van Leeuwen, Elisabeth M; Sabo, Aniko; Bis, Joshua C; Huffman, Jennifer E; Manichaikul, Ani; Smith, Albert V; Feitosa, Mary F; Demissie, Serkalem; Joshi, Peter K; Duan, Qing; Marten, Jonathan; van Klinken, Jan B; Surakka, Ida; Nolte, Ilja M; Zhang, Weihua; Mbarek, Hamdi; Li-Gao, Ruifang; Trompet, Stella; Verweij, Niek; Evangelou, Evangelos; Lyytikäinen, Leo-Pekka; Tayo, Bamidele O; Deelen, Joris; van der Most, Peter J; van der Laan, Sander W; Arking, Dan E; Morrison, Alanna; Dehghan, Abbas; Franco, Oscar H; Hofman, Albert; Rivadeneira, Fernando; Sijbrands, Eric J; Uitterlinden, Andre G; Mychaleckyj, Josyf C; Campbell, Archie; Hocking, Lynne J; Padmanabhan, Sandosh; Brody, Jennifer A; Rice, Kenneth M; White, Charles C; Harris, Tamara; Isaacs, Aaron; Campbell, Harry; Lange, Leslie A; Rudan, Igor; Kolcic, Ivana; Navarro, Pau; Zemunik, Tatijana; Salomaa, Veikko; Kooner, Angad S; Kooner, Jaspal S; Lehne, Benjamin; Scott, William R; Tan, Sian-Tsung; de Geus, Eco J; Milaneschi, Yuri; Penninx, Brenda W J H; Willemsen, Gonneke; de Mutsert, Renée; Ford, Ian; Gansevoort, Ron T; Segura-Lepe, Marcelo P; Raitakari, Olli T; Viikari, Jorma S; Nikus, Kjell; Forrester, Terrence; McKenzie, Colin A; de Craen, Anton J M; de Ruijter, Hester M; Pasterkamp, Gerard; Snieder, Harold; Oldehinkel, Albertine J; Slagboom, P Eline; Cooper, Richard S; Kähönen, Mika; Lehtimäki, Terho; Elliott, Paul; van der Harst, Pim; Jukema, J Wouter; Mook-Kanamori, Dennis O; Boomsma, Dorret I; Chambers, John C; Swertz, Morris; Ripatti, Samuli; Willems van Dijk, Ko; Vitart, Veronique; Polasek, Ozren; Hayward, Caroline; Wilson, James G; Wilson, James F; Gudnason, Vilmundur; Rich, Stephen S; Psaty, Bruce M; Borecki, Ingrid B; Boerwinkle, Eric; Rotter, Jerome I; Cupples, L Adrienne; van Duijn, Cornelia M
2016-01-01
Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ∼60 000 individuals in the discovery stage and ∼90 000 samples in the replication stage. Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels. PMID:27036123
Serum lipid concentrations in six canid and four ursid species in four zoos.
Crissey, Susan D; Ange, Kimberly D; Slifka, Kerri A; Sadler, William; Kahn, Stephen; Ward, Ann M
2004-03-01
Serum lipid levels were measured in healthy captive wild canids and ursids, and the values were compared with previously published data. Serum lipid levels were evaluated in blood samples collected from eight African wild dogs (Lycaon pictus), three arctic foxes (Alopex lagopus), nine gray wolves (Canis lupus), four maned wolves (Chrysocyon brachyurus), two Mexican wolves (Canis lupus baleiyi), nine red wolves (Canis rufus), two brown bears (Ursus arctos), six polar bears (Ursus maritimus), six spectacled bears (Tremarctos ornatus), and five sun bears (Ursus malayanus). Samples were analyzed for total cholesterol, triacylglycerides, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol. Although the results showed a great variation among species, circulating lipids appeared especially high, sometimes extremely so, in the spectacled bears, polar bears, sun bears, and maned wolves compared with all other species sampled. The study provides a substantial basis for comparing lipid levels in presumed healthy animals and indicates a need for controlled study of the effects of diet on circulating lipid levels.
Krysiak, Robert; Gilowski, Wojciech; Szkrobka, Witold; Okopien, Bogusław
2014-12-01
Subclinical hypothyroidism is suggested to increase cardiovascular risk. No previous study compared the effect of any fibrate on plasma levels of lipids and other cardiovascular risk factors in patients with different thyroid function status. The study included three age-, weight- and lipid-matched groups of women with mixed dyslipidemia in different thyroid function status: patients with untreated subclinical hypothyroidism (group 1, n = 18), women with treated hypothyroidism (group 2, n = 15), and subjects without thyroid disorders (group 3, n = 19). Plasma lipids, glucose homeostasis markers, as well as plasma levels of uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine, and fibrinogen were determined before and after 12 weeks of fenofibrate therapy. Despite similar plasma lipid levels, mixed dyslipidemic patients with untreated hypothyroidism had decreased insulin sensitivity, as well as higher circulating levels of uric acid, hsCRP, homocysteine, and fibrinogen in comparison with the other groups. The effect of fenofibrate on plasma lipids and, with the exception of homocysteine, on circulating levels of all investigated risk factors was stronger in patients from groups 2 and 3 than in patients from group 1. The obtained results indicate that the effect of fenofibrate on plasma lipids and circulating levels of cardiovascular risk factors is partially related to thyroid function. They also suggest that to improve the strength of fibrate action in dyslipidemic patients with subclinical hypothyroidism, they should be administered together with L-thyroxine. © 2014 John Wiley & Sons Ltd.
Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G
2011-05-01
The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.
Gemfibrozil disrupts the metabolism of circulating lipids in bobwhite quails.
Bussière-Côté, Sophie; Omlin, Teye; de Càssia Pinheiro, Eliana; Weber, Jean-Michel
2016-01-01
The circulating lipids of birds play essential roles for egg production and as an energy source for flight and thermogenesis. How lipid-lowering pharmaceuticals geared to prevent heart disease in humans and that are routinely released in the environment affect their metabolism is unknown. This study assesses the impact of the popular drug gemfibrozil (GEM) on the plasma phospholipids (PL), neutral lipids (NL), and nonesterified fatty acids (NEFA) of bobwhite quails (Colinus virginianus). Results show that bird lipoproteins are rapidly altered by GEM, even at environmentally-relevant doses. After 4 days of exposure, pharmacological amounts cause an 83% increase in circulating PL levels, a major decrease in average lipoprotein size measured as a 56% drop in the NL/PL ratio, and important changes in the fatty acid composition of PL and NEFA (increases in fatty acid unsaturation). The levels of PL carrying all individual fatty acids except arachidonate are strongly stimulated. The large decrease in bird lipoprotein size may reflect the effects seen in humans: lowering of LDL that can cause atherosclerosis and stimulation of HDL that promote cholesterol disposal. Lower (environmental) doses of GEM cause a reduction of %palmitate in all the plasma lipid fractions of quails, but particularly in the core triacylglycerol of lipoproteins (NL). No changes in mRNA levels of bird peroxisome proliferator-activated receptor (PPAR) could be demonstrated. The disrupting effects of GEM on circulating lipids reported here suggest that the pervasive presence of this drug in the environment could jeopardize reproduction and migratory behaviours in wild birds. Copyright © 2015 Elsevier Inc. All rights reserved.
Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.
Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L
2017-09-01
The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile. Copyright © 2017 by the Endocrine Society
The multifaceted interplay between lipids and epigenetics.
Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T
2016-06-01
The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.
Goedeke, Leigh; Rotllan, Noemi; Ramírez, Cristina M.; Aranda, Juan F.; Canfrán-Duque, Alberto; Araldi, Elisa; Fernández-Hernando, Ana; Langhi, Cedric; de Cabo, Rafael; Baldán, Ángel; Suárez, Yajaira; Fernández-Hernando, Carlos
2015-01-01
Rationale Recently, there has been significant interest in the therapeutic administration of miRNA mimics and inhibitors to treat cardiovascular disease. In particular, miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism and potential therapeutic target for treating atherosclerosis. Despite this, the impact of miR-27b on lipid levels in vivo remains to be determined. As such, here we set out to further characterize the role of miR-27b in regulating cholesterol metabolism in vitro and to determine the effect of miR-27b overexpression and inhibition on circulating and hepatic lipids in mice. Methods and Results Our results identify miR-27b as an important regulator of LDLR activity in human and mouse hepatic cells through direct targeting of LDLR and LDLRAP1. In addition, we report that modulation of miR-27b expression affects ABCA1 protein levels and cellular cholesterol efflux to ApoA1 in human hepatic Huh7 cells. Overexpression of pre-miR-27b in the livers of wild-type mice using AAV8 vectors increased pre-miR-27b levels 50–fold and reduced hepatic ABCA1 and LDLR expression by 50% and 20%, respectively, without changing circulating and hepatic cholesterol and triglycerides. To determine the effect of endogenous miR-27b on circulating lipids, wild-type mice were fed a Western diet for one month and injected with 5 mg/kg of LNA control or LNA anti-miR-27b oligonucleotides. Following two weeks of treatment, the expression of ABCA1 and LDLR were increased by 10–20% in the liver, demonstrating effective inhibition of miR-27b function. Intriguingly, no differences in circulating and hepatic lipids were observed between treatment groups. Conclusions The results presented here provide evidence that short-term modulation of miR-27b expression in wild-type mice regulates hepatic LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels. PMID:26520906
Pérez-Baos, S; Barrasa, J I; Gratal, P; Larrañaga-Vera, A; Prieto-Potin, I; Herrero-Beaumont, G; Largo, R
2017-09-01
Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg -1 ·day -1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients. © 2017 The British Pharmacological Society.
Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.
Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina
2016-05-15
Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.
Gendle, Mathew H
2016-12-01
Dyslipidemia is a common pathology throughout the industrialized world, and HMG-CoA reductase inhibitors (statins) are often administered to treat elevated lipid levels. Substantial concern has been raised regarding the aggressive clinical lowering of cholesterol, particularly in light of a growing body of research linking low circulating lipid levels with negative behavioral outcomes in both human samples and non-human primate models. In 2009, Goldstein and colleagues tentatively speculated that the greed, impulsiveness, and lack of foresight that lead to the worldwide economic collapse in 2007-2008 could have been caused (in part) by depressed population cholesterol levels resulting from the widespread use of statins by workers in the financial services industry. This paper reviews the literature that links low circulating lipid levels with neurobehavioral dysfunction, develops Goldstein and colleagues' initial speculation into a formal hypothesis, and proposes several specific studies that could rigorously empirically evaluate this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Circulating PCSK9 in patients with type 2 diabetes and related metabolic disorders.
Ibarretxe, Daiana; Girona, Josefa; Plana, Núria; Cabré, Anna; Ferré, Raimón; Amigó, Núria; Guaita, Sandra; Mallol, Roger; Heras, Mercedes; Masana, Luis
2016-01-01
PCSK9 is a pivotal molecule in the regulation of lipid metabolism. Previous studies have suggested that PCSK9 expression and its function in LDL receptor regulation could be altered in the context of diabetes. The aim was to assess PCSK9 plasma levels in patients with type 2 diabetes (T2DM) and other related metabolic disorders as well as its relation to the metabolomic profile generated by nuclear magnetic resonance (NMR) and glucose homeostasis. There were recruited a total of 457 patients suffering from T2DM and other metabolic disorders (metabolic syndrome (MetS), obesity and atherogenic dyslipidaemia (AD) and other disorders). Anamnesis, anthropometry and physical examinations were conducted, and vascular and abdominal adiposity imaging were carried out. Biochemical studies were performed to determine PCSK9 plasma levels 6 weeks after lipid lowering drug wash-out in treated patients. A complete metabolomic lipid profile was also generated by NMR. The rs505151 and rs11591147 genetic variants of PCSK9 gene were identified in patients. The results showed that PCSK9 levels are increased in patients with T2DM and MetS (14% and 13%; p<0.005, respectively). Circulating PCSK9 levels were correlated with an atherogenic lipid profile and with insulin resistance parameters. PCSK9 levels were also positively associated with AD, as defined by lipoprotein particle number and size. The rs11591147 genetic variant resulted in lower levels of circulating PCSK9 and LDL cholesterol (LDL-C). PCSK9 plasma levels are increased in T2DM and MetS patients and are associated with LDL-C and other parameters of AD and glucose metabolism. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Caba, Mario; Meza, Enrique; Waliszewski, Stefan M; Martínez-Valenzuela, Carmen
2015-07-01
Organochlorine pesticides, due to their hydrophobic nature and persistence, accumulate in tissues rich in lipids, which had been used as a biomarker for environmental pollution. In humans, organochlorine pesticides are continuously circulating and equilibrating among body compartments. The objective of the study was to evaluate the concentrations of organochlorine pesticides in blood serum and compare their levels to the total lipid contents in Veracruz, México inhabitants. Our hypothesis is that concentrations of organochlorine pesticides will increase just as lipid concentrations. Levels of organochlorine pesticides were divided in ascending tertils according to their total lipid content. The linear trend model applied surprisingly reveals that the average level of all organochlorine pesticides decreases as the lipid concentration increases. From one tertil to the next β-HCH, it shows a decrease of -3.19 mg kg(-1) on lipid basis, pp.'DDE levels decrease by -3.70 mg kg(-1) on lipid basis and pp.'DDT levels decrease -1.13 mg kg(-1) on lipid basis. We conclude that the levels and the orderly sequence of organochlorine pesticide distributions in the blood serum maintain an inverse relationship to total lipid blood serum concentrations.
Acute decrease in HDL cholesterol associated with exposure to welding fumes.
Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David
2011-01-01
To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.
The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity.
Can, U; Buyukinan, M; Yerlikaya, F H
2016-06-01
Childhood obesity is an increasing health challenge related to increased risk of chronic diseases. microRNAs (miRNAs) are noncoding short RNA molecules regulating multiple biological processes linked to obesity. We aimed at evaluating the association between circulating miRNA levels and lipid metabolism in obese and non-obese children and adolescents. By constituting study group, 45 obese children and adolescents were recruited. To perform comparisons with study group, 41 lean controls were matched for age and sex. Using real-time quantitative PCR analysis, circulating miRNAs were evaluated in both groups. Circulating miR-335 (P < 0.001), miR-143 (P = 0.001) and miR-758 (P = 0.006) in obese children were significantly lower than those of controls. However, circulating miR-27 (P = 0.032), miR-378 (P < 0.001) and miR-370 (P = 0.045) in obese children were significantly higher, compared with those of controls. In addition, circulating miR-33 in obese children was higher than those of controls, but no significant difference was present (P = 0.687). Our findings showed that a significant association is present between circulating miR-370, miR-33, miR-378, miR-27, miR-335, miR-143 and miR-758 values, and childhood obesity. Low levels of miR-335, miR-143 and miR-758, and high levels of miR-27, miR-378, miR-33 and miR-370 may have been responsible for elevated triglycerides and low-density lipoprotein (LDL-C) levels, and low level of high-density lipoprotein (HDL-C) in obese subjects. Therefore, miRNAs may be a good novel biomarker for childhood obesity. © 2015 World Obesity.
Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T
2015-07-01
The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. © Georg Thieme Verlag KG Stuttgart · New York.
Circulating FABP4 is a marker of metabolic and cardiovascular risk in SLE patients.
Parra, S; Cabré, A; Marimon, F; Ferré, R; Ribalta, J; Gonzàlez, M; Heras, M; Castro, A; Masana, L
2014-03-01
The aim of this study is to determine if circulating fatty acid-binding protein 4 (FABP4) plasma levels are a possible marker of metabolic risk in SLE patients. Circulating levels of adipose FABP4 are associated with adiposity, insulin resistance (IR), metabolic syndrome, diabetes and cardiovascular diseases. Patients affected by systemic lupus erythematosus (SLE) show an accelerated atherosclerosis that cannot be entirely explained by traditional cardiovascular risk factors. Sixty consecutive patients with SLE and 34 non-SLE age-matched controls were recruited for the study. Total plasma lipids and circulating FABP4 were determined. Subclinical atherosclerosis was evaluated by measuring carotid intimae-media thickness (c-IMT) by sonography, and the distribution of lipoprotein subclasses was analysed by nuclear magnetic resonance (NMR) spectroscopy. In the SLE group, FABP4 was associated with IR, atherogenic dyslipidaemia, as measured by NMR, and the presence of subclinical atherosclerosis. In multivariate analyses FABP4 was associated with increased c-IMT independent of the inflammatory state of the patient. In sum, circulating FABP4 is involved in the metabolic disturbances of SLE affecting lipid metabolism and IR, and it could be a biomarker of atherosclerosis in this population.
Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.
Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M
2015-11-01
Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.
The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
Cheng, Xinwei; Lee, Robert J
2016-04-01
Lipid nanoparticles (LNPs) have shown promise as delivery vehicles for therapeutic oligonucleotides, including antisense oligos (ONs), siRNA, and microRNA mimics and inhibitors. In addition to a cationic lipid, LNPs are typically composed of helper lipids that contribute to their stability and delivery efficiency. Helper lipids with cone-shape geometry favoring the formation hexagonal II phase, such as dioleoylphosphatidylethanolamine (DOPE), can promote endosomal release of ONs. Meanwhile, cylindrical-shaped lipid phosphatidylcholine can provide greater bilayer stability, which is important for in vivo application of LNPs. Cholesterol is often included as a helper that improves intracellular delivery as well as LNP stability in vivo. Inclusion of a PEGylating lipid can enhance LNP colloidal stability in vitro and circulation time in vivo but may reduce uptake and inhibit endosomal release at the cellular level. This problem can be addressed by choosing reversible PEGylation in which the PEG moiety is gradually released in blood circulation. pH-sensitive anionic helper lipids, such as fatty acids and cholesteryl hemisuccinate (CHEMS), can trigger low-pH-induced changes in LNP surface charge and destabilization that can facilitate endosomal release of ONs. Generally speaking, there is no correlation between LNP activity in vitro and in vivo because of differences in factors limiting the efficiency of delivery. Designing LNPs requires the striking of a proper balance between the need for particle stability, long systemic circulation time, and the need for LNP destabilization inside the target cell to release the oligonucleotide cargo, which requires the proper selection of both the cationic and helper lipids. Customized design and empirical optimization is needed for specific applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang
2015-01-01
Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.
USDA-ARS?s Scientific Manuscript database
Chronically altered levels of circulating lipids, termed dyslipidemia, is a significant risk factor for a number of metabolic and cardiovascular morbidities. MicroRNAs (miRNAs) have emerged as important regulators of lipid balance, have been implicated in dyslipidemia, and have been proposed as cand...
Marchand, Geneviève B; Carreau, Anne-Marie; Weisnagel, S John; Bergeron, Jean; Labrie, Fernand; Lemieux, Simone; Tchernof, André
2018-05-01
The relationship between circulating estrogen levels and cardiometabolic risk factors such as insulin resistance is unclear in postmenopausal women. High estradiol (E 2 ) levels have been reported to predict increased risk of type 2 diabetes in this population. We aimed to examine associations among estrogen levels, adiposity measurements, and cardiometabolic risk variables including insulin resistance in postmenopausal women. One hundred-one healthy participants (mean ± SD: age 57 ± 4 yr, BMI 27.9 ± 4.8 kg/m 2 ) were included in the analysis. Fifteen plasma steroids or metabolites were measured by liquid chromatography-tandem mass spectrometry. Insulin sensitivity was assessed with a hyperinsulinemic-euglycemic clamp. Body composition and fat distribution were determined with hydrostatic weighing and computed tomography, respectively. Blood lipids and circulating cytokines were also measured. Circulating E 2 was positively correlated with all adiposity indexes ( r = 0.62 to 0.42, P < 0.0001) except waist-to-hip ratio. E 2 was positively correlated with VLDL-cholesterol, plasma-, VLDL-, and HDL-triglyceride levels ( r = 0.31 to 0.24, P < 0.02) as well as with hs-CRP and IL-6 ( r = 0.52 and 0.29, P < 0.005) and negatively with HDL-cholesterol, adiponectin, and insulin sensitivity ( r = -0.36 to -0.20, P < 0.02). With adjustments for percent body fat, correlations between E 2 and metabolic risk variables were no longer significant. Similar results were observed for circulating estrone (E 1 ) and estrone-sulfate (E 1 -S) levels. In conclusion, circulating estrogen concentrations are proportional to adipose mass in postmenopausal women, although they remain in the low range. Insulin resistance as well as altered blood lipids and cytokines are observed when circulating estrogen levels are high within that range, but these differences are explained by concomitant variation in total adiposity.
Acute Decrease in HDL Cholesterol Associated With Exposure to Welding Fumes
Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David
2011-01-01
Objective To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Methods Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. Results There was a trend toward decrease in HDL (−2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (−2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (−4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Conclusion Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure. PMID:21187793
Dlouha, Dana; Blaha, Milan; Blaha, Vladimir; Fatorova, Ilona; Hubacek, Jaroslav A; Stavek, Petr; Lanska, Vera; Parikova, Alena; Pitha, Jan
2017-11-01
LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rino; Takahashi, Nobuyuki, E-mail: nobu@kais.kyoto-u.ac.jp; Murota, Kaeko
Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation ofmore » peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO{sub 2} and acid soluble metabolites in enterocytes. Moreover, bezafibrate treatment suppressed postprandial lipidemia after oral administration of olive oil to the mice. These findings indicate that PPAR{alpha} activation suppresses postprandial lipidemia through enhancement of fatty acid oxidation in enterocytes, suggesting that intestinal lipid metabolism regulated by PPAR{alpha} activity is a novel target of PPAR{alpha} agonist for decreasing circulating levels of lipids under postprandial conditions.« less
Jia, Yanjun; Luo, Xiaohe; Ji, Ying; Xie, Jingwen; Jiang, Han; Fu, Mao; Li, Xiaoqiang
2017-09-01
C1q/TNF-related protein-9 (CTRP9) is a novel adipokine that has been shown to promote lipid metabolism, enhance insulin sensitivity and protect against cardiovascular disease. However, previous studies in humans have produced controversial results regarding the association between CTRP9 and insulin resistance. The objective of this study was to evaluate the relationships between CTRP9 and insulin resistance in Chinese population. Subjects with normal glucose tolerance (NGT, n=108), impaired glucose tolerance (IGT, n=92), and newly diagnosed type 2 diabetes mellitus (nT2DM, n=106) were recruited to determining the circulating CTRP9 and adiponectin levels by enzyme linked immunosorbent assay. Anthropometric and biochemical measurements related to insulin resistance, adiposity and lipid profile were examined for all participants. Oral glucose tolerance test was performed in healthy subjects (17 male and 17 female). Circulating CTRP9 level was significantly higher in both IGT and nT2DM than in individuals with NGT. Overweight/obese subjects had much higher CTRP9 levels than lean individuals, and in all subjects, females also had higher CTRP9 levels than males. In addition, circulating CTRP9 level was positively correlated with markers of obesity and insulin resistance, including body mass index, fasting blood glucose, insulin, HbA1c, homeostasis model assessment of insulin resistance and low-density lipoprotein-cholesterol, while was inversely correlated with high-density lipoprotein-cholesterol and adiponectin. Moreover, hyperglycemia during an oral glucose challenge increased circulating CTRP9 concentrations. We conclude that CTRP9 was strongly associated with insulin resistance, suggesting that CTRP9 might be important in the development of type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Cano-Sancho, German; Labrune, Léa; Ploteau, Stéphane; Marchand, Philippe; Le Bizec, Bruno; Antignac, Jean-Philippe
2018-06-01
The gold-standard matrix for measuring the internal levels of persistent organic pollutants (POPs) is the adipose tissue, however in epidemiological studies the use of serum is preferred due to the low cost and higher accessibility. The interpretation of serum biomarkers is tightly related to the understanding of the underlying causal structure relating the POPs, serum lipids and the disease. Considering the extended benefits of using serum biomarkers we aimed to further examine if through statistical modelling we would be able to improve the use and interpretation of serum biomarkers in the study of endometriosis. Hence, we have conducted a systematic comparison of statistical approaches commonly used to lipid-adjust the circulating biomarkers of POPs based on existing methods, using data from a pilot case-control study focused on severe deep infiltrating endometriosis. The odds ratios (ORs) obtained from unconditional regression for those models with serum biomarkers were further compared to those obtained from adipose tissue. The results of this exploratory study did not support the use of blood biomarkers as proxy estimates of POPs in adipose tissue to implement in risk models for endometriosis with the available statistical approaches to correct for lipids. The current statistical approaches commonly used to lipid-adjust circulating POPs, do not fully represent the underlying biological complexity between POPs, lipids and disease (especially those directly or indirectly affecting or affected by lipid metabolism). Hence, further investigations are warranted to improve the use and interpretation of blood biomarkers under complex scenarios of lipid dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome
Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.
2014-01-01
Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590
Ermini, Leonardo; Ausman, Jonathan; Melland-Smith, Megan; Yeganeh, Behzad; Rolfo, Alessandro; Litvack, Michael L; Todros, Tullia; Letarte, Michelle; Post, Martin; Caniggia, Isabella
2017-09-22
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a short form of the auxillary TGF-beta (TGFB) receptor endoglin (sENG). Until now, its release and functionality in PE remains poorly understood. Here we show that ENG selectively interacts with sphingomyelin(SM)-18:0 which promotes its clustering with metalloproteinase 14 (MMP14) in SM-18:0 enriched lipid rafts of the apical syncytial membranes from PE placenta where ENG is cleaved by MMP14 into sENG. The SM-18:0 enriched lipid rafts also contain type 1 and 2 TGFB receptors (TGFBR1 and TGFBR2), but not soluble fms-like tyrosine kinase 1 (sFLT1), another protein secreted in excess in the circulation of women with PE. The truncated ENG is then released into the maternal circulation via SM-18:0 enriched exosomes together with TGFBR1 and 2. Such an exosomal TGFB receptor complex could be functionally active and block the vascular effects of TGFB in the circulation of PE women.
Circulating Zinc-α2-glycoprotein levels and Insulin Resistance in Polycystic Ovary Syndrome
Lai, Yerui; Chen, Jinhua; Li, Ling; Yin, Jingxia; He, Junying; Yang, Mengliu; Jia, Yanjun; Liu, Dongfang; Liu, Hua; Liao, Yong; Yang, Gangyi
2016-01-01
The aim of study was to assess the relationship between zinc-α2-glycoprotein (ZAG) and androgen excess with insulin resistance in polycystic ovary syndrome (PCOS) women. 99 PCOS women and 100 healthy controls were recruited. Euglycemic-hyperinsulinemic clamp (EHC) was preformed to assess their insulin sensitivity. Circulating ZAG was determined with an ELISA kit. In healthy subjects, circulating ZAG levels exhibited a characteristic diurnal rhythm in humans, with a major nocturnal rise occurring between midnight and early morning. Circulating ZAG and M-value were much lower in PCOS women than in the controls. In all population, overweight/obese subjects had significantly lower circulating ZAG levels than lean individuals. Multiple linear regression analysis revealed that only M-value and the area under the curve for glucose were independently related factors to circulating ZAG in PCOS women. Multivariate logistic regression analysis showed that circulating ZAG was significantly associated with PCOS even after controlling for anthropometric variables, blood pressure, lipid profile and hormone levels. The PCOS women with high ZAG had fewer MetS, IGT and polycystic ovaries as compared with the low ZAG PCOS women. Taken together, circulating ZAG levels are reduced in women with PCOS and ZAG may be a cytokine associated with insulin resistance in PCOS women. PMID:27180914
Ni, Xunjun; Wang, Haiyan
2016-01-01
Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.
Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Sehlstedt, Maria; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L
2018-08-14
Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF 2α , 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p < 0.003). Hence, the majority of the responsive lipid metabolites were monohydroxy fatty acids. We conclude that it is possible to detect alterations in circulating bioactive lipid metabolites in response to biodiesel exhaust exposure using LC-MS/MS, with emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R
2015-01-01
We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554
Chang, Xinxia; Wang, Zhe; Zhang, Jinlan; Yan, Hongmei; Bian, Hua; Xia, Mingfeng; Lin, Huandong; Jiang, Jiandong; Gao, Xin
2016-09-15
We recently demonstrated a positive effect of berberine on nonalcoholic fatty liver disease patients after 16 weeks of treatment by comparing mere lifestyle intervention in type 2 diabetes patients with berberine treatment, which decreased the content of hepatic fat. However, the potential mechanisms of the clinical effects are unclear. We used a lipidomic approach to characterize the state of lipid metabolism as reflected in the circulation of subjects with nonalcoholic fatty liver disease (NAFLD) before and after berberine treatment. Liquid chromatography-mass spectrometry evaluated the various lipid metabolites in serum samples obtained from the participants (41 patients in the berberine group and 39 patients in the mere lifestyle intervention group) before and after treatment. A total of 256 serum lipid molecular species were identified and quantified. Both treatments regulated various types of lipids in metabolic pathways, such as free fatty acids, phosphoglycerides and glycerides, in metabolic pathways, but berberine induced a substantially greater change in serum lipid species compared with mere lifestyle intervention after treatment. Berberine also caused obvious differences on ceramides. Berberine treatment markedly decreased serum levels of ceramide and ceramide-1-phosphate. Berberine altered circulating ceramides, which may underlie the improvement in fatty liver disease. ClinicalTrials.gov NCT00633282, Registered March 3, 2008.
Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.
2007-01-01
Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159
Crescenti, Anna; del Bas, Josep Maria; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni
2015-09-01
The aim of the present study was to test whether the administration of a grape seed procyanidin extract (GSPE) during pregnancy and lactation, at doses extrapolated to human consumption, programs male offspring toward improved metabolism in adulthood. For this purpose, female rats were fed a normal-fat diet (NFD) and treated with either GSPE (25 mg kg(-1) of body weight/day) or vehicle during gestation and lactation. The metabolic programming effects of GSPE were evaluated in the male offspring fed NFD from 30 to 170 days of life. No changes were observed in body weight, adiposity, circulating lipid profile and insulin sensitivity between the offspring of dams treated with GSPE (STD-GSPE group) and their counterparts (STD-veh). However, the STD-GSPE offspring had lower circulating levels of C-reactive protein and lower respiratory quotient values, shifting whole-body energy catabolism from carbohydrate to fat oxidation. Furthermore, the STD-GSPE animals also exhibited increased levels of total and phosphorylated AMP-activated protein kinase (AMPK) and an over-expression of the mRNA levels of key genes related to fatty acid uptake (Fatp1 and CD36) and β-oxidation (pparα and had) in skeletal muscle. Our results indicate that GSPE programs healthy male offspring towards a better circulating inflammatory profile and greater lipid utilisation in adulthood. The metabolic programming effects of GSPE that are related to the enhancement of fatty acid oxidation in skeletal muscle seem to be mediated, at least in part, by AMPK. These findings could be of relevance in the prevention of pathologies associated to lifestyle and aging, such as obesity and insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
Plasma circulating fibrinogen stability and moderate beer consumption.
Gorinstein, Shela; Caspi, Abraham; Zemser, Marina; Libman, Imanuel; Goshev, Ivan; Trakhtenberg, Simon
2003-12-01
MODERATE BEER CONSUMPTION (MBC) IS CARDIOPROTECTIVE: it positively influences plasma lipid levels and plasma antioxidant activity in beer-consuming individuals. The connection between MBC and blood coagulation is not clearly defined. Forty-two volunteers were equally divided into experimental (EG) and control (CG) groups following coronary bypass surgery. For 30 consecutive days, only patients of the EG consumed 330 mL of beer per day (about 20 g of alcohol). A comprehensive clinical investigation of 42 patients was done. Blood samples were collected before and after the investigation for a wide range of laboratory tests. The plasma fibrinogen was denatured with 8 M urea and intrinsic fluorescence (IF), hydrophobicity and differential scanning calorimetry (DSC) were used to reveal possible qualitative changes. After 30 days of moderate beer consumption, positive changes in the plasma lipid levels, plasma anticoagulant and plasma antioxidant activities were registered in patients of the EG group. In 17 out of 21 patients of the same group, differences in plasma circulating fibrinogen's (PCF), secondary and tertiary structures were found. The stability of fibrinogen, expressed in thermodynamic parameters, has shown that the loosening of the structure takes place under ethanol and urea denaturation. Also fluorescence stability of PCF was decreased. No changes in the lipid levels, anticoagulant and antioxidant activity or changes in PCF were detected in patients of CG. In conclusion, for the first time after a short term of moderate beer consumption some qualitative changes in the plasma circulating fibrinogen were detected: differences in the emission peak response, fluorescence intensity and all thermodynamic data. Together, with the decrease in the PCF concentration it may lead to an elevation of the blood anticoagulant activity.
Genetic Variants from Lipid-Related Pathways and Risk for Incident Myocardial Infarction
Song, Ci; Pedersen, Nancy L.; Reynolds, Chandra A.; Sabater-Lleal, Maria; Kanoni, Stavroula; Willenborg, Christina; Syvänen, Ann-Christine; Watkins, Hugh; Hamsten, Anders; Prince, Jonathan A.; Ingelsson, Erik
2013-01-01
Background Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI). Objectives We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples. Setting and Subjects Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142). Results In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048). Conclusions rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI. PMID:23555974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egloff, Caroline; Crump, Doug, E-mail: doug.crump@ec.gc.ca; Porter, Emily
The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highestmore » doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy. • TEP elicited more adverse molecular and phenotypic effects than TBOEP.« less
Galt, Nicholas J.; Froehlich, Jacob Michael; Meyer, Ben M.; Barrows, Frederic T.; Biga, Peggy R.
2014-01-01
Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five-weeks of high-fat (HFD; 25% lipid) dietary intake increased white muscle lipid content, and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10% lipid) intake. In addition HFD intake reduced myostatin-1a and -1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, -1b, and -2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish. PMID:24264425
Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H G
2011-03-01
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.
Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models
Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H. G.
2011-01-01
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders. PMID:21062955
Jönsson, Elisabeth; Forsman, Antti; Einarsdottir, Ingibjörg E; Egnér, Barbro; Ruohonen, Kari; Björnsson, Björn Thrandur
2006-09-01
Cholecystokinin (CCK) and gastrin-releasing peptide (GRP) are gastrointestinal peptides thought to be important regulators of intake and digestion of food in vertebrates. In this study, pre- and postprandial plasma levels of CCK and GRP were measured in rainbow trout (Oncorhynchus mykiss) by the establishment of homologous radioimmunoassays, and the hormonal levels assessed in relation to dietary lipid:protein ratio and food intake. Fish were acclimated to either a high protein/low lipid diet (HP/LL diet; 14.1% lipids) or a normal protein/high lipid diet (NP/HL diet; 31.4% lipids). On three consecutive sampling days, radio-dense lead-glass beads were included in the diets for assessment of feed intake. Fish were terminally sampled for blood and stomach contents prior to feeding at time 0, and at 0.3, 1, 2, 4, 6, and 24 h after feeding. There was a postprandial elevation of plasma CCK levels, which was most evident after 4 and 6 h. Fish fed the NP/HL diet had higher plasma CCK levels compared with those fed the HP/LL diet. Plasma CCK levels were not affected by the amount of food ingested. GRP levels in plasma were not influenced by sampling time, diet, or feed intake. The results indicate that the endocrine release of gastrointestinal CCK is increased during feeding and may be further influenced by the dietary lipid:protein ratio in rainbow trout. Plasma GRP levels, on the other hand, appear not to be influenced by feeding or diet composition.
Hess, Anne Lundby; Carayol, Jérôme; Blædel, Trine; Hager, Jörg; Di Cara, Alessandro; Astrup, Arne; Saris, Wim H M; Larsen, Lesli Hingstrup; Valsesia, Armand
2018-01-01
Angiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and lipoprotein metabolism. Using data available from the DiOGenes study, we assessed the link with clinical improvements (weight, plasma lipid, and insulin levels) and changes in liver markers, alanine aminotransferase, aspartate aminotransferase (AST), adiponectin, fetuin A and B, and cytokeratin 18 (CK-18), upon low-calorie diet (LCD) intervention. We also examined the role of genetic variation in determining the level of circulating ANGPTL3 and the relation between the identified genetic markers and markers of hepatic steatosis. DiOGenes is a multicenter, controlled dietary intervention where obese participants followed an 8-week LCD (800 kcal/day, using a meal replacement product). Plasma ANGPTL3 and liver markers were measured using the SomaLogic (Boulder, CO) platform. Protein quantitative trait locus (pQTL) analyses assessed the link between more than four million common variants and the level of circulating ANGPTL3 at baseline and changes in levels during the LCD intervention. Changes in ANGPTL3 during weight loss showed only marginal association with changes in triglycerides (nominal p = 0.02) and insulin ( p = 0.04); these results did not remain significant after correcting for multiple testing. However, significant association (after multiple-testing correction) were observed between changes in ANGPTL3 and AST during weight loss ( p = 0.004) and between ANGPTL3 and CK-18 (baseline p = 1.03 × 10 -7 , during weight loss p = 1.47 × 10 -13 ). Our pQTL study identified two loci significantly associated with changes in ANGPTL3. One of these loci (the APOA4 - APOA5-ZNF259 - BUD13 gene cluster) also displayed significant association with changes in CK-18 levels during weight loss ( p = 0.007). We clarify the link between circulating levels of ANGPTL3 and specific markers of liver function. We demonstrate that changes in ANGPLT3 and CK-18 during LCD are under genetic control from trans -acting variants. Our results suggest an extended function of ANGPTL3 in the inflammatory state of liver steatosis and toward liver metabolic processes.
Wiklund, L; Lewis, D H; Sjöquist, P O; Nilsson, F; Tazelaar, H; Miller, V M; McGregor, C G
1997-05-01
Experiments were designed to determine whether changes in pulmonary artery function could be reduced by treatment with a lipid peroxidation inhibitor (H 290/51) during acute rejection of pulmonary allografts. Single lung transplantation was performed in three groups of dogs: group 1 was maintained on immunosuppression for 8 days after operation (immunosuppressed, n = 5); in group 2, immunosuppression was discontinued on postoperative day 5, so that rejection occurred on postoperative day 8 (rejecting, n = 6); in group 3, immunosuppression was discontinued after 5 days, and the lipid peroxidation inhibitor H 290/51 (25 mg/kg) was given perorally for 3 days (rejecting + H 290/51, n = 6). Plasma nitric oxide (NO(x)) was measured by use of chemoluminescence. On postoperative day 8 rejection was observed in groups 2 and 3. Contractions to angiotensin I and endothelium-dependent relaxations to adenosine diphosphate were reduced in pulmonary arteries from rejecting lungs. Responses of rings from dogs treated with H 290/51 were similar to those from rejecting lungs. Rejection did not alter relaxations to exogenous nitric oxide. However, plasma levels of NO(x) increased significantly during rejection independently of treatment with H 290/51. Results of this study confirm that endothelium-dependent relaxation of pulmonary arteries is reduced during acute rejection of lung allografts. The result extends these observations to suggest that treatment with a lipid peroxidation inhibitor neither protects the pulmonary artery function nor affects levels of circulating NO(x). Therefore mechanisms other than lipid peroxidation participate in vascular changes associated with allograft rejection.
Ponnampalam, E N; Hopkins, D L; Giri, K; Jacobs, J L; Plozza, T; Lewandowski, P; Bekhit, A
2017-07-01
This study was conducted to determine whether circulating concentrations of blood isoprostanes can be used as an effective biomarker in lambs to predict degradation of color and/or lipid stability in meat. Lambs ( = 84) were fed diets of either lucerne pasture, annual ryegrass pasture, a commercial feedlot pellet, or a combination of annual ryegrass and feedlot pellet for 8 wk, including a 2-wk adaptation period. Blood isoprostane concentration at wk 0, 4, 6 or 8 of feeding was determined. Blood isoprostane concentration for each animal was then correlated with muscle biochemical components that impact color and/or lipid oxidative status during retail display. This included lipid oxidation levels in muscle assessed by thiobarbituric acid reactive substances and meat redness determined by a HunterLab colorimetric spectrometer. Lambs that consumed the commercial feedlot pellet had a lower muscle vitamin E level (< 0.01) and a greater level of -6 PUFA ( < 0.001) compared with lambs finished on annual ryegrass or lucerne. Lipid oxidation levels were greatest for lambs finished on the feedlot ration, lowest in lambs finished on the ryegrass diet, and intermediate for lambs finished on lucerne and ryegrass-feedlot combination ( < 0.01). After 8 wk of feeding, blood isoprostane concentration was positively correlated with lipid oxidation of meat displayed for 72 h in simulated retail conditions ( < 0.01). There was a negative linear relationship between isoprostane concentration and muscle vitamin E concentration ( = 0.07), lipid oxidation and muscle vitamin E concentration ( < 0.01) but a positive linear relationship between isoprostane concentration and muscle -6 PUFA ( < 0.001) or lipid oxidation and muscle -6 PUFA concentration ( < 0.001). Blood isoprostane concentration and lipid oxidation in meat were influenced by muscle vitamin E and -6 PUFA but not by -3 PUFA. There was no significant relationship observed between blood isoprostane concentration at 0, 4, 6 or 8 wk feeding vs. overall meat color (redness of meat) at 0 and 72 h of display, stored under simulated retail conditions. The results indicate that circulating blood isoprostane concentration can be a useful tool to predict the oxidative status of postmortem meat. Future work will examine the impact of this relationship on meat flavor/aroma deterioration post farm.
Lin, Cheng-Yuan; Huang, Tao; Zhao, Ling; Zhong, Linda L D; Lam, Wai Ching; Fan, Bao-Min; Bian, Zhao-Xiang
2018-05-01
Spexin is a newly identified neuropeptide that is involved in satiety control, glucose, and lipids metabolism. It has also been related to human diseases, such as obesity and type 2 diabetes. However, whether spexin changes with age or not is still unclear. The aim of this study is to investigate the relationship between circulating spexin levels and age and to study their interaction effects on body mass index (BMI), fasting glucose, and -lipids. This is a cross-sectional study, including 68 healthy adult women whose ages are in a wide range (minimum: 23; median: 38.5; maximum: 64). The serum spexin levels were measured by an enzyme-linked immunosorbent assay. Fasting glucose, total cholesterol, triglycerides (TG), alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine were measured by routine biochemical test. Shapiro-Wilk's test, Spearman and Pearson correlation analyses, χ 2 test, and two-way analysis of variance were used to interpret the data. Serum spexin levels are significantly correlated with age (Spearman r = -0.277, P = 0.022), BMI (Spearman r = -0.445, P < 0.001), fasting glucose (Spearman r = -0.302, P = 0.014), and TG (Spearman r = -0.324, P = 0.008). Spexin levels independently predict the risk of high BMI and high fasting glucose. No interaction effects of spexin and age on BMI and fasting glucose were found. Circulating spexin levels decrease with age, suggesting a possible role of this peptide in aging-related functions and disorders. Further investigations are needed to expand the clinical significance of this finding.
Effects of Diet High in Palmitoleic Acid on Serum Lipid Levels and Metabolism
2000-07-01
cholesterol , high - density a typical American diet. lipoprotein cholesterol , and triglyceride ...group imbalance resulting from density lipoprotein ( HDL ) cholesterol , and triglyceride dropouts or exclusions during the run-in or early in the levels...Circulation 1997;95:69-75. 15. Austin MA, Rodriguez BL, McKnight B, JD Curb. Low- density lipoprotein (LDL) particle size and plasma triglyceride ( TG
Effect of Weight Reduction on Cardiovascular Risk Factors and CD34-positive Cells in Circulation
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation. PMID:21850193
Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation.
Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M
2011-01-01
Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation.
Rodríguez-Gallego, Esther; Gómez, Josep; Domingo, Pere; Ferrando-Martínez, Sara; Peraire, Joaquim; Viladés, Consuelo; Veloso, Sergi; López-Dupla, Miguel; Beltrán-Debón, Raúl; Alba, Verónica; Vargas, Montserrat; Castellano, Alfonso J; Leal, Manuel; Pacheco, Yolanda María; Ruiz-Mateos, Ezequiel; Gutiérrez, Félix; Vidal, Francesc; Rull, Anna
2018-06-01
Dyslipidemia in HIV-infected patients is unique and pathophysiologically associated with host factors, HIV itself and the use of antiretroviral therapy (ART). The use of nuclear magnetic resonance spectroscopy (NMR) provides additional data to conventional lipid measurements concerning the number of lipoprotein subclasses and particle sizes. To investigate the ability of lipoprotein profile, we used a circulating metabolomic approach in a cohort of 103 ART-naive HIV-infected patients, who were initiating non-nucleoside analogue transcriptase inhibitor (NNRTI)-based ART, and we subsequently followed up these patients for 36 months. Univariate and multivariate analyses were performed to evaluate the predictive power of NMR spectroscopy. VLDL-metabolism (including VLDL lipid concentrations, sizes, and particle numbers), total triglycerides and lactate levels resulted in good classifiers of dyslipidemia (AUC 0.903). Total particles/HDL-P ratio was significantly higher in ART-associated dyslipidemia compared to ART-normolipidemia (p = 0.001). Large VLDL-Ps were positively associated with both LDL-triglycerides (ρ 0.682, p < 0.001) and lactate concentrations (ρ 0.416, p < 0.001), the last one a marker of mitochondrial low oxidative capacity. Our data suggest that circulating metabolites have better predictive values for HIV/ART-related dyslipidemia onset than do the biochemical markers associated with conventional lipid measurements. NMR identifies changes in VLDL-P, lactate and LDL-TG as potential clinical markers of baseline HIV-dyslipidemia predisposition. Differences in circulating metabolomics, especially differences in particle size, are indicators of important derangements of mitochondrial function that are linked to ART-related dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie
2016-05-01
PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02174c
State-dependent alterations of lipid profiles in patients with bipolar disorder.
Huang, Yu-Jui; Tsai, Shang-Ying; Chung, Kuo-Hsuan; Chen, Pao-Huan; Huang, Shou-Hung; Kuo, Chian-Jue
2018-07-01
Objective Serum lipid levels may be associated with the affective severity of bipolar disorder, but data on lipid profiles in Asian patients with bipolar disorder and the lipid alterations in different states of opposite polarities are scant. We investigated the lipid profiles of patients in the acute affective, partial, and full remission state in bipolar mania and depression. Methods The physically healthy patients aged between 18 and 45 years with bipolar I disorder, as well as age-matched healthy normal controls were enrolled. We compared the fasting blood levels of glucose, cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein of manic or depressed patients in the acute phase and subsequent partial and full remission with those of their normal controls. Results A total of 32 bipolar manic patients (12 women and 20 men), 32 bipolar depressed participants (18 women and 14 men), and 64 healthy control participants took part in this study. The mean cholesterol level in acute mania was significantly lower than that in acute depression (p < 0.025). The lowest rate of dyslipidemia (hypertriglyceridemia or low high-density lipoprotein cholesterol) was observed in acute bipolar mania. Conclusion Circulating lipid profiles may be easily affected by affective states. The acute manic state may be accompanied by state-dependent lower cholesterol and triglyceride levels relative to that in other mood states.
Vamvini, Maria T.; Hamnvik, Ole-Petter; Sahin-Efe, Ayse; Gavrieli, Anna; Dincer, Fadime; Farr, Olivia M.
2016-01-01
Context: The spectrum of lipid-induced changes in the secretion of hormones important in energy homeostasis has not yet been fully elucidated. Objective: To identify potential incretin-like effects in response to lipid administration, we examined the short-term effect of iv vs oral lipids on key molecules regulating energy homeostasis. Design, Intervention, and Participants: After a 10-hour overnight fast, 26 subjects were randomized to receive an oral lipid load, a 10% iv lipid emulsion, a 20% iv lipid emulsion, or an iv saline infusion. We obtained blood samples at 30-minute intervals for the first 2 hours and hourly thereafter for a total of 6 hours. Main Outcome Measures: Circulating levels of insulin, glucose, c-peptide, free fatty acids, incretins (glucagon-like peptide-1, gastric inhibitory polypeptide), glucagon, peptide YY, ghrelin, fibroblast growth factor 21, fetuin A, irisin, omentin, and adiponectin were measured. Results: Oral lipid ingestion resulted in higher glucagon-like peptide-1, gastric inhibitory polypeptide, glucagon, and peptide YY levels, compared with the other three groups (incremental area under the curve P = .003, P < .001, P < .001, P < .001, respectively). The 20% lipid emulsion, leading to higher free fatty acid levels, resulted in greater insulin, c-peptide, and fibroblast growth factor 21 responses compared with placebo and the other two groups (incremental area under the curve P = .002, P = .005, P < .001, P < .001, respectively). Omentin, adiponectin, fetuin A, and irisin levels were not affected by either mode of lipid administration. Conclusions: Metabolic responses to lipids depend on the route of administration. Only iv lipids trigger a dose-dependent fibroblast growth factor 21 secretion, which is nonglucagon mediated. Intravenous lipids also induce hyperinsulinemia without concurrent decreases in glucose, a phenomenon observed in insulin-resistant states. Orally administered lipids mostly affect gastrointestinal tract-secreted molecules important in glucose and energy homeostasis such as glucagon, incretins, and peptide YY. PMID:26964729
Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1
Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.
2016-01-01
Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308
Dhar, Indu; Lysne, Vegard; Seifert, Reinhard; Svingen, Gard F T; Ueland, Per M; Nygård, Ottar K
2018-05-01
Methionine (Met) is an essential amino acid involved in methylation reactions and lipid metabolism. A Met-deficient diet may cause hepatic lipid accumulation, which is considered an independent risk factor for atherosclerosis. However, the prospective relationship between circulating Met and incident acute myocardial infarction (AMI) is unknown. We studied the associations of plasma Met and incident AMI in 4156 patients (77% men; median age 62 years) with stable angina pectoris, among whom the majority received lipid lowering therapy with statins. Risk associations were estimated using Cox-regression analyses. Plasma Met was negatively related to age, serum levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (apo) B at baseline (all p≤0.05). During a median follow-up of 7.5 years, 534 (12.8%) patients experienced an AMI. There was no overall association between plasma Met and incident AMI; however, plasma Met was inversely associated with risk among patients with high as compared to low levels of serum LDL-C or apo B 100 (multivariate adjusted HRs per SD [95% CI] 0.84 [0.73-0.96] and 0.83[0.73-0.95], respectively; p-interaction ≤0.02). Trends towards an inverse risk relationship were also observed among those younger than 62 years and patients without diabetes or hypertension. Low plasma Met was associated with increased risk of AMI in patients with high circulating levels of atherogenic lipids, but also in subgroups with presumably lower cardiovascular risk. The determinants of Met status and their relation with residual cardiovascular risk in patients with coronary heart disease should be further investigated. Copyright © 2018 Elsevier B.V. All rights reserved.
Hyrina, Anastasia; Olmstead, Andrea D; Steven, Paul; Krajden, Mel; Tam, Edward; Jean, François
2017-09-01
In patients with chronic hepatitis C virus (HCV) infection, viral hijacking of the host-cell biosynthetic pathways is associated with altered lipid metabolism, which contributes to disease progression and may influence antiviral response. We investigated the molecular interplay among four key regulators of lipid homeostasis [microRNA (miR)-122, miR-24, miR-223, and proprotein convertase subtilisin/kexin type 9 (PCSK9)] in HCV-infected patients (n=72) who achieved a treatment-based viral cure after interferon-based therapy with first-generation direct-acting antivirals. Real-time PCR was used to quantify microRNA plasma levels, and ELISA assays were used to determine plasma concentrations of PCSK9. We report that levels of miR-24 and miR-223 significantly increased in patients achieving sustained virologic response (SVR), whereas the levels of miR-122, a liver-specific cofactor for HCV infection, decreased in these patients. PCSK9 concentrations were significantly increased in SVRs, suggesting that PCSK9 may help impede viral infection. The modulatory effect of PCSK9 on HCV infection was also demonstrated in the context of HCV-infected Huh-7.5.1 cells employing recombinant human PCSK9 mutants. Together, these results provide insights into a novel coordinated interplay among three important molecular players in lipid homeostasis - circulating miR-24, miR-223 and PCSK9 - whose regulation is affected by HCV infection and treatment-based viral cure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
van Ierssel, Sabrina H.; Hoymans, Vicky Y.; Van Craenenbroeck, Emeline M.; Van Tendeloo, Viggo F.; Vrints, Christiaan J.; Jorens, Philippe G.; Conraads, Viviane M.
2012-01-01
Background Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. Methods For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b−) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Results Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = −0.707 and −0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = −0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. Conclusion The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP. PMID:22359595
van Ierssel, Sabrina H; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Van Tendeloo, Viggo F; Vrints, Christiaan J; Jorens, Philippe G; Conraads, Viviane M
2012-01-01
Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP. For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b-) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day. Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = -0.707 and -0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = -0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids. The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.
Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R; Thiers, Bruce; Lan, Shuping; Tallman, Anna M; Kaur, Mandeep; Tatulych, Svitlana
Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional lipid parameters and CV risk markers in patients with psoriasis from a phase III study, OPT Pivotal 1. Patients with psoriasis were randomized to tofacitinib 5 or 10 mg twice daily (BID) or placebo BID. Serum samples were collected at baseline, week 4, and week 16. Analyses included serum cholesterol levels, triglycerides, lipoproteins, lipid particles, lipid-related parameters/CV risk markers, and high-density lipoprotein (HDL) function analyses. At week 16, small concurrent increases in mean low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels were observed with tofacitinib; total cholesterol/HDL-C ratio did not change. There was no significant change in the number of small dense LDL particles, which are considered to be more atherogenic than large particles, and oxidized LDL did not increase. Paraoxonase 1 activity, linked to HDL antioxidant capacity, increased, and HDL-associated serum amyloid A, which reduces the anti-atherogenic potential of HDL, decreased. HDL capacity to promote cholesterol efflux from macrophages did not change. Lecithin-cholesterol acyltransferase activity, which is associated with reverse cholesterol transport, increased. Markers of systemic inflammation, serum amyloid A and C-reactive protein, decreased with tofacitinib. While small increases in lipid levels are observed with tofacitinib treatment in patients with psoriasis, effects on selected lipid-related parameters and other circulating CV risk biomarkers are not suggestive of an increased CV risk [NCT01276639]. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lin; Zhang, Canbang; Wen, Yuanbin; Liu, Shuxiao; Zhou, Lingyun
2009-08-01
Some cases with cerebral infarction were treated by He-Ne laser irradiation on blood. In the treatment before and after, membrane-cholesterol(C)/membrane-phosphatide(P), membrane fluidity(F) and deformability of erythrocyte were determined. The results showed that low level laser irradiation on blood (LLLIB) can sure reduce the ratio of (C)/(P), can heighten fluidity and improve deformability of erythrocyte .Thus the metabolism ability of erythrocyte membrane-lipid ,the blood circulation and the properties of hemorheology can be improved. In this paper, the microscopic mechanism of those aforesaid action effects by low level laser irradiation on blood were analyzed by means of Quantum theory and some corresponding models.
Skroblin, Philipp; Moschen, Alexander R.; Yin, Xiaoke; Kaudewitz, Dorothee; Zampetaki, Anna; Barwari, Temo; Whitehead, Meredith; Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Bonora, Enzo; Hughes, Alun D.; Santer, Peter; Fernández-Hernando, Carlos; Tilg, Herbert; Willeit, Johann; Kiechl, Stefan
2017-01-01
MicroRNA-122 (miR-122) is abundant in the liver and involved in lipid homeostasis, but its relevance to the long-term risk of developing metabolic disorders is unknown. We therefore measured circulating miR-122 in the prospective population-based Bruneck Study (n = 810; survey year 1995). Circulating miR-122 was associated with prevalent insulin resistance, obesity, metabolic syndrome, type 2 diabetes, and an adverse lipid profile. Among 92 plasma proteins and 135 lipid subspecies quantified with mass spectrometry, it correlated inversely with zinc-α-2-glycoprotein and positively with afamin, complement factor H, VLDL-associated apolipoproteins, and lipid subspecies containing monounsaturated and saturated fatty acids. Proteomics analysis of livers from antagomiR-122–treated mice revealed novel regulators of hepatic lipid metabolism that are responsive to miR-122 inhibition. In the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT, n = 155), 12-month atorvastatin reduced circulating miR-122. A similar response to atorvastatin was observed in mice and cultured murine hepatocytes. Over up to 15 years of follow-up in the Bruneck Study, multivariable adjusted risk ratios per one-SD higher log miR-122 were 1.60 (95% CI 1.30–1.96; P < 0.001) for metabolic syndrome and 1.37 (1.03–1.82; P = 0.021) for type 2 diabetes. In conclusion, circulating miR-122 is strongly associated with the risk of developing metabolic syndrome and type 2 diabetes in the general population. PMID:27899485
Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C
2015-10-01
Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. © 2015 Wiley Periodicals, Inc.
Saggu, Shalini; Kumar, Ratan
2008-06-01
The present study was carried out to study mechanism of adaptogenic activity of seabuckthorn leaf extract, administered orally in rats both in single and five doses at a dose of 100mg/kg body weight 30min prior to C-H-R exposure. The efficacy of the extract was studied on circulating energy fuels, lipid peroxidation and anti-oxidant parameters in rats on attaining the T(rec) 23 degrees C during C-H-R exposure and after recovery (T(rec) 37 degrees C) from C-H-R induced hypothermia. Single dose treatment in rats restricted rise in blood malondialdehyde (MDA) levels and decrease in glutathione (GSH) and catalase (CAT) levels. Both single and five doses also restricted the rise in serum free fatty acids (FFA) and lactate dehydrogenase (LDH) levels on attaining T(rec) 23 degrees C during C-H-R exposure, suggesting more efficient utilization of FFA for energy production and better maintained cell membrane permeability. This suggested that the adaptogenic activity of the extract might be due to its anti-oxidative activity, maintained blood glucose levels, better utilization of FFA and improved cell membrane permeability.
