Sample records for circulating melatonin levels

  1. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia.

    PubMed

    Zeng, K; Gao, Y; Wan, J; Tong, M; Lee, A C; Zhao, M; Chen, Q

    2016-11-01

    Placental dysfunction and oxidative stress contribute to the pathogenesis of preeclampsia, which is a pregnancy-specific disorder. It has been suggested that the incidence of preeclampsia has a seasonal variation. Melatonin, as a seasonal factor, has been suggested to be involved in a successful pregnancy. In this study, we investigated the association of circulating levels of melatonin with preeclampsia. Serum was collected from women with preeclampsia (n=113) and gestation-matched healthy pregnant women, and the levels of melatonin were measured. In addition, the expression of melatonin receptors was examined in preeclamptic placentae (n=27). The association of the incidence of preeclampsia and seasonal variation was also analysed from 1491 women with preeclampsia within 77 745 healthy pregnancies. The serum levels of melatonin were significantly reduced in women with preeclampsia at presentation and these reduced serum levels of melatonin were not associated with the severity or time onset of preeclampsia nor with seasonal variation. The expression of melatonin receptor, MT1 was reduced in preeclamptic placentae. The incidence of preeclampsia was did exhibit seasonal variation, but this was largely due to the increase in the incidence of mild or late-onset preeclampsia. Our results demonstrate that reduced melatonin levels are associated with the development of preeclampsia but that the circulating levels of melatonin do not appear to be subject to seasonal variation during pregnancy.

  2. Effects of illumination on human nocturnal serum melatonin levels and performance

    NASA Technical Reports Server (NTRS)

    Dollins, A. B.; Lynch, H. J.; Wurtman, R. J.; Deng, M. H.; Lieberman, H. R.

    1993-01-01

    In humans, exposure to bright light at night suppresses the normal nocturnal elevation in circulating melatonin. Oral administration of pharmacological doses of melatonin during the day, when melatonin levels are normally minimal, induces fatigue. To examine the relationship between illumination, human pineal function, and behavior, we monitored the overnight serum melatonin profiles and behavioral performance of 24 healthy male subjects. On each of three separate occasions subjects participated in 13.5 h (1630-0800 h) testing sessions. Each subject was assigned to an individually illuminated workstation that was maintained throughout the night at an illumination level of approximately 300, 1500, or 3000 lux. Melatonin levels were significantly diminished by light treatment, F(2, 36) = 12.77, p < 0.001, in a dose-dependent manner. Performance on vigilance, reaction time, and other tasks deteriorated throughout the night, consistent with known circadian variations in these parameters, but independent of ambient light intensity and circulating melatonin levels.

  3. Time course of saliva and serum melatonin levels after ingestion of melatonin.

    PubMed

    Shirakawa, S; Tsuchiya, S; Tsutsumi, Y; Kotorii, T; Uchimura, N; Sakamoto, T; Yamada, S

    1998-04-01

    Salival and serum melatonin levels after melatonin ingestion were measured by gas chromatography-mass spectrometry. Ingestion of 3 mg melatonin caused a marked increase in serum melatonin (3561+/-1201 pg/mL) within 20 min, followed by a gradual decrease, but the level still remained higher than the basal level at 240 min after the ingestion. The saliva melatonin 60 min after the ingestion showed the highest level (1177+/-403 pg/mL) which was one-third of the plasma level. The saliva melatonin level was highly correlated with the serum level throughout the experimental period (r=0.82, P=0.0001). These data indicate that the measurement of saliva melatonin level may be a suitable indicator for the melatonin secretion into general circulation.

  4. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  5. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    PubMed

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin supplementation on postburn gut mucosa barrier inflammatory profiles. Here, our results revealed that daily postburn intraperitoneal melatonin administration at a dose of 1.86 mg/kg (8 micromole/kg) significantly suppressed both neutrophil infiltration and tyrosine nitrosylation as revealed by Gr-1 and nitrotyrosine immunohistochemistry, respectively. In conclusion, our results provide support for high mesenteric melatonin levels and dynamic de novo gut melatonin production, both of which increase endogenously in response to major thermal injury, but appear to fall short of abrogating the excessive postburn hyper-inflammation. Moreover, supplementation by exogenous melatonin significantly suppresses gut inflammation, thus confirming that melatonin is protective against postburn inflammation.

  6. Melatonin Plays a Protective Role in Postburn Rodent Gut Pathophysiology

    PubMed Central

    Al-Ghoul, Walid M.; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-01-01

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 μmole/kg), but not 1.86 mg/kg (8 μmole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin supplementation on postburn gut mucosa barrier inflammatory profiles. Here, our results revealed that daily postburn intraperitoneal melatonin administration at a dose of 1.86 mg/kg (8 μmole/kg) significantly suppressed both neutrophil infiltration and tyrosine nitrosylation as revealed by Gr-1 and nitrotyrosine immunohistochemistry, respectively. In conclusion, our results provide support for high mesenteric melatonin levels and dynamic de novo gut melatonin production, both of which increase endogenously in response to major thermal injury, but appear to fall short of abrogating the excessive postburn hyper-inflammation. Moreover, supplementation by exogenous melatonin significantly suppresses gut inflammation, thus confirming that melatonin is protective against postburn inflammation. PMID:20567497

  7. Melatonin: a chemical photoperiodic signal with clinical significance in humans.

    PubMed

    Pang, S F; Pang, C S; Poon, A M; Lee, P P; Liu, Z M; Shiu, S Y

    1998-03-01

    Secretion of pineal melatonin exhibits a diumal rhythm and a seasonal rhythm in humans. Night-time melatonin is high at 3-5 year-old and decreases with age. Many drugs and pathological conditions also change melatonin levels in the circulation. Melatonin has a mild sedative effect and has been used effectively in synchronizing the sleep-wake cycle of patients with sleep disorders. Immunoenhancing, anti-cancer, anti-aging and anti-oxidant effects of melatonin have been proposed. Recent studies suggest that melatonin receptors are present in central and peripheral tissues. The importance of melatonin receptors on the nervous, reproductive, immune and renal functions is implicated. Studies on the molecular biology, physiology and pathology of melatonin receptors in different tissues are progressing rapidly. The physiological and pathological changes in melatonin secretion, multifarious melatonin actions, and diverse melatonin receptors reported suggest that melatonin is a photoperiodic signal with clinical significance in humans.

  8. Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin.

    PubMed

    Banerjee, A; Udin, S; Krishna, A

    2011-02-01

    Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P < 0.05) and with the changes in body fat mass (r = 0.88; P < 0.05) in C. sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P < 0.05) was also found in this species. This in vivo finding suggests that melatonin together with insulin may enhance leptin synthesis by increasing adipose tissue accumulation. The in vitro study showed that melatonin interacts synergistically with insulin in stimulating leptin synthesis by adipose tissue in C. sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.

  9. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality?

    PubMed

    Jiki, Zukiswa; Lecour, Sandrine; Nduhirabandi, Frederic

    2018-01-01

    The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.

  10. Daily Rhythm in Plasma N-Acetyltryptamine

    PubMed Central

    Backlund, Peter S.; Urbanski, Henryk F.; Doll, Mark A.; Hein, David W.; Bozinoski, Marjan; Mason, Christopher E.; Coon, Steven L.; Klein, David C.

    2017-01-01

    Normal physiology undergoes 24-hour changes in function, that include daily rhythms in circulating/hormones, most notably melatonin and cortical steroids. This study focuses on N-acetyltryptamine, a little-studied melatonin receptor mixed agonist/antagonist and the likely evolutionary precursor of melatonin. The central issue addressed was whether N-acetyltryptamine is physiologically present in the circulation. N-Acetyltrypamine was detected by LC-MS/MS in daytime plasma of three different mammals in subnanomolar levels (mean ± SEM: rat, 0.29 ± 0.05 nM, N=5; rhesus macaque, 0.54 ± 0.24 nM, N=4; human, 0.03 ± 0.01 nM, N=32). Twenty four hour blood collections from rhesus macaques revealed a nocturnal increase in plasma N-acetyltryptamine (P < 0.001), which varied from 2- to 15- fold over daytime levels among the four animals studied. Related RNA sequencing studies indicated that the transcript encoding the tryptamine acetylating enzyme arylalkylamine N-acetyltransferase (AANAT) is expressed at similar levels in the rhesus pineal gland and retina, thereby indicating that either tissue could contribute to circulating N-acetyltryptamine. The evidence that N-acetyltryptamine is a physiological component of mammalian blood and exhibits a daily rhythm, together with known effects as a melatonin receptor ligand shifts the status of N-acetyltryptamine from pharmacological tool to that of a candidate for a physiological role. This provides a new opportunity to extend our understanding of 24-hour biology. PMID:28466676

  11. Photic and circadian regulation of retinal melatonin in mammals

    NASA Technical Reports Server (NTRS)

    Tosini, G.; Fukuhara, C.

    2003-01-01

    Several studies have established that melatonin synthesis occurs in the retina of vertebrates, including mammals. In mammals, a subpopulation of photoreceptors (probably the cones) synthesize melatonin. Melatonin synthesis in the retina is elevated at night and reduced during the day in a fashion similar to events in the pineal gland. Both the MT1 and MT2 melatonin receptors are present in the retina and retinal melatonin does not contribute to circulating levels, suggesting that retinal melatonin acts locally as a neurohormone and/or neuromodulator. Melatonin synthesis in the retina of mammals is under the control of a circadian oscillator, and circadian rhythms in melatonin synthesis and/or release have been described for several species of mammals. These rhythms are present in vivo, persist in vitro, are entrained by light and are temperature compensated. The cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the key enzyme in the melatonin biosynthetic pathway) has allowed studies of the molecular mechanisms responsible for the generation of retinal melatonin rhythmicity. The present review focuses on the cellular and molecular mechanisms that regulate melatonin synthesis. In particular, we discuss how the photic environment and the circadian clock interact in determining melatonin levels, in addition to the role that melatonin plays in retinal physiology.

  12. Intranasal melatonin nanoniosomes: pharmacokinetic, pharmacodynamics and toxicity studies.

    PubMed

    Priprem, Aroonsri; Johns, Jeffrey R; Limsitthichaikoon, Sucharat; Limphirat, Wanwisa; Mahakunakorn, Pramote; Johns, Nutjaree Prateepawanit

    2017-06-01

    Intranasal melatonin encapsulated in nanosized niosomes was preclinically evaluated. A formula of melatonin niosomes (MN) was selected through physicochemical and cytotoxic data for pharmacokinetic, pharmacodynamics and toxicity studies in male Wistar rats. Intranasal MN was bioequivalent to intravenous injection of melatonin, providing therapeutic level doses. Acute and subchronic toxicity screening showed no abnormal signs, symptoms or hematological effects in any animals. Transient nasal irritations with no inflammation were observed with intranasal MN, leading it to be categorized as relatively harmless. The intranasal MN could deliver melatonin to the brain to induce sleep and provide delayed systemic circulation, relative to intravenous injection and also distribute to peripheral tissue.

  13. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  14. Impact of UVA exposure on psychological parameters and circulating serotonin and melatonin

    PubMed Central

    Gambichler, Thilo; Bader, Armin; Vojvodic, Mirjana; Bechara, Falk G; Sauermann, Kirsten; Altmeyer, Peter; Hoffmann, Klaus

    2002-01-01

    Background People tend to feel better after exposure to ultraviolet (UV) radiation. This study was performed to investigate the impact of UVA exposure on psychological and neuroendocrine parameters. Methods Fifty-three volunteers were separated into 42 individuals who had UVA exposure and 11 individuals who had no UVA exposure. The UVA-exposed volunteers had irradiation sessions six times in a three-week period. All volunteers completed two questionnaires at baseline (T1) and at the end of the study (T3). For the determination of serotonin and melatonin serum levels of all volunteers blood samples were collected at baseline (T1), after the first UVA exposure (T2), and at the end of the study after the sixth exposure (T3). Results UVA-exposed volunteers felt significantly more balanced, less nervous, more strengthened, and more satisfied with their appearance at T3. By contrast, the controls did not show significant changes of psychological parameters. In comparison to T1 and T3, serum serotonin was significantly higher and the serum melatonin was significantly lower for the volunteers exposed to UVA at T2. Both, for exposed and non-exposed volunteers serotonin and melatonin levels did not significantly differ at T1 and T3. Conclusions It remains obscure, whether the exposure to UVA or other components of the treatment were responsible for the psychological benefits observed. The changes of circulating neuroendocrine mediators found after UVA exposure at T2 may be due to an UVA-induced effect via a cutaneous pathway. Nevertheless, the positive psychological effects observed in our study cannot be attributed to circulating serotonin or melatonin. PMID:11952999

  15. Changes in morning salivary melatonin correlate with prefrontal responses during working memory performance.

    PubMed

    Killgore, William D S; Kent, Haley C; Knight, Sara A; Alkozei, Anna

    2018-04-11

    Humans demonstrate a circadian rhythm of melatonin production that closely tracks the daily light/dark cycle, with profound increases in circulating levels during the night-time and nearly nonexistent levels during daylight hours. Although melatonin is known to play a role in preparing the brain and body for sleep, its effects on cognition and brain function are not well understood. We hypothesized that declines in morning melatonin would be associated with increased functional activation within cortical regions involved in alertness, attention, and executive function. We measured the change in salivary melatonin from mid-morning to late-morning in 26 healthy young adults who were also exposed to a 30-min period of blue or amber light followed by functional MRI during a working memory task (N-back). Brain activation was regressed on the change in melatonin scores from the mid-morning to late-morning saliva samples and the role of light exposure was also assessed. Although overall melatonin levels did not change significantly over the morning at the group level, individual declines in salivary melatonin were associated with significant increases in activation within the left dorsomedial and right inferior lateral prefrontal cortex during the 2-back condition (P<0.05, cluster corrected). Medial prefrontal activation also correlated modestly with better vigilance performance during the 0-back (P<0.05), but not the 1-back or 2-back conditions. The light condition did not affect the outcomes. These findings suggest declining melatonin levels in the morning are associated with increased prefrontal cortex functioning and may play a role in the increased frontal activation that occurs following awakening.

  16. Oxidative DNA damage during night shift work.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury.

    PubMed

    Chen, Hong-Hwa; Lin, Kun-Chen; Wallace, Christopher G; Chen, Yen-Ta; Yang, Chih-Chao; Leu, Steve; Chen, Yi-Ching; Sun, Cheuk-Kwan; Tsai, Tzu-Hsien; Chen, Yung-Lung; Chung, Sheng-Ying; Chang, Chia-Lo; Yip, Hon-Kan

    2014-08-01

    This study tested whether combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cells (A-ADMSCs) offered additional benefit in ameliorating sepsis-induced acute kidney injury. Adult male Sprague-Dawley rats (n = 65) were randomized equally into five groups: Sham controls (SC), sepsis induced by cecal-ligation and puncture (CLP), CLP-melatonin, CLP-A-ADMSC, and CLP-melatonin-A-ADMSC. Circulating TNF-α level at post-CLP 6 hr was highest in CLP and lowest in SC groups, higher in CLP-melatonin than in CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups (all P < 0.001). Immune reactivity as reflected in the number of splenic helper-, cytoxic-, and regulatory-T cells at post-CLP 72 hr exhibited the same pattern as that of circulating TNF-α among all groups (P < 0.001). The histological scoring of kidney injury and the number of F4/80+ and CD14+ cells in kidney were highest in CLP and lowest in SC groups, higher in CLP-melatonin than in CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups, and higher in CLP-A-ADMSC than in CLP-melatonin-A-ADMSC groups (all P < 0.001). Changes in protein expressions of inflammatory (RANTES, TNF-1α, NF-κB, MMP-9, MIP-1, IL-1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF-β) markers, reactive-oxygen-species (NOX-1, NOX-2), and oxidative stress displayed a pattern identical to that of kidney injury score among the five groups (all P < 0.001). Expressions of antioxidants (GR+, GPx+, HO-1, NQO-1+) were lowest in SC group and highest in CLP-melatonin-A-ADMSC group, lower in CLP than in CLP-melatonin and CLP-A-ADMSC groups, and lower in CLP-melatonin- than in CLP-A-ADMSC-tretaed animals (all P < 0.001). In conclusion, combined treatment with melatonin and A-ADMSC was superior to A-ADMSC alone in protecting the kidneys from sepsis-induced injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effect of testosterone replacement on the alteration of steroid metabolism in the hypothalamic-preoptic area of male hamsters treated with melatonin.

