.7% for IGFBP-1, -13.4% for IGFBP-3), the smallest in individuals who remained normoglycemic at follow-up (9-year changes: -3.7% for IGF-I, 25.6% for IGFBP-1, -6.4% for IGFBP-3), and intermediate in those who were normoglycemic but developed IFG at follow-up. Degrees of glycemic impairment are associated with varying degrees of change in IGF protein levels. The changes observed in the diabetes mellitus group have been previously shown to be associated with heart failure, cancer, and noncancer mortality. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.
2000-01-01
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
Reilly, Michael P; Saca, James C; Hamilton, Alina; Solano, Rene F; Rivera, Jesse R; Whitehouse-Innis, Wendy; Parsons, Jason G; Dearth, Robert K
2014-04-01
Arsenic (As) is a prevalent environmental toxin readily accessible for human consumption and has been identified as an endocrine disruptor. However, it is not known what impact As has on female sexual maturation. Therefore, in the present study, we investigated the effects of prepubertal exposure on mammary gland development and pubertal onset in female rats. Results showed that prepubertal exposure to 10 mg/kg of arsenite (As(III)) delayed vaginal opening (VO) and prepubertal mammary gland maturation. We determined that As accumulates in the liver, disrupts hepatocyte function and suppresses serum levels of the puberty related hormone insulin-like growth factor 1 (IGF-1) in prepubertal animals. Overall, this is the first study to show that prepubertal exposure to As(III) acts peripherally to suppress circulating levels of IGF-1 resulting in delayed sexual maturation. Furthermore, this study identifies a critical window of increased susceptibility to As(III) that may have a lasting impact on female reproductive function. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Zhongbo; Han, Tianzhen; Fishman, Shannon; Butler, James; Zimmermann, Tracy; Tremblay, Frederic; Harbison, Carole; Agrawal, Nidhi; Kopchick, John J; Schaffler, Mitchell B; Yakar, Shoshana
2017-08-01
Growth hormone (GH) and insulinlike growth factor 1 (IGF-1) are anabolic hormones that facilitate somatic and skeletal growth and regulate metabolism via endocrine and autocrine/paracrine mechanisms. We hypothesized that excess tissue production of GH would protect skeletal growth and integrity in states of reduction in serum IGF-1 levels. To test our hypothesis, we used bovine GH (bGH) transgenic mice as a model of GH hypersecretion and ablated the liver-derived acid-labile subunit, which stabilizes IGF-1 complexes with IGF-binding protein-3 and -5 in circulation. We used a genetic approach to create bGH/als gene knockout (ALSKO) mice and small interfering RNA (siRNA) gene-silencing approach to reduce als or igf-1 gene expression. We found that in both models, decreased IGF-1 levels in serum were associated with decreased body and skeletal size of the bGH mice. Excess GH produced more robust bones but compromised mechanical properties in male mice. Excess GH production in tissues did not protect from trabecular bone loss in response to reductions in serum IGF-1 (in bGH/ALSKO or bGH mice treated with siRNAs). Reduced serum IGF-1 levels in the bGH mice did not alleviate the hyperinsulinemia and did not resolve liver or kidney pathologies that resulted from GH hypersecretion. We concluded that reduced serum IGF-1 levels decrease somatic and skeletal growth even in states of excess GH. Copyright © 2017 Endocrine Society.
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M; Paolisso, Giuseppe; Semba, Richard D; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi
2010-10-01
Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Selenium and total IGF-1 were measured in 951 men and women ≥ 65 years from the InCHIANTI study, Tuscany, Italy. Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) μmol/L and 113.4 (31.2)ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (β±SE: 43.76±11.2, p=0.0001). After further adjustment for total energy and alcohol intake, serum alanine aminotransferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β±SE: 36.7±12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β±SE: 40.1±12.0, p=0.0008). We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Trombetti, Andrea; Carrier, Edouard; Perroud, Alain; Lang, François; Herrmann, François R; Rizzoli, René
2016-10-01
Patients with anorexia nervosa (AN) have low serum IGF-I levels that may contribute to a lower bone mineral mass. We investigated the effects of a fermented, protein-fortified, dairy product on serum IGF-I levels in patients with AN during an in-hospital refeeding program. In this multicenter, randomized, double-blind, placebo-controlled, clinical trial conducted at 3 university hospitals and 3 private clinics in France and Switzerland, 62 women recently admitted with confirmed AN and with a baseline low serum IGF-I level were randomized to 2 daily isocaloric fresh cheese pots containing either 15 g/150 g or 3 g/150 g (controls) of protein for 4 weeks. The primary outcome was the change in IGF-I levels. In the primary intention-to-treat analysis, mean serum IGF-I levels increased during the intervention phase from 22.9 ± 1.5 to 28.6 ± 1.3 nmol/L (means ± SEM) (+20.2%) in the intervention group and from 20.2 ± 1.2 to 25.7 ± 1.5 nmol/L (+16.8%) in controls. In a preplanned analysis of covariance with repeated measures, the between-group difference was close to statistical significance (P = 0.071). In a post-hoc mixed-regression model analysis, the difference was statistically significant (4.9 nmol/l increase; P = 0.003), as was the change of the ratio IGF-I/IGF-BP3 (P=0.004). There was no between-group difference in biochemical markers of bone turnover (osteocalcin, P1NP, CTX) or in serum parathyroid hormone level. Serum calcium levels slightly increased during the intervention phase in the higher protein group (P = 0.02). IGF-BP2 decreased significantly more in the intervention group during the follow up period at week 4 after supplements cessation (P = 0.019). Intake of a fermented, protein-fortified, isocaloric dairy product during 4 weeks may slightly increase serum IGF-I levels in women with AN, without significant changes in bone turnover markers. NCT01823822 (www.clinicaltrials.gov). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Espelund, Ulrick; Renehan, Andrew G; Cold, Søren; Oxvig, Claus; Lancashire, Lee; Su, Zhenqiang; Flyvbjerg, Allan; Frystyk, Jan
2018-05-03
Measurement of circulating insulin-like growth factors (IGFs), in particular IGF-binding protein (IGFBP)-2, at the time of diagnosis, is independently prognostic in many cancers, but its clinical performance against other routinely determined prognosticators has not been examined. We measured IGF-I, IGF-II, pro-IGF-II, IGF bioactivity, IGFBP-2, -3, and pregnancy-associated plasma protein A (PAPP-A), an IGFBP regulator, in baseline samples of 301 women with breast cancer treated on four protocols (Odense, Denmark: 1993-1998). We evaluated performance characteristics (expressed as area under the curve, AUC) using Cox regression models to derive hazard ratios (HR) with 95% confidence intervals (CIs) for 10-year recurrence-free survival (RFS) and overall survival (OS), and compared those against the clinically used Nottingham Prognostic Index (NPI). We measured the same biomarkers in 531 noncancer individuals to assess multidimensional relationships (MDR), and evaluated additional prognostic models using survival artificial neural network (SANN) and survival support vector machines (SSVM), as these enhance capture of MDRs. For RFS, increasing concentrations of circulating IGFBP-2 and PAPP-A were independently prognostic [HR biomarker doubling : 1.474 (95% CIs: 1.160, 1.875, P = 0.002) and 1.952 (95% CIs: 1.364, 2.792, P < 0.001), respectively]. The AUC RFS for NPI was 0.626 (Cox model), improving to 0.694 (P = 0.012) with the addition of IGFBP-2 plus PAPP-A. Derived AUC RFS using SANN and SSVM did not perform superiorly. Similar patterns were observed for OS. These findings illustrate an important principle in biomarker qualification-measured circulating biomarkers may demonstrate independent prognostication, but this does not necessarily translate into substantial improvement in clinical performance. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Parrella, Edoardo; Maxim, Tom; Maialetti, Francesca; Zhang, Lu; Wan, Junxiang; Wei, Min; Cohen, Pinchas; Fontana, Luigi; Longo, Valter D
2013-04-01
In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Vaughn, Caila B.; Nie, Jing; Chen, Zhengyi; Thompson, Cheryl L.; Parekh, Niyati; Tracy, Russell
2013-01-01
Purpose Insulin resistance is believed to play an important role in the link between energy imbalance and colon carcinogenesis. Emerging evidence suggests that there are substantial racial differences in genetic and anthropometric influences on insulin-like growth factors (IGFs); however, few studies have examined racial differences in the associations of IGFs and colorectal adenoma, precursor lesions of colon cancer. Methods We examined the association of circulating levels of IGF-1, IGFBP-3 and IGFBP-1, and SNPs in the IGF-1 receptor (IGF1R), IGF-2 receptor (IGF2R), and insulin receptor genes with risk of adenomas in a sample of 410 incident adenoma cases and 1,070 controls from the Case Transdisciplinary Research on Energetics and Cancer (TREC) Colon Adenomas Study. Results Caucasians have higher IGF-1 levels compared to African Americans; mean IGF-1 levels are 119.0 ng/ml (SD = 40.7) and 109.8 ng/ml (SD = 40.8), respectively, among cases (p = 0.02). Mean IGF-1 levels are also higher in Caucasian controls (122.9 ng/ml, SD = 41.2) versus African American controls (106.9, SD = 41.2), p = 0.001. We observed similar differences in IGFBP3 levels by race. Logistic regression models revealed a statistically signifi-cant association of IGF-1 with colorectal adenoma in African Americans only, with adjusted odds ratios (ORs) of 1.68 (95 % CI 1.06–2.68) and 1.68 (95 % CI 1.05–2.71), respectively, for the second and third tertiles as compared to the first tertile. One SNP (rs496601) in IGF1R was associated with adenomas in Caucasians only; the per allele adjusted OR is 0.73 (95 % CI 0.57–0.93). Similarly, one IGF2R SNP (rs3777404) was statistically significant in Caucasians; adjusted per allele OR is 1.53 (95 % CI 1.10–2.14). Conclusion Our results suggest racial differences in the associations of IGF pathway biomarkers and inherited genetic variance in the IGF pathway with risk of adenomas that warrant further study. PMID:24194259
Laron, Zvi
2008-03-01
Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.
Insulin-like growth factor I: a biologic maturation indicator.
Ishaq, Ramy Abdul Rahman; Soliman, Sanaa Abou Zeid; Foda, Manal Yehya; Fayed, Mona Mohamed Salah
2012-11-01
Determination of the maturation level and the subsequent evaluation of growth potential during preadolescence and adolescence are important for optimal orthodontic treatment planning and timing. This study was undertaken to evaluate the applicability of insulin-like growth factor I (IGF-I) blood level as a maturation indicator by correlating it to the cervical vertebral maturation index. The study was conducted with 120 subjects, equally divided into 60 males (ages, 10-18 years) and 60 females (ages, 8-16 years). A lateral cephalometric radiograph and a blood sample were taken from each subject. For each subject, cervical vertebral maturation and IGF-I serum level were assessed. Mean values of IGF-I in each stage of cervical vertebral maturation were calculated, and the means in each stage were statistically compared with those of the other stages. The IGF-I mean value at each cervical vertebral maturation stage was statistically different from the mean values at the other stages. The highest mean values were observed in stage 4, followed by stage 5 in males and stage 3 in females. IGF-I serum level is a reliable maturation indicator that could be applied in orthodontic diagnosis. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
New insights into the mechanism and actions of growth hormone (GH) in poultry.
Vasilatos-Younken, R; Wang, X H; Zhou, Y; Day, J R; McMurtry, J P; Rosebrough, R W; Decuypere, E; Buys, N; Darras, V; Beard, J L; Tomas, F
1999-10-01
Despite well documented anabolic effects of GH in mammals, a clear demonstration of such responses in domestic poultry is lacking. Recently, comprehensive dose-response studies of GH have been conducted in broilers during late post-hatch development (8 to 9 weeks of age). GH reduced feed intake (FI) and body weight gain in a dose-dependent manner, whereas birds pair-fed to the level of voluntary FI of GH-infused birds did not differ from controls. The reduction in voluntary FI may involve centrally mediated mechanisms, as hypothalamic neuropeptide Y protein and mRNA were reduced with GH, coincident with the maximal depression in FI. Growth of breast muscle was also reduced in a dose-dependent manner. Circulating IGF-I was not enhanced by GH, despite evidence that early events in the GH signaling pathway were intact. A GH dose-dependent increase in circulating 3,3',5-triiodothyronine(T3) paralleled decreases in hepatic 5D-III monodeiodinase activity, whereas 5'D-I activity was not altered. This confirms that a marked hyperthyroid response to GH occurs in late posthatch chickens, resulting from a decrease in the degradative pathway of T3 metabolism. This secondary hyperthyroidism would account for the decreased skeletal muscle mass (52) and lack of enhanced IGF-I (53) in GH-treated birds. Based upon these studies, it is now evident that GH does in fact have significant effects in poultry, but metabolic responses may confound the anabolic potential of the hormone.
Rozenbaum, Zach; Cohen, Lena; Bigelman, Einat; Shacham, Yacov; Keren, Gad; Entin-Meer, Michal
We have recently shown that the transient receptor potential vanilloid 2 (TRPV2) channel is exclusively upregulated in rat/murine peri-infarct monocytes/macrophages following an acute myocardial infarction (AMI), and that this overexpression might be detrimental for cardiac recovery. We aimed to characterize the expression levels of TRPV2 in peripheral blood mononuclear cells (PBMCs) of AMI patients relative to individuals with normal coronaries, and to analyze potential associations with inflammatory and cardiac ischemic markers. Patients who underwent coronary angiography due to AMI or chest pain were prospectively included. PBMCs were isolated from whole blood by Ficoll gradient centrifugation. TRPV2 expression was analyzed by real-time PCR. C-reactive protein (CRP) and troponin I (TpI) levels were determined at the central chemistry laboratory; interleukin 6 and insulin-like growth factor (IGF)-1 levels were tested by ELISA. Following AMI, the number of TRPV2-expressing PBMCs was reduced when compared to in patients with normal coronaries. An inverse correlation was documented between the numbers of circulating macrophages and TRPV2 expression. Additionally, TRPV2 expression was inversely correlated with CRP and TpI and directly correlated with serum IGF-1. We assume that peripheral TRPV2 downregulation occurs concomitantly with the accumulation of TRPV2-white blood cells in the peri-infarct zone. TRPV2 may thus represent a novel target for treatment in the acute phase after MI. © 2018 S. Karger AG, Basel.
IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori
2012-08-24
Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less
Is there a role for IGF-1 in the development of second primary cancers?
Shanmugalingam, Thurkaa; Bosco, Cecilia; Ridley, Anne J; Van Hemelrijck, Mieke
2016-11-01
Cancer survival rates are increasing, and as a result, more cancer survivors are exposed to the risk of developing a second primary cancer (SPC). It has been hypothesized that one of the underlying mechanisms for this risk could be mediated by variations in insulin-like growth factor-1 (IGF-1). This review summarizes the current epidemiological evidence to identify whether IGF-1 plays a role in the development of SPCs. IGF-1 is known to promote cancer development by inhibiting apoptosis and stimulating cell proliferation. Epidemiological studies have reported a positive association between circulating IGF-1 levels and various primary cancers, such as breast, colorectal, and prostate cancer. The role of IGF-1 in increasing SPC risk has been explored less. Nonetheless, several experimental studies have observed a deregulation of the IGF-1 pathway, which may explain the association between IGF-1 and SPCs. Thus, measuring serum IGF-1 may serve as a useful marker in assessing the risk of SPCs, and therefore, more translational experimental and epidemiological studies are needed to further disentangle the role of IGF-1 in the development of specific SPCs. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Çakir, Evrim; Topaloğlu, Oya; Çolak Bozkurt, Nujen; Karbek Bayraktar, Başak; Güngüneş, Aşkın; Sayki Arslan, Müyesser; Öztürk Ünsal, İlknur; Tutal, Esra; Uçan, Bekir; Delıbaşi, Tuncay
2014-01-01
Hyperinsulinemia and insulin resistance are commonly seen in patients with hirsutism and polycystic ovary syndrome (PCOS), and are associated with cardiovascular disease risk. However, it is not yet known whether insulin-like growth factor I (IGF-I) and alanine transaminase (ALT) produced by the liver play roles in hyperinsulinemia and subclinical atherosclerotic process in patients with PCOS and idiopathic hirsutism (IH). This was a prospective case-controlled study. The study population consisted of 25 reproductive-age PCOS women, 33 women with IH, and 25 control subjects. Mean IGF-I levels and median ALT levels were higher in patients with IH and PCOS than controls, but these differences were not statistically significant. The participants who had a homeostasis model assessment insulin resistance index (HOMA-IR) greater than 2.7 had significantly higher IGF-1 and ALT levels. ALT levels were positively correlated with body mass index, FG, insulin and HOMA-IR. The study illustrated that IGF-1 and ALT levels were significantly higher in patients with increased insulin resistance. Due to short disease duration in younger participants, we did not observe any correlation between IGF-1 and hyperinsulinemia. These findings suggest that increased hepatic production of IGF-I and ALT might be an early indicator of insulin resistance in hirsutism.
Sood, Suchi; Hanson, Erik D; Delmonico, Matthew J; Kostek, Matthew C; Hand, Brian D; Roth, Stephen M; Hurley, Ben F
2012-02-01
The CA-repeat polymorphism in the insulin-like growth factor 1 (IGF1) gene promoter region has been associated with strength and circulating IGF-I protein levels. The purpose of the study was to determine if the IGF1 CA-repeat polymorphism influences muscle power at baseline and in response to ST in older adults. Knee extensor peak power (PP) was measured at 50, 60, and 70% of 1-RM strength before and after 10 weeks of unilateral knee extensor ST in older adults, aged 50-85 years, to determine the changes in absolute and relative PP with ST. Subjects (N = 114) were genotyped for the IGF1 CA-repeat polymorphism and grouped as homozygous for the 192 allele, heterozygous, or non-carriers of the 192 allele. The 192 homozygotes had significantly lower baseline PP at 50, 60, and 70% of 1-RM strength than the non-carriers when age, sex, and baseline fat-free mass were covaried (all P < 0.05). This same relationship was observed when the highest PP within these ranges was compared (e.g., 317.6 ± 13.5 for 192 homozygotes and 380.2 ± 16.3 for non-carriers of the 192 allele, P < 0.05). Both absolute and relative PP increased significantly with ST in all genotype groups as expected, but there were no significant relationships among IGF1 genotypes and any of the PP changes. Despite a significant relationship between IGF1 genotype and knee extensor peak power at baseline, IGF1 genotype does not appear to influence changes in knee extensor peak power with ST.
Kineman, Rhonda D; Del Rio-Moreno, Mercedes; Sarmento-Cabral, André
2018-07-01
It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism. © 2018 Society for Endocrinology.
Crain, D.A.; Bolten, A.B.; Bjorndal, K.A.; Guillette, L.J.; Gross, T.S.
1995-01-01
This study examines size-dependent, sex-dependent, and seasonal fluctuations in plasma insulin-like growth factor-I (IGF-I) concentrations in loggerhead sea turtles (Caretta caretta). Loggerhead turtles (n = 158) were captured in shrimp trawler nets during a 12-month survey in Cape Canaveral Channel, Florida. Plasma samples were analyzed using a validated heterologous radioimmunoassay. Large turtles (>75 cm straight-line carapace length) had significantly higher plasma IGF-I concentrations than small turtles (⩽75 cm; P < 0.0001). Plasma IGF-I concentrations did not vary seasonally in small turtles, but large turtles had significantly higher plasma IGF-I concentrations during the spring and summer months (P < 0.005). Within the large turtles, adult males had significantly lower IGF-I concentrations than females and subadult males (P < 0.05). These results and a review of loggerhead turtle natural history suggest that the seasonal fluctuations in plasma IGF-I of adult turtles are due to elevated IGF-I levels in reproductively active female turtles. Further research is needed to examine correlations between reproductive activities and plasma IGF-I concentrations in reptiles.
Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Fichant, Eric; Schänzer, Wilhelm; Thevis, Mario
2017-08-01
According to the regulations of the World Anti-Doping Agency (WADA), growth promoting peptides such as the insulin-like growth factor-I (IGF-I) and its synthetic analogues belong to the class of prohibited compounds. While several assays to quantify endogenous IGF-I have been established, the potential misuse of synthetic analogues such as LongR 3 -IGF-I, R 3 -IGF-I and Des1-3-IGF-I remains a challenge and superior pharmacokinetic properties have been described for these analogues. Within the present study, it was demonstrated that the target peptides can be successfully detected in plasma samples by means of magnetic beads-based immunoaffinity purification and subsequent nanoscale liquid chromatographic separation with high resolution mass spectrometric detection. Noteworthy, the usage of a specific antibody for LongR 3 -IGF-I enables the determination in low ng/mL levels despite the presence of an enormous excess of endogenous human IGF-I. In addition, different metabolism studies (in-vitro and in-vivo) were performed using sophisticated strategies such as incubation with skin tissue microsomes, degradation in biological fluids (for all analogues), and administration to rats (for LongR 3 -IGF-I). Herewith, several C-and N-terminally truncated metabolites were identified and their relevancy was additionally confirmed by in-vivo experiments with rodents. Especially for LongR 3 -IGF-I, a metabolite ((Des1-11)-LongR 3 -IGF-I) was identified that prolonged the detectability in-vivo by a factor of approximately 2. The method was validated for qualitative interpretation considering the parameters specificity, identification capability, recovery (26-60%), limit of detection (0.5ng/mL), imprecision (<25%), linearity, stability, and matrix effects. A stable isotope labelled ( 15 N)-IGF-I was used as internal standard to control all sample preparation steps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saggese, G; Cesaretti, G; Franchi, G; Startari, L
1996-08-01
Pubertal development is associated with a rise in plasma insulin-like growth factor I (IGF-I) levels that is related both to the increase in sex steroids and/or to the sex steroid-induced augmentation in endogenous growth hormone (GH) secretion. In order to investigate the relationship between IGF-I, GH and testosterone, we examined 42 male subjects with various clinical conditions (classical GH deficiency (CGHD, N = 5), non-classical GH deficiency (NCGHD, N = 7), short idiopathic stature (N = 6), nutritional obesity (N = 8), GH-treated CGHD (N = 4), GH-treated NCGHD (N = 5) and normal stature (N = 7)) in which , for evaluation of hypogonadism (i.e. the absence of one or both testes from the scrotal sac), human chorionic gonadotropin (hCG) tests were performed. We measured IGF-I, total and free testosterone and dehydroepiandrosterone sulfate (DHEAS) by radioimmunoassays before and 48 and 96 h after the start of the test. The values of IGF-I were lower (0.001 < p < 0.005) in CGHD and NCGHD than in the other groups. In comparison to basal levels, IGF-I values increased (0.005 < p < 0.05) both 48 and 96 h after the start of the hCG test in short idiopathic and normal stature children and in GH-treated subjects with NCGHD, but only 96 h in subjects with untreated NCGHD and GH-treated CGHD. No difference was demonstrated in basal values of total testosterone among any of the groups, while basal free testosterone levels were higher (0.001 < p < 0.05) in GH-treated subjects with NCGHD than in all the other groups except nutritional obesity; furthermore, free testosterone was higher (p < 0.05) in nutritional obesity than in CGHD. The values of total and free testosterone obtained both 48 and 96 h after the start of the hCG test were higher (0.001 < p < 0.05) than basal values in all groups. The DHEAS values did not show any significant change during the hCG test. Basal values were higher (0.01 < p < 0.05) in nutritional obesity than in the other groups. Considering all groups, chronological age, bone age and bone age/chronological age ratio were correlated with basal free testosterone, IGF-I and DHEAS levels (0.001 < p < 0.05), while basal free testosterone and IGF-I values were correlated with DHEAS levels (p < 0.005 and < 0.01, respectively). In conclusion, our study during the hCG test in boys with various clinical conditions demonstrated an increase in IGF-I concentrations only in those boys with sufficient GH secretion or GH replacement therapy. These findings indicate that both sex steroids and GH are necessary to allow for the pubertal increase in IGF-I levels.
Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V
2013-01-01
We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.
Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus
2009-10-01
Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.
Szeremeta, A; Jura-Półtorak, A; Komosińska-Vassev, K; Zoń-Giebel, A; Kapołka, D; Olczyk, K
2017-05-01
To assess the association between plasma levels of the insulin-like growth factor (IGF) system including IGF-1, IGF-binding proteins (IGFBPs) including IGFBP-1, total (t-)IGFBP-3 and functional (f-)IGFBP-3, and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis (RA). Plasma concentrations of IGF-1, IGFBP-1, t-IGFBP-3, f-IGFBP-3, and PICP were measured by immunoassay. No significant difference was observed in plasma IGF-1 levels between pre- and postmenopausal subjects. Plasma levels of IGFBP-1 were elevated in RA. PICP and f-IGFBP-3 were greatly affected by menopausal status. Of the three IGFBPs tested, only f-IGFBP-3 plasma levels in RA women correlated negatively with age and disease duration. A positive correlation was demonstrated between PICP and erythrocyte sedimentation rate (ESR) in RA. Moreover, there was no correlation between PICP and IGF-1 and any of the IGFBPs in RA women. Considerable disruption of the IGF system in RA was found to be related to disease activity and duration. Changes in the IGF-IGFBP axis and PICP levels were different in pre- and postmenopausal women with RA. Elevated plasma PICP concentrations may indicate an increased rate of bone formation in postmenopausal RA women. Additionally, the observed changes in the IGF/IGFBP system did not affect bone formation during RA.
Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia
2017-10-12
Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.
Hack, Nicole L; Strobel, Jackson S; Journey, Meredith L; Beckman, Brian R; Lema, Sean C
2018-06-05
Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish. Copyright © 2018. Published by Elsevier Inc.
Insulin-like growth factor-I regulates GPER expression and function in cancer cells.
De Marco, P; Bartella, V; Vivacqua, A; Lappano, R; Santolla, M F; Morcavallo, A; Pezzi, V; Belfiore, A; Maggiolini, M
2013-02-07
Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.
[Variational structure and function of products from IGF-1 gene].
Zhang, Bing-Bing; Wang, Yuan-Liang; Fan, Kai
2008-07-01
The IGF-1 gene, containing six exons, is characterized by the generation of multiple heterogeneous mRNA transcripts and translations. The IGF-1 isoforms being produced arise from the combination of multiple transcription initiation sites, alternate splicing, and different polyadenylation signals. These different mRNAs are translated to distinct circulating and local isoforms. The circulating mature IGF-1 is encoded by exons 3 and 4, and its biological function in growth and development has been intensively studied. The local isoforms of IGF-1 contains the part encoded by exons 3 and 4, and moreover the alternate extension peptide at carboxy-terminal, encoded by exons 5 and 6, is also included in the isoforms. And the functions of local IGF-1 isoforms and E-peptides have been overlooked until recently. Recently investigation shows that cell discrepant response to the overexpression of different IGF-1 isoforms and the E-peptides, and more interestingly, IGF-1Ea, IGF-1Eb (MGF) and MGF E-peptide have potential to promote skeletal muscle regeneration, to prevent cardiac muscle loss and neural damage. The acting mechanism of IGF-1 isoforms differ from the IGF-1, and the isoforms functioned probably by binding to specific E-peptide receptor, instead of binding to the IGF-1R.
Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun
2011-08-01
Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang
2015-08-10
Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.
Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury
Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio
2014-01-01
Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976
Methodology for Anti-Gene Anti-IGF-I Therapy of Malignant Tumours
Trojan, Jerzy; Pan, Yuexin X.; Wei, Ming X.; Ly, Adama; Shevelev, Alexander; Bierwagen, Maciej; Ardourel, Marie-Yvonne; Trojan, Ladislas A.; Alvarez, Alvaro; Andres, Christian; Noguera, Maria C.; Briceno, Ignacio; Aristizabal, Beatriz H.; Kasprzak, Heliodor; Duc, Huynh T.; Anthony, Donald D.
2012-01-01
The aim of this study was to establish the criteria for methodology of cellular “anti-IGF-I” therapy of malignant tumours and particularly for glioblastoma multiforme. The treatment of primary glioblastoma patients using surgery, radiotherapy, and chemotherapy was followed by subcutaneous injection of autologous cancer cells transfected by IGF-I antisense/triple helix expression vectors. The prepared cell “vaccines” should it be in the case of glioblastomas or other tumours, have shown a change of phenotype, the absence of IGF-I protein, and expression of MHC-I and B7. The peripheral blood lymphocytes, PBL cells, removed after each of two successive vaccinations, have demonstrated for all the types of tumour tested an increasing level of CD8+ and CD8+28+ molecules and a switch from CD8+11b+ to CD8+11. All cancer patients were supervised for up to 19 months, the period corresponding to minimum survival of glioblastoma patients. The obtained results have permitted to specify the common criteria for “anti-IGF-I” strategy: characteristics sine qua non of injected “vaccines” (cloned cells IGF-I(−) and MHC-I(+)) and of PBL cells (CD8+ increased level). PMID:22400112
Are Elevated Levels of IGF-1 Caused by Coronary Arteriesoclerosis?: Molecular and Clinical Analysis
Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz
2010-01-01
The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with “3 vessel disease” and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2–4) nor in internal domain (exon 16–21). The effect of increased IGF-1 serum level in our study was probably independent from structural polymorphism in promoter P1 for IGF-1 or in receptor gene for IGF-1. PMID:21046444
Are elevated levels of IGF-1 caused by coronary arteriesoclerosis?: Molecular and clinical analysis.
Burchardt, Pawel; Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz
2010-11-01
The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with "3 vessel disease" and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2-4) nor in internal domain (exon 16-21). The effect of increased IGF-1 serum level in our study was probably independent from structural polymorphism in promoter P1 for IGF-1 or in receptor gene for IGF-1.
Chinceşan, Mihaela Ioana; Mărginean, Oana; Pitea, Ana-Maria; Dobreanu, Minodora
2013-10-01
The aim of this study was to analyze insulin-like growth factor I (IGF-I) serum level in pediatric patients with cancer compared with pediatric patients with nononcological diseases and to assess the relationship between IGF-I and nutritional status of oncological patients. From January 2009 to July 2012, we assessed 151 consecutively hospitalized patients in a tertiary emergency pediatric hospital. The patients were divided into two groups: group I, consisting of patients with malignant diseases (64 patients), and group II, the control group, consisting of 87 age- and gender-matched patients with different pediatric diseases. The anthropometric parameters (weight, height, body mass index, middle upper arm circumference (MUAC), and tricipital skinfold thickness (TST) and biochemical parameters (proteins, albumin, and total IGF-I) were comparatively evaluated at the diagnosis and after intensive chemotherapy in the malignant group. Anthropometric and biochemical parameters in group I were significantly different from those in group II for height, MUAC, TST, total proteins, and albumin (p < 0.05). Twenty-five out of 64 patients with malignant diseases and 5 out of 87 patients in the control group had malnutrition. IGF-I in patients with cancer was much lower than in the control group (median 48.3 ng/ml, range 25.00-662.00 ng/ml vs 129.00 ng/ml, range 25.00-745.00 ng/ml) (p = 0.014). We found a positive correlation between IGF-I, MUAC, and TST at the diagnosis of the malignant disease. Also, we identified positive correlations between IGF-I, protein, and albumin. Serum IGF-I levels in cancer patients were significantly lower at diagnosis than after chemotherapy (48.3 ng/ml, range 25.00-662.00 ng/ml vs 110.0 ng/ml, range 25.00-573.00 ng/ml; p = 0.04). IGF-I seems to be an accurate biochemical parameter used in malnutrition assessment of children with cancer. IGF-I correlated with the anthropometric parameters of the arm, serum protein, and albumin. These parameters most accurately characterize the nutritional status.
Böker, J; Völzke, H; Nauck, M; Hannemann, A; Friedrich, N
2018-03-01
Growth hormone (GH) and its main mediator, insulin-like growth factor-I (IGF-I), play a significant role in bone metabolism. The relations between IGF-I and bone mineral density (BMD) or osteoporosis have been assessed in previous studies but whether the associations are sex-specific remains uncertain. Moreover, only a few studies examined bone quality assessed by quantitative ultrasound (QUS). We aimed to investigate these associations in the general population of north-east Germany. Data from 1759 men and 1784 women who participated in the baseline examination of the Study of Health in Pomerania (SHIP)-Trend were used. IGF-I and IGF-binding protein-3 (IGFBP-3) concentrations were measured on the IDS-iSYS multidiscipline automated analyser (Immunodiagnostic Systems Limited). QUS measurements were performed at the heel (Achilles InSight, GE Healthcare). Sex-specific linear and multinomial logistic regression models adjusted for potential confounders were calculated. Linear regression analyses revealed significant positive associations between IGF-I and IGF-I/IGFBP-3 ratio, a marker for free IGF-I, with all QUS parameters in men. Among women, we found an inverse association between IGF-I and the QUS-based fracture risk but no association with any other QUS parameter. There was no association between IGFBP-3 and the QUS-based fracture risk. Our data suggest an important role of IGF-I on bone quality in men. The observed association of IGF-I with the QUS-based stiffness index and QUS-based fracture risk in this study might animate clinicians to refer patients with low IGF-I levels, particularly men, to a further evaluation of risk factors for osteoporosis and a detailed examination of the skeletal system. © 2018 John Wiley & Sons Ltd.
McCarty, Mark F
2003-06-01
A considerable amount of evidence is consistent with the proposition that systemic IGF-I activity acts as pacesetter in the aging process. A reduction in IGF-I activity is the common characteristic of rodents whose maximal lifespan has been increased by a wide range of genetic or dietary measures, including caloric restriction. The lifespans of breeds of dogs and strains of rats tend to be inversely proportional to their mature weight and IGF-I levels. The link between IGF-I and aging appears to be evolutionarily conserved; in worms and flies, lifespan is increased by reduction-of-function mutations in signaling intermediates homologous to those which mediate insulin/IGF-I activity in mammals. The fact that an increase in IGF-I activity plays a key role in the induction of sexual maturity, is consistent with a broader role for-IGF-I in aging regulation. If down-regulation of IGF-I activity could indeed slow aging in humans, a range of practical measures for achieving this may be at hand. These include a low-fat, whole-food, vegan diet, exercise training, soluble fiber, insulin sensitizers, appetite suppressants, and agents such as flax lignans, oral estrogen, or tamoxifen that decrease hepatic synthesis of IGF-I. Many of these measures would also be expected to decrease risk for common age-related diseases. Regimens combining several of these approaches might have a sufficient impact on IGF-I activity to achieve a useful retardation of the aging process. However, in light of the fact that IGF-I promotes endothelial production of nitric oxide and may be of especial importance to cerebrovascular health, additional measures for stroke prevention-most notably salt restriction-may be advisable when attempting to down-regulate IGF-I activity as a pro-longevity strategy.
Congleton, J.L.; Biga, P.R.; Peterson, B.C.
2003-01-01
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.
Retinopathy of prematurity and serum level of insulin-like growth factor-1.
Banjac, Lidija; Bokan, Vesna
2012-06-01
The aim of our study was to measure and compare serum insulin-like growth factor-1 (IGF-1) levels at postmenstrual age of 33 weeks between preterm infants with and without retinopathy of prematurity (ROP). ROP occurs in two phases. Low serum levels of IGF-1 during ROP phase 1 have been found to correlate with the severity of ROP. ROP phase 2 begins around postmenstrual week 33. We conducted a prospective cohort study to measure serum IGF-1 levels in premature infants at postmenstrual age of 33 weeks. The study included all premature infants (N = 74), gestational age < or = 33 weeks, hospitalized at Department of Neonatology, Clinical Center of Montenegro, from April 2008 to July 2009. The incidence of ROP in the study cohort was 50.7%. Infants with ROP had a significantly lower birth weight and significantly shorter gestational age. The mean level of IGF-1 at postmenstrual age of 33 weeks was 23.7 mcg/L. Study results showed that there was no significant difference in serum IGF-1 level between newborns with and without ROP at postmenstrual age of 33 weeks (in newborns with ROP, it was the beginning of ROP phase 2). A large controlled study with repeated measurement of IGF-1 level in the neonatal period is needed to confirm that restoration of IGF-I level occurs in ROP phase 2, i.e. that the low level of IGF-1 is only a feature of ROP phase 1.
Canelles, Sandra; Argente, Jesús; Barrios, Vicente
2016-01-01
ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528
Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M
2016-05-01
Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. © 2016. Published by The Company of Biologists Ltd.
Sarfstein, Rive; Friedman, Yael; Attias-Geva, Zohar; Fishman, Ami; Bruchim, Ilan; Werner, Haim
2013-01-01
Accumulating epidemiological evidence shows that obesity is associated with an increased risk of several types of adult cancers, including endometrial cancer. Chronic hyperinsulinemia, a typical hallmark of diabetes, is one of the leading factors responsible for the obesity-cancer connection. Numerous cellular and circulating factors are involved in the biochemical chain of events leading from hyperinsulinemia and insulin resistance to increased cancer risk and, eventually, tumor development. Metformin is an oral anti-diabetic drug of the biguanide family used for treatment of type 2 diabetes. Recently, metformin was shown to exhibit anti-proliferative effects in ovarian and Type I endometrial cancer, although the mechanisms responsible for this non-classical metformin action remain unclear. The insulin-like growth factors (IGFs) play a prominent role in cancer biology and their mechanisms of action are tightly interconnected with the insulin signaling pathways. Given the cross-talk between the insulin and IGF signaling pathways, the aim of this study was to examine the hypothesis that the anti-proliferative actions of metformin in uterine serous carcinoma (USC) are potentially mediated via suppression of the IGF-I receptor (IGF-IR) pathway. Our results show that metformin interacts with the IGF pathway, and induces apoptosis and inhibition of proliferation and migration of USC cell lines with both wild type and mutant p53. Taken together, our results suggest that metformin therapy could be a novel and attractive therapeutic approach for human USC, a highly aggressive variant of endometrial cancer.
Dávila, David; Fernández, Silvia; Torres-Alemán, Ignacio
2016-01-01
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury. PMID:26631726
G Allele of the IGF2 ApaI Polymorphism Is Associated With Judo Status.
Itaka, Toshio; Agemizu, Kenichiro; Aruga, Seiji; Machida, Shuichi
2016-07-01
Itaka, T, Agemizu, K, Aruga, S, and Machida, S. G allele of the IGF2 ApaI polymorphism is associated with judo status. J Strength Cond Res 30(7): 2043-2048, 2016-Previous studies have reported that the insulin-like growth factor 2 (IGF2) ApaI polymorphism is associated with body mass index, fat mass, and grip strength. Competitive judo requires high levels of strength and power. The purpose of this study was to investigate the association between the IGF2 ApaI and ACTN3 R577X polymorphisms and judo status. The subjects were 156 male judo athletes from a top-level university in Japan. They were divided into 3 groups based on their competitive history: international-level athletes, national-level athletes, and others. Genomic DNA was extracted from the saliva of each athlete, and the maximal isometric strength of the trunk muscles and handgrip strength were measured. Genotyping by polymerase chain reaction-restriction fragment length polymorphism was used to detect IGF2 (rs680) and α-actinin-3 (ACTN3) (rs1815739) gene polymorphisms. The genotype frequencies of the 2 gene polymorphisms were compared among the 3 groups of judo athletes and controls. International-level judo athletes showed a higher frequency of the GG + GA genotype of the IGF2 gene than that of the national-level athletes and others. There was an inverse linear correlation between the frequency of the IGF2 AA genotype and level of judo performance (p = 0.041). Back muscle strength relative to height and weight was higher in subjects with the GG + GA genotype than in those with the AA genotype. Conversely, the ACTN3 R577X polymorphism was not associated with judo status. Additionally, no differences were found in back muscle or handgrip strength among the ACTN3 genotypes. In conclusion, the results indicate that the IGF2 gene polymorphism may be associated with judo status.
Fortes, Matthew B; Diment, Bethany C; Greeves, Julie P; Casey, Anna; Izard, Rachel; Walsh, Neil P
2011-12-01
The aim of this work was to investigate the effect of a daily mixed nutritional supplement upon body composition, physical performance, and circulating anabolic hormones in soldiers undergoing arduous training. Thirty males received either a habitual diet alone (CON, n = 15) or with the addition of a daily mixed supplement (SUP, n = 15) of ∼5.1 MJ·d⁻¹ during 8 weeks of training. Body composition (DEXA), maximal dynamic lift strength (MDLS), and vertical jump (VJ) were assessed, and resting blood samples were collected before and after training. Blood analysis included insulin-like growth factors (IGF-1, IGF BP-1, and IGF BP-3), testosterone, and cortisol. There were no group differences at baseline. Body mass loss (mean ± SD) (CON 5.0 ± 2.3, SUP 1.6 ± 1.5 kg), lean mass loss (CON 2.0 ± 1.5, SUP 0.7 ± 1.5 kg), and fat mass loss (CON 3.0 ± 1.6, SUP 0.9 ± 1.8 kg) were significantly blunted by SUP. CON experienced significant decrements in MDLS (14%), VJ (10%), and explosive leg power (11%) that were prevented by SUP. Military training significantly reduced circulating IGF-1 (28%), testosterone (19%), and the testosterone:cortisol ratio (24%) with no effect of SUP. Circulating IGF BP-1 concentration and cortisol remained unchanged throughout, although SUP abolished the significant decrease in circulating IGF BP-3 (20%) on CON. In conclusion, a daily mixed nutritional supplement attenuated decreases in body mass and lean mass and prevented the decrease in physical performance during an arduous military training program.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R
2010-07-29
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.
2010-01-01
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685
Witty, Christine F; Gardella, Layne P; Perez, Maria C; Daniel, Jill M
2013-02-01
We previously demonstrated that aged ovariectomized rats that had received prior estradiol treatment in middle age exhibited enhanced spatial memory and increased levels of estrogen receptor (ER)-α in the hippocampus long after estradiol treatment was terminated. The implication for cognition of increased levels of ERα resulting from prior estradiol exposure is unknown. In the absence of estrogens, growth factors, including IGF-I, can induce ERα-mediated transcription through ligand-independent mechanisms. Our current goal was to determine whether IGF-I mediates the ability of short-term exposure to estradiol to exert long-term effects on cognition and the hippocampus of aging females. Ovariectomized middle-aged rats were implanted with estradiol or cholesterol vehicle capsules. After 40 days, all capsules were removed and drug treatments were initiated. Half of each hormone treatment group received chronic intracerebroventricular delivery of the IGF-I receptor antagonist JB1, and the other half received artificial cerebrospinal fluid vehicle. Rats were tested on a spatial memory radial-arm maze task and hippocampi were immunostained for proteins of interest by Western blotting. As expected, previous treatment with estradiol enhanced spatial memory and increased levels of ERα in the hippocampus. JB1 reversed these effects. Previous treatment with estradiol resulted in lasting increases in levels of IGF-I receptors and phosphorylation of ERK/MAPK, a downstream signaling molecule of both ERα and IGF-I receptors, and increased levels of the ERα-regulated protein, choline acetyltransferase. JB1 blocked effects on ERK/MAPK and choline acetyltransferase. Results indicate that activation of IGF-I receptors is necessary for prior estradiol exposure to exert lasting impact on the hippocampus and memory.
Musarò, A; Rosenthal, N
1999-04-01
The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.
Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.
2016-01-01
Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358
Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations
Chen, Brian H.; Hivert, Marie-France; Peters, Marjolein J.; Pilling, Luke C.; Hogan, John D.; Pham, Lisa M.; Harries, Lorna W.; Fox, Caroline S.; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G.; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D.; Munson, Peter J.; Rybin, Denis V.; Singleton, Andrew B.; Uitterlinden, André G.; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B.J.; Ferrucci, Luigi; Florez, Jose C.; Dupuis, Josée
2016-01-01
Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes–imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. PMID:27625022
Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.
2008-01-01
The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11??-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11??-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon. ?? 2007 Elsevier Inc. All rights reserved.
Tatlıpınar, Arzu; Atalay, Sacide; Esen, Erkan; Yılmaz, Gökalp; Köksal, Sema; Gökçeer, Tanju
2012-02-01
Obstructive adenoid and tonsillar hyperplasia may present with retardation of growth. An adenoid-nasopharynx (A/N) ratio determined by means of lateral cephalometric radiographs has long been used as a diagnostic tool in the assessment of adenoid size. This study was designed to investigate the effect of adenotonsillectomy on insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels and correlation between A/N ratio and IGF-I and IGFBP-3 levels. Patients (n=48) that had been operated on our clinic with a diagnosis of adenotonsillar hypertrophy between July 2009 and January 2010 were included in the study. The routine ear-nose and throat examination was done in all patients. Blood samples were taken, and lateral cephalometric radiographs were obtained preoperatively and repeated at 6-9 months (mean 7.2 ± 1.0 mo) following tonsillectomy and adenoidectomy. The chemiluminescent enzyme-linked immunosorbent method was used to IGF-I and IGFBP-3 levels. Each cephalometric radiograph was evaluated by a blinded radiologist. The A/N ratio was calculated using the Fujioka method. When the preoperative and postoperative results were compared, a statistically significant increase in serum IGF-I and IGFBP-3 and a decreased A/N ratio were found. However, although correlation between the Δ(preoperative-postoperative difference) IGFBP-3 and ΔA/N ratio was 40%, it was not statistically significant. Additionally, no statistically significant correlation between the ΔIGF-I and ΔA/N ratio was found. The results of the present study indicate that adenotonsillectomy could result in the relief of nasopharyngeal obstruction and have a positive effect on growth in children by decreasing the A/N ratio and increasing IGF-I and IGFBP-3. There was no correlation between the ΔA/N ratio and ΔIGF-I and ΔIGFBP-3 levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Turan, S; Bereket, A; Furman, A; Omar, A; Berber, M; Ozen, A; Akbenlioglu, C; Haklar, G
2007-06-01
The effect of economic status (ES) on growth, insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in healthy children is not well characterized. We aimed to study the interrelationship between height, weight, IGF-I, IGFBP-3, mid-parental height (MPH) and ES. Eight hundred and fourteen healthy children (428 boys, 386 girls; age 3-18 years) were classified according to income of the families as low, middle and high. Standard deviation scores (SDSs) of height, weight, MPH, IGF-I and IGFBP-3 were compared between the groups. The combined effect of these parameters and ES on height SDS was investigated with complex statistical models. There was a significant trend for height and weight SDSs to increase with higher income levels in boys, but not in girls. Body mass index (BMI) SDSs were similar in three groups. There was a general trend for MPH SDS to increase with income levels in both sexes. In boys, IGF-I SDS was significantly higher in high ES group than low ES. In girls, IGFBP-3 SDSs were significantly higher in high ES group than in middle ES group. For both genders, height SDS was highly correlated with weight SDS and moderately correlated with BMI SDS, MPH SDS and IGF-1 SDS. All correlations were significant and positive. Complex models showed that MPH (19%), IGF-I (13%) and ES (3%) in boys, and MPH (16%) and IGF-I (7%) in girls have significant contribution to height SDSs. ES per se, independent of overt malnutrition, affects height, weight, IGF-I and IGFBP-3 with some gender differences in healthy children. Influence of income on height and weight show sexual dimorphism, a slight but significant effect is observed only in boys. MPH is the most prominent variable effecting height in healthy children. Higher height and MPH SDSs observed in higher income groups suggest that secular trend in growth still exists, at least in boys, in a country of favorable economic development.
Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.
Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano
2004-06-01
Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.
Common genetic variation in the IGF1 associates with maximal force output.
Huuskonen, Antti; Lappalainen, Jani; Oksala, Niku; Santtila, Matti; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa
2011-12-01
We clarified the effect of insulin-like growth factor-1 (IGF1), IGF-binding protein-3 (IGFBP3), interleukin-6 (IL6), and its receptor (IL6R) gene variants on muscular and aerobic performance, body composition, and on circulating levels of IGF-1 and IL-6. Single nucleotide polymorphisms (SNPs) may, in general, influence gene regulation or its expression, or the structure and function of the corresponding protein, and modify its biological effects. IGF-1 is involved in the anabolic pathways of skeletal muscle. IL-6 plays an important role in muscle energy homeostasis during strenuous physical exercise. Eight hundred forty-one healthy Finnish male subjects of Caucasian origin were genotyped for IGF1 (rs6220 and rs7136446), IGFBP3 (rs2854744), IL6 (rs1800795), and IL6R (rs4537545) SNPs, and studied for associations with maximal force of leg extensor muscles, maximal oxygen consumption, body fat percent, and IGF-1 and IL-6 levels. Analytic methods included dynamometer, bicycle ergometer, bioimpedance, ELISA, and polymerase chain reaction assays. All investigated SNPs conformed to Hardy-Weinberg equilibrium with allele frequencies validated against CEU population. Genotype CC of rs7136446 associated with higher body fat and increased maximal force production. Genotype CC of the IGFBP3 SNP rs2854744 and TT genotype of the IL6R SNP rs4537545 associated with higher IL-6 levels. In logistic regression analysis, allele C of the rs2854744 decreased odds for lower body fat. None of the studied SNPs associated with aerobic performance. Our data suggest that common variation in the IGF1 gene may affect maximal force production, which can be explained by the role of IGF-1 in the anabolic pathways of muscle and neurotrophy. Variations in the IGF1 and IGFBP3 gene may result in higher body fat and be related to alterations of IGF-1-mediated tissue growth.
Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo
2013-01-01
Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892
A robust test for growth hormone doping--present status and future prospects.
Nelson, Anne E; Ho, Ken K
2008-05-01
Although doping with growth hormone (GH) is banned, there is anecdotal evidence that it is widely abused. GH is reportedly used often in combination with anabolic steroids at high doses for several months. Development of a robust test for GH has been challenging because recombinant human 22 kDa (22K) GH used in doping is indistinguishable analytically from endogenous GH and there are wide physiological fluctuations in circulating GH concentrations. One approach to GH testing is based on measurement of different circulating GH isoforms using immunoassays that differentiate between 22K and other GH isoforms. Administration of 22K GH results in a change in its abundance relative to other endogenous pituitary GH isoforms. The differential isoform method has been implemented; however, its utility is limited because of the short window of opportunity of detection. The second approach, which will extend the window of opportunity of detection, is based on the detection of increased levels of circulating GH-responsive proteins, such as insulin-like growth factor (IGF) axis and collagen peptides. Age and gender are the major determinants of variability for IGF-I and the collagen markers; therefore, a test based on these markers must take age into account for men and women. Extensive data is now available that validates the GH-responsive marker approach and implementation is now largely dependent on establishing an assured supply of standardized assays. Future directions will include more widespread implementation of both approaches by the World Anti-Doping Agency, possible use of other platforms for measurement and an athlete's passport to establish individual reference levels for biological parameters such as GH-responsive markers. Novel approaches include gene expression and proteomic profiling. 2008, Asian Journal of Andrology, SIMM and SJTU. All rights reserved.
Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.
Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V
2012-09-01
Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.
Persechini, Marie-Laure; Gennero, Isabelle; Grunenwald, Solange; Vezzosi, Delphine; Bennet, Antoine; Caron, Philippe
2015-08-01
A decrease of insulin-like growth factor-I levels (IGF-I) has been reported during the first trimester of pregnancy in women with acromegaly before the secretion of placental growth hormone (GH) progressively increases IGF-1 concentration. To evaluate variations of concentrations of IGF-1, insulin-like growth factor (IGF)-binding protein-3 (IGF-BP3) and GH during the first trimester of pregnancy in women with normal somatotroph function. Sixteen women (median age 31 years) with as who were followed for benign thyroid disorders (n = 15) or prolactin-secreting microadenoma (n = 1) were evaluated before and in the first trimester of pregnancy. Serum concentrations of GH, IGF-1, IGF-BP3, TSH and estradiol (E2) were measured before and in the first trimester (5.4 ± 2.2 weeks of gestation). Before pregnancy, somatotroph and thyroid functions (median TSH 1.2 mU/L) were normal in all women. At the first trimester IGF-1 levels decreased significantly (before = 210 ng/mL, first trimester = 145 ng/mL, p < 0.001) with no significant change in GH (before = 1.5 ng/mL, first trimester = 0.84 ng/mL) or IGF-BP3 levels (before = 2.3 ng/mL, first trimester = 2.2 ng/mL), while estradiol levels increased significantly (before = 46.5 pg/100 mL, first trimester = 448.5 pg/100 mL, p < 0.001). In women with normal somatotroph function, IGF-1 levels decrease in the first trimester of pregnancy without changes in GH or IGF-BP3 levels. These results confirm liver resistance to GH as a consequence of the physiological increase of estrogens during the first trimester.
NASA Astrophysics Data System (ADS)
Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.
2013-02-01
It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.
1997-01-01
Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind IGF-I cAMP response element or any adjacent sequences. These results provide new molecular evidence that estrogen may temper the biological effects of hormones acting through cAMP to regulate skeletal IGF-I expression and activity.
Shved, Natallia; Berishvili, Giorgi; Häusermann, Eliane; D'Cotta, Helena; Baroiller, Jean-François; Eppler, Elisabeth
2009-03-01
The enormous expansion of world-wide aquaculture has led to increasing interest in the regulation of fish immune system. Estrogen has recently been shown to inhibit the endocrine (liver-derived) and autocrine/paracrine local insulin-like growth factor-I system in fish. In order to address the potential actions of estrogen on the IGF system in immune organs, tilapia were fed with 17alpha-ethinylestradiol (EE2)-enriched food from 10 to 40 days post fertilization (DPF) to induce functional feminization, an approach commonly used in aquaculture. EE2-treated and control fish were sampled at 75 and 165 DPF. The expression levels of ER-alpha, IGF-I, IGF-II and growth hormone receptor (GH-R) mRNA in spleen and head kidney were determined by real-time PCR and the expressing sites of IGF-I mRNA identified by in situ hybridisation. Ratios of spleen length and weight to body length and weight were determined. At 165 DPF, the length (4.9% vs. 7.6%) and weight (0.084% vs. 0.132%) ratios were significantly lowered in EE2-treated fish and number and size of the melanomacrophage centres were considerably reduced. At 75 DPF, both in spleen and head kidney of EE2-treated fish the expression levels of IGF-I and IGF-II mRNA were markedly diminished. The suppression was more pronounced for IGF-I (spleen: -12.071-fold; head kidney: -8.413-fold) than for IGF-II (spleen: -4.102-fold; head kidney: -1.342-fold). In agreement, clearly fewer leucocytes and macrophages in head kidney and spleen of EE2-treated fish contained IGF-I mRNA as shown by in situ hybridisation. ER-alpha mRNA expression in spleen was increased at 75 DPF but unchanged in head kidney. GH-R gene expression showed a mild upregulation at 165 DPF in both tissues. Thus, exposure to EE2 during early development affected distinctly the IGF system in tilapia immune organs. It led to lasting impairment of spleen growth and differentiation that can be attributed to an interaction of EE2 with IGF-I and, less pronouncedly, IGF-II. Especially, the impairment of spleen and melanomacrophage centres might interfere with the antigen presentation capacity of the immune system and, thus, alter susceptibility to infection.
Gunter, Marc J.; Hoover, Donald R.; Yu, Herbert; Wassertheil-Smoller, Sylvia; Manson, JoAnn E.; Li, Jixin; Harris, Tiffany G.; Rohan, Thomas E.; Xue, XiaoNan; Ho, Gloria Y.F.; Einstein, Mark H.; Kaplan, Robert C.; Burk, Robert D.; Wylie-Rosett, Judith; Pollak, Michael N.; Anderson, Garnet; Howard, Barbara V.; Strickler, Howard D.
2011-01-01
Obesity is a major risk factor for endometrial cancer, a relationship thought to be largely explained by the prevalence of high estrogen levels in obese women. Obesity is also associated with high levels of insulin, a known mitogen. However, no prospective studies have directly assessed whether insulin and/or insulin-like growth factor-I (IGF-I), a related hormone, are associated with endometrial cancer while accounting for estrogen levels. We therefore conducted a case-cohort study of incident endometrial cancer in the Women’s Health Initiative Observational Study, a prospective cohort of 93,676 postmenopausal women. The study involved all 250 incident cases and a random subcohort of 465 subjects for comparison. Insulin, total IGF-I, free IGF-I, IGF-binding protein-3, glucose, and estradiol levels were measured in fasting baseline serum specimens. Cox models were used to estimate associations with endometrial cancer, particularly endometrioid adenocarcinomas, the main histologic type (n = 205). Our data showed that insulin levels were positively associated with endometrioid adenocarcinoma [hazard ratio contrasting highest versus lowest quartile (HRq4-q1), 2.33; 95% confidence interval (95% CI), 1.13–4.82] among women not using hormone therapy after adjustment for age and estradiol. Free IGF-I was inversely associated with endometrioid adenocarcinoma (HRq4-q1, 0.53; 95% CI, 0.31–0.90) after adjustment for age, hormone therapy use, and estradiol. Both of these associations were stronger among overweight/obese women, especially the association between insulin and endometrioid adenocarcinoma (HRq4-q1, 4.30; 95% CI, 1.62–11.43). These data indicate that hyperinsulinemia may represent a risk factor for endometrioid adenocarcinoma that is independent of estradiol. Free IGF-I levels were inversely associated with endometrioid adenocarcinoma, consistent with prior cross-sectional data. PMID:18398032
Do insulin-like growth factors mediate the effect of alcohol on breast cancer risk?
Yu, H; Berkel, J
1999-06-01
Despite a large number of epidemiologic studies demonstrating an increased risk of breast cancer in association with alcohol consumption, a causal relationship between alcohol intake and breast cancer risk remains to be determined. Several biological mechanisms have been proposed, but none of them explains well the features of the association, i.e. a modest increase in risk, a limited range of dose-response relationship and no further increase in risk among heavy drinkers. A new mechanism underlying a possible biological role of alcohol in breast cancer is proposed in this paper. Moderate consumption of alcohol increases the production of insulin-like growth factors (IGFs) by the liver and elevated IGFs via circulation stimulate or promote the development and/or growth of breast cancer. The effect of alcohol on IGF production declines among heavy drinkers as alcohol-caused liver-function damage results in no further increase in IGF production. Therefore, compared to moderate drinkers, heavy alcohol users do not have a higher risk of breast cancer.
Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R
2016-09-01
Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Determining skeletal maturation using insulin-like growth factor I (IGF-I) test.
Gupta, Shreya; Jain, Sandhya; Gupta, Puneet; Deoskar, Anuradha
2012-11-01
To investigate the validity of Insulin like Growth Factor -1(IGF-1) as a skeletal maturity indicator by comparing serum IGF-1 levels with the stages in cervical vertebral maturation (CVM) and in the middle phalanx of the third finger (MP3). The study population was selected by using simple random sampling technique and consisted of 30 female subjects in the age range of 8-23 years who had blood sample, cephalometric and MP3 radiographs taken on the same day. Serum IGF-I estimation was carried out on the blood samples using chemiluminescence immunoassay (CLIA) method. CVM was evaluated using method by Baccetti et al and MP3 staging was done using Rajagopal & Kansal method. Mean IGF-1 level between the stages was compared by Kruskal-Wallis and Mann Whitney test. Serum IGF-1 levels in females correlate well with skeletal maturity determined by CVM and MP3 stages and increase sharply during early pubertal stages followed by a decrease in late puberty. In addition we hypothesis that serum IGF-1 testing can be undertaken as a preliminary screening test in patients in whom the orthodontist predicts the possibility of using myofunctional appliance but in whom the chronologic age is not suggestive for a growth modification therapy. The finding of the study highlights the fact that the serum IGF-1 estimation can be a valuable tool in assessing skeletal maturation. Copyright © 2012 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Aguado-Llera, David; Canelles, Sandra; Frago, Laura M; Chowen, Julie A; Argente, Jesús; Arilla, Eduardo; Barrios, Vicente
2018-03-15
Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Wang, Xin-Li; Ge, Mei-Ru; Wu, Wen-Yan; Zhang, Juan
2010-06-01
To study serum insulin-like growth factor 1 (IGF-1) levels and their association with growth and development in infants aged 1-24 mouths. A total of 525 healthy infants (125 preterm, 400 term) were enrolled. Serum IGF-1 levels were measured using ELISA 1.5, 4, 6, 8, 12, 18 and 24 months after birth. The body weight and body length were simultaneously measured. Serum IGF-1 levels were the lowest in preterm infants 1.5 months after birth (86+/-60 ng/mL). Thereafter, serum IGF-1 levels increased, and were significantly higher than those in term infants between 4 and 12 months after birth. Serum IGF-1 levels in term infants were the highest (116+/-52 ng/mL) 1.5 months after birth during their life of 12 months old. Thereafter, serum IGF-1 levels decreased and reached to a nadir (69+/-58 ng/mL) 8 months after birth. IGF-I levels were positively correlated with the weight and the height (SDS) in both preterm and term infants. Serum IGF-1 levels are closely associated with growth and development in infants.
Santilli, Francesca; Simeone, Paola G; Guagnano, Maria T; Leo, Marika; Maccarone, Marica T; Di Castelnuovo, Augusto; Sborgia, Cristina; Bonadonna, Riccardo C; Angelucci, Ermanno; Federico, Virginia; Cianfarani, Stefano; Manzoli, Lamberto; Davì, Giovanni; Tartaro, Armando; Consoli, Agostino
2017-11-01
Obesity is associated with an increased risk of type 2 diabetes and cardiovascular complications. The risk depends significantly on adipose tissue distribution. Liraglutide, a glucagon-like peptide 1 analog, is associated with weight loss, improved glycemic control, and reduced cardiovascular risk. We determined whether an equal degree of weight loss by liraglutide or lifestyle changes has a different impact on subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in obese subjects with prediabetes or early type 2 diabetes. Sixty-two metformin-treated obese subjects with prediabetes or newly diagnosed type 2 diabetes, were randomized to liraglutide (1.8 mg/day) or lifestyle counseling. Changes in SAT and VAT levels (determined by abdominal MRI), insulin sensitivity (according to the Matsuda index), and β-cell function (β-index) were assessed during a multiple-sampling oral glucose tolerance test; and circulating levels of IGF-I and IGF-II were assessed before and after a comparable weight loss (7% of initial body weight). After comparable weight loss, achieved by 20 patients per arm, and superimposable glycemic control, as reflected by HbA 1c level ( P = 0.60), reduction in VAT was significantly higher in the liraglutide arm than in the lifestyle arm ( P = 0.028), in parallel with a greater improvement in β-index ( P = 0.021). No differences were observed in SAT reduction ( P = 0.64). IGF-II serum levels were significantly increased ( P = 0.024) only with liraglutide administration, and the increase in IGF-II levels correlated with both a decrease in VAT (ρ = -0.435, P = 0.056) and an increase in the β-index (ρ = 0.55, P = 0.012). Liraglutide effects on visceral obesity and β-cell function might provide a rationale for using this molecule in obese subjects in an early phase of glucose metabolism dysregulation natural history. © 2017 by the American Diabetes Association.
Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun
2009-07-01
Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in the management of cardiac dysfunction under sepsis.
Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun
2012-01-01
Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536
Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E
2004-07-01
A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.
Skeletal Response of Male Mice to Anabolic Hormone Therapy in the Absence of the Igfals Gene
Kennedy, Oran D.; Sun, Hui; Wu, YingJie; Courtland, Hayden-William; Williams, Garry A.; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B.
2014-01-01
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth. PMID:24424061
Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene.
Kennedy, Oran D; Sun, Hui; Wu, Yingjie; Courtland, Hayden-William; Williams, Garry A; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B; Yakar, Shoshana
2014-03-01
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.
Growth Hormone Control of Hepatic Lipid Metabolism
Liu, Zhongbo; Cordoba-Chacon, Jose; Kineman, Rhonda D.; Cronstein, Bruce N.; Muzumdar, Radhika; Gong, Zhenwei; Werner, Haim
2016-01-01
In humans, low levels of growth hormone (GH) and its mediator, IGF-1, associate with hepatic lipid accumulation. In mice, congenital liver-specific ablation of the GH receptor (GHR) results in reductions in circulating IGF-1 and hepatic steatosis, associated with systemic insulin resistance. Due to the intricate relationship between GH and IGF-1, the relative contribution of each hormone to the development of hepatic steatosis is unclear. Our goal was to dissect the mechanisms by which hepatic GH resistance leads to steatosis and overall insulin resistance, independent of IGF-1. We have generated a combined mouse model with liver-specific ablation of GHR in which we restored liver IGF-1 expression via the hepatic IGF-1 transgene. We found that liver GHR ablation leads to increases in lipid uptake, de novo lipogenesis, hyperinsulinemia, and hyperglycemia accompanied with severe insulin resistance and increased body adiposity and serum lipids. Restoration of IGF-1 improved overall insulin sensitivity and lipid profile in serum and reduced body adiposity, but was insufficient to protect against steatosis-induced hepatic inflammation or oxidative stress. We conclude that the impaired metabolism in states of GH resistance results from direct actions of GH on lipid uptake and de novo lipogenesis, whereas its actions on extrahepatic tissues are mediated by IGF-1. PMID:27679560
Maruyama, Koutatsu; Iso, Hiroyasu; Ito, Yoshinori; Watanabe, Yoshiyuki; Inaba, Yutaka; Tajima, Kazuo; Nakachi, Kei; Tamakoshi, Akiko
2009-12-01
No observational study has examined whether cancer-related biomarkers are associated with diet in Japanese. We therefore assessed sex-specific food and nutrient intakes according to serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels, under a cross-sectional study of 10,350 control subjects who answered the food frequency questionnaire in the first-wave nested case-control study within the Japan Collaborative Cohort Study. For both men and women, IGF-I levels were associated with higher intakes of milk, fruits, green tea, calcium and vitamin C. IGF-II levels were associated with higher intakes of milk, yogurt, fruits and miso soup, and lower intakes of rice, coffee and carbohydrate. IGFBP-3 levels were associated with higher intakes of milk, yogurt, fruits and vitamin C, and lower intakes of rice, energy, protein, carbohydrate, sodium and polyunsaturated fatty acids. TGF-b1 levels were associated with lower intakes of coffee intakes, and higher intakes of miso soup and sodium. Total SOD activity levels were associated with lower intakes of most nutrients other than energy, carbohydrate, iron, copper, manganese, retinol equivalents, vitamin A, B2, B12, niacin, folic acid, vitamin C and fish fat. sFas levels were associated with higher intakes of manganese and folic acids. The results of the present study should help to account for findings on those biomarkers regarding risks of cancer and other lifestyle-related diseases in terms of dietary confounding as causality.
Merritt, Melissa A; Strickler, Howard D; Einstein, Mark H; Yang, Hannah P; Sherman, Mark E; Wentzensen, Nicolas; Brouwer-Visser, Jurriaan; Cossio, Maria Jose; Whitney, Kathleen D; Yu, Herbert; Gunter, Marc J; Huang, Gloria S
2016-06-01
Experimental and observational data link insulin, insulin-like growth factor (IGF), and estrogens to endometrial tumorigenesis. However, there are limited data regarding insulin/IGF and sex hormone axes protein and gene expression in normal endometrial tissues, and very few studies have examined the impact of endometrial cancer risk factors on endometrial tissue biology. We evaluated endometrial tissues from 77 premenopausal and 30 postmenopausal women who underwent hysterectomy for benign indications and had provided epidemiological data. Endometrial tissue mRNA and protein levels were measured using quantitative real-time PCR and immunohistochemistry, respectively. In postmenopausal women, we observed higher levels of phosphorylated IGF-I/insulin receptor (pIGF1R/pIR) in diabetic versus non-diabetic women (p value =0.02), while women who reported regular nonsteroidal anti-inflammatory drug use versus no use had higher levels of insulin and progesterone receptors (both p values ≤0.03). We also noted differences in pIGF1R/pIR staining with OC use (postmenopausal women only), and the proportion of estrogen receptor-positive tissues varied by the number of live births and PTEN status (premenopausal only) (p values ≤0.04). Compared to premenopausal proliferative phase women, postmenopausal women exhibited lower mRNA levels of IGF1, but higher IGFBP1 and IGFBP3 expression (all p values ≤0.004), and higher protein levels of the receptors for estrogen, insulin, and IGF-I (all p values ≤0.02). Conversely, pIGF1R/pIR levels were higher in premenopausal proliferative phase versus postmenopausal endometrium (p value =0.01). These results highlight links between endometrial cancer risk factors and mechanistic factors that may contribute to early events in the multistage process of endometrial carcinogenesis.