2014-01-01
Background Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. Methods We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. Results The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. Conclusions These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition. PMID:24910707
Hashidume, Tsutomu; Kato, Asuka; Tanaka, Tomohiro; Miyoshi, Shoko; Itoh, Nobuyuki; Nakata, Rieko; Inoue, Hiroyasu; Oikawa, Akira; Nakai, Yuji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro
2016-06-17
Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.
Postprandial Monocyte Activation in Individuals With Metabolic Syndrome
Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu
2016-01-01
Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945
Santanna, Adriélly F; Filete, Placielle F; Lima, Ewelyne M; Porto, Marcella L; Meyrelles, Silvana S; Vasquez, Elisardo C; Endringer, Denise C; Lenz, Dominik; Abdalla, Dulcineia S P; Pereira, Thiago M C; Andrade, Tadeu U
2017-03-01
Kefir is obtained by the action of acidic bacteria and yeasts that exist in symbiotic association in kefir grains. Recently, this fermented milk drink has been recommended for the treatment of several clinical conditions, such as inflammatory, gastrointestinal, or cardiovascular-related diseases, or a combination of these diseases. However, its effects on atherosclerosis are not yet clear. The aim of this study was to prove that chronic treatment with a soluble, nonbacterial fraction of kefir could reduce the progression of atherosclerosis in low-density lipoprotein receptor-deficient (LDLr -/- ) mice. LDLr -/- mice were divided into four groups as follows: RESULTS: The soluble, nonbacterial fraction of kefir reduced lipid deposition (P < 0.05) independent of hypercholesterolemia. Moreover, kefir was capable of diminishing the circulating proinflammatory intereukin (IL)-6 level and the ratio of tumor necrosis factor-α to IL-10 (50% and 42%, P < 0.05, respectively) and augmenting the antiinflammatory IL-10 level by approximately 74% (P < 0.05). Chronic treatment with a soluble nonbacterial fraction of kefir was able to decrease the lipid deposition in LDLr -/- hypercholesteremic mice, at least in part through modifying the circulating cytokine profile. The beneficial effects of kefir provide new perspectives for its use as an adjuvant in the prevention of atherosclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.
Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H
2016-04-01
Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.
Kohara, Marina; Masuda, Takahiro; Shiizaki, Kazuhiro; Akimoto, Tetsu; Watanabe, Yuko; Honma, Sumiko; Sekiguchi, Chuji; Miyazawa, Yasuharu; Kusano, Eiji; Kanda, Yoshinobu; Asano, Yasushi; Kuro-O, Makoto; Nagata, Daisuke
2017-01-01
Fibroblast growth factor 21 (FGF21) is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD) patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034), while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312). In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009). Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.
Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.
Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B
2010-04-09
Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.
USDA-ARS?s Scientific Manuscript database
Postmenopausal women (PMW) report marginal n-3 PUFA intakes and are at risk of chronic diseases associated with the skeletal, muscular, and cardiovascular systems. Our investigation characterized the endocannabinoids (EC), oxylipins (OL), and global metabolites (GM) in white PMW (75 ± 7 y), randomiz...
Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model
USDA-ARS?s Scientific Manuscript database
Cholestyramine(CA)is a bile acid sequestrant widely used as a cholesterol-lowering drug to treat hypercholesterolemia, one of the major risk factors for cardiovascular disease. Despite the wide use of CA its effect on cholesterol and lipid metabolism at a molecular level and over the long term remai...
Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C
2015-01-01
The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.
Gemfibrozil, stretching arms beyond lipid lowering
Roy, Avik; Pahan, Kalipada
2009-01-01
Gemfibrozil is long known for its ability to reduce the level of triglycerides in the blood circulation and to decrease the risk of hyperlipidemia. However, a number of recent studies reveal that apart from its lipid-lowering effects, gemfibrozil can also regulate many other signaling pathways responsible for inflammation, switching of T-helper cells, cell-to-cell contact, migration, and oxidative stress. In this review, we have made an honest attempt to analyze various biological activities of gemfibrozil and associated mechanisms that may help to consider this drug for different human disorders as primary or adjunct therapy. PMID:19694602
Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei
2017-03-01
Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society
Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong
2017-01-01
Abstract Context: Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. Objective: This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Design and Setting: Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Main Outcome Measures: Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography–mass spectrometry (MS) and liquid chromatography–MS. Results: Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Conclusions: Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. PMID:27886515
Stabilization and Augmentation of Circulating AIM in Mice by Synthesized IgM-Fc
Kai, Toshihiro; Yamazaki, Tomoko; Arai, Satoko; Miyazaki, Toru
2014-01-01
Owing to rapid and drastic changes in lifestyle and eating habits in modern society, obesity and obesity-associated diseases are among the most important public health problems. Hence, the development of therapeutic approaches to regulate obesity is strongly desired. In view of previous work showing that apoptosis inhibitor of macrophage (AIM) blocks lipid storage in adipocytes, thereby preventing obesity caused by a high-fat diet, we here explored a strategy to augment circulating AIM levels. We synthesized the Fc portion of the soluble human immunoglobulin (Ig)M heavy chain and found that it formed a pentamer containing IgJ as natural IgM does, and effectively associated with AIM in vitro. When we injected the synthesized Fc intravenously into mice lacking circulating IgM, it associated with endogenous mouse AIM, protecting AIM from renal excretion and preserving the circulating AIM levels. As the synthesized Fc lacked the antigen-recognizing variable region, it provoked no undesired immune response. In addition, a challenge with the Fc-human AIM complex in wild-type mice, which exhibited normal levels of circulating IgM and AIM, successfully maintained the levels of the human AIM in mouse blood. We also observed that the human AIM was effectively incorporated into adipocytes in visceral fat tissue, suggesting its functionality against obesity. Thus, our findings reveal potent strategies to safely increase AIM levels, which could form the basis for developing novel therapies for obesity. PMID:24804991
Gao, Ting; Jin, Kairui; Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei
2015-01-01
Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. A total of 460 permanent residents of the Fengxian District, aged 40-60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18-28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism.
Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth
2015-04-01
Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives. Copyright © 2015 Elsevier Inc. All rights reserved.
Rational design of dendrimer/lipid nanoassemblies in drug delivery for cancer chemotherapy
NASA Astrophysics Data System (ADS)
Sun, Qihang
Nanocarriers can minimize the side effects and improve therapeutic efficacy of anticancer drugs. Although some success has been achieved via active or passive drug delivery to tumor cells, the known nanocarriers are far from satisfying therapeutic efficacy expectations. This is because they usually fail in one of the four crucial requirements, that is, to retain drug in blood circulation but release it reliably in tumor cells and to be stealthy in transport in circulation and tumor tissue but sticky upon arrival at the tumor cell. Therefore, the goal of this work is to fabricate nanoassemblies of dendrimers and lipids to address all these challenges. Particularly, nanoassemblies designed and prepared in this work are illustrated to improve the tumor tissue penetration. Examples of dendrimers synthesized in this work are water-insoluble, pH-dependent water-insoluble and water-soluble biodegradable polyester dendrimers. These dendrimers are shown to be encapsulated by commonly used fusogenic and long-circulating lipids to form reliable nanoassemblies. The dendrimer/lipid nanocarriers are used to demonstrate a cascade drug delivery. They are expected to be stable in circulation, due to their appropriately large size, but to release the drug-loaded dendrimers in tumor tissue. The released dendrimers carrying drugs are much smaller and hence expected to have a much deeper penetration throughout the tumor tissue.
Heat exposure increases circulating fatty acids but not lipid oxidation at rest and during exercise.
O'Hearn, Katharine; Tingelstad, Hans Christian; Blondin, Denis; Tang, Vera; Filion, Lionel G; Haman, François
2016-01-01
Alterations in lipid oxidation during exercise have been well studied, but limited data exists on the effects of passive heat exposure and exercise in the heat on changes in lipid oxidation. This study was designed to examine: (1) the effects of heat exposure on lipid metabolism during passive heating and subsequent exercise in the heat by focusing on changes in whole-body lipid oxidation and plasma lipid concentrations, and (2) the effects of extended passive pre-heating on exercise performance in the heat. Male participants (n=8) were passively heated for 120 min at 42 °C, then exercised on a treadmill in the same temperature at 50% V̇O2 max for 30 min (HEAT). This same procedure was followed on a separate occasion at 23 °C (CON). Results showed that lipid oxidation rates were not different between HEAT and CON during passive heating or exercise. However, non-esterified fatty acid (NEFA) concentrations were significantly higher following passive heating (618 µM, 95% CI: 479-757) compared to CON (391 µM, 95% CI: 270-511). The same trend was observed following exercise (2036 µM, 95% CI: 1604-2469 for HEAT and 1351 µM, 95% CI: 1002-1699). Triacylglycerol, phospholipid and cholesterol levels were not different between HEAT and CON at any point. Four of 8 participants could not complete 30 min of exercise in HEAT, resulting in a 14% decline in total external work. Rate of perceived exertion over the final 5 min of exercise was higher in HEAT (9.5) than CON (5). We conclude that: (1) heat exposure results in increased circulating NEFA at rest and during exercise without changes in whole-body lipid utilization, and (2) passive pre-heating reduces work capacity during exercise in the heat and increases the perceived intensity of a given workload. Copyright © 2015 Elsevier Ltd. All rights reserved.
Circulating oxidative stress caused by Psoroptes natalensis infestation in Indian water buffaloes.
Mahajan, Sumit; Panigrahi, Padma Nibash; Dey, Sahadeb; Dan, Ananya; Kumar, Akhilesh; Mahendran, K; Maurya, P S
2017-09-01
The present study reports the circulating oxidative stress associated with Psoroptes natalensis infestation in Indian water buffaloes. Three non-descriptive water buffaloes, age ranging between 4 and 9 years, presented to Referral Veterinary Polyclinic, IVRI, for treatment served as clinical subject. The infested animals were treated with Ivermectin subcutaneously and Amitraz topically along with antioxidant like ascorbic acid, Vitamin E and selenium. The level of lipid peroxidase was significantly higher (3.94 ± 0.34) in Psoroptes infested buffalo and was reduced significantly ( P ≤ 0.05) after treatment (1.56 ± 0.40). The significantly higher levels of MDA before treatment signify the role of lipid peroxide mediated skin lesions in P. natalensis infested buffaloes. Similarly the activities of the body antioxidant like GSH and CAT were significantly higher ( P ≤ 0.05) after treatment. The less level of the body antioxidant (GSH) and reduced activities of the antioxidant enzymes like CAT and SOD before treatment imply that Psoroptes mite-infested buffaloes were in a state of significant oxidative stress. The study provides information on oxidative stress indices in P. natalensis infested buffaloes and gives additional insight regarding the pathogenesis of the disease and its management.
Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J
2017-11-21
The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.
The demands of lactation promote differential regulation of lipid stores in fasting elephant seals.
Fowler, Melinda A; Debier, Cathy; Champagne, Cory D; Crocker, Daniel E; Costa, Daniel P
2016-01-01
Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves. Copyright © 2015 Elsevier Inc. All rights reserved.
Interleukin-20 circulating levels in obese women: effect of weight loss.
Maiorino, M I; Schisano, B; Di Palo, C; Vietri, M T; Cioffi, M; Giugliano, G; Giugliano, D; Esposito, K
2010-03-01
Obesity is associated with an increased risk of developing atherosclerosis. Interleukin-20 (IL-20) is a pleiotropic cytokine thought to be involved in the onset and progression of atherosclerosis. The aim of this study was to determine whether circulating levels of IL-20 are elevated in obese women and whether they could be affected by a substantial decrease in body weight. Fifty obese and 50 age-matched, normal weight, premenopausal women participated in the study. Obese women entered into a medically supervised weight loss program aimed at reducing body weight to 90% of baseline. We measured anthropometric, glucose and lipid parameters, and IL-20, C-Reactive Protein (CRP) and interleukin-10 (IL-10) circulating levels. Circulating IL-20 and CRP levels were significantly higher in obese than control women (P=0.01), while IL-10 levels were significantly lower; IL-20 levels were positively associated with body weight (r=0.35; P=0.02) and visceral fat (waist-hip ratio; r=0.32; P=0.025). Caloric restriction-induced weight loss (>10% of original weight) over 6 months reduced IL-20 levels from 152 (112/184) to 134 (125/153)pg/ml (median and 25%/75%; P=0.03), and it was positively associated with changes in body mass index and waist-hip ratio. In premenopausal obese women, IL-20 levels are higher than matched normal weight control women, are associated with body weight and waist-hip ratio, and are reduced by weight loss. (c) 2009 Elsevier B.V. All rights reserved.
Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra
2009-11-01
The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.
Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra
2016-01-01
Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 International Union of Biochemistry and Molecular Biology.
Partial deficiency of CTRP12 alters hepatic lipid metabolism
Tan, Stefanie Y.; Little, Hannah C.; Lei, Xia; Li, Shuoyang; Rodriguez, Susana
2016-01-01
Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/−) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/−) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/−) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/−) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/−) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. PMID:27815536
Partial deficiency of CTRP12 alters hepatic lipid metabolism.
Tan, Stefanie Y; Little, Hannah C; Lei, Xia; Li, Shuoyang; Rodriguez, Susana; Wong, G William
2016-12-01
Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/-) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/-) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/-) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/-) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/-) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. Copyright © 2016 the American Physiological Society.
Gustavson, Lisa; Ciesielski, Tomasz M; Bytingsvik, Jenny; Styrishave, Bjarne; Hansen, Martin; Lie, Elisabeth; Aars, Jon; Jenssen, Bjørn M
2015-04-01
As a top predator in the Arctic food chain, polar bears (Ursus maritimus) are exposed to high levels of persistent organic pollutants (POPs). Because several of these compounds have been reported to alter endocrine pathways, such as the steroidogenesis, potential disruption of the sex steroid synthesis by POPs may cause implications for reproduction by interfering with ovulation, implantation and fertility. Blood samples were collected from 15 female polar bears in Svalbard (Norway) in April 2008. The concentrations of nine circulating steroid hormones; dehydroepiandrosterone (DHEA), androstenedione (AN), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (βE2), pregnenolone (PRE) and progesterone (PRO) were determined. The aim of the study was to investigate associations among circulating levels of specific POP compounds and POP-metabolites (hydroxylated PCBs [OH-PCBs] and hydroxylated PBDEs [OH-PBDEs]), steroid hormones, biological and capture variables in female polar bears. Inverse correlations were found between circulating levels of PRE and AN, and circulating levels of OH-PCBs. There were no significant relationships between the steroid concentrations and other analyzed POPs or the variables capture date and capture location (latitude and longitude), lipid content, condition and body mass. Although statistical associations do not necessarily represent direct cause-effect relationships, the present study indicate that OH-PCBs may affect the circulating levels of AN and PRE in female polar bears and that OH-PCBs thus may interfere with the steroid homeostasis. Increase in PRO and a decrease in AN concentrations suggest that the enzyme CYP17 may be a potential target for OH-PCBs. In combination with natural stressors, ongoing climate change and contaminant exposure, it is possible that OH-PCBs may disturb the reproductive potential of polar bears. Copyright © 2015 Elsevier Inc. All rights reserved.
Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas
2018-01-01
Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324
Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas
2018-01-01
The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.
Choi, Myung-Sook; Park, Hyo Jin; Kim, Sang Ryong; Kim, Do Yeon; Jung, Un Ju
2017-12-01
This study evaluated whether long-term supplementation with dietary yerba mate has beneficial effects on adiposity and its related metabolic dysfunctions in diet-induced obese mice. C57BL/6J mice were randomly divided into two groups and fed their respective experimental diets for 16 weeks as follows: (1) control group fed with high-fat diet (HFD) and (2) mate group fed with HFD plus yerba mate. Dietary yerba mate increased energy expenditure and thermogenic gene mRNA expression in white adipose tissue (WAT) and decreased fatty acid synthase (FAS) mRNA expression in WAT, which may be linked to observed decreases in body weight, WAT weight, epididymal adipocyte size, and plasma leptin level. Yerba mate also decreased levels of plasma lipids (free fatty acids, triglycerides, and total cholesterol) and liver aminotransferase enzymes, as well as the accumulation of hepatic lipid droplets and lipid content by inhibiting the activities of hepatic lipogenic enzymes, such as FAS and phosphatidate phosphohydrolase, and increasing fecal lipid excretion. Moreover, yerba mate decreased the levels of plasma insulin as well as the homeostasis model assessment of insulin resistance, and improved glucose tolerance. Circulating levels of gastric inhibitory polypeptide and resistin were also decreased in the mate group. These findings suggest that long-term supplementation of dietary yerba mate may be beneficial for improving diet-induced adiposity, insulin resistance, dyslipidemia, and hepatic steatosis.
Li, Sha; Zhao, Xi; Zhang, Yan; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Xu, Rui-Xia; Qing, Ping; Gao, Ying; Sun, Jing; Liu, Geng; Dong, Qian; Li, Jian-Jun
2017-02-14
Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein C-III (apoC3) and small dense low density lipoprotein cholesterol (sdLDL-C), have been recently recognized as circulating atherosclerosis-related lipid measurements. We aimed to elucidate their associations with current dyslipidemias, and identify their levels at increased risk to dyslipidemia. A total of 1,605 consecutive, non-treated patients undergoing diagnostic/interventional coronary angiography were examined. Plasma PCSK9 and apoC3 levels were determined using a validated ELISA assay, and sdLDL-C was measured by the Lipoprint LDL System. Plasma levels of PCSK9, apoC3, and sdLDL-C were associated with the current dyslipidemias classification (all p<0.001). PCSK9 significantly conferred prediction of both hypercholesterolemia and combined hyperlipidemia at a level of 235 ng/ml; apoC3 levels for hypertriglyceridemia, hypercholesterolemia and combined hyperlipidemia were 80.0, 71.5, and 86.4 μg/ml, respectively; and sdLDL-C for hypertriglyceridemia, hypercholesterolemia, combined hyperlipidemia and hypo high density lipoprotein (HDL) cholesterolemia 3.5, 2.5, 4.5, and 2.5 mg/dl, respectively (all p<0.001 for area under the receiver-operating characteristic curve). In a polytomous logistic model comparing increasing LDL-C categories, the interactions with high PCSK9, apoC3, and sdLDL-C elevated gradually. Similarly, apoC3 and sdLDL-C showed elevated interaction with increased triglyceride categories, and only sdLDL-C showed interaction with decreased HDL cholesterol (HDL-C) categories. Furthermore, discordances of PCSK9, apoC3, and sdLDL-C with current dyslipidemias were observed. PCSK9, apoC3, and sdLDL-C showed significant interactions with current dyslipidemias, and were predictive in the screening. The substantial discordances with current dyslipidemias might provide novel view in lipid management and further cardiovascular benefit.
Li, Sha; Zhao, Xi; Zhang, Yan; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Xu, Rui-Xia; Qing, Ping; Gao, Ying; Sun, Jing; Liu, Geng; Dong, Qian; Li, Jian-Jun
2017-01-01
Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein C-III (apoC3) and small dense low density lipoprotein cholesterol (sdLDL-C), have been recently recognized as circulating atherosclerosis-related lipid measurements. We aimed to elucidate their associations with current dyslipidemias, and identify their levels at increased risk to dyslipidemia. A total of 1,605 consecutive, non-treated patients undergoing diagnostic/interventional coronary angiography were examined. Plasma PCSK9 and apoC3 levels were determined using a validated ELISA assay, and sdLDL-C was measured by the Lipoprint LDL System. Plasma levels of PCSK9, apoC3, and sdLDL-C were associated with the current dyslipidemias classification (all p<0.001). PCSK9 significantly conferred prediction of both hypercholesterolemia and combined hyperlipidemia at a level of 235 ng/ml; apoC3 levels for hypertriglyceridemia, hypercholesterolemia and combined hyperlipidemia were 80.0, 71.5, and 86.4 g/ml, respectively; and sdLDL-C for hypertriglyceridemia, hypercholesterolemia, combined hyperlipidemia and hypo high density lipoprotein (HDL) cholesterolemia 3.5, 2.5, 4.5, and 2.5 mg/dl, respectively (all p<0.001 for area under the receiver-operating characteristic curve). In a polytomous logistic model comparing increasing LDL-C categories, the interactions with high PCSK9, apoC3, and sdLDL-C elevated gradually. Similarly, apoC3 and sdLDL-C showed elevated interaction with increased triglyceride categories, and only sdLDL-C showed interaction with decreased HDL cholesterol (HDL-C) categories. Furthermore, discordances of PCSK9, apoC3, and sdLDL-C with current dyslipidemias were observed. PCSK9, apoC3, and sdLDL-C showed significant interactions with current dyslipidemias, and were predictive in the screening. The substantial discordances with current dyslipidemias might provide novel view in lipid management and further cardiovascular benefit. PMID:27713142
Oh, Tae Jung; Ahn, Chang Ho; Kim, Bo-Rahm; Kim, Kyoung Min; Moon, Jae Hoon; Lim, Soo; Park, Kyong Soo; Lim, Cheong; Jang, HakChul; Choi, Sung Hee
2017-07-20
A previous genome-wide association study showed that a genetic variant of sortilin was associated with the risk of coronary artery disease (CAD). However, the role of circulating sortilin is still unknown. We investigated the potential role of plasma sortilin as a biomarker for CAD and diabetes mellitus. We enrolled statin-naïve subjects with CAD (n = 31) who underwent coronary artery bypass surgery and control subjects (n = 116) who were free from CAD as evaluated by coronary CT angiography. The presence of diabetes mellitus was evaluated and plasma sortilin levels were measured with a commercial ELISA kit. Plasma sortilin levels were higher in subjects with CAD and subjects with diabetes mellitus than in those without CAD or diabetes mellitus. Subjects in the highest sortilin tertile group were older and had higher glucose and HbA1c levels, but lipid profiles in the three tertile groups were comparable. Multivariable logistic regression analysis revealed that sortilin levels were independently associated with CAD. In addition, the receiver operating characteristic curve analysis showed that plasma sortilin levels could identify the presence of CAD or diabetes mellitus. Elevated circulating sortilin levels are associated with CAD and diabetes mellitus and can be used as a biomarker of both diseases in statin-naïve subjects.
Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina
2010-08-01
To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg
2017-10-28
Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M
2011-08-01
Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.
Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A
2018-06-01
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
76 FR 55689 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
..., Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31.../Schering-Plough) Singapore Company, LLC. Simvastatin lowers lipids (fats that circulate in the bloodstream... in producing lipids in the body, and ezetimibe lowers lipids by inhibiting the absorption of...
Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei
2015-01-01
Purpose Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. Methods A total of 460 permanent residents of the Fengxian District, aged 40–60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18–28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Results Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Conclusions Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism. PMID:26247824
Alonso, Rodrigo; Mata, Pedro; Muñiz, Ovidio; Fuentes-Jimenez, Francisco; Díaz, Jose Luis; Zambón, Daniel; Tomás, Marta; Martin, Cesar; Moyon, Thomas; Croyal, Mikaël; Thedrez, Aurélie; Lambert, Gilles
2016-11-01
We aimed to assess whether elevated PCSK9 and lipoprotein (a) [Lp(a)] levels associate with coronary artery calcification (CAC), a good marker of atherosclerosis burden, in asymptomatic familial hypercholesterolemia. We selected 161 molecularly defined FH patients treated with stable doses of statins for more than a year. CAC was measured using the Agatston method and quantified as categorical variable. Fasting plasma samples were collected and analyzed for lipids and lipoproteins. PCSK9 was measured by ELISA, Lp(a) and apolipoprotein (a) concentrations by inmunoturbidimetry and LC-MS/MS, respectively. Circulating PCSK9 levels were significantly reduced in patients without CAC (n = 63), compared to those with CAC (n = 99). Patients with the highest CAC scores (above 100) had the highest levels of circulating PCSK9 and Lp(a). In multivariable regression analyses, the main predictors for a positive CAC score was age and sex followed by circulating PCSK9 and Lp(a) levels. In statin treated asymptomatic FH patients, elevated PCSK9 and Lp(a) levels are independently associated with the presence and severity of CAC, a good predictor of coronary artery disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S
1996-05-01
Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.
Desideri, G; Bocale, R; D'Amore, A; Necozione, S; Boscherini, M; Carnassale, G; Barini, A; Barini, A; Bellantone, R; Lombardi, C P
2017-10-01
Subclinical hypothyroidism has been linked to increased risk of atherosclerotic disease. Soluble CD40 ligand (sCD40L), mainly derived from activated platelets, and the lipid peroxidation product 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) are known to play a relevant pathophysiological role in atherogenesis. In this study, we analyzed the relationship between thyroid hormones and circulating levels of sCD40L and 8-iso-PGF 2α in patient with recent-onset post-thyroidectomy subclinical hypothyroidism under replacement therapy. Circulating levels of thyroid hormones, sCD40L, and 8-iso-PGF 2α were assessed in 40 recently thyroidectomized patients (33 females, mean age 52.0 ± 11.7 years) at baseline (5-7 day after surgery) and after 2 months under replacement therapy with levothyroxine (LT-4). At baseline, circulating levels of thyroid hormones were indicative of a subclinical hypothyroidism (TSH 7.7 ± 3.9 μU/mL, FT3 1.8 ± 0.6 pg/mL, and FT3 8.9 ± 3.0 pg/mL). Circulating levels of sCD40L and 8-iso-PGF 2α were directly correlated with each other (r = 0.360, p = 0.023) and with TSH levels (r = 0.322, p = 0.043 and r = 0.329 p = 0.038, respectively). After 2 months under the replacement therapy with LT-4 circulating levels of TSH (from 7.7 ± 3.9 to 2.7 ± 2.8 μU/mL, p < 0.0001), sCD40L (from 6.11 ± 2.41 to 2.43 ± 2.00 ng/mL, p < 0.0001) and 8-iso-PGF 2α (from 45.33 ± 6.94 to 40.36 ± 6.20, p < 0.0001) significantly decreased. Changes in circulating levels of sCD40L and 8-iso-PGF 2α were directly correlated with each other (r = 0.349 p = 0.028) and with changes in TSH levels (r = 0.367 p = 0.020 and r = 0.339 p = 0.032, respectively). Our study suggests an influential role of TSH on proatherogenic activation of platelets, probably through enhanced lipid peroxidation. These findings could partially explain the increased susceptibility of patients with subclinical hypothyroidism to develop atherosclerotic disease. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J
2015-10-05
Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.
Jatuporn, Srisakul; Sangwatanaroj, Somkiat; Saengsiri, Aem-Orn; Rattanapruks, Sopida; Srimahachota, Suphot; Uthayachalerm, Wasan; Kuanoon, Wanpen; Panpakdee, Orasa; Tangkijvanich, Pisit; Tosukhowong, Piyaratana
2003-01-01
The purpose of this study was to compare the short-term effects of an intensive lifestyle modification (ILM) program on lipid peroxidation and antioxidant systems in patients with coronary artery disease (CAD). Twenty-two patients in the control group continued to receive their conventional treatment with lipid-lowering drugs, whereas 22 patients in the experimental group were assigned to intensive lifestyle modification (ILM) without taking any lipid-lowering agent. The ILM program comprised dietary advice on low-fat diets, high antioxidants and high fiber intakes, yoga exercise, stress management and smoking cessation. After 4 months of intervention, patients in the experimental group revealed a statistically significant increase in plasma total antioxidants, plasma vitamin E and erythrocyte glutathione (GSH) compared to patients in the control group. There was no significant change in plasma malondialdehyde (MDA), a circulating product of lipid peroxidation, in either group. We concluded that the ILM program increased circulating antioxidants and reduced oxidative stress in patients with CAD.
Ruiz-Fernández, Nelina; Bosch, Virgilio; Giacopini, Maria Isabel
2016-12-30
To establish association between socioeconomic status and plasmatic markers of lipoperoxidation and antioxidants in Venezuelan school-age children from the middle-class and in critical poverty. Cross-sectional study with a sample of 114 school-age children (aged 7-9). The socioeconomic status, dietary intake of macro and micro-nutrients, weight, height, lipid profile, indicators of lipid peroxidation and enzymatic and non-enzymatic antioxidants were determined. The daily average intake of energy, carbohydrates and vitamin A, and the percentage of energy obtained from carbohydrates was significantly higher in middle-class children compared to critical poverty children ( p <0.05). The circulating oxidized low density lipoprotein ( p <0.001) and the susceptibility of low density lipoproteins and very low density lipoproteins to oxidation in vitro ( p <0.05) were significantly higher in middle-class children, while the critical poverty children showed significantly lower levels of Vitamin C and E in plasma ( p <0.05). Non-enzymatic antioxidant levels were frequently deficient in both strata. The concentrations of circulating oxidized low density lipoprotein (OR: 1.09, CI 95% : 1.016-1.179; p = 0.017) and Vitamin C (OR: 3.21, CI 95% : 1.104-9.938; p = 0.032) were associated to the socioeconomic status independently of gender, family history of premature coronary artery disease, triglicerides, Vitamin C and E dietary intake and count of white blood cells. The socioeconomic status was associated to circulating oxidized low density lipoprotein and Vitamin C in Venezuelan school-age children, The results suggested the need to improve the dietary intake of antioxidants in both studied socioeconomic groups.
Barker, Tyler; Henriksen, Vanessa T; Rogers, Victoria E; Momberger, Nathan G; Rasmussen, G Lynn; Trawick, Roy H
2016-12-01
The purpose of this study was to identify if circulating interleukin (IL)-6 and γ-tocopherol (γT) fluctuate with vitamin D status in subjects with an underlying knee joint injury or disease. We hypothesized that low vitamin D associates with an increase in plasma γT while serum IL-6 remains unchanged in subjects with an underlying knee joint trauma or disease. Fifty-four subjects scheduled to undergo primary, unilateral anterior cruciate ligament reconstructive surgery (ACL; n=27) or total knee arthroplasty (TKA; n=27) were studied. Circulating γT, α-tocopherol (αT), lipids (cholesterol and triglycerides), IL-6, and 25-hydroxyvitamin D (25(OH)D) were measured in fasting blood samples obtained prior to surgery. Subjects were classified as vitamin D deficient, insufficient, or sufficient if they had a serum 25(OH)D concentration <50, 50-75, or >75nM, respectively. The majority (57%) of the subjects possessed a serum 25(OH)D less than 50nM. Circulating cholesterol, triglycerides, and IL-6 were not significantly (all p>0.05) different between vitamin D status groups. However, lipid corrected αT was significantly (p<0.05) decreased and both lipid- and non-lipid-corrected plasma γT concentrations were significantly (both p<0.05) increased with low serum 25(OH)D (i.e., <50nM). A significant (p<0.05) multi-variate analysis revealed that an increase in plasma γT per lipids was significantly (p<0.05) predicted by a decrease in serum 25(OH)D but not by a decrease in plasma αT per lipids. We conclude that low vitamin D associates with an increase in plasma γT but not IL-6 in subjects with an underlying joint injury or disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endocan is a predictor of increased cardiovascular risk in women with polycystic ovary syndrome.
Bicer, Merve; Guler, Aslı; Unal Kocabas, Gokcen; Imamoglu, Cetin; Baloglu, Ali; Bilgir, Oktay; Yuksel, Arif; Bozkaya, Giray; Calan, Mehmet
2017-05-01
Endocan is a proteoglycan secreted mainly from endothelial cells. It has been implicated that there is a link between endocan and endothelial dysfunction. Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disease associated with increased risk of cardiovascular events. The aims of this study were to ascertain whether circulating endocan levels are altered in women with PCOS, and whether there is an association between endocan and carotid intima media thickness (cIMT). This cross-sectional study included 80 women with PCOS and 80 age- and BMI-matched controls without PCOS. Circulating endocan levels were measured using ELISA. Metabolic, hormonal parameters and cIMT were determined. 2-h oral glucose tolerance test (2-h OGTT) was performed on all women. Circulating endocan levels were significantly elevated in women with PCOS compared with controls (5.99 ± 2.37 vs. 3.66 ± 1.79 ng/ml, P < 0.001). Endocan levels positively correlated with BMI, homeostasis model assessment of insulin resistance (HOMA-IR), free androgen index (FAI), high-sensitivity C-reactive protein (hs-CRP), and cIMT in both PCOS and control groups. Endocan levels did not correlate with fasting blood glucose, 2-h OGTT, A1 C and lipid parameters. Multiple linear regression analysis revealed that endocan is an independent predictor for cIMT (β = 0.128, 95% CI = 0.118-0.138, P = 0.011). Circulating endocan levels are significantly higher in women with PCOS and endocan is independently associated with cIMT. Elevated endocan levels can be a predictor of increased cardiovascular risk in PCOS subjects.
Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis
Aryal, Binod; Singh, Abhishek K.; Zhang, Xinbo; Varela, Luis; Goedeke, Leigh; Chaube, Balkrishna; Camporez, Joao-Paulo; Vatner, Daniel F.; Horvath, Tamas L.; Suárez, Yajaira; Fernández-Hernando, Carlos
2018-01-01
Alterations in ectopic lipid deposition and circulating lipids are major risk factors for developing cardiometabolic diseases. Angiopoietin-like protein 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL), controls fatty acid (FA) uptake in adipose and oxidative tissues and regulates circulating triacylglycerol-rich (TAG-rich) lipoproteins. Unfortunately, global depletion of ANGPTL4 results in severe metabolic abnormalities, inflammation, and fibrosis when mice are fed a high-fat diet (HFD), limiting our understanding of the contribution of ANGPTL4 in metabolic disorders. Here, we demonstrate that genetic ablation of ANGPTL4 in adipose tissue (AT) results in enhanced LPL activity, rapid clearance of circulating TAGs, increased AT lipolysis and FA oxidation, and decreased FA synthesis in AT. Most importantly, we found that absence of ANGPTL4 in AT prevents excessive ectopic lipid deposition in the liver and muscle, reducing novel PKC (nPKC) membrane translocation and enhancing insulin signaling. As a result, we observed a remarkable improvement in glucose tolerance in short-term HFD-fed AT-specific Angptl4-KO mice. Finally, lack of ANGPTL4 in AT enhances the clearance of proatherogenic lipoproteins, attenuates inflammation, and reduces atherosclerosis. Together, these findings uncovered an essential role of AT ANGPTL4 in regulating peripheral lipid deposition, influencing whole-body lipid and glucose metabolism and the progression of atherosclerosis. PMID:29563332
Hedman, Åsa K; Mendelson, Michael M; Marioni, Riccardo E; Gustafsson, Stefan; Joehanes, Roby; Irvin, Marguerite R; Zhi, Degui; Sandling, Johanna K; Yao, Chen; Liu, Chunyu; Liang, Liming; Huan, Tianxiao; McRae, Allan F; Demissie, Serkalem; Shah, Sonia; Starr, John M; Cupples, L Adrienne; Deloukas, Panos; Spector, Timothy D; Sundström, Johan; Krauss, Ronald M; Arnett, Donna K; Deary, Ian J; Lind, Lars; Levy, Daniel; Ingelsson, Erik
2017-01-01
Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications. To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA methylation at cytosine-guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts, with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery stage ( P <1.08E-07) and replicated 33 (at Bonferroni-corrected P <0.05), including 25 novel CpGs not previously associated with lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated locus associated with triglycerides and high-density lipoprotein cholesterol (HDL-C; cg27243685; P =8.1E-26 and 9.3E-19) was associated with cis -expression of a reverse cholesterol transporter ( ABCG1; P =7.2E-28) and incident cardiovascular disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15-1.66; P =0.0007). We found significant cis -methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association studies of lipid levels ( P TC =0.004, P HDL-C =0.008 and P triglycerides =0.00003) and coronary heart disease ( P =0.0007). For example, genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were cis -methylation quantitative trait loci for a low-density lipoprotein cholesterol-related differentially methylated locus. We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events. © 2017 The Authors.
Metabolic Profiling of Adiponectin Levels in Adults: Mendelian Randomization Analysis.
Borges, Maria Carolina; Barros, Aluísio J D; Ferreira, Diana L Santos; Casas, Juan Pablo; Horta, Bernardo Lessa; Kivimaki, Mika; Kumari, Meena; Menon, Usha; Gaunt, Tom R; Ben-Shlomo, Yoav; Freitas, Deise F; Oliveira, Isabel O; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia; Lawlor, Debbie A; Hingorani, Aroon D
2017-12-01
Adiponectin, a circulating adipocyte-derived protein, has insulin-sensitizing, anti-inflammatory, antiatherogenic, and cardiomyocyte-protective properties in animal models. However, the systemic effects of adiponectin in humans are unknown. Our aims were to define the metabolic profile associated with higher blood adiponectin concentration and investigate whether variation in adiponectin concentration affects the systemic metabolic profile. We applied multivariable regression in ≤5909 adults and Mendelian randomization (using cis -acting genetic variants in the vicinity of the adiponectin gene as instrumental variables) for analyzing the causal effect of adiponectin in the metabolic profile of ≤37 545 adults. Participants were largely European from 6 longitudinal studies and 1 genome-wide association consortium. In the multivariable regression analyses, higher circulating adiponectin was associated with higher high-density lipoprotein lipids and lower very-low-density lipoprotein lipids, glucose levels, branched-chain amino acids, and inflammatory markers. However, these findings were not supported by Mendelian randomization analyses for most metabolites. Findings were consistent between sexes and after excluding high-risk groups (defined by age and occurrence of previous cardiovascular event) and 1 study with admixed population. Our findings indicate that blood adiponectin concentration is more likely to be an epiphenomenon in the context of metabolic disease than a key determinant. © 2017 The Authors.
Cheng, Zhangrui; Oguejiofor, Chike F; Swangchan-Uthai, Theerawat; Carr, Susan; Wathes, D Claire
2015-08-14
Both high and low circulating urea concentrations, a product of protein metabolism, are associated with decreased fertility in dairy cows through poorly defined mechanisms. The rate of involution and the endometrial ability to mount an adequate innate immune response after calving are both critical for subsequent fertility. Study 1 used microarray analysis to identify genes whose endometrial expression 2 weeks postpartum correlated significantly with the mean plasma urea per cow, ranging from 3.2 to 6.6 mmol/L. The biological functions of 781 mapped genes were analysed using Ingenuity Pathway Analysis. These were predominantly associated with tissue turnover (e.g., BRINP1, FOXG1), immune function (e.g., IL17RB, CRISPLD2), inflammation (e.g., C3, SERPINF1, SERPINF2) and lipid metabolism (e.g., SCAP, ACBD5, SLC10A). Study 2 investigated the relationship between urea concentration and expression of 6 candidate genes (S100A8, HSP5A, IGF1R, IL17RB, BRINP1, CRISPLD2) in bovine endometrial cell culture. These were treated with 0, 2.5, 5.0 or 7.5 mmol/L urea, equivalent to low, medium and high circulating values with or without challenge by bacterial lipopolysaccharide (LPS). LPS increased S100A8 expression as expected but urea treatment had no effect on expression of any tested gene. Examination of the genes/pathways involved suggests that plasma urea levels may reflect variations in lipid metabolism. Our results suggest that it is the effects of lipid metabolism rather than the urea concentration which probably alter the rate of involution and innate immune response, in turn influencing subsequent fertility.
BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status?
Gannon, Nicholas P; Schnuck, Jamie K; Vaughan, Roger A
2018-03-01
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence of health benefits of canola oil
Lin, Lin; Allemekinders, Hanja; Dansby, Angela; Campbell, Lisa; Durance-Tod, Shaunda; Berger, Alvin; Jones, Peter JH
2013-01-01
Canola oil-based diets have been shown to reduce plasma cholesterol levels in comparison with diets containing higher levels of saturated fatty acids. Consumption of canola oil also influences biological functions that affect various other biomarkers of disease risk. Previous reviews have focused on the health effects of individual components of canola oil. Here, the objective is to address the health effects of intact canola oil, as this has immediate practical implications for consumers, nutritionists, and others deciding which oil to consume or recommend. A literature search was conducted to examine the effects of canola oil consumption on coronary heart disease, insulin sensitivity, lipid peroxidation, inflammation, energy metabolism, and cancer cell growth. Data reveal substantial reductions in total cholesterol and low-density lipoprotein cholesterol, as well as other positive actions, including increased tocopherol levels and improved insulin sensitivity, compared with consumption of other dietary fat sources. In summary, growing scientific evidence supports the use of canola oil, beyond its beneficial actions on circulating lipid levels, as a health-promoting component of the diet. PMID:23731447
Marvel, Skylar W; Rotroff, Daniel M; Wagner, Michael J; Buse, John B; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A
2017-01-01
Individuals with type 2 diabetes are at an increased risk of cardiovascular disease. Alterations in circulating lipid levels, total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TG) are heritable risk factors for cardiovascular disease. Here we conduct a genome-wide association study (GWAS) of common and rare variants to investigate associations with baseline lipid levels in 7,844 individuals with type 2 diabetes from the ACCORD clinical trial. DNA extracted from stored blood samples from ACCORD participants were genotyped using the Affymetrix Axiom Biobank 1 Genotyping Array. After quality control and genotype imputation, association of common genetic variants (CV), defined as minor allele frequency (MAF) ≥ 3%, with baseline levels of TC, LDL, HDL, and TG was tested using a linear model. Rare variant (RV) associations (MAF < 3%) were conducted using a suite of methods that collapse multiple RV within individual genes. Many statistically significant CV ( p < 1 × 10 -8 ) replicate findings in large meta-analyses in non-diabetic subjects. RV analyses also confirmed findings in other studies, whereas significant RV associations with CNOT2 , HPN-AS1 , and SIRPD appear to be novel ( q < 0.1). Here we present findings for the largest GWAS of lipid levels in people with type 2 diabetes to date. We identified 17 statistically significant ( p < 1 × 10 -8 ) associations of CV with lipid levels in 11 genes or chromosomal regions, all of which were previously identified in meta-analyses of mostly non-diabetic cohorts. We also identified 13 associations in 11 genes based on RV, several of which represent novel findings.
Wagner, Michael J.; Buse, John B.; Havener, Tammy M.; McLeod, Howard L.
2017-01-01
Background Individuals with type 2 diabetes are at an increased risk of cardiovascular disease. Alterations in circulating lipid levels, total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TG) are heritable risk factors for cardiovascular disease. Here we conduct a genome-wide association study (GWAS) of common and rare variants to investigate associations with baseline lipid levels in 7,844 individuals with type 2 diabetes from the ACCORD clinical trial. Methods DNA extracted from stored blood samples from ACCORD participants were genotyped using the Affymetrix Axiom Biobank 1 Genotyping Array. After quality control and genotype imputation, association of common genetic variants (CV), defined as minor allele frequency (MAF) ≥ 3%, with baseline levels of TC, LDL, HDL, and TG was tested using a linear model. Rare variant (RV) associations (MAF < 3%) were conducted using a suite of methods that collapse multiple RV within individual genes. Results Many statistically significant CV (p < 1 × 10−8) replicate findings in large meta-analyses in non-diabetic subjects. RV analyses also confirmed findings in other studies, whereas significant RV associations with CNOT2, HPN-AS1, and SIRPD appear to be novel (q < 0.1). Discussion Here we present findings for the largest GWAS of lipid levels in people with type 2 diabetes to date. We identified 17 statistically significant (p < 1 × 10−8) associations of CV with lipid levels in 11 genes or chromosomal regions, all of which were previously identified in meta-analyses of mostly non-diabetic cohorts. We also identified 13 associations in 11 genes based on RV, several of which represent novel findings. PMID:28480134
Depression in type 1 diabetes was associated with high levels of circulating galectin-3
Melin, Eva Olga; Dereke, Jonatan; Thunander, Maria; Hillman, Magnus
2018-01-01
Objective Neuroinflammatory responses are implicated in depression. The aim was to explore whether depression in patients with type 1 diabetes (T1D) was associated with high circulating galectin-3, controlling for metabolic variables, s-creatinine, life style factors, medication and cardiovascular complications. Design Cross-sectional. Methods Participants were T1D patients (n = 283, 56% men, age 18–59 years, diabetes duration ≥1 year). Depression was assessed by Hospital Anxiety and Depression Scale-depression subscale. Blood samples, anthropometrics and blood pressure were collected, and supplemented with data from medical records and the Swedish National Diabetes Registry. Galectin-3 ≥2.562 µg/l, corresponding to the 85th percentile, was defined as high galectin-3. Results Median (quartile1, quartile3) galectin-3 (µg/l) was 1.3 (0.8, 2.9) for the 30 depressed patients, and 0.9 (0.5, 1.6) for the 253 non-depressed, P = 0.009. Depression was associated with high galectin-3 in all the 283 patients (adjusted odds ratio (AOR) 3.5), in the 161 men (AOR 3.4), and in the 122 women (AOR 3.9). HbA1c, s-lipids, s-creatinine, blood pressure, obesity, smoking, physical inactivity, cardiovascular complications and drugs (antihypertensive, lipid lowering, oral antidiabetic drugs and antidepressants) were not associated with high galectin-3. Conclusions This is the first study to show an association between depression and galectin-3. Depression was the only explored parameter associated with high circulating galectin-3 levels in 283 T1D patients. High galectin-3 levels might contribute to the increased risk for Alzheimer’s disease, cardiovascular and all-cause mortality observed in persons with depression. Potentially, in the future, treatment targeting galactin-3 might improve the prognosis for patients with high galectin-3 levels. PMID:29760188
Holness, M J; Greenwood, G K; Smith, N D; Sugden, M C
2005-11-01
Hyperthyroidism modifies lipid dynamics (increased oxidation), impairs insulin action and can suppress insulin secretion. We therefore examined the impact of hyperthyroidism on the relationship between glucose-stimulated insulin secretion (GSIS) and insulin action, using late pregnancy as a model of physiological insulin resistance that is associated with compensatory insulin hypersecretion to maintain glucose tolerance. Our aim was to examine whether hyperthyroidism compromises the regulation of insulin secretion and the ability of insulin to modulate circulating lipid concentrations in late pregnancy. Hyperthyroidism was induced by tri-iodothyronine (T(3)) administration from day 17 to 19 of pregnancy. GSIS was assessed during an IVGTT and during hyperglycaemic clamps in vivo and in vitro, using step-up and -down islet perifusions. Hyperthyroidism in pregnancy elevated the glucose threshold for GSIS and impaired GSIS at low and high glucose concentrations in islet perifusions. In the intact animal, insulin secretion (after bolus glucose) was more rapidly curtailed following removal of the glucose stimulus to secretion. In contrast, GSIS was maintained during protracted hyperglycaemia (hyperglycaemic clamps) in the hyperthyroid pregnant state in vivo. Hyperthyroidism in vivo during late pregnancy blunts GSIS in subsequently isolated and perifused islets at low and high glucose concentrations. It also adversely affects GSIS under conditions of an acute glucose challenge in vivo. In contrast, GSIS is maintained during sustained hyperglycaemia in vivo, suggesting that in vivo factors can rescue GSIS. The ability of insulin to suppress systemic lipid levels during hyperglycaemic clamps was impaired. We therefore suggest that higher circulating lipids may preserve GSIS under conditions of sustained hyperglycaemia in the hyperthyroid pregnancy.
Cerebral fat embolism: pulmonary contusion is a more important etiology than long bone fractures.
Aydin, M D; Akçay, F; Aydin, N; Gündogdu, C
2005-01-01
Lipid embolism is a serious and life-threatening problem and usually arises as a complication of severe trauma associated with long bone or pelvic fractures. It is generally thought that fat droplets enter the circulation at the site of fracture. In the systemic circulation, they become emboli to brain, kidney and other areas. Lipids are absorbed from the intestinal tract and transported into pulmonary tissue via thoracic duct and exposed to first catabolic procedures in the lungs. We have predicted that systemic lipid embolism may not occur unless bone fractures lead to pulmonary injury. This study was planned to investigate this hypothesis with respect to the role of pulmonary contusion and long bone fractures in the formation of cerebral fat embolism. Twenty male hybrid rabbits were included in this study. Pulmonary contusion was performed on half of the rabbits (n = 10) and femur fracture was applied to the remaining ones (n = 10). Ten days after procedure, all rabbits were sacrificed. Brain specimens were taken by frozen-section method and stained with Sudan black. Intraarteriolar lipid particles in the brain were examined microscopically. Cerebral fat embolism was detected in seven animals exposed to pulmonary contusion and only in one animal exposed to femur fracture. The mean number of branches of middle cerebral artery at midparietal level occluded with fat particles were higher in the pulmonary contusion group than in the long bone fracture group. In conclusion, we found that pulmonary contusion had more deleterious effects than long bone fracture in the formation of cerebral fat embolism.
Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz
2014-01-01
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027
Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.
Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique
2007-04-01
The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.
Gutwenger, Ivana; Hofer, Georg; Gutwenger, Anna K; Sandri, Marco; Wiedermann, Christian J
2015-03-28
Hypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors. This pilot study aimed to explore for effects of a two-week hiking vacation at moderate versus low altitude on adipokines and parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. Fourteen subjects (mean age: 55.8 years, range: 39 - 69) with metabolic syndrome participated in a 2-week structured training program (3 hours of guided daily hiking 4 times a week, training intensity at 55-65% of individual maximal heart rate; total training time, 24 hours). Participants were divided for residence and training into two groups, one at moderate altitude (1,900 m; n = 8), and the other at low altitude (300 m; n = 6). Anthropometric, cardiovascular and metabolic parameters were measured before and after the training period. In study participants, training overall reduced circulating levels of total cholesterol (p = 0.024), low-density lipoprotein cholesterol (p = 0.025) and adiponectin (p < 0.001). In the group training at moderate altitude (n = 8), lowering effects on circulating levels were significant not only for total cholesterol, low-density-lipoprotein cholesterol and adiponectin (all, p < 0.05) but also for triglycerides (p = 0.025) and leptin (p = 0.015), whereas in the low altitude group (n = 6), none of the lipid parameters was significantly changed (each p > 0.05). Hiking-induced relative changes of triglyceride levels were positively associated with reductions in leptin levels (p = 0.006). As compared to 300 m altitude, training at 1,900 m showed borderline significant differences in the pre-post mean reduction rates of triglyceride (p = 0.050) and leptin levels (p = 0.093). Preliminary data on patients with metabolic syndrome suggest that a 2-week hiking vacation at moderate altitude may be more beneficial for adipokines and parameters of lipid metabolism than training at low altitude. In order to draw firm conclusions regarding better corrections of dyslipidemia and metabolic syndrome by physical exercise under mild hypobaric and hypoxic conditions, a sufficiently powered randomized clinical trial appears warranted. ClinicalTrials.gov ID NCT02013947 (first received November 6, 2013).
C3 Polymorphism Influences Circulating Levels of C3, ASP and Lipids in Schizophrenic Patients.
Nsaiba, Mohamed Jalloul; Lapointe, Marc; Mabrouk, Hajer; Douki, Wahiba; Gaha, Lotfi; Pérusse, Louis; Bouchard, Claude; Jrad, Besma Bel Hadj; Cianflone, Katherine
2015-05-01
Excessive activation of complement is associated with many diseases including schizophrenia. Investigation of C3 polymorphisms, circulating C3, cleavage product ASP/C3adesArg, and lipid metabolism. Cross-sectional analysis. C3 genotyping (CC vs GG for R102L) was performed on 434 Tunisian people consisting of 272 schizophrenic (SZ) patients and 162 control subjects. In a age- and gender-matched subgroups of the three genotypes (131 SZ and 112 NOR), plasma triglycerides, total cholesterol (C), LDL-C, HDL-C, ASP, and complement C3 were measured. C3 gene polymorphism influences BMI and plasma C3, ASP, triglyceride, total cholesterol, LDL-C and HDL-C among SZ patients (p < 0.05-0.0001), with increasing values demonstrated from CC (common form) to CG (heterozygote form) to GG (rare homozygote) forms. Significant correlations between plasma C3 and BMI, triglyceride, HDL-C and ASP (p < 0.05-0.0001) were observed, while ASP correlated with BMI and LDL-C (p = 0.005, p = 0.001, respectively) in SZ patients. Further, proportional conversion of C3 to ASP (%ASP/C3) also increased (p < 0.0001, GG>CG>CC). C3 polymorphisms and plasma C3, ASP and %ASP/C3 correlated with lipid parameters in this SZ population, suggesting that factors predisposing patients to schizophrenia are permissive for complement pathway activation and dyslipidemic influences.
Zhang, Zuoheng; Lin, Xubo; Gu, Ning
2017-12-01
Plasma membrane internalization of nanoparticles (NPs) is important for their biomedical applications such as drug-delivery carriers. On one hand, in order to improve their half-life in circulation, PEGylation has been widely used. However, it may hinder the NPs' membrane internalization ability. On the other hand, higher temperature could enhance the membrane permeability and may affect the NPs' ability to enter into or exit from cells. To make full use of their advantages, we systematically investigated the effects of temperature and PEG density on the translocation of PEGylated nanoparticles across the plasma asymmetric membrane of eukaryotic cells, using near-atom level coarse-grained molecular dynamics simulations. Our results showed that higher temperature could accelerate the translocation of NPs across membranes by making lipids more disorder and faster diffusion. On the contrary, steric hindrance effects of PEG would inhibit NPs' translocation process and promote lipids flip-flops. The PEG chains could rearrange themselves to minimize the contacts between PEG and lipid tails during the translocation, which was similar to 'snorkeling effect'. Moreover, lipid flip-flops were affected by PEGylated density as well as NPs' translocation direction. Higher PEG grafting density could promote lipid flip-flops, but inhibit lipid extraction from bilayers. The consequence of lipid flip-flop and extraction was that the membranes got more symmetric. Copyright © 2017. Published by Elsevier B.V.
The influence of placental metabolism on fatty acid transfer to the fetus[S
Perazzolo, Simone; Hirschmugl, Birgit; Wadsack, Christian; Desoye, Gernot; Lewis, Rohan M.; Sengers, Bram G.
2017-01-01
The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools. PMID:27913585
Jones, Peter J. H.; Lin, Lin; Gillingham, Leah G.; Yang, Haifeng; Omar, Jaclyn M.
2014-01-01
N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules involved in satiety and energetics; however, how diet impacts circulating NAE concentrations and their downstream metabolic actions in humans remains unknown. Objectives were to examine effects of diets enriched with high-oleic canola oil (HOCO) or HOCO blended with flaxseed oil (FXCO), compared with a Western diet (WD), on plasma NAE levels and the association with energy expenditure and substrate oxidation. Using a randomized controlled crossover design, 36 hypercholesterolemic participants consumed three isoenergetic diets for 28 days, each containing 36% energy from fat, of which 70% was HOCO, FXCO, or WD. Ultra-performance liquid chromatography-MS/MS was used to measure plasma NAE levels and indirect calorimetry to assess energy expenditure and substrate oxidation. After 28 days, compared with WD, plasma oleoylethanolamide (OEA) and alpha-linolenoyl ethanolamide (ALEA) levels were significantly increased in response to HOCO and FXCO (P = 0.002, P < 0.001), respectively. Correlation analysis demonstrated an inverse association between plasma OEA levels and percent body fat (r = −0.21, P = 0.04), and a positive association was observed between the plasma arachidonoyl ethanolamide (AEA)/OEA ratio and android:gynoid fat (r = 0.23, P = 0.02), respectively. Results suggest that plasma NAE levels are upregulated via their dietary lipid substrates and may modulate regional and total fat mass through lipid-signaling mechanisms. PMID:25262934
Singh, Ranjana; Sharma, Sumita; Singh, Rajesh K; Mahdi, Abbas A; Singh, Raj K; Lee Gierke, Cathy; Cornelissen, Germaine
2016-08-01
Circulating lipid components were studied under near-normal tropical conditions (around Lucknow) in 162 healthy volunteers - mostly medical students, staff members and members of their families (103 males and 59 females; 7 to 75y), subdivided into 4 age groups: A (7-20y; N=42), B (21-40y; N=60), C (41-60y; N=35) and D (61-75y; N=25). Blood samples were collected from each subject every 6h for 24h (4 samples). Plasma was separated and total cholesterol, high-density-lipoprotein (HDL) cholesterol, phospholipids and total lipids were measured spectrophotometrically. Data from each subject were analyzed by cosinor. We examined by multiple-analysis of variance how the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted mean) and the circadian amplitude of these variables is affected by gender, age, diet (vegetarian vs. omnivore), and smoking status. In addition to effects of gender and age, diet and smoking were found to affect the MESOR of circulating plasma lipid components in healthy Indians residing in northern India. Age also affected the circadian amplitude of these variables. These results indicate the possibility of using non-pharmacological interventions to improve a patient's metabolic profile before prescribing medication under near normal tropical conditions. They also add information that may help refine cut-off values in the light of factors shown here to affect blood lipids. Copyright © 2016 Elsevier B.V. All rights reserved.
12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake.
Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu; Baer, Lisa A; Arts, Peter J; May, Francis J; Lehnig, Adam C; Middelbeek, Roeland J W; Richard, Jeffrey J; So, Kawai; Chen, Emily Y; Gao, Fei; Narain, Niven R; Distefano, Giovanna; Shettigar, Vikram K; Hirshman, Michael F; Ziolo, Mark T; Kiebish, Michael A; Tseng, Yu-Hua; Coen, Paul M; Goodyear, Laurie J
2018-05-01
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Copyright © 2018 Elsevier Inc. All rights reserved.
Arsenault, Benoit J; Petrides, Francine; Tabet, Fatiha; Bao, Weihang; Hovingh, G Kees; Boekholdt, S Matthijs; Ramin-Mangata, Stéphane; Meilhac, Olivier; DeMicco, David; Rye, Kerry-Anne; Waters, David D; Kastelein, John J P; Barter, Philip; Lambert, Gilles
Proprotein subtilisin kexin type 9 (PCSK9) and lipoprotein (a) [Lp(a)] levels are causative risk factors for coronary heart disease. The objective of the study was to determine the impact of lipid-lowering treatments on circulating PCSK9 and Lp(a). We measured PCSK9 and Lp(a) levels in plasma samples from Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events trial patients with coronary heart disease and/or type II diabetes (T2D) mellitus. Patients received atorvastatin, which was titrated (10, 20, 40, or 80 mg/d) to achieve low-density lipoprotein cholesterol levels <100 mg/dL (baseline) and were subsequently randomized either to atorvastatin + torcetrapib, a cholesterol ester transfer protein inhibitor, or to atorvastatin + placebo. At baseline, both plasma PCSK9 and Lp(a) were dose-dependently increased with increasing atorvastatin doses. Compared with patients without T2D, those with T2D had higher PCSK9 (357 ± 123 vs 338 ± 115 ng/mL, P = .0012) and lower Lp(a) levels (28 ± 32 vs 32 ± 33 mg/dL, P = .0005). Plasma PCSK9 levels significantly increased in patients treated with torcetrapib (+13.1 ± 125.3 ng/mL [+3.7%], P = .005), but not in patients treated with placebo (+2.6 ± 127.9 ng/mL [+0.7%], P = .39). Plasma Lp(a) levels significantly decreased in patients treated with torcetrapib (-3.4 ± 10.7 mg/dL [-11.1%], P < .0001), but not in patients treated with placebo (+0.3 ± 9.4 mg/dL [+0.1%], P = .92). In patients at high cardiovascular disease risk, PCSK9 and Lp(a) are positively and dose-dependently correlated with atorvastatin dosage, whereas the presence of T2D is associated with higher PCSK9 but lower Lp(a) levels. Cholesterol ester transfer protein inhibition with torcetrapib slightly increases PCSK9 levels and decreases Lp(a) levels. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
He, Wen-Tao; Mori, Masayuki; Yu, Xue-Feng; Kanda, Tsugiyasu
2016-01-05
Emerging studies indicate that B-type natriuretic peptide (BNP), a well-known biomarker for heart failure, also plays pivotal roles in metabolic control. Circulating BNP levels progressively increase as ages grow older. However, the association between BNP levels and lipid metabolism in the elderly remains unknown. A total of 680 eligible volunteers (male/female: 334/346) aged between 60 and 80 years old without overt heart failure (BNP <100 pg/ml) were enrolled. Random nonfasting venous samples were obtained for biochemical analysis. The subjects were stratified based on BNP quartiles: BNP Q1 (range: 2.2-9.0 pg/ml), Q2 (9.1-20.4 pg/ml), Q3 (20.5-44.4 pg/ml) and Q4 (44.6-99.7 pg/ml). Difference of metabolic parameters was compared among the subjects grouped by BNP quartiles. Univariate correlation and multiple linear regression were performed to analyze the association between BNP levels and metabolic parameters. The odds ratios (OR) and 95 % confidence intervals (CI) for dyslipidemia in subjects within BNP Q1-3 relative to subjects within BNP Q4 were calculated. Circulating BNP levels positively correlated with age, while negatively correlated with body mass index (BMI), eGFR and non-HDL. Subjects with lower BNP quartiles had significantly elevated prevalence of dyslipidemia, including hypertriglyceridemia, hyper-LDL-emia and hypercholesterolemia. The OR of hypertriglyceridemia and hypercholesterolemia for subjects within BNP Q1-2 significantly increased relative to BNP Q4. The elderly people with higher BNP levels have significantly reduced risks for nonfasting dyslipidemia. Verification of the cause-effect relationship between BNP and dyslipidemia may bring therapeutic implications.
Loss of CTRP1 disrupts glucose and lipid homeostasis
Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.
2016-01-01
C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298
Al-Shammari, S; Fatania, H; Al-Radwan, R; Akanji, A O
2004-01-01
APOE polymorphism is believed to confer susceptibility to coronary heart disease (CHD) and Alzheimer's disease. It is well known that patterns of APOE polymorphisms differ between populations and ethnic groups, although most of the data available so far have been in whites. We evaluated the frequencies of APOE genotypes and their relationships with serum levels of lipids, lipoproteins and apolipoproteins in two groups of Gulf Arab citizens: a control population of healthy voluntary blood donors (n=106), and a group of patients presenting to the lipid clinic for the first time with combined hyperlipidaemia (CH) (n=41). In both groups, fasting serum total cholesterol (TC), triglycerides (TG), HDL, LDL and apolipoprotein A1 and B levels were measured by routine autoanalyzer methods, and APOE genotyping was performed by validated PCR methods. The lipid and lipoprotein levels were related to the specific APOE allele frequencies. Allele frequencies were 5.7% for *E2, 85.4% for *E3, and 9.0% for *E4 in the healthy blood donor group. An essentially similar pattern was seen in the patients with CH. This APOE allelic distribution conforms to patterns described in Chinese, whites and South Asians. In both the blood donor and CH groups there were no consistent links between specific APOE pattern and serum lipoproteins, as would have been predicted from APO *E2 and APO *E4 frequencies. We conclude that APOE allelic patterns in healthy Kuwaiti blood donors and a smaller group of patients with CH do not satisfactorily predict circulating blood levels of lipids and lipoproteins.
Oleic acid exposure of cultured endothelial cells alters lipid mediator production
Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...
Chen, Xinhua; Scholl, Theresa O; Stein, Thomas P; Steer, Robert A; Williams, Keith P
2017-01-01
Prior reports on the association between altered maternal serum lipid levels with preterm delivery are inconsistent. Ethnic differences in serum lipids during pregnancy and their relation to preterm delivery have not been studied. We examined the relationships of six maternal lipids during early pregnancy with the risk of spontaneous preterm delivery (SPTD). The design represents a case-control study nested within a large prospective, multiethnic cohort of young, generally healthy pregnant women. SPTD cases ( n = 183) and controls who delivered at term ( n = 376) were included. SPTD is defined as delivery at <37 completed weeks of gestation without indicated conditions. We found that African-American women had significantly increased levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1), and lower triglyceride (TG) and apolipoprotein B (apoB) levels compared to Hispanic and non-Hispanic Caucasians combined. Elevated HDL-C and apoA1 concentrations were significantly associated with an increased odds of SPTD after controlling for potential confounding factors. The adjusted odds ratio (AOR) was 1.91 (95% confidence interval (CI) 1.15, 3.20) for the highest quartile of HDL-C relative to the lowest quartile, and for apoA1 the AOR was 1.94 (95% CI 1.16, 3.24). When controlling for ethnicity, the results remained comparable. These data suggest that pregnant African-American women had a more favorable lipid profile suggestive of a reduction in cardiovascular risk. Despite this, increased HDL-C and apoA1 were both found to be associated with SPTD.
Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M
2015-01-01
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630
Bosch, Virgilio; Giacopini, Maria Isabel
2016-01-01
Abstract Objetive: To establish association between socioeconomic status and plasmatic markers of lipoperoxidation and antioxidants in Venezuelan school-age children from the middle-class and in critical poverty. Methods: Cross-sectional study with a sample of 114 school-age children (aged 7-9). The socioeconomic status, dietary intake of macro and micro-nutrients, weight, height, lipid profile, indicators of lipid peroxidation and enzymatic and non-enzymatic antioxidants were determined. Results: The daily average intake of energy, carbohydrates and vitamin A, and the percentage of energy obtained from carbohydrates was significantly higher in middle-class children compared to critical poverty children (p <0.05). The circulating oxidized low density lipoprotein (p <0.001) and the susceptibility of low density lipoproteins and very low density lipoproteins to oxidation in vitro (p <0.05) were significantly higher in middle-class children, while the critical poverty children showed significantly lower levels of Vitamin C and E in plasma (p <0.05). Non-enzymatic antioxidant levels were frequently deficient in both strata. The concentrations of circulating oxidized low density lipoprotein (OR: 1.09, CI 95%: 1.016-1.179; p= 0.017) and Vitamin C (OR: 3.21, CI 95%: 1.104-9.938; p= 0.032) were associated to the socioeconomic status independently of gender, family history of premature coronary artery disease, triglicerides, Vitamin C and E dietary intake and count of white blood cells. Conclusion: The socioeconomic status was associated to circulating oxidized low density lipoprotein and Vitamin C in Venezuelan school-age children, The results suggested the need to improve the dietary intake of antioxidants in both studied socioeconomic groups. PMID:28293041
Al-Nakeeb, Zaid; Petraitis, Vidmantas; Goodwin, Joanne; Petraitiene, Ruta; Walsh, Thomas J.
2015-01-01
Amphotericin B is a first-line agent for the treatment of invasive aspergillosis. However, relatively little is known about the pharmacodynamics of amphotericin B for invasive pulmonary aspergillosis. We studied the pharmacokinetics (PK) and pharmacodynamics (PD) of amphotericin B deoxycholate (DAMB), amphotericin B lipid complex (ABLC), and liposomal amphotericin B (LAMB) by using a neutropenic-rabbit model of invasive pulmonary aspergillosis. The study endpoints were lung weight, infarct score, and levels of circulating galactomannan and (1→3)-β-d-glucan. Mathematical models were used to describe PK-PD relationships. The experimental findings were bridged to humans by Monte Carlo simulation. Each amphotericin B formulation induced a dose-dependent decline in study endpoints. Near-maximal antifungal activity was evident with DAMB at 1 mg/kg/day and ABLC and LAMB at 5 mg/kg/day. The bridging study suggested that the “average” patient receiving LAMB at 3 mg/kg/day was predicted to have complete suppression of galactomannan and (1→3)-β-d-glucan levels, but 20 to 30% of the patients still had a galactomannan index of >1 and (1→3)-β-d-glucan levels of >60 pg/ml. All formulations of amphotericin B induce a dose-dependent reduction in markers of lung injury and circulating fungus-related biomarkers. A clinical dosage of liposomal amphotericin B of 3 mg/kg/day is predicted to cause complete suppression of galactomannan and (1→3)-β-d-glucan levels in the majority of patients. PMID:25712363
Growth Hormone Control of Hepatic Lipid Metabolism
Liu, Zhongbo; Cordoba-Chacon, Jose; Kineman, Rhonda D.; Cronstein, Bruce N.; Muzumdar, Radhika; Gong, Zhenwei; Werner, Haim
2016-01-01
In humans, low levels of growth hormone (GH) and its mediator, IGF-1, associate with hepatic lipid accumulation. In mice, congenital liver-specific ablation of the GH receptor (GHR) results in reductions in circulating IGF-1 and hepatic steatosis, associated with systemic insulin resistance. Due to the intricate relationship between GH and IGF-1, the relative contribution of each hormone to the development of hepatic steatosis is unclear. Our goal was to dissect the mechanisms by which hepatic GH resistance leads to steatosis and overall insulin resistance, independent of IGF-1. We have generated a combined mouse model with liver-specific ablation of GHR in which we restored liver IGF-1 expression via the hepatic IGF-1 transgene. We found that liver GHR ablation leads to increases in lipid uptake, de novo lipogenesis, hyperinsulinemia, and hyperglycemia accompanied with severe insulin resistance and increased body adiposity and serum lipids. Restoration of IGF-1 improved overall insulin sensitivity and lipid profile in serum and reduced body adiposity, but was insufficient to protect against steatosis-induced hepatic inflammation or oxidative stress. We conclude that the impaired metabolism in states of GH resistance results from direct actions of GH on lipid uptake and de novo lipogenesis, whereas its actions on extrahepatic tissues are mediated by IGF-1. PMID:27679560
Pecks, U.; Rath, W.; Kleine-Eggebrecht, N.; Maass, N.; Voigt, F.; Goecke, T. W.; Mohaupt, M. G.; Escher, G.
2016-01-01
Objective: Lipids and steroid hormones are closely linked. While cholesterol is the substrate for (placental) steroid hormone synthesis, steroid hormones regulate hepatic lipid production. The aim of this study was to quantify circulating steroid hormones and lipid metabolites, and to characterize their interactions in normal and pathological pregnancies with a focus on hepatic and placental pathologies. Methods: A total of 216 serum samples were analyzed. Group A consisted of 32 patients with uncomplicated pregnancies who were analyzed at three different time-points in pregnancy (from the first through the third trimester) and once post partum. Group B consisted of 36 patients (24th to 42nd week of gestation) with pregnancy pathologies (IUGR n = 10, preeclampsia n = 13, HELLP n = 6, intrahepatic cholestasis n = 7) and 31 controls with uncomplicated pregnancies. Steroid profiles including estradiol, progesterone, and dehydroepiandrosterone were measured by GC-MS and compared with lipid concentrations. Results: In Group A, cholesterol and triglycerides correlated positively with estradiol (cholesterol ρ = 0.50, triglycerides ρ = 0.57) and progesterone (ρ = 0.49, ρ = 0.53) and negatively with dehydroepiandrosterone (ρ = − 0.47, ρ = − 0.38). Smoking during pregnancy affected estradiol concentrations, leading to lower levels in the third trimester compared to non-smoking patients (p < 0.05). In Group B, cholesterol levels were found to be lower in IUGR pregnancies and in patients with HELLP syndrome compared to controls (p < 0.05). Steroid hormone concentrations of estradiol (p < 0.05) and progesterone (p < 0.01) were lower in pregnancies with IUGR. Discussion: Lipid and steroid levels were affected most in IUGR pregnancies, while only minor changes in concentrations were observed for other pregnancy-related disorders. Each of the analyzed entities displayed specific changes. However, since the changes were most obvious in pregnancies complicated by IUGR and only minor changes were observed in pregnancies where patients had impaired liver function, our data suggests that placental rather than maternal hepatic function strongly determines lipid and steroid levels in pregnancy. PMID:27582578
Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.
2017-01-01
Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure. PMID:28382948
NASA Astrophysics Data System (ADS)
Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.
2017-04-01
Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.
Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H
2016-03-28
Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid.
Shi, Xiulin; Lin, Mingzhu; Liu, Changqin; Xiao, Fangsen; Liu, Yongwen; Huang, Peiying; Zeng, Xin; Yan, Bing; Liu, Suhuan; Li, Xiaoying; Yang, Shuyu; Li, Xuejun; Li, Zhibin
2016-07-29
Evidence on the role of irisin in insulin resistance is limited and controversial, and pathways between them remain unknown. We aimed to examine the independent effects of circulating irisin and different adiposity measurements, as well as their potential interactions, on insulin resistance. We also aimed to explore possible pathways among circulating irisin, adiposity, glucose and insulin levels and insulin resistance. A cross-sectional study of 1,115 community- living obese Chinese adults, with data collection on clinical characteristics, glucose and lipid metabolic parameters and circulating irisin levels. Among the 1,115 subjects, 667 (59.8 %) were identified as insulin-resistance, and showed significantly decreased serum irisin than their controls (log-transformed irisin: 1.19 ± 2.34 v.s. 1.46 ± 2.05 ng/ml, p = 0.042). With adjustment for potential confounders, elevated circulating irisin was significantly associated with reduced risk of insulin resistance, with adjusted odds ratio per standard deviation increase of irisin of 0.871 (0.765-0.991, p = 0.036). As for different adiposity measurements, body fat percentage, but neither BMI nor waist, was significantly associated with increased risk of insulin resistance (OR: 1.152 (1.041-1.275), p = 0.006). No significant interaction effect between serum irisin and adiposity on insulin resistance was found. A one pathway model about the relationship between serum irisin and insulin resistance fits well (χ (2) = 44.09, p < 0.001; CFI-0.994; TLI =0.986; and RMSEA = 0.067), and shows that elevated circulating irisin might improve insulin resistance indirectly through lowering fasting insulin levels (standardized path coefficient = -0.046, p = 0.032). Elevated circulating irisin is associated with lower risk of insulin resistance indirectly through lowering fasting insulin.
Lewis, Rohan M; Hanson, Mark A; Burdge, Graham C
2011-08-01
The developing fetus requires an adequate supply of fatty acids, in particular PUFA, for optimal growth and development. Little is known about the transfer of fatty acids by the placenta into the fetal circulation. However, the molecular form in which fatty acids are transferred into the fetal circulation may influence their metabolism and hence their availability to specific tissues. The aim of the present study was to determine which lipid pools in the fetal circulation become enriched in fatty acids from the placenta by comparing the fatty acid compositions of individual lipid pools between umbilical venous (UV) and umbilical arterial (UA) plasma. Plasma from the UV and UA was collected after delivery from ten uncomplicated pregnancies, and the fatty acid composition of each lipid class was determined by GC. Total NEFA concentration in the UV was twofold higher than in the UA (P < 0·05) due to enrichment in 16 : 0, 16 : 1n-7, 18 : 1n-9, 18 : 1n-7, 18 : 2n-6, 20 : 3n-6, 20 : 4n-6, 24 : 0 and 22 : 6n-3. Total cholesteryl ester concentration was twofold higher in the UV than in the UA (P < 0·05) due to enrichment in 16 : 0, 16 : 1n-7, 18 : 0, 18 : 1n-9, 18 : 1n-7, 18 : 2n-6 and 20 : 4n-6. There were no significant UV-UA differences in the total concentration or composition of TAG or phosphatidylcholine. The present study demonstrates differential enrichment across the placenta of fatty acids into specific lipid pools in the fetal circulation. Such partitioning may facilitate supply of individual fatty acids to specific fetal tissues.
Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B.; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M.; Li, Elizabeth; Dreyfuss, Jonathan M.; Gall, Walt; Kim, Jason K.; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E.
2016-01-01
Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21−/− mice, demonstrating that Fgf21 is necessary for betaine’s beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359
Estall, Jennifer L.; Kahn, Mario; Cooper, Marcus P.; Fisher, ffolliott Martin; Wu, Michele K.; Laznik, Dina; Qu, Lishu; Cohen, David E.; Shulman, Gerald I.; Spiegelman, Bruce M.
2009-01-01
OBJECTIVE The peroxisome proliferator–activated receptor-γ coactivator (PGC)-1 family of transcriptional coactivators controls hepatic function by modulating the expression of key metabolic enzymes. Hepatic gain of function and complete genetic ablation of PGC-1α show that this coactivator is important for activating the programs of gluconeogenesis, fatty acid oxidation, oxidative phosphorylation, and lipid secretion during times of nutrient deprivation. However, how moderate changes in PGC-1α activity affect metabolism and energy homeostasis has yet to be determined. RESEARCH DESIGN AND METHODS To identify key metabolic pathways that may be physiologically relevant in the context of reduced hepatic PGC-1α levels, we used the Cre/Lox system to create mice heterozygous for PGC-1α specifically within the liver (LH mice). RESULTS These mice showed fasting hepatic steatosis and diminished ketogenesis associated with decreased expression of genes involved in mitochondrial β-oxidation. LH mice also exhibited high circulating levels of triglyceride that correlated with increased expression of genes involved in triglyceride-rich lipoprotein assembly. Concomitant with defects in lipid metabolism, hepatic insulin resistance was observed both in LH mice fed a high-fat diet as well as in primary hepatocytes. CONCLUSIONS These data highlight both the dose-dependent and long-term effects of reducing hepatic PGC-1α levels, underlining the importance of tightly regulated PGC-1α expression in the maintenance of lipid homeostasis and glucose metabolism. PMID:19366863
Jones, Peter J H; Lin, Lin; Gillingham, Leah G; Yang, Haifeng; Omar, Jaclyn M
2014-12-01
N-Acylethanolamines (NAEs) are endogenous lipid-signaling molecules involved in satiety and energetics; however, how diet impacts circulating NAE concentrations and their downstream metabolic actions in humans remains unknown. Objectives were to examine effects of diets enriched with high-oleic canola oil (HOCO) or HOCO blended with flaxseed oil (FXCO), compared with a Western diet (WD), on plasma NAE levels and the association with energy expenditure and substrate oxidation. Using a randomized controlled crossover design, 36 hypercholesterolemic participants consumed three isoenergetic diets for 28 days, each containing 36% energy from fat, of which 70% was HOCO, FXCO, or WD. Ultra-performance liquid chromatography-MS/MS was used to measure plasma NAE levels and indirect calorimetry to assess energy expenditure and substrate oxidation. After 28 days, compared with WD, plasma oleoylethanolamide (OEA) and alpha-linolenoyl ethanolamide (ALEA) levels were significantly increased in response to HOCO and FXCO (P = 0.002, P < 0.001), respectively. Correlation analysis demonstrated an inverse association between plasma OEA levels and percent body fat (r = -0.21, P = 0.04), and a positive association was observed between the plasma arachidonoyl ethanolamide (AEA)/OEA ratio and android:gynoid fat (r = 0.23, P = 0.02), respectively. Results suggest that plasma NAE levels are upregulated via their dietary lipid substrates and may modulate regional and total fat mass through lipid-signaling mechanisms. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Du, Caiqi; Zhang, Cai; Wu, Wei; Liang, Yan; Wang, Anru; Wu, Shimin; Zhao, Yue; Hou, Ling; Ning, Qin; Luo, Xiaoping
2018-04-25
A novel bioactive peptide, mitochondrial-derived peptide (MOTS-c), has recently attracted attention as a potential prevention or therapeutic option for obesity and type 2 diabetes mellitus (T2DM). MOTS-c profiles have not yet been reported in human obesity and T2DM. We aimed to determine circulating MOTS-c levels in obesity and explore the association between MOTS-c levels and various metabolic parameters. In this case-control study, 40 obese children and adolescents (27 males) and 57 controls (40 males) were recruited in the Hubei Province of China in 2017. Circulating MOTS-c levels were measured, clinical data (e.g., glucose, insulin and lipid profile) were recorded, and anthropometric measurements were performed. Finally, we investigated correlations between MOTS-c levels and related variables. MOTS-c levels were significantly decreased in the obese group compared with the control group (472.61 ± 22.83 ng/mL vs. 561.64 ± 19.19 ng/mL, p < 0.01). After classification by sex, MOTS-c levels were significantly decreased in obese male children and adolescents compared to their counterparts (465.26 ± 24.53 ng/mL vs. 584.07 ± 21.18 ng/mL, p < 0.001), while they were comparable between the obese and healthy female subjects (487.89 ± 49.77 ng/mL vs. 508.85 ± 38.76 ng/mL, p > 0.05). Further, MOTS-c levels were negatively correlated with body mass index (BMI), BMI standard deviation score, waist circumference, waist-to-hip ratio, fasting insulin level, HOMA-IR, and HbA1c in the male cohort. Circulating MOTS-c levels were decreased in obese male children and adolescents and correlated with markers of insulin resistance and obesity. This article is protected by copyright. All rights reserved.
Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women
Pertynska-Marczewska, Magdalena
2015-01-01
Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE–RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE–RAGE pathway hold therapeutic potential for CVD in menopausal women. PMID:25228634
Relationship of Advanced Glycation End Products With Cardiovascular Disease in Menopausal Women.
Pertynska-Marczewska, Magdalena; Merhi, Zaher
2015-07-01
Cardiovascular disease (CVD) represents the most significant cause of death in postmenopausal women. Advanced glycation end products (AGEs) are formed by nonenzymatic modification of proteins, lipids, and nucleic acids by glucose. This review focuses on the contribution of AGEs and their receptors to the development of CVD in menopause. Advanced glycation end products circulate and activate the proinflammatory endothelial cell surface receptor called RAGE, bind to the extracellular matrix of the cardiovascular system, or bind to the circulating anti-inflammatory soluble form of RAGE (sRAGE). Data emerging from human and animal studies suggest that AGEs and both receptors (RAGE and sRAGE) are implicated in the pathophysiology of CVD. Particular emphasis has been given to the role of AGE-RAGE axis in oxidative stress, inflammation, endothelial cell toxicity, and progression of atherosclerosis in menopause. Data accruing from human and animal studies suggest that RAGE expression level and circulating sRAGE level are associated with estradiol and are correlated with CVD risk factors, such as adiposity, dyslipidemia, insulin resistance, diabetes, and metabolic syndrome. By recognizing the impact of AGEs on atherosclerosis, pharmacological strategies targeting the AGE-RAGE pathway hold therapeutic potential for CVD in menopausal women. © The Author(s) 2014.
Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki
2015-08-13
Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.
Stress hormone levels in a freshwater turtle from sites differing in human activity.
Polich, Rebecca L
2016-01-01
Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.
Oakes, Nicholas D; Thalén, Pia; Hultstrand, Therese; Jacinto, Severina; Camejo, Germán; Wallin, Boel; Ljung, Bengt
2005-10-01
Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.
Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P
2001-02-09
Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.
Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.
2015-01-01
Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060
Proitsi, Petroula; Lupton, Michelle K; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F
2014-09-01
Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n=10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10-8 and trait specific scores using SNPs associated exclusively with each trait at p<5 × 10-8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR]=1.005, 95% CI 0.82-1.24, p = 0.962 per 1 unit increase in HDL-c; OR=0.901, 95% CI 0.65-1.25, p=0.530 per 1 unit increase in LDL-c; OR=1.104, 95% CI 0.89-1.37, p=0.362 per 1 unit increase in triglycerides; and OR=0.954, 95% CI 0.76-1.21, p=0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary.
USDA-ARS?s Scientific Manuscript database
Type 2 diabetes (T2D) has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well described in T2D, effects on circulating signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of ...
Markworth, James F.; Vella, Luke; Lingard, Benjamin S.; Tull, Dedreia L.; Rupasinghe, Thusitha W.; Sinclair, Andrew J.; Maddipati, Krishna Rao
2013-01-01
Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery. PMID:24089379
Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?
Das, Undurti N.
2017-01-01
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM. PMID:28824543
Soñanez-Organis, José G.; Godoy-Lugo, José Arquimides; Horin, Lillian J.; Crocker, Daniel E.; Ortiz, Rudy M.
2017-01-01
Thyroid hormones (THs) regulate metabolism, but are typically suppressed during times of stressful physiological conditions, including fasting. Interestingly, prolonged fasting in northern elephant seal pups is associated with reliance on a lipid-based metabolism and increased levels of circulating THs that are partially attributed to active secretion as opposed to reduced clearance. This apparent paradox is coupled with complementary increases in cellular TH-mediated activity, suggesting that in mammals naturally adapted to prolonged fasting, THs are necessary to support metabolism. However, the functional relevance of this physiological paradox has remained largely unexplored, especially as it relates to the regulation of lipids. To address the hypothesis that TSH-mediated increase in THs contributes to lipid metabolism, we infused early and late-fasted pups with TSH and measured several key genes in adipose and muscle, and plasma hormones associated with regulation of lipid metabolism. TSH infusion increased the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) more than 6.5-fold at 60 min in muscle, and expression of uncoupling protein 2 (UCP2) more than 27-fold during the early fast at 60 min, in adipose. Additionally, during the late fast period, the protein content of adipose CD36 increased 1.1-fold, and plasma nonesterified fatty acid (NEFA) concentrations increased 25% at 120 min, with NEFA levels returning to baseline after 24 h. We show that the TSH-induced increases in THs in fasting pups are functional and likely contribute to the maintenance of a lipid-based metabolism. PMID:27903512
Monteleone, Palmiero; Santonastaso, Paolo; Pannuto, Marilena; Favaro, Angela; Caregaro, Lorenza; Castaldo, Eloisa; Zanetti, Tatiana; Maj, Mario
2005-04-30
Increased levels of cholesterol have been reported in patients with bulimia nervosa (BN), but all but one of the published studies were performed on non-fasting subjects, which limits the interpretation of this finding. Moreover, the relationships between serum lipids and comorbid psychiatric disorders or bulimic psychopathology have scarcely been investigated. We measured serum levels of total cholesterol, triglycerides, glucose, 17beta-estradiol and thyroid hormones in 75 bulimic women and 64 age-matched healthy females after an overnight fast. Compared with healthy women, bulimic patients exhibited significantly enhanced serum levels of cholesterol and triglycerides, but similar values of glucose, 17beta-estradiol, FT3 and FT4. No significant differences emerged in these variables between patients with or without comorbid depression, borderline personality disorder or lifetime anorexia nervosa. Circulating cholesterol was positively correlated to the patients' drive for thinness, ineffectiveness, enteroceptive awareness and impulse regulation sub-item scores of the Eating Disorder Inventory-2. These findings confirm that BN is associated with increased levels of serum lipids. This alteration may be involved in the pathophysiology of certain psychopathological characteristics of BN and cannot be explained by the co-occurrence of other psychiatric disorders.
Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis.
Gonzalez-Gay, M A; Garcia-Unzueta, M T; Berja, A; Gonzalez-Juanatey, C; Miranda-Filloy, J A; Vazquez-Rodriguez, T R; de Matias, J M; Martin, J; Dessein, P H; Llorca, J
2009-01-01
The adipocytokine leptin regulates weight centrally and participates in the regulation of the immune and inflammatory responses. Chronic systemic inflammation is of major importance in the development of atherosclerosis in rheumatoid arthritis (RA). In the present study we investigated whether inflammation, obesity or both of these characteristics are potential determinants of circulating leptin concentrations in a group of RA patients on periodical treatment with the TNF-alpha-blocker-infliximab due to severe disease. We also assessed whether the infusion of infliximab may alter circulating leptin concentrations in patients with severe RA. We investigated 33 patients with RA on periodical treatment with infliximab. Serum leptin levels were determined immediately prior to and after infliximab infusion. There was a positive correlation between body mass index of RA patients and baseline serum level of leptin (rho=0.665, p<0.001). Apart from a significant correlation with VCAM-1 (rho=0.349, p=0.04), no significant correlations between baseline leptin levels and the age at the time of the study or at the onset of the disease, disease duration, ESR and CRP levels, DAS28, lipids, insulin sensitivity, adhesion molecules, resistin, adiponectin, ghrelin or the cumulative prednisone dose at the time of the study were found. Leptin levels did not change upon infliximab infusion (p=0.48). In RA patients on TNF-alpha blocker treatment, circulating leptin levels are unrelated to disease activity but constitute a manifestation of adiposity. The beneficial effect of anti-TNF-alpha therapy on cardiovascular mortality in RA does not seem to be mediated by reduction in serum levels of leptin.
Larmo, Petra S; Yang, Baoru; Hurme, Saija A M; Alin, Jouni A; Kallio, Heikki P; Salminen, Eeva K; Tahvonen, Raija L
2009-08-01
Epidemiological studies indicate beneficial effects of flavonoids on cardiovascular disease (CVD) risk. To study the effect of flavonoid-rich sea buckthorn berry (SBB) on circulating lipid markers associated with CVD risk and plasma flavonol concentration. Also investigated was whether changes in the circulating flavonol concentrations correlate with the SBB induced changes in C-reactive protein (CRP) concentration observed previously. In all 229 healthy participants completed the randomized double-blind study and consumed daily 28 g of SBB or placebo for 3 months. Fasting blood samples for the analysis of lipid markers and flavonols were obtained at the beginning and end of the study. Compared to the placebo, the consumption of SBB increased the plasma concentration of the flavonols quercetin and isorhamnetin significantly [treatment differences 3.0 ng/ml (P = 0.03) and 3.9 ng/ml (P < 0.01), respectively]. The increase of kaempferol concentration was not significant [treatment difference 0.7 ng/ml (P = 0.08)]. SBB did not affect the serum total, HDL, LDL cholesterol, or the serum triacylglycerol concentrations. There was no correlation between the changes in flavonol and CRP concentrations of participants. The consumption of SBB significantly increased the fasting plasma concentration of quercetin and isorhamnetin indicating that it is a good dietary source of flavonols. However, this did not convert to affecting the circulating concentrations of lipid markers in healthy, normolipidemic adults having healthy diets.
Ridker, Paul M; Amarenco, Pierre; Brunell, Robert; Glynn, Robert J; Jukema, J Wouter; Kastelein, John J P; Koenig, Wolfgang; Nissen, Steven; Revkin, James; Santos, Raul D; Schwartz, Pamela F; Yunis, Carla; Tardif, Jean-Claude
2016-08-01
Although statins significantly reduce vascular event rates, residual cholesterol risk remains high in many patient groups, including those with known vascular disease as well as in the setting of high-risk primary prevention. Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9), prolongs the half-life of hepatic low-density lipoprotein (LDL) receptors, and reduces circulating atherogenic cholesterol levels. The SPIRE program comprises 6 lipid-lowering studies and 2 cardiovascular outcomes trials, each comparing bococizumab (150 mg subcutaneously every 2 weeks) to matching placebo. The 6 SPIRE lipid-lowering studies include 3 parallel 12-month assessments of bococizumab on atherogenic lipids among statin-treated individuals at high residual risk (SPIRE-HR, SPIRE-LDL, SPIRE-LL), one 12-month study of bococizumab among individuals with familial hypercholesterolemia (SPIRE-FH), one 6-month study of bococizumab among those with statin intolerance (SPIRE-SI), and one 3-month study of bococizumab delivery using an auto-injector device (SPIRE-AI). The SPIRE-1 and SPIRE-2 event-driven cardiovascular outcome trials will assess the efficacy and safety of bococizumab in the prevention of incident vascular events in high-risk populations with and without clinically evident cardiovascular disease who have directly measured entry LDL cholesterol levels ≥70 mg/dL (SPIRE-1, n = 17,000) or ≥100 mg/dL (SPIRE-2, n = 11,000). The SPIRE trials, inclusive of more than 30,000 participants worldwide, will ascertain the magnitude of reduction in atherogenic lipids that accrue with bococizumab and determine whether the addition of this PCSK9 inhibitor to standard treatment significantly reduces cardiovascular morbidity and mortality in high-risk patients, including those without a history of clinical cardiovascular events. Copyright © 2016 Elsevier Inc. All rights reserved.
Kaĭdashev, I P; Savchenko, L H; Kaĭdasheva, E I; Kutsenko, N L; Kutsenko, L O; Solokhina, I L; Mamontova, T V
2010-01-01
We have studied efficiency of a complex therapy with metformin and ramipril combination (1000 mg and 5 mg per day) respectively in patients with metabolic syndrome (MS). The group of patients with MS which answered the basic criteria IDF (2005) was determined. Carbohydrate and Lipidic metabolism were studied. Patients were characterized with raised weight index (WI), arterial hypertension, increased concentration of triglycerides in blood serum, of glucose, of HbAlc level and S-peptide, and also high level of endotelin (1-38) and CD32+CD40+circulating particles of endothelium. Three months treatment lead to decrease in WI, arterial pressure, triglycerides concentration, HbAlc, glucose, except CD32+CD40+. Six months treatment lead to more expressed positive dynamics. Thus, metformin and ramipril combination in patients with MS leads to decrease in insulin resistancy, carbohydrate and lipid metabolism normalization, to restoration of endothelium functions that is possible to consider as prophylaxis of the development of type 2 diabetes melitus and its cardiovascular complications.
The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence
Garg, Sumit; Thomas, Alex A.; Borden, Mark A.
2013-01-01
The goal of this study was to increase in vivo microbubble circulation persistence for applications in medical imaging and targeted drug delivery. Our approach was to investigate the effect of lipid monolayer in-plane rigidity to reduce the rate of microbubble dissolution, while holding constant the microbubble size, concentration and surface architecture. We first estimated the impact of acyl chain length of the main diacyl phosphatidyl-choline (PC) lipid and inter-lipid distance on the cohesive surface energy and, based on these results, we hypothesized that microbubble stability and in vivo ultrasound contrast persistence would increase monotonically with increasing acyl chain length. We therefore measured microbubble in vitro stability to dilution with and without ultrasound exposure, as well as in vivo ultrasound contrast persistence. All measurements showed a sharp rise in stability between DPPC (C16:0) and DSPC (C18:0), which correlates to the wrinkling transition, which signals the onset of significant surface shear and gas permeation resistance, observed in prior single-bubble dissolution studies. Further evidence for the effect of the wrinkling transition came from an in vitro and in vivo stability comparison of microbubbles coated with pure DPPC with those of lung surfactant extract. Microbubble stability against dilution without ultrasound and in vivo ultrasound contrast persistence showed a monotonic increase with acyl chain length from DSPC to DBPC (C22:0). However, we also observed that stability dropped precipitously for all measurements on further increasing lipid acyl chain length from DBPC to DLiPC (C24:0). This result suggests that hydrophobic mismatch between the main PC lipid and the lipopolymer emulsifier, DSPE-PEG5000, may drive a less stable surface microstructure. Overall, these results support our general hypothesis of the role of in-plane rigidity for increasing the lifetime of microbubble circulation. PMID:23787108
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity.
Meshulam, Tova; Breen, Michael R; Liu, Libin; Parton, Robert G; Pilch, Paul F
2011-08-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity
Meshulam, Tova; Breen, Michael R.; Liu, Libin; Parton, Robert G.; Pilch, Paul F.
2011-01-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains. PMID:21652731
Nestel, Paul J; Khan, Anmar A; Straznicky, Nora E; Mellett, Natalie A; Jayawardana, Kaushala; Mundra, Piyushkumar A; Lambert, Gavin W; Meikle, Peter J
2017-01-01
Plasma sphingolipids including ceramides, and gangliosides are associated with insulin resistance (IR) through effects on insulin signalling and glucose metabolism. Our studies of subjects with metabolic syndrome (MetS) showed close relationships between IR and sympathetic nervous system (SNS) activity including arterial norepinephrine (NE). We have therefore investigated possible associations of IR and SNS activity with complex lipids that are involved in both insulin sensitivity and neurotransmission. We performed a cross-sectional assessment of 23 lipid classes/subclasses (total 339 lipid species) by tandem mass spectrometry in 94 overweight untreated subjects with IR (quantified by HOMA-IR, Matsuda index and plasma insulin). Independently of IR parameters, several circulating complex lipids associated significantly with arterial NE and NEFA (non-esterified fatty acids) and marginally with heart rate (HR). After accounting for BMI, HOMA-IR, systolic BP, age, gender, and correction for multiple comparisons, these associations were significant (p < 0.05): NE with ceramide, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine and free cholesterol; NEFA with mono- di- and trihexosylceramide, G M3 ganglioside, sphingomyelin, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine, phosphatidylinositol and free cholesterol; HR marginally (p = or <0.1>0.05) with ceramide, G M3 ganglioside, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol, lysophosphatidylinositol and free cholesterol. Multiple subspecies of these lipids significantly associated with NE and NEFA. None of the IR biomarkers associated significantly with lipid classes/subclasses after correction for multiple comparisons. This is the first demonstration that arterial norepinephrine and NEFA, that reflect both SNS activity and IR, associate significantly with circulating complex lipids independently of IR, suggesting a role for such lipids in neural mechanisms operating in MetS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel
2017-12-05
The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Havula, Essi; Teesalu, Mari; Hyötyläinen, Tuulia; Seppälä, Heini; Hasygar, Kiran; Auvinen, Petri; Orešič, Matej; Sandmann, Thomas; Hietakangas, Ville
2013-01-01
Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Krüppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources. PMID:23593032
Lozano-Bartolomé, J; Llauradó, G; Rodriguez, M M; Fernandez-Real, J M; Garcia-Fontgivell, J F; Puig, J; Maymó-Masip, E; Vendrell, J; Chacón, M R
2016-09-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and is strongly associated with obesity, dyslipidaemia and altered glucose regulation. Previous data demonstrated that low circulating levels of tumour necrosis factor weak inducer of apoptosis (sTWEAK) were associated with obesity, diabetes and insulin resistance, all traits associated with an increased risk of NALFD. Circulating sTWEAK levels are expected to be reduced in the presence of NAFLD. We aimed to explore the relationship between NAFLD and circulating sTWEAK levels in obese patients, and to evaluate the effect of sTWEAK on hepatocyte triglyceride accumulation.Design setting and patients:This is an observational case-control study performed in n=112 severely obese patients evaluated for NAFLD by abdominal ultrasound and n=32 non-obese patients without steatosis. Serum sTWEAK concentrations were measured by ELISA. Multivariable analyses were performed to determine the independent predictors of NAFLD. We analysed TWEAK and Fn14 protein expression in liver biopsies by western blotting and immunohistochemistry. An immortalized primary human hepatocyte cell line (HHL) was used to evaluate the effect of sTWEAK on triglyceride accumulation. We observed a reduction in serum circulating sTWEAK concentrations with the presence of liver steatosis. On multivariable analysis, lower sTWEAK concentrations were independently associated with the presence of NAFLD (odds ratio (OR)=0.023; 95% confidence interval: 0.001-0.579; P<0.022). In human hepatocytes, sTWEAK administration reduced fat accumulation as demonstrated by the reduction in palmitic acid-induced accumulation of triglyceride and the decreased expression of cluster of differentiation 36 (CD36) and perilipin 1 and 2 (PLIN1 and PLIN2) genes. Decreased sTWEAK concentrations are independently associated with the presence of NAFLD. This is concordant with the observation that TWEAK reduces lipid accumulation in human liver cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhat, Amani; National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3; Buick, Julie K.
We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The genemore » expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.« less
Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.
Morille, Marie; Montier, Tristan; Legras, Pierre; Carmoy, Nathalie; Brodin, Priscille; Pitard, Bruno; Benoît, Jean-Pierre; Passirani, Catherine
2010-01-01
Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size inferior to 130 nm. Amphiphilic and flexible poly (ethylene glycol) (PEG) polymer coatings [PEG lipid derivative (DSPE-mPEG(2000)) or F108 poloxamer] at different concentrations were selected to make DNA LNCs stealthy. Some of these coated lipid nanocapsules were able to inhibit complement activation and were not phagocytized in vitro by macrophagic THP-1 cells whereas uncoated DNA LNCs accumulated in the vacuolar compartment of THP-1 cells. These results correlated with a significant increase of in vivo circulation time in mice especially for DSPE-mPEG(2000) 10 mm and an early half-life time (t(1/2) of distribution) 5-fold greater than for non-coated DNA LNCs (7.1 h vs 1.4 h). Finally, a tumor accumulation assessed by in vivo fluorescence imaging system was evidenced for these coated LNCs as a passive targeting without causing any hepatic damage.
Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents
2012-01-01
Background Coffee and tea consumption was hypothesized to interact with variants of vitamin D-receptor polymorphisms, but limited evidence exists. Here we determine for the first time whether increased coffee and tea consumption affects circulating levels of 25-hydroxyvitamin D in a cohort of Saudi adolescents. Methods A total of 330 randomly selected Saudi adolescents were included. Anthropometrics were recorded and fasting blood samples were analyzed for routine analysis of fasting glucose, lipid levels, calcium, albumin and phosphorous. Frequency of coffee and tea intake was noted. 25-hydroxyvitamin D levels were measured using enzyme-linked immunosorbent assays. Results Improved lipid profiles were observed in both boys and girls, as demonstrated by increased levels of HDL-cholesterol, even after controlling for age and BMI, among those consuming 9–12 cups of coffee/week. Vitamin D levels were significantly highest among those consuming 9–12 cups of tea/week in all subjects (p-value 0.009) independent of age, gender, BMI, physical activity and sun exposure. Conclusion This study suggests a link between tea consumption and vitamin D levels in a cohort of Saudi adolescents, independent of age, BMI, gender, physical activity and sun exposure. These findings should be confirmed prospectively. PMID:22905922
The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model
Lindqvist, Andreas; Ekelund, Mikael; Garcia-Vaz, Eliana; Ståhlman, Marcus; Pierzynowski, Stefan; Gomez, Maria F.; Rehfeld, Jens F.; Groop, Leif; Hedenbro, Jan
2017-01-01
Background A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. Methods In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. Results A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB- than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB- than in sham-pigs. Conclusion In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period. PMID:28257455
Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease
Dewey, Frederick E.; Gusarova, Viktoria; O’Dushlaine, Colm; Gottesman, Omri; Trejos, Jesus; Hunt, Charleen; Van Hout, Cristopher V.; Habegger, Lukas; Buckler, David; Lai, Ka-Man V.; Leader, Joseph B.; Murray, Michael F.; Ritchie, Marylyn D.; Kirchner, H. Lester; Ledbetter, David H.; Penn, John; Lopez, Alexander; Borecki, Ingrid B.; Overton, John D.; Reid, Jeffrey G.; Carey, David J.; Murphy, Andrew J.; Yancopoulos, George D.; Baras, Aris; Gromada, Jesper; Shuldiner, Alan R.
2016-01-01
BACKGROUND Higher-than-normal levels of circulating triglycerides are a risk factor for ischemic cardiovascular disease. Activation of lipoprotein lipase, an enzyme that is inhibited by angiopoietin-like 4 (ANGPTL4), has been shown to reduce levels of circulating triglycerides. METHODS We sequenced the exons of ANGPTL4 in samples obtain from 42,930 participants of predominantly European ancestry in the DiscovEHR human genetics study. We performed tests of association between lipid levels and the missense E40K variant (which has been associated with reduced plasma triglyceride levels) and other inactivating mutations. We then tested for associations between coronary artery disease and the E40K variant and other inactivating mutations in 10,552 participants with coronary artery disease and 29,223 controls. We also tested the effect of a human monoclonal antibody against ANGPTL4 on lipid levels in mice and monkeys. RESULTS We identified 1661 heterozygotes and 17 homozygotes for the E40K variant and 75 participants who had 13 other monoallelic inactivating mutations in ANGPTL4. The levels of triglycerides were 13% lower and the levels of high-density lipoprotein (HDL) cholesterol were 7% higher among carriers of the E40K variant than among noncarriers. Carriers of the E40K variant were also significantly less likely than noncarriers to have coronary artery disease (odds ratio, 0.81; 95% confidence interval, 0.70 to 0.92; P = 0.002). K40 homozygotes had markedly lower levels of triglycerides and higher levels of HDL cholesterol than did heterozygotes. Carriers of other inactivating mutations also had lower triglyceride levels and higher HDL cholesterol levels and were less likely to have coronary artery disease than were noncarriers. Monoclonal antibody inhibition of Angptl4 in mice and monkeys reduced triglyceride levels. CONCLUSIONS Carriers of E40K and other inactivating mutations in ANGPTL4 had lower levels of triglycerides and a lower risk of coronary artery disease than did noncarriers. The inhibition of Angptl4 in mice and monkeys also resulted in corresponding reductions in these values. (Funded by Regeneron Pharmaceuticals.) PMID:26933753
Family Planning for women unable to tolerate oral contraceptives.
Spellacy, W N
1974-04-08
Should women with a family history of diabetes or myocardial infarcation, or women with abnormal blood glucose or cholesterol levels receive oral contraceptives? There is clear evidence that oral contraceptives can alter both carbohydrate and lipid metabolism in certain women. The lipid alteration is mainly an elevation of the circulating triglyceride levels, and only rarely is cholesterol content altered. It is also clear from extensive research during the past ten years that women who already have subclinical abnormalities, either in their triglyceride levels (family hyperlipoproteinemia) or glucose tolerance, are at great risk for the development of clinical disease while using oral contraceptives. Accordingly, all pharmaceutical firms are required by the Food and Drug Administration to instruct physicians about these problems through the package inserts and other means. Specifically, the physician should be alerted by the patient's history, and then he should use the laboratory to confirm any suspicion of abnormalities of carbohydrate or lipid metabolism. If there is any abnormal blood glucose or triglyceride value, the oral contraceptives should not be prescribed. There are other forms of contraception available for child spacing. Mechanical contraceptives will not aggravate a metabolic disorder. A useful substitute then would be an intrauterine device plus vaginal foam. When the woman has completed her family, she should be all means be offered surgical sterilization as a permanent family planning technique.
Sathiavelu, Jayanthi; Senapathy, Giftson Jebakkan; Devaraj, Rajkumar; Namasivayam, Nalini
2009-06-01
To evaluate the effect of chrysin, a natural, biologically active compound extracted from many plants, honey and propolis, on the tissue and circulatory antioxidant status, and lipid peroxidation in ethanol-induced hepatotoxicity in rats. Rats were divided into four groups. Groups 1 and 2 received isocaloric glucose. Groups 3 and 4 received 20% ethanol, equivalent to 5 g/kg bodyweight every day. Groups 2 and 4 received chrysin (20 mg/kg bodyweight) dissolved in 0.5% dimethylsulfoxide. The results showed significantly elevated levels of tissue and circulatory thiobarbituric acid reactive substances, conjugated dienes and lipid hydroperoxides, and significantly lowered enzymic and non-enzymic antioxidant activity of superoxide dismutase, catalase and glutathione-related enzymes such as glutathione peroxidase, glutathione reductase, glutathione-S-transferase, reduced glutathione, vitamin C and vitamin E in ethanol-treated rats compared with the control. Chrysin administration to rats with ethanol-induced liver injury significantly decreased the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes, and significantly elevated the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and the levels of reduced glutathione, vitamin C and vitamin E in the tissues and circulation compared with those of the unsupplemented ethanol-treated rats. The histological changes observed in the liver and kidney correlated with the biochemical findings. Chrysin offers protection against free radical-mediated oxidative stress in rats with ethanol-induced liver injury.
Aoki, Akiko; Ogawa, Tetsuya; Sumino, Hiroyuki; Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi; Nitta, Kosaku
2010-05-01
We prospectively evaluated long-term (12 months) effects of telmisartan on blood pressure (BP), circulating renin-angiotensin-aldosterone levels, and lipids in hypertensive patients. There were 13 men and 11 women, 59 +/- 8.7 years of age (mean +/- SEM), with untreated essential hypertension. The 20-60 mg doses of telmisartan were administered once daily in the morning until BP130/85 was obtained. Blood pressure and plasma renin activity, plasma angiotensin (Ang) I and Ang II, serum angiotensin-converting enzyme (ACE) activity, plasma aldosterone concentration, plasma human atrial natriuretic peptide (hANP) concentration, and serum lipids were obtained 6 and 12 months after starting telmisartan administration. Systolic and diastolic BP were significantly (P < 0.001, P < 0.001) decreased from 162 +/- 3.3 and 97.7 +/- 2.1 mmHg to 128 +/- 3.8 and 79.6 +/- 2.0 mmHg after 12 months of treatment, respectively. Plasma Ang I and Ang II were unchanged at 12 months. Plasma renin activity and serum ACE activity were significantly (P < 0.001, P < 0.05) increased and plasma aldosterone concentration was unchanged during the study period. Total cholesterol levels were unchanged, but serum triglycerides levels were significantly decreased at 12 months (P < 0.01). Plasma hANP showed no significant alteration throughout the 12-month period. In hypertensive patients, telmisartan is a beneficial antihypertensive drug that also lowers serum triglycerides.
Mattis, Aras N.; Song, Guisheng; Hitchner, Kelly; Kim, Roy Y.; Lee, Andrew Y.; Sharma, Amar D.; Malato, Yann; McManus, Michael T.; Esau, Christine C.; Koller, Erich; Koliwad, Suneil; Lim, Lee P.; Maher, Jacquelyn J.; Raffai, Robert L.; Willenbring, Holger
2015-01-01
Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism, and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, Lpl is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing Lpl in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. Conclusion Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a’s known anti-fibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease. PMID:25131933
Kavalkova, P; Touskova, V; Roubicek, T; Trachta, P; Urbanova, M; Drapalova, J; Haluzikova, D; Mraz, M; Novak, D; Matoulek, M; Lacinova, Z; Haluzik, M
2013-10-01
Appropriate differentiation capacity of adipose tissue significantly affects its ability to store lipids and to protect nonadipose tissues against lipid spillover and development of insulin resistance. Preadipocyte factor-1 (Pref-1) is an important negative regulator of preadipocyte differentiation. The aim of our study was to explore the changes in circulating Pref-1 concentrations in female subjects with obesity (OB) (n=19), females with obesity and type 2 diabetes mellitus (T2DM) (n=22), and sex- and age-matched healthy control subjects (C) (n=22), and to study its modulation by very low calorie diet (VLCD), acute hyperinsulinemia during isoglycemic-hyperinsulinemic clamp, and 3 months' treatment with PPAR-α agonist fenofibrate. At baseline, serum Pref-1 concentrations were significantly higher in patients with T2DM compared to control group, while only nonsignificant trend towards higher levels was observed in OB group. 3 weeks of VLCD decreased Pref-1 levels in both OB and T2DM group, whereas 3 months of fenofibrate treatment had no significant effect. Hyperinsulinemia during the clamp significantly suppressed Pref-1 levels in both C and T2DM subjects and this suppression was unaffected by fenofibrate treatment. In a combined population of all groups, circulating Pref-1 levels correlated positively with insulin, leptin and glucose levels and HOMA (homeostasis model assessment) index. We conclude that elevated Pref-1 concentrations in T2DM subjects may contribute to impaired adipose tissue differentiation capacity associated with insulin resistance in obese patients with T2DM. The decrease of Pref-1 levels after VLCD may be involved in the improvement of metabolic status and the amelioration of insulin resistance in T2DM patients. © Georg Thieme Verlag KG Stuttgart · New York.
Pankow, James S; Tang, Weihong; Pankratz, Nathan; Guan, Weihua; Weng, Lu-Chen; Cushman, Mary; Boerwinkle, Eric; Folsom, Aaron R
2017-03-01
Previous studies have identified common genetic variants in 4 chromosomal regions that together account for 14% to 15% of the variance in circulating levels of protein C. To further characterize the genetic architecture of protein C, we obtained denser coverage at some loci, extended investigation of protein C to low-frequency and rare variants, and searched for new associations in genes known to influence protein C. Genetic associations with protein C antigen level were evaluated in ≤10 778 European and 3190 black participants aged 45 to 64 years. Analyses included >26 million autosomal variants available after imputation to the 1000 Genomes reference panel along with additional low-frequency and rare variants directly genotyped using the Illumina ITMAT-Broad-CARe chip and Illumina HumanExome BeadChip. Genome-wide significant associations ( P <5×10 -8 ) were found for common variants in the GCKR , PROC , BAZ1B , and PROCR-EDEM2 regions in whites and PROC and PROCR-EDEM2 regions in blacks, confirming earlier findings. In a novel finding, the low-density lipoprotein cholesterol-lowering allele of rs12740374, located in the CELSR2-PSRC1-SORT1 region, was associated with lower protein C level in both whites and blacks, reaching genome-wide significance in a meta-analysis combining results from both groups ( P =1.4×10 -9 ). To further investigate a possible link between lipid metabolism and protein C level, we conducted Mendelian randomization analyses using 185 lipid-related genetic variants as instrumental variables. The results indicated that triglycerides, and possibly low-density lipoprotein cholesterol, influence protein C levels. Discovery of variants influencing circulating protein C levels in the CELSR2-PSRC1-SORT1 region may indicate a novel genetic link between lipoprotein metabolism and hemostasis. © 2017 American Heart Association, Inc.
Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2018-05-01
A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the synthesized microbubbles might make it easier to access deep-seated organs and give prolonged imaging enhancement in the liver. © 2017 by the American Institute of Ultrasound in Medicine.
Jacobsen, Mette J.; Mentzel, Caroline M. Junker; Olesen, Ann Sofie; Huby, Thierry; Jørgensen, Claus B.; Barrès, Romain; Fredholm, Merete
2016-01-01
Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity. PMID:26798656
McMillen, I C; Muhlhausler, B S; Duffield, J A; Yuen, B S J
2004-08-01
Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the 'unilocular' component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a 'lipostatic' role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.
Deshpande, Dipti; Kethireddy, Sravani; Janero, David R.; Amiji, Mansoor M.
2016-01-01
Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease. PMID:26840601
A new perspective on lipid research in age-related macular degeneration.
van Leeuwen, Elisabeth M; Emri, Eszter; Merle, Benedicte M J; Colijn, Johanna M; Kersten, Eveline; Cougnard-Gregoire, Audrey; Dammeier, Sascha; Meester-Smoor, Magda; Pool, Frances M; de Jong, Eiko K; Delcourt, Cécile; Rodrigez-Bocanegra, Eduardo; Biarnés, Marc; Luthert, Philip J; Ueffing, Marius; Klaver, Caroline C W; Nogoceke, Everson; den Hollander, Anneke I; Lengyel, Imre
2018-05-04
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela
2016-08-01
We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío
2017-09-01
Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proitsi, Petroula; Lupton, Michelle K.; Velayudhan, Latha; Newhouse, Stephen; Fogh, Isabella; Tsolaki, Magda; Daniilidou, Makrina; Pritchard, Megan; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Vellas, Bruno; Williams, Julie; Stewart, Robert; Sham, Pak; Lovestone, Simon; Powell, John F.
2014-01-01
Background Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. Methods and Findings We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n = 10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10−8 and trait specific scores using SNPs associated exclusively with each trait at p<5×10−8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR] = 1.005, 95% CI 0.82–1.24, p = 0.962 per 1 unit increase in HDL-c; OR = 0.901, 95% CI 0.65–1.25, p = 0.530 per 1 unit increase in LDL-c; OR = 1.104, 95% CI 0.89–1.37, p = 0.362 per 1 unit increase in triglycerides; and OR = 0.954, 95% CI 0.76–1.21, p = 0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. Conclusions Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary PMID:25226301
Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I
2013-09-01
Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.