    PubMed

    Petterborg, L J; West, D A; Rudeen, P K; Ganjam, V K

    1991-11-01

    Adult male hamsters were maintained under 14 hours of light per day and randomly assigned to groups that received daily afternoon melatonin (25 micrograms) or vehicle injections. Animals from both groups were killed following 4, 8, and 12 weeks of treatment. By 12 weeks, the melatonin-treated hamsters had significant reductions in the weights of the testes and seminal vesicles, serum testosterone levels, and activities did not differ between groups. In a second experiment, hamsters were hypothalamic-preoptic area (HPOA) aromatase activities. Hypothalamic-preoptic area 5 alpha-reductase activities did not differ between groups. In a second experiment, hamsters were again treated with melatonin or vehicle for 12 weeks prior to being killed. After 10 weeks of treatment, groups of melatonin-treated animals received subcutaneous silastic capsules (5, 10, or 20 mm) filled with testosterone. Animals in two other groups were given blank implants or no implants at all. Two weeks later, at autopsy, reproductive organ weights, serum testosterone levels, and HPOA aromatase activities were significantly suppressed by melatonin administration. 5 alpha-Reductase activity in the HPOA was not affected. Hamsters that had been given the 10- and 20-mm testosterone implants exhibited normal seminal vesicle weights and HPOA aromatase activities. These results suggest that melatonin-induced reduction of HPOA aromatase activity is mediated by decreased circulating levels of testosterone.

  19. Role of melatonin on diabetes-related metabolic disorders

    PubMed Central

    Espino, Javier; Pariente, José A; Rodríguez, Ana B

    2011-01-01

    Melatonin is a circulating hormone that is mainly released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms, its levels being high during the night and low during the day. Interestingly, insulin levels are also adapted to day/night changes through melatonin-dependent synchronization. This regulation may be explained by the inhibiting action of melatonin on insulin release, which is transmitted through both the pertussis-toxin-sensitive membrane receptors MT1 and MT2 and the second messengers 3’,5’-cyclic adenosine monophosphate, 3’,5’-cyclic guanosine monophosphate and inositol 1,4,5-trisphosphate. Melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion, but also by providing protection against reactive oxygen species, since pancreatic β-cells are very susceptible to oxidative stress because they possess only low-antioxidative capacity. On the other hand, in several genetic association studies, single nucleotide polymorphysms of the human MT2 receptor have been described as being causally linked to an elevated risk of developing type 2 diabetes. This suggests that these individuals may be more sensitive to the actions of melatonin, thereby leading to impaired insulin secretion. Therefore, blocking the melatonin-induced inhibition of insulin secretion may be a novel therapeutic avenue for type 2 diabetes. PMID:21860691

  20. Melatonin, environmental light, and breast cancer.

    PubMed

    Srinivasan, V; Spence, D W; Pandi-Perumal, S R; Trakht, I; Esquifino, A I; Cardinali, D P; Maestroni, G J

    2008-04-01

    Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.

  1. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    PubMed

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  2. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    PubMed

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that increased external salinity promotes melatonin synthesis in the pineal organ of rainbow trout by enhancing synthesis of AANAT protein independently of its regulation by light. The possibility that pineal melatonin is a target for hormones involved in the response of fish to osmotic challenge is discussed, as well as the potential role of melatonin in the timing of osmoregulatory processes.

  3. Melatonin Therapy in Patients with Alzheimer's Disease.

    PubMed

    Cardinali, Daniel P; Vigo, Daniel E; Olivar, Natividad; Vidal, María F; Brusco, Luis I

    2014-04-10

    Alzheimer's disease (AD) is a major health problem and a growing recognition exists that efforts to prevent it must be undertaken by both governmental and non-governmental organizations. In this context, the pineal product, melatonin, has a promising significance because of its chronobiotic/cytoprotective properties potentially useful for a number of aspects of AD. One of the features of advancing age is the gradual decrease in circulating melatonin levels. A limited number of therapeutic trials have indicated that melatonin has a therapeutic value as a neuroprotective drug in the treatment of AD and minimal cognitive impairment (which may evolve to AD). Both in vitro and in vivo, melatonin prevented the neurodegeneration seen in experimental models of AD. For these effects to occur, doses of melatonin about two orders of magnitude higher than those required to affect sleep and circadian rhythmicity are needed. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects, which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100 mg/day are urgently needed to assess its therapeutic validity in neurodegenerative disorders such as AD.

  4. Investigation of Solar about 5-Month Cycle in Human Circulating Melatonin: Signature of Weather in Extraterrestrial Space?

    NASA Astrophysics Data System (ADS)

    Cornélissen, G.; Tarquini, R.; Perfetto, F.; Otsuka, K.; Gigolashvili, M.; Halberg, F.

    2009-12-01

    Melatonin, produced mainly in the pineal and the gut, is often thought of as the "dark hormone" as its concentration in the circulation is high during darkness and low during light in diurnally- and nocturnally-active mammals in health. About-daily and about-yearly periodicities can thus be anticipated to characterize melatonin, matching the two major photic environmental cycles. Non-photic solar influences have also been observed, melatonin being depressed in association with magnetic storms. While less stable than the daily and yearly changes, non-photic solar dynamics also undergo various periodicities. Among them is an about 0.42-year (about 5-month or 154-day) cycle, reported by several physicists in relation to Zürich relative sunspot numbers and to solar flares. This putative signature of solar activity was found in the incidence pattern of sudden cardiac death in Minnesota, USA, among other geographic locations. A cycle with a period of about 0.42 year is here reported in data on circulating melatonin of 172 patients studied between Oct 1992 and Dec 1995 in Florence, Italy. Melatonin may mediate some of the Sun's effects upon the biosphere in certain frequency-windows such as a cis-half-year of about 5 months.

  5. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth

    PubMed Central

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-01-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462–484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake–metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities. PMID:26678364

  6. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth.

    PubMed

    Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E

    2015-12-01

    Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.

  7. Examination of the melatonin hypothesis in women exposed at night to EMF or bright light.

    PubMed

    Graham, C; Cook, M R; Gerkovich, M M; Sastre, A

    2001-05-01

    It has been hypothesized that the increased incidence of breast cancer in industrial societies is related to greater exposure to power-frequency electric and magnetic fields (EMF) and/or the presence of high levels of light at night (LAN). EMF and LAN are said to reduce circulating levels of the hormone melatonin which, in turn, allows estrogen levels to rise and stimulate the turnover of breast epithelial stem cells and increase the risk for malignant transformation. Three laboratory-based studies, in which a total of 53 healthy young women were exposed at night to EMF or to LAN under controlled exposure conditions, were performed to determine whether such exposures reduce melatonin and are associated with further alterations in estrogen. All-night exposure to industrial-strength magnetic fields (60 Hz, 28.3 microT) had no effect on the blood levels of melatonin or estradiol. In contrast, nocturnal melatonin levels were profoundly suppressed, and the time of peak concentration was significantly delayed in women exposed to LAN, regardless of whether they were in the follicular or luteal phase of the menstrual cycle. These changes, however, were not associated with alterations in point-for-point matching measures of estradiol. Women who chronically secrete high or low amounts of melatonin each night (area-under-curve range: 86-1,296 pg/mL) also did not differ in their blood levels of estradiol. Taken together, these results are consistent with a growing body of evidence which generally suggests that environmental EMF exposure has little or no effect on the parameters measured in this report.

  8. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas.

    PubMed

    Reiter, Russel J; Rosales-Corral, Sergio; Tan, Dun Xian; Jou, Mei Jie; Galano, Annia; Xu, Bing

    2017-11-01

    Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin's chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin's high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.

  9. Endotoxin-induced inflammation disturbs melatonin secretion in ewe

    PubMed Central

    Herman, Andrzej Przemysław; Wojtulewicz, Karolina; Bochenek, Joanna; Krawczyńska, Agata; Antushevich, Hanna; Pawlina, Bartosz; Zielińska-Górska, Marlena; Herman, Anna; Romanowicz, Katarzyna; Tomaszewska-Zaremba, Dorota

    2017-01-01

    Objective The study examined the effect of intravenous administration of bacterial endotoxin—lipopolysaccharide (LPS) —on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). Methods In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod. PMID:28728370

  10. Natalizumab Modifies Catecholamines Levels Present in Patients with Relapsing- Remitting Multiple Sclerosis.

    PubMed

    Escribano, Begona M; Aguilar-Luque, Macarena; Bahamonde, Carmen; Conde, Cristina; Lillo, Rafael; Sanchez-Lopez, Fernando; Giraldo, Ana I; Cruz, Antonio H; Luque, Evelio; Gascon, Felix; Aguera, Eduardo; Tunez, Isaac

    2016-01-01

    The main aim of this study was to verify the effect of natalizumab on the levels of circulating catecholamines and indolamine and their possible relation with MS. For this purpose, 12 healthy individuals (control group) and 12 relapsing-remitting multiple sclerosis patients (RR-MS) were selected. The patients were treated with 300 mg of natalizumab during 56 weeks (1 dose/4 weeks) (MS-56). This selection was based on the McDonalds revision criterion and scheduled to star treatment with natalizumab. Blood samples were taken before treatment (basal level) and after 56 weeks of using natalizumab. Melatonin was measured in serum and in plasma, catecholamines (dopamine, epinephrine, and norepinephrine), carbonylated proteins, 8-hydroxy-2'deoxyguanosine (8OH-dG) and the ratio reduced glutathione/oxidised glutathione (GSH/GSSG). The epinephrine and dopamine levels diminished in the basal group with respect to the control and did not recover normal levels with the treatment. The melatonin was decreased in RR-MS patients and went back to its normal levels with natalizumab. Norepinephrine was increased in RR-MS and decreased in MS-56 until it equalled the control group. Natalizumab normalizes altered melatonin and norepinephrine levels in MS.

  11. Adaptations of the aging animal to exercise: role of daily supplementation with melatonin.

    PubMed

    Mendes, Caroline; Lopes, Ana Maria de Souza; do Amaral, Fernanda Gaspar; Peliciari-Garcia, Rodrigo A; Turati, Ariane de Oliveira; Hirabara, Sandro M; Scialfa Falcão, Julieta H; Cipolla-Neto, José

    2013-10-01

    The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors.

    PubMed

    Galván-Arrieta, Tania; Trueta, Citlali; Cercós, Montserrat G; Valdés-Tovar, Marcela; Alarcón, Salvador; Oikawa, Julian; Zamudio-Meza, Horacio; Benítez-King, Gloria

    2017-10-01

    Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3β phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3β and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Chronobiology of Melatonin beyond the Feedback to the Suprachiasmatic Nucleus-Consequences to Melatonin Dysfunction.

    PubMed

    Hardeland, Rüdiger

    2013-03-12

    The mammalian circadian system is composed of numerous oscillators, which gradually differ with regard to their dependence on the pacemaker, the suprachiasmatic nucleus (SCN). Actions of melatonin on extra-SCN oscillators represent an emerging field. Melatonin receptors are widely expressed in numerous peripheral and central nervous tissues. Therefore, the circadian rhythm of circulating, pineal-derived melatonin can have profound consequences for the temporal organization of almost all organs, without necessarily involving the melatonin feedback to the suprachiasmatic nucleus. Experiments with melatonin-deficient mouse strains, pinealectomized animals and melatonin receptor knockouts, as well as phase-shifting experiments with explants, reveal a chronobiological role of melatonin in various tissues. In addition to directly steering melatonin-regulated gene expression, the pineal hormone is required for the rhythmic expression of circadian oscillator genes in peripheral organs and to enhance the coupling of parallel oscillators within the same tissue. It exerts additional effects by modulating the secretion of other hormones. The importance of melatonin for numerous organs is underlined by the association of various diseases with gene polymorphisms concerning melatonin receptors and the melatonin biosynthetic pathway. The possibilities and limits of melatonergic treatment are discussed with regard to reductions of melatonin during aging and in various diseases.

  14. Seasonal modulation of immunity by melatonin and gonadal steroids in a short day breeder goat Capra hircus.

    PubMed

    Ghosh, Somenath; Singh, Amaresh K; Haldar, Chandana

    2014-11-01

    Role of melatonin in regulation of immunity and reproduction has never been studied in detail in goats. The aim of the present study was to explore hormonal regulation of immunity in goats with special reference to melatonin. Plasma of male and female goats (n = 18 per sex per season) was processed for hormonal (estrogen, testostrone, and melatonin) and cytokine (interleukin [IL-2], IL-6, and tumor necrosis factor α) measurements during three seasons, i.e., summer, monsoon, and winter. To assess cell-mediated immune response, percent stimulation ratio of thymocytes was recorded during three seasons. To support and establish the modulation by hormones, Western blot analysis for expressions of melatonin receptors (MT1, MT2), androgen receptor, and estrogen receptor α and estimations of marker enzymes, arylalkylamine N-acetyltransferase for melatonin and 3β-hydroxysteroid dehydrogenase activities for steroidogenesis were performed in thymus. All the hormones and cytokines were estimated by commercial kits. Biochemical, immunologic, and Western blot analyses were done by standardized protocols. We noted a significant increase in estrogen and testosterone levels (P < 0.05) in circulation during monsoon along with melatonin (P < 0.05) presenting a parallel relationship. Expressions of melatonin receptors (MT1 and MT2) in thymus of both the sexes were significantly high (P < 0.01) during winter. Estrogen receptor α expression in female thymus was significantly high during monsoon (P < 0.05). However, androgen receptor showed almost static expression pattern in male thymus during three seasons. Further, both arylalkylamineN-acetyltransferase and 3β-hydroxysteroid dehydrogenase enzyme activities were significantly high (P < 0.05; P < 0.01, respectively) during monsoon. These results suggest that there may be a functional parallelism between gonadal steroids and melatonin as melatonin is progonadotrophic in goats. Cell-mediated immune parameters (percent stimulation ratio of thymocytes) and circulatory levels of cytokines (IL-2, IL-6, and tumor necrosis factor α) were significantly high (P < 0.01) during monsoon. In vitro supplementation of gonadal steroids to T-cell culture suppressed immunity but cosupplementation with melatonin restored it. Further, we may also suggest that reproductive and immune seasonality are maintained by variations in circulatory hormones and local synthesis of melatonin and gonadal steroids. These functional interactions between melatonin and gonadal steroid might be of great importance in regulating the goat immunity by developing some hormonal microcircuit (gonadal steroid and melatonin) in lymphatic organs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Impact of Chronotype on Melatonin Levels Among Shift Workers

    PubMed Central

    Bhatti, Parveen; Mirick, Dana K.; Davis, Scott

    2015-01-01

    Objectives The association between shift work and cancer, which is thought to be mediated by effects on circulating melatonin levels, may be modified by chronotype (i.e. the inherent preference for activity in the morning or the evening); however, few studies have examined the potential impact of chronotype on the carcinogenic effects of shift work. The authors analyzed the impact of chronotype on previously reported differences in melatonin levels among healthcare workers that exclusively worked night or day shifts. Methods The cross-sectional study included 664 men and women (310 day shift and 354 night shift workers) from which urine samples were collected throughout work and sleep periods and were assayed for 6-sulfatoxymelatonin. Participants also completed the Composite Scale of Morningness, a questionnaire used to assess chronotype. Results Among both morning and evening-type night shift workers, 6-sulfatoxymelatonin levels were constitutively lower during daytime sleep, nighttime sleep and night work compared to dayshift workers during nighttime sleep. However, morning-type shift workers consistently showed 6-sulfatoxymelatonin levels that were closer to levels in day shift workers than did evening-type night shift workers. Differences in 6-sulfatoxymelatonin levels between morning-type and evening-type night shift workers relative to day shift workers were statistically significant in every instance (p < 0.05). Conclusion These results suggest that morning-type night shift workers may be better able to maintain a ‘normal’ circadian pattern of melatonin production as compared to evening-type night shift workers. The impact of this chronotype effect on cancer risk among shift workers requires further study. PMID:24399070

  16. The impact of chronotype on melatonin levels among shift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Davis, Scott

    2014-03-01

    The association between shift work and cancer, which is thought to be mediated by effects on circulating melatonin levels, may be modified by chronotype (ie, the inherent preference for activity in the morning or the evening); however, few studies have examined the potential impact of chronotype on the carcinogenic effects of shift work. The authors analysed the impact of chronotype on previously reported differences in melatonin levels among healthcare workers that exclusively worked night or day shifts. The cross-sectional study included 664 men and women (310 day shift and 354 night shift workers) from which urine samples were collected throughout work and sleep periods and were assayed for 6-sulfatoxymelatonin. Participants also completed the Composite Scale of Morningness, a questionnaire used to assess chronotype. Among both morning and evening-type night shift workers, 6-sulfatoxymelatonin levels were constitutively lower during daytime sleep, night-time sleep and night work compared with day shift workers during night-time sleep. However, morning-type night shift workers consistently showed 6-sulfatoxymelatonin levels that were closer to levels in day shift workers than did evening-type night shift workers. Differences in 6-sulfatoxymelatonin levels between morning-type and evening-type night shift workers relative to day shift workers were statistically significant in every instance (p<0.05). These results suggest that morning-type night shift workers may be better able to maintain a 'normal' circadian pattern of melatonin production as compared with evening-type night shift workers. The impact of this chronotype effect on cancer risk among shift workers requires further study.