Gómez, José Manuel; Maravall, Francisco Javier; Gómez, Núria; Navarro, Miguel Angel; Casamitjana, Roser; Soler, Juan
2003-02-01
Leptin secretion is influenced by many factors and the GH/IGF axis plays an important role in the regulation of body composition, but the physiological interactions between leptin and the IGF-I system remain unknown. In this study we investigated the relationship between leptin, the IGF-I system, and sex, age, anthropometric and body composition variables in a group of healthy adults randomly selected. A cross-sectional study. The study included 268 subjects, representative of the whole population of the city of L'Hospitalet de Llobregat in sex and age distribution: 134 men aged 41.4 years, range 15-70 years; and 134 women, aged 40.7 years, range 15-70 years. Body mass index (BMI) was calculated, and body composition was determined by using a bioelectrical impedance analyser. Serum leptin concentrations were determined by using a radioimmunoassay (RIA). Serum total IGF-I concentrations, after acid-ethanol extraction, were also measured by RIA. Serum free IGF-I concentrations were determined by an enzymoimmunometric assay. Serum IGFBP3 concentrations were determined by RIA. Plasma basal TSH concentrations were determined by a specific electrochemiluminescence assay. In men the BMI was similar in all decades and waist/hip ratio increased in the last three decades. Fat-free mass decreased by decade. We observed an increase in leptin in the fourth decade with a decrease in IGF-I, free IGF-I and IGFBP3 throughout the decades. Basal TSH showed an increase in the last two decades. In women, BMI, waist/hip ratio and fat mass increased significantly in the last decades. Leptin concentrations increased in the last decades and total IGF-I, free IGF-I and IGFBP3 decreased by decade without changes in basal TSH concentration. In men, there was a positive correlation between leptin and BMI, waist/hip ratio, total body water, fat-free mass and fat mass, and these anthropometric and body composition variables showed a negative correlation with free IGF-I and IGFBP3, without any correlation with total IGF-I. In women, there was a positive correlation between leptin and BMI, waist/hip ratio, total body water, fat-free mass, and fat mass, which showed a negative correlation with total IGF-I and IGFBP3, without any correlation with free IGF-I. In men, total IGF-I was negatively correlated with waist/hip ratio without any correlation with the other variables and free IGF-I was negatively correlated with BMI and waist/hip ratio, and IGFBP3 did not show any correlation. In women, total IGF-I, free IGF-I and IGFBP3 were negatively correlated with BMI, waist/hip ratio and fat mass. The multiple linear regression analysis produced a model that explained 60.5% of leptin variability in men and 40% in women. Notably, only age, BMI, fat mass and waist/hip ratio brought an independent significant contribution to leptin variability. The final model also explained 28.2% and 60.4% of total IGF-I variability and 17.2% and 27.4% of free IGF-I variability in men and women, respectively. Age and leptin contributed to free IGF-I variability in men, and age and fat mass were significantly and independently associated with total IGF-I in women. In this well-characterized population of controls randomly selected without chronic disease or drug administration and with biochemically confirmed euthyroidism, we found that both men and women had a significant correlation between leptin levels and the IGF-I system, and anthropometric and body composition variables, but that leptin did not regulate the IGF-I system, and that the IGF-I system did not regulate leptin synthesis and secretion.
Kan, Emrah; Kan, Elif K; Okuyucu, Ali
2017-08-30
To compare the central corneal thickness (CCT), intraocular pressure (IOP), and tear insulin-like growth factor 1 (IGF-1) levels between patients with acromegaly and a control group and to evaluate the possible effect of tear IGF-1 and duration of the disease on CCT and IOP. We included 31 patients with acromegaly (study group) and 40 age- and sex-matched controls in the study. Patients with acromegaly were divided into 2 subgroups based on disease status (active/inactive). All participants underwent complete ophthalmologic evaluation including CCT and IOP values. Basal tear samples were collected from both groups and tear IGF-1 levels were measured. The CCT, IOP, and tear IGF-1 levels were compared between groups and subgroups and the association between tear IGF-I levels and ocular parameters (CCT, IOP) and disease duration were also evaluated. Central corneal thickness, IOP, and tear IGF-1 levels did not show a significant difference between study and control groups. We also did not find a significant difference in terms of CCT, IOP, or tear IGF-1 levels between subgroups of patients. Correlation analysis did not show an association between the duration of disease and tear IGF-1 levels with CCT or IOP. There was no significant difference in tear IGF-1 levels between patients with acromegaly and controls. Additionally, there was no correlation between disease duration and tear IGF-1 levels with CCT or IOP levels. This lack of association may suggest that tear IGF-1 levels might not have an effect on CCT or IOP findings in patients with acromegaly.
Glucogenic treatment creates an optimal metabolic milieu for the conception period in ewes.
Porcu, C; Pasciu, V; Succu, S; Baralla, E; Manca, M E; Serra, E; Leoni, G G; Dattena, M; Bomboi, G C; Molle, G; Naitana, S; Berlinguer, F
2017-04-01
This study determined the influence of a short-term glucogenic nutritional treatment on circulating concentrations of glucose, insulin, insulin-like growth factor 1 (IGF-1), nonesterified fatty acids (NEFA), and urea, and on their correspondent levels in follicular fluid (FF) collected 12 h after the end of the treatment. After estrous synchronization with intravaginal progestagen-impregnated sponges, 20 Sarda ewes were randomly allocated into two experimental groups (GLU and WAT) and, from day 7 to day 10 (day 0 = day of sponge removal), the GLU group was gavaged with a glycogenic mixture, whereas the WAT group was gavaged with water (control group). Follicular development was stimulated by FSH administration from day 8 to 10. At day 11, ovaries were collected and follicular fluid processed. Plasma changes were assessed from day 6 to 11. In GLU group, circulating concentration of glucose (P < 0.0001), insulin (P < 0.0001), and IGF-1 (P < 0.01) rose significantly, whereas NEFA and urea concentrations decreased (P < 0.0001), as compared with controls. In particular, in FF the higher glucose concentrations found in GLU ewes compared with controls (P < 0.0001) were not accompanied by any increase in insulin and IGF-1 concentrations. NEFA (P < 0.0001) and urea (P < 0.0001) were lower in FF of GLU than WAT group, although NEFA clearance in the ovary proved to be less efficient than at the systemic level. No significant difference between groups was found in FF concentrations of pregnancy-associated plasma protein A (a protease regulating the levels of free IGF-1 in follicles), glutathione, and in its total antioxidant capacity. These results suggest that glycogenic mixture administration creates a suitable follicular microenvironment for the conception period in dairy ewes. Copyright © 2016 Elsevier Inc. All rights reserved.
Messina, M F; Arrigo, T; Valenzise, M; Ghizzoni, L; Caruso-Nicoletti, M; Zucchini, S; Chiabotto, P; Crisafulli, G; Zirilli, G; De Luca, F
2011-04-01
GH-IGF-I axis is mainly involved in the complex process of somatic growth but emerging evidence suggests that it also influences hypothalamic-pituitary-gonadal (HPG) function. We report some data regarding long-term auxological and pubertal outcome of five female patients with hereditary forms of GH-IGF-I deficiency (Laron and GH-gene deletion syndrome) and a mean age of 23.4±5.3 yr (range 19-32). All the patients received recombinant human IGF-I (rhIGF-I, Pharmacia and Upjohn, Stockholm, Sweden, and rhIGF-I, Genentech, San Francisco, CA, USA) from a mean age of 8.6 yr (range 3.2-14.2) up to the final height. Final height was very disappointing (≤ -5.0 SD scores) and lower than target height in all the patients. Pubertal onset was delayed in most of them but menarche occurred spontaneously in all the patients. Median age at menarche was 15.1 yr. Menstrual cycles were regular for several years. Median duration of gynecological follow- up was 8.3 yr with the longest span of 17.2 yr. We can assert that GH-IGF-I axis has an essential role in promoting linear growth in humans and its physiological action cannot be replaced by pharmacological treatment in most patients with hereditary forms of IGF-I insufficiency as demonstrated by their subnormal final height. Our clinical observations can also support an essential role of IGF-I in genitalia growth but not in the function of HPG axis as demonstrated by the maintenance of regular menstrual cycles in the presence of subnormal levels of IGF-I after treatment discontinuation.
Quinlan, Patrick; Horvath, Alexandra; Nordlund, Arto; Wallin, Anders; Svensson, Johan
2017-12-01
Insulin-like growth factor-I (IGF-I) is important for the adult brain, but little is known of the role of IGF-I in Alzheimeŕs disease (AD) or vascular dementia (VaD). A prospective study of 342 patients with subjective or objective mild cognitive impairment recruited at a single memory clinic. We determined whether serum IGF-I concentrations at baseline were associated with the risk of all-cause dementia, AD, or VaD. Patients developing mixed forms of AD and VaD were defined as suffering from VaD. The statistical analyses included Cox proportional hazards regression analysis. During the follow-up (mean 3.6 years), 95 (28%) of the patients developed all-cause dementia [AD, n=37 (11%) and VaD, n=42 (12%)]. Low as well as high serum IGF-I (quartile 1 or 4 vs. quartiles 2-3) did not associate with all-cause dementia [crude hazard ratio (HR) 1.30, 95% confidence interval (CI): 0.81-2.08 and crude HR 1.05, 95% CI: 0.63-1.75, respectively] or AD (crude HR 0.79, 95% CI: 0.35-1.79 and crude HR 0.94, 95% CI: 0.43-2.06, respectively]. In contrast, low serum IGF-I concentrations were associated with increased risk of VaD (quartile 1 vs. quartiles 2-3, crude HR 2.22, 95% CI: 1.13-4.36). The latter association remained significant also after adjustment for multiple covariates. In a memory clinic population, low serum IGF-I was a risk marker for subsequent VaD whereas low IGF-I did not associate with the risk of AD. High serum IGF-I was not related to the risk of conversion to dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effects of Repeat Traumatic Brain Injury on the Pituitary in Adolescent Rats
Hovda, David; Prins, Mayumi
2013-01-01
Abstract Adolescents are one of the highest groups at risk for sustaining both traumatic brain injury (TBI) and repeat TBI (RTBI). Consequences of endocrine dysfunction following TBI have been routinely explored in adults, but studies in adolescents are limited, and show an incidence rate of endocrine dysfunction in 16–61% in patients, 1–5 years after injury. Similar to in adults, the most commonly affected axis is growth hormone (GH) and insulin-like growth hormone 1 (IGF-1). Despite TBI being the primary cause of morbidity and mortality among the pediatric population, there are currently no experimental studies specifically addressing the occurrence of pituitary dysfunction in adolescents. The present study investigated whether a sham, single injury or four repeat injuries (24 h interval) delivered to adolescent rats resulted in disruption of the GH/IGF-1 axis. Circulating levels of basal GH and IGF-1 were measured at baseline, 24 h, 72 h, 1 week, and 1 month after injury, and vascular permeability of the pituitary gland was quantified via Evans Blue dye extravasation. Changes in weight and length of animals were measured as a potential consequence of GH and IGF-1 disruption. The results from the current study demonstrate that RTBI results in significant acute and chronic decreases in circulation of GH and IGF-1, reduction in weight gain and growth, and an increase in Evans Blue dye extravasation in the pituitary compared with sham and single injury animals. RTBI causes significant disruption of the GH/IGF-1 axis that may ultimately affect normal cognitive and physical development during adolescence. PMID:23862570
Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats
NASA Technical Reports Server (NTRS)
Adams, G. R.; McCue, S. A.
1998-01-01
Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.
Mann, G N; Sass, D A; Chen, H K; Buchinsky, F J; Bryer, H P; Ma, Y F; Jee, W S; Rucinski, B; Epstein, S
1996-07-01
Immunosuppression with cyclosporin A (CsA) is effective in a number of immune-mediated diseases and in preventing rejection following organ transplantation. We have repeatedly demonstrated that CsA in the rat model produces accelerated bone remodelling with net bone loss, best characterized in trabecular bone. IGF-I holds promise as a treatment for various osteopenic conditions. Although currently a subject of much controversy, various studies have suggested that in vivo it is anabolic to cortical as well as trabecular bone. The purpose of this study was, in part, to further characterize the effects of CsA and IGF-I on trabecular and cortical bone, and to see whether systemic IGF-I is able to modulate CsA's deleterious skeletal effects. Sixty 10 week-old, male, Sprague-Dawley rats were randomized to receive the following daily for 3 weeks: (1) CsA vehicle (veh) per os (po) + recombinant human (rh) IGF-1 veh subcutaneously (sc); (2) CsA 15 mg/kg po + rhIGF-I-veh; (3) CsA-veh + rhIGF-I 200 microg/kg sc; (4) CsA-veh + rhIGF-I 600 microg/kg sc; (5) CsA 15 mg/kg + rhIGF-I 200 microg/kg, and (6) CsA 15 mg/kg + rhIGF-I 600 microg/kg. Rats were weighed and venous blood was sampled serially for determination of glucose, ionized calcium (Ca2+), PTH, vitamin D, and osteocalcin. Following sacrifice on day 20, histomorphometry was performed on double calcein-labeled tibial metaphysis and diaphysis. All rats receiving CsA had elevated levels of blood glucose and osteocalcin by day 9 and vitamin D at day 20. PTH was similar in all groups, and Ca2+ was only raised in the CsA and CsA + IGF-I 200 microg/kg groups. Rats receiving IGF-I 200 microg/kg and IGF-I 600 microg/kg gained more weight than either vehicle- or CsA-treated animals, attesting to IGF-1's anabolic properties. CsA caused severe trabecular bone loss, not prevented by IGF-I; it even further increased the eroded surface. CsA and IGF-I had little effect on cortical bone volume or marrow area. IGF-I increased endocortical matrix synthesis, as evidenced by the increases in the percent endocortical osteoid perimeter, an effect negated by the addition of CsA. This experiment demonstrates that trabecular bone is more susceptible than cortical bone to the deleterious effects of CsA and indicates little role for IGF-1 in the pathophysiology or treatment of CsA-induced bone disease at the given doses and duration of treatment.
Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations.
Chen, Brian H; Hivert, Marie-France; Peters, Marjolein J; Pilling, Luke C; Hogan, John D; Pham, Lisa M; Harries, Lorna W; Fox, Caroline S; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D; Munson, Peter J; Rybin, Denis V; Singleton, Andrew B; Uitterlinden, André G; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B J; Ferrucci, Luigi; Florez, Jose C; Dupuis, Josée; Meigs, James B; Kolaczyk, Eric D
2016-12-01
Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes-imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. © 2016 by the American Diabetes Association.
Vélez, Emilio J; Perelló, Miquel; Azizi, Sheida; Moya, Alberto; Lutfi, Esmail; Pérez-Sánchez, Jaume; Calduch-Giner, Josep A; Navarro, Isabel; Blasco, Josefina; Fernández-Borràs, Jaume; Capilla, Encarnación; Gutiérrez, Joaquim
2018-02-01
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts
Mancera, J.M.; McCormick, S.D.
1998-01-01
Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromisniloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts.
Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A
2009-03-01
Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.
The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.
Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W
1999-01-01
Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of the anti-apoptotic protein Bcl-2. The sharing of common activation molecules, despite vastly different protein structures of their receptors, forms a molecular explanation for the possibility of cross talk between IL-4 and IGF-I in regulating many of the events associated with hematopoietic differentiation, proliferation and survival.
Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G
1992-04-01
Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the lowest serum IGFBP-3 levels (as measured by WLB) demonstrated a serum protease activity that could proteolyze 125I-IGFBP-3. GHRD patients who had higher serum IGFBP-3 levels lacked this serum protease activity. There were no differences in the serum IGFBP profiles of the mothers or the fathers for either IGFBP-2 or IGFBP-3, and serum from both groups lacked the ability to significantly proteolyze 125I-IGFBP-3. While GHRD patients had very low levels of serum GHBP, some patients did have measurable GHBP levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Abdel Aziz, R L; Khalil, A A Y; Abdel-Wahab, A; Hassan, N Y; Abdel-Hamied, E; Kasimanickam, R K
2017-09-15
The objectives of this study were 1. to determine the associations among circulating anti-Mullerian hormone (AMH), insulin like growth factor 1 (IGF1) and cadmium (Cd) concentrations of lactating Holstein cows at the time of superovulation and 2. to determine the effect of circulating AMH, IGF1 and Cd concentrations on the superovulatory response in Holstein dairy cows. Holstein cows (n = 30) were milked thrice daily and housed and fed in free stall barn as a separate group. All animals were synchronized for superovulation and flushed. Three blood samples for AMH, IGF1 and Cd analysis were collected prior to superovulation, at estrus and at the time of embryo collection. The concentrations of blood makers prior to superovulation were highly correlated to superovulatory response. Circulating concentrations of AMH, IGF1 prior to superovulation were negatively correlated to Cd concentrations (P < 0.05). There was no correlation between circulating concentrations of AMH and IGF1. The number of corpus luteum (r = 0.71), total embryo (r = 0.67), total transferable embryo (r = 0.51) and total grade 1 embryo (r = 0.5) were positively correlated to AMH concentrations (P < 0.05). There was a trend for negative correlation found between circulating cadmium concentrations and total grade 1 embryo yield (P < 0.1). When cows were classified into quartiles (Q) of circulating AMH concentration, number of corpus luteum, and total embryos, total transferable embryos and total grade 1 embryos yield was significantly different for AMH quartiles. The superovulatory response parameters evaluated were increased with increased AMH concentrations; particularly we observed a >2-fold difference between first and fourth AMH quartiles in total transferable embryo yield and total grade 1 embryo yield. In conclusion, circulating AMH concentration was strongly associated with superovulatory response. Measuring AMH before enrolling cows in superovulation programs will likely allow practitioners to improve numbers of embryos produced and, thereby, reduce costs per embryo produced. Published by Elsevier Inc.
Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle
2013-01-01
IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451
Tanaka, K; Kanazawa, I; Sugimoto, T
2016-03-01
Advanced glycation end-products (AGEs) play important roles in the progression of diabetic complications. Although sarcopenia is recently recognized as another complication associated with diabetes mellitus, its mechanism still remains unclear. In this study, we investigated the relationship between serum levels of pentosidine, which is one of AGEs, and insulin-like growth factor-I (IGF-I) vs. skeletal muscle mass by whole body dual-energy x-ray absorptiometry in 133 postmenopausal women with type 2 diabetes. Relative skeletal muscle mass index (RSMI) was calculated by following formula; appendicular skeletal muscle mass divided by height in meters squared. Simple correlation analyses showed that serum pentosidine levels were significantly and negatively correlated with muscle mass of legs (r=-0.21, p=0.017) and RSMI (r=-0.18, p=0.022), and that IGF-I was significantly and positively correlated with muscle mass of arms and legs (r=0.23, p=0.008 and r=0.30, p=0.001, respectively) as well as RSMI (r=0.20, p=0.022). Moreover, after adjusting for age, duration of diabetes, serum creatinine, HbA1c, and IGF-I, pentosidine was significantly and negatively associated with RSMI (β=-0.27, p=0.018) and marginally with muscle mass of legs (β=-0.18, p=0.071). The associations between IGF-I and indices of muscle mass such as arms, legs and RSMI were still significant after additional adjustment for pentosidine (p=0.016, 0.019 and 0.021, respectively). These findings indicate that increased serum pentosidine and decreased IGF-I are independent risk factors for loss of muscle mass in postmenopausal women with type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.
de Jong, Miranda; Cranendonk, Anneke; Twisk, Jos W R; van Weissenbruch, Mirjam M
2017-01-01
In very-low-birth-weight infants IGF-I plays an important role in postnatal growth restriction and is probably also involved in growth restriction in childhood. We compared IGF-I and its relation to growth in early childhood in very-low-birth-weight infants and term appropriate for gestational age born infants. We included 41 very-low-birth-weight and 64 term infants. Anthropometry was performed at all visits to the outpatient clinic. IGF-I and insulin were measured in blood samples taken at 6 months and 2 years corrected age (very-low-birth-weight children) and at 3 months, 1 and 2 years (term children). Over the first 2 years of life growth parameters are lower in very-low-birth-weight children compared to term children, but the difference in length decreases significantly. During the first 2 years of life IGF-I is higher in very-low-birth-weight children compared to term children. In both groups there is a significant relationship between IGF-I and (change in) length and weight over the first 2 years of life and between insulin and change in total body fat. Considering the relation of IGF-I to growth and the decrease in difference in length, higher IGF-I levels in very-low-birth-weight infants in early childhood probably have an important role in catch-up growth in length.
de Jong, Miranda; Cranendonk, Anneke; Twisk, Jos W. R.; van Weissenbruch, Mirjam M.
2017-01-01
Background In very-low-birth-weight infants IGF-I plays an important role in postnatal growth restriction and is probably also involved in growth restriction in childhood. We compared IGF-I and its relation to growth in early childhood in very-low-birth-weight infants and term appropriate for gestational age born infants. Methods We included 41 very-low-birth-weight and 64 term infants. Anthropometry was performed at all visits to the outpatient clinic. IGF-I and insulin were measured in blood samples taken at 6 months and 2 years corrected age (very-low-birth-weight children) and at 3 months, 1 and 2 years (term children). Results Over the first 2 years of life growth parameters are lower in very-low-birth-weight children compared to term children, but the difference in length decreases significantly. During the first 2 years of life IGF-I is higher in very-low-birth-weight children compared to term children. In both groups there is a significant relationship between IGF-I and (change in) length and weight over the first 2 years of life and between insulin and change in total body fat. Conclusions Considering the relation of IGF-I to growth and the decrease in difference in length, higher IGF-I levels in very-low-birth-weight infants in early childhood probably have an important role in catch-up growth in length. PMID:28182752
Assessment of systemic administration of PEGylated IGF-1 in a mouse model of traumatic brain injury.
Sama, Diana M; Carlson, Shaun W; Joseph, Binoy; Saenger, Stefanie; Metzger, Friedrich; Saatman, Kathryn E
2018-06-06
Traumatic brain injury can result in lasting cognitive dysfunction due to degeneration of mature hippocampal neurons as well as the loss of immature neurons within the dentate gyrus. While endogenous neurogenesis affords a partial recovery of the immature neuron population, hippocampal neurogenesis may be enhanced through therapeutic intervention. Insulin-like growth factor-1 (IGF-1) has the potential to improve cognitive function and promote neurogenesis after TBI, but its short half-life in the systemic circulation makes it difficult to maintain a therapeutic concentration. IGF-1 modified with a polyethylene glycol moiety (PEG-IGF-1) exhibits improved stability and half-life while retaining its ability to enter the brain from the periphery, increasing its viability as a translational approach. The goal of this study was to evaluate the ability of systemic PEG-IGF-1 administration to attenuate acute neuronal loss and stimulate the recovery of hippocampal immature neurons in brain-injured mice. In a series of studies utilizing a well-established contusion brain injury model, PEG-IGF-1 was administered subcutaneously after injury. Serum levels of PEG were verified using ELISA and histological staining was used to investigate numbers of degenerating neurons and cortical contusion size at 24 h after injury. Immunofluorescent staining was used to evaluate numbers of immature neurons at 10 d after injury. Although subcutaneous injections of PEG-IGF-1 increased serum IGF-1 levels in a dose-dependent manner, no effects were observed on cortical contusion size, neurodegeneration within the dentate gyrus, or recovery of hippocampal immature neuron numbers. In contrast to its efficacy in rodent models of neurodegenerative diseases, PEG- IGF-1 was not effective in ameliorating early neuronal loss after contusion brain trauma.