Dias, Cintia B; Amigó, Núria; Wood, Lisa G; Mallol, Roger; Correig, Xavier; Garg, Manohar L
2017-03-01
Dietary fat composition is known to modulate circulating lipid and lipoprotein levels. Although supplementation with long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) has been shown to reduce plasma triglyceride levels, the effect of the interactions between LCn-3PUFA and the major dietary fats consumed has not been previously investigated. In a randomized controlled parallel design clinical intervention, we examined the effect of diets rich in either saturated fatty acids (SFA) or omega-6 polyunsaturated fatty acids (n-6PUFA) on plasma lipid levels and lipoprotein profiles (lipoprotein size, concentration and distribution in subclasses) in subjects with an adequate omega 3 index. Twenty six healthy subjects went through a four-week pre-supplementation period with LCn-3PUFA and were then randomized to diets rich in either n-6PUFA or SFA both supplemented with LCn-3PUFA. The diet rich in n-6PUFA decreased low density lipoprotein (LDL) particle concentration (-8%, p=0.013) and LDL cholesterol (LDL-C) level (-8%, p=0.021), while the saturated fat rich diet did not affect LDL particle concentration or LDL-C levels significantly. Nevertheless, dietary saturated fatty acids increased LCn-3PUFA in plasma and tissue lipids compared with n-6PUFA, potentially reducing other cardiovascular risk factors such as inflammation and clotting tendency. Improvement on the omega 3 index of healthy subjects did not alter the known effects of dietary saturated fats and n-6PUFA on LDL profiles. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Hai Ling; Peng, Wen Hui; Cui, Shi Tao; Lei, Hou; Wei, Yi Dong; Li, Wei Ming; Xu, Ya Wei
2011-09-01
Vaspin was a recently identified adipokine, playing a protective role in many metabolic diseases. The present study aimed to investigate the association between vaspin plasma level and stable angina pectoris (SAP) and unstable angina pectoris (UAP). A total of 88 patients with angiographically-proved coronary artery disease (CAD) (SAP 47, UAP 41) and 103 control subjects without cardiovascular diseases were enrolled in this study. Circulating vaspin, mRNA expression of vaspin in peripheral blood mononuclear cells (PBMC), clinical parameters, lipid profile and high-sensitivity C-reactive protein (hsCRP) were assayed. The severity of CAD was also assessed according to the number of vessels diseased. There are significant differences in circulating vaspin levels and mRNA levels of PBMC between SAP and UAP groups (SAP 0.91±0.95 ng/mL and UAP 0.43±0.38 ng/mL, p<0.01 in circulating vaspin level; SAP 1.19±0.85 and UAP 0.82±0.56, p<0.05 in mRNA level of PBMC). An inverse correlation between the number of diseased vessels and plasma vaspin concentration was observed (r=-0.350, p<0.01) in the CAD group. Construction of receiver operating characteristic curves confirmed that vaspin plasma concentrations significantly differentiated CAD patients (area under the curve=0.684, p<0.001), as well as UAP (area under the curve=0.640, p<0.05). Decreased vaspin plasma levels and mRNA levels in PBMC were observed in patients with UAP. Low vaspin concentrations correlate with CAD severity. The findings suggested that vaspin could serve as a novel biomarker of CAD as well as UAP.
Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN).
Averna, Maurizio; Cefalù, Angelo B; Casula, Manuela; Noto, Davide; Arca, Marcello; Bertolini, Stefano; Calandra, Sebastiano; Catapano, Alberico L; Tarugi, Patrizia
2017-10-01
Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network). Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationwide DNA diagnostic centers. From 2012 to October 2016, available biochemical and clinical information of 3480 subjects with familial hypercholesterolemia identified according to the Dutch Lipid Clinic Network (DLCN) score were included in the database and genetic analysis was performed in 97.8% of subjects, with a mutation detection rate of 92.0% in patients with DLCN score ≥6. The establishment of the LIPIGEN network will have important effects on clinical management and it will improve the overall identification and treatment of primary dyslipidemias in Italy. Copyright © 2017. Published by Elsevier B.V.
White, Phillip J; McGarrah, Robert W; Grimsrud, Paul A; Tso, Shih-Chia; Yang, Wen-Hsuan; Haldeman, Jonathan M; Grenier-Larouche, Thomas; An, Jie; Lapworth, Amanda L; Astapova, Inna; Hannou, Sarah A; George, Tabitha; Arlotto, Michelle; Olson, Lyra B; Lai, Michelle; Zhang, Guo-Fang; Ilkayeva, Olga; Herman, Mark A; Wynn, R Max; Chuang, David T; Newgard, Christopher B
2018-06-05
Branched-chain amino acids (BCAA) are strongly associated with dysregulated glucose and lipid metabolism, but the underlying mechanisms are poorly understood. We report that inhibition of the kinase (BDK) or overexpression of the phosphatase (PPM1K) that regulates branched-chain ketoacid dehydrogenase (BCKDH), the committed step of BCAA catabolism, lowers circulating BCAA, reduces hepatic steatosis, and improves glucose tolerance in the absence of weight loss in Zucker fatty rats. Phosphoproteomics analysis identified ATP-citrate lyase (ACL) as an alternate substrate of BDK and PPM1K. Hepatic overexpression of BDK increased ACL phosphorylation and activated de novo lipogenesis. BDK and PPM1K transcript levels were increased and repressed, respectively, in response to fructose feeding or expression of the ChREBP-β transcription factor. These studies identify BDK and PPM1K as a ChREBP-regulated node that integrates BCAA and lipid metabolism. Moreover, manipulation of the BDK:PPM1K ratio relieves key metabolic disease phenotypes in a genetic model of severe obesity. Copyright © 2018 Elsevier Inc. All rights reserved.
Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping
2017-11-08
Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.
Determinants of blood uric acid levels in a dyslipidemic Arab population.
Al-Meshaweh, Ahoud F; Jafar, Yaqoub; Asem, Mohammad; Akanji, Abayomi O
2012-01-01
The objective of this study was to explore the relationships between circulating uric acid and lipid levels and components of the metabolic syndrome (MetS) in Arab dyslipidemic patients, a group already at high coronary artery disease risk. The medical records of 1,229 subjects (632 men, 597 women) referred for treatment of dyslipidemia and followed up for at least 12 months were reviewed. Serum levels of uric acid and lipids (total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein) and other variables in the National Cholesterol Education Program ATP III criteria definition of MetS were assessed at initial presentation and every 4- 6 months, under specific lipid-lowering treatment (statins and/or fibrates), in each of the subjects. Their respective associations were explored by appropriate logistic regression techniques with control for confounding risk factors, including age, gender and body mass index. 306 subjects (24.9%) of the study population were hyperuricemic; they were more likely to be men, obese and diabetic. Also the serum uric acid level (mean ± SD) was greater in men with MetS compared with men without (377.0 ± 98.0 vs. 361.6 ± 83.1 μmol/l, p < 0.05), an observation not reproduced in women. Uric acid levels had significant associations with the presence of fasting hyperglycemia, hypertension and large waist circumference (WC) in men, but only with large WC in women. With statin treatment, uric acid levels decreased by 10% within 1 year of treatment; with fibrates, uric acid levels remained unchanged or slightly increased. The data showed that hyperuricemia is common in dyslipidemic patients in Kuwait, where its important determinants are male sex, obesity, diabetes and statin treatment. Copyright © 2011 S. Karger AG, Basel.
Abnormal levels of expression of plasma microRNA-33 in patients with psoriasis.
García-Rodríguez, S; Arias-Santiago, S; Orgaz-Molina, J; Magro-Checa, C; Valenzuela, I; Navarro, P; Naranjo-Sintes, R; Sancho, J; Zubiaur, M
2014-06-01
Circulating microRNAs (miRNA) are involved in the posttranscriptional regulation of genes associated with lipid metabolism (miRNA-33) and vascular function and angiogenesis (miRNA-126). The objective of this exploratory study was to measure plasma levels of miRNA-33 and miRNA-126 in patients with plaque psoriasis and evaluate their association with clinical parameters. We studied 11 patients with plaque psoriasis. The median Psoriasis Area Severity Index (PASI) was 13 (interquartile range [IQR], 9-14) and body surface area involvement was 12 (IQR, 11-15). Eleven healthy controls matched for age and sex were also included. We analyzed cardiovascular risk factors and subclinical carotid atheromatosis. Plasma miRNAs were evaluated using quantitative real-time polymerase chain reaction. Carotid intima-media thickness was greater in patients (0.57mm; IQR, 0.54-0.61; n=11) than in controls (0.50mm; IQR, 0.48-0.54; data available for 9 controls) (P=.0055, Mann-Whitney). Expression of miRNA-33 in patients (5.34; IQR, 3.12-7.96; n=11) was significantly higher than in controls (2.33; IQR, 1.71-2.84; only detected in 7 of 11 controls) (P=.0049, Wilcoxon signed rank). No differences in miRNA-126 levels were observed between patients and controls. In patients (n=11), we observed a positive correlation between miRNA-33 and insulin levels (r=0.7289, P=.0109) and a negative correlation between miRNA-126 and carotid intima-media thickness (r=-0.6181, P=.0426). In psoriasis patients plasma levels of lipid and glucose metabolism-related miRNA-33 are increased and correlated with insulin. The study of circulating miRNA-33 in psoriasis may provide new insights about the associated systemic inflammatory abnormalities. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argiles, J.; Herrera, E.
1989-02-01
Studies were performed to determine whether and/or how dietary lipids participate in maternal hypertriglyceridemia during late gestation in the rat. After oral administration of glycerol-tri(1-14C)-palmitate, total radioactivity in plasma increased more rapidly in 20-day pregnant rats than in either 19-day pregnant rats or virgin controls. At the peak of plasma radioactivity, four hours after the tracer was administered, most of the plasma label corresponded to 14C-lipids in triglyceride-rich lipoproteins (d less than 1.006), and when expressed per micromol of triglyceride, values were higher in pregnant than in virgin rats. The difference was less after 24 hours, although at this timemore » the level of 14C-lipids in d less than 1.006 lipoproteins was still higher in 20-day pregnant rats than in virgins. Tissue 14C-lipids, as expressed per gram of fresh weight, were similar in pregnant and virgin rats, but the values in mammary glands were much higher in the former group. Estimated recovery of administered radioactivity four hours after tracer in total white adipose tissue, mammary glands, and plasma lipids was higher in pregnant than in virgin rats. No difference was found between 20-day pregnant and virgin rats either in the label retained in the gastrointestinal tract or in that exhaled as 14C-CO2 during the first four hours following oral administration of 14C-tripalmitate. These findings plus the known maternal hyperphagia, indicate that in the rat at late pregnancy triglyceride intestinal absorption is unchanged or even enhanced and that dietary lipids actively contribute to both maternal hypertriglyceridemia and lipid uptake by the mammary gland.« less
Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle.
De Stefanis, Daniela; Mastrocola, Raffaella; Nigro, Debora; Costelli, Paola; Aragno, Manuela
2017-02-01
In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.
Ma, Lingman; Qian, Lifen; Ying, Qidi; Zhang, Yan; Zhou, Changlin; Wu, Guanzhong
2017-01-15
Here, we investigated whether I 4 , which was initially developed as a hypoglycemic agent, possesses anti-atherosclerotic activity and attempted to elucidate the probable mechanism of action underlying this activity. ApoE -/- mice were fed a Western diet and simultaneously administered I 4 , glimepiride, or pioglitazone once daily for 12 weeks, and the atherosclerotic vascular lesions, lipid content, and expression levels of LOX-1, ICAM-1, VCAM-1 and Bax/Bcl-2 in mouse aortas were assessed. RAW264.7 macrophage-derived foam cells were obtained via ox-LDL stimulation to investigate the lipid-lowering, anti-atherosclerotic inflammation and anti-apoptotic effect of I 4 . The data indicated that I 4 significantly decreased the lipid accumulation in the circulation and tissue, especially for TG and FFA levels (p < 0.05 vs model group), alleviating the arterial and liver lesions induced by lipotoxicity. Its lipid-reducing effects may due to LOX-1and CD36 expression suppression. I 4 , at doses of 20 mg/kg and 10 mg/kg, significantly decreased serum IL-6, IL-1β, and TNF-α production and suppressed the expression of p-ERK, p-p38, VCAM-1 and ICAM-1 protein. I 4 attenuated atherosclerotic inflammation by blocking NF-κB nuclear translocation, suppressing MAPK/NF-κB signaling pathway and diminishing NF-κB-VCAM-1 promoter region binding. Additionally, I 4 suppressed p-p53 and cleaved-caspase-3 expression to inhibit foam cell apoptosis induced by ox-LDL uptake. Overall, I 4 exerts potent inhibitory effects on atherosclerosis onset and development. Copyright © 2016. Published by Elsevier Ireland Ltd.
Adrian, T E; Sagor, G R; Savage, A P; Bacarese-Hamilton, A J; Hall, G M; Bloom, S R
1986-10-01
Peptide YY (PYY) is a 36 amino acid peptide produced by mucosal endocrine cells of the ileum and colon which inhibits acid secretion and intestinal transit in man. To assess its effects on metabolites and digestive hormones PYY was infused into 18 fasting normal subjects at three dose levels (0.06, 0.19, and 0.57 pmol kg-1 min-1), each for a period of 1 h. During the infusions mean plasma PYY levels increased by 8, 25, and 73 pmol/liter, respectively. The mean disappearance half-time on stopping the infusions was 9.2 +/- 0.4 (SEM) min. The mean MCR was 7.3 +/- 0.7 ml kg-1 min-1 and the apparent volume of distribution was calculated to be 94 +/- 9 ml kg-1. During the highest dose infusion there was a significant increase in both systolic and diastolic blood pressure, of 8.6 +/- 3.7 mmHg (P less than 0.05) and 10.9 +/- 3.0 mmHg (P less than 0.01), respectively. PYY caused a significant 50% reduction in plasma pancreatic polypeptide concentrations (P less than 0.05) and a 55% reduction in circulating motilin levels (P less than 0.05). PYY had no significant effect on circulating concentrations of insulin, glucagon, gastrin, gastric inhibitory peptide, neurotensin, enteroglucagon, or vasoactive intestinal peptide. PYY also had no significant effect on circulating concentrations of glucose, lactate, glycerol, or nonesterified fatty acids. This recently discovered human intestinal hormonal peptide thus has significant effects both on gastrointestinal hormones (motilin and pancreatic polypeptide) and blood pressure in man, but appears not to influence glucose or lipid metabolism.
Jacobson, Terry A; Ito, Matthew K; Maki, Kevin C; Orringer, Carl E; Bays, Harold E; Jones, Peter H; McKenney, James M; Grundy, Scott M; Gill, Edward A; Wild, Robert A; Wilson, Don P; Brown, W Virgil
2015-01-01
The leadership of the National Lipid Association convened an Expert Panel to develop a consensus set of recommendations for patient-centered management of dyslipidemia in clinical medicine. An Executive Summary of those recommendations was previously published. This document provides support for the recommendations outlined in the Executive Summary. The major conclusions include (1) an elevated level of cholesterol carried by circulating apolipoprotein B-containing lipoproteins (non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol [LDL-C], termed atherogenic cholesterol) is a root cause of atherosclerosis, the key underlying process contributing to most clinical atherosclerotic cardiovascular disease (ASCVD) events; (2) reducing elevated levels of atherogenic cholesterol will lower ASCVD risk in proportion to the extent that atherogenic cholesterol is reduced. This benefit is presumed to result from atherogenic cholesterol lowering through multiple modalities, including lifestyle and drug therapies; (3) the intensity of risk-reduction therapy should generally be adjusted to the patient's absolute risk for an ASCVD event; (4) atherosclerosis is a process that often begins early in life and progresses for decades before resulting a clinical ASCVD event. Therefore, both intermediate-term and long-term or lifetime risk should be considered when assessing the potential benefits and hazards of risk-reduction therapies; (5) for patients in whom lipid-lowering drug therapy is indicated, statin treatment is the primary modality for reducing ASCVD risk; (6) nonlipid ASCVD risk factors should also be managed appropriately, particularly high blood pressure, cigarette smoking, and diabetes mellitus; and (7) the measurement and monitoring of atherogenic cholesterol levels remain an important part of a comprehensive ASCVD prevention strategy. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Mondul, Alison; Mancina, Rosellina M; Merlo, Andrea; Dongiovanni, Paola; Rametta, Raffaela; Montalcini, Tiziana; Valenti, Luca; Albanes, Demetrius; Romeo, Stefano
2015-08-01
Retinol is a lipid-soluble essential nutrient that is stored as retinyl esters in lipid droplets of hepatic stellate cells. Patatin-like phospholipase domain-containing 3 (PNPLA3), through its retinyl-palmitate lipase activity, releases retinol from lipid droplets in hepatic stellate cells in vitro and ex vivo. We have shown that the genetic variant I148M (rs738409) reduces the PNPLA3 retinyl-palmitate lipase activity. The aim of the present genetic association study was to test whether overweight/obese carriers of the PNPLA3 148M mutant allele had lower circulating concentrations of retinol than individuals who are homozygous for the 148I allele. PNPLA3 I148M (rs738409) was genotyped by Taqman assay in 76 overweight/obese individuals [BMI (kg/m(2)) ≥25; mean ± SD age: 59.7 ± 11.4 y; male gender: 70%] with a histologic diagnosis of nonalcoholic fatty liver disease (NAFLD; namely the Milan NAFLD cohort) and in 413 obese men (BMI ≥30; mean ± SD age: 57.1 ± 4.9 y) from the α-Tocopherol, β-Carotene Cancer Prevention (ATBC) Study. Serum concentrations of retinol and α-tocopherol were measured by HPLC in both cohorts. β-Carotene concentrations in the ATBC study were measured by using HPLC. The PNPLA3 148M mutant allele was associated with lower fasting circulating concentrations of retinol (β = -0.289, P = 0.03) in adults with NAFLD (Milan NAFLD cohort). The PNPLA3 148M mutant allele was also associated with lower fasting circulating concentrations of retinol in adults with a BMI ≥30 (ATBC study; β = -0.043, P = 0.04). We showed for the first time, to our knowledge, that carriers of the PNPLA3 148M allele with either fatty liver plus obesity or obesity alone have lower fasting circulating retinol concentrations. © 2015 American Society for Nutrition.
Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.; ...
2016-07-15
Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayermore » composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.
Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayermore » composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.« less
Igl, Wilmar; Kamal-Eldin, Afaf; Johansson, Asa; Liebisch, Gerhard; Gnewuch, Carsten; Schmitz, Gerd; Gyllensten, Ulf
2013-01-01
The high intake of game meat in populations with a subsistence-based diet may affect their blood lipids and health status. To examine the association between diet and circulating levels of blood lipid levels in a northern Swedish population. We compared a group with traditional lifestyle (TLS) based on reindeer herding (TLS group) with those from the same area with a non-traditional lifestyle (NTLS) typical of more industrialized regions of Sweden (NTLS group). The analysis was based on self-reported intake of animal source food (i.e. non-game meat, game meat, fish, dairy products and eggs) and the serum blood level of a number of lipids [total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), glycerophospholipids and sphingolipids]. The TLS group had higher cholesterol, LDL and HDL levels than the reference group. Of the TLS group, 65% had cholesterol levels above the threshold for increased risk of coronary heart disease (≥ 240 mg/dl), as compared to 38% of the NTLS group. Self-reported consumption of game meat was positively associated with TC and LDL. The high game meat consumption of the TLS group is associated with increased cholesterol levels. High intake of animal protein and fat and low fibre is known to increase the risk of cardiovascular disease, but other studies of the TLS in northern Sweden have shown comparable incidences of cardiovascular disease to the reference (NTLS) group from the same geographical area. This indicates that factors other than TC influence disease risk. One such possible factor is dietary phospholipids, which are also found in high amounts specifically in game meat and have been shown to inhibit cholesterol absorption.
Miller, Desinia B; Snow, Samantha J; Henriquez, Andres; Schladweiler, Mette C; Ledbetter, Allen D; Richards, Judy E; Andrews, Debora L; Kodavanti, Urmila P
2016-09-01
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. Published by Elsevier Inc.
Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.
2017-01-01
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. PMID:27368153
Circulating Adipokines in Healthy versus Unhealthy Overweight and Obese Subjects
Alfadda, Assim A.
2014-01-01
It is now well established that not all obese subjects are at increased risk of cardiometabolic complications; such patients are termed the metabolically healthy obese. Despite their higher-than-normal body fat mass, they are still insulin sensitive, with a favorable inflammatory and lipid profile and no signs of hypertension. It remains unclear which factors determine an individual's metabolic health. Adipose tissue is known to secrete multiple bioactive substances, called adipokines, that can contribute to the development of obesity-associated complications. The goal of this study was to determine whether the circulating adipokine profiles differs between metabolically healthy and metabolically unhealthy overweight and obese subjects, thereby obtaining data that could help to explain the link between obesity and its related cardiometabolic complications. We defined metabolic health in terms of several metabolic and inflammatory risk factors. The serum adiponectin levels were higher in the healthy group and showed a positive correlation with HDL cholesterol levels in the unhealthy group. There were no differences between the two groups in the levels of serum leptin, chemerin and orosomucoid. Accordingly, adiponectin might play a role in protecting against obesity-associated cardiometabolic derangements. More studies are needed to clarify the role of different chemerin isoforms in this system. PMID:24550983
Martynova, Ekaterina V; Valiullina, Aygul H; Gusev, Oleg A; Davidyuk, Yuriy N; Garanina, Ekaterina E; Shakirova, Venera G; Khaertynova, Ilsiyar; Anokhin, Vladimir A; Rizvanov, Albert A; Khaiboullina, Svetlana F
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN- γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN- γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity.
Valiullina, Aygul H.; Gusev, Oleg A.; Davidyuk, Yuriy N.; Garanina, Ekaterina E.; Shakirova, Venera G.; Khaertynova, Ilsiyar
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN-γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN-γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity. PMID:28053993
Gustavsen, Kate A; Stanhope, Kimber L; Lin, Amy S; Graham, James L; Havel, Peter J; Paul-Murphy, Joanne R
2016-09-01
Hypercholesterolemia is common in psittacines, and Amazon parrots ( Amazona spp.) are particularly susceptible. Associations have been demonstrated between naturally occurring and experimentally induced hypercholesterolemia and atherosclerosis in psittacines. Daily exercise improves lipid metabolism in humans and other mammals, as well as pigeons and chickens, under varying experimental conditions. Hispaniolan Amazon parrots ( Amazona ventralis ) with naturally occurring hypercholesterolemia (343-576 mg/dl) were divided into two groups. An exercised group (n = 8) was housed as a flock and exercised daily with 30 min of aviary flight and 30 min walking on a rotating perch. A sedentary control group (n = 4) was housed in individual cages with no exercise regime. A plasma lipid panel, including total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and triglycerides, was validated for this species. Body weight, chest girth, and the lipid panel were measured at 0, 61, and 105 days. Hematology and plasma biochemistry were measured at 0 and 105 days. Weight and girth were significantly lower in exercised than sedentary parrots at 61 and 105 days. HDL-C concentrations were significantly higher in exercised parrots at 61 days but returned to near baseline by 105 days. There were no significant changes in hematology, biochemistry, or other lipid panel parameters. Results were similar to studies in humans and animal models, in which increased HDL-C was the most consistent effect of exercise on circulating lipid and lipoprotein parameters. The return toward baseline HDL-C may have resulted from decreased participation in aviary flight. Additional investigation will be required to determine the amount of exercise and change in circulating lipid-related parameters necessary to improve long-term wellness in psittacine species predisposed to hypercholesterolemia.
Ebert, T; Hindricks, J; Kralisch, S; Lossner, U; Jessnitzer, B; Richter, J; Blüher, M; Stumvoll, M; Fasshauer, M
2014-08-01
Fractalkine has recently been introduced as an adipokine that improves glucose tolerance. Regulation of fractalkine in gestational diabetes, as well as its association with markers of obesity, glucose and lipid metabolism, inflammation and renal function, has not been elucidated. Circulating fractalkine was quantified by enzyme-linked immunosorbent assay in 74 women with gestational diabetes and 74 healthy, pregnant control subjects matched for age, BMI, and gestational age. Median (interquartile range) levels of fractalkine were not significantly different between the two groups [gestational diabetes: 2.24 (2.16) μg/l; control: 2.45 (1.38) μg/l] (P = 0.461). In multivariate linear regression analysis, fractalkine remained independently associated with homeostasis model assessment of insulin resistance (β = -0.253, P = 0.002) and the proinflammatory adipokine progranulin (β = 0.218, P = 0.007). Circulating fractalkine is not different between women with gestational diabetes and control subjects, but the adipokine is independently associated with markers of insulin resistance and proinflammatory progranulin in pregnancy. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.
Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo
2014-06-01
Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.
Li, Dan; Fawaz, Maria V; Morin, Emily E; Ming, Ran; Sviridov, Denis; Tang, Jie; Ackermann, Rose; Olsen, Karl; Remaley, Alan T; Schwendeman, Anna
2018-01-02
Synthetic high density lipoprotein nanoparticles (sHDLs) capable of mobilizing excess cholesterol from atherosclerotic arteries and delivering it to the liver for elimination have been shown to reduce plaque burden in patients. Unfortunately, sHDLs have a narrow therapeutic index and relative to the endogenous HDL shorter circulation half-life. Surface modification with polyethylene glycol (PEG) was investigated for its potential to extend sHDL circulation in vivo. Various amounts (2.5, 5, and 10%) and different chain lengths (2 and 5 kDa) of PEG-modified lipids were incorporated in sHDL's lipid membrane. Incorporating PEG did not reduce the ability of sHDL to facilitate cholesterol efflux, nor did it inhibit cholesterol uptake by the liver cells. By either adding more PEG or using PEG of longer chain lengths, the circulation half-life was extended. Addition of PEG also increased the area under the curve for the phospholipid component of sHDL (p < 0.05), but not for the apolipoprotein A-I peptide component of sHDL, suggesting sHDL is remodeled by endogenous lipoproteins in vivo. The extended phospholipid circulation led to a higher mobilization of plasma free cholesterol, a biomarker for facilitation of reverse cholesterol transport. The area under the cholesterol mobilization increased about 2-4-fold (p < 0.05), with greater increases observed for longer PEG chains and higher molar percentages of incorporated PEGylated lipids. Mobilized cholesterol was associated primarily with the HDL fraction, led to a transient increase in VLDL cholesterol, and returned to baseline 24 h postdose. Overall, PEGylation of sHDL led to beneficial changes in sHDL particle pharmacokinetic and pharmacodynamic behaviors.
Ma, D W L; Arendt, B M; Hillyer, L M; Fung, S K; McGilvray, I; Guindi, M; Allard, J P
2016-01-01
Background: There is growing evidence that nonalcoholic fatty liver disease (NAFLD) is associated with perturbations in liver lipid metabolism. Liver phospholipid and fatty acid composition have been shown to be altered in NAFLD. However, detailed profiles of circulating lipids in the pathogenesis of NAFLD are lacking. Objective: Therefore, the objective of the present study was to examine circulating lipids and potential mechanisms related to hepatic gene expression between liver biopsy-proven simple steatosis (SS), nonalcoholic steatohepatitis (NASH) and healthy subjects. Subjects: Plasma phospholipid and fatty acid composition were determined in 31 healthy living liver donors as healthy controls (HC), 26 patients with simple hepatic steatosis (SS) and 20 with progressive NASH. Hepatic gene expression was analyzed by Illumina microarray in a subset of 22 HC, 16 SS and 14 NASH. Results: Concentrations of phosphatidylethanolamine (PE) increased relative to disease progression, HC
Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming
2015-12-01
Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Feeding a corn oil/sucrose-enriched diet enhances steatohepatitis in sedentary rats.
Rivera, C A; Abrams, S H; Tcharmtchi, M H; Allman, M; Ziba, T T; Finegold, M J; Smith, C W
2006-02-01
The current study investigated the combined effects of feeding a high-fat/high-sucrose (HF/HS) diet to rodents rendered sedentary via hindlimb unloading (HU). For 3 wk before HU, male Wistar rats were fed chow or a diet in which 32% of calories were derived from corn oil fat and 48% of calories from sucrose. Feeding continued during an additional 3-wk period of HU. Subsequently, blood samples were collected for determination of circulating leukocyte counts, insulin levels, and portal vein endotoxin. Inflammation, necrosis, and steatosis were assessed in formalin-fixed liver sections. No biochemical or histological evidence of injury was observed in control rats fed chow or HF/HS. HU increased circulating neutrophils and resulted in hyperinsulinemia. Mild hepatic fat accumulation and minimal focal necroinflammation were observed in this group. Feeding HF/HS during HU exacerbated hyperinsulinemia, hepatic steatosis, Kupffer cell content, and cytokine expression. Significant portal endotoxemia was noted in HU rats but was not influenced by HF/HS diet. On the other hand, feeding HF/HS significantly enhanced lipid peroxidation end products in liver of HU rats by approximately threefold compared with chow-fed rats. In summary, these findings demonstrate that feeding a high-calorie diet potentiates steatosis and injury in sedentary HU rats. Mechanisms underlying enhanced injury most likely involved lipid peroxidation. Importantly, these findings suggest that dietary manipulation combined with physical inactivity can be used to model steatohepatitis.
Nuclear factor kappa B in patients with a history of unstable angina: case re-opened.
Mozzini, Chiara; Garbin, Ulisse; Stranieri, Chiara; Salandini, Giulia; Pesce, Giancarlo; Fratta Pasini, Anna Maria; Cominacini, Luciano
2018-06-01
This study aims at assessing NF-kB activity in unstable angina (UA) patients free of symptoms after a 1 year follow-up (1YFU). Plasma oxidized low-density lipoproteins (oxLDL), circulating NF-kB, Interleukin 6 (IL-6) and Interleukin 1β (IL-1β), high-sensitivity C-reactive protein (hs-CRP), as markers of oxidative stress and inflammation and plasma double-stranded DNA (ds-DNA), as marker of Neutrophil Extracellular Traps (NETs), were measured in 23 of the previously enrolled 27 UA patients. These measurements were compared to the UA data at baseline, and then compared to the data derived from the stable angina (SA) and controls (C) enrolled in our previous study (we demonstrated that UA had higher levels of NF-kB compared to SA and C). After a 1YFU, UA patients show a significant decrease in NF-kB, IL-6, hs-CRP, oxLDL, and ds-DNA plasma levels (p < 0.001) and in IL-1β and White Blood Cells (WBC) (p < 0.005), without differences in lipid and glucose assessment. If compared to SA and C, UA after a 1YFU have higher levels of NF-kB, IL-6, ds-DNA, WBC, and oxLDL compared to C (p < 0.001), but only IL-6 is higher than SA (p < 0.001). No differences are found in lipid and glucose assessment. After a 1YFU, patients with a history of UA improve their oxidative and inflammatory status, such as the levels of circulating ds-DNA, without achieving the status of C. They become comparable to SA subjects. This study provides new insight on the multiple and apparently contradictory facets of NF-kB in UA and on its possible role as mediator in NETs' formation.
Serum Levels of the Adipokine Progranulin Depend on Renal Function
Richter, Judit; Focke, Denise; Ebert, Thomas; Kovacs, Peter; Bachmann, Anette; Lössner, Ulrike; Kralisch, Susan; Kratzsch, Jürgen; Beige, Joachim; Anders, Matthias; Bast, Ingolf; Blüher, Matthias; Stumvoll, Michael; Fasshauer, Mathias
2013-01-01
OBJECTIVE Progranulin has recently been introduced as a novel adipokine inducing insulin resistance and obesity. In the current study, we investigated renal elimination, as well as association of the adipokine with markers of the metabolic syndrome. RESEARCH DESIGN AND METHODS Progranulin serum levels were quantified by enzyme-linked immunosorbent assay and correlated to anthropometric and biochemical parameters of renal function and glucose and lipid metabolism, as well as inflammation, in 532 patients with stages 1–5 of chronic kidney disease (CKD). RESULTS Median serum progranulin levels adjusted for age, sex, and BMI were significantly different between CKD stages with highest values detectable in stage 5 (stage 1, 58.3 µg/L; stage 2, 63.0 µg/L; stage 3, 65.4 µg/L; stage 4, 68.8 µg/L; and stage 5, 90.6 µg/L). Furthermore, CKD stage was the strongest independent predictor of circulating progranulin in our cohort. In addition, high-sensitivity interleukin-6 and adiponectin remained significantly and independently correlated with the adipokine. CONCLUSIONS We demonstrate that progranulin serum levels increase with deteriorating renal function. These findings are in accordance with the hypothesis that renal clearance is a major elimination route for circulating progranulin. Furthermore, the adipokine is positively and independently associated with markers of inflammation and adiponectin. PMID:23033238
Abnormalities of Lipoprotein Levels in Liver Cirrhosis: Clinical Relevance.
Privitera, Graziella; Spadaro, Luisa; Marchisello, Simona; Fede, Giuseppe; Purrello, Francesco
2018-01-01
Progressive lipoprotein impairment occurs in liver cirrhosis and is associated with increased morbidity and mortality. The present review aims to summarize the current evidence regarding the prognostic value of lipoprotein abnormalities in liver cirrhosis and to address the need of a better prognostic stratification of patients, including lipoprotein profile assessment. Low levels of lipoproteins are usual in cirrhosis. Much evidence supports the prognostic role of hypolipidemia in cirrhotic patients. In particular, hypocholesterolemia represents an independent predictor of survival in cirrhosis. In cirrhotic patients, lipoprotein impairment is associated with several complications: infections, malnutrition, adrenal function, and spur cell anemia. Alterations of liver function are associated with modifications of circulating lipids. Decreased levels of lipoproteins significantly impact the survival of cirrhotic patients and play an important role in the pathogenesis of some cirrhosis-related complications.
Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M; Li, Elizabeth; Dreyfuss, Jonathan M; Gall, Walt; Kim, Jason K; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E; Patti, Mary-Elizabeth; Lerin, Carles
2016-04-01
Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21(-/-) mice, demonstrating that Fgf21 is necessary for betaine's beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Relation between dietary and circulating lipids in lacto-ovo vegetarians.
Fernandes Dourado, K; de Arruda Cámara E Siqueira Campos, F; Sakugava Shinohara, N K
2011-01-01
As factors that have a positive influence on health and specifically on serum lipids and blood pressure, the nature and composition of vegetarian diets is one of the most speculated issues in nutrition. The aim of the present study was to compare diet, lipid profile and blood pressure levels in Brazilian lacto-ovo vegetarians and non-vegetarians. A cross-sectional study was carried out involving 87 male and female adult volunteers (29 lactoovo vegetarians and 58 non-vegetarians). Two non-vegetarians were selected for each vegetarian (paired for age and gender) in order to enhance the power of the statistical tests. Mean age was 40 (13) years; 58.6% were males. No differences were found regarding nutritional status based on the BMI. This similarity may be explained by the similar energy intake and degrees of physical activity in both groups. Regarding blood pressure, the only difference between groups was systolic arterial pressure, which was higher among the non-vegetarians. Among the intake parameters analysed, only energy intake and the intake of polyunsaturated fat were similar between groups. Mean total cholesterol and LDL were higher among non-vegetarians. Mean serum TG was higher among the vegetarians. The greater consumption of carbohydrates among the vegetarians was reflected in the higher serum triglyceride levels. Although all products of animal origin have a greater amount of protein, fat and saturated fatty acids, the absence of meat from the diet may have accounted for the better lipid profile among the lacto-ovo vegetarians may also stem from the high intake of fibre and antioxidants.
USDA-ARS?s Scientific Manuscript database
Background: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression. Objective: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation. Design: We selected 7 SNPs on the basis of predic...
Burchardt, Pawel; Nowak, Witold; Gozdzicka-Jozefiak, Anna; Link, Rafal; Grotowski, Tomasz; Wisniecka, Anna; Siminiak, Tomasz
2009-07-01
Insulin-like growth factor-1 (IGF-1) plays an important role in arterial homeostasis. Its properties seem to depend on circulating IGF-1 level changes. The various IGF-1 levels are caused by varied expression of IGF-1 gene, due to the polymorphic structure of IGF-1 gene or its regulatory sequences. We examined the P1 promoter, being responsible for most IGF-1 transcripts, in patients with stable angina, to evaluate its sequence changes and to assess its influence on protein synthesis as well as on the degree of arteriosclerosis. For that purpose we evaluated the DNA isolated from blood cells. The DNA was amplified by using polymerase chain reaction (PCR), then analyzed using the SSCP (single-strand conformation polymorphism) technique. Products of every stage were verified by electrophoresis on agarose gel. In addition, every patient had coronary angiography performed and IGF-1, IGFBP3, and lipid levels measured. The SSCP in the region between -1115 and -784 nt was less commonly observed among subjects with positive MI (myocardial infarction) familial history (P = 0.0008) and with MI history (P = 0.012) than in patients without these conditions. Subjects with this irregularity tended towards higher circulating IGF-1 levels. In addition high Gensini scores - over 95th percentile, 105 points in our study - were more frequent in SSCP patients (P = 0.03). We presume that presence of SSCP in the P1 region between -1115 and -784 nt may positively affect coronary arteries by increasing circulating IGF-1 levels, but its clinical importance requires molecular verification and further studies.
Al-Daghri, Nasser M; Mohammed, Abdul Khader; Al-Attas, Omar S; Amer, Osama E; Clerici, Mario; Alenad, Amal; Alokail, Majed S
2016-03-11
Irisin is a recently identified myokine that plays an important role in preventing obesity and insulin resistance. We investigated whether the common FNDC5 (irisin precursor) gene variants influence susceptibility to obesity and type 2 diabetes (T2D) and verified the impact of FNDC5 gene variants on serum irisin levels, glucose and lipid metabolism in a Saudi population. Genomic DNA from 814 (394 T2DM and 414 controls) subjects were genotyped for the five common SNPs (rs3480A/G, rs1746661G/T, rs1298190A/G, rs726344A/G and rs1570569G/T) of the FNDC5 gene using the TaqMan genotyping assay. Biochemical parameters and hematic concentrations of irisin and insulin as well as anthropometric indices were collected. Serum irisin levels were higher in T2DM patients compared to controls (p < 0.0001). Analyses of FNDC5 SNPs showed that: 1) The rs3480 GG associates with decreased risk of obesity (p = 0.005; odds ratio: 0.48) and lower body mass index (BMI) values (p = 0.03). In addition, GGAAG was identified as the protective haplotype against risk of obesity (p = 0.001; odds ratio: 0.23). 2) The rs1746661 G allele associates with higher triglyceride (TG) levels (p = 0.019). 3) The rs157069 TT genotype associates with higher fasting insulin (p = 0.029) and HOMA-IR (p = 0.002) as well as with lower circulating irisin levels (p = 0.016). SNPs in FNDC5 gene correlates with obesity and glucose-lipid metabolism possibly because they modulate the serum levels of irisin.
Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9[S
Ason, Brandon; Tep, Samnang; Davis, Harry R.; Xu, Yiming; Tetzloff, Glen; Galinski, Beverly; Soriano, Ferdie; Dubinina, Natalya; Zhu, Lei; Stefanni, Alice; Wong, Kenny K.; Tadin-Strapps, Marija; Bartz, Steven R.; Hubbard, Brian; Ranalletta, Mollie; Sachs, Alan B.; Flanagan, W. Michael; Strack, Alison; Kuklin, Nelly A.
2011-01-01
Reducing circulating LDL-cholesterol (LDL-c) reduces the risk of cardiovascular disease in people with hypercholesterolemia. Current approaches to reduce circulating LDL-c include statins, which inhibit cholesterol synthesis, and ezetimibe, which blocks cholesterol absorption. Both elevate serum PCSK9 protein levels in patients, which could attenuate their efficacy by reducing the amount of cholesterol cleared from circulation. To determine whether PCSK9 inhibition could enhance LDL-c lowering of both statins and ezetimibe, we utilized small interfering RNAs (siRNAs) to knock down Pcsk9, together with ezetimibe, rosuvastatin, and an ezetimibe/rosuvastatin combination in a mouse model with a human-like lipid profile. We found that ezetimibe, rosuvastatin, and ezetimibe/rosuvastatin combined lower serum cholesterol but induce the expression of Pcsk9 as well as the Srebp-2 hepatic cholesterol biosynthesis pathway. Pcsk9 knockdown in combination with either treatment led to greater reductions in serum non-HDL with a near-uniform reduction of all LDL-c subfractions. In addition to reducing serum cholesterol, the combined rosuvastatin/ezetimibe/Pcsk9 siRNA treatment exhibited a significant reduction in serum APOB protein and triglyceride levels. Taken together, these data provide evidence that PCSK9 inhibitors, in combination with current therapies, have the potential to achieve greater reductions in both serum cholesterol and triglycerides. PMID:21262787
Thankamony, Ajay; Capalbo, Donatella; Marcovecchio, M Loredana; Sleigh, Alison; Jørgensen, Sine Wanda; Hill, Nathan R; Mooslehner, Katrin; Yeo, Giles S H; Bluck, Les; Juul, Anders; Vaag, Allan; Dunger, David B
2014-06-01
Low serum IGF-1 levels have been linked to increased risk for development of type 2 diabetes. However, the physiological role of IGF-1 in glucose metabolism is not well characterized. Our objective was to explore glucose and lipid metabolism associated with variations in serum IGF-1 levels. IGF-1 levels were measured in healthy, nonobese male volunteers aged 18 to 50 years from a biobank (n = 275) to select 24 subjects (age 34.8 ± 8.9 years), 12 each in the lowest (low-IGF) and highest (high-IGF) quartiles of age-specific IGF-1 SD scores. Evaluations were undertaken after a 24-hour fast and included glucose and glycerol turnover rates using tracers, iv glucose tolerance test to estimate peripheral insulin sensitivity (IS) and acute insulin and C-peptide responses (indices of insulin secretion), magnetic resonance spectroscopy to measure intramyocellular lipids (IMCLs), calorimetry, and gene expression studies in a muscle biopsy. Acute insulin and C-peptide responses, IS, and glucose and glycerol rate of appearance (Ra) were evaluated. Fasting insulin and C-peptide levels and glucose Ra were reduced (all P < .05) in low-IGF compared with high-IGF subjects, indicating increased hepatic IS. Acute insulin and C-peptide responses were lower (both P < .05), but similar peripheral IS resulted in reduced insulin secretion adjusted for IS in low-IGF subjects (P = 0.044). Low-IGF subjects had higher overnight levels of free fatty acids (P = .028) and β-hydroxybutyrate (P = .014), increased accumulation of IMCLs in tibialis anterior muscle (P = .008), and a tendency for elevated fat oxidation rates (P = .058); however, glycerol Ra values were similar. Gene expression of the fatty acid metabolism pathway (P = .0014) was upregulated, whereas the GLUT1 gene was downregulated (P = .005) in the skeletal muscle in low-IGF subjects. These data suggest that serum IGF-1 levels could be an important marker of β-cell function and glucose as well as lipid metabolic responses during fasting.
Jones, Peter J; Raeini-Sarjaz, Mahmoud; Jenkins, David J A; Kendall, Cyril W C; Vidgen, Edward; Trautwein, Elke A; Lapsley, Karen G; Marchie, Augustine; Cunnane, Stephen C; Connelly, Philip W
2005-02-01
Plant sterols, soy proteins, viscous fibers, and nuts are advised for cholesterol reduction, but their combined effect on plant sterol absorption has never been tested. We assessed their combined action on serum sterols in hyperlipidemic subjects who were following low-saturated fat diets before starting the study and who returned to these diets post-test. The 1-mon test (combination) diet was high in plant sterols (1 g/1,000 kcal), soy protein (23 g/1,000 kcal), viscous fiber (9 g/1,000 kcal), and almonds (14 g/1000 kcal). Fasting blood was obtained for serum lipids and sterols, and erythrocytes were obtained for fragility prior to and at 2-wk intervals during the study. The combination diet raised serum campesterol concentrations by 50% and beta-sitosterol by 27%, although these changes were not significant after Bonferroni correction; near-maximal rises were found by the end of the first week, but no change was found in red cell fragility despite a 29% reduction in the LDL cholesterol level. No significant associations were observed between changes in red cell fragility and blood lipids or sterols. We conclude that plant sterols had a minimal impact on serum sterol concentrations or red cell fragility in hyperlipidemic subjects on diets that greatly reduced their serum lipids.
Long-Circulating, pH-Sensitive Liposomes.
Momekova, Denitsa; Rangelov, Stanislav; Lambov, Nikolay
2017-01-01
A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticuloendothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives a thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.
Long-circulating, pH-sensitive liposomes.
Momekova, Denitsa; Rangelov, Stanislav; Lambov, Nikolay
2010-01-01
A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticulo-endothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.
Samavat, Hamed; Newman, April R; Wang, Renwei; Yuan, Jian-Min; Wu, Anna H; Kurzer, Mindy S
2016-01-01
Background: Green tea has been suggested to improve cardiovascular disease risk factors, including circulating lipid variables. However, current evidence is predominantly based on small, short-term randomized controlled trials conducted in diverse populations. Objective: The aim of this study was to examine the efficacy and impact of green tea extract (GTE) supplementation high in epigallocatechin gallate (EGCG) on blood lipids in healthy postmenopausal women. Design: This was an ancillary study of a double-blind, randomized, placebo-controlled, parallel-arm trial investigating the effects of a GTE supplement containing 1315 mg catechins (843 mg EGCG) on biomarkers of breast cancer risk. Participants were randomly assigned to receive GTE (n = 538) or placebo (n = 537) and were stratified by catechol-O-methyltransferase (COMT) genotype activity (high COMT compared with low or intermediate COMT genotype activity). They consumed either 4 GTE or identical placebo capsules daily for 12 mo. A total of 936 women completed this substudy. Circulating lipid panels including total cholesterol (TC), HDL cholesterol, and triglycerides were measured at baseline and at months 6 and 12. Results: Compared with placebo, 1-y supplementation with GTE capsules resulted in a significant reduction in circulating TC (−2.1% compared with 0.7%; P = 0.0004), LDL cholesterol (−4.1% compared with 0.9%; P < 0.0001) and non-HDL cholesterol (−3.1% compared with 0.4%; P = 0.0032). There was no change in HDL-cholesterol concentration, but triglyceride concentrations increased by 3.6% in the GTE group, whereas they decreased by 2.5% in the placebo group (P = 0.046). A significant reduction in TC was observed only among women with high (i.e., ≥200 mg/dL) baseline TC concentrations (P-interaction = 0.01) who consumed GTE capsules. The effect of GTE on the increase in triglycerides was mainly observed among obese women and statin users (P-interaction = 0.06). Conclusion: Supplementation with GTE significantly reduced circulating TC and LDL-cholesterol concentrations, especially in those with elevated baseline TC concentrations. This trial was registered at clinicaltrials.gov as NCT00917735. PMID:27806972
A systematic survey of lipids across mouse tissues
Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.
2014-01-01
Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676
Potential early biomarkers of sarcopenia among independent older adults.
Coto Montes, Ana; Boga, José Antonio; Bermejo Millo, Carlos; Rubio González, Adrián; Potes Ochoa, Yaiza; Vega Naredo, Ignacio; Martínez Reig, Marta; Romero Rizos, Luis; Sánchez Jurado, Pedro Manuel; Solano, Juan Jose; Abizanda, Pedro; Caballero, Beatriz
2017-10-01
There are no tools or biomarkers for a quantitative analysis of sarcopenia. Cross-sectional study of the diagnosis of sarcopenia in 200 independent adults aged 70 years or over. Sarcopenia was defined as loss of muscle mass together with low strength and/or loss of physical performance. We considered different clinical parameters and assayed potential blood biomarkers (cell energetic metabolism, muscle performance, inflammation, infection and oxidative stress). The prevalence of sarcopenia was 35.3% in women and 13.1% in men, and it was significantly associated with advanced age, a low functional performance in the lower extremities, deficient weekly consumption of kilocalories, risk of malnutrition, and drug use for the digestive system. A close relationship was found between sarcopenia, pre-frailty and depressed mood. With these confounding variables, we observed that products of lipid peroxidation were closely associated with sarcopenia in independent older adults (frail participants and those with severe dependence had been excluded from the sample). The best multivariate model proposed was able to predict 67.6% of the variance in sarcopenia, with a power of discrimination of 93.5%. Additional analyses considering lipid levels, fat mass, dyslipidemia, use of lipid-lowering drugs and hypertension confirmed this close association between lipid peroxidation and sarcopenia. Given the difficulty in the diagnosis of sarcopenia in clinical practice, we suggest the use of blood circulating products of lipid peroxidation as potential biomarkers for an early diagnosis of sarcopenia in independent older adults. Copyright © 2017 Elsevier B.V. All rights reserved.
Wild, Robert A
2012-03-10
Life-long apolipoprotein lipid metabolic dysfunction in women with PCOS exaggerates the risk for cardiovascular disease (CVD) with aging. The dysfunction has involved insulin resistance (IR), which occurs in most women with PCOS. Women with PCOS have androgen excess, IR, variable amounts of estrogen exposure, and many environmental factors, all of which can influence lipid metabolism. On average, women with PCOS were higher triglyceride [26.39 95% CI (17.24, 35.54)], lower HDL-cholesterol [6.41 95% CI (3.69, 9.14)], and higher non HDL cholesterol levels [18.82 95% CI (15.53, 22.11)] than their non-PCOS counterparts. They have higher ApoCIII/ApoCII ratios and higher ApoCI even if they are not obese. ApoC1 elevation in women with PCOS needs to be further evaluated as a marker of dysfunction and potential CVD risk. ApoB measurements track with non-HDL cholesterol as a surrogate for increased atherogenic circulating small LDL particles. Elevated triglycerides and waist circumference predict CVD risk and women with PCOS often have these phenotypes. Diet and exercise interventions followed by selective lipid lowering medications are encouraged to normalize the dyslipidemia. Copyright © 2012 Elsevier Inc. All rights reserved.
Fahrmann, Johannes; Grapov, Dmitry; Yang, Jun; Hammock, Bruce; Fiehn, Oliver; Bell, Graeme I.
2015-01-01
Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D. PMID:25852003
Ho, Emmanuel A; Ramsay, Euan; Ginj, Mihaela; Anantha, Malathi; Bregman, Isaiah; Sy, Jonathan; Woo, Janet; Osooly-Talesh, Maryam; Yapp, Donald T; Bally, Marcel B
2010-06-01
Cationic liposomes exhibit a propensity to selectively target tumor-associated blood vessels demonstrating potential value as anti-cancer drug delivery vehicles. Their utility however, is hampered by their biological instability and rapid elimination following i.v. administration. Efforts to circumvent rapid plasma elimination have, to date, focused on decreasing cationic lipid content and incorporating polyethylene glycol (PEG)-modified lipids. In this study we wanted to determine whether highly charged cationic liposomes with surface-associated PEG could be designed to exhibit extended circulation lifetimes, while retaining tumor vascular targeting properties in an HT29 colorectal cancer xenograft model. Cationic liposomes prepared of DSPC, cationic lipids (DODAC, DOTAP, or DC-CHOL), and DSPE-PEG(2000) were studied. Our results demonstrate that formulations prepared with 50 mol% DODAC or DC-CHOL, and 20 mol% DSPE-PEG(2000) exhibited circulation half-lives ranging from 6.5 to 12.5 h. Biodistribution studies demonstrated that DC-CHOL formulations prepared with DSPE-PEG(2000) accumulated threefold higher in s.c. HT29 tumors than its PEG-free counterpart. Fluorescence microscopy studies suggested that the presence of DSPE-PEG(2000) did not adversely affect liposomal tumor vasculature targeting. We show for the first time that it is achievable to design highly charged, highly pegylated (20 mol% DSPE-PEG(2000)) cationic liposomes which exhibit both extended circulation lifetimes and tumor vascular targeting properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian
2017-09-01
Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.
1999-01-01
In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short-and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.
Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.; Romano, M.
1999-01-01
In this study we examined hormonal responses of Black-legged Kittiwake (Rissa tridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short- and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.
Liu, Guang-Zhong; Hou, Ting-Ting; Yuan, Yue; Hang, Peng-Zhou; Zhao, Jing-Jing; Sun, Li; Zhao, Guan-Qi; Zhao, Jing; Dong, Jing-Mei; Wang, Xiao-Bing; Shi, Hang; Liu, Yong-Wu; Zhou, Jing-Hua; Dong, Zeng-Xiang; Liu, Yang; Zhan, Cheng-Chuang; Li, Yue; Li, Wei-Min
2016-03-01
Atrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR-α/sirtuin 1 /PPAR co-activator α (PGC-1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR-α agonist fenofibrate on AF is unclear. Therefore, the aim of this study was to determine the effect of fenofibrate on atrial metabolic remodelling in AF and explore its possible mechanisms of action. The expression of metabolic proteins was examined in the left atria of AF patients. Thirty-two rabbits were divided into sham, AF (pacing with 600 beats·min(-1) for 1 week), fenofibrate treated (pretreated with fenofibrate before pacing) and fenofibrate alone treated (for 2 weeks) groups. HL-1 cells were subjected to rapid pacing in the presence or absence of fenofibrate, the PPAR-α antagonist GW6471 or sirtuin 1-specific inhibitor EX527. Metabolic factors, circulating biochemical metabolites, atrial electrophysiology, adenine nucleotide levels and accumulation of glycogen and lipid droplets were assessed. The PPAR-α/sirtuin 1/PGC-1α pathway was significantly inhibited in AF patients and in the rabbit/HL-1 cell models, resulting in a reduction of key downstream metabolic factors; this effect was significantly restored by fenofibrate. Fenofibrate prevented the alterations in circulating biochemical metabolites, reduced the level of adenine nucleotides and accumulation of glycogen and lipid droplets, reversed the shortened atrial effective refractory period and increased risk of AF. Fenofibrate inhibited atrial metabolic remodelling in AF by regulating the PPAR-α/sirtuin 1/PGC-1α pathway. The present study may provide a novel therapeutic strategy for AF. © 2016 The British Pharmacological Society.
Paradoxical effects of SAA on lipoprotein oxidation suggest a new antioxidant function for SAA[S
Jayaraman, Shobini; Haupt, Christian
2016-01-01
Oxidative stress and inflammation, which involve a dramatic increase in serum amyloid A (SAA) levels, are critical in the development of atherosclerosis. Most SAA circulates on plasma HDL particles, altering their cardioprotective properties. SAA-enriched HDL has diminished anti-oxidant effects on LDL, which may contribute to atherogenesis. We determined combined effects of SAA enrichment and oxidation on biochemical changes in HDL. Normal human HDLs were incubated with SAA, oxidized by various factors (Cu2+, myeloperoxidase, H2O2, OCl−), and analyzed for lipid and protein modifications and biophysical remodeling. Three novel findings are reported: addition of SAA reduces oxidation of HDL and LDL lipids; oxidation of SAA-containing HDL in the presence of OCl− generates a covalent heterodimer of SAA and apoA-I that resists the release from HDL; and mild oxidation promotes spontaneous release of proteins (SAA and apoA-I) from SAA-enriched HDL. We show that the anti-oxidant effects of SAA extend to various oxidants and are mediated mainly by the unbound protein. We propose that free SAA sequesters lipid hydroperoxides and delays lipoprotein oxidation, though much less efficiently than other anti-oxidant proteins, such as apoA-I, that SAA displaces from HDL. These findings prompt us to reconsider the role of SAA in lipid oxidation in vivo. PMID:27744369
White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B
2016-07-01
A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.
Dias, Irundika H. K.; Chapple, Ian L. C.; Milward, Mike; Grant, Melissa M.; Hill, Eric; Brown, James; Griffiths, Helen R.
2013-01-01
The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients’ neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. PMID:23826097
Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R
2013-01-01
The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crump, Doug, E-mail: doug.crump@ec.gc.ca; Porter, Emily; Egloff, Caroline
1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH) and tris(methylphenyl) phosphate (TMPP; formerly abbreviated as TCP) are additive flame retardants that are detected in the environment and biota. A recent avian in vitro screening study of 16 flame retardants identified DBE-DBCH and TMPP as important chemicals for follow-up in ovo evaluation based on their effects on cytotoxicity and mRNA expression in avian hepatocytes. In this study, technical mixtures of DBE-DBCH and TMPP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 54,900 ng/g and from 0 to 261,400 ng/g, respectively, to determine effects on pipping success,more » development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations. Both compounds were detectable in embryos at pipping and the β-DBE-DBCH isomer was depleted more rapidly than the α-isomer in tissue samples. DBE-DBCH had limited effects on the endpoints measured, with the exception of the up-regulation of two phase I metabolizing enzymes, CYP3A37 and CYP2H1. TMPP exposure caused embryonic deformities, altered growth, increased liver somatic index (LSI) and plasma bile acid concentrations, and altered mRNA expression levels of genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Overall, TMPP elicited more adverse molecular and phenotypic effects than DBE-DBCH albeit at concentrations several orders of magnitude greater than those detected in the environment. The increase in plasma bile acid concentrations was a useful phenotypic anchor as it was associated with a concomitant increase in LSI, discoloration of the liver tissue, and modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • DBE-DBCH and TMPP are not embryolethal to chicken embryos. • TMPP caused deformities, morphometric alterations, and increased plasma bile acids. • DBE-DBCH and TMPP altered mRNA levels of xenobiotic and lipid metabolism genes. • Elevated plasma bile acids suggest that TMPP causes liver dysfunction. • TMPP elicited more adverse molecular and phenotypic effects than DBE-DBCH.« less
Longer period of oral administration of aspartame on cytokine response in Wistar albino rats.