  17. Effects of day-length variations on emotional responses towards unfamiliarity in Swiss mice.

    PubMed

    Kopp, C; Misslin, R; Vogel, E; Rettori, M C; Delagrange, P; Guardiola-Lemaitre, B

    1997-11-01

    Pineal melatonin secretion occurs at night in all vertebrates and the duration of its secretion is negatively correlated with day length. As an anxiolytic activity of melatonin has been shown in rats and mice, this study examined possible changes of emotional reactivity in response to day length variations in Swiss mice. Three groups of mice were observed in a free-exploratory test: a group submitted to a short-day exposure (6:18 h light-dark cycle) for 2 weeks, a group submitted to a long-day exposure (18:6 h light-dark cycle) for 2 weeks and a control group which was maintained in housing 12:12 h light-dark cycle. The short-day exposed group of mice exhibited significantly fewer attempts to enter into the unfamiliar enclosure, spent significantly more time in it and presented significantly more rears than controls whereas the long-day exposed group of mice made more attempts than controls. These results suggest a decreased emotional level in short-day exposed mice and an increased level in long-day exposed mice. This could be interpreted as confirming the idea of anxiolytic-like properties of melatonin; however, the specific role of this hormone in the changes of anxiety related to day length must be assessed by further measures of potential variations of circulating melatonin.

  18. Glucosensing capacity in rainbow trout liver displays day-night variations possibly related to melatonin action.

    PubMed

    Conde-Sieira, Marta; Patiño, Marcos A López; Míguez, Jesús M; Soengas, José L

    2012-09-01

    To assess whether the glucosensing capacity in peripheral (liver and Brockmann bodies) and central (hypothalamus and hindbrain) locations of rainbow trout displays day-night variations in its response to changes in circulating glucose levels, we evaluated the response of parameters related to glucosensing [glucose, glycogen and glucose 6-phosphate levels, activities of glucokinase (GK), glycogen synthetase (GSase) and pyruvate kinase (PK), and mRNA abundance of GK, glucose transporter 2 (GLUT2), and K(ATP) channel subunits Kir6.x-like and sulfonylurea receptor (SUR)-like] in fish subjected to hyperglycemic treatment under night or day conditions. No day-night significant variations were noticed in the glucosensing capacity of the hypothalamus, hindbrain and Brockmann bodies. In contrast, a clear differential response was noticed in the liver, where glucose levels, GK activity (and mRNA levels) and GSase activity displayed increased values during the day in hyperglycemic fish compared with controls, and lower (GK mRNA levels) or non-existent (glucose, GK and GSase activities, and Kir6.x-like mRNA levels) values during the night. A similar decrease in parameters related to glucosensing in the liver was observed when fish under day conditions were treated with melatonin, suggesting a modulatory role of melatonin in day-night changes of the glucosensing response in the same tissue.

  19. Physiology and Endocrinology Symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle

    USDA-ARS?s Scientific Manuscript database

    The efficiency of the placenta in transferring nutrients and wastes among the maternal and fetal circulations is vital to ensuring proper fetal development. This articles summarizes previous research from our laboratory examining umbilical and uterine blood flow during dietary melatonin supplementat...

  20. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    PubMed

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P < .001). Markers of the circadian phase were not significantly different between the 2 groups. Compared with PD patients without excessive daytime sleepiness, patients with excessive daytime sleepiness (Epworth Sleepiness Scale score ≥10) had a significantly lower amplitude of the melatonin rhythm and 24-hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further in longitudinal studies. Approaches aimed to strengthen circadian function, such as timed exposure to bright light and exercise, might serve as complementary therapies for the nonmotor manifestations of PD.

  1. Prolactin modulates luteal activity in the short-nosed fruit bat, Cynopterus sphinx during delayed embryonic development.

    PubMed

    Anuradha; Krishna, Amitabh

    2017-07-01

    The aim of this study was to evaluate the role of prolactin as a modulator of luteal steroidogenesis during the period of delayed embryonic development in Cynopterus sphinx. A marked decline in circulating prolactin levels was noted during the months of November through December coinciding with the period of decreased serum progesterone and delayed embryonic development. The seasonal changes in serum prolactin levels correlated positively with circulating progesterone (P) level, but inversely with circulating melatonin level during first pregnancy showing delayed development in Cynopterus sphinx. The results also showed decreased expression of prolactin receptor-short form (PRL-RS) both in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. Bats treated in vivo with prolactin during the period of delayed development showed significant increase in serum progesterone and estradiol levels together with significant increase in the expression of PRL-RS, luteinizing hormone receptor (LH-R), steroidogenic acute receptor protein (STAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the ovary. Prolactin stimulated ovarian angiogenesis (vascular endothelial growth factor) and cell survival (B-cell lymphoma 2) in vivo. Significant increases in ovarian progesterone production and the expression of prolactin-receptor, LH-R, STAR and 3β-HSD proteins were noted following the exposure of LH or prolactin in vitro during the delayed period. In conclusion, short-day associated increased melatonin level may be responsible for decreased prolactin release during November-December. The decline in prolactin level might play a role in suppressing P and estradiol-17β (E2) estradiol levels thereby causing delayed embryonic development in C. sphinx. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development.

    PubMed

    Jin, Yunho; Choi, Jeonghyun; Won, Jinyoung; Hong, Yonggeun

    2018-01-18

    The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.

  3. Effect of Melatonin Implants during the Non-Breeding Season on the Onset of Ovarian Activity and the Plasma Prolactin in Dromedary Camel

    PubMed Central

    El Allali, Khalid; Sghiri, Abdelmalek; Bouâouda, Hanan; Achaâban, Mohamed Rachid; Ouzir, Mounir; Bothorel, Béatrice; El Mzibri, Mohammed; El Abbadi, Najia; Moutaouakkil, Adnane; Tibary, Ahmed; Pévet, Paul

    2018-01-01

    To examine a possible control of reproductive seasonality by melatonin, continual-release subcutaneous melatonin implants were inserted 4.5 months before the natural breeding season (October–April) into female camels (Melatonin-treated group). The animals were exposed to an artificial long photoperiod (16L:8D) for 41 days prior to implant placement to facilitate receptivity to the short-day signal that is expected with melatonin implants. The treated and control groups (untreated females) were maintained separately under outdoor natural conditions. Ovarian follicular development was monitored in both groups by transrectal ultrasonography and by plasma estradiol-17β concentrations performed weekly for 8 weeks and then for 14 weeks following implant insertion. Plasma prolactin concentrations were determined at 45 and 15 days before and 0, 14, 28, 56, and 98 days after implant insertion. Plasma melatonin concentration was determined to validate response to the artificial long photoperiod and to verify the pattern of release from the implants. Results showed that the artificial long photoperiod induced a melatonin secretion peak of significantly (P < 0.05) shorter duration (about 2.5 h). Melatonin release from the implants resulted in higher circulating plasma melatonin levels during daytime and nighttime which persisted for more than 12 weeks following implants insertion. Treatment with melatonin implants advanced the onset of follicular growth activity by 3.5 months compared to untreated animals. Plasma estradiol-17β increased gradually from the second week after the beginning of treatment to reach significantly (P < 0.01) higher concentrations (39.2 ± 6.2 to 46.4 ± 4.5 pg/ml) between the third and the fifth week post insertion of melatonin implants. Treatment with melatonin implants also induced a moderate, but significant (P < 0.05) suppressive effect on plasma prolactin concentration on the 28th day. These results demonstrate that photoperiod appears to be involved in dromedary reproductive seasonality. Melatonin implants may be a useful tool to manipulate seasonality and to improve reproductive performance in this species. Administration of subcutaneous melatonin implants during the transition period to the breeding season following an artificial signal of long photoperiod have the potential to advance the breeding season in camels by about 2.5 months. PMID:29594158

  4. Melatonin and female reproduction.

    PubMed

    Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  5. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat.

    PubMed

    Chang, Chia-Lo; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chen, Chih-Hung; Chiang, Hsin-Ju; Huang, Tien-Hung; Chen, Yi-Ling; Zhen, Yen-Yi; Chai, Han-Tan; Chung, Sheng-Ying; Tong, Meng-Shen; Chang, Hsueh-Wen; Chen, Hong-Hwa; Yip, Hon-Kan

    2015-09-01

    We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Strategies for enhancing catecholamine-mediated neurotransmission

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.

    1992-01-01

    Major findings made during this project period included the following observations: changes in tyrosine availability do affect brain dopamine release, as assessed by in vivo microdialysis, but that neuronal feedback mechanisms limit the durations of this effect except when dopaminergic neurotransmission has been deficient; the circulating hormone TRH markedly stimulates brain dopamine release, an effect probably mediated by its diketopiperazine metabolite; the amount of circulating L-dopa which enters the brain is both enhanced by carbohydrate consumption and suppressed by protein intake (both nutritional effects can be damaging, inasmuch as a sudden rush of L-dopa into the brain can facilitate dyskinesias, while the inhibition of brain L-dopa uptake by proteins suppresses its conversion to brain dopamine; an appropriate mixture of dietary proteins and carbohydrates can obviate both effects); serotonin release from superfused hypothalamic slices is a linear function of available tryptophan levels throughout the normal dynamic range; the daily rhythm in plasma melatonin levels is abnormal both in the sudden infant death syndrome and in women with secondary amenorrhea; tyrosine can potentiate the anorectic effects of widely-used sympathomimetic drugs; newly-described COMT inhibitors can enhance brain dopamine release in vivo; and a cell culture system, based on Y-79 (retinoblast) cells, exists in which melatonin reliably suppresses dopamine release.

  7. Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.M. Jr.; Stormshak, F.; Thompson, J.M.

    This study determined whether chronic exposure of female lambs to the electric and magnetic fields (EMF) of a high voltage transmission line can alter pineal secretion of melatonin and the normal occurrence of puberty. Twenty female Suffolk lambs were assigned randomly in equal numbers to a control and a treatment group. Treatment from 2 to 10 mo of age consisted of continuous exposure within the electrical environment of a 500-kV transmission line (mean electric field 6 kV/m, mean magnetic field 40 mG). Treated lambs were penned directly beneath the transmission line; control lambs were maintained in a pen of similarmore » construction 229 m from the line where EMF were at ambient levels (mean electric field < 10 V/m, mean magnetic field < 0.3 mG). Melatonin was analyzed by RIA in serum of blood samples collected at 0.5-3-h intervals over eight 48-h periods. To assess attainment of puberty, serum concentrations of progesterone were determined by RIA from blood samples collected twice weekly beginning at 19 wk of age. Concentrations of circulating melatonin in control and treated lambs were low during daylight hours and increased during nighttime hours. The characteristic pattern of melatonin secretion during nighttime (amplitude, phase, and duration) did not differ between control and treatment groups. Age at puberty and number of subsequent estrous cycles also did not differ between groups. These data suggest that chronic exposure of developing female sheep to 60-Hz environmental EMF does not affect the mechanisms underlying the generation of the circadian pattern of melatonin secretion or the mechanisms involved in the onset of reproductive activity.« less

  8. Differential melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder.

    PubMed

    Bumb, J M; Enning, F; Mueller, J K; van der List, Till; Rohleder, C; Findeisen, P; Noelte, I; Schwarz, E; Leweke, F M

    2016-07-01

    Melatonin, which plays an important role for regulation of circadian rhythms and the sleep/wake cycle has been linked to the pathophysiology of major depressive and bipolar disorder. Here we investigated melatonin levels in cerebrospinal fluid (CSF) and serum of depression and bipolar patients to elucidate potential differences and commonalities in melatonin alterations across the two disorders. Using enzyme-linked immunosorbent assays, CSF and serum melatonin levels were measured in 108 subjects (27 healthy volunteers, 44 depressed and 37 bipolar patients). Covariate adjusted multiple regression analysis was used to investigate group differences in melatonin levels. In CSF, melatonin levels were significantly decreased in bipolar (P<0.001), but not major depressive disorder. In serum, we observed a significant melatonin decrease in major depressive (P=0.003), but not bipolar disorder. No associations were found between serum and CSF melatonin levels or between melatonin and measures of symptom severity or sleep disruptions in either condition. This study suggests the presence of differential, body fluid specific alterations of melatonin levels in bipolar and major depressive disorder. Further, longitudinal studies are required to explore the disease phase dependency of melatonin alterations and to mechanistically explore the causes and consequences of site-specific alterations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Melatonin.

    PubMed

    Hardeland, Rüdiger; Pandi-Perumal, S R; Cardinali, Daniel P

    2006-03-01

    Melatonin, originally discovered as a hormone of the pineal gland, is produced by bacteria, protozoa, plants, fungi, invertebrates, and various extrapineal sites of vertebrates, including gut, skin, Harderian gland, and leukocytes. Biosynthetic pathways seem to be identical. Actions are pleiotropic, mediated by membrane and nuclear receptors, other binding sites or chemical interactions. Melatonin regulates the sleep/wake cycle, other circadian and seasonal rhythms, and acts as an immunostimulator and cytoprotective agent. Circulating melatonin is mostly 6-hydroxylated by hepatic P450 monooxygenases and excreted as 6-sulfatoxymelatonin. Pyrrole-ring cleavage is of higher importance in other tissues, especially the brain. The product, N1-acetyl-N2-formyl-5-methoxykynuramine, is formed by enzymatic, pseudoenzymatic, photocatalytic, and numerous free-radical reactions. Additional metabolites result from hydroxylation and nitrosation. The secondary metabolite, N1-acetyl-5-methoxykynuramine, supports mitochondrial function and downregulates cyclooxygenase 2. Antioxidative protection, safeguarding of mitochondrial electron flux, and in particular, neuroprotection, have been demonstrated in many experimental systems. Findings are encouraging to use melatonin as a sleep promoter and in preventing progression of neurodegenerative diseases.

  11. Effect of Cultivar, Temperature, and Environmental Conditions on the Dynamic Change of Melatonin in Mulberry Fruit Development and Wine Fermentation.