Shimatsu, Akira; Teramoto, Akira; Hizuka, Naomi; Kitai, Kazuo; Ramis, Joaquim; Chihara, Kazuo
2013-01-01
The somatostatin analog lanreotide Autogel has proven to be efficacious for treating acromegaly in international studies and in clinical practices around the world. However, its efficacy in Japanese patients has not been extensively evaluated. We examined the dose-response relationship and long-term efficacy and safety in Japanese patients with acromegaly or pituitary gigantism. In an open-label, parallel-group, dose-response study, 32 patients (29 with acromegaly, 3 with pituitary gigantism) received 5 injections of 60, 90, or 120 mg of lanreotide Autogel over 24 weeks. Four weeks after the first injection, 41% of patients achieved serum GH level of <2.5 ng/mL and insulin-like growth factor-I (IGF-I) level was normalized in 31%. Values at Week 24 were 53% for GH and 44% for IGF-I. Dose-dependent decreases in serum GH and IGF-I levels were observed with dose-related changes in pharmacokinetic parameters. In an open-label, long-term study, 32 patients (30 with acromegaly, 2 with pituitary gigantism) received lanreotide Autogel once every 4 weeks for a total of 13 injections. Dosing was initiated with 90 mg and adjusted according to clinical responses at Weeks 16 and/or 32. At Week 52, 47% of patients had serum GH levels of <2.5 ng/mL and 53% had normalized IGF-I level. In both studies, acromegaly symptoms improved and treatment was generally well tolerated although gastrointestinal symptoms and injection site induration were reported. In conclusion, lanreotide Autogel provided early and sustained control of elevated GH and IGF-I levels, improved acromegaly symptoms, and was well tolerated in Japanese patients with acromegaly or pituitary gigantism.
[Impact of acupuncture to IGF-I expression in spared dorsal root ganglion of cats].
Liu, Fen; Wang, Ting-Hua; Zhang, Yi; Hong, Sun-quan; Song, Xin-bo
2006-05-01
To explore the relationship between Insulin-like growth factor-I (IGF-I) and acupuncture promoting the spinal cord plasticity, the changes of IGF- I expressing in spared dorsal root ganglia (DRG,L6) after operation and acupuncture were investigated. 25 adult cats were divided into 5 groups: normal control group; 7th day and 14th day group after unilateral partial rhizotomy (unilateral L1-L5,L7-S2 DRG Were transected, but L6 DRG was spared); 7th day and 14th day group of acupuncture stimulating the spared DRG (electro-needle stimulation was performed by following unilateral partial root rhizotomy). Animals survived for 7 or 14 days after operation respectively. Unilateral L6 dorsal root ganglia of each group were made into 20 microm frozen sections. By immunohistochemistry ABC method, the sections were stained with specific IGF-I (1:200) antibody. The distribution and the number of IGF-I positive neurons in spared DRG (L6) that located the operated/acupuncture side of each animal were observed and counted. For 7th day group after acupuncture stiumlation, the number of IGF-I positive neurons of spared DRG of acupuncture side showed significantly more than that of 7th day operation group (P<0.05), but still less than that of normal group (P < 0.05); In 14th day group, IGF- I expression in neuron of L6 DRG also increased apparently more than that of 14th day operation group, with coming back to normal level. After acupuncture stimulating the spared DRG for 14 days, the numbers of IGF- I positive neurons in spared DRG increased significantly more than that of 7th day group after acupuncture (P<0.05). Acupuncture can significantly increase the number of IGF- I positive neurons. Our results indicate that the expression changes of IGF-I in spared DRG associate with acupuncture promoting the spinal cord plasticity.
Growth hormone in sports: detecting the doped or duped.
Ho, Ken K Y; Nelson, Anne E
2011-01-01
Doping with growth hormone (GH) is banned; however, there is anecdotal evidence that it is widely abused. GH is reportedly often used in combination with anabolic steroids at high doses for several months. Development of a robust test for detecting GH has been challenging since recombinant human 22-kDa GH used in doping is indistinguishable analytically from endogenous GH and there are wide physiological fluctuations in circulating GH concentrations. One approach to GH testing is based on measurement of different circulating GH isoforms using immunoassays that differentiate between 22-kDa and other GH isoforms. Administration of 22-kDa GH results in a change in its abundance relative to other endogenous pituitary GH isoforms. The differential isoform method is, however, limited by its short time window of detection. A second approach that extends the time window of detection is based on detection of increased levels of circulating GH-responsive proteins, such as the insulin-like growth factor (IGF) axis and collagen peptides. As age and gender are the major determinants of variability for IGF-I and the collagen markers, a test based on these markers must take these factors into account. Extensive data now validate the GH-responsive marker approach, and implementation is largely dependent on establishing an assured supply of standardized assays. Robust tests are available to detect GH and enforce the ban on its abuse in sports. Novel approaches that include gene expression and proteomic profiling must continue to be pursued to expand the repertoire of testing approaches available and to maintain deterrence of GH doping. Copyright © 2011 S. Karger AG, Basel.
Montserrat, N; Sánchez-Gurmaches, J; García de la Serrana, D; Navarro, M I; Gutiérrez, J
2007-12-01
We examined the possibility of culturing muscle cells of gilthead sea bream in vitro and assessed variations in insulin-like growth factor-I (IGF-I) binding during myocyte development. The viability of the cell culture was determined by fluorescence-activated cell-sorting analysis, which showed that the percentage of dead cells decreased with cell differentiation. The intracellular reduction of MTT into formazan pigment was preferentially carried out as cells differentiated (from day 4) indicating an increase in metabolic activity. IGF-I-binding assays demonstrated that the number of receptors increased from 190 +/- 0.09 fmol/mg protein in myocytes at day 5 to 360 +/- 0.09 fmol/mg protein in myotubes at day 12. The affinity of IGF-I receptors did not change significantly during cell development (from 0.89 +/- 0.09 to 0.98 +/- 0.09 nM). The activation of various kinase (ERK 1/2 MAPK and Akt/PKB) proteins by IGFs and insulin was studied by means of Western blot analysis. Levels of MAPK-P increased after IGF and insulin treatment during the first stages of cell culture, with a low response being observed at day 15, whereas IGFs displayed a stimulatory effect on Akt-P throughout the cell culture period, even on day 15. This study thus shows that (1) gilthead sea bream myocytes can be cultured, (2) they express functional IGF-I receptors that increase in number as they differentiate in vitro; (3) IGF signalling transduction through IGF-I receptors stimulates the MAPK and Akt pathways, depending on the development stage of the muscle cell culture.
Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.
1987-05-01
A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less
Sarem, Zeinab; Bumke-Vogt, Christiane; Mahmoud, Ayman M; Assefa, Biruhalem; Weickert, Martin O; Adamidou, Aikatarini; Bähr, Volker; Frystyk, Jan; Möhlig, Matthias; Spranger, Joachim; Lieske, Stefanie; Birkenfeld, Andreas L; Pfeiffer, Andreas F H; Arafat, Ayman M
2017-09-01
Depending on its lipolytic activity, glucagon plays a promising role in obesity treatment. Glucagon-induced growth hormone (GH) release can promote its effect on lipid metabolism, although the underlying mechanisms have not been well-defined. The present study highlights the glucagon effect on the GH/insulinlike growth factor 1 (IGF-1)/IGF-binding protein (IGFBP) axis in vivo and in vitro, taking into consideration insulin as a confounding factor. In a double-blind, placebo-controlled study, we investigated changes in GH, IGFBP, and IGF-1 bioactivity after intramuscular glucagon administration in 13 lean controls, 11 obese participants, and 13 patients with type 1 diabetes mellitus (T1DM). The effect of glucagon on the transcription factor forkhead box protein O1 (FOXO1) translocation, the transcription of GH/IGF-1 system members, and phosphorylation of protein kinase B (Akt) was further investigated in vitro. Despite unchanged total IGF-1 and IGFBP-3 levels, glucagon decreased IGF-1 bioactivity in all study groups by increasing IGFBP-1 and IGFBP-2. The reduction in IGF-1 bioactivity occurred before the glucagon-induced surge in GH. In contrast to the transient increase in circulating insulin in obese and lean participants, no change was observed in those with T1DM. In vitro, glucagon dose dependently induced a substantial nuclear translocation of FOXO1 in human osteosarcoma cells and tended to increase IGFBP-1 and IGFBP-2 gene expression in mouse primary hepatocytes, despite absent Akt phosphorylation. Our data point to the glucagon-induced decrease in bioactive IGF-1 levels as a mechanism through which glucagon induces GH secretion. This insulin-independent reduction is related to increased IGFBP-1 and IGFBP-2 levels, which are most likely mediated via activation of the FOXO/mTOR (mechanistic target of rapamycin) pathway. Copyright © 2017 Endocrine Society
Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos
2016-01-01
The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597
Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie
2018-04-01
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Acromegaly accompanied by Turner syndrome with 47,XXX/45,X/46,XX mosaicism.
Yamazaki, Masanori; Sato, Ai; Nishio, Shin-ichi; Takeda, Teiji; Miyamoto, Takahide; Katai, Miyuki; Hashizume, Kiyoshi
2009-01-01
A 33-year-old woman was hospitalized for examination of edematous laryngopharynx. She was acromegalic. A pituitary adenoma with elevated serum levels of growth hormone (GH) and insulin-like growth factor-I (IGF-I) was detected, indicating acromegaly caused by GH-secreting pituitary adenoma. Multiple pigmented nevi were also noted without overt short stature and cubitus valgus. Chromosome analysis revealed that she had contracted Turner syndrome with 47,XXX/45,X/46,XX mosaicism. Transsphenoidal resection of the tumor decreased serum GH and IGF-I levels, but the edema was not improved. Both premature ovarian failure and hypertension appeared after surgery. This case may indicate the important relationships between GH/IGF-I and Turner syndrome.
Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G
1998-08-01
We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.
NASA Technical Reports Server (NTRS)
Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.
2002-01-01
Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.
Tucci, Alessandra; Bonadonna, Stefania; Cattaneo, Chiara; Ungari, Marco; Giustina, Andrea; Guiseppe, Rossi
2003-03-01
We present a female patient with monoclonal gammopathy of undetermined significance who has remained stable for five years but evolved to overt myeloma in strict temporal relationship with the diagnosis of GH-secreting pituitary macroadenoma. IGF-I serum levels correlated with serum and urine M component. Since the in vitro role of IGF-I on proliferation and survival of normal and neoplastic plasma cells has been recently emphasized, the pathogenetic link between acromegaly and transformation of gammopathy to overt myeloma in this case is discussed.
Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice
2015-02-01
We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.
Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice
2014-01-01
Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319
Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F
2014-07-24
MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.
Southmayd, Emily A; De Souza, Mary Jane
2017-02-01
Bone growth, development, and remodeling are modulated by numerous circulating hormones. Throughout the lifespan, the extent to which each of the hormones impacts bone differs. Understanding the independent and combined impact of these hormones on controlling bone remodeling allows for the development of more informed decision making regarding pharmacology, specifically the use of hormonal medication, at all ages. Endocrine control of bone health in women is largely dictated by the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and the hypothalamic-pituitary-ovarian (HPO) axis. Growth hormone, secreted from the pituitary gland, stimulates cells in almost every tissue to secrete IGF-1, although the majority of circulating IGF-1 is produced hepatically. Indeed, systemic IGF-1 concentrations have been found to be correlated with bone mineral density (BMD) in both pre- and post-menopausal women and is often used as a marker of bone formation. Sex steroids produced by the ovaries, namely estradiol, mediate bone resorption through binding to estrogen receptors on osteoclasts and osteoblasts. Specifically, by increasing osteoclast apoptosis and decreasing osteoblast apoptosis, adequate estrogen levels prevent excessive bone resorption, which helps to explain the rapid decline in bone mass that occurs with the menopausal decrease in estrogen production. Though there are documented correlations between endogenous estrogen concentrations and GH/IGF-1 dynamics, this relationship changes across the lifespan as sex-steroid dynamics fluctuate and, possibly, as tissue responsiveness to GH stimulation decreases. Aside from the known role of endogenous sex steroids on bone health, the impact of exogenous estrogen administration is of interest, as exogenous formulations further modulate GH and IGF-1 production. However, the effect and extent of GH and IGF-1 modulation seems to be largely dependent on age at administration and route of administration. Specifically, premenopausal women using combined oral contraceptive therapy (COC), post-menopausal women taking oral hormone therapy (HT), and both pre- and post-menopausal women using a transdermal form of estrogen therapy (COC or HT) demonstrate disparate GH/IGF-1 responses to exogenous estrogen. This review serves to summarize what is currently known regarding the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts
Mancera, J.M.; McCormick, S.D.
1998-01-01
Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromis niloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts. Copyright (C) 1998 Elsevier Science Inc.
Gallaher, B W; Breier, B H; Keven, C L; Harding, J E; Gluckman, P D
1998-12-01
It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.
Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B
2018-03-01
Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.
Purification, amino acid sequence and characterisation of kangaroo IGF-I.
Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z
1998-01-01
Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritvos, O.; Ranta, T.; Jalkanen, J.
1988-05-01
The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less
Berruti, A; Dogliotti, L; Mosca, A; Tarabuzzi, R; Torta, M; Mari, M; Gorzegno, G; Fontana, D; Angeli, A
2001-05-15
The concept that neuroendocrine cells detected within prostate adenocarcinoma produce paracrine factors, that may exert a proliferative effect on exocrine prostate tumor cells, provides a rationale for the use of somatostatin analogs with the aim to counteract or delay the tumor progression. This study was designed to provide preliminary information on the effect of the administration of a long-acting somatostatin analog, lanreotide, on plasma levels of chromogranin A (CgA). Secondary aims were the evaluation of changes in circulating prostate-specific antigen (PSA) and insulin-like growth factor-1 (IGF-1). Lanreotide (Ipstyl 30 mg; Ipsen, Milan, Italy) was administered intramuscularly every 14 days for 2 months to nine heavily pretreated prostate cancer patients with hormone refractory disease. All patients had, at baseline conditions, CgA values above the normal range. Androgen deprivation was maintained during the study period, while other concomitant antineoplastic treatments were not allowed. Serum PSA levels and plasma CgA and IGF-1 values were measured every week. Lanreotide treatment was very well tolerated and no patient experienced major toxicity. Plasma CgA values at baseline: mean 109 U/liter, standard deviation +/- 85 decreased significantly after treatment as follows: 42 U/liter, +/- 17.8; 27.2 U/liter +/- 13.6; 31.4 U/liter, +/- 17.8 and 27.6 U/liter, +/- 17.0; after 7, 14, 21, and 28 days, respectively (P < 0.01, Friedman ANOVA). Serum PSA did not change. Baseline IGF-1 was found to be above the detection limit in four cases, all of them showing a decrease after lanreotide. Lanreotide administration to prostate cancer patients induces a decrease in plasma CgA and IGF-1 levels, without any influence on serum PSA values. Prostate 47:205-211, 2001. Copyright 2001 Wiley-Liss, Inc.
Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah
2016-05-01
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Tang, Yaxiong; Parmakhtiar, Basmina; Simoneau, Anne R; Xie, Jun; Fruehauf, John; Lilly, Michael; Zi, Xiaolin
2011-01-01
Docetaxel is currently the most effective drug for the treatment of castration-resistant prostate cancer (CRPC), but it only extends life by an average of 2 months. Lycopene, an antioxidant phytochemical, has antitumor activity against prostate cancer (PCa) in several models and is generally safe. We present data on the interaction between docetaxel and lycopene in CRPC models. The growth-inhibitory effect of lycopene on PCa cell lines was positively associated with insulin-like growth factor I receptor (IGF-IR) levels. In addition, lycopene treatment enhanced the growth-inhibitory effect of docetaxel more effectively on DU145 cells with IGF-IR high expression than on those PCa cell lines with IGF-IR low expression. In a DU145 xenograft tumor model, docetaxel plus lycopene caused tumor regression, with a 38% increase in antitumor efficacy (P = .047) when compared with docetaxel alone. Lycopene inhibited IGF-IR activation through inhibiting IGF-I stimulation and by increasing the expression and secretion of IGF-BP3. Downstream effects include inhibition of AKT kinase activity and survivin expression, followed by apoptosis. Together, the enhancement of docetaxel's antitumor efficacy by lycopene supplementation justifies further clinical investigation of lycopene and docetaxel combination for CRPC patients. CRPC patients with IGF-IR-overexpressing tumors may be most likely to benefit from this combination. PMID:21403837
Dubins, Jeffrey S; Sanchez-Alavez, Manuel; Zhukov, Victor; Sanchez-Gonzalez, Alejandro; Moroncini, Gianluca; Carvajal-Gonzalez, Santos; Hadcock, John R; Bartfai, Tamas; Conti, Bruno
2012-10-01
The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15°C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916±952 pg/mL vs. 23474±1507 pg/mL, P<.01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro
2012-01-01
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591
Leptin expression and leptin receptor gene polymorphisms in growth hormone deficiency patients.
Su, Pen-Hua; Chen, Jia-Yuh; Yu, Ju-Shan; Chen, Suh-Jen; Yang, Shun-Fa
2011-04-01
Growth hormone deficiency (GHD) patients have lower weight, height, bone age, insulin-like growth factor 1 (IGF-1) levels, GH levels, fat metabolism and skeletal growth. The association of leptin with GHD characteristics and the effect of gene variants of leptin on GHD are unknown. Our aim was to examine the association of circulating leptin levels and common genetic variants in leptin (LEP) and leptin receptor (LEPR) genes with anthropometric measures, circulating hormone concentrations and GHD. A case control study of 125 GHD cases and 159 control subjects were characterized for bone age, body mass index (BMI), height, weight, leptin, IGF-1, GH and their genotype at the leptin promoter G-2548A, and LEPR variants, K109R and Q223R, at Chung Shan Medical University Hospital. Leptin levels were significantly associated with lower bone age, weight and BMI in GHD patients. Leptin levels were also significantly associated with reduced IGF-1 levels in girls but not boys in both groups. The frequency of LEPR223 [A/G or A/A] genotype was significantly higher than the LEPR223 G/G genotype in the GHD group. The LEPR223 [A/G or A/A] genotype was significantly associated with increased weight and BMI in the control group, but not in the GHD group. In conclusion, the GHD group carried a significantly higher frequency of the LEPR [G/A or A/A] genotype and of the A allele (LEPR223R). The LEPR223R polymorphism affected weight and BMI in control, but not in GHD patients, suggesting that the effect of LEPR223 [A/G or A/A] genotype was counteracted by other factor(s) in GHD patients.
Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S
2002-06-01
Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han
2005-05-13
PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer systemmore » in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.« less
IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease.
Lepenies, Julia; Wu, Zida; Stewart, Paul M; Strasburger, Christian J; Quinkler, Marcus
2010-04-01
Insulin-like growth factor I (IGF-1) is for the most part bound in a ternary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). This ternary complex is a storage form of IGF-1 in blood and passes not through the renal glomerulus. Little information is available in regard to the components of the ternary complex in adult renal disease. To investigate levels of serum IGF-1, IGFBP-3 and ALS in relation to renal function and extent of proteinuria. We measured IGF-1, IGFBP-3 and ALS concentrations in 137 patients who were investigated due to proteinuria and/or haematuria and/or renal impairment. The patients received renal biopsies and the histological diagnosis was documented. Urinary albumin excretion and relevant clinical parameter were evaluated. IGF-1 showed a highly positive correlation to IGFBP-3 and ALS, and the latter to IGFBP-3. IGF-1, IGFBP-3 and ALS decreased with increasing age. IGF-1 and IGFBP-3 showed no significant change depending on the creatinine clearance. However, ALS decreased with decreasing renal function. In patients with heavy proteinuria ALS levels, but not IGF-1 and IGFBP-3 levels, decreased significantly. Patients with chronic ischaemic renal damage and diabetic glomerulopathy showed higher IGF-1 and IGFBP-3 levels compared to patients with thin glomerular basement membrane disease despite their older age. IGF-1 and IGFBP-3 levels seem to be independent of renal function and severity of proteinuria. However, ALS levels are altered in renal failure and nephrotic syndrome, which may be due to increased renal loss or diminished hepatic production or both. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Harada, Naoaki; Zhao, Juan; Kurihara, Hiroki; Nakagata, Naomi; Okajima, Kenji
2011-08-01
The stimulation of sensory neurons in the gastrointestinal (GI) tract improves cognitive function by increasing the hippocampal production of insulin-like growth factor-I (IGF-I) in mice. In the current study, we examined whether oral administration of desalted deep-sea water (DSW) increases the hippocampal production of IGF-I by stimulating sensory neurons in the GI tract, thereby improving cognitive function in mice. Desalted DSW increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice by activating transient receptor potential vanilloid 1. The plasma levels of IGF-I and tissue levels of CGRP, IGF-I, and IGF-I mRNA in the hippocampus were increased by oral administration of desalted DSW in WT mice. In these animals, nociceptive information originating from the GI tract was transmitted to the hippocampus via the spinothalamic pathway. Improvement of spatial learning was observed in WT mice after administration of desalted DSW. Distilled DSW showed results similar to those of desalted DSW in vitro and in vivo. None of the effects of desalted DSW in WT mice were observed after the administration of desalted DSW in CGRP-knockout (CGRP-/-) mice. No volatile compounds were detected in distilled DSW on GC-MS analysis. These observations suggest that desalted DSW may increase the hippocampal IGF-I production via sensory neuron stimulation in the Gl tract, thereby improving cognitive function in mice. Such effects of desalted DSW might not be dependent on the minerals but are dependent on the function of the water molecule itself. Copyright © 2011 Mosby, Inc. All rights reserved.
Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O
2016-02-01
Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Rubinek, T; Modan-Moses, D
2016-01-01
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis. © 2016 Elsevier Inc. All rights reserved.
Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M
1997-07-01
Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.
Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K
2017-05-02
Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.