Choudhary, Arbind Kumar; Sheela Devi, Rathinasamy
2015-03-01
Aspartame is a non-nutritive sweetener particularly used in 'diet' and 'low calorie' products and also in a variety of foods, drugs and hygiene products. Aspartame is metabolized by gut esterases and peptidases to three common chemicals: the amino acids, aspartic acid and phenylalanine, and small amounts of methanol. The aim of the present study was to assess potential changes in molecular mediators of aspartame as a chemical stressor in rats. The effects of long-term administration of aspartame (40 mg/kg body weight/day) were tested in Wistar Albino rats. The treatment effects were assessed in different conditions, including control groups. After 90 days of treatment, circulating concentrations of different parameters were assessed: corticosterone, lipid peroxidation, antioxidant activity, nitric oxide, reduced glutathione and cytokines (interleukin 2, interleukin 4, tumor necrosis factor-α and interferon-γ). The results show that there was a significant increase in plasma corticosterone, serum lipid peroxidation and nitric oxide level along with a decrease in enzymatic and non-enzymatic antioxidant as well as significant decrease in interleukin 2, tumor necrosis factor-α and interferon-γ. There was also a significant increase in interleukin 4 irrespective of whether the animals were immunized or not. The findings clearly point out that aspartame acts as a chemical stressor because of increased corticosterone level and increased lipid peroxidation and nitric oxide level induce generation of free radicals in serum which may be the reason for variation of cytokine level and finally results in alteration of immune function. Aspartame metabolite methanol or formaldehyde may be the causative factors behind the changes observed. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
Kidneys: Key Modulators of HDL Levels and Function
Yang, Haichun; Fogo, Agnes B.; Kon, Valentina
2016-01-01
Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596
Mamou, Zahida; Descotes, Jacques; Chevalier, Philippe; Bui-Xuan, Bernard; Romestaing, Caroline; Timour, Quadiri
2015-10-01
Accidental intravascular or high-dose injection of local anesthetics (LA) can result in serious, potentially life-threatening complications. Indeed, adequate supportive measures and the administration of lipid emulsions are required in such complications. The study's objectives were threefold: (i) evaluate the myocardial toxicity of levobupivacaine when administered intravenously; (ii) investigate levobupivacaine toxicity on cardiomyocytes mitochondrial functions and cellular structure; (iii) assess the protective effects of a lipid emulsion in the presence or absence of myocardial ischemia. Domestic pigs randomized into two groups of 24 animals each, with either preserved coronary circulation or experimental myocardial ischemia. Six animals from each group received either: (i) single IV injection of saline, (ii) lipid emulsion (Intralipid(®) ), (iii) levobupivacaine, (iv) combination levobupivacaine-Intralipid(®) . Serially measured endpoints included: heart rate, duration of the monophasic action potentials (dMAP), mean arterial pressure, and peak of the time derivative of left ventricular pressure (LV dP/dtmax ). In addition, the following cardiomyocytes mitochondrial functions were measured: reactive oxygen species (ROS) production, oxidative phosphorylation, and calcium retention capacity (CRC) as well as the consequences of ROS production on lipids, proteins, and DNA. IV injection of levobupivacaine induced sinus bradycardia and reduced dMAP and LV dP/dtmax . At the mitochondrial level, oxygen consumption and CRC were decreased. In contrast, ROS production was increased leading to enhanced lipid peroxidation and structural alterations of proteins and DNA. Myocardial ischemia was associated with global worsening of all changes. Intralipid(®) quickly improved haemodynamics. However, beneficial effects of Intralipid(®) were less clear after myocardial ischemia. © 2015 Société Française de Pharmacologie et de Thérapeutique.
The l-α-Lysophosphatidylinositol/GPR55 System and Its Potential Role in Human Obesity
Moreno-Navarrete, José María; Catalán, Victoria; Whyte, Lauren; Díaz-Arteaga, Adenis; Vázquez-Martínez, Rafael; Rotellar, Fernando; Guzmán, Rocío; Gómez-Ambrosi, Javier; Pulido, Marina R.; Russell, Wendy R.; Imbernón, Mónica; Ross, Ruth A.; Malagón, María M.; Dieguez, Carlos; Fernández-Real, José Manuel; Frühbeck, Gema; Nogueiras, Ruben
2012-01-01
GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans. PMID:22179809
microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis
de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan
2015-01-01
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864
Beneficial effects of cytokine induced hyperlipidemia.
Feingold, K R; Hardardóttir, I; Grunfeld, C
1998-01-01
Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and lipoproteins binding toxic agents and neutralizing their harmful effects. Thus, cytokines induce marked changes in lipid metabolism that lead to hyperlipidemia which represents part of the innate immune response and may be beneficial to the host.
Iglesias, Pedro; Selgas, Rafael; Romero, Sara; Díez, Juan J
2012-09-01
Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called β-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. β-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as renal function deteriorates. Circulating FGF21 levels seem to be related to insulin resistance and inflammation in dialysis patients. In summary, FGF21 is a recently identified hormone with antihyperglycemic, antihyperlipidemic, and thermogenic properties. Direct or indirect potentiation of its effects might be a potential therapeutic target in insulin-resistant states.
Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms.
Godoy, Jaime; Mellado, Patricio; Tapia, Jorge; Santín, Julia
2009-03-01
Obstructive Sleep Apnea (OSA) is a prevalent disease that has emerged as a new cerebrovascular disease (CVD) risk factor, which is independent of its association to hypertension, age and other known conditions that increase CVD. The mechanisms involved in this relation are most likely induced by the periodic hypoxia/reoxygenation that characteristically occurs in OSA, which results in oxidative stress, endothelial dysfunction and activation of the inflammatory cascade, all of which favor atherogenesis. Numerous markers of these changes have been reported in OSA patients, including increased circulating free radicals, increased lipid peroxidation, decreased antioxidant capacity, elevation of tumor necrosis factor and interleukines, increased levels of proinflammatory nuclear transcription factor kappa B, decreased circulating nitric oxide, elevation of vascular adhesion molecules and vascular endothelial growth factor. In addition, several authors have described that Continuous Positive Airway Pressure, the standard OSA therapy, reverts these abnormalities. Further research is needed in order to better clarify the complex mechanisms that underlie the relation between OSA, atherogenesis and CVD which most likely will have significant clinical impact.
System-wide Benefits of Intermeal Fasting by Autophagy.
Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E; Schwartz, Gary J; Kersten, Sander; Singh, Rajat
2017-12-05
Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.
Postprandial dysmetabolism: Too early or too late?
Pappas, Christos; Kandaraki, Eleni A; Tsirona, Sofia; Kountouras, Dimitrios; Kassi, Georgia; Diamanti-Kandarakis, Evanthia
2016-07-01
Postprandial dysmetabolism is a postprandial state characterized by abnormal metabolism of glucose and lipids and, more specifically, of elevated levels of glucose and triglyceride (TG) containing lipoproteins. Since there is evidence that postprandial dysmetabolism is associated with increased cardiovascular mortality and morbidity, due to macro- and microvascular complications, as well as with conditions such as polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD), it is recommended that clinicians be alert for early detection and management of this condition. Management consists of a holistic approach including dietary modification, exercise and use of hypoglycemic and hypolipidemic medication aiming to decrease the postprandial values of circulating glucose and triglycerides. This review aims to explain glucose and lipid homeostasis and the impact of postprandial dysmetabolism on the cardiovascular system as well as to offer suggestions with regard to the therapeutic approach for this entity. However, more trials are required to prevent or reverse early and not too late the actual tissue damage due to postprandial dysmetabolism.
Amphotericin B formulations: a comparative review of efficacy and toxicity.
Hamill, Richard J
2013-06-01
Because of the increasing prevalence and changing microbiological spectrum of invasive fungal infections, some form of amphotericin B still provides the most reliable and broad spectrum therapeutic alternative. However, the use of amphotericin B deoxycholate is accompanied by dose-limited toxicities, most importantly, infusion-related reactions and nephrotoxicity. In an attempt to improve the therapeutic index of amphotericin B, three lipid-associated formulations were developed, including amphotericin B lipid complex (ABLC), liposomal amphotericin B (L-AmB), and amphotericin B colloidal dispersion (ABCD). The lipid composition of all three of these preparations differs considerably and contributes to substantially different pharmacokinetic parameters. ABLC is the largest of the lipid preparations. Because of its size, it is taken up rapidly by macrophages and becomes sequestered in tissues of the mononuclear phagocyte system such as the liver and spleen. Consequently, compared with the conventional formulation, it has lower circulating amphotericin B serum concentrations, reflected in a marked increase in volume of distribution and clearance. Lung levels are considerably higher than those achieved with other lipid-associated preparations. The recommended therapeutic dose of ABLC is 5 mg/kg/day. Because of its small size and negative charge, L-AmB avoids substantial recognition and uptake by the mononuclear phagocyte system. Therefore, a single dose of L-AmB results in a much higher peak plasma level (Cmax) than conventional amphotericin B deoxycholate and a much larger area under the concentration-time curve. Tissue concentrations in patients receiving L-AmB tend to be highest in the liver and spleen and much lower in kidneys and lung. Recommended therapeutic dosages are 3-6 mg/kg/day. After intravenous infusion, ABCD complexes remain largely intact and are rapidly removed from the circulation by cells of the macrophage phagocyte system. On a milligram-to-milligram basis, the Cmax achieved is lower than that attained by conventional amphotericin B, although the larger doses of ABCD that are administered produce an absolute level that is similar to amphotericin B. ABCD exhibits dose-limiting, infusion-related toxicities; consequently, the administered dosages should not exceed 3-4 mg/kg/day. The few comparative clinical trials that have been completed with the lipid-associated formulations have not demonstrated important clinical differences among these agents and amphotericin B for efficacy, although there are significant safety benefits of the lipid products. Furthermore, only one published trial has ever compared one lipid product against another for any indication. The results of these trials are particularly difficult to interpret because of major heterogeneities in study design, disease definitions, drug dosages, differences in clinical and microbiological endpoints as well as specific outcomes examined. Nevertheless, it is possible to derive some general conclusions given the available data. The most commonly studied syndrome has been empiric therapy for febrile neutropenic patients, where the lipid-associated preparations did not appear to provide a survival benefit over conventional amphotericin B deoxycholate, but did offer a significant advantage for the prevention of various breakthrough invasive fungal infections. For treatment of documented invasive fungal infections that usually involved hematological malignancy patients, no individual randomized trial has demonstrated a mortality benefit due to therapy with one of the lipid formulations. Results from meta-analyses have been contradictory, with one demonstrating a mortality benefit from all-cause mortality and one that did not demonstrate a mortality benefit. In the only published study to examine HIV-infected patients with disseminated histoplasmosis, clinical success and mortality were significantly better with L-AmB compared with amphotericin B deoxycholate; there were no differences in microbiological outcomes between treatment groups. The lipid-associated preparations were not significantly better than amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis for either clinical or microbiological outcomes that were studied. In all of the trials that specifically examined renal toxicity, the lipid-associated formulations were significantly less nephrotoxic than amphotericin B deoxycholate. Infusion-related reactions occurred less frequently with L-AmB when compared with amphotericin B deoxycholate; however, ABCD had equivalent or more frequent infusion-related reactions than conventional amphotericin B, and this resulted in the cessation of at least one clinical trial. At the present time, this particular lipid formulation is no longer commercially available. For the treatment of most invasive fungal infections, an amphotericin B lipid formulation provides a safer alternative than conventional amphotericin B, with at least equivalent efficacy. As the cost of therapy with these agents continues to decline, these drugs will likely maintain their important role in the antifungal drug armamentarium because of their efficacy and improved safety profile.
Soekmadji, Carolina; Corcoran, Niall M; Oleinikova, Irina; Jovanovic, Lidija; Ramm, Grant A; Nelson, Colleen C; Jenster, Guido; Russell, Pamela J
2017-10-01
The use of circulating tumor cells (CTCs) and circulating extracellular vesicles (EVs), such as exosomes, as liquid biopsy-derived biomarkers for cancers have been investigated. CTC enumeration using the CellSearch based platform provides an accurate insight on overall survival where higher CTC counts indicate poor prognosis for patients with advanced metastatic cancer. EVs provide information based on their lipid, protein, and nucleic acid content and can be isolated from biofluids and analyzed from a relatively small volume, providing a routine and non-invasive modality to monitor disease progression. Our pilot experiment by assessing the level of two subpopulations of small EVs, the CD9 positive and CD63 positive EVs, showed that the CD9 positive EV level is higher in plasma from patients with advanced metastatic prostate cancer with detectable CTCs. These data show the potential utility of a particular EV subpopulation to serve as biomarkers for advanced metastatic prostate cancer. EVs can potentially be utilized as biomarkers to provide accurate genotypic and phenotypic information for advanced prostate cancer, where new strategies to design a more personalized therapy is currently the focus of considerable investigation. © 2017 Wiley Periodicals, Inc.
Banz, Yara; Beldi, Guido; Wu, Yan; Atkinson, Ben; Usheva, Anny; Robson, Simon C
2008-08-01
Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.
Pereira, Maria J; Skrtic, Stanko; Katsogiannos, Petros; Abrahamsson, Niclas; Sidibeh, Cherno O; Dahgam, Santosh; Månsson, Marianne; Risérus, Ulf; Kullberg, Joel; Eriksson, Jan W
2016-12-01
Elevated levels of circulating non-esterified fatty acids (NEFA) mediate many adverse metabolic effects. In this work we aim to determine the impact of type 2 diabetes (T2D), glycemic control and obesity on lipolysis regulation. 20 control and 20 metformin-treated T2D subjects were matched for sex (10M/10 F), age (58±11 vs 58±9 y) and BMI (30.8±4.6 vs 30.7±4.9kg/m 2 ). In vivo lipolysis was assessed during a 3h-OGTT with plasma glycerol and NEFA levels. Subcutaneous adipose tissue (SAT) biopsies were obtained to measure mRNA and metabolite levels of factors related to lipolysis and lipid storage and to assess in vitro lipolysis in isolated subcutaneous adipocytes. Plasma NEFA AUC during the OGTT where higher 30% (P=0.005) in T2D than in control subjects, but plasma glycerol AUC and subcutaneous adipocyte lipolysis in vitro were similar, suggesting that adipose tissue lipolysis is not altered. Expression in SAT of genes involved in lipid storage (FABP4, DGAT1, FASN) were reduced in T2D subjects compared with controls, but no differences were seen for genes involved in lipolysis. T2D subjects had elevated markers of beta-oxidation, α-hydroxybutyrate (1.4-fold, P<0.01) and β-hydroxybutyrate (1.7-fold, P<0.05) in plasma. In multivariate analysis, HbA1c, visceral adipose tissue volume and sex (male) were significantly associated with NEFA AUC in T2D subjects. In T2D subjects, NEFA turnover is impaired, but not due to defects in lipolysis or lipid beta-oxidation. Impaired adipose NEFA re-esterification or de novo lipogenesis is likely to contribute to higher NEFA plasma levels in T2D. The data suggest that hyperglycemia and adiposity are important contributing factors for the regulation of plasma NEFA concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.
Mailloux, Ryan J.; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C.; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G.; Jin, Xiaolei
2014-01-01
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol. PMID:25222487
Lack of Day/Night variation in fibroblast growth factor 21 levels in young healthy men.
Foo, J-P; Aronis, K N; Chamberland, J P; Mantzoros, C S
2015-06-01
Fibroblast growth factor (FGF) 21 is an endocrine factor with an emerging role as a metabolic regulator. We previously reported the presence of a significant day/night variation of FGF-21 in energy-replete, healthy female subjects. However the day/night patterns of secretion in male subjects remain to be fully elucidated. To elucidate day/night pattern of FGF-21 levels in male subjects in the energy-replete state, its relationship to FFA and to investigate whether a sexual dimorphism exists in FGF-21 physiology. Eight healthy lean male subjects were studied for up to 5 days while on an isocaloric diet. Blood samples were obtained for measurement of FGF-21 and free fatty acids (FFA) hourly from 0800 AM on day 4 till 0800AM on day 5. FGF-21 did not exhibit any statistically significant day/night variation pattern of circulating FGF-21 levels during the isocaloric fed state in male subjects. FGF-21 levels in male subjects are closely cross-correlated with FFA levels, similar to female subjects. A sexual dimorphism exists in FGF-21 physiology; that as opposed to female subjects, no significant day/night variation exists in FGF-21 rhythm in male subjects in the energy-replete state. Circulating pattern of FGF-21, similar to the female subjects, was highly cross-correlated to the FFA levels in the male subjects, signifying that the sexual dimorphism in FGF-21 physiology may be related to the differing lipid metabolism in both the genders.
Forcheron, Fabien; Beylot, Michel
2007-08-01
Short-term studies have shown that the addition to diet of inulin-type fructans, a nondigestible carbohydrate, may have a plasma lipid-lowering effect in humans. Whether this beneficial effect persists during long-term administration has not been determined. The study was aimed at determining whether a prolonged (6 months) administration of inulin-type fructans to healthy subjects has a lipid-lowering action. In a double-blind, randomized, placebo-controlled study, 17 healthy subjects were studied before and after 6 months of daily administration of placebo (8 subjects) or 10 g of a mix of inulin and oligofructose (9 subjects). During this 6-month period, they consumed their usual diet and did not modify their everyday way of life. We measured plasma lipid concentrations; cholesterol synthesis and hepatic lipogenesis; and adipose tissue and circulating mononuclear cell messenger RNA concentrations of key regulatory genes of cholesterol metabolism. Compared with the administration of placebo, the administration of inulin-type fructans had no effect on plasma triacylglycerol concentrations and hepatic lipogenesis and induced only a nonsignificant trend for decreased plasma total and low-density lipoprotein cholesterol levels and increased high-density lipoprotein cholesterol concentration. Cholesterol synthesis was not significantly modified. Of all the messenger RNA concentrations measured, none was significantly modified by the administration of inulin-type fructans. In conclusion, contrary to what was observed in short-term studies, we observed no significant beneficial effect of a long-term (6-month) administration of inulin-type fructans on plasma lipids in healthy human subjects.
Insulin resistance in porphyria cutanea tarda.
Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R
1989-06-01
It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.
NASA Astrophysics Data System (ADS)
Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro
2014-07-01
Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.
Córdova Martínez, Alfredo; Martorell Pons, Miquel; Sureda Gomila, Antoni; Tur Marí, Josep A; Pons Biescas, Antoni
2015-09-01
The purpose of this study was to determine the changes in the basal and post-exercise plasma markers of muscular damage, lipid peroxidation and cytokines in eight male well-trained semiprofessional cyclists, in response to a three consecutive-day cycling competition. Serum markers of oxidative and muscular damage - creatine kinase activity, lactate dehydrogenase activity, myoglobin and malondialdehyde (MDA), creatinine and nitrite levels - followed a sawtooth-type representation throughout the competition. MDA showed an accumulative pattern, evidenced in the post-race values of the third stage which were significantly higher with respect to the values of the first stage. Cortisol levels were significantly influenced by an interaction between the exercise and the stage factors, with higher values on the 4th day. Plasma cytokine levels were only determined before the first stage and post-race, after the third stage. The exercise increased TNFα, IL6, IL2 and IFNγ levels, whereas IL1β was unchanged. In conclusion, cyclist stages induced oxidative and cellular muscle damage which is partially recovered to basal values by the next morning. Repetitive stages during the cycling competition accumulated plasma muscular damage and lipid peroxidation markers and pro-inflammatory cytokines, probably as a result of local inflammatory responses. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Pregnancy to postpartum transition of serum metabolites in women with gestational diabetes.
Chorell, Elin; Hall, Ulrika Andersson; Gustavsson, Carolina; Berntorp, Kerstin; Puhkala, Jatta; Luoto, Riitta; Olsson, Tommy; Holmäng, Agneta
2017-07-01
Gestational diabetes is commonly linked to development of type 2 diabetes mellitus (T2DM). There is a need to characterize metabolic changes associated with gestational diabetes in order to find novel biomarkers for T2DM. To find potential pathophysiological mechanisms and markers for progression from gestational diabetes mellitus to T2DM by studying the metabolic transition from pregnancy to postpartum. The metabolic transition profile from pregnancy to postpartum was characterized in 56 women by mass spectrometry-based metabolomics; 11 women had gestational diabetes mellitus, 24 had normal glucose tolerance, and 21 were normoglycaemic but at increased risk for gestational diabetes mellitus. Fasting serum samples collected during trimester 3 (gestational week 32±0.6) and postpartum (10.5±0.4months) were compared in diagnosis-specific multivariate models (orthogonal partial least squares analysis). Clinical measurements (e.g., insulin, glucose, lipid levels) were compared and models of insulin sensitivity and resistance were calculated for the same time period. Women with gestational diabetes had significantly increased postpartum levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine, and their circulating lipids did not return to normal levels after pregnancy. The increase in BCAAs occurred postpartum since the BCAAs did not differ during pregnancy, as compared to normoglycemic women. Postpartum levels of specific BCAAs, notably valine, are related to gestational diabetes during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Solonin, Iu G; Markov, A L; Boĭko, E R; Potolitsyna, N N; Parshukova, O I
2014-01-01
17 male northerners participating in the satellite experiments of the '"Mars-500" project passed through the morphological, physiometric, psychological and biochemical studies. The prenosological health indices in different seasons were calculated using the hardware-software complex "Ecosan-2007". Seasonal sinusoidal fluctuations were detected for the thermoregulation (body and skin temperature), lipids metabolism (cholesterol, HDL and LDL levels in the blood), circulation regulation under physical exercise (the increase of "double product" and its recovery time). In the majority of the participants the unfavorable deviations of body mass index, "power" and "life" indices, simple visual-motor reaction time, Kerdo vegetative index, physical health levels and regulatory systems activity index (in comparison with the mid-latitude standards) were found.
Chen, Jia-Yang; Tsai, Wen-Sy; Shao, Hung-Jen; Wu, Jen-Chia; Lai, Jr-Ming; Lu, Si-Hong; Hung, Tsung-Fu; Yang, Chih-Tsung; Wu, Liang-Chun; Chen, Jinn-Shiun; Lee, Wen-Hwa; Chang, Ying-Chih
2016-01-01
Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) "smart coating" to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.
Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi
2014-01-01
To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = -0.821 and -0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α.
Namazi Shabestari, Alireza; Asadi, Mojgan; Jouyandeh, Zahra; Qorbani, Mostafa; Kelishadi, Roya
2016-06-01
The lipid accumulation product is a novel, safe and inexpensive index of central lipid over accumulation based on waist circumference and fasting concentration of circulating triglycerides. This study was designed to investigate the ability of lipid accumulation product to predict Cardio-metabolic risk factors in postmenopausal women. In this Cross-sectional study, 264 postmenopausal women by using convenience sampling method were selected from menopause clinic in Tehran. Cardio-metabolic risk factors were measured, and lipid accumulation product (waist-58×triglycerides [nmol/L]) was calculated. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was estimated by ROC (Receiver-operating characteristic) curve analysis. Metabolic syndrome was diagnosed in 41.2% of subjects. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was 47.63 (sensitivity:75%; specificity:77.9%). High lipid accumulation product increases risk of all Cardio-metabolic risk factors except overweight, high Total Cholesterol, high Low Density Lipoprotein Cholesterol and high Fasting Blood Sugar in postmenopausal women. Our findings show that lipid accumulation product is associated with metabolic syndrome and some Cardio-metabolic risk factors Also lipid accumulation product may have been a useful tool for predicting cardiovascular disease and metabolic syndrome risk in postmenopausal women.
[Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes].
Xu, Yang; Shi, Li; Deng, Yi-hui
2011-10-01
It is reported that polyethylene glycol-lipid (PEG-lipid) derivatives increase liposomes stability, prolong the blood circulation of liposomes, enhance their tumor-targeting efficiency, and improve drug efficacy. Therefore, it is of great importance to investigate the influence of modified PEG-lipid derivatives on the physical, chemical, and biological characteristics of liposomes for the promotion of dealing with the existed problems, such as the accelerated blood clearance (ABC) phenomenon when repeated intravous injection at a certain time-interval, and developing novel targeted pharmaceutical preparations. In this review, the effects of modified PEG-lipid derivatives were summarized in many aspects. It indicats that the chemical bonds (amide, ether, ester, and disulfide) between PEG and lipid, as well as the species of lipids, such as the commonly used phosphatidylethanolamine, cholesterol, and diacylglycerol have substantial effects on the grafted liposomes stability in vitro and in vivo. Besides, the properties of lipids (the fatty acid chain length and saturation) and the groups (methoxy, carboxylic and amino) at the distal ends of the PEG chains were also considered to be important factors. In the end, the influence of the average molecular weight of PEG and the molar ratio of PEG-lipid derivatives in the total lipid were further focused.
Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase.
Würtz, Peter; Wang, Qin; Soininen, Pasi; Kangas, Antti J; Fatemifar, Ghazaleh; Tynkkynen, Tuulia; Tiainen, Mika; Perola, Markus; Tillin, Therese; Hughes, Alun D; Mäntyselkä, Pekka; Kähönen, Mika; Lehtimäki, Terho; Sattar, Naveed; Hingorani, Aroon D; Casas, Juan-Pablo; Salomaa, Veikko; Kivimäki, Mika; Järvelin, Marjo-Riitta; Davey Smith, George; Vanhala, Mauno; Lawlor, Debbie A; Raitakari, Olli T; Chaturvedi, Nish; Kettunen, Johannes; Ala-Korpela, Mika
2016-03-15
Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R(2) = 0.94, slope 1.00 ± 0.03). Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmacological mechanisms. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Oscarsson, Jan; Hurt-Camejo, Eva
2017-08-10
Epidemiological and genetic studies suggest that elevated triglyceride (TG)-rich lipoprotein levels in the circulation increase the risk of cardiovascular disease. Prescription formulations of omega-3 fatty acids (OM3FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma TG levels and are approved for the treatment of patients with severe hypertriglyceridemia. Many preclinical studies have investigated the TG-lowering mechanisms of action of OM3FAs, but less is known from clinical studies. We conducted a review, using systematic methodology, of studies in humans assessing the mechanisms of action of EPA and DHA on apolipoprotein B-containing lipoproteins, including TG-rich lipoproteins and low-density lipoproteins (LDLs). A systematic search of PubMed retrieved 55 articles, of which 30 were used in the review; 35 additional arrticles were also included. In humans, dietary DHA is retroconverted to EPA, while production of DHA from EPA is not observed. Dietary DHA is preferentially esterified into TGs, while EPA is more evenly esterified into TGs, cholesterol esters and phospholipids. The preferential esterification of DHA into TGs likely explains the higher turnover of DHA than EPA in plasma. The main effects of both EPA and DHA are decreased fasting and postprandial serum TG levels, through reduction of hepatic very-low-density lipoprotein (VLDL)-TG production. The exact mechanism for reduced VLDL production is not clear but does not include retention of lipids in the liver; rather, increased hepatic fatty acid oxidation is likely. The postprandial reduction in TG levels is caused by increased lipoprotein lipase activity and reduced serum VLDL-TG concentrations, resulting in enhanced chylomicron clearance. Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed. Effects on LDL are complex and may be influenced by genetics, such as APOE genotype. EPA and DHA diminish fasting circulating TG levels via reduced production of VLDL. The mechanism of reduced VLDL production does not involve hepatic retention of lipids. Lowered postprandial TG levels are also explained by increased chylomicron clearance. Little is known about the specific cellular and biochemical mechanisms underlying the TG-lowering effects of EPA and DHA in humans.
Leptin Levels and Nutritional Status of Indigenous Tepehuán and Mestizo Subjects in Durango, Mexico
Delgadillo Guzmán, Dealmy; Marchat Marchau, Laurence Annie; Reyes, José L.; Loera Castañeda, Verónica; Sosa Macías, Martha; García Vivas, Jessica; Asseff, Ismael Lares
2014-01-01
The aim of this study was to assess differences in nutritional status and their association with circulating leptin levels in the indigenous Tepehuán people of Mezquital Durango and Mestizo populations of Durango City, Mexico. A group of 128 volunteers aged 18 through 59 years were recruited for the study: 60 indigenous Tepehuán from Mezquital and 68 Mestizo individuals from Durango City. The classification of nutritional status was through body mass index (BMI). Clinical evaluations, including anthropometry and lipid profiles, were performed to ascertain the health of the participants. Circulating leptin levels were determined in blood samples after at 08 hours of fasting. The healthy subjects were classified according to BMI: 32 Tepehuán and 30 Mestizo subjects were of normal weight (NW), and 28 Tepehuán and 38 Mestizo subjects were overweight or obese (OW/O). Both NW and OW/O Tepehuán subjects showed lower leptin concentrations than the comparable Mestizo subjects. Statistical analysis showed a negative Pearson's correlation (r = −0.5; P < 0.05) between BMI and leptin levels in NW Tepehuán subjects, but no significant correlation was found in other groups. The differences found in Tepehuán compared with Mestizo subjects might be explained by poor nutritional status, which leads to scarce adipose tissue and low levels of leptin synthesis. Leptin concentration and its relationship to BMI are associated with ethnicity. PMID:24825928
Leptin levels and nutritional status of indigenous Tepehuán and Mestizo subjects in Durango, Mexico.
Guzmán, Dealmy Delgadillo; Marchau, Laurence Annie Marchat; Reyes, José L; Castañeda, Verónica Loera; Macías, Martha Sosa; Vivas, Jessica García; Asseff, Ismael Lares
2014-01-01
The aim of this study was to assess differences in nutritional status and their association with circulating leptin levels in the indigenous Tepehuán people of Mezquital Durango and Mestizo populations of Durango City, Mexico. A group of 128 volunteers aged 18 through 59 years were recruited for the study: 60 indigenous Tepehuán from Mezquital and 68 Mestizo individuals from Durango City. The classification of nutritional status was through body mass index (BMI). Clinical evaluations, including anthropometry and lipid profiles, were performed to ascertain the health of the participants. Circulating leptin levels were determined in blood samples after at 08 hours of fasting. The healthy subjects were classified according to BMI: 32 Tepehuán and 30 Mestizo subjects were of normal weight (NW), and 28 Tepehuán and 38 Mestizo subjects were overweight or obese (OW/O). Both NW and OW/O Tepehuán subjects showed lower leptin concentrations than the comparable Mestizo subjects. Statistical analysis showed a negative Pearson's correlation (r = -0.5; P < 0.05) between BMI and leptin levels in NW Tepehuán subjects, but no significant correlation was found in other groups. The differences found in Tepehuán compared with Mestizo subjects might be explained by poor nutritional status, which leads to scarce adipose tissue and low levels of leptin synthesis. Leptin concentration and its relationship to BMI are associated with ethnicity.
Glypican1 identifies cancer exosomes and facilitates early detection of cancer
Melo, Sonia A.; Luecke, Linda B.; Kahlert, Christoph; Fernandez, Agustin F.; Gammon, Seth T.; Kaye, Judith; LeBleu, Valerie S.; Mittendorf, Elizabeth A.; Weitz, Juergen; Rahbari, Nuh; Reissfelder, Christoph; Pilarsky, Christian; Fraga, Mario F.; Piwnica-Worms, David; Kalluri, Raghu
2016-01-01
Summary Exosomes are lipid bilayer-enclosed extracellular vesicles (EVs) that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer cell-derived exosomes in circulation is currently lacking. Using mass spectrometry analyses, we identified a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer cell-derived exosomes. GPC1+ circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of cancer patients and mice with cancer. GPC1+ crExos were detected in the serum of patients with pancreas cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreas disease from patients with early and late stage pancreas cancer. Levels of GPC1+ crExos correlate with tumor burden and survival in patients pre- and post-surgical tumor resection. GPC1+ crExos from patients and from mice with spontaneous pancreas tumors driven by oncogenic KRAS contained RNA with specific KRAS mutation, and it emerges as a reliable biomarker for the detection of PanIN lesions despite negative signal by MRI in mice. GPC1+ crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreas cancer to facilitate possible curative surgical therapy. PMID:26106858
Proprotein convertase subtilisin/kexin type 9: a new target molecule for gene therapy.
Banaszewska, Anna; Piechota, Michal; Plewa, Robert
2012-06-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.
Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan
2012-01-01
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784
Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji
2014-01-01
Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028
Thyroid function and insulin sensitivity before and after bilio-pancreatic diversion.
Gniuli, Donatella; Leccesi, Laura; Guidone, Caterina; Iaconelli, Amerigo; Chiellini, Chiara; Manto, Andrea; Castagneto, Marco; Ghirlanda, Giovanni; Mingrone, Geltrude
2010-01-01
Bilio-pancreatic diversion (BPD) induces permanent weight loss in previously severe obese patients through a malabsorptive mechanism. The aim of the study was to evaluate the modifications of circulating thyroid hormones after BPD, a surgical procedure which interferes with the entero-hepatic circulation of biliary metabolites. Forty-five patients were studied before and 2 years after BPD. Thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), anti-thyroid antibodies, iodine urinary excretion, lipid profile, insulin and glucose plasma levels were assessed. The insulin-resistance HOMA IR index was calculated, and colour Doppler ultrasonography of the neck was performed. The subjects (23%) had subclinical hypothyroidism prior to BPD (TSH levels above the normal range with normal fT3 and fT4 levels). After 2 years 40.42% of the population showed subclinical hypothyroidism, while 6.3% became frankly hypothyroid, all of them with no evidence of auto-immune thyroiditis. Most of the patients, who became sub-clinically hypothyroid only following BPD, had already thyroid alterations at the sonogram (multi-nodular euthyroid goiter and thyroidal cysts) prior to surgery. BPD increases the prevalence of subclinical or even frank hypothyroidism, without causing a defect in thyroid function itself, through several integrated mechanisms. (1) It induces iodine malabsorption, which is partially compensated by iodine excretion contraction. (2) The entero-hepatic open circulation determines fT3 loss, which induces subclinical or frank hypothyroidism in patients with pre-existing thyroid alterations, interfering also with the weight loss progress. Iodine supplementation should be recommended in those patients reporting thyroid alterations at the sonogram prior to BPD, LT4 therapy should be strictly monitored in patients suffering of subclinical hypopthiroidism and T3 therapy should eventually be considered for patients diagnosed with frank hypothyroidism prior to BPD.
Kimura, Rino; Takahashi, Nobuyuki; Goto, Tsuyoshi; Murota, Kaeko; Kawada, Teruo
2013-01-01
Postprandial lipidemia is a risk factor for cardiovascular diseases. Thus, the suppression of postprandial lipidemia is valuable for disease management. Peroxisome proliferator-activated receptor- (PPAR ) is a key regulator in the lipid metabolism of peripheral tissues such as the liver and skeletal muscle, whose activation enhances fatty acid oxidation and decreases circulating lipid level. Recently, we have shown that bezafibrate, an agonistic compound for PPAR , suppresses post-prandial lipidemia by enhancing fatty acid oxidation in intestinal epithelial cells under physiological conditions. However, it was not elucidated whether the effect of PPAR on postprandial lipidemia is also observed under obese conditions, which change lipid metabolisms in various tissues and cells. Here, we observed that bezafibrate enhanced fatty acid oxidation in intestinal epithelial cells of obese diabetic KK-Ay mice. Bezafibrate treatment increased the mRNA expression levels of fatty acid oxidation-related genes, which are targets of PPAR , and enhanced CO2 production from [14C]-palmitic acid. The bezafibrate-treated mice showed the suppression of increasing serum triacylglyceride level after the oral administration of olive oil. Moreover, the effects of bezafibrate on mRNA expression and fatty acid oxidation were shown in only the proximal intestinal epithelial cells. These findings indicate that PPAR activation suppresses postprandial lipidemia under obese conditions through the enhancement of fatty acid oxidation, and that only the proximal intestine con-tributes to the effects in mice, suggesting that intestinal PPAR can be a target for prevention of obese-induced postprandial lipidemia. © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood
Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro
2012-01-01
Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351
Casillas-Muñoz, Fidel; Valle, Yeminia; Muñoz-Valle, José Francisco; Martínez-Fernández, Diana Emilia; Reynoso-Villalpando, Gabriela Lizet; Flores-Salinas, Héctor Enrique; Llamas-Covarrubias, Mara Anaís; Padilla-Gutiérrez, Jorge Ramón
2017-10-06
Lipid metabolism alterations contribute to acute coronary syndrome (ACS). rs670, rs5070 and rs693 polymorphisms have shown to modify the risk of cardiovascular disease. Apolipoprotein A-I (ApoA-I) plays a major role in reverse cholesterol transport; apolipoprotein B (ApoB) contributes to accumulation of cholesterol in the plaque. The aim of this study was to investigate the association of rs670 and rs5070 polymorphisms of APOA1 and rs693 polymorphism of APOB with ACS and circulating levels of its proteins and find if ApoB/ApoA-I could be implemented as an independent parameter of risk for cardiovascular disease and as a biomarker of lipid-lowering therapy effectiveness in Mexican population. Three hundred patients with ACS and 300 control subjects (CS) were included. Neither genotype nor allele frequencies of rs670, rs5070 and rs693 polymorphisms showed statistical differences between groups. Serum levels of ApoA-I (195 vs. 161.4mg/dL; P<.001) and ApoB (167 vs. 136.9mg/dL; P<.001) were significantly higher in CS compared with ACS; however, there was no genetic association. Unstable angina patients showed the highest ApoA-I levels (males: 176.3mg/dL; females: 209.1mg/dL). The rs670, rs5070 and rs693 polymorphisms are not genetic susceptibility factors for ACS in Mexican population and had no effect on their apolipoprotein concentrations. In our population, ApoA-I, ApoB and HDL-C could be better biomarkers of cardiovascular risk and could indicate if statins doses reduce atherogenic particles properly. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Poly-(R)-3-hydroxybutyrates (PHB) are Atherogenic Components of Lipoprotein Lp(a).
Reusch, Rosetta N
2015-12-01
The hypothesis is that poly-(R)-3-hydroxybutyrates (PHB), linear polymers of the ketone body, R-3-hydroxybutyrate (R-3HB), are atherogenic components of lipoprotein Lp(a). PHB are universal constituents of biological cells and are thus components of all foods. Medium chain-length PHB (<200 residues) (mPHB) are located in membranes and organelles, and short-chain PHB (<15 residues) are covalently attached to certain proteins (cPHB). PHB are highly insoluble in water, but soluble in lipids in which they exhibit a high intrinsic viscosity. They have a higher density than other cellular lipids and they are very adhesive, i.e. they engage in multiple noncovalent interactions with other molecules and salts via hydrogen, hydrophobic and coordinate bonds, thus producing insoluble deposits. Following digestive processes, PHB enter the circulation in chylomicrons and very low density lipoproteins (VLDL). The majority of the PHB (>70%) are absorbed by albumin, which transports them to the liver for disposal. When the amount of PHB in the diet exceed the capacity of albumin to safely remove them from the circulation, the excess PHB remain in the lipid core of LDL particles that become constituents of lipoprotein Lp(a), and contribute to the formation of arterial deposits. In summary, the presence of PHB – water-insoluble, dense, viscous, adhesive polymers – in the lipid cores of the LDL moieties of Lp(a) particles supports the hypothesis that PHB are atherogenic components of Lp(a).
Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans
Miller, Desinia B.; Ghio, Andrew J.; Karoly, Edward D.; Bell, Lauren N.; Snow, Samantha J.; Madden, Michael C.; Soukup, Joleen; Cascio, Wayne E.; Gilmour, M. Ian
2016-01-01
Rationale: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and glucose intolerance that are associated with global changes in peripheral glucose, lipid, and amino acid metabolism. Objectives: To examine ozone-induced metabolic derangement in humans using serum metabolomic assessment, establish human-to-rodent coherence, and identify novel nonprotein biomarkers. Methods: Serum samples were obtained from a crossover clinical study that included two clinic visits (n = 24 each) where each subject was blindly exposed in the morning to either filtered air or 0.3 parts per million ozone for 2 hours during 15-minute on-off exercise. Serum samples collected within 1 hour after exposure were assessed for changes in metabolites using a metabolomic approach. Measurements and Main Results: Metabolomic analysis revealed that ozone exposure markedly increased serum cortisol and corticosterone together with increases in monoacylglycerol, glycerol, and medium- and long-chain free fatty acids, reflective of lipid mobilization and catabolism. Additionally, ozone exposure increased serum lysolipids, potentially originating from membrane lipid breakdown. Ozone exposure also increased circulating mitochondrial β-oxidation–derived metabolites, such as acylcarnitines, together with increases in the ketone body 3-hydroxybutyrate. These changes suggested saturation of β-oxidation by ozone in exercising humans. Conclusions: As in rodents, acute ozone exposure increased stress hormones and globally altered peripheral lipid metabolism in humans, likely through activation of a neurohormonally mediated stress response pathway. The metabolomic assessment revealed new biomarkers and allowed for establishment of rodent-to-human coherence. Clinical trial registered with www.clinicaltrials.gov (NCT 01492517). PMID:26745856
Bai, Jianling; Xun, Pengcheng; Morris, Steve; Jacobs, David R.; Liu, Kiang; He, Ka
2015-01-01
Studies suggest that chromium deficiency is associated with elevated levels of fasting blood glucose, circulating insulin, cholesterol and triglycerides, and decreased proportion of lean body mass. However, data directly relating chromium levels to metabolic syndrome (MetS) risk are lacking. A total of 3,648 American adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, aged 20–32 years, were prospectively examined for the incidence of MetS and its five components from 1987–88 to 2010–11. Baseline toenail chromium levels were measured with instrumental neutron-activation analysis. Incident MetS was defined by the NCEP-ATP III criteria. During the 23-year follow-up, 878 incident MetS cases were identified. Baseline toenail chromium was inversely associated with incidence of MetS as well as its blood lipid components. The multivariable-adjusted hazard ratio (HR) (95% confidence interval [CI]) of MetS comparing the highest to the lowest quartiles of toenail chromium levels was 0.80 (0.66–0.98; Plinear trend = 0.006). The adjusted HRs were 0.82 (0.68–0.98; Ptrend = 0.045) for having abnormal triglycerides levels and 0.75 (0.64–0.88; Ptrend = 0.030) for having abnormal HDL cholesterol levels. Toenail chromium levels were inversely and longitudinally associated with incidence of MetS in American young adults. This inverse association was mainly explained by its relation to blood lipids. PMID:26489690
PNPLA3/adiponutrin functions in lipid droplet formation.
Chamoun, Zeina; Vacca, Fabrizio; Parton, Robert G; Gruenberg, Jean
2013-05-01
In animals, adipose tissue contains the main energy store as lipid droplets (LDs) composed of esterified cholesterol (CE) and triacylglycerol (TAG) enveloped in a mono-layer of phospholipid and decorated by a coat of proteins. Upon increased energy demand, dedicated lipases hydrolyse TAG stepwise into free fatty acids that are released in circulation and made available to peripheral tissue. In case of aberrant caloric load, TAGs are deposited into non-adipocyte tissues, primarily liver cells. For instance, non-alcoholic fatty liver disease (NAFLD) is a common chronic disorder characterised by an excess of TAG in the liver of patients regardless of their susceptibility to obesity, diabetes or exposure to alcohol. Several independent linkage studies have associated NAFLD with a non-synonymous variant of patatin-like phospholipase domain-containing 3 (PNPLA3/adiponutrin) encoding an isoleucine to methionine substitution at position 148 (I148M) (see Cohen et al., 2011 for review). However, the mechanism by which a variation in PNPLA3 gives susceptibility to NAFLD is not known, primarily because the physiological role of PNPLA3 still needs to be elucidated. We have identified PNPLA3 in a screen for genes upregulated by intracellular lipid accumulation. We investigated the sub-cellular distribution and potential function of PNPLA3 in fibroblast-like cells supplemented with lipids. We demonstrate that PNPLA3 is targetted to LDs in a process that requires an intact Brummer box domain, which is conserved in the patatin-like phospholipase family. We show that increased levels of the NAFLD-linked PNPLA3 isoform leads to larger LDs, whereas decreased levels of PNPLA3 had the opposite effect. Interestingly, however, PNPLA3 induced a reduction in LD size upon co-expression with ABDH5/CGI-58, an activator of the TAG lipase PNPLA2, which is the closest homolog of PNPLA3. By investigating LD populations according to their size and composition, we show that perturbing intracellular lipid trafficking drastically modifies LD nature. Taken together, our results suggest that PNPLA3 exhibits a dual function in LD metabolism, and that it participates in the restoration of lipid homeostasis upon aberrant intracellular lipid accumulation. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France.
Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population.
Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel
2015-01-01
The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects.
NASA Astrophysics Data System (ADS)
Durfee, Paul Nicholas
Mesoporous silica nanoparticle (MSNP) supported-lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicles. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components. The mesoporous silica core can have variable size and shape to direct biodistribution and controlled pore size and surface chemistry to accommodate diverse cargos. The encapsulating supported lipid bilayer can be modified with targeting and trafficking ligands as well as polyethylene glycol (PEG) to effect selective binding, endosomal escape of cargo, drug efflux prevention, and potent therapeutic delivery, while maintaining in vivo colloidal stability. Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate protocells, an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSNP and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index < 0.1) on MSNP cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and re-verified their monodispersity and stability. Then using intravital imaging in the CAM we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. Overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.
Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen
2017-04-01
Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Chan, Te-Fu; Lin, Wei-Ting; Chen, Yi-Ling; Huang, Hsiao-Ling; Yang, Wei-Zeng; Lee, Chun-Ying; Chen, Meng-Hsueh; Wang, Tsu-Nai; Huang, Meng-Chuan; Chiu, Yu-Wen; Huang, Chun-Chi; Tsai, Sharon; Lin, Chih-Lung; Lee, Chien-Hung
2014-01-01
Background The metabolic effect of fructose in sugar-sweetened beverages (SSB) has been linked to de novo lipogenesis and uric acid (UA) production. Objectives This study investigated the biological effects of SSB consumption on serum lipid profiles and retinol-binding protein 4 (RBP4) among Taiwanese adolescents. Methods We evaluated the anthropometric parameters and biochemical outcomes of 200 representative adolescents (98 boys and 102 girls) who were randomly selected from a large-scale cross-sectional study. Data were analyzed using multiple regression models adjusted for covariates. Results Increased SSB consumption was associated with increased waist and hip circumferences, body mass index (BMI) values and serum UA, triglyceride (TG) and RBP4 levels. Adolescents who consumed >500 ml/day of beverages half-to-heavily sweetened with high-fructose corn syrup (HFCS) exhibited TG and RBP4 levels 22.7 mg/dl and 13.92 ng/ml higher than non-drinkers, respectively. HFCS drinkers with hyperuricemia had higher TG levels than HFCS drinkers with normal UA levels (98.6 vs. 81.6 mg/dl). The intake of HFCS-rich SSBs and high value of BMI (≥24) interactively reinforced RBP4 levels among overweight/obese adolescents. Circulating RBP4 levels were significantly correlated with weight-related outcomes and TG and UA concentration among HFCS drinkers (r = 0.253 to 0.404), but not among non-drinkers. Conclusions High-quantity HFCS-rich beverage consumption is associated with higher TG and RBP4 levels. Hyperuricemia is likely to intensify the influence of HFCS-rich SSB intake on elevated TG levels, and in overweight and obese adolescents, high BMI may modify the action of fructose on higher circulating levels of RBP4. PMID:24475021
Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans
RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...
Circulating endothelial progenitor cells in obese children and adolescents.
Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel
2015-01-01
This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
microRNAs and lipid metabolism
Aryal, Binod; Singh, Abhishek K.; Rotllan, Noemi; Price, Nathan; Fernández-Hernando, Carlos
2017-01-01
Purpose of review Work over the last decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism. Recent findings A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the last two years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single nucleotide polymorphisms (SNP) in the proximity of miRNAs genes associated with abnormal levels of circulating lipids in humans. Several of these miRNA, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the low-density lipoprotein receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). Summary microRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important non-coding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism. PMID:28333713
Cheng, Hong Sheng; Yaw, Hui Ping; Ton, So Ha; Choy, Siew Mei; Kong, Joana Magdelene Xiao Fang; Abdul Kadir, Khalid
2016-09-01
To investigate the effects of glycyrrhizic acid supplementation on glucose and lipid metabolism in rodents consuming a high-fat, high-sucrose diet. Twenty-four male, 8-week old Sprague Dawley rats with an initial weight of 160 to 200 g were randomised into three groups (n = 6 for each group): groups A (standard rat chow), B (high-fat, high-sucrose diet), and C (high-fat, high-sucrose diet + 100 mg/kg/d of glycyrrhizic acid via oral administration). The rats were treated accordingly for 4 wk. Glycaemic parameters, lipid profile, stress hormones, and adiponectin levels were measured after the treatment. Relative gene expressions of peroxisome proliferator-activated receptor α and γ, lipoprotein lipase as well as gluconeogenic enzymatic activities in different tissues were also determined. Consumption of high-fat, high-sucrose diet triggered hyperglycaemia, insulin resistance, and dyslipidemia, which were effectively attenuated by supplementation with glycyrrhizic acid. Glycyrrhizic acid supplementation also effectively reduced circulating adrenaline, alleviated gluconeogenic enzymes overactivity, and promoted the upregulation of lipoprotein lipase expression in the cardiomyocytes and skeletal muscles. A high calorie diet also triggered hypoadiponectinaemia and suppression of peroxisome proliferator-activated receptor γ expression, which did not improve with glycyrrhizic acid treatment. Supplementation with glycyrrhizic acid could alleviate high calorie diet-induced glucose and lipid metabolic dysregulations by reducing circulatory stress hormones, normalizing gluconeogenic enzyme activities, and elevating muscular lipid uptake. The beneficial effects of these bioactivities outweighed the adverse effects caused by diet-induced repression of peroxisome proliferator-activated receptor γ expression, resulting in the maintenance of lipid and glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Weng, Lu-Chen; Roetker, Nicholas S; Lutsey, Pamela L; Alonso, Alvaro; Guan, Weihua; Pankow, James S; Folsom, Aaron R; Steffen, Lyn M; Pankratz, Nathan; Tang, Weihong
2018-01-01
Studies have reported that higher circulating levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and lower of high-density lipoprotein (HDL) cholesterol may be associated with increased risk of abdominal aortic aneurysm (AAA). Whether dyslipidemia causes AAA is still unclear and is potentially testable using a Mendelian randomization (MR) approach. We investigated the associations between blood lipids and AAA using two-sample MR analysis with SNP-lipids association estimates from a published genome-wide association study of blood lipids (n = 188,577) and SNP-AAA association estimates from European Americans (EAs) of the Atherosclerosis Risk in Communities (ARIC) study (n = 8,793). We used inverse variance weighted (IVW) MR as the primary method and MR-Egger regression and weighted median MR estimation as sensitivity analyses. Over a median of 22.7 years of follow-up, 338 of 8,793 ARIC participants experienced incident clinical AAA. Using the IVW method, we observed positive associations of plasma LDL cholesterol and TC with the risk of AAA (odds ratio (OR) = 1.55, P = 0.02 for LDL cholesterol and OR = 1.61, P = 0.01 for TC per 1 standard deviation of lipid increment). Using the MR-Egger regression and weighted median methods, we were able to validate the association of AAA risk with TC, although the associations were less consistent for LDL cholesterol due to wider confidence intervals. Triglycerides and HDL cholesterol were not associated with AAA in any of the MR methods. Assuming instrumental variable assumptions are satisfied, our finding suggests that higher plasma TC and LDL cholesterol are causally associated with the increased risk of AAA in EAs.
Markworth, James F; Kaur, Gunveen; Miller, Eliza G; Larsen, Amy E; Sinclair, Andrew J; Maddipati, Krishna Rao; Cameron-Smith, David
2016-11-01
In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5 n -3DPA (RvD5 n -3DPA ) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E 2 (15-keto-PGE 2 ). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. © FASEB.
Estall, Jennifer L.; Yusta, Bernardo; Drucker, Daniel J.
2004-01-01
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily. Although native GLP-2 exhibits a short circulating half-life, long-acting degradation-resistant GLP-2 analogues are being evaluated for therapeutic use in human subjects. Accordingly, we examined the mechanisms regulating signaling, internalization, and trafficking of the GLP-2R to identify determinants of receptor activation and desensitization. Heterologous cells expressing the transfected rat or human GLP-2R exhibited a rapid, dose-dependent, and prolonged desensitization of the GLP-2–stimulated cAMP response and a sustained GLP-2–induced decrease in levels of cell surface receptor. Surprisingly, inhibitors of clathrin-dependent endocytosis failed to significantly decrease GLP-2R internalization, whereas cholesterol sequestration inhibited ligand-induced receptor internalization and potentiated homologous desensitization. The hGLP-2R localized to both Triton X-100–soluble and –insoluble (lipid raft) cellular fractions and colocalized transiently with the lipid raft marker caveolin-1. Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1–positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface. Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization. PMID:15169869
Xu, Jialin; Donepudi, Ajay C; Moscovitz, Jamie E; Slitt, Angela L
2013-01-01
The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD), regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting). Male C57BL/6 (WT) and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase) and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36) and Fatty acid transport protein (FATP) 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar) α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK) phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.
Xu, Jialin; Donepudi, Ajay C.; Moscovitz, Jamie E.; Slitt, Angela L.
2013-01-01
Aims The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD), regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting). Methods and Results Male C57BL/6 (WT) and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase) and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36) and Fatty acid transport protein (FATP) 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar) α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK) phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters — CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. Conclusion Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation. PMID:24224011
Heshmati, Javad; Sepidarkish, Mahdi; Namazi, Nazli; Shokri, Fatemeh; Yavari, Mahsa; Fazelian, Siavash; Khorshidi, Masoud; Shidfar, Farzad
2018-03-21
Dyslipidemia is the main risk factor for developing cardiovascular disease. There are discrepancies in the effects of calcium supplementation on modulation of lipid status. Therefore, we aimed to summarize the effects of dietary calcium supplement on circulating lipoprotein concentrations and atherogenic indices in overweight and obese individuals. We conducted a systematic literature search from 2000 until July 2016. PubMed, Scopus, Cochran Library, and ISI Web of Science databases were searched for clinical trials written in English. Placebo controlled clinical trials on calcium or calcium with vitamin D supplement in overweight and obese indiciduals were considered. Finally, 11 clinical trials met the criteria and were included. Most studies (n = 9) evaluated Ca/D co-supplementation. Positive effects of calcium supplementation alone or with vitamin D were as follows: serum levels of total cholesterol (TC; n = 1), triglyceride (TG) concentrations (n = 1), serum levels of low-density lipoprotein cholesterol (LDL-C; n = 5) and high-density lipoprotein cholesterol (HDL-C; n = 3). Seven clinical trials reported atherogenic indices and three of them demonstrated beneficial effects of calcium supplementation on at least one atherogenic index. Calcium supplementation may not be helpful to reduce serum levels of TC and TG in overweight and obese individuals. However, it may modulate LDL-C and HDL-C concentration. More studies are warranted to clarify the effects of calcium supplementation on each atherogenic index.
Prenatal hyperandrogenism and lipid profile during different age stages: an experimental study.