    PubMed

    Wang, Cheng; Yin, Li-Yuan; Shi, Xue-Ying; Xiao, Hua; Kang, Kun; Liu, Xing-Yan; Zhan, Ji-Cheng; Huang, Wei-Dong

    2016-04-01

    High levels of melatonin have been reported in various foods but not in mulberry or its wine. This study investigated the dynamic changes of melatonin levels during mulberry fruit development and ethanol fermentation of 2 different colored mulberry cultivars ("Hongguo2ˮ Morus nigra, black and "Baiyuwangˮ Morus alba, white) at 2 fermentation temperatures (16 and 25 °C). Our results showed that the melatonin level increased in the beginning of mulberry development but decreased in the end. The MnTDC gene expression level correlated with melatonin production, which implied that TDC may be the rate-limiting enzyme of the melatonin biosynthetic process in mulberries. During mulberry fermentation, the melatonin concentration increased rapidly in the beginning and then decreased gradually. Low temperature delayed the melatonin production during fermentation. A relatively high level of melatonin was found in "Hongguo2ˮ compared with "Baiyuwangˮ during fruit development and fermentation. The variation of melatonin correlated with the ethanol production rate, suggesting that melatonin may participate in physiological regulation of Saccharomyces cerevisiae during the fermentation stage. © 2016 Institute of Food Technologists®

  12. Minireview: Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loescher, W.; Mevissen, M.

    1994-01-01

    A number of epidemiological studies have suggested that exposure to 50/60-Hz magnetic fields (MF) from power lines and electrical equipment may be associated with a modestly increased incidence of various type of cancer. Laboratory studies have indicated that nonionizing radiation has no mutagenic effect, i.e. does not initiate cancer. Thus, if 50/60-Hz MF are truly associated with an increased risk of cancer, then these fields must act as a promoter or co-promoter of cancer in cells that have already been initiated. This paper reviews the evidence produced by animal studies. As shown in this review, the available animal data onmore » 50/60-Hz MF exposures seem to indicate that intermediate MF exposure exerts co-promoting effects in different tumor models, particularly cocarcinogenesis models of breast cancer while chronic (up to life-time) exposure may exert promoting effects on [open quotes]spontaneous[close quotes] development of certain tumors. The tumor promoting or co-promoting effects of 50/60-Hz MF exposure found in several animal studies could relate to actions of MF on gene expression, immune surveillance, and Ca[sup 2+] homeostasis as demonstrated by in vitro experiments in cell cultures. However, the most plausible evidence of an in vivo effect of MF exposure which could be related to tumor promotion is reduction of circulating levels of melatonin, i.e. a hormone which is inhibitory to the growth of a wide range of cancers, particularly breast cancer. Animal studies have shown that 50-Hz MF exposure at fluxes as low as 0.3-1 [mu]Tesla significantly reduces nocturnal melatonin levels in plasma. While decrease of melatonin levels alone could explain tumor promoting or copromoting effects of MF exposure, recent data indicate that MF exposure also impairs the effects of melatonin at the cellular level. The oncostatic effect of melatonin on proliferation of a human breast cancer cell line was antagonized by 60-Hz MF exposure at a flux density of 1 [mu]Tesla.« less

  13. Evaluation of Oxidant-Antioxidant Balance in Children with Atopic Dermatitis: A Case-Control Study.

    PubMed

    Uysal, Pınar; Avcil, Sibelnur; Abas, Burçin İrem; Yenisey, Çiğdem

    2016-10-01

    Increased reactive oxygen species (ROS) and oxidative stress (OS) has been reported in many allergic and inflammatory skin diseases, including urticaria, psoriasis, and atopic dermatitis (AD). Melatonin is a hormone secreted from the pineal gland and is a potent antioxidant. The aim of the study was to measure serum antioxidant melatonin, oxidants of nitric oxide (NO), and malondialdehyde levels to calculate the serum oxidant-antioxidant balance based on the NO/melatonin and malondialdehyde/melatonin ratios and to determine the correlation with the disease severity in children with AD. Seventy-three children with AD and 67 healthy controls were included in the study. The clinical diagnosis of AD was based on the diagnostic criteria of Hanifin-Rajka. The severity of AD was evaluated by the scoring AD (SCORAD) index, and atopy was determined by skin prick tests (SPTs) with commercial extracts. The OS-related parameters of serum melatonin, NO, malondialdehyde, and the NO/melatonin and malondialdehyde/melatonin ratios were calculated and compared with the results of healthy controls. Serum melatonin levels were higher (p < 0.0001) and serum NO levels and the NO/melatonin and malondialdehyde/melatonin ratios were lower in children with AD than in healthy controls (p = 0.045, p < 0.0001, p < 0.0001, respectively). There was no difference between children with AD and healthy controls in terms of serum malondialdehyde levels (p = 0.119). Serum melatonin levels were significantly lower in severe AD than in mild AD (p = 0.012). However, in terms of serum melatonin levels, there was no difference between mild and moderate AD (p = 0.742) and moderate to severe AD (p = 0.301). There was no significant difference in serum NO and malondialdehyde levels and NO/melatonin and malondialdehyde/melatonin ratios among children with mild, moderate, and severe AD (p > 0.05). A negative correlation was found between serum melatonin levels and the SCORAD index (r = -0.252, p = 0.031), and a positive correlation was found between NO/melatonin and malondialdehyde/melatonin ratios (r = 0.511, p < 0.0001). There was no statistically significant relationship between age (≤24 or >24 months), disease duration (≤6 or >6 months), and sex for the OS-related parameters (p > 0.05). The serum oxidant-antioxidant balance was impaired in children with AD. Serum melatonin levels were higher in children with AD; however, this was negatively correlated with disease severity. Serum NO levels and NO/melatonin and malondialdehyde/melatonin ratios were lower in children with AD than in healthy controls. Melatonin might be used as a promising antioxidant to evaluate disease severity in children with AD. Thus, further studies are needed to clarify the role of melatonin in AD pathogenesis.

  14. Antioxidant effects of melatonin in heart tissue after induction of experimental periodontitis in rats.

    PubMed

    Özdem, Muhsin; Kırzıoğlu, Fatma Y; Yılmaz, Hacı R; Vural, Hüseyin; Fentoğlu, Özlem; Uz, Efkan; Koçak, Ahmet; Yiğit, Ayşe

    2017-01-01

    The aim of this study was to evaluate the effects of melatonin on the oxidative stress in heart tissues after induction of experimental periodontitis in rats. Thirty Wistar Albino male rats were divided into four groups as follows: healthy + saline solution (Hs, n = 7), healthy + melatonin (Hm, n = 7), periodontitis + saline solution (Ps, n = 8), and periodontitis + melatonin (Pm, n = 8). Experimental periodontitis was induced using a ligature placed at the gingival margin of the maxillary second molars. Melatonin was applied intraperitoneally (10 mg/kg) every day for 2 weeks. After sacrificing the rats, serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) levels, and melatonin levels were evaluated. The Pm group exhibited lower alveolar bone loss than the Ps group. Melatonin levels increased in the periodontitis groups, and the Pm group had lower MDA levels and higher GSH-Px levels than the Ps group. These findings suggest that melatonin administration reduces MDA and increases GSH-Px levels in heart tissue, and these effects may be due to its antioxidant properties. Further studies are needed to understand the effects of melatonin on the association between periodontitis and cardiovascular disease.

  15. Effect of mobile usage on serum melatonin levels among medical students.

    PubMed

    Shrivastava, Abha; Saxena, Yogesh

    2014-01-01

    Exposure to extremely low frequency (ELF) electromagnetic radiations from mobile phones may affect the circadian rhythm of melatonin in mobile users. The study was designed with objective to evaluate the influence of mobile phone on circadian rhythm of melatonin and to find the association if any between the hours of mobile usage with serum melatonin levels. All the volunteers medical students using mobiles for > 2 hrs/day were included in high users group and volunteers who used mobile for ≤ 2 hrs where included in low users group. Both high and low users volunteers were sampled three times in the same day (Morning-3-4 am, Noon 1-2 pm, Evening-5-6 pm) for estimation of serum melatonin levels: Comparsion of sernum melatonin levels in high users and low users were done by Mann Whitney "U" Test. Reduced morning melatonin levels (3-4 am) was observed in high users (> 2 hrs/day) i.e high users had a disturbed melatonin circadian rhythm.There was a negative correlation between melatonin secretion and hours of mobile usages.

  16. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus.

    PubMed

    Kor, Yilmaz; Geyikli, Iclal; Keskin, Mehmet; Akan, Muslum

    2014-07-01

    Melatonin is an indolamine hormone, synthesized from tryptophan in the pineal gland primarily. Melatonin exerts both antioxidative and immunoregulatory roles but little is known about melatonin secretion in patients with type 1 diabetes mellitus (T1DM). The aim of this study was to measure serum melatonin levels in patients with T1DM and investigates their relationship with type 1 diabetes mellitus. Forty children and adolescents with T1DM (18 boys and 22 girls) and 30 healthy control subjects (17 boys and 13 girls) participated in the study. All patients followed in Pediatric Endocrinology and Metabolism Unit of Gaziantep University Faculty of Medicine and also control subjects had no hypertension, obesity, hyperlipidemia, anemia, and infection. Blood samples were collected during routine analysis, after overnight fasting. Serum melatonin levels were analyzed with ELISA. There were no statistically significant differences related with age, sex, BMI distribution between diabetic group and control group. Mean diabetic duration was 2.89 ± 2.69 years. The variables were in the equation. Mean melatonin level in diabetic group was 6.75 ± 3.52 pg/ml and mean melatonin level in control group was 11.51 ± 4.74 pg/ml. Melatonin levels were significantly lower in diabetic group compared to controls (P < 0.01). Melatonin was associated with type 1 diabetes mellitus significantly. Because of the varied roles of melatonin in human metabolic rhythms, these results suggest a role of melatonin in maintaining normal rhythmicity. Melatonin may play role in preventing process of inflammation and oxidative stress.

  17. Melatonin and the circadian system: contributions to successful female reproduction.

    PubMed

    Reiter, Russel J; Tamura, Hiroshi; Tan, Dun Xian; Xu, Xiao-Ying

    2014-08-01

    To summarize the role of melatonin and circadian rhythms in determining optimal female reproductive physiology, especially at the peripheral level. Databases were searched for the related English-language literature published up to March 1, 2014. Only papers in peer-reviewed journals are cited. Not applicable. Not applicable. Melatonin treatment, alterations of the normal light:dark cycle and light exposure at night. Melatonin levels in the blood and in the ovarian follicular fluid and melatonin synthesis, oxidative damage and circadian rhythm disturbances in peripheral reproductive organs. The central circadian regulatory system is located in the suprachiasmatic nucleus (SCN). The output of this master clock is synchronized to 24 hours by the prevailing light-dark cycle. The SCN regulates rhythms in peripheral cells via the autonomic nervous system and it sends a neural message to the pineal gland where it controls the cyclic production of melatonin; after its release, the melatonin rhythm strengthens peripheral oscillators. Melatonin is also produced in the peripheral reproductive organs, including granulosa cells, the cumulus oophorus, and the oocyte. These cells, along with the blood, may contribute melatonin to the follicular fluid, which has melatonin levels higher than those in the blood. Melatonin is a powerful free radical scavenger and protects the oocyte from oxidative stress, especially at the time of ovulation. The cyclic levels of melatonin in the blood pass through the placenta and aid in the organization of the fetal SCN. In the absence of this synchronizing effect, the offspring may exhibit neurobehavioral deficits. Also, melatonin protects the developing fetus from oxidative stress. Melatonin produced in the placenta likewise may preserve the optimal function of this organ. Both stable circadian rhythms and cyclic melatonin availability are critical for optimal ovarian physiology and placental function. Because light exposure after darkness onset at night disrupts the master circadian clock and suppresses elevated nocturnal melatonin levels, light at night should be avoided. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2018-03-02

    Background Melatonin, an important neurohormone released from the pineal gland, is generally accepted to exercise an inhibitor effect on the thyroid gland. Zinc mediates the effects of many hormones and is found in the structure of numerous hormone receptors. Aim The present study aims to examine the effect of melatonin supplementation and pinealectomy on leptin, neuropeptide Y (NPY), melatonin and zinc levels in rats with hypothyroidism and hyperthyroidism. Methods This study was performed on the 70 male rats. Experimental animals in the study were grouped as follows: control (C); hypothyroidism (PTU); hypothyroidism + melatonin (PTU + M); hypothyroidism + pinealectomy (PTU + Pnx); hyperthyroidism (H); hyperthyroidism + melatonin (H + M) and hyperthyroidism + pinealectomy (H + Pnx). Blood samples collected at the end of 4-week procedures were analyzed to determine melatonin, leptin, NPY and zinc levels. Results It was found that thyroid parameters thyroid stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), total T3 (TT3) and total T4 (TT4) decreased in hypothyroidism groups and increased in the groups with hyperthyroidism. The changes in these hormones remained unaffected by melatonin supplementation and pinealectomy. Melatonin levels rose in hyperthyroidism and fell in hypothyroidism. Leptin and NPY levels increased in both hypothyroidism and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and pinealectomy, but increased in hyperthyroidism. Conclusion The results of the study demonstrate that hypothyroidism and hyperthyroidism affect leptin, NPY, melatonin and zinc values in different ways in rats. However, melatonin supplementation and pinealectomy do not have any significant influence on the changes occurring in leptin, NPY and zinc levels in thyroid dysfunction.

  19. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production.

    PubMed

    Pontes, Gerlândia N; Cardoso, Elaine C; Carneiro-Sampaio, Magda M S; Markus, Regina P

    2007-11-01

    The nocturnal surge of melatonin is the endocrine expression of the circadian system and is essential for organizing the timing of various endogenous processes. Previous works suggest that, in the beginning of a defense response, the increase in circulating tumor necrosis factor-alpha (TNF-alpha) leads to a transient block of nocturnal melatonin production and promotes a disruption of internal time organization. In the present paper, the concentration of melatonin and cytokines [TNF-alpha, interferon-gamma (IFN-gamma), interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12] in the colostrum (postdelivery day 3) and in the milk (postdelivery days 10, 15, 20 and 30) obtained at midday and midnight from mothers who gave birth by vaginal or cesarean section were compared. The nocturnal melatonin surge observed 3 days after vaginal delivery was absent after cesarean section. IL-12 presented no daily variation in either case, while daily variations in IFN-gamma, IL-10, IL-4 and IL-5 were observed after vaginal delivery and cesarean section. On the other hand, the increase in TNF-alpha after cesarean section resulted in suppression of the nocturnal melatonin surge. Daily variation of IL-2 was only observed after recovery of the nocturnal melatonin surge, 30 days after cesarean section. The present paper supports the hypothesis of a cross-talk between the pineal gland and the immune system, which could represent a putative immune-pineal axis.

  20. Effect of day/night administration of three different inhalational anesthetics on melatonin levels in rats.

    PubMed

    Ocmen, Elvan; Erdost, Hale Aksu; Duru, Leyla S; Akan, Pinar; Cimrin, Dilek; Gokmen, Ali N

    2016-06-01

    The nocturnal peak of melatonin can be altered after anesthesia and surgery. We aimed to examine the melatonin levels during the day and night after anesthesia with three commonly used inhalational anesthetics. Forty-eight male Wistar albino rats were randomized into eight groups. Rats were administered anesthesia between 7:00 am and 1:00 pm (day groups) or 7:00 pm and 1:00 am (night groups) for 6 hours. At the end of the anesthesia, blood samples were collected for assessing melatonin levels. Mean values of melatonin levels after 6 hours of anesthesia during daytime were 43.17±12.95 for control, 59.79±27.83 for isoflurane, 50.75±34.28 for sevoflurane and 212.20±49.56 pg/mL for desflurane groups. The night groups' mean melatonin levels were 136.12±33.20 for control, 139.85±56.29 for isoflurane, 117.48±82.39 for sevoflurane and 128.70±44.63 pg/mL for desflurane groups. Desflurane anesthesia between 7:00 am and 1:00 pm significantly increased melatonin levels (p<0.001). Sevoflurane and desflurane anesthesia between 7:00 pm and 1:00 am decreased the melatonin levels but there were no significant differences (p=0.904 and p>0.99, respectively). Isoflurane anesthesia did not significantly change melatonin levels during day or night (p=0.718 and p>0.99, respectively). Our results demonstrate that during daytime desflurane anesthesia can alter melatonin levels. Altered melatonin rhythm following inhalational anesthesia can be related to sleep disorders observed after anesthesia. Copyright © 2016. Published by Elsevier Taiwan.