Westwood, M; Gibson, J M; Williams, A C; Clayton, P E; Hamberg, O; Flyvbjerg, A; White, A
1995-12-01
Insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) normally circulates as a single, highly phosphorylated species. However, IGFBP-1 phosphorylation status can be altered, such as in pregnancy where non- and lesser phosphorylated isoforms are also present. We have examined how hormonal regulators of circulating IGFBP-1 influence its phosphorylation status and, hence, its ability to modulate IGF activity. In response to insulin-induced hypoglycemia (0.2 U/kg, iv), an increase in the highly phosphorylated isoform was observed after 5 h [16 (range, 11.5-35.5) to 77 (range, 63-250) microgram/L; 4.8-fold increase; P = 0.009], but no non- or lesser phosphorylated variants could be detected. Glucagon (1 mg, sc), increased IGFBP-1 from 27 (range, 13-36.5) to 112 (range, 100.5-129) micrograms/L (4.1-fold increase; P = 0.009) after 90 min despite preceding insulin concentrations of more than 500 pmol/L, but again the IGFBP-1 remained in the highly phosphorylated form. Regulation of IGFBP-1 phosphorylation by sex steroids was studied by comparing women receiving a combined oral contraceptive with women on no medication. Although plasma IGFBP-1 levels were significantly elevated in the treatment group [120 (range, 97.5-237.5) vs. 52 (range, 38-70) micrograms/L; P < 0.004], there was no difference in the form of IGFBP-1 present. The acute effect of somatostatin (500 micrograms/h) on IGFBP-1 phosphorylation status was also studied. Somatostatin only increased the phosphoform characteristic of normal subjects; the appearance of non- or lesser phosphorylated variants was not induced. The effect of rhIGF-I (80 or 120 micrograms, sc) on plasma IGFBP-1 was studied in three subjects with Laron's syndrome. A transient increase in the highly phosphorylated isoform of IGFBP-1 was noted; there was no rise in the non- and lesser phosphorylated isoforms also found in the plasma of Laron's syndrome subjects. These data suggest that only the highly phosphorylated species of IGFBP-1 is under hormonal control; regulation of the non- and lesser phosphorylated variants remains to be determined.
de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R
2009-06-01
Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Masahito; Department of Medicine, Gifu University School of Medicine, Gifu 501-1194; Deguchi, Atsuko
The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2,more » HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 {mu}g/ml of EGCG (the IC{sub 50} concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 {mu}g/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-{beta}2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.« less
1993-09-21
negative feedback on GH secretion. The GH/IGF- I hormonal axis is further strengthened by clinical presentations of acromegaly and Laron dwarfism... Acromegaly patients afflicted with high levels of GH have elevated levels of IGF-I (Clemmons et al., 1980) . The opposite is true for Laron dwarfs who...Kjellberg, R.N.; Van Wyk, J.J. Estradiol Treatment of Acromegaly . Reduction of Immunoreactive Somatomedin-C and Improvement of Metabolic Status
Murphy, Neil; Falk, Roni T; Messinger, Diana B; Pollak, Michael; Xue, Xiaonan; Lin, Juan; Sgueglia, Robin; Strickler, Howard D; Gaudet, Mia M; Gunter, Marc J
2016-01-01
Epidemiologic data linking metabolic markers-such as insulin, insulin-like growth factors (IGFs)-and adipose tissue-derived factors with cancer are inconsistent. Between-study differences in blood collection protocols, in particular participant's fasting status, may influence measurements. We investigated the impact of fasting status and blood sample processing time on components of the insulin/IGF axis and in adipokines in a controlled feeding study of 45 healthy postmenopausal-women aged 50-75 years. Fasting blood samples were drawn (T0), after which subjects ate a standardized breakfast; subsequent blood draws were made at 1 hour (T1), 3 hours (T3), and 6 hours (T6) after breakfast. Serum samples were assayed for insulin, C-peptide, total- and free-IGF-I, IGF-binding protein [BP]-1 and -3, total and high molecular weight (HMW)-adiponectin, retinol binding protein-4, plasminogen activator inhibitor (PAI)-1, and resistin. Insulin and C-peptide levels followed similar postprandial trajectories; intra-class correlation coefficients [ICC] for insulin = 0.75, (95%CI:0.64-0.97) and C-peptide (ICC = 0.66, 95%CI:0.54-0.77) were similarly correlated in fasting (Spearman correlation, r = 0.78, 95%CI:0.64-0.88) and postprandial states (T1, r = 0.77 (95%CI: 0.62-0.87); T3,r = 0.78 (95%CI: 0.63-0.87); T6,r = 0.77 (95%CI: 0.61-0.87)). Free-IGF-I and IGFBP-1 levels were also affected by fasting status, whereas total-IGF-I and IGFBP-3 levels remained unchanged. Levels of adipokines were largely insensitive to fasting status and blood sample processing delays. Several components of the insulin/IGF axis were significantly impacted by fasting state and in particular, C-peptide levels were substantially altered postprandially and in a similar manner to insulin.
Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy
Lindsey, Richard C.; Mohan, Subburaman
2015-01-01
The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965
Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan
2012-06-01
The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.
Barnard, Sunelle A; Smith, Wayne; Mels, Catharina M C; Botha, Shani; Schutte, Aletta E
2018-06-12
Low circulating levels of insulin-like growth factor-1 (IGF-1) are associated with endothelial dysfunction, subsequently leading to the development of cardiovascular disease. To better understand the early phases of vascular deterioration in a young, healthy population, we investigated, cross-sectionally, whether biomarkers of endothelial function (intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and von Willebrand factor antigen (vWF ag )) are associated with IGF-1 in a healthy study population forming part of the larger African Prospective study on the Early Detection and Identification of Cardiovascular diseases and Hypertension (African-PREDICT). We included 825 black and white men and women (aged 20-30 years) and determined IGF-1, IGF binding protein-3 (IGFBP-3), ICAM-1, VCAM-1 and vWF ag from blood samples. We also measured 24-h blood pressure and health behaviours namely waist circumference, accelerometery, cotinine and gamma glutamyl transferase. We used the IGF-1/IGFBP-3 M ratio as an estimate of bioavailable IGF-1. In multivariable-adjusted regression analyses performed in the total group, VCAM-1 associated positively with IGFBP-3 (β = 0.21; p < .001) and negatively with IGF-1/IGFBP-3 (β = -0.18; p < .001). ICAM-1 showed a borderline negative association with IGF-1 (β = -0.09; p = .054) and IGF-1/IGFBP-3 (β = -0.08; p = .057). vWF ag was not associated with IGF-1, IGFBP-3 or bioavailable IGF-1. VCAM-1 is beneficially associated with IGF-1 in a young healthy cohort, independent of sex, ethnicity, blood pressure and health behaviours - thereby confirming the potential importance of bioavailable IGF-1 in early vascular endothelial protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Meggiorini, M L; Cipolla, V; Borgoni, G; Nofroni, I; Pala, A; de Felice, C
2012-01-01
The purpose of this study was to examine the possible effects of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density and assess whether this relationship was similar in subgroups of pre- and postmenopausal women. A group of 341 Italian women of childbearing age or naturally postmenopausal who had performed mammographic examination at the section of radiology of our department a maximum three months prior to recruitment were enrolled. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio was calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). To assess the association between mammographic density and IGF-1, IGFBP-3 and Molar ratio Student's t-test was employed before and after stratified by menopausal status. The analysis of the relationship between mammographic density and plasma levels of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group whereas IGFBP-3 showed similar values in both groups (DB and NDB). After stratification of the study population by menopausal status, no association was found. Our study provides strong evidence of a crude association between breast density, and plasma levels of IGF-1 and molar ratio. IGF-1 and molar ratio might increase mammographic density and thus the risk of developing breast cancer.
Yuen, Kevin C. J.; Conway, Gerard S.; Popovic, Vera; Merriam, George R.; Bailey, Timothy; Hamrahian, Amir H.; Biller, Beverly M. K.; Kipnes, Mark; Moore, Jerome A.; Humphriss, Eric; Cleland, Jeffrey L.
2013-01-01
Background: Administration of daily recombinant human GH (rhGH) poses a considerable challenge to patient compliance. Reduced dosing frequency may improve treatment adherence and potentially overall treatment outcomes. Objectives: This study assessed the safety and tolerability and the potential for achieving IGF-I levels within the target range in adults with GH deficiency after a single dose of the long-acting rhGH analog, VRS-317. Design: This was a randomized, double-blind, placebo-controlled, single ascending dose study. Patients: Fifty adults with growth hormone deficiency (mean age, 45 years) were studied in 5 treatment groups of 10 subjects each (8 active drug and 2 placebo). Setting: The study was conducted in 17 adult endocrinology centers in North America and Europe. Main Outcome Measures: Adverse events, laboratory safety assessments, and VRS-317 pharmacokinetics and pharmacodynamics (IGF-I and IGF binding protein-3) were analyzed. Results: At 0.80 mg/kg, VRS-317 had a mean terminal elimination half-life of 131 hours. Single VRS-317 doses of 0.05, 0.10, 0.20, 0.40, and 0.80 mg/kg (approximately equivalent to daily rhGH doses of 0.3–5.0 μg/kg over 30 d) safely increased the amplitude and duration of IGF-I responses in a dose-dependent manner. After a single 0.80 mg/kg dose, serum IGF-I was maintained in the normal range between −1.5 and 1.5 SD values for a mean of 3 weeks. No unexpected or serious adverse events were observed. Conclusions: The elimination half-life for VRS-317 is 30- to 60-fold longer and stimulates more durable IGF-I responses than previously studied rhGH products. Prolonged IGF-I responses do not come at the expense of overexposure to high IGF-I levels. The pharmacokinetics and pharmacodynamics combined with the observed safety profile indicate the potential for safe and effective monthly dosing. PMID:23585663
Guha, Nishan; Dashwood, Alexander; Thomas, Nicholas J; Skingle, Alexander J; Sönksen, Peter H; Holt, Richard I G
2009-09-01
It is widely believed that growth hormone (GH) is abused by athletes for its anabolic and lipolytic effects. Many of the physiological effects of GH are mediated by the production of insulin-like growth factor-I (IGF-I). Both GH and IGF-I appear on the World Anti-Doping Agency list of prohibited substances. Little is known, however, about the prevalence of abuse with exogenous IGF-I. IGF-I has effects on carbohydrate, lipid and protein metabolism and some of these actions could prove beneficial to competitive athletes. No studies have demonstrated a positive effect of IGF-I on physical performance in healthy individuals but this has not yet been studied in appropriately designed trials. Two pharmaceutical preparations of IGF-I have recently become available for the treatment of growth disorders in children. This availability is likely to increase the prevalence of IGF-I abuse. Combining IGF-I with its binding protein IGFBP-3 in one preparation has the potential to reduce the side-effect profile but the adverse effects of long term IGF-I abuse are currently unknown. Detection of abuse with IGF-I is a major challenge for anti-doping authorities. It is extremely difficult to distinguish the exogenous recombinant form of the hormone from endogenously-produced IGF-I. One approach currently being investigated is based on measuring markers of GH and IGF-I action. This has already proved successful in the fight against GH abuse and, it is hoped, will subsequently lead to a similar test for detection of IGF-I abuse.
Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki
2016-05-01
Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.
Bergamaschi, S; Ronchi, C L; Giavoli, C; Ferrante, E; Verrua, E; Ferrari, D I; Lania, A; Rusconi, R; Spada, A; Beck-Peccoz, P
2010-01-01
A 3.4-year-old girl was admitted to the Pediatric Department because of tall stature (116.0 cm, +5.1 SDS) and increased height velocity (16.3 cm/year, +6.1 SDS). Basal hormonal evaluation revealed elevated insulin-like growth factor I (IGF-I) levels (938 ng/ml, nv 40-190), prolactin (PRL) (98.0 ng/ml, nv 1.7-24.0) and mean growth hormone (GH) nocturnal concentration (147 ng/ml). Basal adrenal, gonadal and thyroid functions were normal. Hand-wrist bone age was 3.6 years. Magnetic resonance imaging revealed a macroadenoma with moderate suprasellar invasion. The adenoma was surgically removed and histological characterization confirmed the diagnosis of GH/PRL-secreting adenoma. The patient was admitted to our Endocrine Unit when 7.9 years old, because of the persistence of elevated GH, IGF-I and PRL levels, although there was a slight height velocity reduction and absence of tumor recurrence. Treatment with cabergoline was initiated, but only PRL levels normalized. Afterwards, octreotide long-acting release (LAR) was added without reaching the normalization of GH and IGF-I levels. Thus, treatment with octreotide LAR was discontinued and pegvisomant was added to cabergoline, leading to the normalization of IGF-I levels and height velocity without side effects. Other anterior pituitary functions were always normal. To conclude, treatment of pituitary gigantism with pegvisomant was effective and well tolerated in a young giant unresponsive to combined cabergoline and octreotide treatment.
Tang, Xiahong; Chen, Feng; Lin, Qinming; You, Yan; Ke, Jun; Zhao, Shen
2017-11-01
The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.
Woods, K A; Camacho-Hübner, C; Barter, D; Clark, A J; Savage, M O
1997-11-01
The first human case of a homozygous molecular defect in the gene encoding insulin-like growth factor I (IGF-I) is described. The patient was a 15-year-old boy from a consanguineous pedigree who presented with severe intrauterine growth failure, sensorineural deafness and mild mental retardation. Endocrine evaluation of the growth hormone (GH)--IGF-I axis revealed elevated GH secretion, undetectable serum IGF-I and normal serum IGF-binding protein-3, acid-labile subunit, and GH-binding activity. Analysis of the IGF-I gene revealed a homozygous partial IGF-I gene deletion involving exons 4 and 5, which encodes a severely truncated mature IGF-I peptide. This patient demonstrates that complete disruption of the IGF-I gene in man is compatible with life, and indicates a major role for IGF-I in human fetal growth. In addition, his neurological abnormalities suggest that IGF-I may be involved in central nervous system development.
Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P
2013-04-01
The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.
Sass, D A; Jerome, C P; Bowman, A R; Bennett-Cain, A; Ginn, T A; LeRoith, D; Epstein, S
1997-04-01
The purpose of our study was to determine the effects of GH and insulin-like growth factor I (IGF-I) administration singly and in combination on vertebral, tibial, and femoral bone in aged female monkeys as well as the various treatment effects on serum hormone levels and osteocalcin gene expression. Twenty-one ovulating female monkeys (rhesus macaque), aged 16-20 yr (5-6 kg), were divided into four groups to receive the following treatment for 7 weeks via Alzet pumps inserted sc: A, eluant (control group); B, recombinant human IGF-I (rhIGF-I; 120 micrograms/kg.day); C) rhGH (100 micrograms/kg.day); D, combination of rhIGF-I (120 micrograms/kg.day) and rhGH (100 micrograms/kg.day). Serum was assayed serially for glucose, IGF-I, GH, and IGF-binding protein-3 levels. All groups received double labeling with calcein. On the day of death, the primates' second lumbar vertebrae, tibiae, and femora were carefully dissected, fixed in 70% ethanol, and subjected to histomorphometric analysis. Ribonucleic acid was extracted from contralateral tibiae for the purpose of osteocalcin gene expression analysis. Serum glucose was unaffected by treatment. Serum GH was significantly elevated in groups C and D, whereas serum IGF-I and IGFBP-3 were only significantly increased in group D. Histomorphometric analysis showed no significant differences or trends for bone volume in any treatment group. Bone formation rate, surface and/or bone volume referent were significantly higher in both groups treated with GH (C and D) in tibia and femur, with a similar trend in vertebrae. The increase in bone formation rate was due mainly to a significant increase in mineral apposition rate, but there was also an increase in tibial mineralizing surface by GH by factorial analysis (P < 0.05). There were significant treatment effects on osteoid surface and osteoclastic surface in femur in the combination treatment group vs. the controls. Osteocalcin gene expression analysis supported an enhanced expression in both groups treated with GH. These findings are consistent with a short term effect of GH to increase bone remodeling and predominantly osteoblastic activity in the appendicular skeleton. In contrast, other than an isolated increase in osteoclastic surface in femoral bone, IGF-I, when administered alone, was unable to significantly influence bone formation or resorption activity in this short term study.
Insulin-Like Growth Factor-1 Levels in Term Newborns with Hypoxic-Ischemic Encephalopathy.
Umran, Raid M R; Al-Tahir, Mahir; Jagdish, Desai; Chouthai, Nitin
2016-06-01
Objective This study aims to evaluate the correlation of changes in serum insulin-like growth factor-1 (IGF-1) levels with the clinical staging of hypoxic-ischemic encephalopathy (HIE) in term newborns. Study Design A prospective study of 29 newborns with HIE (stage I = 15, stage II + III = 14) and 28 healthy term newborns as the control group was performed in the neonatal intensive care unit. IGF-1 levels were obtained within 6 hours after birth from HIE and control groups and again on day 3 from HIE group. HIE was classified using the Sarnat staging I to III. Results IGF-1 levels were significantly lower in the HIE group than in the control group (p = 0.024). It was lower in the HIE stage II to III group compared with HIE stage I group at birth (p < 0.0001) and on day 3 (p = 0.009). The mean IGF-1 levels were significantly higher on day 3 than on day 1 among stage II to III HIE (p = 0.006) and it was inversely correlated with staging (R = - 0.475, p = 0.009). There was a significant correlation between IGF-1 levels and Apgar score at 5 (R = 0.39, p = 0.042) and 10 minutes (R = 0.38, p = 0.035). Conclusions IGF-1 was lower in HIE and inversely correlated with clinical staging. It was increased with clinical improvement in the subsequent days. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Bann, David; Hardy, Rebecca; Cooper, Rachel; Lashen, Hany; Keevil, Brian; Wu, Frederick C W; Holly, Jeff M P; Ong, Ken K; Ben-Shlomo, Yoav; Kuh, Diana
2015-12-01
Little is known about how socioeconomic position (SEP) across life impacts on different axes of the endocrine system which are thought to underlie the ageing process and its adverse consequences. We examined how indicators of SEP across life related to multiple markers of the endocrine system in late midlife, and hypothesized that lower SEP across life would be associated with an adverse hormone profile across multiple axes. Data were from a British cohort study of 875 men and 905 women followed since their birth in March 1946 with circulating free testosterone and insulin-like growth factor-I (IGF-I) measured at both 53 and 60-64 years, and evening cortisol at 60-64 years. Indicators of SEP were ascertained prospectively across life-paternal occupational class at 4, highest educational attainment at 26, household occupational class at 53, and household income at 60-64 years. Associations between SEP and hormones were investigated using multiple regression and logistic regression models. Lower SEP was associated with lower free testosterone among men, higher free testosterone among women, and lower IGF-I and higher evening cortisol in both sexes. For example, the mean standardised difference in IGF-I comparing the lowest with the highest educational attainment at 26 years (slope index of inequality) was -0.4 in men (95% CI -0.7 to -0.2) and -0.4 in women (-0.6 to -0.2). Associations with each hormone differed by SEP indicator used and sex, and were particularly pronounced when using a composite adverse hormone score. For example, the odds of having 1 additional adverse hormone concentration in the lowest compared with highest education level were 3.7 (95% CI: 2.1, 6.3) among men, and 1.6 (1.0, 2.7) among women (P (sex interaction) = 0.02). We found no evidence that SEP was related to apparent age-related declines in free testosterone or IGF-I. Lower SEP was associated with an adverse hormone profile across multiple endocrine axes. SEP differences in endocrine function may partly underlie inequalities in health and function in later life, and may reflect variations in biological rates of ageing. Further studies are required to assess the likely functional relevance of these associations. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2005-08-01
reproductive status and stress hormones in breast cancer patients” ( Kinesiology ) 2004 Kelly Dougherty “No relation between leptin and exercise...associated reproductive disturbances in healthy normal weight young women” ( Kinesiology ) 2004 Brian Frye “Predictors of weight loss in a diet...and exercise intervention in young women” ( Kinesiology ) 2005 Sarah Giambuzzi ( Kinesiology – In Progress) 2005 Jennifer Ward (Physiology- In
Gómez, José Manuel; Maravall, Francisco Javier; Gómez, Núria; Navarro, Miguel Angel; Casamitjana, Roser; Soler, Juan
2004-04-01
The aim of this study was to investigate the GH-IGF-I axis in healthy adults and its relationship to obesity. We studied 268 subjects: 134 men and 134 women, and determined anthropometric and body composition variables. Serum total IGF-I was measured by radioimmunoassay, serum free IGF-I concentrations by enzyme linked immunosorbant assay and serum IGFBP3 concentrations by radioimmunoassay. In men, we observed a decrease in total IGF-I, free IGF-I and IGFBP-3 throughout decades. In women, the body mass index and fat mass were higher throughout decades, and we observed a similar decrease to that in men in total IGF-I, free IGF-I and IGFBP3. In men with obesity, as measured by body fat, free IGF-I concentrations were lower than those without obesity; in women with obesity, total IGF-I concentrations and free IGF-I concentrations were lower than in those with obesity. These changes were observed in relationship to obesity when the subjects were adjusted for differences in age. We showed that in controls randomly selected, the GH-IGF-I axis component concentrations that decrease with increasing age are lower in obesity, especially in women, and that this decrease is related to body mass index and body fat.
Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas
2013-01-01
Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170
Varewijck, A J; Lamberts, S W J; van der Lely, A J; Neggers, S J C M M; Hofland, L J; Janssen, J A M J L
2015-01-01
IGF-1 measurements are used for screening and monitoring GH deficiency (GHD) and acromegaly. Our objective was to study whether the introduction of the IDS-iSYS IGF-1 assay would lead to different clinical interpretations in GHD and acromegaly. In 106 GHD subjects and in 15 acromegalic subjects visiting our university hospital, total IGF-1 levels were measured before and during therapy by using the Immulite (IM) assay and IDS-iSYS (ID) assay. Z-scores were calculated by using assay-specific age-specific normative range values. All treatment decisions were based upon results obtained by the IM assay. In GHD subjects, absolute IGF-1 concentrations differed significantly between both IGF-1 assays before treatment (P < .001) but not during GH treatment (P = .32), and mean Z-scores for IGF-1 differed significantly before starting (IM, -2.23, vs ID, -1.43; P < .001) and during GH treatment (IM, -0.60, vs ID, +0.21; P < .001). In acromegalic subjects, absolute IGF-1 concentrations did not differ between both IGF-1 assays before treatment (P = .18) but were significantly different during treatment (P = 0.009), and mean Z-scores for IGF-1 were not different before starting (IM, 10.93, vs ID, 10.78; P = .41) or during treatment (IM, 3.60, vs ID, 3.18; P = .23). In GHD subjects, mean IGF-1 Z-scores significantly differed when measured by the IM assay compared with the ID assay irrespective of treatment. In contrast, in acromegaly, mean IGF-1 Z-scores did not differ significantly between both assays. Our study suggests that replacement of the IM assay by the ID assay may have far-reaching consequences for the clinical diagnosis and treatment of GHD.
Positive correlation between serum IGF-1 and HDL-C in type 2 diabetes mellitus.
Song, Xiaofei; Teng, Jiali; Wang, Aihong; Li, Xiang; Wang, Jing; Liu, Yanjun
2016-08-01
Dyslipidemia and low levels of high density lipoprotein cholesterol (HDL-C) can increase the risk of atherosclerosis development in people with type 2 diabetes mellitus (T2DM). This study aimed to investigate the correlation between serum HDL-C and insulin-like growth factor-1 (IGF-1), which are crucially involved inT2DM. Serum concentrations of IGF-1, total cholesterol, triglyceride, low density lipoprotein cholesterol, and HDL-C were measured in 498 participants with T2DM without any lipid-modifying medicine prior to study. Participants were divided into three groups according to the 25th and 75th percentile of IGF-1 levels: low IGF-1 group (G1), middle IGF-1 group (G2), and high IGF-1 group (G3), respectively. Serum levels of HDL-C were compared among the three groups. G1 presented a higher body mass index and higher fasting plasma insulin (FINS) than G2 (P<0.05), yet a lower HDL-C than G2 (P<0.05). Moreover, HDL-C, postprandial blood glucose, FINS, postprandial plasma insulin (PINS), hip circumference ratio, glycated hemoglobin A1c were significantly lower in G3 than in G2 (P<0.05). After adjusting for age and gender, serum levels of IGF-1 were negatively correlated with age, duration of disease, waist circumference, FINS, PINS, and insulin resistance, but positively correlated with HDL-C. Each increase of 2.71ng/dl in IGF-I concentration was associated with an increase of 1.34mg/dl in HDL level. IGF-1 serum level in people with T2DM is correlated positively with HDL-C. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana
2013-01-01
States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957
Hepatic JAK2 protects against atherosclerosis through circulating IGF-1
Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.