Heber, María F; Ferreira, Silvana R; Vélez, Leandro M; Motta, Alicia B
2013-02-01
The present study investigates the effect of prenatal hyperandrogenization on lipid metabolism and oxidant/antioxidant balance. Experimental study. Research institute. Pregnant Sprague Dawley rats were subcutaneously injected with 2 mg free T between days 16 and 19 of pregnancy, and controls (C) received vehicle (0.1 mL of sesame oil). Prenatally hyperandrogenized female offspring (T2) had a condition that resembles polycystic ovary (PCO). Animals were weighed and killed at 21 and 60 days of age (N = 15 rats/group). Ovarian tissue and truncal blood were obtained from the C and T2 groups. Circulating lipid profile (total cholesterol, high-density lipoprotein [HDL], low-density lipoprotein [LDL] cholesterol, and triglycerides) was quantified by colorimetric-enzymatic methods. Ovarian oxidative stress was evaluated by quantifying lipid peroxidation and glutathione content by spectofotometric assays. Ovarian fat content was evaluated by Red Oil staining and ovarian messenger RNA (mRNA) expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) by real-time polymerase chain reaction (PCR). At 60 days of age, 100% of group C rats and 20% of group T2 rats ovulated. At 21 days of age the T2 rats displayed lower body weight than C rats; however, at 60 days of age T2 and C rats showed similar body weights. The lipid profile (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) was altered in the anovulatory and ovulatory phenotype of the T2 group, but the levels were higher in the anovulatory phenotype. Lipid peroxidation of rats at 21 and 60 days of age from T2 was similar to C but the antioxidant glutathione level was decreased in 21-day-old rats compared with C rats. The lipid content of ovarian tissue, determined by Red Oil staining, was higher in the T2 than in the C group. The mRNA expression of ovarian PPAR-γ, quantified by real time PCR, decreased in anovulatory rats at 60 days of age from T2 compared to C rats. Our findings reveal the importance of evaluating the complete lipid profile, especially at early stages of life after the prenatal hyperandrogenism condition. In addition, we demonstrated that the antioxidant-reduced glutathione would represent a good marker of oxidative stress as it is altered before lipid peroxidation. Prenatal hyperandrogenization also alters the gene expression of PPAR-γ in rats. Here we demonstrated for the first time that abnormalities in PPAR-γ and lipid profile were higher in rats showing an anovulatory phenotype than those displaying an ovulatory phenotype. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Stratigou, Theodora; Dalamaga, Maria; Antonakos, Georgios; Marinou, Ioanna; Vogiatzakis, Evaggelos; Christodoulatos, Gerasimos Socrates; Karampela, Irene; Papavassiliou, Athanasios G
2018-02-17
Irisin, a newly discovered adipo-myokine, is implicated in the modulation of the adipose phenotype, increasing energy expenditure and ameliorating systemic metabolism. Our aim was to investigate circulating irisin in subclinical hypothyroidism (SH) and study its associations with cardiometabolic risk factors. In a large case-control study, serum irisin, insulin resistance and lipid parameters, classic adipokines, inflammatory and hepatic biomarkers, and cardiovascular risk factors were determined in 120 consecutive patients with SH and 120 healthy controls matched on age, gender, and date of blood draw. Sixteen patients with SH received L-T4 treatment and, after 6 months, serum irisin and other biomarkers were assessed. SH cases exhibited significantly higher circulating irisin than controls (p < 0.001). In all participants, irisin was positively associated with TSH, anti-TG, HOMA-IR, C-peptide, lipid and inflammatory biomarkers, leptin, and cardiovascular risk factors, including Framigham score and apolipoprotein B/apolipoprotein A-I. Irisin was negatively correlated with adiponectin, HDL-C, and thyroid hormones. Serum irisin was independently associated with SH, above and beyond body mass index and cardiometabolic factors (p = 0.02). TSH was an independent predictor of circulating irisin (p = 0.003). L-T4 therapy did not reverse considerably the hyperirisinemic status in treated SH patients (p = 0.09). Irisin may represent an adipo-myokine counterbalancing a potential, gradual deterioration of lipid metabolism and insulin sensitivity in SH as well as reflecting a protective compensatory mechanism against oxidative muscle and thyroid cell stress. More mechanistic and prospective studies shedding light on the pathogenetic role of irisin in SH are needed to confirm and extend these data.
Lupia, Enrico; Pucci, Angela; Peasso, Paolo; Merlo, Maurizio; Baron, Paolo; Zanini, Cristina; Del Sorbo, Lorenzo; Rizea-Savu, Simona; Silvestro, Luigi; Forni, Marco; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe
2003-09-01
Platelet-activating factor (PAF) is a phospholipid mediator synthesized by activated inflammatory and endothelial cells. Recently PAF has been shown to contribute to neoangiogenesis in several experimental models. Here we evaluated the presence of PAF and its potential role in neovascularization within human atherosclerotic plaques. The amount of PAF extracted from 18 carotid plaques (266.65+/-40.07 pg/100 mg dry tissue; mean +/- SE) was significantly higher than that extracted from 18 normal arterial specimens (6 from carotid artery and 12 from aorta) (4.72+/-2.31 pg/100 mg dry tissue; mean +/- SE). The levels of PAF significantly correlated with the infiltration of CD68-positive monocytes and the extent of neovascularization, detected as von Willebrand Factor-positive cells. The amount of PAF also correlated with the area occupied by TNF-alpha-expressing cells. The absence of enhanced level of PAF in the circulation of atherosclerotic patients suggests a local production of this mediator within the plaque. The lipid extracts of atherosclerotic plaques containing high levels of PAF-bioactivity, but not those of control arteries, were angiogenic in a murine Matrigel model. WEB 2170, a specific PAF receptor antagonist, significantly prevented angiogenesis induced by the lipid extracts of atherosclerotic plaques. Our results indicate a local production of PAF within the atherosclerotic plaques and suggest that it may contribute to intra-plaque neoangiogenesis.
Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs.
Furrow, E; Lees, G E; Brown, C A; Cianciolo, R E
2017-05-01
Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid.
Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles
NASA Astrophysics Data System (ADS)
Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Laganà, Aldo
2013-03-01
Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a "protein corona". NP-protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.
Daily Enteral DHA Supplementation Alleviates Deficiency in Premature Infants
Baack, Michelle L; Puumala, Susan E; Messier, Stephen E; Pritchett, Deborah K; Harris, William S
2016-01-01
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) important for health and neurodevelopment. Premature infants are at risk of DHA deficiency and circulating levels directly correlate with health outcomes. Most supplementation strategies have focused on increasing DHA content in mother’s milk or infant formula. However, extremely premature infants may not reach full feedings for weeks and commercially available parenteral lipid emulsions do not contain preformed DHA, so blood levels decline rapidly after birth. Our objective was to develop a DHA supplementation strategy to overcome these barriers. This double-blind, randomized, controlled trial determined feasibility, tolerability and efficacy of daily enteral DHA supplementation (50mg/d) in addition to standard nutrition for preterm infants (24–34 weeks GA) beginning in the first week of life. Blood FA levels were analyzed at baseline, full feedings and near discharge in DHA (n=31) or placebo supplemented (n=29) preterm infants. Term peers (n=30) were analyzed for comparison. Preterm infants had lower baseline DHA levels (p<0.0001). Those receiving DHA had a progressive increase in circulating DHA over time (from 3.33% to 4.09%, p<0.0001) while placebo-supplemented infants (receiving standard neonatal nutrition) had no increase over time (from 3.35% to 3.32%). Although levels increased with additional DHA supplementation, preterm infants still had lower blood DHA levels than term peers (4.97%) at discharge (p=0.0002). No differences in adverse events were observed between the groups. Overall, daily enteral DHA supplementation is feasible and alleviates deficiency in premature infants. PMID:26846324
Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian
2010-04-01
Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.
Abd El-Twab, Sanaa M; Hozayen, Walaa G; Hussein, Omnia E; Mahmoud, Ayman M
2016-10-01
18β-glycyrrhetinic acid (18β-GA) has multiple beneficial and therapeutic effects. However, its protective roles on methotrexate (MTX)-induced renal injury are not well defined. In the present study, we investigated the possible protective effects of 18β-GA against MTX-induced nephrotoxicity in rats. 18β-GA (50 and 100 mg/kg) was administered for 7 days either before or after MTX. The rats were decapitated and kidney and serum samples were collected. MTX-induced renal injury in rats was evidenced by the significant (p < 0.001) increase in circulating kidney function markers and tumor necrosis factor alpha (TNF-α), as well as the histopathological alterations. MTX-induced rats exhibited significantly increased lipid peroxidation (p < 0.05) and nitric oxide (p < 0.001) levels, with concomitant marked (p < 0.001) decline in the antioxidant defenses. 18β-GA, administered either before or after MTX, produced a significant amelioration of circulating kidney function markers, TNF-α, kidney lipid peroxidation, nitric oxide, and antioxidant defenses. In addition, 18β-GA supplementation significantly up-regulated the mRNA abundance of both nuclear factor-erythroid 2-related factor 2 (Nrf2) and hemoxygenase 1 (HO-1) in the kidney of MTX-induced rats. These results indicate that 18β-GA has a protective effect on MTX-induced nephrotoxicity with possible mechanisms of attenuating oxidative stress and inflammation through up-regulating the Nrf2/ARE signaling. These findings make 18β-GA candidate as a potent agent in preventing MTX-induced kidney injury.
Gerard, J; Jandrain, B; Pirnay, F; Pallikarakis, N; Krzentowski, G; Lacroix, M; Mosora, F; Luyckx, A S; Lefèbvre, P J
1986-11-01
We investigated the hormonal and metabolic response to a 100-g sucrose load given 15 min after adaptation to moderate-intensity (50% VmaxO2) long-duration (4-h) exercise in healthy volunteers. The effect of a 100-mg dose of the alpha-glucosidase inhibitor Acarbose ingested with the sucrose load was also investigated. "Naturally labeled [13C] sucrose" was used to follow the conversion to expired-air CO2 of the sugar ingested by isotope-ratio mass spectrometry. Circulating hormone and metabolite data were obtained in nine subjects, and indirect calorimetry and stable isotope methodology were applied to six of them. Under placebo, 93 +/- 4 g sucrose were entirely oxidized during the 4 h of exercise, total carbohydrate utilization was 235 +/- 14 g, endogenous carbohydrate utilization was 142 +/- 13 g, and total lipid oxidation was 121 +/- 7 g. A single oral dose of 100 mg Acarbose ingested with the sucrose load did not significantly modify total carbohydrate (239 +/- 2 g/4 h) or lipid (122 +/- 6 g/4 h) oxidation. In contrast, sucrose oxidation was reduced to 53 +/- 6 g/4 h and endogenous carbohydrate utilization increased to 186 +/- 7 g/4 h. Reduction of the rises in blood glucose and fructose and of the increases in plasma insulin and C peptide under Acarbose confirmed these effects, whereas lower circulating levels of alanine suggested a higher rate of gluconeogenesis. These data show that a 100-g glucose load ingested soon after initiation of exercise is a perfect available metabolic substrate.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Futia, Gregory L.; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A.
2016-04-01
Circulating tumor cell (CTC) identification has applications in both early detection and monitoring of solid cancers. The rarity of CTCs, expected at ~1-50 CTCs per million nucleated blood cells (WBCs), requires identifying methods based on biomarkers with high sensitivity and specificity for accurate identification. Discovery of biomarkers with ever higher sensitivity and specificity to CTCs is always desirable to potentially find more CTCs in cancer patients thus increasing their clinical utility. Here, we investigate quantitative image cytometry measurements of lipids with the biomarker panel of DNA, Cytokeratin (CK), and CD45 commonly used to identify CTCs. We engineered a device for labeling suspended cell samples with fluorescent antibodies and dyes. We used it to prepare samples for 4 channel confocal laser scanning microscopy. The total data acquired at high resolution from one sample is ~ 1.3 GB. We developed software to perform the automated segmentation of these images into regions of interest (ROIs) containing individual cells. We quantified image features of total signal, spatial second moment, spatial frequency second moment, and their product for each ROI. We performed measurements on pure WBCs, cancer cell line MCF7 and mixed samples. Multivariable regressions and feature selection were used to determine combination features that are more sensitive and specific than any individual feature separately. We also demonstrate that computation of spatial characteristics provides higher sensitivity and specificity than intensity alone. Statistical models allowed quantification of the required sensitivity and specificity for detecting small levels of CTCs in a human blood sample.
Lekva, Tove; Michelsen, Annika E; Aukrust, Pål; Paasche Roland, Marie Cecilie; Henriksen, Tore; Bollerslev, Jens; Ueland, Thor
2017-11-01
Women with a history of gestational diabetes mellitus and preeclampsia are at increased risk of cardiovascular disease later in life, but the mechanism remains unclear. The aim of the study was to evaluate the association between CXC chemokine ligand 16 and indices of glucose metabolism, dyslipidemia and systemic inflammation in gestational diabetes mellitus and preeclampsia. This sub-study of the population-based prospective cohort included 310 women. Oral glucose tolerance test was performed during pregnancy and 5 years later along with lipid analysis. CXC chemokine ligand 16 was measured in plasma (protein) and peripheral blood mononuclear cells (messenger RNA) during pregnancy and at follow-up. Circulating CXC chemokine ligand 16 was higher in gestational diabetes mellitus women early in pregnancy and at follow-up, while higher in preeclampsia women late in pregnancy compared to control women. Messenger RNA of CXC chemokine ligand 16 in peripheral blood mononuclear cells were lower in gestational diabetes mellitus and preeclampsia women compared to control women. Increased circulating CXC chemokine ligand 16 level was associated with a higher apolipoprotein B and low-density lipoprotein cholesterol in gestational diabetes mellitus women but not in normal pregnancy at follow-up. Our study shows that women with gestational diabetes mellitus and preeclampsia had a dysregulated CXC chemokine ligand 16 during pregnancy, and in gestational diabetes mellitus, the increase in CXC chemokine ligand 16 early in pregnancy and after 5 years was strongly associated with their lipid profile.
Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay
2017-01-01
This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Pirola, Carlos J; Fernández Gianotti, Tomas; Castaño, Gustavo O; Mallardi, Pablo; San Martino, Julio; Mora Gonzalez Lopez Ledesma, María; Flichman, Diego; Mirshahi, Faridodin; Sanyal, Arun J; Sookoian, Silvia
2015-05-01
We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome. The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls. Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity. miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kierstead, Paul H; Okochi, Hideaki; Venditto, Vincent J; Chuong, Tracy C; Kivimae, Saul; Fréchet, Jean M J; Szoka, Francis C
2015-09-10
A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG), induce an IgM response resulting in an accelerated blood clearance (ABC) of the liposome upon the second injection. Modification of liposomes with other water-soluble polymers: HPMA (poly[N-(2-hydroxypropyl) methacrylamide]), PVP (poly(vinylpyrrolidone)), PMOX (poly(2-methyl-2-oxazoline)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl morpholine)), increases circulation times of liposomes; but a precise comparison of their ability to promote long circulation or induce the ABC effect has not been reported. To obtain a more nuanced understanding of the role of polymer structure/MW to promote long circulation, we synthesized a library of polymer diacyl chain lipids with low polydispersity (1.04-1.09), similar polymer molecular weights (2.1-2.5kDa) and incorporated them into 100nm liposomes of a narrow polydispersity (0.25-1.3) composed of polymer-lipid/hydrogenated soy phosphatidylcholine/cholesterol/diD: 5.0/54.5/40/0.5. We confirm that HPMA, PVP, PMOX, PDMA and PAcM modified liposome have increased circulation times in rodents and that PVP, PDMA, and PAcM do not induce the ABC effect. We demonstrate for the first time, that HPMA does not cause an ABC effect whereas PMOX induces a pronounced ABC effect in rats. We find that a single dose of liposomes coated with PEG and PMOX generates an IgM response in rats towards the respective polymer. Finally, in this homologous polymer series, we observe a positive correlation (R=0.84 in rats, R=0.92 in mice) between the circulation time of polymer-modified liposomes and polymer viscosity; PEG and PMOX, the polymers that can initiate an ABC response were the two most viscous polymers. Our findings suggest that polymers that do not cause an ABC effect such as, HPMA or PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease
Khera, Amit V.; Won, Hong-Hee; Peloso, Gina M.; O’Dushlaine, Colm; Liu, Dajiang; Stitziel, Nathan O.; Natarajan, Pradeep; Nomura, Akihiro; Emdin, Connor A.; Gupta, Namrata; Borecki, Ingrid B.; Asselta, Rosanna; Duga, Stefano; Merlini, Piera Angelica; Correa, Adolfo; Kessler, Thorsten; Wilson, James G.; Bown, Matthew J.; Hall, Alistair S.; Braund, Peter S.; Carey, David J.; Murray, Michael F.; Kirchner, H. Lester; Leader, Joseph B.; Lavage, Daniel R.; Manus, J. Neil; Hartzel, Dustin N.; Samani, Nilesh J.; Schunkert, Heribert; Marrugat, Jaume; Elosua, Roberto; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Lander, Eric S.; Rader, Daniel J.; Danesh, John; Ardissino, Diego; Gabriel, Stacey; Willer, Cristen; Abecasis, Gonçalo R.; Saleheen, Danish; Dewey, Frederick E.; Kathiresan, Sekar
2017-01-01
Importance The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective Determine if rare and/or common variants in the LPL gene are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants Cross-sectional study. The LPL gene was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305,699 individuals of the Global Lipids Genetics Consortium and up to 120,600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposure Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures Circulating lipid levels and CAD. Results Among 46,891 individuals with LPL gene sequencing data available, mean age was 50 years (SD 12.6) and 51% were female. 188 participants (0.40%; 95%CI 0.35–0.46) carried a damaging mutation in the LPL gene – 105 of 32,646 control participants (0.32%) and 83 of 14,245 (0.58%) early-onset CAD cases. Compared to 46,703 non-carriers, the 188 heterozygous carriers of a LPL damaging mutation displayed higher plasma triglycerides (Beta coefficient= +19.6 mg/dL; 95%CI 4.6–34.6) and higher odds of CAD (odds ratio 1.84; 95%CI 1.35–2.51; P<0.001). An analysis of 6 common LPL variants noted an odds ratio for CAD of 1.51 (95%CI 1.39–1.64; P=1.1×10−22) per standard deviation increase in triglycerides. Conclusions and Relevance The presence of rare damaging mutations in the LPL gene was significantly associated with higher triglyceride levels and presence of CAD. However, further research is needed to assess causal mechanisms by which heterozygous LPL deficiency could lead to CAD. PMID:28267856
E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.
Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E
2015-10-01
Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.
Hepatic JAK2 protects against atherosclerosis through circulating IGF-1
Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.
2017-01-01
Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798
Palange, Anna L.; Di Mascolo, Daniele; Carallo, Claudio; Gnasso, Agostino; Decuzzi, Paolo
2014-01-01
Vascular adhesion and endothelial transmigration are critical steps in the establishment of distant metastasis by circulating tumor cells (CTCs). Also, vascular inflammation plays a pivotal role in steering CTCs out of the blood stream. Here, long circulating lipid-polymer nanoparticles encapsulating curcumin (NANOCurc) are proposed for modulating the vascular deposition of CTCs. Upon treatment with NANOCurc, the adhesion propensity of highly metastatic breast cancer cells (MDA-MB-231) onto TNF-α stimulated endothelial cells (HUVECs) reduces by ~ 70%, in a capillary flow. Remarkably, the CTC vascular deposition already reduces up to ~ 50% by treating solely the inflamed HUVECs. The CTC arrest is mediated by the interaction between ICAM-1 on HUVECs and MUC-1 on cancer cells, and moderate doses of curcumin down-regulate the expression of both molecules. This suggests that NANOCurc could prevent metastasis and limit the progression of the disease by modulating vascular inflammation and impairing the CTC arrest. PMID:24566270
Li, Hui; Xiao, Yang; Tang, Lin; Zhong, Feng; Huang, Gan; Xu, Jun-Mei; Xu, Ai-Min; Dai, Ru-Ping; Zhou, Zhi-Guang
2018-01-01
A high level of circulating free fatty acids (FFAs) is known to be an important trigger for macrophage apoptosis during the development of atherosclerosis. However, the underlying mechanism by which FFAs result in macrophage apoptosis is not well understood. In cultured human macrophage Thp-1 cells, we showed that palmitate (PA), the most abundant FFA in circulation, induced excessive reactive oxidative substance production, increased malondialdehyde concentration, and decreased adenosine triphosphate levels. Furthermore, PA treatment also led to mitochondrial dysfunction, including the decrease of mitochondrial number, the impairment of respiratory complex IV and succinate dehydrogenase activity, and the reduction of mitochondrial membrane potential. Mitochondrial apoptosis was also detected after PA treatment, indicated by a decrease in cytochrome c release, downregulation of Bcl-2, upregulation of Bax, and increased caspase-3 activity. PA treatment upregulated the expression of adipocyte fatty acid-binding protein (A-FABP), a critical regulator of fatty acid trafficking and lipid metabolism. Inhibition of A-FABP with BMS309403, a small-molecule A-FABP inhibitor, almost reversed all of these indexes. Thus, this study suggested that PA-mediated macrophage apoptosis through A-FABP upregulation, which subsequently resulted in mitochondrial dysfunction and reactive oxidative stress. Inhibition of A-FABP may be a potential therapeutic target for macrophage apoptosis and to delay the progress of atherosclerosis. PMID:29441065
Bermeo, Gabriela; García, Elisa; Flores-Romero, Adrian; Rico-Rosillo, Guadalupe; Marroquín, Rubén; Flores, Carmina; Blanco-Favela, Francisco; Silva-García, Raúl
2013-01-01
Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF-β expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury. PMID:24294606
Metabolic signatures of insulin resistance in 7,098 young adults.
Würtz, Peter; Mäkinen, Ville-Petteri; Soininen, Pasi; Kangas, Antti J; Tukiainen, Taru; Kettunen, Johannes; Savolainen, Markku J; Tammelin, Tuija; Viikari, Jorma S; Rönnemaa, Tapani; Kähönen, Mika; Lehtimäki, Terho; Ripatti, Samuli; Raitakari, Olli T; Järvelin, Marjo-Riitta; Ala-Korpela, Mika
2012-06-01
Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.
Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier
2014-01-01
Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370
Cohen, Margo P.; Shea, Elizabeth A.; Wu, Van-Yu
2009-01-01
Increased nonenzymatic glycation of apoB-containing lipoproteins impairs uptake and metabolism by the high affinity low density lipoprotein (LDL) receptor, and is one of the post-secretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate (CAP22) to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in LDL incubated with 200 mM glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apoB-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared to nondiabetic controls were significantly reduced in diabetic animals treated for six months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apoB-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes. PMID:19922964
Oleic acid-derived oleoylethanolamide: A nutritional science perspective.
Bowen, Kate J; Kris-Etherton, Penny M; Shearer, Gregory C; West, Sheila G; Reddivari, Lavanya; Jones, Peter J H
2017-07-01
The fatty acid ethanolamide oleoylethanolamide (OEA) is an endogenous lipid mediator derived from the monounsaturated fatty acid, oleic acid. OEA is synthesized from membrane glycerophospholipids and is a high-affinity agonist of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α). Dietary intake of oleic acid elevates circulating levels of OEA in humans by increasing substrate availability for OEA biosynthesis. Numerous clinical studies demonstrate a beneficial relationship between high-oleic acid diets and body composition, with emerging evidence to suggest OEA may mediate this response through modulation of lipid metabolism and energy intake. OEA exposure has been shown to stimulate fatty acid uptake, lipolysis, and β-oxidation, and also promote food intake control. Future research on high-oleic acid diets and body composition is warranted to confirm these outcomes and elucidate the underlying mechanisms by which oleic acid exerts its biological effects. These findings have significant practical implications, as the oleic acid-derived OEA molecule may be a promising therapeutic agent for weight management and obesity treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Shu; Su, Rui; Nie, Shufang; Sun, Ming; Zhang, Jia; Wu, Dayong; Moustaid-Moussa, Naima
2013-01-01
Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side-effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body, and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue)through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues, and improving their cellular uptake, resulting in decreased toxicity, In this review we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for EGCG, quercetin, resveratrol and curcuminadministration to enhance their aqueous solubility, stability, bioavailability, target specificity, and bioactivities. PMID:24406273
Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.
Ham, Ju Ri; Lee, Hae-In; Choi, Ra-Yeong; Sim, Mi-Ok; Seo, Kwon-Il; Lee, Mi-Kyung
2016-02-01
This study examined the effects of syringic acid (SA) on obese diet-induced hepatic dysfunction. Mice were fed high-fat diet (HFD) with or without SA (0.05%, wt/wt) for 16 weeks. SA reduced the body weight, visceral fat mass, serum levels of leptin, TNFα, IFNγ, IL-6 and MCP-1, insulin resistance, hepatic lipid content, droplets and early fibrosis, whereas it elevated the circulation of adiponectin. SA down-regulated lipogenic genes (Cidea, Pparγ, Srebp-1c, Srebp-2, Hmgcr, Fasn) and inflammatory genes (Tlr4, Myd88, NF-κB, Tnfα, Il6), whereas it up-regulated fatty acid oxidation genes (Pparα, Acsl, Cpt1, Cpt2) in the liver. SA also decreased hepatic lipogenic enzyme activities and elevated fatty acid oxidation enzyme activities relative to the HFD group. These findings suggested that dietary SA possesses anti-obesity, anti-inflammatory and anti-steatotic effects via the regulation of lipid metabolic and inflammatory genes. SA is likely to be a new natural therapeutic agent for obesity or non-alcoholic liver disease.
Chen, Mei-Jou; Yang, Wei-Shiung; Chen, Hsin-Fu; Kuo, Jahn-Jahn; Ho, Hong-Nerng; Yang, Yu-Shih; Chen, Shee-Uan
2010-03-01
Follistatin levels have recently been considered as a marker for inflammation. Our objective was to evaluate the level of circulating follistatin and high-sensitivity C-reactive protein (hsCRP) in women with polycystic ovary syndrome (PCOS) after oral contraceptive (OC) treatment. A total of 56 Taiwanese women with PCOS were enrolled in this prospective observational study in which they were treated for 3 months with OCs (ethinyl estradiol-cyproterone acetate). Blood samples were taken at baseline after treatment during the withdrawal bleed. Body mass index (BMI), lipid profiles, plasma follistatin, hsCRP, fasting glucose, insulin for the homeostasis model assessment of insulin resistance (HOMA-IR) and hormone profiles were measured and analyzed. Total testosterone, free androgen index (FAI), dehydroepiandrosterone sulfate (DHEAS), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol levels were significantly lower, but total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, circulating follistatin and hsCRP were significantly higher than baseline in women with PCOS after treatment with OCs. An elevation of fasting insulin, HOMA-IR and hsCRP after OC treatment was more evident in non-obese than obese women, whereas the elevation of follistatin was significant in both obese and non-obese women. Follistatin and hsCRP levels all showed significant correlations with each other at baseline and after treatment. The differences in follistatin and hsCRP levels from baseline to after OC treatment were significantly associated with the difference in triglyceride levels. Both hsCRP and follistatin levels increase after OC treatment in women with PCOS. Follistatin seems more sensitive than hsCRP alone to represent the aggravated low-grade inflammatory status after OC treatment in obese and non-obese women with PCOS.
Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike
2016-05-01
Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.
Neuparth, Maria João; Proença, Jorge Brandão; Santos-Silva, Alice; Coimbra, Susana
2013-01-01
Aim. Our aim was to study how different BMI scores may influence the levels of inflammation, oxidative stress, adipogenesis, glucose, and lipid metabolism, in lean, overweight, and obese Portuguese patients with type 2 diabetes mellitus (T2DM). Methods. We studied 28 lean, 38 overweight, and 17 obese patients with T2DM and 20 controls (gender and age matched). The circulating levels of oxLDL, CRP, and some adipokines-adiponectin, leptin, and chemerin-and the lipid profile were evaluated. Results. Obese patients presented significantly lower levels of adiponectin and higher leptin, oxLDL, and chemerin levels, as compared to the overweight, lean, and control groups. Overweight, compared to lean and control, subjects showed significantly lower adiponectin and higher leptin and chemerin levels; oxLDL values were significantly higher in overweight than in lean patients. Lean patients presented significantly higher chemerin values than the control. Obese patients presented significantly higher CRP values, as compared to lean patients and the control group. Obese and overweight patients presented significantly higher triglycerides values than lean patients. Except for CRP, all the observed significant changes between control and patients remained significant after statistical adjustment for the body mass index (BMI). Conclusion. The levels of leptin, adiponectin, oxLDL, CRP, and triglycerides in patients with T2DM seem to be more associated with obesity and less with diabetes. Chemerin levels were raised in lean, overweight, and obese patients, suggesting that, independently of BMI, an adipocyte dysfunction occurs. Moreover, chemerin may provide an important early biomarker of adipocyte dysfunction and a link between obesity and type 2 diabetes mellitus.
Neuparth, Maria João; Proença, Jorge Brandão; Santos-Silva, Alice; Coimbra, Susana
2013-01-01
Aim. Our aim was to study how different BMI scores may influence the levels of inflammation, oxidative stress, adipogenesis, glucose, and lipid metabolism, in lean, overweight, and obese Portuguese patients with type 2 diabetes mellitus (T2DM). Methods. We studied 28 lean, 38 overweight, and 17 obese patients with T2DM and 20 controls (gender and age matched). The circulating levels of oxLDL, CRP, and some adipokines—adiponectin, leptin, and chemerin—and the lipid profile were evaluated. Results. Obese patients presented significantly lower levels of adiponectin and higher leptin, oxLDL, and chemerin levels, as compared to the overweight, lean, and control groups. Overweight, compared to lean and control, subjects showed significantly lower adiponectin and higher leptin and chemerin levels; oxLDL values were significantly higher in overweight than in lean patients. Lean patients presented significantly higher chemerin values than the control. Obese patients presented significantly higher CRP values, as compared to lean patients and the control group. Obese and overweight patients presented significantly higher triglycerides values than lean patients. Except for CRP, all the observed significant changes between control and patients remained significant after statistical adjustment for the body mass index (BMI). Conclusion. The levels of leptin, adiponectin, oxLDL, CRP, and triglycerides in patients with T2DM seem to be more associated with obesity and less with diabetes. Chemerin levels were raised in lean, overweight, and obese patients, suggesting that, independently of BMI, an adipocyte dysfunction occurs. Moreover, chemerin may provide an important early biomarker of adipocyte dysfunction and a link between obesity and type 2 diabetes mellitus. PMID:24634792
KRAFT, JOHN C.; FREELING, JENNIFER P.; WANG, ZIYAO; HO, RODNEY J. Y.
2014-01-01
Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50–300 nm. The growing interest in nanomedicine has fueled lipid–drug and lipid–protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid–drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid–drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid–drug particles may further advance translation of these systems to improve therapeutic safety and efficacy. PMID:24338748
MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis
Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A.
2014-01-01
Objective Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein (LDL)- treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of microRNAs regulated in primary macrophages by modified LDL, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. Approach and Results The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3′UTR activity of mouse Abca1 by 48% and human ABCA1 by 45%. Additionally, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with LDL receptor deficiency (Ldlr−/−) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma HDL levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by approximately 25% as well as a more stable plaque morphology with reduced signs of inflammation. Conclusions These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. PMID:25524771
MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.
Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A
2015-02-01
Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. © 2014 American Heart Association, Inc.
Villanger, Gro D; Jenssen, Bjørn M; Fjeldberg, Rita R; Letcher, Robert J; Muir, Derek C G; Kirkegaard, Maja; Sonne, Christian; Dietz, Rune
2011-05-01
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n=62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears. Copyright © 2011 Elsevier Ltd. All rights reserved.
D'Agostino, Marco; Martino, Francesco; Sileno, Sara; Barillà, Francesco; Beji, Sara; Marchetti, Lorenza; Gangi, Fabio Maria; Persico, Luca; Picozza, Mario; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Avitabile, Daniele; Parrotto, Sandro; Capogrossi, Maurizio Colognesi; Magenta, Alessandra
2017-09-15
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P <0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a ( P <0.01; P <0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b -ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c , as early biomarkers of CVD, in paediatric FH. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; ...
2015-12-13
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Becerril, Sara; Unamuno, Xabier; Silva, Camilo; Salvador, Javier; Catalán, Victoria
2018-04-18
Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were downregulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and TNF-α-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-α-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the expression of SIRT1 and FOXO1. These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Barazzoni, R; Gortan Cappellari, G; Semolic, A; Ius, M; Dore, F; Giacca, M; Zanetti, M; Vinci, P; Guarnieri, G
2017-06-01
Ghrelin is a gastric orexigenic hormone whose activating acylation plays a relevant role in the regulation of energy balance. Nutritional modulators of ghrelin acylation and plasma acylated ghrelin (AG) concentration remain however largely undefined. We aimed at investigating whether circulating free fatty acids (FFA) contribute to regulate plasma AG and its ratio (AG/TG) to total hormone (TG). Plasma FFA, TG, AG and AG/TG were measured in a primary outpatient care setting in a community-based population cohort of 850 individuals (age 54 ± 10 years, M/F: 408/442) from the North-East Italy MoMa study. 150-min intravenous lipid infusions in rodents (10% lipids, 600 μl/h) were used to investigate the potential causal role of FFA in the regulation of plasma ghrelin profile. Plasma FFA were associated positively with AG and AG/TG while negatively with TG (P < 0.01). Associations between FFA, AG and AG/TG remained statistically significant (P < 0.02) in multiple regression analysis including HOMA insulin resistance and metabolic confounders, and both AG and AG/TG but not TG increased through plasma FFA quartiles (P < 0.01). Consistent with these findings, intravenous lipid infusion with plasma FFA elevation caused elevations of AG and AG/TG (P < 0.05) with no TG modifications. The current findings demonstrate a novel role for circulating FFA availability to up-regulate plasma AG, which could involve FFA-induced stimulation of ghrelin acylation. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji
2016-01-01
Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.
Konuma, Takahiro; Tsukamoto, Yusuke; Nagasawa, Hiromichi; Nagata, Shinji
2016-01-01
Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH) is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi)-mediated knockdown of the AKH receptor (AKHR) reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp)-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III) because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids) was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets. PMID:27144650
Polakof, Sergio; Rémond, Didier; Bernalier-Donadille, Annick; Rambeau, Mathieu; Pujos-Guillot, Estelle; Comte, Blandine; Dardevet, Dominique; Savary-Auzeloux, Isabelle
2018-02-01
In the present study, we aimed to metabolically characterize the postprandial adaptations of the major tissues involved in energy, lipids and amino acids metabolisms in mini-pigs. Mini-pigs were fed on high-fat-high-sucrose (HFHS) diet for 2 months and several tissues explored for metabolic analyses. Further, the urine metabolome was followed over the time to picture the metabolic adaptations occurring at the whole body level following overfeeding. After 2 months of HFHS consumption, mini-pigs displayed an obese phenotype characterized by high circulating insulin, triglycerides and cholesterol levels. At the tissue level, a general (muscle, adipose tissue, intestine) reduction in the capacity to phosphorylate glucose was observed. This was also supported by the enhanced hepatic gluconeogenesis potential, despite the concomitant normoglycaemia, suggesting that the high circulating insulin levels would be enough to maintain glucose homoeostasis. The HFHS feeding also resulted in a reduced capacity of two other pathways: the de novo lipogenesis, and the branched-chain amino acids transamination. Finally, the follow-up of the urine metabolome over the time allowed determining breaking points in the metabolic trajectory of the animals. Several features confirmed the pertinence of the animal model, including increased body weight, adiposity and porcine obesity index. At the metabolic level, we observed a perturbed glucose and amino acid metabolism, known to be related to the onset of the obesity. The urine metabolome analyses revealed several metabolic pathways potentially involved in the obesity onset, including TCA (citrate, pantothenic acid), amino acids catabolism (cysteine, threonine, leucine).
Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao
2010-03-15
The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.
Miranda, Diego A.; Krause, William C.; Suzawa, Miyuki; Escusa, Hazel; Foo, Juat Chin; Shihadih, Diyala S.; Stahl, Andreas; Nyangau, Edna; Hellerstein, Marc; Wenk, Markus R.; Silver, David L.; Ingraham, Holly A.
2018-01-01
Excess lipid accumulation is an early signature of nonalcoholic fatty liver disease (NAFLD). Although liver receptor homolog 1 (LRH-1) (encoded by NR5A2) is suppressed in human NAFLD, evidence linking this phospholipid-bound nuclear receptor to hepatic lipid metabolism is lacking. Here, we report an essential role for LRH-1 in hepatic lipid storage and phospholipid composition based on an acute hepatic KO of LRH-1 in adult mice (LRH-1AAV8-Cre mice). Indeed, LRH-1–deficient hepatocytes exhibited large cytosolic lipid droplets and increased triglycerides (TGs). LRH-1–deficient mice fed high-fat diet displayed macrovesicular steatosis, liver injury, and glucose intolerance, all of which were reversed or improved by expressing wild-type human LRH-1. While hepatic lipid synthesis decreased and lipid export remained unchanged in mutants, elevated circulating free fatty acid helped explain the lipid imbalance in LRH-1AAV8-Cre mice. Lipidomic and genomic analyses revealed that loss of LRH-1 disrupts hepatic phospholipid composition, leading to lowered arachidonoyl (AA) phospholipids due to repression of Elovl5 and Fads2, two critical genes in AA biosynthesis. Our findings reveal a role for the phospholipid sensor LRH-1 in maintaining adequate pools of hepatic AA phospholipids, further supporting the idea that phospholipid diversity is an important contributor to healthy hepatic lipid storage. PMID:29515023
Fessler, Michael B; Summer, Ross S
2016-05-01
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
New strategies for the development of lipid-lowering therapies to reduce cardiovascular risk.
Graham, Ian; Shear, Chuck; De Graeff, Pieter; Boulton, Caroline; Catapano, Alberico L; Stough, Wendy Gattis; Carlsson, Stefan C; De Backer, Guy; Emmerich, Joseph; Greenfeder, Scott; Kim, Albert M; Lautsch, Dominik; Nguyen, Tu; Nissen, Steven E; Prasad, Krishna; Ray, Kausik K; Robinson, Jennifer G; Sasiela, William J; Bruins Slot, Karsten; Stroes, Erik; Thuren, Tom; Van der Schueren, Bart; Velkovski-Rouyer, Maja; Wasserman, Scott M; Wiklund, Olov; Zouridakis, Emmanouil
2018-04-01
The very high occurrence of cardiovascular events presents a major public health issue, because treatment remains suboptimal. Lowering LDL cholesterol (LDL-C) with statins or ezetimibe in combination with a statin reduces major adverse cardiovascular events. The cardiovascular risk reduction in relation to the absolute LDL-C reduction is linear for most interventions without evidence of attenuation or increase in risk at low LDL-C levels. Opportunities for innovation in dyslipidaemia treatment should address the substantial risk of lipid-associated cardiovascular events among patients optimally treated per guidelines but who cannot achieve LDL-C goals and who could benefit from additional LDL-C-lowering therapy or experience side effects of statins. Fresh approaches are needed to identify promising drug targets early and develop them efficiently. The Cardiovascular Round Table of the European Society of Cardiology (ESC) convened a workshop to discuss new lipid-lowering strategies for cardiovascular risk reduction. Opportunities to improve treatment approaches and the efficient study of new therapies were explored. Circulating biomarkers may not be fully reliable proxy indicators of the relationship between treatment effect and clinical outcome. Mendelian randomization studies may better inform development strategies and refine treatment targets before Phase 3. Trials should match the drug to appropriate lipid and patient profile, and guidelines may move towards a precision-based approach to individual patient management. Stakeholder collaboration is needed to ensure continued innovation and better international coordination of both regulatory aspects and guidelines. It should be noted that risk may also be addressed through increased attention to other risk factors such as smoking, hypertension, overweight, and inactivity.
Lopes, Patrícia C; Fuhrmann, Amelia; Sereno, José; Espinoza, Daniel O; Pereira, Maria João; Eriksson, Jan W; Reis, Flávio; Carvalho, Eugenia
2014-05-01
Cyclosporine A (CsA) and sirolimus (SRL) are immunosuppressive agents (IA) associated with new onset diabetes after transplantation and dyslipidemia. We aim to evaluate the molecular effects of CsA (5mg/kg/day) and SRL (1mg/kg/day) treatment for 3 and 9weeks on lipid metabolism, in Wistar rats. Lipolysis was evaluated in isolated adipocytes, while triglycerides (TG) and non-esterified fatty acid (NEFA) were measured in serum. Gene and protein expression involved in lipid metabolism was assessed in adipose tissue and liver. CsA and SRL treatments of rats for 3 and 9weeks increased isoproterenol-stimulated lipolysis by 5-9 fold and 4-6 fold in isolated adipocytes, respectively. While CsA increased adipocyte weight and diameter, as well as NEFA and TG levels in circulation after 9weeks, SRL treatment caused ectopic deposition of TG in the liver after 3weeks. Moreover, ACC1 and FAS protein expression was increased after 3weeks (>100%, p<0.01), while HSL was increased after 9weeks of CsA treatment. On the other hand, SRL decreased the expression of lipogenic genes, including ACC1 (50%, p<0.05), lipin1 (25%, p<0.05), PPAR-γ (42%, p<0.05) and SCD1 (80%, p<0.001) in adipose tissue, after 3weeks of treatment. The effects of both IAs on expression of lipolytic and lipogenic genes suggest that these agents influence lipid metabolism, thus contributing to the dyslipidemia observed during immunosuppressive therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro
2018-01-01
Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.
Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha
2014-01-01
Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses. Cavitation activity depended on the interplay between the destruction and circulation of cavitation nuclei, which are not only used up by HIFU treatment but also replenished or carried away by circulation in vivo. These findings are important for treatment planning and optimization in pHIFU-induced drug delivery, in particular for pancreatic tumors. PMID:24613635
Horton, J D; Cuthbert, J A; Spady, D K
1993-01-01
The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814
Novel use of lipid-producing bacteria to increase circulating triglycerides in swine
USDA-ARS?s Scientific Manuscript database
Weanling pigs are at a high risk of succumbing to illness primarily due to an insufficient supply of available energy, and therefore, a weakened immune system. Solutions have been presented to supplement feed with alternate energy sources, yet limitations still arise with the utilization of these so...
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to in...
USDA-ARS?s Scientific Manuscript database
Background: High maternal circulating cortisol in pregnancy is associated with miscarriage, preterm birth, and low birth weight. Research in non-pregnant individuals suggests that reducing nutritional deficiencies may lower cortisol concentrations. It is unknown whether nutritional supplementation d...
FAP finds FGF21 easy to digest.
Gillum, Matthew P; Potthoff, Matthew J
2016-05-01
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi
2014-01-01
Objective To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. Methods The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. Results No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = −0.821 and −0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. Conclusions In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α. PMID:25264921
Naples, Mark; Baker, Chris; Lino, Marsel; Iqbal, Jahangir; Hussain, M. Mahmood
2012-01-01
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis. PMID:22345552
Gale, Trevor V; Horton, Timothy M; Grant, Donald S; Garry, Robert F
2017-09-01
Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients.
Liver-selective glucocorticoid antagonists: a novel treatment for type 2 diabetes.
von Geldern, Thomas W; Tu, Noah; Kym, Philip R; Link, James T; Jae, Hwan-Soo; Lai, Chunqiu; Apelqvist, Theresa; Rhonnstad, Patrik; Hagberg, Lars; Koehler, Konrad; Grynfarb, Marlena; Goos-Nilsson, Annika; Sandberg, Johnny; Osterlund, Marie; Barkhem, Tomas; Höglund, Marie; Wang, Jiahong; Fung, Steven; Wilcox, Denise; Nguyen, Phong; Jakob, Clarissa; Hutchins, Charles; Färnegårdh, Mathias; Kauppi, Björn; Ohman, Lars; Jacobson, Peer B
2004-08-12
Hepatic blockade of glucocorticoid receptors (GR) suppresses glucose production and thus decreases circulating glucose levels, but systemic glucocorticoid antagonism can produce adrenal insufficiency and other undesirable side effects. These hepatic and systemic responses might be dissected, leading to liver-selective pharmacology, when a GR antagonist is linked to a bile acid in an appropriate manner. Bile acid conjugation can be accomplished with a minimal loss of binding affinity for GR. The resultant conjugates remain potent in cell-based functional assays. A novel in vivo assay has been developed to simultaneously evaluate both hepatic and systemic GR blockade; this assay has been used to optimize the nature and site of the linker functionality, as well as the choice of the GR antagonist and the bile acid. This optimization led to the identification of A-348441, which reduces glucose levels and improves lipid profiles in an animal model of diabetes. Copyright 2004 American Chemical Society
Gale, Trevor V.; Horton, Timothy M.; Grant, Donald S.
2017-01-01
Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients. PMID:28922385
Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs
Furrow, E.; Lees, G. E.; Brown, C. A.; Cianciolo, R. E.
2017-01-01
Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid. PMID:28005494
Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B
2012-01-01
Background and Design: Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. Methods and Results: The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Conclusion: Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity. PMID:23446660
Franke, AA; Lai, J.F.; Morrison, C.M.; Pagano, I.; Li, X; Halm, B.M.; Soon, R.; Custer, L.J.
2015-01-01
Coenzyme Q10 (Q10), carotenoids, tocopherols, and retinol are the major circulating lipid-phase micronutrients (LPM) known to help mitigate oxidative damage and prevent chronic diseases. However, the functions of these compounds in newborns are little understood. This is due, in part, to the paucity of studies reporting their concentrations in this population. We measured Q10, carotenoids, tocopherols, and retinol in cord plasma from 100 multiethnic subjects living in Hawaii using HPLC with diode array and electrochemical detection. Appropriate internal standards were used including, for the first time, custom designed oxidized (UN10) and reduced (UL10) Q10 analogues. These compounds reflected the oxidation of UL10 to UN10 that occurred during sample processing and analysis and thus permitted accurate adjustments of natively circulating Q10 levels. All LPM measured were much lower in cord than in peripheral plasma. Cord plasma levels of total carotenoids, tocopherols, and retinol were approximately 10-fold, 3- to 5-fold and 1.5- to 3-fold lower than those in children or women. Cord plasma levels of total Q10 (TQ10; median, 113 ng/mL) were approximately 2-fold or 7- to 9-fold lower than peripheral plasma levels of neonates or children and adults, respectively. In contrast, the UN10/TQ10 ratio was substantially higher in cord (24%) than in peripheral plasma of children (3 – 4%) or adults (9%). Among the 5 ethnic groups in our cohort, no differences were observed in the levels of UN10, UL10, or TQ10. However, significant differences in many of the LPM were observed between ethnicities. More research is needed to explain these phenomena. PMID:23829202
Villagarcía, Hernán Gonzalo; Castro, María Cecilia; Arbelaez, Luisa González; Schinella, Guillermo; Massa, María Laura; Spinedi, Eduardo; Francini, Flavio
2018-04-15
Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS. Copyright © 2018 Elsevier Inc. All rights reserved.
Safarzade, Alireza; Talebi-Garakani, Elahe
2014-03-04
Type 1 diabetes mellitus is associated with a high risk for early atherosclerotic complications. Altered lipids and lipoprotein metabolism in chronic diabetes mellitus is associated with pathogenesis of atherosclerosis and other cardiovascular diseases. The aim of this study was to investigate the effects of 4 weeks resistance training on plasma lipid profile, fatty acid binding protein (FABP) 4 and apolipoprotein (apo) A-I levels in type 1 diabetic rats. Thirty two male Wister rats (12-14 weeks old) were randomly divided into four groups: non-diabetic control; non-diabetic trained; diabetic control; diabetic trained. The rats in training groups were subjected to a resistance training program (3 days/wk, for 4 wk) consisted of climbing a ladder carrying a load suspended from the tail. Diabetic inducing increased plasma apoA-I and decreased FABP4 levels compared with non-diabetic control group (respectively, P = 0.001 & P = 0.041). After 4 weeks' resistance training, plasma levels of apoA-I and FABP4 in the diabetic trained rats were significantly higher compared with the diabetic control group (respectively, P = 0.003 & P = 0.017). Plasma HDL-C level in diabetic trained group was higher than diabetic control group (P = 0.048). Liver triglycerides concentrations were significantly lower in both trained (non-diabetic and diabetic) groups compared with their control groups (respectively, P = 0.041 and P = 0.002). These data indicated that resistance training may be an efficient intervention strategy to increase plasma apoA-I, HDL-C and FABP4 concentrations, along with decreases liver triglycerides in streptozotocin induced diabetic rats. Further research is needed to elucidate physiological significance of circulating FABP4 levels.
Ferreira, Diego dos Santos; Boratto, Fernanda Alves; Cardoso, Valbert Nascimento; Serakides, Rogéria; Fernandes, Simone Odília; Ferreira, Lucas Antônio Miranda; Oliveira, Mônica Cristina
2015-01-01
Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal 99mtechnetium–ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was significantly high. These results show that long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime have a tropism for infectious foci. PMID:25848262
Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.
Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A
2014-12-01
Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vinagre, J C; Vinagre, C G; Pozzi, F S; Slywitch, E; Maranhão, R C
2013-01-01
Vegan diet excludes all foodstuffs of animal origin and leads to cholesterol lowering and possibly reduction of cardiovascular disease risk. The aim was to investigate whether vegan diet improves the metabolic pathway of triglyceride-rich lipoproteins, consisting in lipoprotein lipolysis and removal from circulation of the resulting remnants and to verify whether the diet alters HDL metabolism by changing lipid transfers to this lipoprotein. 21 vegan and 29 omnivores eutrophic and normolipidemic subjects were intravenously injected triglyceride-rich emulsions labeled with (14)C-cholesterol oleate and (3)H-triolein: fractional clearance rates (FCR, in min(-1)) were calculated from samples collected during 60 min for radioactive counting. Lipid transfer to HDL was assayed by incubating plasma samples with a donor nanoemulsion labeled with radioactive lipids; % lipids transferred to HDL were quantified in supernatant after chemical precipitation of non-HDL fractions and nanoemulsion. Serum LDL cholesterol was lower in vegans than in omnivores (2.1 ± 0.8, 2.7 ± 0.7 mmol/L, respectively, p < 0,05), but HDL cholesterol and triglycerides were equal. Cholesteryl ester FCR was greater in vegans than in omnivores (0.016 ± 0.012, 0.003 ± 0.003, p < 0.01), whereas triglyceride FCR was equal (0.024 ± 0.014, 0.030 ± 0.016, N.S.). Cholesteryl ester transfer to HDL was lower in vegans than in omnivores (2.7 ± 0.6, 3.5 ± 1.5%, p < 0,05). Free-cholesterol, triglyceride and phospholipid transfer were equal, as well as HDL size. Remnant removal from circulation, estimated by cholesteryl oleate FCR was faster in vegans, but the lipolysis process, estimated by triglyceride FCR was equal. Increased removal of atherogenic remnants and diminution of cholesteryl ester transfer may favor atherosclerosis prevention by vegan diet. Copyright © 2011 Elsevier B.V. All rights reserved.
Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y
2016-12-07
Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.
Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes
den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C
2010-01-01
One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007
PCSK9 inhibition: the dawn of a new age in cholesterol lowering?
Preiss, David; Mafham, Marion
2017-03-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating enzyme of hepatic origin that plays a key role in LDL receptor turnover. Genetic studies have confirmed that individuals with gain-of-function PCSK9 mutations have increased PCSK9 activity, elevated LDL-cholesterol levels and a severe form of familial hypercholesterolaemia. Those with variants leading to reduced PCSK9 have lower LDL-cholesterol levels and a reduced risk of coronary heart disease, and this has led to the development of various strategies aimed at reducing circulating PCSK9. Monoclonal antibodies to PCSK9, given every 2-4 weeks by subcutaneous injection, have been shown to reduce LDL-cholesterol by 50-60% compared with placebo in individuals with and without diabetes. PCSK9 inhibition also reduces lipoprotein(a), an atherogenic lipid particle, by around 20-30%. Major cardiovascular outcome trials for two agents, evolocumab and alirocumab, are expected to report from 2017. These trials involve over 45,000 participants and are likely to include about 15,000 individuals with diabetes. PCSK9-binding adnectins have been employed as an alternative method of removing circulating PCSK9. Small interfering RNA targeting messenger RNA for PCSK9, which acts by reducing hepatic production of PCSK9, is also under investigation. These agents may only need to be given by subcutaneous injection once every 4-6 months. Ongoing trials will determine whether anti-PCSK9 antibody therapy safely reduces cardiovascular risk, although high cost may limit its use. Development of PCSK9-lowering technologies cheaper than monoclonal antibodies will be necessary for large numbers of individuals to benefit from this approach to lowering cholesterol.
Brocker, Chad N.; Yue, Jiang; Kim, Donghwan; Qu, Aijuan; Bonzo, Jessica A.
2017-01-01
Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara−/−). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara−/− mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara−/− mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists. PMID:28082284
Gu, Liping; Ma, Yuhang; Gu, Mingyu; Zhang, Ying; Yan, Shuai; Li, Na; Wang, Yufan; Ding, Xiaoying; Yin, Jiajing; Fan, Nengguang; Peng, Yongde
2015-09-01
Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, P<0.001), hemoglobin A1c (HbA1c, r=-0.632, P<0.001), triglyceride (TG, r=-0.236, P<0.001) and low density lipoprotein-cholesterol (LDL-C, r=-0.382, P<0.001). A negative correlation of blood glucose with spexin was observed during oral glucose tolerance test (OGTT). Spexin is intensely expressed in normal human endocrine and epithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ziru; Zhang, Xusheng
2009-08-01
To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, P<=0.01 for all the balance features. For the youth, the balance state of females was better than that of the males. But this sexual difference disappeared for the middle-aged and elderly group. Second, a double-blind randomized trial was carried out to study the influences of Shengyi capsule, a Chinese medicine health food with the function of helping to decrease serum lipid, on the balance features. The subjects were middle-aged and elderly people with lipid abnormality history. Shengyi capsule was taken by the trial group while Xuezhikang capsule (with lovastatin as the main effective component) by the control group for 108 days. The balance features of ITI showed that Shengyi was significantly better than Xuezhikang in improving the whole body balance of blood circulation (including the up and down, left and right, proximal and distal balance). The relative efficacy rate was 81.0% for the trial group and 33.3% for the control group, there was significant difference between the two groups (P=0.002). Shengyi could effectively decrease the low density lipoprotein cholesterol (LDL-C) but the effect of Xuezhikang in decreasing total cholesterol (TC) and LDL-C was better than Shengyi. Though the lipid-lowering effect of Shengyi was not as good as Xuezhikang, ITI reflected the obvious advantage of Shengyi in improving the whole body balance of blood circulation which indicated that helping to decrease serum lipid is only part of the health function of Shengyi. The physiology and pathology basis of the influences of Shengyi on the four balance features and its relationship with the clinical outcome deserves further study. So the prospect of infrared thermal imaging is indicated as the suitable evaluation technique which could objectively reflect the whole balance regulation advantage of Chinese medicinal compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Desinia B.
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk ormore » following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These effects were largely reversible upon one week recovery. • Ozone exposure did not cause liver or muscle insulin resistance. • Subchronic ozone exposure led to decrease in serum insulin. • Ozone severely impaired beta cell insulin secretion in response to glucose.« less
Tsao, Connie W; Preis, Sarah Rosner; Peloso, Gina M; Hwang, Shih-Jen; Kathiresan, Sekar; Fox, Caroline S; Cupples, L Adrienne; Hoffmann, Udo; O'Donnell, Christopher J
2012-12-11
This study evaluated the association of timing of lipid levels and lipid genetic risk score (GRS) with subclinical atherosclerosis. Atherosclerosis is a slowly progressive disorder influenced by suboptimal lipid levels. Long-term versus contemporary lipid levels may more strongly impact the development of coronary artery calcium (CAC). Framingham Heart Study (FHS) Offspring Cohort participants (n = 1,156, 44% male, 63 ± 9 years) underwent serial fasting lipids (low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein, and triglycerides), Exam 1 (1971 to 1975) to Exam 7 (1998 to 2001). FHS Third Generation Cohort participants (n = 1,954, 55% male, 45 ± 6 years) had fasting lipid profiles assessed, 2002 to 2005. Computed tomography (2002 to 2005) measured CAC. Lipid GRSs were computed from significantly associated single-nucleotide polymorphisms. The association between early, long-term average, and contemporary lipids, and lipid GRS with elevated CAC was assessed using logistic regression. In FHS Offspring, Exam 1 and long-term average as compared with Exam 7 lipid measurements, including untreated lipid levels, were strongly associated with elevated CAC. In the FHS Third Generation, contemporary lipids were associated with CAC. The LDL-C GRS was associated with CAC (age-/sex-adjusted odds ratio: 1.14, 95% confidence interval: 1.00 to 1.29, p = 0.04). However, addition of the GRS to the lipid models did not result in a significant increase in the odds ratio or C-statistic for any lipid measure. Early and long-term average lipid levels, as compared with contemporary measures, are more strongly associated with elevated CAC. Lipid GRS was associated with lipid levels but did not predict elevated CAC. Adult early and long-term average lipid levels provide important information when assessing subclinical atherosclerosis and cardiovascular risk. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Jinhui; Fan, Ze; Chen, Chunxiu; Li, Jinghui; Cheng, Zhenyan; Li, Yang; Qiao, Xiuting
2017-11-01
This study was designed to evaluate the effect of dietary lipid level on body composition, and digestive ability of common carp with initial average weight (36.12 ± 1.18)g. Five experimental diets with increasing lipid levels of 2.1%, 4.0%, 5.8%, 7.6%, 9.4% were fed to triplicate groups of fish for 9 weeks. The results showed that lipid content of whole body and muscle increased in parallel with the increase of dietary lipid levels. Protein content of muscle decreased with the increase of dietary lipid levels, and the lowest muscle protein content was observed in fish fed 9.4% lipid diet. Lipaseactivity was significantly affected by dietary lipid levels in hepatopancreas andintestine (P <0.05). Lipase activity in fish fed at 5.8% lipid level group was significantly higher than others inhepatopancreas (P <0.05). There were no significant differences in amylase and proteaseactivities (P > 0.05). The results suggested that the most excellentdigestive ability and antioxidant parameters were obtained at 7.6% lipid level group.
E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte
Kusminski, Christine M.; Gallardo-Montejano, Violeta I.; Wang, Zhao V.; Hegde, Vijay; Bickel, Perry E.; Dhurandhar, Nikhil V.; Scherer, Philipp E.