  1. Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite.

    PubMed

    Muñoz, José L P; López Patiño, Marcos A; Hermosilla, Consuelo; Conde-Sieira, Marta; Soengas, José L; Rocha, Francisco; Míguez, Jesús M

    2011-08-01

    Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light-dark cycle information for adjustment of rhythmic physiological events in cephalopods.

  2. Melatonin in perimenopausal and postmenopausal women: associations with mood, sleep, climacteric symptoms, and quality of life.

    PubMed

    Toffol, Elena; Kalleinen, Nea; Haukka, Jari; Vakkuri, Olli; Partonen, Timo; Polo-Kantola, Päivi

    2014-05-01

    Melatonin synthesis and secretion are partly modulated by estrogen and progesterone. Changes in melatonin concentrations, possibly related to the menopausal transition, may be associated with climacteric mood, sleep, and vasomotor symptoms. The aims of this study were to compare the serum concentrations of melatonin in perimenopausal and postmenopausal women and to evaluate melatonin's influence on mood, sleep, vasomotor symptoms, and quality of life. We analyzed the data of 17 healthy perimenopausal women (aged 43-51 y) and 18 healthy postmenopausal women (aged 58-71 y) who participated in a prospective study. On study night (9:00 pm-9:00 am), serum melatonin was sampled at 20-minute (9:00 pm-12:00 midnight; 6:00-9:00 am) and 1-hour (12:00 midnight-6:00 am) intervals. Questionnaires were used to assess depression (Beck Depression Inventory), anxiety (State-Trait Anxiety Inventory), insomnia and sleepiness (Basic Nordic Sleep Questionnaire [BNSQ]), subjective sleep quality, vasomotor symptoms, and quality of life (EuroQoL). Postmenopausal women had lower nighttime serum melatonin concentrations than perimenopausal women. The duration of melatonin secretion tended to be shorter in postmenopause, whereas melatonin peak time did not differ. Mean melatonin concentrations and exposure levels did not correlate with follicle-stimulating hormone level, estradiol level, body mass index, Beck Depression Inventory score, State-Trait Anxiety Inventory score, BNSQ insomnia score, BNSQ sleepiness score, subjective sleep score, climacteric vasomotor score, or quality of life. In perimenopause, the later is the melatonin peak, the higher is the level of anxiety (P = 0.022), and the longer is the melatonin secretion, the better is the quality of life (P < 0.001). Longitudinal research is needed to better understand the possible contributory role of menopause in lower melatonin levels.

  3. Melatonin Promotes Superovulation in Sika Deer (Cervus nippon)

    PubMed Central

    Wang, Liang; Zhuo, Zhi-Yong; Shi, Wen-Qing; Tan, Dun-Xian; Gao, Chao; Tian, Xiu-Zhi; Zhang, Lu; Zhou, Guang-Bin; Zhu, Shi-En; Yun, Peng; Liu, Guo-Shi

    2014-01-01

    In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1 ± 2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98 ± 0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p < 0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p > 0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed. PMID:25007067

  4. Melatonin promotes superovulation in sika deer (Cervus nippon).

    PubMed

    Wang, Liang; Zhuo, Zhi-Yong; Shi, Wen-Qing; Tan, Dun-Xian; Gao, Chao; Tian, Xiu-Zhi; Zhang, Lu; Zhou, Guang-Bin; Zhu, Shi-En; Yun, Peng; Liu, Guo-Shi

    2014-07-08

    In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1±2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98±0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p<0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p>0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.

  5. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits.

    PubMed

    Boccalandro, Hernán E; González, Carina V; Wunderlin, Daniel A; Silva, María F

    2011-09-01

    The identification of melatonin in plants has inspired new investigations to understand its biological function and which endogenous and external factors control its levels in these organisms. Owing to the therapeutical and nutraceutical properties of melatonin, it should be important to develop reliable analytical methods for its quantification in vegetal matrices containing this indoleamine, such as grape and wine. The main objectives of the present study were to test whether melatonin levels fluctuate during the day in berry skins of Vitis vinifera L. cv Malbec, thereby possibly relating its abundance to its putative antioxidant function, to determine whether daylight reaching clusters negatively controls melatonin levels, and to evaluate whether total polyphenols and anthocyanins also change through a 24-hr period. Grapes were harvested throughout the day/night to determine the moment when high levels of these components are present in grapes. The presence of melatonin in grapes was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. It is shown for the first time that melatonin levels fluctuate during the day/night cycle in plants grown under field conditions in a fruit organ of the species Vitis vinifera. We also determined that the diurnal decay of melatonin in berry skins is induced by sunlight, because covered bunches retained higher melatonin levels than exposed ones, thus explaining at least part of the basis of its daily fluctuation. Evidence of melatonin's antioxidant role in grapes is also suggested by monitoring malondialdehyde levels during the day. © 2011 John Wiley & Sons A/S.

  6. Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer.

    PubMed

    Naziroğlu, Mustafa; Tokat, Sümeyye; Demirci, Seda

    2012-12-01

    Exposure to electromagnetic radiation (EMR) may increase breast cancer risk by inducing oxidative stress and suppressing the production of melatonin. Aim of the present review is to discuss the mechanisms and risk factors of EMR and oxidative stress-induced breast cancer, to summarize the controlled studies evaluating measures for prevention, and to conclude with evidence-based strategies for prevention. Review of the relevant literature and results from our recent basic studies, as well as critical analyses of published systematic reviews were obtained from the Pubmed and the Science Citation Index. It has been proposed that chronic exposure to EMR may increase the risk of breast cancer by suppressing the production of melatonin; this suppression may affect the development of breast cancer either by increasing levels of circulation of estrogen or through over production of free oxygen radicals. Most epidemiological studies have also indicated overall effect of EMR exposure in premenopausal women, particularly for estrogen receptor positive breast tumors. Enhanced voltage-dependent Ca(2+) current and impaired inhibitory G-protein function, and derangement of intracellular organelles with a Ca(2+) buffering effect, such as endoplasmic reticulum and mitochondria have been also shown to contribute to disturbed Ca(2+) signaling in breast cancer. Melatonin may modulate breast cancer through modulation of enhanced oxidative stress and Ca(2+) influx in cell lines. However, there is not enough evidence on increased risk of breast cancer related to EMR exposure.

  7. Melatonin reduces lead levels in blood, brain and bone and increases lead excretion in rats subjected to subacute lead treatment.

    PubMed

    Hernández-Plata, Everardo; Quiroz-Compeán, Fátima; Ramírez-Garcia, Gonzalo; Barrientos, Eunice Yáñez; Rodríguez-Morales, Nadia M; Flores, Alberto; Wrobel, Katarzina; Wrobel, Kazimierz; Méndez, Isabel; Díaz-Muñoz, Mauricio; Robles, Juvencio; Martínez-Alfaro, Minerva

    2015-03-04

    Melatonin, a hormone known for its effects on free radical scavenging and antioxidant activity, can reduce lead toxicity in vivo and in vitro.We examined the effects of melatonin on lead bio-distribution. Rats were intraperitoneally injected with lead acetate (10, 15 or 20mg/kg/day) with or without melatonin (10mg/kg/day) daily for 10 days. In rats intoxicated with the highest lead doses, those treated with melatonin had lower lead levels in blood and higher levels in urine and feces than those treated with lead alone, suggesting that melatonin increases lead excretion. To explore the mechanism underlying this effect, we first assessed whether lead/melatonin complexes were formed directly. Electronic density functional (DFT) calculations showed that a lead/melatonin complex is energetically feasible; however, UV spectroscopy and NMR analysis showed no evidence of such complexes. Next, we examined the liver mRNA levels of metallothioneins (MT) 1 and 2. Melatonin cotreatment increased the MT2 mRNA expression in the liver of rats that received the highest doses of lead. The potential effects of MTs on the tissue distribution and excretion of lead are not well understood. This is the first report to suggest that melatonin directly affects lead levels in organisms exposed to subacute lead intoxication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release.

    PubMed

    Choi, Tae-Yong; Kwon, Ji Eun; Durrance, Eunice Sung; Jo, Su-Hyun; Choi, Se-Young; Kim, Kyong-Tai

    2014-04-04

    Melatonin is involved in various neuronal functions such as circadian rhythmicity and thermoregulation. Melatonin has a wide range of pharmacologically effective concentration levels from the nanomolar to millimolar levels. Recently, the antiepileptic effect of high dose melatonin has been the focus of clinical studies; however, its detailed mechanism especially in relation to neurotransmitter release and synaptic transmission remains unclear. We studied the effect of melatonin at high concentrations on the neurotransmitter release by monitoring norepinephrine release in PC12 cells, and excitatory postsynaptic potential in rat hippocampal slices. Melatonin inhibits the 70mM K(+)-induced Ca(2+) increase at millimolar levels without effect on bradykinin-triggered Ca(2+) increase in PC12 cells. Melatonin (1mM) did not affect A2A adenosine receptor-evoked cAMP production, and classical melatonin receptor antagonists did not reverse the melatonin-induced inhibitory effect, suggesting G-protein coupled receptor independency. Melatonin inhibits the 70mM K(+)-induced norepinephrine release at a similar effective concentration range in PC12 cells. We confirmed that melatonin (100µM) inhibits excitatory synaptic transmission of the hippocampal Schaffer collateral pathway with the decrease in basal synaptic transmission and the increase in paired pulse ratio. These results show that melatonin inhibits neurotransmitter release through the blocking of voltage-sensitive Ca(2+) channels and suggest a possible mechanism for the antiepileptic effect of melatonin. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers - A study in postmenopausal women.

    PubMed

    Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata

    2017-12-23

    Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.

  10. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars

    PubMed Central

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2017-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape (Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L-tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N-acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N-acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N-acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro. Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant–rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions. PMID:28119731

  12. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars.

    PubMed

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2016-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape ( Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L -tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N -acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N -acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N -acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro . Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions.

  13. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice.

    PubMed

    Zhang, Haixia; Liu, Xuan; Chen, Ting; Ji, Yazhen; Shi, Kun; Wang, Lin; Zheng, Xiaodong; Kong, Jin

    2018-02-27

    Synthetic melatonin ( N -acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o -diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.

  14. Comparison of the Protective Effects of Melatonin and Silymarin Against Gentamicin-Induced Nephrotoxicity in Rats.

    PubMed

    Ghaznavi, Habib; Mehrzadi, Saeed; Dormanesh, Banafshe; Tabatabaei, Seyyed Mohammad Taghi Hosseini; Vahedi, Habib; Hosseinzadeh, Azam; Pazoki-Toroudi, HamidReza; Rashidian, Amir

    2016-10-01

    This study compared the possible protective effects of silymarin and melatonin against gentamicin (GEN)-induced nephrotoxicity in rats. Rats were allocated to 6 groups: Group I, control group; Groups II and III, administered with silymarin or melatonin; Group IV, injected with GEN; and Groups V and VI, administered with silymarin or melatonin, and then injected with GEN. Compared with the rats in the control group, all rats injected with GEN significantly presented elevated levels of serum creatinine and urea that was accompanied by an increase in relative kidney weight, increase in renal reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and reduction in renal glutathione (GSH) level and superoxide dismutase (SOD) activity. Silymarin and melatonin pretreatment significantly lowered the elevated serum urea and creatinine concentration, kidney weight, and renal ROS and MDA levels. In addition, silymarin and melatonin significantly enhanced renal GSH level and SOD activity. This study indicates that silymarin and melatonin can attenuate renal injury in rats treated with GEN possibly by reducing the ROS level. © The Author(s) 2015.

  15. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance.

    PubMed Central

    Dollins, A B; Zhdanova, I V; Wurtman, R J; Lynch, H J; Deng, M H

    1994-01-01

    We examined effects of very low doses of melatonin (0.1-10 mg, orally) or placebo, administered at 1145 h, on sleep latency and duration, mood, performance, oral temperature, and changes in serum melatonin levels in 20 healthy male volunteers. A repeated-measure double-blind Latin square design was used. Subjects completed a battery of tests designed to assess mood and performance between 0930 and 1730 h. The sedative-like effects of melatonin were assessed by a simple sleep test: at 1330 h subjects were asked to hold a positive pressure switch in each hand and to relax with eyes closed while reclining in a quiet darkened room. Latency and duration of switch release, indicators of sleep, were measured. Areas under the time-melatonin concentration curve varied in proportion to the different melatonin doses ingested, and the 0.1- and 0.3-mg doses generated peak serum melatonin levels that were within the normal range of nocturnal melatonin levels in untreated people. All melatonin doses tested significantly increased sleep duration, as well as self-reported sleepiness and fatigue, relative to placebo. Moreover, all of the doses significantly decreased sleep-onset latency, oral temperature, and the number of correct responses on the Wilkinson auditory vigilance task. These data indicate that orally administered melatonin can be a highly potent hypnotic agent; they also suggest that the physiological increase in serum melatonin levels, which occurs around 2100 h daily, may constitute a signal initiating normal sleep onset. PMID:8127888

  16. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance.

    PubMed

    Dollins, A B; Zhdanova, I V; Wurtman, R J; Lynch, H J; Deng, M H

    1994-03-01

    We examined effects of very low doses of melatonin (0.1-10 mg, orally) or placebo, administered at 1145 h, on sleep latency and duration, mood, performance, oral temperature, and changes in serum melatonin levels in 20 healthy male volunteers. A repeated-measure double-blind Latin square design was used. Subjects completed a battery of tests designed to assess mood and performance between 0930 and 1730 h. The sedative-like effects of melatonin were assessed by a simple sleep test: at 1330 h subjects were asked to hold a positive pressure switch in each hand and to relax with eyes closed while reclining in a quiet darkened room. Latency and duration of switch release, indicators of sleep, were measured. Areas under the time-melatonin concentration curve varied in proportion to the different melatonin doses ingested, and the 0.1- and 0.3-mg doses generated peak serum melatonin levels that were within the normal range of nocturnal melatonin levels in untreated people. All melatonin doses tested significantly increased sleep duration, as well as self-reported sleepiness and fatigue, relative to placebo. Moreover, all of the doses significantly decreased sleep-onset latency, oral temperature, and the number of correct responses on the Wilkinson auditory vigilance task. These data indicate that orally administered melatonin can be a highly potent hypnotic agent; they also suggest that the physiological increase in serum melatonin levels, which occurs around 2100 h daily, may constitute a signal initiating normal sleep onset.

  17. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance

    NASA Technical Reports Server (NTRS)

    Dollins, A. B.; Zhdanova, I. V.; Wurtman, R. J.; Lynch, H. J.; Deng, M. H.

    1994-01-01

    We examined effects of very low doses of melatonin (0.1-10 mg, orally) or placebo, administered at 1145 h, on sleep latency and duration, mood, performance, oral temperature, and changes in serum melatonin levels in 20 healthy male volunteers. A repeated-measure double-blind Latin square design was used. Subjects completed a battery of tests designed to assess mood and performance between 0930 and 1730 h. The sedative-like effects of melatonin were assessed by a simple sleep test: at 1330 h subjects were asked to hold a positive pressure switch in each hand and to relax with eyes closed while reclining in a quiet darkened room. Latency and duration of switch release, indicators of sleep, were measured. Areas under the time-melatonin concentration curve varied in proportion to the different melatonin doses ingested, and the 0.1- and 0.3-mg doses generated peak serum melatonin levels that were within the normal range of nocturnal melatonin levels in untreated people. All melatonin doses tested significantly increased sleep duration, as well as self-reported sleepiness and fatigue, relative to placebo. Moreover, all of the doses significantly decreased sleep-onset latency, oral temperature, and the number of correct responses on the Wilkinson auditory vigilance task. These data indicate that orally administered melatonin can be a highly potent hypnotic agent; they also suggest that the physiological increase in serum melatonin levels, which occurs around 2100 h daily, may constitute a signal initiating normal sleep onset.