2017-01-01
Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798
Ochoa, R; Mercado, M; Chacón, X; Fonseca, E; Hernández, M; Zárate, A
1999-01-01
Several series reported in the literature concerning the results of the treatment of acromegaly have been difficult to evaluate because the indicators are inaccurate. We investigated the usefulness of insulin-like growth factor binding protein-3 (IGFBP) levels to determine disease activity after surgical treatment of acromegaly in 13 patients with confirmed somatotroph adenoma. Before surgery, all 13 non-treated patients had elevated serum levels of IGFBP-3 as well as total and free IGF-I. In addition, there was no overlap with the normal controls (p < 0.001). IGFBP-3 levels correlated significantly (0.91, p < 0.001) with GH suppressibility by glucose after surgery. These data confirm that IGFBP-3 is a better indicator of acromegalic activity than either total or free IGF-I. There was a high correlation with GH suppressibility by glucose after surgery; both free and total IGF-I could be considered sensitive markers only for diagnosis of active acromegaly but not for efficacy of surgery.
Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.
Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P
2013-09-01
Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.
Avino, Silvia; De Marco, Paola; Cirillo, Francesca; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele
2016-08-16
Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.
Cirillo, Francesca; Santolla, Maria Francesca; Francesco, Ernestina Marianna De; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele
2016-01-01
Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies. PMID:27384677
Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J
2016-04-01
Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory effect on GHRs may be limited to enhancing transcription or mRNA stability rather than inducing full translation of functional receptors, at least within a 24-h time frame. Finally, leptin was injected IP (100ng/g and 1μg/gBW) to test the in vivo regulation of hepatic IGF-1 and GHR1 gene expression. The 100ng/g BW leptin dose significantly upregulated in vivo IGF-1 mRNA levels relative to controls after 24h of fasting, but neither dosage was effective at regulating GHR1 gene expression. These studies suggest that stimulation of growth axis component transcripts by leptin may be an important mechanism for coordinating somatic growth with nutritional state in these and perhaps other fish or vertebrates, and represent the first evidence of leptin regulating GHRs in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Gu, M; Pritlove, D C; Boyd, C A R; Vatish, M
2009-10-01
Bisphosphoglycerate mutase (BPGM) catalyses the formation of 2,3 bisphosphoglycerate (BPG) a ligand of haemoglobin. BPG facilitates liberation of oxygen from haemoglobin at low oxygen tension enabling efficient delivery of oxygen to tissues. We describe expression of BPGM in mouse labyrinthine trophoblasts, located at the maternal-placental interface. Expression is lower in placentae of igf2(+/-) knockout mice, a widely used model of growth restriction, compared to wild type placentae. Circulating maternal BPG increased throughout gestation but this increase was less in wt mothers carrying igf2(+/-) pups than in those carrying exclusively wt pups. This reduction was observed well before term and may contribute to the low birth weight of igf2(+/-) pups. Strikingly, we also measured reductions of fetal and placental weight in wt littermates of igf2(+/-) pups compared to pups developing in an exclusively wt environment. These data suggest that placental expression of BPGM can influence maternal BPG concentrations and supports a hypothesis under which BPG synthesized in the placenta may act on maternal haemoglobin to enhance delivery of oxygen to the developing fetus.
[A case of dwarfism with severely reduced activity of growth hormone-binding protein].
Igarashi, N; Sato, T
1991-10-20
We presented a 16-year-old boy with severe growth retardation and markedly decreased levels of growth hormone-binding protein (GHBP) in plasma, which was shown to correspond to the extracellular composition of hepatic GH receptor and suggested to reflect tissue concentration of the receptor. His height was 92.5 cm (-13.5 SD), the weight 9.6kg (-5.8 SD) and Tanner stage was I. His bone age was 3.5 years old at 16 years of age. Karyotype was 46,XY and thyroid function was normal. SM-C levels, determined by Nichols RIA using unextracted plasma, were within the low normal range, 0.67/0.68U/ml. In contrast, using a method of acid-ethanol extraction, IGF-I and IGF-II levels were definitely low, 29ng/ml (normal 88-240) and 165ng/ml (374-804) respectively. GH responses in various provocation tests, including insulin, arginine and GRF, were within normal. Basal GH levels were 20 +/- 12ng/ml and urinary GH excretion rates 217 +/- 85pg/mg. Cr, which were elevated compared to age-matched control. Molecular size of his circulating GH was similar to control subjects. The biological activities of GH, evaluated by radioreceptor assay and Nb2 cell bioassay, were proportional to the immunoactivities of GH. SM bioactivities, which were determined by the stimulatory effects on DNA synthesis of rabbit costal chondrocytes and human fibroblasts, were apparently reduced. Electrophoretic patterns of IGF-binding protein was similar to those of GH deficient cases. Daily administration of hGH (4U/day) for 5 days resulted in a poor response of SM-C production (before 0.68, after 0.77U/ml). GHBP activities were definitely low by gel-filtration, immunoprecipitation and charcoal methods, as seen in Laron dwarfism which is defined as a syndrome of congenital GH receptor defects. These results indicate that the tissue content of GH receptor in this case was quantitatively reduced and as a result, he showed a resistance to endogenous and exogenous GH. It remains to be elucidated whether the GH receptor defect in our case is derived from a genetic origin or an acquired condition.
Yao, Dachun; Shu, Jun; Sun, Yan; Etgen, Anne M.
2014-01-01
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling. PMID:24617524
Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation.
Cantürk, Nuh Zafer; Cantürk, Zeynep; Ozden, Meltem; Dalçik, Hakki; Yardimoglu, Melda; Tülübas, Feti
2003-01-01
The causes of malnutrition in liver cirrhosis are multifactorial. Levels of IGF-1 (insulin like growth factor-1) that is a crucial regulator of intermediary metabolism decreases. The aim of this study was to analyze the effect of IGF-1 supplementation during liver cirrhosis induced by common bile duct ligation. Rats were divided into five different groups: One sham and four experimental groups. Rats in three of four groups were treated with 2 micrograms/day IGF-1 with a different time of experiment in each group. Blood biochemical parameters, tissue malondialdehyde, glutathione levels and the activity of tissue antioxidant enzymes and conventional and immunohistochemical analysis of liver samples were studied for each group. Serum albumin, total protein, fibrinogen levels decreased and prothrombin time was prolonged in the bile duct ligated and transected experimental group but not in the IGF-I treated rats compared with the rats in sham group. Liver malondialdehyde levels significantly increased in control group but not in IGF-1 treated groups. The activities of antioxidant enzymes were decreased compared with the other groups. Histopathology findings of liver biopsy demonstrated intense degree fibrosis and overexpression of fibroblast growth factor and desmin in the control group but a lesser degree of those in the IGF-1 treated groups. IGF-1 treatment improves liver function and decreases oxidative liver damage and histopathological findings. Further studies are required to delineate the mechanisms of protective effects of IGF-1.
Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun
2016-01-01
Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.
Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M
2016-07-01
The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. Copyright © 2016 Elsevier Inc. All rights reserved.
Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim
2010-01-01
Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505
Ververis, J J; Ku, L; Delafontaine, P
1993-06-01
Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.
Rodríguez, Silvia S.; Schwerdt, José I.; Barbeito, Claudio G.; Flamini, Mirta A.; Han, Ye; Bohn, Martha C.
2013-01-01
There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats. PMID:23584855
Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M
2015-06-01
Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.
Lack of transferability between two automated immunoassays for serum IGF-I measurement.
Gomez-Gomez, Carolina; Iglesias, Eva M; Barallat, Jaume; Moreno, Fernando; Biosca, Carme; Pastor, Mari-Cruz; Granada, Maria-Luisa
2014-01-01
IGF-I is a clinically relevant protein in the diagnosis and monitoring of treatment of growth disor- ders. The Growth Hormone Research Society and the International IGF Research Society have encouraged the adoption of a universal calibration for immunoassays to improve standardization of IGF-I measurements, but currently commercial assays are calibrated either against the old WHO IRR 87/518 or the new WHO 02/254. We compared two IGF-I immunochemiluminescent assays: IMMULITE® 2000 (Siemens) and LIAISON® (DiaSorin), which differ in their standardization, and verified their precision according to quality specifications based on biological variation and their linear range. 62 patient serum samples were analyzed for both assays and compared according to standards of the Clinical and Laboratory Standards Institute (CLSI), EP9-A2-IR. Precision was verified according to CLSI EP15- A2. Optimal coefficient of variation (CVo) and desirable coefficient of variation (CVd) for IGF-I assays were calculated as quality specifications based on the biological variability, in order to assess if the interassay analytical CV (CVa1) in the two methods were appropriate. Two dilution series using the 1st WHO International Standard (WHO IS) for IGF-I 02/254 were used to verify and compare the linearity range. The regression analysis showed constant and proportional differences for serum samples (slope b = 0.8115 (CI 95% CI; 0.7575-0.8556); intercept a = 33.6873 (95% CI: 23.3613-44.0133) between assays and similar pro- portional differences for WHO IS 02/254 standard dilutions series (slope b = 0.8024 (CI 95% CI; 0.7560-0.8616); intercept a = 6.9623 (95% CI: -2.0819-18.4383) between assays. Within-laboratory coefficients of variation for low and high levels were 2.82% and 3.80% for IMMULITE® 2000 and 3.58% and 2.14% for LIAISON®, respecttively. IGF-I concentrations measured by both assays are not transferable. The results emphasize the need to express IGF-I concentrations in standard deviation score (SDS) according to a matched normal population of the same age and gender. Within-laboratory precision in both methods met quality specifications derived from biological variation.
Shi, Yu; He, Mao-xian
2016-01-01
The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653
Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang
2011-01-01
IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000
Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Hurst, Jane; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jackie J.D.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Douglas, Alex; Speakman, John R.
2015-01-01
Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR. PMID:26061745
Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.
Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing
2017-07-01
The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.
2015-01-01
Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017
Insulin growth factor-I promotes functional recovery after a focal lesion in the dentate gyrus.
Liquitaya-Montiel, Adhemar; Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica
2012-11-01
The adult brain is plastic and able to reorganize structurally and functionally after damage. Growth factors are key molecules underlying the recovery process and among trophic molecules, Insulin-Like Growth Factor-I (IGF-I) is of particular interest given that it modulates neuronal and glial responses in the hippocampus including neurogenesis, which has been proposed as a mechanism of neurorepair. In this study we analyzed the effect of intracerebroventricular chronic infusion of IGF-I on functional recovery and morphological restoration after the induction of an excitotoxic lesion in the dentate gyrus (DG) of young-adult rats. Our results show that the lesion impairs contextual fear memory which is a DG dependent task, but not cued fear memory or performance in the open field motor task, which are independent of the DG integrity. Chronic administration of IGF-I, but not vehicle, promotes functional recovery to control levels in injured subjects. Analysis in NeuN immunoprocessed tissue revealed that the lesion volume was not different between groups and that the DG was not evidently restructured in the IGF-I treated group. Glial fibrillary acidic protein (GFAP) analysis revealed an increased astrocytic response in the injured region in both groups and Doublecortin (DCX) analysis showed a similar increase in number of newly born neurons in both groups. However, a remarkable increase in young neurons dendritic arborization was observed in the IGF-I treated group. These results provide evidence for IGF-I as a molecule mediating functional and cellular plasticity during a reorganization process after damage to a neurogenic niche.
van Langenberg, D R; Della Gatta, P; Warmington, S A; Kidgell, D J; Gibson, P R; Russell, A P
2014-02-01
The association of fatigue with decreased physical performance and underlying mechanisms are poorly understood in Crohn's disease (CD). We aimed to measure and compare self-reported fatigue with skeletal muscle fatigue in CD subjects and healthy controls, and to identify associated factors that may be amenable to change. Demographic and clinical data were collected and fatigue assessed using the Fatigue Impact Scale (FIS) in 27 consecutive CD patients and 22 matched healthy controls. Circulating cytokines and growth factors were measured. The rate of quadriceps muscle fatigue was assessed using an isokinetic dynamometer as the decrement of force with 30 contractions performed over a 5-minute period. Compared with healthy controls, CD patients reported greater levels of fatigue (mean global FIS score 45.3 vs 10.5, physical dimension score 12.3 vs 2.7 respectively; each p<0.01) and muscle fatigue (-5.2 vs -1.3 Nm min(-1); p<0.05). The two indices were correlated (r = -0.52 in CD; p<0.01). Patients with CD had lower mean serum IGF-1 levels (16.1 vs 25.4 pmol/L, p<0.01) and higher oxidative stress (TBARS assay 4.3 vs 3.9 μM, p<0.05). On multivariate analysis, low serum vitamin D, IGF-1 and magnesium, and higher IL-6 levels were associated with increased muscle fatigue (all p ≤ 0.05). Subjects with CD had more muscle fatigue than matched healthy controls and this correlated well with self-reported fatigue. Of circulating factors that were independently associated with increased muscle fatigue, vitamin D, magnesium and IGF-1 could be targeted in future studies to reduce fatigue and improve physical performance. © 2013.
Wang, Wei-min; Guan, Yu-guang; Liu, Fen; Wang, Ting-hua; Xu, Xin-yun; Ke, Qing; Lu, Yong-chao; Yuan, Yuan
2005-01-01
To explore the temporospatial changes of IGF-I expression in the spared dorsal root ganglia (DRG, L6) on the operated side and un-operated side, in the spinal lamina II (L3, L5, L6) and Clarke's nucleus (L3) of the adult cats that have undergone partial dorsal rhizotomy, and compare them against those of the normal adult cats so as to unveil the relation between IGF-I and the plasticity of spinal cord. Fifteen male adult cats were divided into three groups. The cats of two groups were subjected to unilateral partial dorsal root rhizotomy (L1-L5, L7-S2 DRG were sectioned, but L6 was spared) and were sacrificed at 7 days and 14 days after operation. The bilateral L6 dorsal root ganglia and L3, L5, L6 spinal cord of all groups were made into frozen sections 20 microm thick. Then, the sections were stained by the immunohistochemistry ABC method using IGF-I (1:200, Santa Cruz) antibody. The distribution and the number of IGF-I positive neurons in bilateral spared DRG (L6) on the operated/un-operated side, in spinal lamina I (L3, L5, L6) and in Clarke' nucleus (L3) of each animal were observed and counted. All data were analyzed by one-way ANOVA, SNK-q test and paired-t test. (1) Seven days after partial dorsal root rhizotomy, the number of IGF-I positive neurons in spared DRG on the operated side declined as compared with that of normal group (P<0.05), but it was not significantly different from that of L6 spared DRG on the un-operated side (P>0.05). On the 14th day, the IGF-I expression in neurons of L6 DRG on the operated side was significantly lower than that of normal group and that of L6 spared DRG on the unoperated side (P<0.01), but it was not significantly different from that of the 7th day group (P>0.05). (2) There was no difference in number of IGF-I positive neuron in L3, L5, L6 spinal lamina II between normal group, 7th day post-operation group and 14th day post-operation group (P>0.05). After operation, IGF-I expression in Clarke's nucleus declined on the 7th day (P<0.05) and came back to normal level on the 14th day (P>0.05). Partial dorsal root rhizotomy can lead to the change of IGF-I expression in bilateral DRG and Clarke's nucleus, which suggests that IGF-I be related with spinal cord plasticity.
Park, Soohyun; Brisson, Becky K; Liu, Min; Spinazzola, Janelle M; Barton, Elisabeth R
2014-04-01
Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.
Park, SooHyun; Brisson, Becky K.; Liu, Min; Spinazzola, Janelle M.
2013-01-01
Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy. PMID:24371018
Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z
2000-05-01
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.
Production of insulin-like growth factor binding proteins by small-cell lung cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, G.; Kiefer, P.; Rotsch, M.
1989-10-01
Conditioned serum-free media (CM) from small-cell lung cancer (SCLC) cell lines were examined for the presence of insulin-like growth-factor-binding proteins (IGF-BP). 6/9 SCLC cell lines secreted binding proteins with high affinity for IGFs. When ({sup 125}I)IGF-1 or ({sup 125}I)IGF-II was incubated with the CMs, complexes of tracer with proteins could be demonstrated by gel filtration, by precipitation with polyethylenglycol, and after adsorption of unbound tracer with activated charcoal. Analysis of binding data according to the method of Scatchard resulted in linear plots for IGF-I and IGF-II. Cross-linking of ({sup 125}I)IGF-I or ({sup 125}I)IGF-II to the CMs followed by sodium dodecylmore » sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions revealed the presence of IGF-BPs with molecular masses in the range of 24-32 kDa. Northern blot hybridization with an IGF-BP cDNA probe encoding a low-molecular-weight IGF-BP from a human placenta cDNA library and Western blot analysis with a corresponding polyclonal antibody showed no expression of this gene. These data demonstrate that SCLC cell lines release IGF-BPs in culture supernatants, which differ from IGF-BPs detected in liver and placenta. These IGF-BPs might be important mediators in the autocrine/paracrine growth regulation of IGFs in SCLC.« less
Addition of IGF-I to storage-cooled boar semen and its effect on sperm quality.
Silva, D M; Zangeronimo, M G; Murgas, L D S; Rocha, L G P; Chaves, B R; Pereira, B A; Cunha, E C P
2011-12-01
To evaluate in vitro IGF-I treatment during warming of storage-cooled boar semen and its effect on seminal quality parameters and metabolism in spermatic cells. Semen samples (n=7) warmed after stored at 15°C for 24 or 72h were divided into four equal parts. Different IGF-I concentrations (0, 50, 100 and 150ng/mL) were added to the semen samples. The samples were incubated at 37°C, and assessments were made after 0 and 120min of incubation. For semen samples that were stored for 24h, the addition of IGF-I had no effect (p>0.05) on the total motility and intensity of movements by spermatic cells, osmotic resistance, live:dead cell ratio or total spermatic abnormalities. However, incubation with 150ng/mL IGF-I did decrease glutathione peroxidase activity (p<0.05) and reduce lipid peroxidation after 120min of incubation. For semen samples stored for 72h and incubated with IGF-I for 120min, there was a linear relationship between the IGF-I concentration and the live:dead ratio (p<0.05). There was a quadratic relationship between the IGF-I concentration and both the osmotic resistance (peak results at IGF-I=62.4ng/mL) and glutathione peroxidase activity (peak results at IGF-I=77.8ng/mL). There was no effect on lipid peroxidation (p>0.05) after 120min of incubation. Addition of IGF-I also decreased fructose utilization by spermatic cells regardless of semen storage time (p<0.05). This study suggests that IGF-I may be beneficial to semen stored for longer periods of time. Adding 150ng/mL IGF-I improved the quality of semen stored for 24h, and adding 78ng/mL IGF-I improved the quality of semen stored for 72h. Copyright © 2011 Elsevier Ltd. All rights reserved.
Feinberg, M S; Scheinowitz, M; Laron, Z
2000-01-15
Patients with primary growth hormone (GH) resistance-Laron Syndrome (LS)-have no GH signal transmission, and thus, no generation of circulating insulin-like growth factor-I (IGF-I), and should serve as a unique model to explore the controversies concerning the longterm effect of GH/IGF-I deficiency on cardiac dimension and function. We assessed 8 patients with LS (4 men, 4 women) with a mean (+/- SD) age of 38+/-7 years (range 22 to 45), and 8 aged-matched controls (4 men, 4 women) with a mean age of 38+/-9 years (range 18 to 47) by echocardiography at rest, following exercise, and during dobutamine administration. Left ventricular (LV) septum, posterior wall, and end-diastolic diameter were significantly reduced in untreated patients with LS compared with the control group (p<0.05 for all). Systolic Doppler-derived parameters, including LV stroke volume, stroke index, cardiac output, and cardiac index, were significantly lower (p<0.05 for all) than in the control subjects, whereas LV diastolic Doppler parameters, including mitral valve waves E, A, E/A ratio, and E deceleration time, were similar in both groups. LV ejection fraction at rest as well as the stress-induced increment of the LV ejection fraction were similar in both groups. Our results show that untreated patients with long-term IGF-I deficiency have reduced cardiac dimensions and output but normal LV ejection fraction at rest and LV contractile reserve following stress.
Bellone, S; Corneli, G; Bellone, J; Baffoni, C; Rovere, S; de Sanctis, C; Bona, G; Ghigo, E; Aimaretti, G
2002-05-01
The aim of the present study was to evaluate the GH status in children with familial, idiopathic short stature (FSS). To this goal we evaluated the GH response to GHRH (1 microg/kg iv) + arginine (ARG) (0.5 g/kg iv) test which is one of the most potent and reproducible provocative tests of somatotroph secretion, in 67 children with FSS [50 boys and 17 girls, age 10.8+/-0.4 yr, pubertal stages I-III, height between -3.6 and -1.6 standard deviation score (SDS), target height <10 degrees centile, normality of both spontaneous and stimulated GH secretion as well as of IGF-I levels]. The results in FSS were compared with those in groups of children of normal height (NHC) (42 NHC, 35 boys and 7 girls, age 12.0+/-0.5 yr, pubertal stages I-III, height between -1.3 and 1.4 SDS, height velocity standard deviation score (HVSDS)>25 degrees centile, GH peak >20 microg/l after GHRH+ARG test, mean GH concentration [mGHc]>3 microg/l) and children with organic GH deficiency (GHD) (38 GHD, 29 boys and 9 girls, age 11.2+/-3.7 yr, pubertal stages I-III, height between -5.7 and -1.3 SDS, GH peak <20 microg/l after GHRH +ARG test, mGHc <3 mg/l). Basal IGF-I levels and mGHc were also evaluated in each group over 8 nocturnal hours. IGF-I levels in FSS (209.2+/-15.6 microg/l) were similar to those in NHC (237.2+/-17.2 microg/l) and both were higher (p<0.0001) than those in GHD (72.0+/-4.0 microg/l). The GH response to GHRH +ARG test in FSS (peak: 66.4+/-5.6 microg/l) was very marked and higher (p<0.01) than that in NHC (53.3+/-4.5 microg/l) which, in turn, was higher (p<0.01) than in GHD (8.2+/-0.8 microg/l). Similarly, the mGHc in FSS was higher than in NHC (6.7+/-0.5 microg/l vs 5.1+/-0.7 microg/l, p<0.05) which, in turn, was higher than in GHD (1.5+/-0.2 microg/l, p<0.0001). In conclusion, our present study demonstrates that short children with FSS show enhancement of both basal and stimulated GH secretion but normal IGF-I levels. These findings suggest that increased somatotroph function would be devoted to maintain normal IGF-I levels thus reflecting a slight impairment of peripheral GH sensitivity in FSS.
Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph
2010-07-01
By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.
Niehoff, Anja; Lechner, Philipp; Ratiu, Oana; Reuter, Sven; Hamann, Nina; Brüggemann, Gert-Peter; Schönau, Eckhard; Bloch, Wilhelm; Beccard, Ralf
2014-04-01
Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.