2015-01-01
Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. PMID:26500839
Jergović, Mladen; Bendelja, Krešo; Savić Mlakar, Ana; Vojvoda, Valerija; Aberle, Neda; Jovanovic, Tanja; Rabatić, Sabina; Sabioncello, Ante; Vidović, Anđelko
2015-01-01
A number of peripheral blood analytes have been proposed as potential biomarkers of post-traumatic stress disorder (PTSD). Few studies have investigated whether observed changes in biomarkers persist over time. The aim of this study was to investigate the association of combat-related chronic PTSD with a wide array of putative PTSD biomarkers and to determine reliability of the measurements, i.e., correlations over time. Croatian combat veterans with chronic PTSD (n = 69) and age-matched healthy controls (n = 32), all men, were assessed at two time points separated by 3 months. Serum levels of lipids, cortisol, dehydroepiandrosterone-sulfate (DHEA-S), prolactin, and C-reactive protein were determined. Multiplex assay was used for the simultaneous assessment of 13 analytes in sera: cytokines [interferon-γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, TNF-α], adhesion molecules (sPECAM-1, sICAM-1), chemokines (IL-8 and MIP-1α), sCD40L, nerve growth factor, and leptin. Group differences and changes over time were tested by parametric or non-parametric tests, including repeated measures analysis of covariance. Reliability estimates [intraclass correlation coefficient (ICC) and kappa] were also calculated. Robust associations of PTSD with higher levels of DHEA-S [F(1,75) = 8.14, p = 0.006)] and lower levels of prolactin [F(1,75) = 5.40, p = 0.023] were found. Measurements showed good to excellent reproducibility (DHEA-S, ICC = 0.50; prolactin, ICC = 0.79). Serum lipids did not differ between groups but significant increase of LDL-C after 3 months was observed in the PTSD group (t = 6.87, p < 0.001). IL-8 was lower in the PTSD group (t = 4.37, p < 0.001) but assessments showed poor reproducibility (ICC = −0.08). Stable DHEA-S and prolactin changes highlight their potential to be reliable markers of PTSD. Change in lipid profiles after 3 months suggests that PTSD patients may be more prone to hyperlipidemia. High intra-individual variability in some variables emphasizes the importance of longitudinal studies in investigations of PTSD biomarkers. PMID:25926799
Impact of fetal chromosomal disorders on maternal blood metabolome: toward new biomarkers?
Pinto, Joana; Almeida, Lara Monteiro; Martins, Ana Sofia; Duarte, Daniela; Domingues, Maria Rosário Marques; Barros, António Sousa; Galhano, Eulália; Pita, Cristina; Almeida, Maria do Céu; Carreira, Isabel Marques; Gil, Ana Maria
2015-12-01
This study aimed at determining the relationship between fetal chromosomal disorders (CDs), including trisomy 21 (T21), and on first- and second-trimester maternal blood plasma, to identify the time-course metabolic adaptations to the conditions and the possible new plasma biomarkers. Furthermore, a definition of a joint circulatory (plasma) and excretory (urine) metabolic description of second-trimester CDs was sought. Plasma was obtained for 119 pregnant women: 74 controls and 45 CD cases, including 22 T21 cases. Plasma and lipid extracts (for T21 only) were analyzed by nuclear magnetic resonance spectroscopy, and data were handled by variable selection and multivariate analysis. Correlation analysis was used on a concatenated plasma/urine matrix descriptive of second-trimester CD, based on previously obtained urine data. CD cases were accompanied by enhanced lipid β-oxidation (increased ketone bodies) and underutilization of glucose, pyruvate, and citrate. Lower circulating high-density lipoprotein levels were noted, along with changes in the proline and methanol in the first trimester, and also the urea, creatinine, acetate, and low-density lipoprotein plus very low-density lipoprotein in the second trimester and the different urea and creatinine levels, suggesting fetal renal dysfunction. In terms of plasma composition, T21 cases were indistinguishable from other CDs in the first trimester, whereas in the second trimester, increased methanol and albumin may be T21 specific. Furthermore, first-trimester lipid extracts of T21 showed decreased levels of 18:2 fatty acids, whereas in the second trimester, lower levels of 20:4 and 22:6 fatty acids were noted, possibly indicative of inflammation mechanisms. In both trimesters, high classification rates for CDs (88-89%) and T21 (85-92%) generally relied on variable selection of nuclear magnetic resonance data. Plasma/urine correlations confirmed most metabolic deviations and unveiled possible new ones regarding low-density lipoprotein plus very low-density lipoprotein, sugar, and gut-microflora metabolisms. This work partially confirmed previously reported data on first-trimester T21 and provided additional information on time-course metabolic changes accompanying CD and T21, in particular regarding plasma lipid composition. These results demonstrate the potential of plasma metabolomics in monitoring and characterizing CD cases; however, validation in larger cohorts is desirable. Copyright © 2015 Elsevier Inc. All rights reserved.
Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M
2016-02-28
Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.
Suarna, C; Hood, R L; Dean, R T; Stocker, R
1993-02-24
The antioxidant activity of tocotrienols toward peroxyl radicals was compared with that of other natural lipid-soluble antioxidants in three different systems by measuring the temporal disappearance of antioxidants and the formation of lipid hydroperoxides. In homogeneous solution, the initial rates of consumption of the various antioxidants, assessed by competition experiments between pairs of antioxidants for radicals, decreased in the order: ubiquinol-10 approximately ubiquinol-9 > alpha-tocopherol approximately alpha-tocotrienol > beta-carotene approximately lycopene > gamma-tocopherol approximately gamma-tocotrienol. Following in vitro incubation of human plasma with alpha-tocotrienol, this form of vitamin E was present in all classes of lipoproteins isolated from the supplemented plasma. Dietary supplementation of rats and humans with a tocotrienol-rich preparation resulted in a dose-dependent appearance of alpha- and gamma-tocotrienols in plasma and all circulating lipoproteins, respectively. Exposure of such enriched rat plasma to aqueous peroxyl radicals resulted in simultaneous consumption of the alpha- and then gamma-isomers of vitamin E. The sequence of radical-induced consumption of antioxidants in freshly isolated, in vitro and in vivo tocotrienol-enriched low density lipoprotein (LDL) was again ubiquinol-10 > alpha-tocotrienol approximately alpha-tocopherol > carotenoids > gamma-tocopherol approximately gamma-tocotrienol. Under conditions where radicals were generated at constant rates, the rate of lipid hydroperoxide formation in LDL was not constant. It proceeded in at least three stages separated by the phase of ubiquinol-10 consumption and, subsequently, that of alpha-tocopherol/alpha-tocotrienol. Our results show that dietary tocotrienols become incorporated into circulating human lipoproteins where they react with peroxyl radicals as efficiently as the corresponding tocopherol isomers.
Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion.
Bailey, Damian M; Raman, Sudarsanam; McEneny, Jane; Young, Ian S; Parham, Kelly L; Hullin, David A; Davies, Bruce; McKeeman, Gareth; McCord, Joe M; Lewis, Michael H
2006-02-15
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic aneurysm (AAA) or infra-inguinal bypass (IIB) repair. Patients were assigned double-blind to receive intravenous sodium ascorbate (2 g vitamin C, n=10) or placebo (0.9% saline, n=12) administered 2 h prior to surgery. Blood samples were obtained from the arterial and venous circulation proximal to the respective sites of surgical repair (local) and from an antecubital vein (peripheral) during cross-clamping (ischemia) and within 60 s of clamp release (reperfusion). Ascorbate supplementation increased the venoarterial concentration difference (v-adiff) of lipid hydroperoxides (LH), interleukin (IL)-6 and vascular endothelial growth factor (VEGF) protein during ischemia. This increased the peripheral concentration of LH, total creatine phosphokinase (CPK), and VEGF protein during reperfusion (P<0.05 vs placebo). Electron paramagnetic resonance (EPR) spectroscopy confirmed that free iron was available for oxidative catalysis in the local ischemic venous blood of supplemented patients. An increased concentration of the ascorbate radical (A.-) and alpha-phenyl-tert-butylnitrone (PBN) adducts assigned as lipid-derived alkoxyl (LO.) and alkyl (LC.) species were also detected in the peripheral blood of supplemented patients during reperfusion (P<0.05 vs ischemia). In conclusion, these findings suggest that ascorbate prophylaxis may have promoted iron-induced oxidative lipid damage via a Fenton-type reaction initiated during the ischemic phase of surgery. The subsequent release of LH into the systemic circulation may have catalyzed formation of second-generation radicals implicated in the regulation of vascular permeability and angiogenesis.
Orekhov, Alexander N.; Bobryshev, Yuri V.; Sobenin, Igor A.; Melnichenko, Alexandra A.; Chistiakov, Dimitry A.
2014-01-01
In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. PMID:25050779
USDA-ARS?s Scientific Manuscript database
Vitamin K (VK) is required for the post-translational modification of several clotting factors. Warfarin is a vitamin K antagonist and anticoagulant. The most common dietary and circulating form of VK is phylloquinone (PK). PK is lipid soluble, carried by triglyceride-rich lipoproteins, and shares a...
USDA-ARS?s Scientific Manuscript database
Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. ...
USDA-ARS?s Scientific Manuscript database
We previously reported that temperamental cattle have greater non-esterified fatty acid (NEFA) concentrations and an altered innate immune response compared to calm cattle. Therefore, this trial was designed to determine if increasing energy availability via a lipid infusion or bolus dextrose inject...
Radionuclide and biomarker proxies of past ocean circulation and productivity in the Arabian Sea
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.; Bianchi, T. S.; Canuel, E. A.; Waterson, E. J.
2005-05-01
We present new excess 231Pa/230Th activity ratios and lipid biomarker results from northeastern Arabian Sea sediments (core 93KL) spanning the past 50 ka in an effort to constrain further the relationship between climate at low and high latitudes. 231Pa/230Th activity ratios are maintained at values significantly higher than the water-column production ratio of 0.093. Average 231Pa/230Th activity ratios are lower during the last glacial period than during the Holocene. The lowest 231Pa/230Th activity ratios coincide with the timing of Heinrich Events 1-5. Profiles of lipid biomarker fluxes and 231Pa/230Th activity ratios from 32 to 12 ka show similar patterns, suggesting that 231Pa is more efficiently scavenged relative to 230Th at times when diatoms make up a proportionally larger part of the primary biomass signal. In the Holocene, high 231Pa/230Th activity ratios may indicate enhanced 231Pa export from the southern to the northern Indian Ocean via intensified thermohaline circulation.
Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury
NASA Astrophysics Data System (ADS)
Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick
2014-12-01
There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.
Tumor transfection after systemic injection of DNA lipid nanocapsules.
Morille, Marie; Passirani, Catherine; Dufort, Sandrine; Bastiat, Guillaume; Pitard, Bruno; Coll, Jean-Luc; Benoit, Jean-Pierre
2011-03-01
With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005-2.1 pg on column), limit of quantification (0.0005-4.2 pg on column), inter- and intraday accuracy (85-115%) and precision (< 5%), recovery (40-109%) and stability (40-105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M.; Nording, Malin L.
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005–2.1 pg on column), limit of quantification (0.0005–4.2 pg on column), inter- and intraday accuracy (85–115%) and precision (< 5%), recovery (40–109%) and stability (40–105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation. PMID:26186333
Ajabnoor, Ghada M A; Bahijri, Suhad; Shaik, Noor Ahmad; Borai, Anwar; Alamoudi, Aliaa A; Al-Aama, Jumana Y; Chrousos, George P
2017-01-01
During the fasting month of Ramadan, practicing Saudis develop severe disturbances in sleeping and feeding patterns. Concomitantly, cortisol circadian rhythm is abolished, diurnal cortisol levels are elevated and circulating levels of several adipokines are altered favouring insulin resistance. To examine changes in the expression of CLOCK and glucocorticoid-controlled genes, such as DUSP1 and IL-1α in Saudi adults before and during Ramadan, and to investigate possible associations with selected cardiometabolic risk factors. Healthy young volunteers (5 females, 18 males; mean age +SEM = 23.2 +1.2 years) were evaluated before Ramadan and two weeks into it. Blood samples were collected at 9 am (±1 hour) and twelve hours later for determination of serum lipid profile, high sensitivity CRP (hsCRP), and adiponectin. The expression of CLOCK, DUSP1 and IL-1α was evaluated in circulating leukocytes. Mean levels of GGT and morning adiponectin decreased, while those of LDL-c/ HDL-c and atherogenic index (AI) increased significantly in Ramadan compared to Shabaan. There was no significant difference between morning and evening adiponectin during Ramadan, while the diurnal rhythm of hsCRP was lost. CLOCK gene expression mean was significantly higher in morning than in evening during Shabaan. Mean morning and evening DUSP1 mRNA levels showed significant increase during Ramadan compared to Shabaan, however, its diurnal rhythm was maintained. Morning IL-1α mRNA expression remained significantly higher than in the evening during Ramadan, but was markedly decreased compared to Shabaan. Ramadan fasting in Saudi Arabia is associated with improvements in some cardiometabolic risk factors, such as circulating GGT and hsCRP and leukocyte expression of IL-1α mRNA, suggesting that intermittent fasting might have a beneficial component. These benefits may be offset by the previously reported dysregulation in the circadian rhythm, excess glucocorticoid levels and action, and insulin resistance, explaining increased prevalence of cardiometabolic disorders and type 2 diabetes mellitus.
Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population
Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel
2015-01-01
Background The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. Objectives We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. Subjects and Methods 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. Results No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Conclusion Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects. PMID:26375586
Elevated serum β₂-GPI-Lp(a) complexes levels in children with nephrotic syndrome.
Zhang, Chunni; Luo, Yang; Huang, Zhongwei; Xia, Zhengkun; Cai, Xiaoyi; Yang, Yuhua; Niu, Dongmei; Wang, Junjun
2012-10-09
The complexes of β₂-glycoprotein I (β₂-GPI) with lipoprotein(a) [β₂-GPI-Lp(a)] exist in human circulation and are increased in serum from patients with some autoimmune diseases. This study aims to investigate the concentration of β₂-GPI-Lp(a) in serum of children with idiopathic nephrotic syndrome (NS) and its relationship with serum lipids, oxidized lipoprotein and renal function parameters to explore the potential of the complexes as an additional marker for evaluating pediatric NS. Serum concentrations of β₂-GPI-Lp(a) complexes and oxidized Lp(a) [ox-Lp(a)] were measured by "Sandwich" ELISAs in 80 NS children and 82 age/sex-matched healthy controls. The levels of serum lipids and kidney parameters were also determined. Multivariate logistic regression analysis was performed to identify correlate of β₂-GPI-Lp(a) and NS. The serum concentrations of β₂-GPI-Lp(a) complexes in children with NS were significantly higher than those in controls (median 0.95 U/ml vs 0.28 U/ml, P<0.0001). Ox-Lp(a) levels were also markedly elevated (median 14.55 mg/l vs 2.60 mg/l, P<0.0001] in NS children. The concentrations of β₂-GPI-Lp(a) were positively correlated with ox-Lp(a) (r=0.246, P=0.028), but not with Lp(a) level, and the concentrations of ox-Lp(a) were positively related with Lp(a) (r=0.301, P=0.007) in NS children. Multivariate logistic regression analysis identified a positive association between NS and β₂-GPI-Lp(a) (OR=13.694, 95% CI 6.400-29.299, P<0.0001), after adjusting for kidney function parameters, serum lipids and ox-Lp(a). Elevated β₂-GPI-Lp(a) level was an independent and significant risk factor for pediatric NS and, enhanced Lp(a) oxidation partly contributes to the formation of β₂-GPI-Lp(a) complexes. Copyright © 2012 Elsevier B.V. All rights reserved.
Rethinking fat as a fuel for endurance exercise.
Volek, Jeff S; Noakes, Timothy; Phinney, Stephen D
2015-01-01
A key element contributing to deteriorating exercise capacity during physically demanding sport appears to be reduced carbohydrate availability coupled with an inability to effectively utilize alternative lipid fuel sources. Paradoxically, cognitive and physical decline associated with glycogen depletion occurs in the presence of an over-abundance of fuel stored as body fat that the athlete is apparently unable to access effectively. Current fuelling tactics that emphasize high-carbohydrate intakes before and during exercise inhibit fat utilization. The most efficient approach to accelerate the body's ability to oxidize fat is to lower dietary carbohydrate intake to a level that results in nutritional ketosis (i.e., circulating ketone levels >0.5 mmol/L) while increasing fat intake for a period of several weeks. The coordinated set of metabolic adaptations that ensures proper interorgan fuel supply in the face of low-carbohydrate availability is referred to as keto-adaptation. Beyond simply providing a stable source of fuel for the brain, the major circulating ketone body, beta-hydroxybutyrate, has recently been shown to act as a signalling molecule capable of altering gene expression, eliciting complementary effects of keto-adaptation that could extend human physical and mental performance beyond current expectation. In this paper, we review these new findings and propose that the shift to fatty acids and ketones as primary fuels when dietary carbohydrate is restricted could be of benefit for some athletes.
Beneficial Effects of Common Bean on Adiposity and Lipid Metabolism.
Thompson, Henry J; McGinley, John N; Neil, Elizabeth S; Brick, Mark A
2017-09-09
In developed countries which are at the epicenter of the obesity pandemic, pulse crop consumption is well below recommended levels. In a recent systematic review and meta-analysis of 21 randomized controlled clinical trials, pulse consumption was associated with improved weight control and reduced adiposity, although the underlying mechanisms were a matter of speculation. Common bean ( Phaseolus vulgaris L.) is the most widely consumed pulse crop and was the focus of this investigation. Using outbred genetic models of dietary induced obesity resistance and of dietary induced obesity sensitivity in the rat, the impact of bean consumption was investigated on the efficiency with which consumed food was converted to body mass (food efficiency ratio), body fat accumulation, adipocyte morphometrics, and patterns of protein expression associated with lipid metabolism. Cooked whole bean as well as a commercially prepared cooked bean powders were evaluated. While bean consumption did not affect food efficiency ratio, bean reduced visceral adiposity and adipocyte size in both obesity sensitive and resistant rats. In liver, bean consumption increased carnitine palmitoyl transferase 1, which is the rate limiting step in long chain fatty acid oxidation and also resulted in lower levels of circulating triglycerides. Collectively, our results are consistent with the clinical finding that pulse consumption is anti-obesogenic and indicate that one mechanism by which cooked bean exerts its bioactivity is oxidation of long chain fatty acids.
Beneficial Effects of Common Bean on Adiposity and Lipid Metabolism
McGinley, John N.; Neil, Elizabeth S.; Brick, Mark A.
2017-01-01
In developed countries which are at the epicenter of the obesity pandemic, pulse crop consumption is well below recommended levels. In a recent systematic review and meta-analysis of 21 randomized controlled clinical trials, pulse consumption was associated with improved weight control and reduced adiposity, although the underlying mechanisms were a matter of speculation. Common bean (Phaseolus vulgaris L.) is the most widely consumed pulse crop and was the focus of this investigation. Using outbred genetic models of dietary induced obesity resistance and of dietary induced obesity sensitivity in the rat, the impact of bean consumption was investigated on the efficiency with which consumed food was converted to body mass (food efficiency ratio), body fat accumulation, adipocyte morphometrics, and patterns of protein expression associated with lipid metabolism. Cooked whole bean as well as a commercially prepared cooked bean powders were evaluated. While bean consumption did not affect food efficiency ratio, bean reduced visceral adiposity and adipocyte size in both obesity sensitive and resistant rats. In liver, bean consumption increased carnitine palmitoyl transferase 1, which is the rate limiting step in long chain fatty acid oxidation and also resulted in lower levels of circulating triglycerides. Collectively, our results are consistent with the clinical finding that pulse consumption is anti-obesogenic and indicate that one mechanism by which cooked bean exerts its bioactivity is oxidation of long chain fatty acids. PMID:28891931
Santangelo, C; Filesi, C; Varì, R; Scazzocchio, B; Filardi, T; Fogliano, V; D'Archivio, M; Giovannini, C; Lenzi, A; Morano, S; Masella, R
2016-11-01
Phenolic compounds naturally contained in extra-virgin olive oil (EVOO) have demonstrated anti-inflammatory and antioxidant properties. The present study aimed at evaluating the effects of a polyphenol-rich extra-virgin olive oil (EVOO) (high-polyphenol EVOO, HP-EVOO) on the metabolic control and the production of specific pro-/anti-inflammatory adipokines in overweight patients with type 2 diabetes mellitus (T2D). Eleven overweight T2D patients not in treatment with insulin were invited to follow their habitual diet for a total of 8 weeks. During the first 4 weeks (wash-out period), they were asked to consume refined olive oil (ROO, polyphenols not detectable) and then to replace ROO with HP-EVOO (25 mL/day, 577 mg of phenolic compounds/kg) for the remaining 4 weeks. Anthropometric parameters, fasting glycaemia, glycated haemoglobin (HbA1c), high-sensitive C-reactive protein, plasma lipid profile, liver function and serum levels of TNF-α, IL-6, adiponectin, visfatin and apelin were assessed at the end of each 4-week period. HP-EVOO consumption significantly reduced fasting plasma glucose (P = 0.023) and HbA1c (P = 0.039) levels as well as BMI (P = 0.012) and body weight (P = 0.012). HP-EVOO ingestion determined a reduction in serum level of aspartate aminotransferase (AST, P = 0.0056) and alanine aminotransferase (ALT, P = 0.024). Serum visfatin levels strongly decreased after HP-EVOO ingestion (P = 0.0021). Daily consumption of polyphenol-rich EVOO might improve metabolic control and circulating inflammatory adipokines profile in overweight T2D patients.
Lassenius, M I; Fogarty, C L; Blaut, M; Haimila, K; Riittinen, L; Paju, A; Kirveskari, J; Järvelä, J; Ahola, A J; Gordin, D; Härma, M-A; Kumar, A; Hamarneh, S R; Hodin, R A; Sorsa, T; Tervahartiala, T; Hörkkö, S; Pussinen, P J; Forsblom, C; Jauhiainen, M; Taskinen, M-R; Groop, P-H; Lehto, M
2017-06-01
Patients with type 1 diabetes have shown an increase in circulating cytokines, altered lipoprotein metabolism and signs of vascular dysfunction in response to high-fat meals. Intestinal alkaline phosphatase (IAP) regulates lipid transport and inflammatory responses in the gastrointestinal tract. We therefore hypothesized that changes in IAP activity could have profound effects on gut metabolic homeostasis in patients with type 1 diabetes. Faecal samples of 41 nondiabetic controls and 46 patients with type 1 diabetes were analysed for IAP activity, calprotectin, immunoglobulins and short-chain fatty acids (SCFAs). The impact of oral IAP supplementation on intestinal immunoglobulin levels was evaluated in C57BL/6 mice exposed to high-fat diet for 11 weeks. Patients with type 1 diabetes exhibited signs of intestinal inflammation. Compared to controls, patients with diabetes had higher faecal calprotectin levels, lower faecal IAP activities accompanied by lower propionate and butyrate concentrations. Moreover, the amount of faecal IgA and the level of antibodies binding to oxidized LDL were decreased in patients with type 1 diabetes. In mice, oral IAP supplementation increased intestinal IgA levels markedly. Deprivation of protective intestinal factors may increase the risk of inflammation in the gut - a phenomenon that seems to be present already in patients with uncomplicated type 1 diabetes. Low levels of intestinal IgA and antibodies to oxidized lipid epitopes may predispose such patients to inflammation-driven complications such as cardiovascular disease and diabetic nephropathy. Importantly, oral IAP supplementation could have beneficial therapeutic effects on gut metabolic homeostasis, possibly through stimulation of intestinal IgA secretion. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E
2014-03-01
Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.
In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less
Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna
2015-03-14
Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.
Salvary, Thomas; Gambert-Nicot, Ségolène; Brindisi, Marie-Claude; Meneveau, Nicolas; Schiele, François; Séronde, Marie-France; Lorgis, Luc; Zeller, Marianne; Cottin, Yves; Kantelip, Jean-Pierre; Gambert, Philippe; Davani, Siamak
2012-09-01
Large numbers of monocytes are recruited in the infarcted myocardium. Their cell membranes contain cholesterol-rich microdomains called lipids rafts, which participate in numerous signaling cascades. In addition to its cholesterol-lowering effect, pravastatin has several pleiotropic effects and is widely used as secondary prevention treatment after myocardial infarction (MI). The aim of this study was to investigate the effects of pravastatin on the organization of cholesterol within monocyte membrane rafts from patients who had suffered myocardial infarction. Monocytes from healthy donors and acute MI patients were cultured with or without 4μM pravastatin. Lipid rafts were extracted by Lubrol WX, caveolae and flat rafts were separated using a modified sucrose gradient. Cholesterol level and caveolin-1 expression in lipid rafts were determined. In healthy donors, cholesterol was concentrated in flat rafts (63±3 vs 13±1%, p<0.001). While monocytes from MI patients presented similar cholesterol distribution in both caveolae and flat rafts. Cholesterol distribution was higher in flat rafts in healthy donors, compared to MI patients (63±3 vs 41±2%, p<0.001), with less distribution in caveolae (13±1 vs 34±2%, p<0.001). Pravastatin reversed the cholesterol distribution in MI patients cells between flat rafts (41±2 vs 66±3%, p<0.001) and caveolae (34±2 vs 18±1%, p<0.001). In conclusion, MI redistributes cholesterol from flat rafts to caveolae indicating monocyte membrane reorganization. In vitro pravastatin treatment restored basal conditions in MI monocytes, suggesting another effect of statins. Copyright © 2012 Elsevier B.V. All rights reserved.
Pu, Shuaihua; Rodríguez-Pérez, Celia; Ramprasath, Vanu Ramkumar; Segura-Carretero, Antonio; Jones, Peter J H
2016-12-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel circulating protein which plays an important role in regulation of cholesterol metabolism by promoting hepatic LDL receptor degradation. However, the action of dietary fat composition on PCSK9 levels remains to be fully elucidated. The objective was to investigate the action of different dietary oils on circulating PCSK9 levels in the Canola Oil Multicenter Intervention Trial (COMIT). COMIT employed a double-blinded crossover randomized control design, consisting of five 30-d treatment periods. Diets were provided based on a 3000Kcal/d intake, including a 60g/d treatment of conventional canola oil (Canola), a high oleic canola/DHA oil blend (CanolaDHA), a corn/safflower oil blend (CornSaff), a flax/safflower oil blend (FlaxSaff) or a high oleic canola oil (CanolaOleic). Plasma PCSK9 levels were assessed using ELISA at the end of each phase. Lipid profiles (n=84) showed that CanolaDHA feeding resulted in the highest (P<0.05) serum total cholesterol (TC, 5.06±0.09mmol/L) and LDL-cholesterol levels (3.15±0.08mmol/L) across all five treatments. CanolaDHA feeding also produced the lowest (P<0.05) plasma PCSK9 concentrations (216.42±8.77ng/mL) compared to other dietary oil treatments. Plasma PCSK9 levels positively correlated (P<0.05) with serum TC, LDL-cholesterol, apolipoprotein A, and apolipoprotein B levels but did not correlate to HDL-cholesterol levels. Results indicate that post-treatment response in PCSK9 may be altered with the CanolaDHA diet. In conclusion, the elevated LDL-C levels from a DHA oil treatment may not be relevant for the observed decline in PCSK9 levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad
2017-01-01
ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1-8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia.
Morinaga, Jun; Zhao, Jiabin; Endo, Motoyoshi; Kadomatsu, Tsuyoshi; Miyata, Keishi; Sugizaki, Taichi; Okadome, Yusuke; Tian, Zhe; Horiguchi, Haruki; Miyashita, Kazuya; Maruyama, Nobuhiro; Mukoyama, Masashi; Oike, Yuichi
2018-01-01
Angiopoietin-like proteins (ANGPTLs) 3, 4, and 8 reportedly contribute to progression of metabolic disease, a risk factor for cardiovascular disease (CVD). The purpose of this study was to investigate whether circulating ANGPTL levels are associated with CVD risk after adjustment for potential confounding factors. We conducted a single center, cross-sectional study of 988 Japanese subjects undergoing routine health checks. Serum ANGPTL3, 4, and 8 levels were measured using an enzyme-linked immunosorbent assay. Using multiple regression analysis we evaluated potential association of circulating ANGPTL3, 4, and 8 levels with general medical status including age, sex, smoking, drinking, obesity, hypertension, impaired glycometabolism, dyslipidemia, hyperuricemia, hepatic impairment, chronic kidney disease, anemia, cardiac abnormality, and inflammation. Circulating ANGPTL3 levels were relatively high in health-related categories of hepatic impairment and inflammation. Circulating ANGPTL4 levels were also significantly high in impaired glycometabolism or hepatic impairment but decreased in inflammation. Finally, increased ANGPTL8 levels were observed in obesity, impaired glycometabolism and dyslipidemia. Particularly, increased levels of circulating ANGPTL8 were positively correlated with circulating triglycerides and LDL-cholesterol levels and inversely correlated with circulating HDL-cholesterol levels. Circulating ANGPTL3, 4, and 8 levels reflect some risk factors for CVD development.
Leptin: A Novel Therapeutic Strategy for Alzheimer's Disease
Tezapsidis, Nikolaos; Johnston, Jane M.; Smith, Mark A.; Ashford, J. Wesson; Casadesus, Gemma; Robakis, Nikolaos K.; Wolozin, Benjamin; Perry, George; Zhu, Xiongwei; Greco, Steven J.; Sarkar, Sraboni
2010-01-01
Adipocyte-derived leptin appears to regulate a number of features defining Alzheimer's disease (AD) at the molecular and physiological level. One activity of leptin is the control of AMP-dependent kinase (AMPK). In addition to maintaining lipid levels, AMPK regulates glycogen synthase kinase-3, which modulates tau phosphorylation. Leptin has been shown to reduce the amount of extracellular amyloid-β, both in cell culture and animal models of AD, as well as reduce tau phosphorylation in neuronal cells. Importantly, chronic administration of leptin resulted in a significant improvement in the cognitive performance of transgenic animal models of AD. In humans, weight loss often precedes the onset of dementia in AD and the level of circulating leptin is inversely proportional to the severity of dementia among AD patients. It is speculated that a deficiency in leptin levels or function may contribute to systemic and central nervous system abnormalities leading to AD, suggesting that a leptin replacement therapy may be beneficial for AD. This may be an attractive alternative to the drugs that are currently under development. PMID:19387109
Zhang, Xiaolan; Li, Xiaojing; Jing, Ye; Fang, Xiangming; Zhang, Xinyu; Lei, Bingli; Yu, Yingxin
2017-03-01
Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is a high-priority public health concern. However, maternal to fetal transplacental transfer of PAHs has not been systematically studied. To investigate the transplacental transfer of PAHs from mother to fetus and determine the influence of lipophilicity (octanol-water partition coefficient, K OW ) on transfer process, in the present study, we measured the concentrations of 15 PAHs in 95 paired maternal and umbilical cord serum, and placenta samples (in total 285 samples) collected in Shanghai, China. The average concentration of total PAHs was the highest in maternal serums (1290 ng g -1 lipid), followed by umbilical cord serums (1150 ng g -1 lipid). The value was the lowest in placenta samples (673 ng g -1 lipid). Low molecular weight PAHs were the predominant compounds in the three matrices. Increases in fish and meat consumption did not lead to increases in maternal PAH levels, and no obvious gender differences in umbilical cord serums were observed. The widespread presence of PAHs in umbilical cord serums indicated the occurrence of transplacental transfer. The ratios of PAH concentrations in umbilical cord serum to those in maternal serum (F/M) and the concentrations in placenta to those in maternal serum (P/M) of paired samples were analyzed to characterize the transfer process of individual PAHs. Most F/M ratios on lipid basis were close to one (range: 0.79 to 1.36), which suggested that passive diffusion may control the transplacental transfer of PAHs from maternal serum to the fetal circulation. The P/M and F/M values calculated on lipid basis showed that PAHs with lower K OW were more likely to transfer from mother to fetus via the placenta. Copyright © 2016 Elsevier Ltd. All rights reserved.
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease
Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira
2013-01-01
Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860
Archaeosomes display immunoadjuvant potential for a vaccine against Chagas disease.
Higa, Leticia H; Corral, Ricardo S; Morilla, María José; Romero, Eder L; Petray, Patricia B
2013-02-01
Archaeosomes (ARC), vesicles made from lipids extracted from Archaea, display strong adjuvant properties. In this study, we evaluated the ability of the highly stable ARC formulated from total polar lipids of a new Halorubrum tebenquichense strain found in Argentinean Patagonia, to act as adjuvant for soluble parasite antigens in developing prophylactic vaccine against the intracellular protozoan T. cruzi, the etiologic agent of Chagas disease. We demonstrated for the first time that C3H/HeN mice subcutaneously immunized with trypanosomal antigens entrapped in these ARC (ARC-TcAg) rapidly developed higher levels of circulating T. cruzi antibodies than those measured in the sera from animals receiving the antigen alone. Enhanced humoral responses elicited by ARC-TcAg presented a dominant IgG2a antibody isotype, usually associated with Th1-type immunity and resistance against T. cruzi. More importantly, ARC-TcAg-vaccinated mice displayed reduced parasitemia during early infection and were protected against an otherwise lethal challenge with the virulent Tulahuén strain of the parasite. Our findings suggest that, as an adjuvant, H. tebenquichense-derived ARC may hold great potential to develop a safe and helpful vaccine against this relevant human pathogen.
Yang, Zhaogang; Yu, Bo; Zhu, Jing; Huang, Xiaomeng; Xie, Jing; Xu, Songlin; Yang, Xiaojuan; Wang, Xinmei; Yung, Bryant C.; Lee, L. James; Lee, Robert J.; Teng, Lesheng
2015-01-01
siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for targeted delivery of LOR-1284 siRNA to acute myeloid leukemia (AML) cells. In vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4–11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than free LOR-1284 in reducing the R2 mRNA and protein levels. Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific thereapeutic delivery of LOR-1284 to AML. PMID:25003978
Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica
2015-01-01
Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.
Tynkkynen, Juho; Chouraki, Vincent; van der Lee, Sven J; Hernesniemi, Jussi; Yang, Qiong; Li, Shuo; Beiser, Alexa; Larson, Martin G; Sääksjärvi, Katri; Shipley, Martin J; Singh-Manoux, Archana; Gerszten, Robert E; Wang, Thomas J; Havulinna, Aki S; Würtz, Peter; Fischer, Krista; Demirkan, Ayse; Ikram, M Arfan; Amin, Najaf; Lehtimäki, Terho; Kähönen, Mika; Perola, Markus; Metspalu, Andres; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Vasan, Ramachandran S; Kivimäki, Mika; van Duijn, Cornelia M; Seshadri, Sudha; Salomaa, Veikko
2018-06-01
Metabolite, lipid, and lipoprotein lipid profiling can provide novel insights into mechanisms underlying incident dementia and Alzheimer's disease. We studied eight prospective cohorts with 22,623 participants profiled by nuclear magnetic resonance or mass spectrometry metabolomics. Four cohorts were used for discovery with replication undertaken in the other four to avoid false positives. For metabolites that survived replication, combined association results are presented. Over 246,698 person-years, 995 and 745 cases of incident dementia and Alzheimer's disease were detected, respectively. Three branched-chain amino acids (isoleucine, leucine, and valine), creatinine and two very low density lipoprotein (VLDL)-specific lipoprotein lipid subclasses were associated with lower dementia risk. One high density lipoprotein (HDL; the concentration of cholesterol esters relative to total lipids in large HDL) and one VLDL (total cholesterol to total lipids ratio in very large VLDL) lipoprotein lipid subclass was associated with increased dementia risk. Branched-chain amino acids were also associated with decreased Alzheimer's disease risk and the concentration of cholesterol esters relative to total lipids in large HDL with increased Alzheimer's disease risk. Further studies can clarify whether these molecules play a causal role in dementia pathogenesis or are merely markers of early pathology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
NASA Astrophysics Data System (ADS)
Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon
2012-03-01
All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.
Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio
2016-08-01
Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes.
Ceci, Roberta; Sabatini, Stefania; Duranti, Guglielmo; Savini, Isabella; Avigliano, Luciana; Rossi, Antonello
2007-09-01
The product of the obesity gene (ob), leptin, has a well-recognized role in regulating energy homeostasis. During the period of weight maintenance, circulating leptin concentration reflects total body fat mass. On the other hand, overnutrition is accompanied by progressive hyperleptinemia. In overnourished animals, the elevation in circulating fatty acids results in increased uptake and excessive deposition of lipids within muscle cells. Consequently, triglicerydes overload seems to strongly correlate to the impairment of insulin signaling in skeletal muscle, the primary target for insulin stimulated glucose disposal. High levels of leptin in the course of fat storage may protect non-adipose tissues from lipid accumulation. Here, we aim to evaluate in vitro the relationship between leptin treatment and expression of acyl-CoA oxidase (ACOX), a peroxisomal key enzyme involved in fatty acid catabolism. We also evaluate the adaptive response of cells to a putative oxidative insult, resulting from H(2)O(2) production. The effects of increasing levels of leptin, at different times, were assessed on mouse C2C12 myotubes by semiquantitative PCR. Activation pathway was investigated by using extracellular signal-regulated kinase (ERK) and cytosolic phospholipase A(2) (cPLA(2)) inhibitors. Cellular adaptive response to oxidative stress was evaluated by measuring glutathione concentration, oxidized/reduced glutathione ratio and the main antioxidant enzymatic activities. A 1.8-fold increase in ACOX mRNA expression was evident at 20 ng/ml leptin, a dose comparable to that found in hyperleptinemic subjects. The induction was dose-dependent, with an increase of 3-fold at 100 ng/ml; the ability of leptin to stimulate ACOX mRNA reached a maximum at 20 min and was lost in myotubes continuously exposed for more than 1 h. ACOX enzymatic activity followed mRNA changes: it was doubled after 1 h treatment and remained elevated for 24 h. ERK and cPLA(2) pathway is involved, since their inhibitors abrogated the ACOX mRNA induction. Myotubes counteract the resulting oxidative insult by catalase and glutathione peroxidase activation, thus removing H(2)O(2) at the expenses of the reduced glutahione pool. The present study shows that acute, but not chronic, leptin treatment of C2C12 myotubes induces ACOX expression. Peroxisomal fatty acid oxidation may work together with mitochondrial beta-oxidation to remove excessive lipids from non-adipose tissues, during early stages of overnutrition and before development of leptin resistance.
Niehaus, G D; Schumacker, P R; Saba, T M
1980-04-01
The rapid increase in sheep lung vascular permeability observed during Pseudomonas aeruginosa bacteremia may be due to embolization of the pulmonary microvasculature by bloodborne particulates. Since alterations in lung microvascular permeability during mild septicemia in sheep may reflect inefficient RES phagocytic clearance of bacteria as well as products of bacterial induced intravascular coagulation, the opsonic and phagocytic aspects of RES function in sheep (30-50 kg) were compared to other species. RES function was evaluated by both the clearance and relative organ uptake of gelatinized I(131) RE test lipid emulsion and gelatinized colloidal carbon. Immunoreactive opsonic a(2)SB glycoprotein levels were determined by electroimmunoassay. The phagocytic index for RES clearance of the gelatinized (500 mg/kg) test lipid in sheep was 0.019 +/- 0.002 corresponding to a half-time of 16.65 +/- 1.74 minutes. With colloidal carbon (64 mg/kg), the phagocytic index in sheep was 0.080 +/- 0.026, corresponding to a half-time of 6.16 +/- 1.99 minutes. The per cent of injected lipid emulsion (%ID) in major RE organs, on a total organ basis (TO), was: liver = 15.69 +/- 1.65%; spleen = 2.09 +/- 0.78%. Localization in the lung = 31.39 +/- 6.2%. The per cent of carbon localized in major RE organs (%ID/TO) was: liver = 21.37 +/- 1.9%; spleen = 1.95 +/- 0.55%. Localization in the lung = 32.70 +/- 4.55%. In contrast, clearance and organ distribution of the blood-borne test microparticles in rats and dogs at the same relative challenging dose revealed a much more intense and rapid liver and spleen RES uptake with minimal lung localization (1-2%). Immunoreactive opsonic protein concentrations varied greatly with species and directly correlated with efficiency of RES function. Levels observed were: dog = 1285 +/- 135 microg/ml; mouse = 1077 +/- 67 microg/ml; rat = 400 +/- 31 microg/ml; human = 297 +/- 10 microg/ml; and sheep = 184 +/- 13 microg/ml. After intravenous particulate challenge, circulating immunoreactive opsonic protein in the sheep was depleted (p < 0.05) rapidly with partial recovery at 24 hours and mild rebound hyperopsonemia at 48 hours. This pattern is in contrast to the rapid restoration seen in dog and rat within three to six hours postchallenge. Thus, in sheep, the extensive pulmonary localization of blood-borne microparticles appears related to inefficient RES clearance function mediated by a relative deficiency of circulating opsonic protein (plasma fibronectin).
Fatty acids identified in the Burmese python promote beneficial cardiac growth.
Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A
2011-10-28
Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.
Tacherfiout, Mustapha; Petrov, Petar D; Mattonai, Marco; Ribechini, Erika; Ribot, Joan; Bonet, M Luisa; Khettal, Bachra
2018-05-01
The Mediterranean buckthorn, Rhamnus alaternus L., is a plant used in traditional medicine in Mediterranean countries. We aimed at characterizing its phenolic compounds and explore potential antihyperlipidemic activity of this plant. The profile of phenolic compounds in R. alaternus leaf crude methanolic extract (CME) and its liquid-liquid extraction-derived fractions were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS 2 ). Effects of CME on: circulating lipids in rats with Triton WR-1339-induced hyperlipidemia, intracellular lipid accumulation and expression of genes of fatty acid metabolism in human hepatoma HepG2 cells, and adipogenesis in the 3T3-L1 murine adipocyte cell model were assessed. The HPLC/ESI-MS 2 analytical profile revealed a total of fifteen compounds, of which eleven were identified. Oral CME administration decreased blood levels of cholesterol and triacylglycerols in hyperlipidemic rats (by 60% and 70%, respectively, at 200 mg CME/kg). In HepG2 cells, CME exposure dose-dependently decreased intracellular lipids and up-regulated gene expression of carnitine palmitoyltransferase 1 involved in fatty acid oxidation. In the 3T3-L1 model, CME favored preadipocyte proliferation and adipogenesis, pointing to positive effects on adipose tissue expandability. These results suggest novel uses of R. alaternus by showing that its leaves are rich in flavonoids and flavonoid derivatives with an antihyperlipidemic effect in vivo and in hepatic cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis.
Zeng, Chunwei; Wen, Bo; Hou, Guixue; Lei, Li; Mei, Zhanlong; Jia, Xuekun; Chen, Xiaomin; Zhu, Wu; Li, Jie; Kuang, Yehong; Zeng, Weiqi; Su, Juan; Liu, Siqi; Peng, Cong; Chen, Xiang
2017-10-01
Psoriasis is a common and chronic inflammatory skin disease that is complicated by gene-environment interactions. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of psoriasis, the role of metabolites in psoriasis, particularly of lipids, remains unclear. Lipids not only comprise the bulk of the cellular membrane bilayers but also regulate a variety of biological processes such as cell proliferation, apoptosis, immunity, angiogenesis, and inflammation. In this study, an untargeted lipidomics approach was used to study the lipid profiles in psoriasis and to identify lipid metabolite signatures for psoriasis through ultra-performance liquid chromatography-tandem quadrupole mass spectrometry. Plasma samples from 90 participants (45 healthy and 45 psoriasis patients) were collected and analyzed. Statistical analysis was applied to find different metabolites between the disease and healthy groups. In addition, enzyme-linked immunosorbent assay was performed to validate differentially expressed lipids in psoriatic patient plasma. Finally, we identified differential expression of several lipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LysoPC), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidic acid (PA); among these metabolites, LPA, LysoPC, and PA were significantly increased, while PC and PI were down-regulated in psoriasis patients. We found that elements of glycerophospholipid metabolism such as LPA, LysoPC, PA, PI, and PC were significantly altered in the plasma of psoriatic patients; this study characterizes the circulating lipids in psoriatic patients and provides novel insight into the role of lipids in psoriasis. © The Author 2017. Published by Oxford University Press.
Plasma NOV/CCN3 Levels Are Closely Associated with Obesity in Patients with Metabolic Disorders
Pakradouni, Jihane; Le Goff, Wilfried; Calmel, Claire; Antoine, Bénédicte; Villard, Elise; Frisdal, Eric; Abifadel, Marianne; Tordjman, Joan; Poitou, Christine; Bonnefont-Rousselot, Dominique; Bittar, Randa; Bruckert, Eric; Clément, Karine; Fève, Bruno; Martinerie, Cécile; Guérin, Maryse
2013-01-01
Objective Evidence points to a founder of the multifunctional CCN family, NOV/CCN3, as a circulating molecule involved in cardiac development, vascular homeostasis and inflammation. No data are available on the relationship between plasma NOV/CCN3 levels and cardiovascular risk factors in humans. This study investigated the possible relationship between plasma NOV levels and cardiovascular risk factors in humans. Methods NOV levels were measured in the plasma from 594 adults with a hyperlipidemia history and/or with lipid-lowering therapy and/or a body mass index (BMI) >30 kg/m2. Correlations were measured between NOV plasma levels and various parameters, including BMI, fat mass, and plasma triglycerides, cholesterol, glucose, and C-reactive protein. NOV expression was also evaluated in adipose tissue from obese patients and rodents and in primary cultures of adipocytes and macrophages. Results After full multivariate adjustment, we detected a strong positive correlation between plasma NOV and BMI (r = 0.36 p<0.0001) and fat mass (r = 0.33 p<0.0005). According to quintiles, this relationship appeared to be linear. NOV levels were also positively correlated with C-reactive protein but not with total cholesterol, LDL-C or blood glucose. In patients with drastic weight loss induced by Roux-en-Y bariatric surgery, circulating NOV levels decreased by 28% (p<0.02) and 48% (p<0.0001) after 3 and 6 months, respectively, following surgery. In adipose tissue from obese patients, and in human primary cultures NOV protein was detected in adipocytes and macrophages. In mice fed a high fat diet NOV plasma levels and its expression in adipose tissue were also significantly increased compared to controls fed a standard diet. Conclusion Our results strongly suggest that in obese humans and mice plasma NOV levels positively correlated with NOV expression in adipose tissue, and support a possible contribution of NOV to obesity-related inflammation. PMID:23785511
Truzzi, Eleonora; Bongio, Chiara; Sacchetti, Francesca; Maretti, Eleonora; Montanari, Monica; Iannuccelli, Valentina; Vismara, Elena; Leo, Eliana
2017-06-09
Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool. SALNs were characterised for physico-chemical properties (particle size, surface charge, encapsulation efficiency, in vitro stability, and heparin leakage), as well as in vitro cytotoxicity by methyl thiazole tetrazolium (MTT) assay and cell internalisation in CaCo-2, a cell line model used as an indirect indication of intestinal lymphatic absorption. SALNs of about 180 nm, which are stable in suspension and have a high encapsulation efficiency (>90%) were obtained. SALNs were able to stabilise the heparin coating of Fe@hepa, which are typically unstable in physiological environments. Moreover, SALNs-Fe@hepa showed no cytotoxicity, although their ability to be internalised into CaCo-2 cells was highlighted by confocal microscopy analysis. Therefore, the results indicated that SALNs can be considered as a promising tool to orally deliver theranostic Fe@hepa into the lymphatic circulation, although further in vivo studies are needed to comprehend further potential applications.
Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery
NASA Astrophysics Data System (ADS)
Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang
2016-07-01
Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.
Molecular Characterization of Lipopolysaccharide Binding to Human α-1-Acid Glycoprotein
Huang, Johnny X.; Azad, Mohammad A. K.; Yuriev, Elizabeth; Baker, Mark A.; Nation, Roger L.; Li, Jian; Cooper, Matthew A.; Velkov, Tony
2012-01-01
The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Serratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide and O-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A, Ra, Rd, and Re rough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of the O-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria. PMID:23316371
Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.
Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko
2018-06-18
It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.
Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E.
Suvachananonda, Thitiwat; Wankham, Amara; Srihirun, Sirada; Tanratana, Pansakorn; Unchern, Supeenun; Fucharoen, Suthat; Chuansumrit, Ampaiwan; Sirachainan, Nongnuch; Sibmooh, Nathawut
2013-09-01
Nitrite anion is bioactive nitric oxide (NO) species circulating in blood, and represents the NO bioavailability and endothelial function. In this study, we aimed to investigate the nitrite levels and the correlation with hemolysis and severity in β-thalassemia/hemoglobin E (β-thal/HbE). 38 Children (12.0±1.9 years of age) with a diagnosis of mild, moderate and severe β-thalassemia were enrolled in the study. The blood nitrite levels and potential plasma NO consumption were measured by the chemiluminescence method. The nitrite levels in whole blood and erythrocytes of the severe thalassemia subjects were lower than those of the control subjects. At day 7 after transfusion of packed erythrocytes, the nitrite levels in erythrocytes increased. The plasma hemoglobin and NO consumption increased in the severe thalassemia subjects. The nitrite levels in erythrocytes inversely correlated with plasma hemoglobin, lactate dehydrogenase activity, potential NO consumption, and lipid peroxidation. Our studies demonstrate the decreased NO bioavailability in thalassemia, which could result from endothelial dysfunction, the increased potential NO consumption in plasma by cell-free hemoglobin and oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.
Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla
2016-01-01
Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles. PMID:27045677
Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla
2016-01-01
Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles.
He, Lisha; Wang, Han; Gu, Chengjuan; He, Xinhui; Zhao, Linhua; Tong, Xiaolin
2016-01-01
Traditional Chinese medicine (TCM) is an important complementary strategy for treating diabetes mellitus (DM) in China. Traditional Chinese blood circulation activating drugs are intended to guide an overall approach to the prevention and treatment of microvascular complications of DM. The core mechanism is related to the protection of the vascular endothelium and the basement membrane. Here, we reviewed the scientific evidence underpinning the use of blood circulation activating drugs to prevent and treat DM-induced microvascular complications, including diabetic nephropathy (DN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR). Furthermore, we summarized the effects and mechanism of TCM on improving blood rheology, inhibiting aggregation of platelet, forming advanced glycation end products (AGEs), regulating oxidative stress, reducing blood fat, and improving lipid metabolism. The paper provides a new theoretical basis for the clinical practice of TCM in the prevention and treatment of DM and its microvascular complications.
Nepomnyashchikh, L M; Lushnikova, E L; Polyakov, L P; Molodykh, O P; Klinnikova, M G; Russkikh, G S; Poteryaeva, O N; Nepomnyashchikh, R D; Pichigin, V I
2013-09-01
We studied the peculiarities of lipid spectrum of the blood and structural reorganization of the myocardium in experimental hypercholesterolemia with and without hypothyroidism. It was found that alimentary hypercholesterolemia accompanied by elevated total cholesterol, LDL, HDL, and triglyceride concentrations led to a decrease in body weight, heart weight, number of cardiomyocytes in the heart and induced pronounced lytic changes in cardiomyocytes, circulation disorders (sludge syndrome, echinocytosis of erythrocytes, lymphostasis), diffuse fibrosis of the stroma, and appearance of foam cells among diffuse mononuclear infiltrate cells. The combination of hypercholesterolemia with hypothyroid status caused more pronounced changes in the lipid spectrum and atherogenic index and more pronounced lytic and necrobiotic changes in cardiomyocytes. These findings suggest that elevated cholesterol concentrations in the blood, especially against the background of suppressed thyroid function, can directly induce considerable damage to cardiomyocytes, intramural vessels, and erythrocytes without the development of myocardial ischemia and in the absence of atherosclerotic plaques.
Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.
Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C
2008-08-01
We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.
Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform
Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C
2014-01-01
We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374
Nielsen, Tenna Ruest Haarmark; Lausten-Thomsen, Ulrik; Fonvig, Cilius Esmann; Bøjsøe, Christine; Pedersen, Lise; Bratholm, Palle Skov; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian
2017-04-28
Dyslipidemia is reported in 27 - 43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood. The objective of this cross-sectional study was to generate fasting plasma lipid references for a Danish/North-European White population-based cohort of children and adolescents, and investigate the prevalence of dyslipidemia in this cohort as well as in a cohort with overweight/obesity. A population-based cohort of 2141 (1275 girls) children and adolescents aged 6 - 19 (median 11.5) years was recruited from 11 municipalities in Denmark. Additionally, a cohort of children and adolescents of 1421 (774 girls) with overweight/obesity aged 6 - 19 years (median 11.8) was recruited for the study. Height, weight, and fasting plasma lipid concentrations were measured on all participants. Smoothed reference curves and percentiles were generated using the Generalized Additive Models for Location Scale and Shape package in the statistical software R. In the population-based cohort, plasma concentrations of total cholesterol (TC) (P < 0.05), low-density lipoprotein cholesterol (LDL) (P < 0.005), and high-density lipoprotein cholesterol (HDL) (P < 0.005) were higher in the youngest compared to the oldest tertile. Fasting plasma levels of triglycerides (TG) (P < 0.005) increased with age in both sexes. In boys, non-HDL was lower in the oldest compared to the youngest tertile (P < 0.0005). Concentrations of TC, LDL, non-HDL, and TG were higher (P < 0.05), and HDL lower (P < 0.05) in the cohort with overweight/obesity in both sexes and for all ages except for TC in the youngest girls. The overall prevalence of dyslipidemia was 6.4% in the population-based cohort and 28.0% in the cohort with overweight/obesity. The odds ratio for exhibiting dyslipidemia in the cohort with overweight/obesity compared with the population-based cohort was 6.2 (95% CI: 4.9 - 8.1, P < 2*10 -16 ). Fasting plasma lipid concentrations change during childhood and adolescence and differ with sex and age. Children and adolescents with obesity have increased concentrations of circulating lipids and exhibit an increased prevalence of dyslipidemia. The study is part of The Danish Childhood Obesity Biobank; ClinicalTrials.gov ID-no.: NCT00928473 retrospectively registered on June 25th 2009.
Nicolson, Garth L; Ash, Michael E
2017-09-01
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Assiri, Adel M A; Kamel, Hala F M; ALrefai, Abeer A
2018-05-22
The interaction of advanced glycation end products (AGE) and their receptors promote vascular complications of diabetes in hemodialysis (HD) patients. The soluble form of the receptor for the advanced glycation end-products (sRAGE) has been studied as a vascular biomarker in various diseases with controversial results. Our aim was to evaluate the association of the serum levels of the AGEs and their receptor sRAGE with cardiovascular disease (CVD) and the cardiovascular risk factors among HD patients. There were 130 HD patients and 80 age and gender matched control subjects were involved; 31.5% of the HD group were diabetic, which was an underlying cause of renal impairment; 36.1% had CVD, which was comprising 44.7% of diabetics and 55.3% of non-diabetic patients. The AGEs and sRAGE were assessed by enzyme linked immunosorbent assay (ELISA). In addition, the lipid profile, glycemic indices, pre-dialysis renal function tests, and hemoglobin % (Hb) were evaluated. The results show that the circulating AGEs and sRAGE levels were significantly higher in the HD patients. Those with underlying diabetes displayed higher sRAGE levels, which were positively correlated with hyperglycemia, HbA1C, and total cholesterol (TC). The HD patients with an increased serum sRAGE exhibited more cardiovascular risk factors (hypercholesterolemia and anemia) with a high prevalence of CVD. Using a linear regression analysis, we found a significant association of sRAGE with CVD and TC among HD patients, regardless of whether associating diabetes was an underlying cause of renal impairment. Overall, the HD patients displayed significantly higher serum AGEs with a concomitant increase in the circulating sRAGE levels, mainly in the diabetic HD, which were significantly associated with the CVD (independent predictors) and CV risk factors (hypercholesterolemia), mainly sRAGEs, regardless of the underlying diabetes mellitus. This highlights the prognostic role of AGEs and sRAGE in HD patients regardless of underlying cause in order to predict the risk for CVD.
Sigruener, Alexander; Wolfrum, Christian; Boettcher, Alfred; Kopf, Thomas; Liebisch, Gerhard; Orsó, Evelyn; Schmitz, Gerd
2017-01-01
Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.
Codoñer-Franch, Pilar; Pons-Morales, Sara; Boix-García, Laura; Valls-Bellés, Victoria
2010-06-01
Type 1 diabetes (T1D) mellitus and obesity are recognized risk factors for cardiovascular disease (CVD). A common mechanism underlying an increased risk for endothelial dysfunction in these two metabolic diseases is oxidative stress. To evaluate and compare the oxidant/antioxidant defense systems in children affected with T1D or obesity in order to determine the importance of oxidative stress before the emergence of complications. Children with T1D (n = 20) or obesity (n = 22), without comorbidities, and age- and sex-matched controls (n = 16). We assessed lipid peroxidation by circulating levels of lipoperoxides and malondialdehyde, as well as protein oxidation by the concentration of plasma carbonyl groups. The endogenous antioxidative defense system was evaluated by the red cell glutathione peroxidase and reduced glutathione. The serum levels of alpha-tocopherol and beta-carotene were determined to assess exogenous antioxidants. Lipid peroxidation was significantly higher in both T1D and obese children when compared with control children. However, T1D patients showed a more elevated level, because their malondialdehyde values were significantly increased with respect to obese children. Protein oxidation was present in both groups of children and did not differ between them. With respect to obese children, the glutathione peroxidase activity and exogenous antioxidants were decreased in T1D patients. Oxidative stress is present in both children with T1D and obesity, although it is more pronounced in the former. Obese children may suffer an additional oxidative stress in the case of developing impaired glucose metabolism.