  18. Interactive effects of melatonin, exercise and diabetes on liver glycogen levels.

    PubMed

    Bicer, Mursel; Akil, Mustafa; Avunduk, Mustafa Cihat; Kilic, Mehmet; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-01-01

    This study aimed to examine the effects of melatonin supplementation on liver glycogen levels in rats with streptozotocin- induced diabetes and subjected to acute swimming exercise. Eighty Sprague-Dawley type adult male rats were divided into eight groups: Group 1, general control; Group 2, melatonin-supplemented control; Group 3, melatonin-supplemented diabetes; Group 4, swimming control; Group 5, melatonin-supplemented swimming; Group 6, melatonin-supplemented diabetic swimming; Group 7, diabetic swimming; Group 8, diabetic control. Melatonin was supplemented at a dose of 3 mg/kg/day intraperitoneally for four weeks. Liver tissue samples were collected and evaluated using a Nikon Eclipse E400 light microscope. All images obtained from the light microscope were transferred to PC medium and evaluated using Clemex PE 3.5 image analysis software. The lowest liver glycogen levels in the study were found in group 4. Liver glycogen levels in groups 3, 6, 7 and 8 (the diabetic groups) were higher than group 4, but lower than those in groups 1 and 2. The lowest liver glycogen levels were obtained in groups 1 and 2. The study indicates that melatonin supplementation maintains the liver glycogen levels that decrease in acute swimming exercise, while induced diabetes prevents this maintenance effect in rats.

  19. Melatonin and childhood refractory epilepsy--a pilot study.

    PubMed

    Paprocka, Justyna; Dec, Renata; Jamroz, Ewa; Marszał, Elzbieta

    2010-09-01

    The aim of the study was to assess diurnal melatonin secretion in children with refractory epilepsy (N=74) as compared to children without epileptic seizures (N=37) and to compare melatonin secretion in children with focal and generalized refractory epilepsy. In the study group 4 subgroups were defined: children with focal symptomatic epilepsy, focal cryptogenic epilepsy, generalized symptomatic epilepsy, and generalized cryptogenic epilepsy. Melatonin level was measured every 3 hours using the RIA method. Analysis of diurnal melatonin secretion indicated a lower level of the hormone in patients with refractory epilepsy. The daily rhythm of melatonin secretion in the study group was maintained, with a peak shift of melatonin secretion especially visible in the subgroup with generalized symptomatic refractory epilepsy in the age group between 6 months and 3 years of age. The hypothesis may be formed that a lowered level of melatonin in the study group in relation to the comparison group is the consequence of the natural course of epilepsy or is influenced by antiepileptic drugs.

  20. Effect of Zinc and Melatonin on Oxidative Stress and Serum Inhibin-B Levels in a Rat Testicular Torsion-Detorsion Model.

    PubMed

    Semercioz, Atilla; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Avunduk, Mustafa Cihat

    2017-12-01

    The present study was aimed to examine the effects of 3-week zinc and melatonin administration on testicular tissue injury and serum Inhibin-B levels caused by unilateral testicular torsion-detorsion in rats. The study was performed on 60 Wistar Albino-type adult male rats. The animals were allocated to 6 groups in equal numbers. 1. Control; 2. Sham; 3. Ischemia-reperfusion; 4. Zinc + ischemia-reperfusion; 5. Melatonin + ischemia-reperfusion; 6. Zinc + melatonin + ischemia-reperfusion. Zinc and melatonin were administered before ischemia-reperfusion at doses of 5 and 3 mg/kg respectively, by intraperitoneal route for a period of 3 weeks. Testicular torsion-detorsion procedures consisted of ischemia for 1 h and then reperfusion for another hour of the left testis. Blood and testicular tissue samples were collected to analyze erythrocyte and tissue GSH and plasma and tissue MDA, Inhibin-B levels. The highest erythrocyte and testis GSH values were found in zinc, melatonin, and zinc + melatonin groups (p < 0.001). Torsion-detorsion group has significantly lower erythrocyte GSH levels and higher plasma MDA values (p < 0.001). Serum inhibin-B and spermatogenic activity levels in the torsion-detorsion group were also significantly lower than those in the other groups (p < 0.001). However, zinc-, melatonin-, and melatonin + zinc-supplemented groups have higher inhibin-B and spermatogenetic activity (p < 0.001). The results of the study show that zinc, melatonin, and melatonin + zinc administration partially restores the increased oxidative stress, as well as the reduced inhibin-B and spermatogenic activity levels in testes ischemia-reperfusion in rats. Suppressed inhibin-B levels in the testicular tissue may be a marker of oxidative stress.

  1. Human melatonin during continuous magnetic field exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, C.; Cook, M.R.; Riffle, D.W.

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels weremore » found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.« less

  2. Effect of melatonin supplementation on plasma vasopressin response to different conditions in rats with hyperthyroidism induced by L-thyroxine.

    PubMed

    Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2010-04-09

    The present study was performed to determine how basal, isotonic, hypertonic and hypovolemic conditions affect fluid-electrolyte balance and plasma arginine vasopressin (AVP) levels in rats with experimental hyperthyroidism supplemented with melatonin. The rats were divided into four groups of twenty-four subjects each kept under the following treatments during one month: (1) Controls; (2) treated with L-thyroxine; (3) treated with L-thyroxine and sham melatonin and (4) treated with L-thyroxine and melatonin. After this each group was further subdivided into subgroups that were subject to normal, isotonic, hypertonic and hypovolemic conditions. The plasma AVP, total triiodothyronine (TT(3)), total thyroxine (TT(4)) and melatonin levels were measured in plasma by means of a Phoenix Pharmaceutical RIA test kit. Hematocrit and osmolality levels were also determined. There were significant increases of total T3 and T4 levels in the L-thyroxine treated groups, p<0.001. The AVP levels were also increased in groups 2 and 3, but not so in the rats treated with melatonin (p<0.001), which also showed increased plasma melatonin levels (p<0.001). These results indicate that treatment with L-thyroxine increases stimulated and non-stimulated AVP release that are inhibited by melatonin supplementation. It was also shown that AVP response to hypertonic and hypovolemic conditions was not affected by L-thyroxine treatment and/or L-thyroxine+melatonin treatment. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Melatonin: An Underappreciated Player in Retinal Physiology and Pathophysiology

    PubMed Central

    Tosini, Gianluca; Baba, Kenkichi; Hwang, Christopher K.; Iuvone, P. Michael

    2012-01-01

    In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential. PMID:22960156

  4. Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve.

    PubMed

    Tong, Jing; Sheng, Shile; Sun, Yun; Li, Huihui; Li, Wei-Ping; Zhang, Cong; Chen, Zi-Jiang

    2017-04-01

    Good-quality oocytes are critical for the success of in vitro fertilization (IVF), but, to date, there is no marker of ovarian reserve available that can accurately predict oocyte quality. Melatonin exerts its antioxidant actions as a strong radical scavenger that might affect oocyte quality directly as it is the most potent antioxidant in follicular fluid. To investigate the precise role of endogenous melatonin in IVF outcomes, we recruited 61 women undergoing treatment cycles of IVF or intracytoplasmic sperm injection (ICSI) procedures and classified them into three groups according to their response to ovarian stimulation. Follicular fluid was collected to assess melatonin levels using a direct RIA method. We found good correlations between melatonin levels in follicular fluid with age, anti-Müllerian hormone (AMH) and baseline follicle-stimulating hormone (bFSH), all of which have been used to predict ovarian reserve. Furthermore, as melatonin levels correlated to IVF outcomes, higher numbers of oocytes were collected from patients with higher melatonin levels and consequently the number of oocytes fertilized, zygotes cleaved, top quality embryos on D3, blastocysts obtained and embryos suitable for transplantation was higher. The blastocyst rate increased in concert with the melatonin levels across the gradient between the poor response group and the high response group. These results demonstrated that the melatonin levels in follicular fluid is associated with both the quantity and quality of oocytes and can predict IVF outcomes as well making them highly relevant biochemical markers of ovarian reserve. © 2017 Society for Reproduction and Fertility.

  5. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Laughter elevates the levels of breast-milk melatonin.

    PubMed

    Kimata, Hajime

    2007-06-01

    Patients with atopic eczema (AE) often complain of sleep disturbance. Melatonin is involved in sleep, and the levels of blood melatonin in patients with AE are decreased in comparison to healthy subjects. However, the levels of breast-milk melatonin had only been reported in healthy subjects. Laughter increased natural killer cell activity in blood and free radical-scavenging capacity in saliva in healthy subjects. Thus, the effect of laughter on the levels of breast-milk melatonin was studied in mothers with AE. Moreover, the effect of feeding with breast milk after laughter on allergic responses in infants was studied. Forty-eight infants aged 5-6 months were enrolled. All of the infants had AE and were allergic to latex and house dust mite (HDM). Half (n=24) of the mothers of these infants were patients with AE, while another 24 mothers were healthy subjects. The mothers viewed either an 87-min humorous DVD (Modern Times, featuring Charlie Chaplin) or an 87-min nonhumorous weather information DVD at 2000 h. After viewing, breast milk was collected sequentially from 2200, 2400, 0200, 0400 to 0600 h. The levels of breast-milk melatonin were measured. In addition, skin wheal responses to HDM and histamine were studied in infants. Laughter caused by viewing a humorous DVD increased the levels of breast-milk melatonin in both mothers with AE and healthy mothers. In addition, allergic responses to latex and HDM of infants were reduced by feeding with breast milk after laughter of mothers with AE or of healthy mothers. Laughter increased the levels of breast-milk melatonin in both mothers with AE and healthy mothers, and feeding infants with increased levels of melatonin-containing milk reduced allergic responses in infants. Thus, laughter of mothers may be helpful in the treatment of infants with AE.

  7. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells.

    PubMed

    Niu, Bowen; Li, Bo; Wu, Chongyang; Wu, Jiang; Yan, Yuan; Shang, Rui; Bai, Chunling; Li, Guangpeng; Hua, Jinlian

    2016-11-22

    Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies. Real-time quantitative PCR (QRT-PCR) and western blot analysis showed that the expression levels of SSC proliferation and self-renewal markers were up-regulated. Meanwhile, QRT-PCR results showed that melatonin inhibit the mRNA expression level of SSC differentiation markers. ELISA analysis showed an obvious increase in the concentration of GDNF (a niche factor secreted by Sertoli cells) in the medium when treated with melatonin. Meanwhile, the phosphorylation level of AKT, a downstream of GDNF-GFRa1-RET pathway was activated. In conclusion, melatonin promotes goat SSC proliferation by stimulating GDNF production in Sertoli cells.

  8. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Tahan, Veysel; Ozaras, Resat; Canbakan, Billur; Uzun, Hafize; Aydin, Seval; Yildirim, Beytullah; Aytekin, Huseyin; Ozbay, Gulsen; Mert, Ali; Senturk, Hakan

    2004-09-01

    Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.

  9. Melatonin identified in meats and other food stuffs: potentially nutritional impact.

    PubMed

    Tan, Dun-Xian; Zanghi, Brian M; Manchester, Lucien C; Reiter, Russel J

    2014-09-01

    Melatonin has been identified in primitive photosynthetic bacteria, fungi, plants, and animals including humans. Vegetables, fruits, cereals, wine, and beers all contain melatonin. However, the melatonin content in meats has not been reported previously. Here, for the first time, we report melatonin in meats, eggs, colostrum, and in other edible food products. The levels of melatonin measured by HPLC, in lamb, beef, pork, chicken, and fish, are comparable to other food stuffs (in the range of ng/g). These levels are significantly higher than melatonin concentrations in the blood of vertebrates. As melatonin is a potent antioxidant, its presence in the meat could contribute to shelf life duration as well as preserve their quality and taste. In addition, the consumption of these foods by humans or animals could have health benefits considering the important functions of melatonin as a potent free radical scavenger and antioxidant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Relation of Melatonin to Sleep Architecture in Children with Autism

    ERIC Educational Resources Information Center

    Leu, Roberta M.; Beyderman, Liya; Botzolakis, Emmanuel J.; Surdyka, Kyla; Wang, Lily; Malow, Beth A.

    2011-01-01

    Children with autism often suffer from sleep disturbances, and compared to age-matched controls, have decreased melatonin levels, as indicated by urine levels of the primary melatonin metabolite, 6-sulfatoxymelatonin (6-SM). We therefore investigated the relationship between 6-SM levels and sleep architecture in children with autism spectrum…

  11. Evaluation of plasma levels of melatonin after midazolam or sodium thiopental anesthesia in children.

    PubMed

    Muñoz-Hoyos, Antonio; Heredia, Francisco; Moreno, Francisco; García, Joaquín José; Molina-Carballo, Antonio; Escames, Germaine; Acuña-Castroviejo, Darío

    2002-05-01

    Midazolam and sodium thiopental are two commonly used drugs in anesthesia for minor surgical procedures in children. A relationship exists between benzodiazepines (BNZ), barbiturates and melatonin. Whereas these drugs increase pineal melatonin production, the indoleamine amplifies the effects of both BNZ and barbiturates on the central nervous system (CNS). Our purpose was thus to analyze the plasma levels of melatonin before and during midazolam or sodium thiopental anesthesia in children subjected to ambulatory surgical procedures. Midazolam (0.4 mg/kg) or sodium thiopental (5 mg/kg) were administered i.v. to 33 and 32 children (aged between 2 and 14 yr), respectively, and blood samples were taken before and 5, 10 and 20 min after the drugs were administered. Melatonin was measured in plasma by a commercial radioimmunoassay kit previously standardized in our laboratory. The results showed that neither midazolam nor sodium thiopental anesthesia significantly affected the levels of melatonin studied at anytime. Significant correlations were found comparing the levels of melatonin between the different times studied. These results suggest that midazolam or sodium thiopental did not affect melatonin production by the pineal gland, thus avoiding a possible potentiating effect of the indoleamine on the central effects of these drugs during anesthesia. However, the possibility that changes in melatonin had been masked by the antioxidant role of the neurohormone are discussed.

  12. Assessing the Dim Light Melatonin Onset in Adults with Autism Spectrum Disorder and No Comorbid Intellectual Disability.

    PubMed

    Baker, Emma K; Richdale, Amanda L; Hazi, Agnes; Prendergast, Luke A

    2017-07-01

    This study assessed melatonin levels and the dim light melatonin onset (DLMO) in adults with Autism Spectrum Disorder (ASD) and also investigated the relationships between melatonin and objectively measured sleep parameters. Sixteen adults with ASD (ASD-Only), 12 adults with ASD medicated for comorbid diagnoses of anxiety and/or depression (ASD-Med) and 32 controls participated in the study. Although, the timing of the DLMO did not differ between the two groups, advances and delays of the melatonin rhythm were observed in individual profiles. Overall mean melatonin levels were lower in the ASD-Med group compared to the two other groups. Lastly, greater increases in melatonin in the hour prior to sleep were associated with greater sleep efficiency in the ASD groups.

  13. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    PubMed

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  14. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats

    PubMed Central

    Zonta, Yohan Ricci; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Lupi Júnior, Luiz Antonio; Pinheiro, Patricia Fernanda F.; Reiter, Russel J.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.