Morales, Teresa I
2008-04-01
A previous hypothesis stated that during osteoarthritis (OA) increased insulin-like growth factor (IGF) binding proteins (IGFBPs) sequester IGFs and limit their access to the cell. The objective of this article was to test this by: (1) quantifying IGF and IGFBP-3 as well as their ratios in human OA cartilages, and (2) measuring the metabolic responses of diseased cartilage to IGF-I and its IGFBP-insensitive analogs. Knee or hip OA cartilages were staged for OA by histology. Cartilage slices were either extracted for assays of IGF proteins, or maintained intact as organ cultures. Proteoglycan (PG) metabolism +/- IGFs was measured by use of the (35)S-sulfate precursor. IGFBP-3 (ng/mg protein) was weakly correlated with OA score by regression analysis (R(2) = 0.122; p = 0.040; n = 35). IGF-I (ng/mg protein) was constant across all OA groups (ANOVA; p = .428, n = 18) and the IGF-I/IGFBP-3 ratios were > 1 in most samples. All OA cartilages responded to hrIGF-I by increasing PG synthesis [average 2.29-fold +/- 0.55 (+/-SD) at saturation, n = 12] irrespective of OA score. The des (1-3) IGF-I analog (which lacks the three N-terminal amino acids) had similar maximal effects (average 2.23-fold stimulation +/- 0.71, n = 10), but it was more effective in two out of three samples at suboptimal doses. The effect of hrIGF-I, des (1-3) IGF-I, or the B-chain analog on degradation was minimal. In summary, catabolism was insensitive to IGF-I, and this was probably not due to IGFBPs. By contrast, IGF-I exerted a robust stimulation of anabolism at sufficiently high doses, even though IGFBPs could tone down the ligand effect at low doses. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Yom Din, S; Hurvitz, A; Goldberg, D; Jackson, K; Levavi-Sivan, B; Degani, G
2008-03-01
In this study, the GH and IGF-I of the Russian sturgeon (rs), Acipenser gueldenstaedtii, were cloned and sequenced, and their mRNA gene expression determined. In addition, to improve our understanding of the GH function, the expression of this hormone was assessed in young males and females. Moreover, IGF-I expression was quantified in young males and compared to that in older ones. The nucleotide sequence of the rsGH cDNA was 980 bp long and had an open reading frame of 642 bp, beginning with the first ATG codon at position 39 and ending with the stop codon at position 683. A putative polyadenylation signal, AATAAA, was recognized 42 bp upstream of the poly (A) tail. The position of the signal- peptide cleavage site was predicted to be at position 111, yielding a signal peptide of 24 amino-acids (aa) and a mature peptide of 190 aa. When the rsGH aa sequence was compared with other species, the highest degree of identity was found to be with mammalians (66-70% identity), followed by anguilliformes and amphibia (61%) and other fish (39-47%). The level of rsGH mRNA was discovered to be similar in pituitaries of females and males of 5 age groups (1, 2, 3, 4, and 5- yr-old). In females and males, the levels did not change dramatically during the first 5 yr of growth. The partial nucleotide sequence of the rsIGF-I was 445 bp long and had an open reading frame of 396 bp, beginning with the ATG codon at position 50. The position of the signal-peptide cleavage site was predicted to be at position 187, yielding a signal peptide of 44 aa. The highest level of IGF-I mRNA expression was recorded in the kidney of adult sturgeons. The IGF-I mRNA expression levels in the intestine, pituitary gland, and liver were not significantly different. Low levels of expression were found in the brain, heart, and muscle. In most tissues, there was no significant difference between mRNA levels of one and 5-yr-old fish. In conclusion, based on the GH-sequence analysis, A. gueldenstaedtii is genetically distant from other teleosts. The expression of the GH mRNA was similar in males and females, and its level remained constant during the first 5 yr of growth. While the IGF-I mRNA expression differed amongst various tissues, the level in each tissue was similar in 1 and 5-yr-old fish.
Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J
1994-01-01
Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120
Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors
NASA Technical Reports Server (NTRS)
Draghia-Akli, Ruxandra; Malone, P. Brandon; Hill, Leigh Anne; Ellis, Kenneth M.; Schwartz, Robert J.; Nordstrom, Jeffrey L.
2002-01-01
Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.
Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors.
Draghia-Akli, Ruxandra; Malone, P Brandon; Hill, Leigh Anne; Ellis, Kenneth M; Schwartz, Robert J; Nordstrom, Jeffrey L
2002-03-01
Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.
Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta
2017-02-01
Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laron, Zvi
2004-03-01
Clinical and laboratory investigations starting in 1958 of a group of dwarfed children resembling isolated GH deficiency but who had very high serum levels of GH led to the description of the syndrome of primary GH resistance or insensitivity (Laron syndrome) and subsequently to the discovery of its molecular defects residing in the GH receptor and leading to an inability of IGF-I generation. With the biosynthesis of IGF-I in 1986, therapeutic trials started. Continuously more and more patients are being diagnosed in many parts of the world with a variety of molecular defects. This syndrome proved to be a unique model that enables the study of the consequences of GH receptor defects, the physiopathology of GH-IGF-I disruption, and comparison of the GH-independent IGF-I effects. This review presents the personal experience gained from the study follow-up and treatment of the 60 patients followed up for many years in the Israeli cohort.
Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo
2012-05-01
Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.
Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.
Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei
2017-07-01
Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Sanderson, Michael P; Apgar, Joshua; Garin-Chesa, Pilar; Hofmann, Marco H; Kessler, Dirk; Quant, Jens; Savchenko, Alexander; Schaaf, Otmar; Treu, Matthias; Tye, Heather; Zahn, Stephan K; Zoephel, Andreas; Haaksma, Eric; Adolf, Günther R; Kraut, Norbert
2015-12-01
Inhibition of the IGF1R, INSRA, and INSRB receptor tyrosine kinases represents an attractive approach of pharmacologic intervention in cancer, owing to the roles of the IGF1R and INSRA in promoting cell proliferation and survival. However, the central role of the INSRB isoform in glucose homeostasis suggests that prolonged inhibition of this kinase could result in metabolic toxicity. We describe here the profile of the novel compound BI 885578, a potent and selective ATP-competitive IGF1R/INSR tyrosine kinase inhibitor distinguished by rapid intestinal absorption and a short in vivo half-life as a result of rapid metabolic clearance. BI 885578, administered daily per os, displayed an acceptable tolerability profile in mice at doses that significantly reduced the growth of xenografted human GEO and CL-14 colon carcinoma tumors. We found that treatment with BI 885578 is accompanied by increases in circulating glucose and insulin levels, which in turn leads to compensatory hyperphosphorylation of muscle INSRs and subsequent normalization of blood glucose within a few hours. In contrast, the normalization of IGF1R and INSR phosphorylation in GEO tumors occurs at a much slower rate. In accordance with this, BI 885578 led to a prolonged inhibition of cell proliferation and induction of apoptosis in GEO tumors. We propose that the remarkable therapeutic window observed for BI 885578 is achieved by virtue of the distinctive pharmacokinetic properties of the compound, capitalizing on the physiologic mechanisms of glucose homeostasis and differential levels of IGF1R and INSR expression in tumors and normal tissues. ©2015 American Association for Cancer Research.
Lichtenwalner, Robin J; Forbes, M Elizabeth; Sonntag, William E; Riddle, David R
2006-02-01
Insulin-like growth factor-I (IGF-I), long thought to provide critical trophic support during development, also has emerged as a candidate for regulating ongoing neuronal production in adulthood. Whether and how IGF-I influences each phase of neurogenesis, however, remains unclear. In the current study, we used a selective model of growth hormone (GH) and plasma IGF-I deficiency to evaluate the role of GH and IGF-I in regulating cell proliferation, survival, and neuronal differentiation in the adult dentate gyrus. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete throughout development via twice daily injections of GH, and then GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Bromodeoxyuridine (BrdU) labeling revealed no effect of GH/IGF-I deficiency on cell proliferation, but adult-onset depletion of GH and plasma IGF-I significantly reduced the survival of newly generated cells in the dentate gyrus. Colabeling for BrdU and markers of immature and mature neurons revealed a selective effect of GH/IGF-I deficiency on the survival of more mature new neurons. The number of BrdU-labeled cells expressing the immature neuronal marker TUC-4 did not differ between GH/IGF-I-deficient and -replete animals, but the number expressing only the marker of maturity NeuN was lower in depleted animals. Taken together, results from the present study suggest that, under conditions of short-term GH/IGF-I deficiency during adulthood, dentate granule cells continue to be produced, to commit to a neuronal fate, and to begin the process of neuronal maturation, whereas survival of the new neurons is impaired. Copyright 2005 Wiley-Liss, Inc.
Piston, David W.
2015-01-01
Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954
Fenton, Jenifer I; Birmingham, Janette M
2010-01-01
Obesity results in increased circulating levels of specific adipokines which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin and IGF-1 and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6 induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential targeted therapies. PMID:20564347
Ren, Gaixian; Ali, Tariq; Chen, Wei; Han, Dandan; Zhang, Limei; Gu, Xiaolong; Zhang, Shiyao; Ding, Laidi; Fanning, Séamus; Han, Bo
2016-02-01
Selenium (Se) is an essential component for animals and human beings. The chemoprotective role of Se, via the regulation of the cell cycle, stimulation of apoptosis and activation of some cytokines among others, is well known; however, the comprehensive effects of Se on the expression of IGF-IR and its regulation of apoptosis have not been investigated. Thus the aim of this study was to report on the effects that different concentrations of Se extert on body weight, blood serum IGF-IR levels and histopathology in mice; and on IGF-IR expression, proliferation and apoptosis in mouse osteoblasts. In vivo experiments showed a significant decrease in body weight, serum levels of IGF-IR and prominent toxicant effects on the liver, kidney, heart and spleen following the administration of defined concentrations of Se for 30 d. However, moderate levels (0.1 mg/kg) of Se gradually improved weight and serum IGF-IR. In vitro osteoblast experiments revealed that at concentrations of 5 × 10(-6) and 10(-5) mol/L Se, MTT activity decreased in comparison with control cells. Cell cycle, TEM and caspase-3 activity supported these observations including an increase in the sub-G1 phase and notable apoptosis in osteoblasts, along with a decrease in the expression of mRNA and protein levels of IGF-IR. Moreover, the MTT activity, mRNA and protein levels of IGF-IR in osteoblasts were decreased and caspase-3 activity was increased in siRNA groups as compared with non-siRNA groups. These data suggest that Se significantly affects IGF-IR expression, and that it contributes to the proliferation and regulation of apoptosis in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pan, Yangyang; Cui, Yan; Baloch, Abdul Rasheed; Fan, Jiangfeng; He, Junfeng; Li, Guyue; Zheng, Hongfei; Zhang, Yifu; Lv, Peng; Yu, Sijiu
2015-09-15
The aim of our present study was to examine the effects of insulinlike growth factor 1 (IGF-1) on yak sperm motility during in vitro capacitation and the relationship between the effects of IGF-1 on yak sperm motility and apoptosis was evaluated. Frozen-thawed yak spermatozoa were incubated at 38 °C for 1 hour in Tyrode's bicarbonate-buffered medium for sperm culture (Sp-TALP) with different concentrations (0, 50, 100, and 200 ng/mL) of IGF-1. In every treatment, the sperm motility was measured by a computer-assisted sperm analyzer system. The fertilizing ability of spermatozoa was evaluated on the basis of oocyte cleavage rate after insemination. The expression of Bax and Bcl-2 was examined by real-time polymerase chain reaction and Western blot for the messenger RNA and protein levels. It is interesting to note that IGF-1 improved yak spermatozoa motility and the cleavage rate of oocytes; these improvements were highest in the 100 ng/mL IGF-1 group, followed by the 200 ng/mL and 50 ng/mL groups, with the lowest improvements in motility and cleavage rates in groups without IGF-1. The expression level of Bax was downregulated by IGF-1, whereas Bcl-2 was upregulated. Both messenger RNA and Bax proteins were lowest in groups with 100 ng/mL IGF-1, where the Bcl-2 was the highest. Bax expression in the groups with IGF-1 was lower than that in the group without IGF-1, and Bcl-2 expression was higher in groups with IGF-1 than that in the group without IGF-1. In conclusion, this research reports that improvements in yak spermatozoa motility and the oocyte cleavage rate after the addition of IGF-I may be a result of the reduction of spermatozoa apoptosis rates by modulating the expression of Bax and Bcl-2. Copyright © 2015 Elsevier Inc. All rights reserved.
The molecular response of bone to growth hormone during skeletal unloading: regional differences
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Currier, P. A.; Tanner, S.; Morey-Holton, E.
1995-01-01
Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone formation by raising their mRNA levels, and that skeletal unloading does not block this response, but the response varies substantially from bone to bone.
Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung; Blackstock, Christopher; Galvez, Sarah; Vaughn, Charlotte; Titterington, Jane; Delafontaine, Patrick
2011-01-01
We have shown previously that insulin like-growth factor I (IGF-1) suppressed atherosclerosis in Apoe−/− mice and activated endothelial nitric oxide (NO) synthase. To determine whether IGF-1-induced atheroprotection depends on NO, IGF-1- or saline-infused mice were treated with L-NAME, the pan-NO synthase inhibitor or with D-NAME (control). IGF-1 reduced atherosclerosis in both the D-NAME and L-NAME groups suggesting that IGF-1’s anti-atherogenic effect was NO-independent. IGF-1 increased plaque smooth muscle cells, suppressed cell apoptosis and downregulated lipoprotein lipase and these effects were also NO-independent. On the contrary, IGF-1 decreased oxidative stress and suppressed TNF-α levels and these effects were blocked by L-NAME. Thus IGF-1’s anti-oxidant effect is dependent on its ability to increase NO but is distinct from its anti-atherosclerotic effect which is NO-independent. PMID:21872589
Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano
2012-11-05
Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This potential risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS with this type of cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Tall stature without growth hormone: four male patients with aromatase deficiency.
Rochira, Vincenzo; Zirilli, Lucia; Maffei, Laura; Premrou, Valeria; Aranda, Claudio; Baldi, Matteo; Ghigo, Ezio; Aimaretti, Gianluca; Carani, Cesare; Lanfranco, Fabio
2010-04-01
From preliminary observations, GH-IGF-I seems to be compromised in men with aromatase deficiency. The GH deficiency (GHD) coexists paradoxically with tall stature, raising the question whether or not a true GHD is part of this rare syndrome. To evaluate the GH secretion in aromatase-deficient men, their GH response to the GHRH plus arginine (GHRH-ARG) test was compared with that of normal subjects. The effect of estrogen replacement treatment on the GH-IGF-I axis in aromatase-deficient men was evaluated before and during therapy. A case-control study was conducted. Four adult men with aromatase deficiency were compared with 12 normal subjects. We measured the GH response to GHRH-ARG in aromatase-deficient men (at baseline and during estrogen treatment) and in normal subjects. Basal serum IGF-I was measured in both patients and controls. The response of GH to GHRH-ARG was severely impaired in men with aromatase deficiency and resulted in significantly lower (P < 0.001) levels than in normal subjects. Although normal, serum IGF-I levels were also significantly lower (P < 0.001) than in normal subjects. Both GH peak and IGF-I concentrations were not modified by estrogen therapy in men with aromatase deficiency. In aromatase-deficient men, GH response to potent provocative stimuli is impaired and is not restored by exogenous estrogens. Furthermore, a tall stature may be reached, notwithstanding the coexistence of GHD, if a prolonged time for growth is available due to a delay in bone maturation, and other growth factors different from GH (mainly insulin) promote growth.
Ruan, W; Powell-Braxton, L; Kopchick, J J; Kleinberg, D L
1999-05-01
Insulin-like growth factor I (IGF-I) has been implicated as a factor that may predispose one to prostate cancer. However, no specific relationship between IGF-I and prostate development or cancer in vivo has been established. To determine whether IGF-I was important in prostate development, we examined prostate architecture in IGF-I(-/-) null mice and wild-type littermates. Glands from 44-day-old IGF-I-deficient animals were not only smaller than those from wild-type mice, but also had fewer terminal duct tips and branch points and deficits in tertiary and quaternary branching (P < 0.0001), indicating a specific impairment in gland structure. Administration of des(1-3)-IGF-I for 7 days partially reversed the deficit by increasing those parameters of prostate development (P < 0.006). That IGF-I production probably mediates an effect of GH in this process was indicated by the observations that GH antagonist transgenic mice also had significantly impaired prostate development (P < 0.0002) and that bovine GH had no independent effect on stimulating prostate development in IGF-I null animals. The data indicate that IGF-I deficiency is the proximate cause of impaired prostate development and give credence to the idea that, like testosterone, GH and IGF-I may be involved in prostate cancer growth as an extension of a normal process.
Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel
2015-01-01
Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3−/− mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3−/− mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3−/− bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3−/− mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components. PMID:26402843
Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph
2015-12-01
Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.
Identification of New Biomarkers of Low-Dose GH Replacement Therapy in GH-Deficient Patients
Cruz-Topete, Diana; Jorgensen, Jens Otto L.; Christensen, Britt; Sackmann-Sala, Lucila; Krusenstjerna-Hafstrøm, Thomas; Jara, Adam; Okada, Shigeru
2011-01-01
Context: GH secretion peaks at puberty and continues to be secreted in adulthood, albeit at a declining rate. Profound GH deficiency (GHD) in adults with pituitary disease is associated with symptoms that improve with GH substitution, but it is important to tailor the GH dose to avoid overtreatment. Measurement of serum IGF-I levels is an important clinical tool in this regard, but it is well recognized that some patients receiving GH treatment do not show an increase in IGF-I. Objective: The objective of the study was to identify novel serum biomarkers of GH treatment in adults with GHD. Design and Patients: Eight patients with profound GHD as a consequence of a pituitary adenoma or its treatment were evaluated before and 3 months after GH replacement therapy (0.2–0.4 mg/d). Main Outcome Measures: Serum proteomic changes were studied using two-dimensional gel electrophoresis and mass spectrometry. Protein profiles were analyzed and compared in serum samples obtained before and after GH treatment. Results: The levels of six serum protein spots were significantly altered after GH substitution. These proteins were identified as five isoforms of haptoglobin (decreased in posttreatment samples) and one isoform of apolipoprotein A-I (increased in posttreatment samples). Importantly, changes in the levels of the identified proteins were associated with decreases in fat mass and increases in lean mass in all patients. These results were independent of serum IGF-I levels. Conclusions: Evaluation of the identified proteins provides a novel alternative to traditional markers of GH status, such as serum IGF-I levels, to assess GH therapy in GH deficient adults. PMID:21543428
Laron, Zvi; Kauli, Rivka
2016-06-01
Clinical and laboratory investigations of dwarfed children newly Jewish immigrants from Yemen and Middle East and who resembled patients with isolated growth hormone deficiency were started by our group in 1958. In 1963 when we found that they have high serum levels of hGH, we knew that we had discovered a new disease of primary GH insensitivity. It was subsequently coined Laron Syndrome (LS, OMIM #262500). The etiopathogenesis was disclosed by 2 liver biopsies demonstrating a defect in the GH receptor. Subsequent investigations demonstrated deletions or mutations in the GHR gene. The defect lead to an inability of IGF-I generation, resulting in severe dwarfism, obesity, and other morphologic and biochemical pathologies due to IGF-I deficiency. With the biosynthesis of IGF-I in 1986, therapeutic trials started. Following closely our cohort of 69 patients with LS enabled us to study its features in untreated and IGF-I treated patients. This syndrome proved to be a unique model to investigate the effects of IGF-I dissociated from GH stimulation. In recent studies we found that homozygous patients for the GHR mutations are protected lifelong from developing malignancies, opening new directions of research. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
Ren, Jun; Anversa, Piero
2015-02-15
Metabolic syndrome is a cluster of risk factors including obesity, dyslipidemia, hypertension, and insulin resistance. A number of theories have been speculated for the pathogenesis of metabolic syndrome including impaired glucose and lipid metabolism, lipotoxicity, oxidative stress, interrupted neurohormonal regulation and compromised intracellular Ca(2+) handling. Recent evidence has revealed that adults with severe growth hormone (GH) and insulin-like growth factor I (IGF-1) deficiency such as Laron syndrome display increased risk of stroke and cardiovascular diseases. IGF-1 signaling may regulate contractility, metabolism, hypertrophy, apoptosis, autophagy, stem cell regeneration and senescence in the heart to maintain cardiac homeostasis. An inverse relationship between plasma IGF-1 levels and prevalence of metabolic syndrome as well as associated cardiovascular complications has been identified, suggesting the clinical promises of IGF-1 analogues or IGF-1 receptor activation in the management of metabolic and cardiovascular diseases. However, the underlying pathophysiological mechanisms between IGF-1 and metabolic syndrome are still poorly understood. This mini-review will discuss the role of IGF-1 signaling cascade in the prevalence of metabolic syndrome in particular the susceptibility to overnutrition and sedentary life style-induced obesity, dyslipidemia, insulin resistance and other features of metabolic syndrome. Special attention will be dedicated in IGF-1-associated changes in cardiac responses in various metabolic syndrome components such as insulin resistance, obesity, hypertension and dyslipidemia. The potential risk of IGF-1 and IGF-1R stimulation such as tumorigenesis is discussed. Therapeutic promises of IGF-1 and IGF-1 analogues including mecasermin, mecasermin rinfabate and PEGylated IGF-1 will be discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Novel growth hormone receptor gene mutation in a patient with Laron syndrome.
Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal
2010-04-01
Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.
Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan
2017-01-01
Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE. PMID:28932186
Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg
2002-07-01
To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.
Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan
2017-01-01
Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.
Miltiadous, Panagiota; Kouroupi, Georgia; Stamatakis, Antonios; Koutsoudaki, Paraskevi N.
2013-01-01
Temporal lobe epilepsy (TLE) is a major neurological disease, often associated with cognitive decline. Since approximately 30% of patients are resistant to antiepileptic drugs, TLE is being considered as a possible clinical target for alternative stem cell-based therapies. Given that insulin-like growth factor I (IGF-I) is neuroprotective following a number of experimental insults to the nervous system, we investigated the therapeutic potential of neural stem/precursor cells (NSCs) transduced, or not, with a lentiviral vector for overexpression of IGF-I after transplantation in a mouse model of kainic acid (KA)-induced hippocampal degeneration, which represents an animal model of TLE. Exposure of mice to the Morris water maze task revealed that unilateral intrahippocampal NSC transplantation significantly prevented the KA-induced cognitive decline. Moreover, NSC grafting protected against neurodegeneration at the cellular level, reduced astrogliosis, and maintained endogenous granule cell proliferation at normal levels. In some cases, as in the reduction of hippocampal cell loss and the reversal of the characteristic KA-induced granule cell dispersal, the beneficial effects of transplanted NSCs were manifested earlier and were more pronounced when these were transduced to express IGF-I. However, differences became less pronounced by 2 months postgrafting, since similar amounts of IGF-I were detected in the hippocampi of both groups of mice that received cell transplants. Grafted NSCs survived, migrated, and differentiated into neurons—including glutamatergic cells—and not glia, in the host hippocampus. Our results demonstrate that transplantation of IGF-I producing NSCs is neuroprotective and restores cognitive function following KA-induced hippocampal degeneration. PMID:23417642
Transcriptional regulation of IGF-I expression in skeletal muscle
NASA Technical Reports Server (NTRS)
McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.
2003-01-01
The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.