Notarnicola, Maria; Caruso, Maria Gabriella; Tutino, Valeria; Bonfiglio, Caterina; Cozzolongo, Raffaele; Giannuzzi, Vito; De Nunzio, Valentina; De Leonardis, Giampiero; Abbrescia, Daniela I; Franco, Isabella; Intini, Vincenza; Mirizzi, Antonella; Osella, Alberto R
2017-08-23
The lipidomic profiling of erythrocyte membranes is expected to provide a peculiar scenario at molecular level of metabolic and nutritional pathways which may influence the lipid balance and the adaptation and homeostasis of the organism. Considering that lipid accumulation in the cell is important in promoting tissue inflammation, the purpose of this study is to analyze the fatty acid profile in red blood cell membranes of patients with Non-Alcoholic Fatty Liver Disease (NAFLD), in order to identify and validate membrane profiles possibly associated with the degree of hepatic damage. This work presents data obtained at baseline from 101 subjects that participated to a nutritional trial (registration number: NCT02347696) enrolling consecutive subjects with NAFLD. Diagnosis of liver steatosis was performed by using vibration-controlled elastography implemented on FibroScan. Fatty acids, extracted from phospholipids of erythrocyte membranes, were quantified by gas chromatography method. The subjects with severe NAFLD showed a significant decrease of the ratio of stearic acid to oleic acid (saturation index, SI) compared to controls, 1.281 ± 0.31 vs 1.5 ± 0.29, respectively. Low levels of SI in red blood cell membranes, inversely associated with degree of liver damage, suggest that an impairment of circulating cell membrane structure can reflect modifications that take place in the liver. Subjects with severe NAFLDalso showed higher levels of elongase 5 enzymatic activity, evaluated as vaccenic acid to palmitoleic acid ratio. Starting from these evidences, our findings show the importance of lipidomic approach in the diagnosis and the staging of NAFLD.
Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar
2016-01-01
The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399
Jayashree, Kuppuswami; Yasir, Md; Senthilkumar, Gandhipuram Periyasamy; Ramesh Babu, K; Mehalingam, Vadivelan; Mohanraj, Palani Selvam
2018-05-05
Diabetic Retinopathy (DR) is the leading cause of vision loss in the working age population. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), are molecules involved in extracellular tissue matrix remodelling. They are implicated in the loss of retinal tissue integrity, a major cause of DR, that leads to retinal tissue degradation and apoptosis. This study is therefore, conducted to compare the serum levels of MMP-9 and TIMP-1 in T2DM patients without and with retinopathy, and to evaluate their association with the severity of DR. Our study comprised of 2 groups of 41 each. Group A (cases) included T2DM patients with retinopathy and Group B (controls) included T2DM patients without retinopathy. Routine parameters, mainly, fasting blood glucose, and lipid profile were measured using autoanalyzer. Serum MMP-9, TIMP-1, and insulin levels were assessed using ELISA method. Statistically significant increase in the levels of MMP-9, insulin, fasting blood glucose and lipid profile were observed in the serum of T2DM patients with retinopathy, as compared with those without retinopathy. These results help to conclude that rise in MMP-9, and associated serum markers promote disease progress in DR. These findings suggest that the elevations of our study markers in the serum of the type 2 diabetic patients with retinopathy, as compared to those without retinopathy, play important roles in aggravating tissue matrix degradation, supporting DR disease progression. Copyright © 2018. Published by Elsevier Ltd.
Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats.
Bilbao, María Guillermina; Di Yorio, María Paula; Galarza, Rocío Alejandra; Varone, Cecilia Laura; Faletti, Alicia Graciela
2015-04-01
Leptin exerts both stimulatory and inhibitory effects on the ovulatory process. In this study, we investigated whether these opposite effects involve changes in the oxidative status in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using ovaries of immature rats primed with gonadotropins to induce ovulation. Superoxide dismutase (SOD) and catalase (CAT) activity, lipid peroxidation, glutathione (GSH) content, and reactive oxygen species (ROS) were studied as oxidative damage-related parameters. The expression of BCL2, BAX, and caspase 3 were measured by western blot as apoptosis-related biomarkers. The acute treatment with leptin, which inhibits ovulation, decreased SOD activity and increased active caspase 3 expression. No differences were found in CAT activity, lipid peroxidation, or total GSH. In contrast, the daily administration of leptin, which induces ovulation, decreased GSH content, ROS levels, and Bax and active caspase 3 expression, but caused no changes in other parameters. In addition, the daily administration of leptin induced follicular growth, measured by the number of antral follicles in ovarian sections. Using ovarian explant cultures, we found increased BCL2 expression and decreased SOD activity at low and high concentrations of leptin respectively. Thus, leptin can modulate the oxidative status of the ovarian tissue, during the ovulatory process, by acting on different targets according to its circulating levels. At low concentration, leptin seems to play a protective role against the oxidative stress, whereas at high concentrations, this protein seems to be involved in cell death. © 2015 Society for Reproduction and Fertility.
Oxidative stress and inflammatory markers in relation to circulating levels of adiponectin.
Gustafsson, Stefan; Lind, Lars; Söderberg, Stefan; Zilmer, Mihkel; Hulthe, Johannes; Ingelsson, Erik
2013-07-01
Previous epidemiological studies together with animal studies have suggested an association between adiponectin and oxidative stress and inflammation, but community-based studies are lacking. Our objective was to investigate the relative importance of oxidative stress and inflammatory markers, representing different pathways in relation to adiponectin. In a cross-sectional sample of 929 70-year-old individuals (50% women) of the Prospective Investigation of the Vasculature in Uppsala Seniors study, relations between serum adiponectin and oxidative stress [conjugated dienes (CD), homocysteine, total antioxidant capacity, oxidized low-density lipoprotein (OxLDL), OxLDL antibodies, baseline CD of LDL, glutathione (GSH), total glutathione (TGSH), glutathione disulfide], circulation interleukins (IL-6, IL-8), other cytokines [tumor necrosis factor α, monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor], cell adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, P-selectin, L-selectin), and systemic inflammatory markers [C-reactive protein (CRP), leukocyte count] in separate models were investigated. In age- and sex-adjusted, as well as multivariable-adjusted models, adiponectin was significantly and positively associated with GSH, log TGSH, whereas an inverse association was observed for CD and log EGF. An inverse association between adiponectin and MCP-1, log E-selectin, and log CRP was significant in age- and sex-adjusted models, but not in multivariable-adjusted models. Our results imply that higher levels of adiponectin are associated with a more beneficial oxidative stress profile, with higher levels of principal anti-oxidative GSH and total GSH together with lower levels of lipid peroxidation, possibly through shared pathways. Further studies are needed to investigate whether changes in the oxidative stress profile may be a mechanism linking adiponectin with type 2 diabetes and/or cardiovascular disease. Copyright © 2012 The Obesity Society.
Whittaker, Anne; Sofi, Francesco; Luisi, Maria Luisa Eliana; Rafanelli, Elena; Fiorillo, Claudia; Becatti, Matteo; Abbate, Rosanna; Casini, Alessandro; Gensini, Gian Franco; Benedettelli, Stefano
2015-05-11
Khorasan wheat is an ancient grain with previously reported health benefits in clinically healthy subjects. The aim of this study was to examine whether a replacement diet, thereby substituting all other cereal grains, with products made with organic khorasan wheat could provide additive protective effects in reducing lipid, oxidative and inflammatory risk factors, in patients with Acute Coronary Syndromes (ACS) in comparison to a similar replacement diet using products made from organic modern wheat. A randomized double-blinded crossover trial with two intervention phases was conducted on 22 ACS patients (9 F; 13 M). The patients were assigned to consume products (bread, pasta, biscuits and crackers) made either from organic semi-whole khorasan wheat or organic semi-whole control wheat for eight weeks in a random order. On average, patients ingested 62.0 g dry weight (DW) day-1 khorasan or control semolina; and 140.5 g DW day-1 khorasan or control flour, respectively. An eight-week washout period was implemented between the respective interventions. Blood analyses were performed both at the beginning and end of each intervention phase; thereby permitting a comparison of both the khorasan and control intervention phases, respectively, on circulatory risk factors for the same patient. Consumption of products made with khorasan wheat resulted in a significant amelioration in total cholesterol (-6.8%), low-density lipoprotein cholesterol (LDL-C) (-8.1%) glucose (-8%) and insulin (-24.6%) from baseline levels, independently of age, sex, traditional risk factors, medication and diet quality. Moreover, there was a significant reduction in reactive oxygen species (ROS), lipoperoxidation of circulating monocytes and lymphocytes, as well as in the levels of Tumor Necrosis Factor-alpha. No significant differences from baseline in the same patients were observed after the conventional control wheat intervention phase. The present results suggest that a replacement diet with cereal products made from organic khorasan wheat provides additional protection in patients with ACS. Circulating cardiovascular risk factors, including lipid parameters, and markers of both oxidative stress and inflammatory status, were reduced, irrespective of the number and combination of medicinal therapies with proven efficacy in secondary prevention.
Bundy, Rafe; Walker, Ann F; Middleton, Richard W; Wallis, Carol; Simpson, Hugh C R
2008-09-01
Cardiovascular diseases are the chief causes of death in the UK, and are associated with high circulating levels of total cholesterol in the plasma. Artichoke leaf extracts (ALEs) have been reported to reduce plasma lipids levels, including total cholesterol, although high quality data is lacking. The objective of this trial was to assess the effect of ALE on plasma lipid levels and general well-being in otherwise healthy adults with mild to moderate hypercholesterolemia. 131 adults were screened for total plasma cholesterol in the range 6.0-8.0 mmol/l, with 75 suitable volunteers randomised onto the trial. Volunteers consumed 1280 mg of a standardised ALE, or matched placebo, daily for 12 weeks. Plasma total cholesterol decreased in the treatment group by an average of 4.2% (from 7.16 (SD 0.62) mmol/l to 6.86 (SD 0.68) mmol/l) and increased in the control group by an average of 1.9% (6.90 (SD 0.49) mmol/l to 7.03 (0.61) mmol/l), the difference between groups being statistically significant (p=0.025). No significant differences between groups were observed for LDL cholesterol, HDL cholesterol or triglyceride levels. General well-being improved significantly in both the treatment (11%) and control groups (9%) with no significant differences between groups. In conclusion, ALE consumption resulted in a modest but favourable statistically significant difference in total cholesterol after 12 weeks. In comparison with a previous trial, it is suggested that the apparent positive health status of the study population may have contributed to the modesty of the observed response.
Mai, Knut; Andres, Janin; Biedasek, Katrin; Weicht, Jessica; Bobbert, Thomas; Sabath, Markus; Meinus, Sabine; Reinecke, Franziska; Möhlig, Matthias; Weickert, Martin O.; Clemenz, Markus; Pfeiffer, Andreas F.H.; Kintscher, Ulrich; Spuler, Simone; Spranger, Joachim
2009-01-01
OBJECTIVE Fibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) α–dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPARα, might modify FGF-21 levels. RESEARCH DESIGN AND METHODS The effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPARγ activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks. RESULTS Oleate and linoleate increased FGF-21 expression and secretion in a PPARα-dependent fashion, as demonstrated by small-interfering RNA–induced PPARα knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect. CONCLUSIONS The results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity. PMID:19401423
Mice with chimeric livers are an improved model for human lipoprotein metabolism.
Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus
2013-01-01
Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.
Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo
2011-04-27
Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.
Dias, C B; Wood, L G; Garg, M L
2016-07-01
Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.
Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha
2014-07-01
Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped over the first few pulses ex vivo. Cavitation activity depended on the interplay between the destruction and circulation of cavitation nuclei, which are not only used up by HIFU treatment but also replenished or carried away by circulation in vivo. These findings are important for treatment planning and optimization in pHIFU-induced drug delivery, in particular for pancreatic tumors. Published by Elsevier Inc.
Bjornson, H. S.; Hill, E. O.
1973-01-01
The effects of Bacteroides sp., Fusobacterium mortiferum, Bacteroides fragilis, and Sphaerophorus necrophorus on various parameters of blood coagulation in vivo and in vitro were determined and compared to the coagulation effects of Escherichia coli and Salmonella minnesota, wild type and R595. Intravenous injection of washed cells, culture filtrate, lipopolysaccharide, or lipid A of the anaerobic gram-negative microorganisms into mice resulted in acceleration of coagulation. Lipopolysaccharide and lipid A of the anaerobic microorganisms had no apparent effect on circulating platelets in mice or rabbits and did not cause aggregation of human platelets in vitro. Washed cells, lipopolysaccharide, and lipid A of Bacteroides sp. and F. mortiferum also significantly accelerated the clotting time of recalcified platelet poor normal human plasma and C6-deficient rabbit plasma. Lipid A, but not lipopolysaccharide, of E. coli and washed cells of S. minnesota R595 accelerated coagulation by a similar mechanism. These results indicated that Bacteroides sp. and F. mortiferum can accelerate blood coagulation in vivo and in vitro by a mechanism which does not involve platelets or terminal components of complement. PMID:4594118
NASA Technical Reports Server (NTRS)
Federov, I. V.
1980-01-01
Physical immobilization, inaction due to space travel, a sedentary occupation, or bed confinement due to a chronic illness elicit similar alternations in the metabolism of man and animals (rat, rabbit, dog, mouse). After a preliminary period of weight loss, there is eventually weight gain due to increased lipid storage. Protein catabolism is enhanced and anabolism depressed, with elevated urinary excretion of amino acids, creatine, and ammonia. Glycogen stores are depleted and glyconeogenesis is accelerated. Polyuria develops with subsequent redistribution of body fluids in which the blood volume of the systemic circulation is decreased and that of pulmonary circulation increased. This results in depressed production of vasopressin by the posterior pituitary which further enhances urinary water and salt loss.
Lymphatic System in Cardiovascular Medicine.
Aspelund, Aleksanteri; Robciuc, Marius R; Karaman, Sinem; Makinen, Taija; Alitalo, Kari
2016-02-05
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease. © 2016 American Heart Association, Inc.
Association of plasma manganese levels with chronic renal failure.
Sánchez-González, Cristina; López-Chaves, Carlos; Gómez-Aracena, Jorge; Galindo, Pilar; Aranda, Pilar; Llopis, Juan
2015-01-01
Manganese (Mn) is an essential trace element involved in the formation of bone and in amino acid, lipid and carbohydrate metabolism. Mn excess may be neurotoxic to humans, affecting specific areas of the central nervous system. However, relatively little is known about its physiological and/or toxicological effects, and very few data are available concerning the role of Mn in chronic renal failure (CRF). This paper describes a 12-month study of the evolution of plasma Mn levels in predialysis patients with CRF and the relationship with energy and macronutrient intake. The participants in this trial were 64 patients with CRF in predialysis and 62 healthy controls. Plasma levels of creatinine, urea, uric acid, total protein and Mn were measured. The glomerular filtration rate (GFR) was calculated using the Cockcroft-Gault index. The CRF patients had higher plasma levels of creatinine, urea, uric acid and Mn and a lower GFR than the controls. Plasma Mn was positively correlated with creatinine, plasma urea and plasma uric acid and was negatively correlated with the GFR and the intake of energy and macronutrients. In conclusion, CRF in predialysis patients is associated with increases in circulating levels of Mn. Copyright © 2015 Elsevier GmbH. All rights reserved.
Lu, Xiangfeng; Huang, Jianfeng; Mo, Zengnan; He, Jiang; Wang, Laiyuan; Yang, Xueli; Tan, Aihua; Chen, Shufeng; Chen, Jing; Gu, C Charles; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Hao, Yongchen; Li, Jianxin; Hixson, James E; Li, Yunzhi; Cheng, Min; Liu, Xiaoli; Cao, Jie; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Peng, Xiaozhong; Gu, Dongfeng
2016-02-01
Multiple genetic loci associated with lipid levels have been identified predominantly in Europeans, and the issue of to what extent these genetic loci can predict blood lipid levels increases over time and the incidence of future hyperlipidemia remains largely unknown. We conducted a meta-analysis of genome-wide association studies of lipid levels in 8344 subjects followed by replication studies including 14 739 additional individuals. We replicated 17 previously reported loci. We also newly identified 3 Chinese-specific variants in previous regions (HLA-C, LIPG, and LDLR) with genome-wide significance. Almost all the variants contributed to lipid levels change and incident hyperlipidemia >8.1-year follow-up among 6428 individuals of a prospective cohort study. The strongest associations for lipid levels change were detected at LPL, TRIB1, APOA1-C3-A4-A5, LIPC, CETP, and LDLR (P range from 4.84×10(-4) to 4.62×10(-18)), whereas LPL, TRIB1, ABCA1, APOA1-C3-A4-A5, CETP, and APOE displayed significant strongest associations for incident hyperlipidemia (P range from 1.20×10(-3) to 4.67×10(-16)). The 4 lipids genetic risk scores were independently associated with linear increases in their corresponding lipid levels and risk of incident hyperlipidemia. A C-statistics analysis showed significant improvement in the prediction of incident hyperlipidemia on top of traditional risk factors including the baseline lipid levels. These findings identified some evidence for allelic heterogeneity in Chinese when compared with Europeans in relation to lipid associations. The individual variants and those cumulative effects were independent risk factors for lipids increase and incident hyperlipidemia. © 2015 American Heart Association, Inc.
Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig
2016-01-01
Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.
Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig
2016-01-01
Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.
Lee, Chi Ho; Woo, Yu Cho; Chow, Wing Sun; Cheung, Chloe Yu Yan; Fong, Carol Ho Yi; Yuen, Michele Mae Ann; Xu, Aimin; Tse, Hung Fat; Lam, Karen Siu Ling
2017-06-06
Fibroblast growth factor 21 (FGF21) has demonstrated beneficial effects on lipid and carbohydrate metabolism. In cross-sectional studies, an association of raised circulating FGF21 levels with coronary heart disease (CHD) was found in some but not all studies. Here we investigated prospectively whether baseline serum FGF21 levels could predict incident CHD in subjects with type 2 diabetes mellitus and no known cardiovascular diseases. Baseline serum FGF21 levels were measured in 3528 Chinese subjects with type 2 diabetes mellitus recruited from the Hong Kong West Diabetes Registry. The role of baseline serum FGF21 levels in predicting incident CHD over a median follow-up of 3.8 years was analyzed using Cox regression analysis. Among 3528 recruited subjects without known cardiovascular diseases, 147 (4.2%) developed CHD over a mean follow-up of 4 years. Baseline serum log-transformed FGF21 levels were significantly higher in those who had incident CHD than those who did not (222.7 pg/mL [92.8-438.4] versus 151.1 pg/mL [75.6-274.6]; P <0.001). On multivariable Cox regression analysis, baseline serum FGF21 levels, using an optimal cutoff of 206.22 pg/mL derived from our study, independently predicted incident CHD (hazard ratio, 1.55; 95% CI, 1.10-2.19; P =0.013) and significantly improved net reclassification index and integrated discrimination improvement after adjustment for conventional cardiovascular risk factors. We have demonstrated, for the first time, that serum FGF21 level is an independent predictor of incident CHD and might be usefully utilized as a biomarker for identifying type 2 diabetes mellitus subjects with raised CHD risk, for primary prevention. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Collot, Mayeul; Fam, Tkhe Kyong; Ashokkumar, Pichandi; Faklaris, Orestis; Galli, Thierry; Danglot, Lydia; Klymchenko, Andrey S
2018-04-25
Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders, and diseases including obesity, diabetes, and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) fluoresce from yellow to the near-infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390 000 M -1 cm -1 ) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible, thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high-quality 3D images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13 300 GM), as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplet exchange between cells was tracked and imaged, thus demonstrating intercellular communication.
Spégel, Peter; Lindqvist, Andreas; Sandberg, Monica; Wierup, Nils
2014-02-10
Hypersecretion of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) has been associated with obesity and glucose intolerance. This condition has been suggested to be linked to GIP resistance. Besides its insulinotropic effect, GIP also directly affects glucose uptake and lipid metabolism. This notwithstanding, effects of GIP on other circulating metabolites than glucose have not been thoroughly investigated. Here, we examined effects of infusion of various concentrations of GIP in normo- and hyperglycemic rats on serum metabolite profiles. We found that, despite a decrease in serum glucose levels (-26%, p<0.01), the serum metabolite profile was largely unaffected by GIP infusion in normoglycemic rats. Interestingly, levels of branched chain amino acids and the ketone body β-hydroxybutyrate were decreased by 21% (p<0.05) and 27% (p<0.001), respectively, in hyperglycemic rats infused with 60 ng/ml GIP. Hence, our data suggest that GIP provokes a decrease in BCAA levels and ketone body production. Increased concentrations of these metabolites have been associated with obesity and T2D. Copyright © 2014. Published by Elsevier B.V.
Mullin, Lee; Gessner, Ryan; Kwan, James; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.
2012-01-01
Purpose Microbubble contrast agents are currently implemented in a variety of both clinical and preclinical ultrasound imaging studies. The therapeutic and diagnostic capabilities of these contrast agents are limited by their short in-vivo lifetimes, and research to lengthen their circulation times is ongoing. In this manuscript, observations are presented from a controlled experiment performed to evaluate differences in circulation times for lipid shelled perfluorocarbon-filled contrast agents circulating within rodents as a function of inhaled anesthesia carrier gas. Methods The effects of two common anesthesia carrier gas selections - pure oxygen and medical air – were observed within five rats. Contrast agent persistence within the kidney was measured and compared for oxygen and air anesthesia carrier gas for six bolus contrast injections in each animal. Simulations were performed to examine microbubble behavior with changes in external environment gases. Results A statistically significant extension of contrast circulation time was observed for animals breathing medical air compared to breathing pure oxygen. Simulations support experimental observations and indicate that enhanced contrast persistence may be explained by reduced ventilation/perfusion mismatch and classical diffusion, in which nitrogen plays a key role by contributing to the volume and diluting other gas species in the microbubble gas core. Conclusion: Using medical air in place of oxygen as the carrier gas for isoflurane anesthesia can increase the circulation lifetime of ultrasound microbubble contrast agents. PMID:21246710
Teulier, Loïc; Tornos, Jérémy; Rouanet, Jean-Louis; Rey, Benjamin; Roussel, Damien
2013-05-01
During the cold austral winter, king penguin chicks are infrequently fed by their parents and thus experience severe nutritional deprivation under harsh environmental conditions. These energetic constraints lead to a range of energy sparing mechanisms balanced by the maintenance of efficient thermogenic processes. The present work investigated whether the high thermogenic capacities exhibited by winter-acclimatized king penguin chicks could be related to an increase in lipid substrate supply and oxidation in skeletal muscle, the main site of thermogenesis in birds. To test this hypothesis, we examined i) the effect of an experimental rise in plasma triglyceride on the whole metabolic rate in winter-acclimatized (WA) and de-acclimatized king penguin chicks kept at thermoneutrality (TN), and ii) investigated the fuel preference of muscle mitochondria. In vivo, a perfusion of a lipid emulsion induced a small 10% increase of metabolic rate in WA chicks but not in TN group. In vitro, the oxidation rate of muscle mitochondria respiring on lipid-derived substrate was +40% higher in WA chicks than in TN, while no differences were found between groups when mitochondria oxidized carbohydrate-derived substrate or succinate. Despite an enhanced fuel selection towards lipid oxidation in skeletal muscle, a rise of circulating lipids per se was not sufficient to fully unravel the thermogenic capacity of winter-acclimatized king penguin chicks. Copyright © 2013 Elsevier Inc. All rights reserved.
Lipid Nanoparticles: A novel approach for brain targeting.
Shankar, Ravi; Joshi, Monika; Pathak, Kamla
2018-06-10
Brain is a delicate organ, separated from general circulation and is characterized by the presence of relatively impermeable Blood Brain Barrier (BBB). The BBB maintains homeostasis in the brain thus restricting the entrance of foreign bodies and several molecules from reaching the brain. As a result several promising molecules do not reach the target site and fail to produce in vivo response. Nevertheless, lipid nanoparticles are taken up readily by the brain because of their lipophilic nature. The bioacceptable and biodegradable nature of lipid nanoparticles makes them less toxic and suited for brain targeting. In the present review the BBB, mechanism of transport across the BBB, strategies to bypass the blood-brain barrier have been presented. The aptness of lipid nanoparticles for brain targeting has been highlighted. The proposed mechanism of uptake of the lipid nanoparticles, methods of prolonging the plasma retention and various methods of preparation for formulation of effective delivery systems for brain targeting have been included and dealt in this review. Lipid based formulations can be designated as the current and future generation of drug delivery systems as these possess tremendous potential to bypass BBB and reach the target site due to their small size and ability to dodge the reticular endothelial system. However, these nanostructures need to be investigated intensively to successfully reach the clinical trials stage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lipid-Altering Therapies and the Progression of Atherosclerotic Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierzbicki, Anthony S.
2007-04-15
Lipids play a key role in the progression of atherosclerosis, and lipid-lowering therapies have been studied for 30 years in coronary disease. Measurement of the progression of atherosclerosis through carotid intima-media thickness, coronary mean lumen diameter, and, mostly recently, intravascular ultrasound is generally accepted. This article reviews the role of lipid-lowering therapies in changing the rate of atherosclerosis progression in the coronary and carotid circulations. Statins are the primary therapy used to reduce atherosclerosis and cardiovascular events, including strokes and transient ischemic attacks, and have benefits in reducing events in patients undergoing carotid endarterectomy. In contrast, data for other agents,more » including fibrates and nicotinic acid, in reducing the progression of atherosclerosis are less extensive and not as well known. There is increasing interest in optimizing the whole lipid profile, as this might deliver extra benefits over and above statin therapy alone. Initial proof of this concept has recently come from studies that measured the progression of atherosclerosis and showed that adding nicotinic acid to statin therapy and, more directly, infusion of high-density lipoprotein-like particles reduced progression and indeed might induce regression of the disease. It is likely that the management of significant carotid stenosis will become ever more drug focused and will be customized to the lipid profile of each patient with intervention reserved only for late-stage symptomatic disease.« less
Yao, W-M; Zhang, H-F; Zhu, Z-Y; Zhou, Y-L; Liang, N-X; Xu, D-J; Zhou, F; Sheng, Y-H; Yang, R; Gong, L; Yin, Z-J; Chen, F-K; Cao, K-J; Li, X-L
2013-04-01
Elevated levels of circulating triglycerides and increased arterial stiffness are associated with cardiovascular disease. Numerous studies have reported an association between levels of circulating triglycerides and arterial stiffness. We used Mendelian randomization to test whether this association is causal. We investigated the association between circulating triglyceride levels, the apolipoprotein A-V (ApoA5) -1131T>C single nucleotide polymorphism and brachial-ankle pulse wave velocity (baPWV) by examining data from 4421 subjects aged 18-74 years who were recruited from the Chinese population. baPWV was significantly associated with the levels of circulating triglycerides after adjusting for age, sex, body mass index (BMI), systolic blood pressure, heart rate, waist-to-hip ratio, antihypertensive treatment and diabetes mellitus status. The -1131C allele was associated with a 5% (95% confidence interval 3-8%) increase in circulating triglycerides (adjusted for age, sex, BMI, waist-to-hip ratio, diabetes mellitus and antihypertensive treatment). Instrumental variable analysis showed that genetically elevated levels of circulating triglycerides were not associated with increased baPWV. These results do not support the hypothesis that levels of circulating triglycerides have a causal role in the development of arterial stiffness.
Flores-Ramírez, R; Pérez-Vázquez, F J; Rodríguez-Aguilar, M; Medellín-Garibay, S E; Van Brussel, E; Cubillas-Tejeda, A C; Carrizales-Yáñez, L; Díaz-Barriga, F
2017-02-01
The aim of this study was to conduct a POP biomonitoring programme for children in high-risk areas. We evaluated 247 serum samples from children between the ages of 6 and 12years old from two zones in Mexico: (1) indigenous zones, which included Cuatlamayan (CUA), Tocoy (TOC), and Santa Maria Picula (SAM); and (2) industrial zones, which included Tercera Chica (TC), Industrial San Luis (IND) and Rincon de San Jose (SJR); Mundo Nuevo (MN); and Alpuyeca (ALP). Our results showed that α-endosulfan was similar to CUA, TOC, SAM, TC and MN (178.6-306.9ng/g lipid). β-Endosulfan levels were higher in ALP (901.5ng/g lipid), followed by CUA (139.9ng/g lipid) and TOC, SAM, TC and MN, which had similar levels (55.4-64.5ng/g lipid). For endosulfan sulfate, the ALP community had the highest concentration levels (1096.4ng/g lipid), whereas CUA and TOC (212.3 and 289ng/g lipid, respectively) had concentrations similar to those found in SAM and TC (99.5 and 119.1ng/g lipid, respectively). DDE levels were found in malaria-endemic areas of SAM, CUA and TOC (1782.2, 1358.3 and 57.0ng/g lipid), followed by MN (35.1ng/g lipid). HCB concentration levels were found to be higher in MN and SJR (691.8 and 575.4ng/g lipid, respectively), followed by CUA and TC (363.9 and 269.1ng/g lipid, respectively), with levels similar to those found in TOC and SAM (191.8 and 181.9ng/g lipid, respectively). Finally, PCB 101 concentration levels were found to be the highest in ALP (1032.7ng/g lipid), followed by similar levels of SJR and IND (567.5 and 327.3ng/g lipid, respectively) and TC and MN, with 109.1 and 144.5ng/g lipid, respectively. The evidence provided by this exploratory study indicates that the evaluation of the health risks posed to children living in contaminated areas is a high priority health issue. Copyright © 2016 Elsevier B.V. All rights reserved.
Histopathologic and metabolic effect of ursodeoxycholic acid treatment on PCOS rat model.
Gozukara, Ilay; Dokuyucu, Recep; Özgür, Tümay; Özcan, Oguzhan; Pınar, Neslihan; Kurt, Raziye Keskin; Kucur, Suna Kabil; Dolapçı, Kenan
2016-06-01
The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) treatment on a polycystic ovary syndrome (PCOS) rat model. Thirty-two female Wistar-Albino rats were randomly divided into four groups as follows - group 1: sham group (n: 8), group 2: letrozole-induced PCOS group (n: 8), group 3: letrozole-induced PCOS plus metformin-treated (500 mg/kg) group (n: 8) and group 4: letrozole-induced PCOS plus UDCA (150 mg/kg)-treated group (n: 8). Histopathologic examination of the ovaries, circulating estrone (E1), estradiol (E2), testosterone, androstenedione, glucose, insulin and lipid profiles were evaluated. Histopathologic examination results revealed that groups 3 and 4 had significantly lower cystic and atretic follicles compared to group 2. Besides, group 4 had significantly higher antral follicles than group 2 (8.5 ± 2.9 versus 5.4 ± 1.1; p: 0.001). Furthermore, total testosterone (4.9 ± 2.8 versus 8.8 ± 2.9; p= 0.004) and insulin levels were significantly lower in group 4 compared to group 2 (1.7 ± 0.08 versus 2.1 ± 0.5; p = 0.02). However, lipid parameters, E1, E2, glucose and HOMA-IR were comparable between the groups. Our study results demonstrated that UDCA therapy improves ovarian morphology and decreases total testosterone and insulin levels.
Kamm, Roger D
2002-01-01
The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.
Babaknejad, Nasim; Nayeri, Hashem; Hemmati, Roohullah; Bahrami, Somaye; Esmaillzadeh, Ahmad
2018-06-01
Fibroblast growth factors (FGFs) are responsible for the regulation of a wide range of biological functions, among which cellular proliferation, survival, migration, and differentiation could be pointed out. FGF19 controls the enterohepatic bile acid/cholesterol system, and FGF21 modulates fatty acid/glucose metabolism. Obesity, type 2 diabetes, coronary artery disease, and cancer, all can alter FGF21 circulating concentrations. In contrast to FGF21, metabolic diseases exhibit reduced serum FGF19 levels. Accordingly, FGF19 and FGF21 play important roles in regulating glucose and lipid metabolism. Hence, we present here a timely review on the relationship between FGF19/21 and metabolic diseases, especially obesity, and their probable role in development and treatment of obesity seems necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Stryjecki, Carolina; Peralta-Romero, Jesus; Alyass, Akram; Karam-Araujo, Roberto; Suarez, Fernando; Gomez-Zamudio, Jaime; Burguete-Garcia, Ana; Cruz, Miguel; Meyre, David
2016-01-01
The Pro12Ala (rs1801282) polymorphism in peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) has been convincingly associated with insulin resistance (IR) and type 2 diabetes (T2D) among Europeans, in interaction with a high-fat diet. Mexico is disproportionally affected by obesity and T2D however, whether the Pro12Ala polymorphism is associated with early metabolic complications in this population is unknown. We assessed the association of PPAR-γ2 Pro12Ala with metabolic traits in 1457 Mexican children using linear regression models. Interactions between PPAR-γ2 Pro12Ala and circulating lipids on metabolic traits were determined by adding an interaction term to regression models. We observed a high prevalence of overweight/obesity (49.2%), dyslipidemia (34.9%) and IR (11.1%). We detected nominally significant/significant interactions between lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol), the PPAR-γ2 Pro12Ala genotype and waist-to-hip ratio, fasting insulin, HOMA-IR and IR (9.30 × 10−4 ≤ Pinteraction ≤ 0.04). Post-hoc subgroup analyses evidenced that the association between the PPAR-γ2 Pro12Ala genotype and fasting insulin, HOMA-IR and IR was restricted to children with total cholesterol or LDL-cholesterol values higher than the median (0.02 ≤ P ≤ 0.03). Our data support an association of the Pro12Ala polymorphism with IR in Mexican children and suggest that this relationship is modified by dyslipidemia. PMID:27075119
Rotroff, Daniel M; Pijut, Sonja S; Marvel, Skylar W; Jack, John R; Havener, Tammy M; Pujol, Aurora; Schluter, Agatha; Graf, Gregory A; Ginsberg, Henry N; Shah, Hetal S; Gao, He; Morieri, Mario-Luca; Doria, Alessandro; Mychaleckyi, Josyf C; McLeod, Howard L; Buse, John B; Wagner, Michael J; Motsinger-Reif, Alison A
2018-04-01
Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 × 10 -6 ). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-β) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Wu, Jia-Shuan; Mu, Li-Min; Bu, Ying-Zi; Liu, Lei; Yan, Yan; Hu, Ying-Jie; Bai, Jing; Zhang, Jing-Ying; Lu, Weiyue; Lu, Wan-Liang
2017-06-20
Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.
Tureck, Luciane Viater; Leite, Neiva; Souza, Ricardo Lehtonen Rodrigues; da Silva Timossi, Luciana; Osiecki, Ana Claudia Vecchi; Osiecki, Raul; Alle, Lupe Furtado
2015-01-01
Adiponectin is an adipokine inversely correlated with obesity, which has beneficial effect on insulin resistance and lipid metabolism. Considering its potential as a therapeutic target in the metabolic disorder contexts, and in order to add knowledge in the area, our study evaluated the ADIPOQ 276G > T polymorphism effect on adiponectin levels, and on lipoproteins of clinical interest in a population sample composed of 211 healthy individuals. Significant effects were observed only among men: the carriers of heterozygous genotype (GT) showed high levels of adiponectin (p = 0.018), while the rare homozygous genotype (TT) gave its carriers a negative phenotype, represented by higher levels of low density lipoprotein cholesterol (LDL-C) (p = 0.004 and p = 0.005) and total cholesterol (TC) (p = 0.010 and p = 0.005) compared to carriers of other genotypes (GG and GT respectively), the independent effect of SNP on LDL-C and TC levels was confirmed by multiple regression analysis (p = 0.008 and p = 0.044). We found no evidence of correlation between circulating adiponectin levels and biochemical markers, which suggests, therefore, an SNP 276G > T independent effect on adiponectin levels and on lipoprotein metabolism in men enrolled in this study. PMID:26137445
Circulating FGF21 proteolytic processing mediated by fibroblast activation protein
Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.
2015-01-01
Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356
Differential expression of Lp-PLA2 in obesity and type 2 diabetes and the influence of lipids.
Jackisch, Laura; Kumsaiyai, Warunee; Moore, Jonathan D; Al-Daghri, Nasser; Kyrou, Ioannis; Barber, Thomas M; Randeva, Harpal; Kumar, Sudhesh; Tripathi, Gyanendra; McTernan, Philip G
2018-05-01
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulatory macrophage-derived factor that increases with obesity and leads to a higher risk of cardiovascular disease (CVD). Despite this, its role in adipose tissue and the adipocyte is unknown. Therefore, the aims of this study were to clarify the expression of Lp-PLA2 in relation to different adipose tissue depots and type 2 diabetes, and ascertain whether markers of obesity and type 2 diabetes correlate with circulating Lp-PLA2. A final aim was to evaluate the effect of cholesterol on cellular Lp-PLA2 in an in vitro adipocyte model. Analysis of anthropometric and biochemical variables from a cohort of lean (age 44.4 ± 6.2 years; BMI 22.15 ± 1.8 kg/m 2 , n = 23), overweight (age 45.4 ± 12.3 years; BMI 26.99 ± 1.5 kg/m 2 , n = 24), obese (age 49.0 ± 9.1 years; BMI 33.74 ± 3.3 kg/m 2 , n = 32) and type 2 diabetic women (age 53.0 ± 6.13 years; BMI 35.08 ± 8.6 kg/m 2 , n = 35), as part of an ethically approved study. Gene and protein expression of PLA2 and its isoforms were assessed in adipose tissue samples, with serum analysis undertaken to assess circulating Lp-PLA2 and its association with cardiometabolic risk markers. A human adipocyte cell model, Chub-S7, was used to address the intracellular change in Lp-PLA2 in adipocytes. Lp-PLA2 and calcium-independent PLA2 (iPLA2) isoforms were altered by adiposity, as shown by microarray analysis (p < 0.05). Type 2 diabetes status was also observed to significantly alter gene and protein levels of Lp-PLA2 in abdominal subcutaneous (AbdSc) (p < 0.01), but not omental, adipose tissue. Furthermore, multivariate stepwise regression analysis of circulating Lp-PLA2 and metabolic markers revealed that the greatest predictor of Lp-PLA2 in non-diabetic individuals was LDL-cholesterol (p = 0.004). Additionally, in people with type 2 diabetes, oxidised LDL (oxLDL), triacylglycerols and HDL-cholesterol appeared important predictors, accounting for 59.7% of the variance (p < 0.001). Subsequent in vitro studies determined human adipocytes to be a source of Lp-PLA2, as confirmed by mRNA expression, protein levels and immunochemistry. Further in vitro experiments revealed that treatment with LDL-cholesterol or oxLDL resulted in significant upregulation of Lp-PLA2, while inhibition of Lp-PLA2 reduced oxLDL production by 19.8% (p < 0.05). Our study suggests adipose tissue and adipocytes are active sources of Lp-PLA2, with differential regulation by fat depot and metabolic state. Moreover, levels of circulating Lp-PLA2 appear to be influenced by unfavourable lipid profiles in type 2 diabetes, which may occur in part through regulation of LDL-cholesterol and oxLDL metabolism in adipocytes.
Rameez, Shahid; Palmer, Andre F
2011-07-19
During the last few decades, liposome-encapsulated hemoglobin (LEH) dispersions have been investigated for use as red blood cell (RBC) substitutes. However, the process for formulating LEHs is cumbersome, and the composition of the lipid mixture is often complex. This work investigates a simple approach to formulating LEHs from a simple lipid mixture composed of high-phase-transition lipid distearoylphosphatidylcholine (DSPC) and cholesterol. To improve the circulation half-life and colloidal state of LEHs, the surfaces of unmodified LEHs were conjugated with poly(ethylene glycol) (PEG-LEHs). The results of this work show that PEG-LEH dispersions exhibited average diameters ranging from 166 to 195 nm that were colloidally stable for 4 to 5 months, hemoglobin (Hb) concentrations ranging from 9.6 to 14 g/dL, methemoglobin levels of less than 1%, oxygen affinities (i.e., P(50) values) ranging from 20 to 23 mm Hg, and cooperativity coefficients ranging from 1.4 to 2.2. The reactions of PEG-LEHs with physiologically important ligands, such as oxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO), were also measured. It was observed that PEG-LEHs and RBCs exhibited retarded gaseous ligand binding/release kinetics compared to that of acellular Hb's. This result provides important insight into the pivotal role that the intracellular diffusion barrier plays in the transport of gases into and out of these structures. Collectively, our results demonstrate that the PEG-LEH dispersions prepared in this study show good potential as an RBC substitute.
Kooijman, Sander; Wang, Yanan; Parlevliet, Edwin T; Boon, Mariëtte R; Edelschaap, David; Snaterse, Gido; Pijl, Hanno; Romijn, Johannes A; Rensen, Patrick C N
2015-11-01
Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism, used in the treatment of type 2 diabetes, has recently been shown to increase thermogenesis via the brain. As brown adipose tissue (BAT) produces heat by burning triacylglycerol (TG) and takes up glucose for de novo lipogenesis, the aim of this study was to evaluate the potential of chronic central GLP-1R activation by exendin-4 to facilitate clearance of lipids and glucose from the circulation by activating BAT. Lean and diet-induced obese (DIO) C57Bl/6J mice were used to explore the effect of a 5 day intracerebroventricular infusion of the GLP-1 analogue exendin-4 or vehicle on lipid and glucose uptake by BAT in both insulin-sensitive and insulin-resistant conditions. Central administration of exendin-4 in lean mice increased sympathetic outflow towards BAT and white adipose tissue (WAT), resulting in increased thermogenesis as evidenced by increased uncoupling protein 1 (UCP-1) protein levels and decreased lipid content, while the uptake of TG-derived fatty acids was increased in both BAT and WAT. Interestingly, in DIO mice, the effects on WAT were blunted, while exendin-4 still increased sympathetic outflow towards BAT and increased the uptake of plasma TG-derived fatty acids and glucose by BAT. These effects were accompanied by increased fat oxidation, lower plasma TG and glucose concentrations, and reduced body weight. Collectively, our results suggest that BAT activation may be a major contributor to the glucose- and TG-lowering effects of GLP-1R agonism.
Han, ShuYi; Xu, YiHui; Gao, MeiHua; Wang, YunShan; Wang, Jun; Liu, YanYan; Wang, Min; Zhang, XiaoQian
2016-12-01
Apolipoprotein E (ApoE), which has been shown to influence serum lipid parameters, can bind to multiple types of lipids and plays an important role in the metabolism and homeostasis of lipids and lipoproteins. A previous study showed that ApoE concentration significantly affects serum lipid levels independently of ApoE polymorphism. The serum lipid levels were also closely correlated with dietary habits, and Shandong cuisine is famous for its high salt and oil contents, which widely differ among the different areas in China. Therefore, studying the effect of ApoE polymorphism on ApoE concentration and serum lipid levels in Shandong province is very important.A total of 815 subjects including 285 men and 530 women were randomly selected and studied from Jinan, Shandong province. In order to evaluate the association of ApoE polymorphism and serum level on lipid profiles, the ApoE genotypes, as well as levels of fasting serum ApoE and other lipid parameters, were detected in all subjects.The frequency of the ApoE E3 allele was highest (83.1%), while those of E2 and E4 were 9.4% and 7.5%, respectively, which are similar to those in other Asian populations. ApoE2 allele carriers showed significantly increased ApoE levels but lower levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apolipoprotein B (ApoB).We found that ApoE level is influenced by ApoE polymorphism in a gene-dependent manner. The ApoE polymorphism showed different influences on serum lipid parameters with increasing age and body mass index (BMI) in our Shandong Han population.
Han, ShuYi; Xu, YiHui; Gao, MeiHua; Wang, YunShan; Wang, Jun; Liu, YanYan; Wang, Min; Zhang, XiaoQian
2016-01-01
Abstract Apolipoprotein E (ApoE), which has been shown to influence serum lipid parameters, can bind to multiple types of lipids and plays an important role in the metabolism and homeostasis of lipids and lipoproteins. A previous study showed that ApoE concentration significantly affects serum lipid levels independently of ApoE polymorphism. The serum lipid levels were also closely correlated with dietary habits, and Shandong cuisine is famous for its high salt and oil contents, which widely differ among the different areas in China. Therefore, studying the effect of ApoE polymorphism on ApoE concentration and serum lipid levels in Shandong province is very important. A total of 815 subjects including 285 men and 530 women were randomly selected and studied from Jinan, Shandong province. In order to evaluate the association of ApoE polymorphism and serum level on lipid profiles, the ApoE genotypes, as well as levels of fasting serum ApoE and other lipid parameters, were detected in all subjects. The frequency of the ApoE E3 allele was highest (83.1%), while those of E2 and E4 were 9.4% and 7.5%, respectively, which are similar to those in other Asian populations. ApoE2 allele carriers showed significantly increased ApoE levels but lower levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apolipoprotein B (ApoB). We found that ApoE level is influenced by ApoE polymorphism in a gene-dependent manner. The ApoE polymorphism showed different influences on serum lipid parameters with increasing age and body mass index (BMI) in our Shandong Han population. PMID:27977609
NASA Astrophysics Data System (ADS)
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-08-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-01-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578
Prolactin improves hepatic steatosis via CD36 pathway.
Zhang, Pengzi; Ge, Zhijuan; Wang, Hongdong; Feng, Wenhuan; Sun, Xitai; Chu, Xuehui; Jiang, Can; Wang, Yan; Zhu, Dalong; Bi, Yan
2018-06-01
Prolactin (PRL) is a multifunctional polypeptide with effects on metabolism, however, little is known about its effect on hepatic steatosis and lipid metabolism. Herein, we aimed to assess the role of PRL in the development of non-alcoholic fatty liver disease (NAFLD). The serum PRL levels of 456 patients with NAFLD, 403 controls without NAFLD diagnosed by ultrasound, and 85 individuals with liver histology obtained during metabolic surgery (44 female and 30 male patients with NAFLD and 11 age-matched non-NAFLD female individuals) were evaluated. The expression of the gene encoding the prolactin receptor (PRLR) and signalling molecules involved in hepatic lipid metabolism were evaluated in human liver and HepG2 cells. The effects of overexpression of PRLR or fatty acid translocase (FAT)/CD36 or knockdown of PRLR on hepatic lipid metabolism were tested in free fatty acid (FFA)-treated HepG2 cells. Circulating PRL levels were lower in individuals with ultrasound-diagnosed NAFLD (men: 7.9 [range, 5.9-10.3] µg/L; women: 8.7 [range, 6.1-12.4] µg/L) than those with non-NAFLD (men: 9.1 [range, 6.8-13.0] µg/L, p = 0.002; women: 11.6 [range, 8.2-16.1] µg/L, p <0.001). PRL levels in patients with biopsy-proven severe hepatic steatosis were lower compared with those with mild-to-moderate hepatic steatosis in both men (8.3 [range, 5.4-9.5] µg/L vs. 9.7 [range, 7.1-12.3] µg/L, p = 0.031) and women (8.5 [range, 4.2-10.6] µg/L vs. 9.8 [range, 8.2-15.7] µg/L, p = 0.027). Furthermore, hepatic PRLR gene expression was significantly reduced in patients with NAFLD and negatively correlated with CD36 gene expression. In FFA-induced HepG2 cells, PRL treatment or PRLR overexpression significantly reduced the expression of CD36 and lipid content, effects that were abrogated after silencing of PRLR. Furthermore, overexpression of CD36 significantly reduced the PRL-mediated improvement in lipid content. Our results reveal a novel association between the central nervous system and the liver, whereby PRL/PRLR improved hepatic lipid accumulation via the CD36 pathway. Our clinical study suggests a negative association between prolactin (PRL)/prolactin receptor (PRLR) and the presence of non-alcoholic fatty liver disease (NAFLD). Using cell experiments, we found that PRL ameliorates hepatic steatosis via the hepatic PRLR and fatty acid translocase (FAT)/CD36, a key transporter of free fatty acid uptake in liver. Our findings suggest a novel approach to improving NAFLD using PRL and PRLR. Clinical trial number: NCT03296605. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Ferrario, Manuela; Cambiaghi, Alice; Brunelli, Laura; Giordano, Silvia; Caironi, Pietro; Guatteri, Luca; Raimondi, Ferdinando; Gattinoni, Luciano; Latini, Roberto; Masson, Serge; Ristagno, Giuseppe; Pastorelli, Roberta
2016-02-05
Septic shock remains a major problem in Intensive Care Unit, with high lethality and high-risk second lines treatments. In this preliminary retrospective investigation we examined plasma metabolome and clinical features in a subset of 20 patients with severe septic shock (SOFA score >8), enrolled in the multicenter Albumin Italian Outcome Sepsis study (ALBIOS, NCT00707122). Our purpose was to evaluate the changes of circulating metabolites in relation to mortality as a pilot study to be extended in a larger cohort. Patients were analyzed according to their 28-days and 90-days mortality. Metabolites were measured using a targeted mass spectrometry-based quantitative metabolomic approach that included acylcarnitines, aminoacids, biogenic amines, glycerophospholipids, sphingolipids, and sugars. Data-mining techniques were applied to evaluate the association of metabolites with mortality. Low unsaturated long-chain phosphatidylcholines and lysophosphatidylcholines species were associated with long-term survival (90-days) together with circulating kynurenine. Moreover, a decrease of these glycerophospholipids was associated to the event at 28-days and 90-days in combination with clinical variables such as cardiovascular SOFA score (28-day mortality model) or renal replacement therapy (90-day mortality model). Early changes in the plasma levels of both lipid species and kynurenine associated with mortality have potential implications for early intervention and discovering new target therapy.
Ferrario, Manuela; Cambiaghi, Alice; Brunelli, Laura; Giordano, Silvia; Caironi, Pietro; Guatteri, Luca; Raimondi, Ferdinando; Gattinoni, Luciano; Latini, Roberto; Masson, Serge; Ristagno, Giuseppe; Pastorelli, Roberta
2016-01-01
Septic shock remains a major problem in Intensive Care Unit, with high lethality and high-risk second lines treatments. In this preliminary retrospective investigation we examined plasma metabolome and clinical features in a subset of 20 patients with severe septic shock (SOFA score >8), enrolled in the multicenter Albumin Italian Outcome Sepsis study (ALBIOS, NCT00707122). Our purpose was to evaluate the changes of circulating metabolites in relation to mortality as a pilot study to be extended in a larger cohort. Patients were analyzed according to their 28-days and 90-days mortality. Metabolites were measured using a targeted mass spectrometry-based quantitative metabolomic approach that included acylcarnitines, aminoacids, biogenic amines, glycerophospholipids, sphingolipids, and sugars. Data-mining techniques were applied to evaluate the association of metabolites with mortality. Low unsaturated long-chain phosphatidylcholines and lysophosphatidylcholines species were associated with long-term survival (90-days) together with circulating kynurenine. Moreover, a decrease of these glycerophospholipids was associated to the event at 28-days and 90-days in combination with clinical variables such as cardiovascular SOFA score (28-day mortality model) or renal replacement therapy (90-day mortality model). Early changes in the plasma levels of both lipid species and kynurenine associated with mortality have potential implications for early intervention and discovering new target therapy. PMID:26847922
Maturation of high-density lipoproteins
Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus
2009-01-01
Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799
NASA Astrophysics Data System (ADS)
Yang, Zhaogang; Yu, Bo; Zhu, Jing; Huang, Xiaomeng; Xie, Jing; Xu, Songlin; Yang, Xiaojuan; Wang, Xinmei; Yung, Bryant C.; Lee, L. James; Lee, Robert J.; Teng, Lesheng
2014-07-01
The siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for the targeted delivery of LOR-1284 siRNA into acute myeloid leukemia (AML) cells. The in vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4-11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than the free LOR-1284 in reducing the R2 mRNA and protein levels. The Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to the free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with the decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific therapeutic delivery of LOR-1284 into AML cells.
Specialized Functional Diversity and Interactions of the Na,K-ATPase
Matchkov, Vladimir V.; Krivoi, Igor I.
2016-01-01
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its “classical” function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function. PMID:27252653
Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Barzegar Jalali, Mohammad
2016-04-01
Solid lipid nanoparticles (SLNs) are highly susceptible to phagocytosis by reticuloendothelial system (RES). To overcome this problem, a novel hydrogel-coated SLNs structure was developed and evaluated in this study. Solid lipid nanoparticles surface was coated with chitosan, via electrostatic attraction with the negatively charged SLNs surface. The resulting polymer-coated SLNs then hosted an inorganic poly-anionic agent, tripolyphosphate, to form the final lipohydrogel structure. Compared with the bare SLNs, lipohydrogel nanoparticles (LHNs) showed a significant increase in size and zeta potential. The release profile showed lower burst release and lower release rate for LHNs compared with SLNs. LHNs nanoparticles released the model antidiabetic drug, repaglinide, in a more sustained manner with lower burst effect compared with the corresponding SLN structure. Cytotoxicity studies via cell culture and MTT assay revealed no bio-toxicity of the SLNs and LHNs. In addition, intravenous administration of repaglinide-loaded SLNs and LHNs in rats showed longer drug residence time in circulation for LHNs, a trend also evident for the blood glucose level-time profile. The particle size, zeta potential, FTIR and microscopy data demonstrated the formation of the supposed lipohydrogel nanoparticles. All these benefits of LHNs propose it as a promising candidate for controlled release of the drugs. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Park, Hyo Jin; Kim, Hye-Jin; Kim, Sang Ryong; Choi, Myung-Sook; Jung, Un Ju
2017-03-01
This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Relation of Plasma Lipids to Alzheimer Disease and Vascular Dementia
Reitz, Christiane; Tang, Ming-Xin; Luchsinger, Jose; Mayeux, Richard
2009-01-01
Background The relation between plasma lipid levels and Alzheimer disease (AD) and vascular dementia (VaD), and the impact of drugs to lower lipid levels remains unclear. Objective To investigate the relation between plasma lipid levels and the risk of AD and VaD and the impact of drugs to lower lipid levels on this relationship. Design and Setting Cross-sectional and prospective community-based cohort studies. Participants Random sample of 4316 Medicare recipients, 65 years and older, residing in northern Manhattan, NY. Main Outcome Measures Vascular dementia and AD according to standard criteria. Results Elevated levels of non–high-density lipoprotein (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and decreased levels of HDL-C were weak risk factors for VaD in either cross-sectional or prospective analyses. Higher levels of total cholesterol were associated with a decreased risk of incident AD after adjustment for demographics, apolipoprotein E genotype, and cardiovascular risk factors. Treatment with drugs to lower lipid levels did not change the disease risk of either disorder. Conclusions We found a weak relation between non–HDL-C, LDL-C, and HDL-C levels and the risk of VaD. Lipid levels and the use of agents to lower them do not seem to be associated with the risk of AD. PMID:15148148
Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey
2017-05-01
Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using 18 F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of 18 F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; P <0.001). Monocytes from patients with FD showed increased lipid accumulation (lipid-positive monocytes: Patients with FD 92% [86-95], controls 76% [66-81], P =0.001, with an increase in lipid droplets per monocyte), and a higher expression of surface integrins (CD11b, CD11c, and CD18). Patients with FD also exhibited monocytosis and leukocytosis, accompanied by a 1.2-fold increase of 18 F-FDG uptake in bone marrow. In addition, we found a strong correlation between remnant levels and leukocyte counts in the CGPS (n=103 953, P for trend 5×10-276). In vitro experiments substantiated that remnant cholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.
Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A
2016-07-01
Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.
Kohli, Payal; Desai, Nihar R.; Giugliano, Robert P.; Kim, Jae B.; Somaratne, Ransi; Huang, Fannie; Knusel, Beat; McDonald, Shannon; Abrahamsen, Timothy; Wasserman, Scott M.; Scott, Robert; Sabatine, Marc S.
2013-01-01
Lowering low-density lipoprotein cholesterol (LDL-C) is a cornerstone for the prevention of atherosclerotic heart disease, improving clinical outcomes and reducing vascular mortality in patients with hypercholesterolemia. The clinical benefits of LDL-C reduction appear to extend even to patients starting with LDL-C as low as 60–80 mg/dL prior to initiating therapy. Statins are the first-line agents for treating hypercholesterolemia and are effective in reducing LDL-C, but many patients are unable to achieve their optimal lipid targets despite intensive statin therapy. Therefore, there has been a strong impetus for the development of novel pharmacologic agents designed to lower LDL-C further in patients already on statin therapy. Genetic mutations resulting in altered cholesterol homeostasis provide valuable information regarding novel approaches for treating hypercholesterolemia. To that end, mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9) were linked to altered levels of LDL-C, illustrating this protein’s role in lipid metabolism. PCSK9 promotes degradation of the LDL receptor, preventing its transport back to the cell surface and thereby increasing circulating LDL-C. Conversely, inhibition of PCSK9 can profoundly decrease circulating LDL-C, and thus is an attractive new target for LDL-C–lowering therapy. AMG 145 is a fully human monoclonal immunoglobulin G2 antibody that binds specifically to human PCSK9 and inhibits its interaction with the low-density lipoprotein receptor. In this manuscript, we describe the rationale and design of LDL-C Assessment with PCSK9 Monoclonal Antibody Inhibition Combined With Statin Therapy–Thrombolysis In Myocardial Infarction 57 (LAPLACE-TIMI 57; NCT01380730), a 12-week, randomized, double-blind, dose-ranging, placebo-controlled study designed to assess the safety and efficacy of AMG 145 when added to statin therapy in patients with hypercholesterolemia. PMID:22714699
The biology and function of exosomes in cancer.
Kalluri, Raghu
2016-04-01
Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.