    2017-01-01

    Angiogenesis is a hallmark of ovarian cancer (OC); the ingrowth of blood vessels promotes rapid cell growth and the associated metastasis. Melatonin is a well-characterized indoleamine that possesses important anti-angiogenic properties in a set of aggressive solid tumors. Herein, we evaluated the role of melatonin therapy on the angiogenic signaling pathway in OC of an ethanol-preferring rat model that mimics the same pathophysiological conditions occurring in women. OC was chemically induced with a single injection of 7,12-dimethylbenz(a)anthracene (DMBA) under the ovarian bursa. After the rats developed serous papillary OC, half of the animals received intraperitoneal injections of melatonin (200 µg/100 g body weight/day) for 60 days. Melatonin-treated animals showed a significant reduction in OC size and microvessel density. Serum levels of melatonin were higher following therapy, and the expression of its receptor MT1 was significantly increased in OC-bearing rats, regardless of ethanol intake. TGFβ1, a transforming growth factor-beta1, was reduced only after melatonin treatment. Importantly, vascular endothelial growth factor (VEGF) was severely reduced after melatonin therapy in animals given or not given ethanol. Conversely, the levels of VEGF receptor 1 (VEGFR1) was diminished after ethanol consumption, regardless of melatonin therapy, and VEGFR2 was only reduced following melatonin. Hypoxia-inducible factor (HIF)-1α was augmented with ethanol consumption, and, notably, melatonin significantly reduced their levels. Collectively, our results suggest that melatonin attenuates angiogenesis in OC in an animal model of ethanol consumption; this provides a possible complementary therapeutic opportunity for concurrent OC chemotherapy. PMID:28398226

  15. LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland.

    PubMed

    Zhang, Jinglin; Qiu, Jingtao; Zhou, Yewen; Wang, Yue; Li, Hongjiao; Zhang, Taojie; Jiang, Ying; Gou, Kemian; Cui, Sheng

    2018-02-26

    Melatonin is a key hormone that regulates circadian rhythms, metabolism, and reproduction. However, the mechanisms of melatonin synthesis and secretion have not been fully defined. The purpose of this study was to investigate the functions of the LIM homeobox transcription factor Isl1 in regulating melatonin synthesis and secretion in porcine pineal gland. We found that Isl1 is highly expressed in the melatonin-producing cells in the porcine pineal gland. Further functional studies demonstrate that Isl1 knockdown in cultured primary porcine pinealocytes results in the decline of melatonin and arylalkylamine N-acetyltransferase (AANAT) mRNA levels by 29.2% and 72.2%, respectively, whereas Isl1 overexpression raised by 1.3-fold and 2.7-fold. In addition, the enhancing effect of norepinephrine (NE) on melatonin synthesis was abolished by Isl1 knockdown. The in vivo intracerebroventricular NE injections upregulate Isl1 mRNA and protein levels by about threefold and 4.5-fold in the porcine pineal gland. We then examined the changes in Isl1 expression in the pineal gland and global melatonin levels throughout the day. The results show that Isl1 protein level at 24:00 is 2.5-fold higher than that at 12:00, which is parallel to melatonin levels. We further found that Isl1 increases the activity of AANAT promoter, and the effect of NE on Isl1 expression was blocked by an ERK inhibitor. Collectively, the results presented here demonstrate that Isl1 positively modulates melatonin synthesis by targeting AANAT, via the ERK signaling pathway of NE. These suggest that Isl1 plays important roles in maintaining the daily circadian rhythm. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin.

    PubMed

    Mehaisen, Gamal Mohamed Kamel; Saeed, Ayman Moustafa

    2015-02-01

    This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2-4 cells, 8-16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10(-3) M, 10(-6) M or 10(-9) M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10(-3) M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10(-3) M versus 10(-9) M, 10(-6) M and control, respectively, P< 0.05). At the morula stage, melatonin at 10-3 M significantly increased the in vitro development of embryos (92% for 10(-3) M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16-30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10(-6) M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10-3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.

  17. Growth conditions determine different melatonin levels in Lupinus albus L.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2013-09-01

    Melatonin, an indoleamine, which has recently been assigned several roles in plant physiology as a growth promoter, as rooting agent, and as antioxidant in senescence delay and cytoprotection, seems to have a relevant function in plant stress situations. The presence of melatonin increases the resistance of lupin plant tissues (Lupinus albus L.) against natural or artificially induced adverse situations. In this work, we studied the response of lupin plants in controlled stress situations (drought-, anaerobic-, pH-, and cold stress and using ZnSO4 , NaCl, and H2 O2 as chemical stressors) and measured the changes in endogenous melatonin levels in lupin plants. Also, the effect of abscisic acid, ethylene, and natural environmental conditions were evaluated. In general, nearly all stressful factors caused an increase in melatonin in the investigated organs. The chemical stress provoked by ZnSO4 or NaCl caused the most pronounced changes in the endogenous level of melatonin, followed by cold and drought stressors. In some cases, the level of melatonin increased 12-fold with respect to the levels in control plants, indicating that melatonin biosynthesis is upregulated in common stress situations, in which it may serve as a signal molecule and/or as a direct antistress agent due to its well-known antioxidative properties. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Aging and the circadian rhythm of melatonin: a cross-sectional study of Chinese subjects 30-110 yr of age.

    PubMed

    Zhao, Zi-Yan; Xie, Yi; Fu, Yue-Rong; Bogdan, André; Touitou, Yvan

    2002-11-01

    Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00 h, in 144 persons aged 30-110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P < 0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P < 0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30-39, 40-49, 50-59, and 60-69 yr: blood samples were taken at 2 h intervals from 08:00 to 22:00 h and hourly from 22:00 to 08:00 h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s.

  19. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation.

    PubMed

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-09-07

    To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P < 0.05) recovered the expression of adiponectin. The expression levels of IL-6 and IL-17 were increased in the serum of mice with DSS colitis but decreased after melatonin injection. This study suggested that melatonin modulated adiponectin expression in colonic tissue and melatonin and adiponectin synergistically potentiated anti-inflammatory effects on colitis with sleep deprivation.

  20. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    PubMed

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: A preliminary report.

    PubMed

    Almeneessier, Aljohara S; Bahammam, Ahmed S; Sharif, Munir M; Bahammam, Salman A; Nashwan, Samar Z; Pandi Perumal, Seithikurippu R; Cardinali, Daniel P; Alzoghaibi, Mohammad

    2017-01-01

    We hypothesized that if we control for food composition, caloric intake, light exposure, sleep schedule, and exercise, intermittent fasting would not influence the circadian pattern of melatonin. Therefore, we designed this study to assess the effect of intermittent fasting on the circadian pattern of melatonin. Eight healthy volunteers with a mean age of 26.6 ± 4.9 years and body mass index of 23.7 ± 3.5 kg/m 2 reported to the Sleep Disorders Center (the laboratory) on four occasions: (1) adaptation, (2) 4 weeks before Ramadan while performing Islamic intermittent fasting for 1 week (fasting outside Ramadan [FOR]), (3) 1 week before Ramadan (nonfasting baseline [BL]), and (4) during the 2 nd week of Ramadan while fasting ( Ramadan ). The plasma levels of melatonin were measured using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00 h. The light exposure, meal composition, energy expenditure, and sleep schedules remained the same while the participants stayed at the laboratory. The melatonin levels followed the same circadian pattern during the three monitoring periods (BL, FOR, and Ramadan ). The peak melatonin level was at 02:00 h and the trough level was at 11:00 h in all studied periods. Lower melatonin levels at 22:00 h were found during fasting compared to BL. Cosinor analysis revealed no significant changes in the acrophase of melatonin levels. In this preliminary report, under controlled conditions of light exposure, meal composition, energy expenditure, and sleep-wake schedules, intermittent fasting has no significant influence on the circadian pattern of melatonin.

  2. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: A preliminary report

    PubMed Central

    Almeneessier, Aljohara S.; Bahammam, Ahmed S.; Sharif, Munir M.; Bahammam, Salman A.; Nashwan, Samar Z.; Pandi Perumal, Seithikurippu R.; Cardinali, Daniel P.; Alzoghaibi, Mohammad

    2017-01-01

    AIMS: We hypothesized that if we control for food composition, caloric intake, light exposure, sleep schedule, and exercise, intermittent fasting would not influence the circadian pattern of melatonin. Therefore, we designed this study to assess the effect of intermittent fasting on the circadian pattern of melatonin. METHODS: Eight healthy volunteers with a mean age of 26.6 ± 4.9 years and body mass index of 23.7 ± 3.5 kg/m2 reported to the Sleep Disorders Center (the laboratory) on four occasions: (1) adaptation, (2) 4 weeks before Ramadan while performing Islamic intermittent fasting for 1 week (fasting outside Ramadan [FOR]), (3) 1 week before Ramadan (nonfasting baseline [BL]), and (4) during the 2nd week of Ramadan while fasting (Ramadan). The plasma levels of melatonin were measured using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00 h. The light exposure, meal composition, energy expenditure, and sleep schedules remained the same while the participants stayed at the laboratory. RESULTS: The melatonin levels followed the same circadian pattern during the three monitoring periods (BL, FOR, and Ramadan). The peak melatonin level was at 02:00 h and the trough level was at 11:00 h in all studied periods. Lower melatonin levels at 22:00 h were found during fasting compared to BL. Cosinor analysis revealed no significant changes in the acrophase of melatonin levels. CONCLUSIONS: In this preliminary report, under controlled conditions of light exposure, meal composition, energy expenditure, and sleep-wake schedules, intermittent fasting has no significant influence on the circadian pattern of melatonin. PMID:28808490

  3. Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkii.

    PubMed

    Shin, Hyun Suk; Lee, Jehee; Choi, Cheol Young

    2011-10-01

    The present study aimed to test the effects of melatonin on oxidative stress in the yellowtail clownfish, Amphiprion clarkii, as produced by light emitting diodes (LEDs): red, green, and blue. We investigated the effects of the different LEDs on oxidative stress by measuring the mRNA expression of arylalkylamine N-acetyltransferase (AANAT2), the expression and activities of antioxidant enzymes (superoxide dismutase, SOD (EC 1.15.1.1); and catalase, CAT (EC 1.11.1.6)), and plasma H2O2 and plasma melatonin levels. In red light, the expression of AANAT2, SOD, and CAT mRNA was significantly higher than those under the other light spectra. SOD and CAT activities and plasma H2O2 and melatonin levels were also significantly higher for the red spectra than those for the other light spectra. These results indicate that red light induces oxidative stress. To investigate the effects of melatonin on oxidative stress, we injected melatonin into live fish (in vivo) or treated cultured pineal organ (in vitro) with melatonin. We found that AANAT2, SOD, and CAT mRNA expression levels, SOD and CAT activities, and plasma H2O2, lipid peroxidation (LPO) and melatonin levels were significantly lower than those for the controls. Therefore, our results indicate that red light induces oxidative stress and melatonin plays the role of a strong antioxidant in yellowtail clownfish.

  4. Decreased concentration of serum melatonin in nighttime compared with daytime female medical technologists in South Korea.

    PubMed

    Song, GiSeon; Yoon, Kyong-Ah; Chi, HyunYoung; Roh, Jaehoon; Kim, Jin-Hee

    2016-01-01

    Working during the night can disrupt the normal circadian rhythm by altering the melatonin level. A low level of melatonin is associated with an increased risk of cancer, possibly by decreasing the expression of tumor-suppressor genes, such as p53. To determine whether nighttime work is associated with melatonin level in serum as well as the expression of related genetic markers, we enrolled 100 female nighttime medical technologists employed at a hospital in South Korea. Melatonin concentration and melatonin receptor 1 (MT1) expression were significantly lower in nighttime than in daytime workers (1.84 pg/mL versus 4.04 pg/mL; 1.16 versus 1.61, respectively). However, p53 expression showed no difference between the groups. In summary, nighttime work could be an important risk factor for circadian disruption, but not a direct risk factor for cancer in medical technologists in South Korea.

  5. Investigation of the effects of magnetic field exposure on human melatonin. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, C.; Cook, M.R.; Cohen, H.D.

    Several rodent studies have suggested that magnetic field exposure may alter the daily pattern of melatonin secretion. This study investigated melatonin levels in mean exposed overnight to magnetic fields of 10 mG and 200 mG. The study also assessed the potential effects of exposure on a number of performance and self-reported endpoints in the subjects. Investigation of this area is important, as altered diurnal melatonin cycles have been linked to a variety of endpoints, including reproductive outcome, neurobehavioral function, and carcinogenesis. The results of this investigation did not support the a priori hypothesis that exposure to 60-Hz magnetic fields ofmore » 10 mG and 200 mG alters nighttime melatonin levels in a population of adult males. However, the data suggested the possibility of differential sensitivity to magnetic fields based on an individual`s baseline melatonin level.« less

  6. Protective effects of melatonin and memantine in human retinal pigment epithelium (ARPE-19) cells against 2-ethylpyridine-induced oxidative stress: implications for age-related macular degeneration.

    PubMed

    Bardak, Handan; Uğuz, Abdülhadi Cihangir; Bardak, Yavuz

    2018-06-01

    To investigate the possible protective effects of melatonin and memantine (MMT) against 2-ethylpyridine (2-EP)-induced oxidative stress and mitochondrial dysfunction in human RPE (ARPE-19) cells in vitro. The ARPE-19 cells were divided into seven groups. Oxidative stress was triggered by incubating the ARPE-19 cells with 30 μM of 2-EP for 24 h. Then, 200 μM of melatonin was administered over three days and 20 μM of MMT over six hours prior to the experiment. The effects of melatonin and MMT on the intracellular calcium release mechanism, reactive oxygen species production, caspase-3 and caspase-9 activities, as well as vascular endothelial growth factor levels were measured. Melatonin and MMT were found to significantly decrease apoptosis levels. The intracellular calcium release was regulated by both melatonin and MMT. Further, melatonin and MMT significantly decreased both caspase-3 and caspase-9 activities, as well as pro-caspase and poly(ADP-ribose) polymerase expression, in ARPE-19 cells. Moreover, melatonin significantly increased the protective effect of MMT. The combination of melatonin and MMT significantly decreased 2-EP-induced oxidative toxicity and apoptosis by inhibiting the intracellular reactive oxygen species production and mitochondrial depolarization levels. These notable findings are the first to demonstrate the synergistic protective effects of melatonin and MMT against 2-EP-induced oxidative stress in ARPE-19 cells.

  7. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  9. CYP1A2 polymorphisms in slow melatonin metabolisers: a possible relationship with autism spectrum disorder?

    PubMed

    Braam, W; Keijzer, H; Struijker Boudier, H; Didden, R; Smits, M; Curfs, L

    2013-11-01

    In some of our patients with intellectual disabilities (ID) and sleep problems, the initial good response to melatonin disappeared within a few weeks after starting treatment. In these patients melatonin levels at noon were extremely high (>50 pg/ml). We hypothesise that the disappearing effectiveness is associated with slow metabolisation of melatonin because of a single nucleotide polymorphism (SNP) of CYP1A2. In this pilot study we analysed DNA extracted from saliva samples of 15 consecutive patients with disappearing effectiveness of melatonin. Saliva was collected at noon and 4 pm for measuring melatonin levels. In all patients' salivary melatonin levels at noon were >50 or melatonin half time was > 5 h. A SNP was found in eight of 15 patients. The allele 1C was found in two patients and in six patients the 1F allele was found. Of 15 patients with disappearing effectiveness of melatonin, seven were diagnosed with autism spectrum disorder, and in four of them a SNP was found. The other eight patients were known with a genetic syndrome. In six of them behaviour was considered to be autistic-type and in three of them a SNP was found. This finding may give a new direction for research into the genetic background of autism. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.

  10. Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers.

    PubMed

    Marhuenda, Javier; Medina, Sonia; Martínez-Hernández, Pedro; Arina, Simón; Zafrilla, Pilar; Mulero, Juana; Genieser, Hans-Gottfried; Ferreres, Federico; Gil-Izquierdo, Ángel

    2016-12-07

    The Mediterranean Diet (MD) has been proved to exert benefits with respect to the maintenance of the redox balance, and wine is a representative component. Bioactive compounds such as polyphenols, melatonin and hydroxytyrosol act as radical scavengers and regulate the oxidation status of organisms. Oxidative damage to DNA yields a large range of end products. The repair of oxidized DNA entails the removal of the useless bases and/or nucleotides as well as the release of circulating nucleotides and nucleosides. The current research aims to elucidate, for the first time, the DNA protection against oxidative stress provided by three types of red wine - relating it to the intake of bioactive compounds - after the intake of a serving of red wine/must by 18 healthy female volunteers during a short term double-blind, crossover and placebo-controlled study. The novelty of our work is to describe the importance of melatonin and hydroxytyrosol and its metabolites (from gut microflora) in comparison with polyphenols in a red wine matrix (excluding colon derivatives). The results show that the intake of red wine and must secondarily reduces oxidative stress and carcinogenesis due to their content of homovanillic acid, as measured by decreases in the plasmatic concentration of 8-hydroxy-2'deoxyguanosine, 8-hydroxyguanine, and 8-nitroguanosine. Moreover, the intake of wine appears to exert vasodilatory effects, mediated by the action of nitric oxide and increased plasma guanosine-3'-5'-cyclic monophosphate plasmatic levels, owing to the intake of wines higher in melatonin and homovanillic acid. Therefore, the results obtained in the present study revealed that polyphenols, despite being the major compounds in the red wine matrix, are not the most effective compounds protecting DNA from oxidative attack.

  11. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels.

    PubMed

    Stefanovic, Bojana; Spasojevic, Natasa; Jovanovic, Predrag; Jasnic, Nebojsa; Djordjevic, Jelena; Dronjak, Sladjana

    2016-10-01

    The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  12. Older poor-sleeping women display a smaller evening increase in melatonin secretion and lower values of melatonin and core body temperature than good sleepers.

    PubMed

    Olbrich, Denise; Dittmar, Manuela

    2011-10-01

    Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62-72 yrs) and 9 older good-sleeping women (60-82 yrs) were compared with 10 younger good-sleeping women (23-28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00 h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00 h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00 h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00 h than older good sleepers (mean ± SD: 7.0 ± 9.63 pg/mL vs. 15.6 ± 24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10 h) and older (19:57 h) good-sleeping women, but was delayed ∼50 min in older poor-sleeping women (20:47 h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R(2) = 0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people.

  13. Effect of oral melatonin and wearing earplugs and eye masks on nocturnal sleep in healthy subjects in a simulated intensive care unit environment: which might be a more promising strategy for ICU sleep deprivation?

    PubMed

    Huang, Hua-Wei; Zheng, Bo-Lu; Jiang, Li; Lin, Zong-Tong; Zhang, Guo-Bin; Shen, Ling; Xi, Xiu-Ming

    2015-03-19

    Sleep deprivation is common in critically ill patients in the intensive care unit (ICU). Noise and light in the ICU and the reduction in plasma melatonin play the essential roles. The aim of this study was to determine the effect of simulated ICU noise and light on nocturnal sleep quality, and compare the effectiveness of melatonin and earplugs and eye masks on sleep quality in these conditions in healthy subjects. This study was conducted in two parts. In part one, 40 healthy subjects slept under baseline night and simulated ICU noise and light (NL) by a cross-over design. In part two, 40 subjects were randomly assigned to four groups: NL, NL plus placebo (NLP), NL plus use of earplugs and eye masks (NLEE) and NL plus melatonin (NLM). 1 mg of oral melatonin or placebo was administered at 21:00 on four consecutive days in NLM and NLP. Earplugs and eye masks were made available in NLEE. The objective sleep quality was measured by polysomnography. Serum was analyzed for melatonin levels. Subjects rated their perceived sleep quality and anxiety levels. Subjects had shorter total sleep time (TST) and rapid eye movement (REM) sleep, longer sleep onset latency, more light sleep and awakening, poorer subjective sleep quality, higher anxiety level and lower serum melatonin level in NL night (P <0.05). NLEE had less awakenings and shorter sleep onset latency (P <0.05). NLM had longer TST and REM and shorter sleep onset latency (P <0.05). Compared with NLEE, NLM had fewer awakenings (P = 0.004). Both NLM and NLEE improved perceived sleep quality and anxiety level (P = 0.000), and NLM showed better than NLEE in perceived sleep quality (P = 0.01). Compared to baseline night, the serum melatonin levels were lower in NL night at every time point, and the average maximal serum melatonin concentration in NLM group was significantly greater than other groups (P <0.001). Compared with earplugs and eye masks, melatonin improves sleep quality and serum melatonin levels better in healthy subjects exposed to simulated ICU noise and light. Chinese Clinical Trial Registry ChiCTR-IPR-14005458 . Registered 10 November 2014.

  14. [Normalizing effect of the pineal gland peptides on the daily melatonin rhythm in old monkeys and elderly people].

    PubMed

    Korkushko, O V; Lapin, B A; Goncharova, N D; Khavinson, V Kh; Shatilo, V B; Vengerin, A A; Antoniuk-Shcheglova, I A; Magdich, L V

    2007-01-01

    In the course of aging both monkeys and people reveal decreased night and average daily level of melatonin in the blood plasma and reduced hormone circadian rhythm amplitude, which evidence the disorder of the pineal gland melatonin releasing function. Peptide preparations of the pineal gland (Epithalamin--a complex of peptides isolated from the pineal gland and Epitalon--synthetic tetrapeptide) recover night release of endogenous melatonin and lead to the normalization of the hormone circadian rhythm in the blood plasma. In elderly people Epithalamin and Epitalon modulate pineal gland functional state: people with pineal gland functional insufficiency report an increase of night melatonin level. The preparations of the pineal gland, effectively increasing melatonin concentration and having no side effects, can be used in clinical geriatric practice.

  15. Pathophysiology of Depression: Molecular Regulation of Melatonin Homeostasis - Current Status.

    PubMed

    Dmitrzak-Weglarz, Monika; Reszka, Edyta

    2018-06-13

    Circadian rhythm alterations resulting in disturbed sleep and disturbed melatonin secretion are flagship features of depression. Melatonin, known as a hormone of darkness, is secreted by the pineal gland located near to the center of the brain between the two hemispheres. Melatonin has an antidepressant effect by maintaining the body's circadian rhythm, by regulating the pattern of expression of the clock genes in the suprachiasmatic nucleus (SCN) and modifying the key genes of serotoninergic neurotransmission that are linked with a depressive mood. Melatonin is produced via the metabolism of serotonin in two steps which are catalyzed by serotonin N-acetyltransferase (SNAT) and acetylserotonin-O-methyltransferase (ASMT). Serotonin, SNAT, and ASMT are key melatonin level regulation factors. Melatonin acts mainly on the MT1 and MT2 receptors, which are present in the SCN, to regulate physiological and neuroendocrine functions including circadian entrainment, referred to as a chronobiotic effect. Although melatonin has been known about and refereed to for almost 50 years, the relationship between melatonin and depression is still not clear. In this review, we summarize current knowledge about the genetic and epigenetic regulation of enzymes involved in melatonin synthesis and metabolism as potential features of depression pathophysiology and treatment. Confirmation that melatonin metabolism in peripheral blood partially reflects a disorder in the brain could be a breakthrough in the standardization of measurements of melatonin level for the development of treatment standards, finding new therapeutic targets, and elaborating simple noninvasive clinical tests. © 2018 S. Karger AG, Basel.

  16. Melatonin Attenuates Memory Impairment, Amyloid-β Accumulation, and Neurodegeneration in a Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Rudnitskaya, Ekaterina A; Muraleva, Natalia A; Maksimova, Kseniya Yi; Kiseleva, Elena; Kolosova, Nataliya G; Stefanova, Natalia A

    2015-01-01

    Melatonin is a multifunctional molecule and plays a crucial role in the regulation of circadian rhythms. The role of melatonin in the protection of the central nervous system is well documented. Therefore, melatonin was proposed as a possible therapeutic agent for reducing the severity of Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive decline and memory dysfunction. Recently, we showed beneficial neuroprotective effects of prophylactic supplementation with melatonin in a suitable model of sporadic AD: OXYS rats, which exhibit disturbances in melatonin secretion. In the present study, we demonstrated that melatonin administration, when started at the age of active progression of AD-like pathology, decreased the amyloid-β1 - 42 and amyloid-β1 - 40 levels in the hippocampus and amyloid-β1 - 42 levels in the frontal cortex of OXYS rats. Furthermore, oral administration of melatonin slowed down degenerative alterations in hippocampal neurons of OXYS rats. The most noticeable improvement was observed in the CA1 region of the hippocampus. Melatonin administration prevented the decrease in the mitochondria-occupied portion of the neuronal volume and improved the ultrastructure of mitochondria in the neurons of the CA1 region. Additionally, melatonin treatment of OXYS rats slowed down an increase in anxiety and deterioration of reference memory. Thus, melatonin administration could alleviate the burden of AD and may be considered a promising pharmaceutical treatment of the disease.

  17. Sleep quality, morningness-eveningness preference, mood profile, and levels of serum melatonin in migraine patients: a case-control study.

    PubMed

    Kozak, Hasan Hüseyin; Boysan, Murat; Uca, Ali Ulvi; Aydın, Adem; Kılınç, İbrahim; Genç, Emine; Altaş, Mustafa; Güngör, Dilara Cari; Turgut, Keziban; Özer, Nejla

    2017-03-01

    The melatonin as the pineal gland's secretory product is implicated in the pathophysiology of migraine. Melatonin has critical functions in human physiology, and research underscores the importance of melatonin in circadian rhythm, sleep, and mood regulation. Clinical observations have indicated that migraine attacks have a seasonal, menstrual, and circadian timing, suggesting that chronobiological mechanisms and their alterations may causally involve in the etiology of the disease. However, the topic has received relatively little attention in the migraine literature. Associations between melatonin, circadian preference, sleep, and mood states were investigated in the current study. Fifty-five patients (47 females and 8 males) were compared to 57 gender and age-matched control subjects (40 females and 17 males). A socio-demographical questionnaire, the Beck Depression Inventory, Beck Anxiety Inventory (BAI), Pittsburgh Sleep Quality Index (PSQI), Profile of Mood States (POMS), and Morningness-Eveningness Questionnaire were administered to volunteers. Blood samples were taken from all participants at about 1:00 AM in an unlit room not to hamper melatonin secretion, and blood melatonin levels were measured using quantitative ELISA test. In comparison with controls, melatonin levels were significantly lower among migraine patients. Migraineurs reported significantly greater scores on the BAI, confusion-bewilderment subscale of the POMS, and total and sleep latency subscale of the PSQI. Migraine patients who had nausea during the migraine attacks and who reported bouts relevant to certain food consumption, such as cheese or chocolate, had significantly lower levels of melatonin. Contrarily, groups did not reveal statistically substantial difference in circadian preferences.

  18. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation.

    PubMed

    Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda; Chaiyarit, Ponlatham

    2017-06-01

    The existence of extra-pineal melatonin has been observed in various tissues. No prior studies of melatonin in human oral mucosal tissue under the condition of chronic inflammation have been reported. The aim of this study was to investigate the presence of melatonin in oral mucosal tissue of patients with oral lichen planus (OLP) which was considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Sections from formalin-fixed and paraffin-embedded oral mucosal tissue of OLP patients (n=30), and control subjects (n=30) were used in this study. Immunohistochemical staining was performed and the semiquantitative scoring system was used to assess the levels of arylalkylamine-N-acetyltransferase (AANAT: a rate-limiting enzyme in the biosynthesis pathway of melatonin), melatonin, and melatonin receptor 1 (MT1) in oral mucosa of OLP patients and normal oral mucosa of control subjects. AANAT, melatonin, and MT1were detected in oral mucosal tissue of OLP patients and control subjects. Immunostaining scores of AANAT, melatonin, and MT1 in oral mucosal tissue of OLP patients were significantly higher than those in control subjects (p=0.002, p<0.001, and p=0.031, respectively). Increased levels of AANAT, melatonin, and MT1 in the inflamed oral mucosal tissue of OLP patients imply that chronic inflammation may induce the local biosynthesis of melatonin via AANAT, and may enhance the action of melatonin via MT1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation for the interaction between intrathecal melatonin and clonidine or neostigmine on formalin-induced nociception.

    PubMed

    Yoon, Myung Ha; Park, Heon Chang; Kim, Woong Mo; Lee, Hyung Gon; Kim, Yeo Ok; Huang, Lan Ji

    2008-12-19

    We examined the nature of pharmacological interaction after coadministration of melatonin with clonidine or neostigmine on formalin-induced nociception at the spinal level. Further, the role of melatonin receptor subtypes in melatonin-induced antinociception was clarified. Catheters were inserted into the intrathecal space of male Sprague-Dawley rats. Pain was assessed using the formalin test (induced by a subcutaneous injection of 50 microl of a 5% formalin solution to the hindpaw). Isobolographic analysis was used for the evaluation of drug interaction between melatonin and clonidine or neostigmine. Non-selective MT1/MT2 receptors antagonist (luzindole), MT2 receptor antagonist (4-P-PDOT), and MT3 receptor/alpha-1 adrenoceptor antagonist (prazosin) were intrathecally given to verify the involvement of the melatonin receptor subtypes in the antinociception of melatonin. Furthermore, the effect of intrathecal MT3 receptor ligand (GR 135531) was observed. Intrathecal melatonin, clonidine, and neostigmine dose-dependently suppressed the flinching response during phase 1 and phase 2 in the formalin test. Isobolographic analysis showed additivity between melatonin and clonidine or neostigmine in both phases. The antinociceptive effect of melatonin was antagonized by luzindole, 4-P-PDOT, and prazosin in the spinal cord. Intrathecal GR 135531 was ineffective against the formalin-induced flinching response. These results suggest that melatonin interacts additively with clonidine and neostigmine in the formalin-induced nociception at the spinal level. Furthermore, the antinociception of melatonin is mediated through the MT2 receptor, but not the MT3 receptor. However, it seems that alpha-1 adrenoceptor plays in the effect of melatonin.

  20. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    PubMed

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  1. Impact of melatonin supplementation in the rat spermatogenesis subjected to forced swimming exercise.

    PubMed

    Moayeri, A; Mokhtari, T; Hedayatpour, A; Abbaszadeh, H-A; Mohammadpour, S; Ramezanikhah, H; Shokri, S

    2018-04-01

    Oxygen consumption increases many times during exercise, which can increase reactive oxygen species. It negatively affects fertility in male athletes. Melatonin is exerting a regulatory role at different levels of the hypothalamic-pituitary-gonadal axis. However, there is no evidence that the protective effects of melatonin persist after long duration exercise on the spermatogenesis. Therefore, this study was conducted to examine the impacts of melatonin on the testis following the administration of swimming exercise. Rats were separated into five different groups, including Control, sham M: received the solvent of melatonin, M: received melatonin, S: the exercise protocol, MS: received melatonin and the exercise protocol. After 8 weeks, animals were scarified and antioxidant enzymes levels of testes, spermatogenic cells apoptosis and sperm quality were measured. Swimming decreased all parameters of spermatozoa. Nevertheless, melatonin could significantly improve the progressive motility of spermatozoa in MS rats. Swimming caused an increased apoptosis of S group and decreased all antioxidant enzymes. Melatonin could drastically reduce apoptosis and increased these enzymes. Therefore, melatonin seems to induce the production of antioxidant enzymes of testicular tissues and diminish the extent of apoptotic changes caused by forced exercise on the testis, which can, in turn, ameliorate the sperm parameters. © 2017 Blackwell Verlag GmbH.

  2. The role of melatonin in post-partum psychosis and depression associated with bipolar disorder.

    PubMed

    Anderson, George

    2010-11-01

    Recent data has highlighted the association of a bipolar disorder (BD) with an increased risk of post-partum psychosis and depression. It is suggested that genetic- and environmental-induced decrease in the levels of melatonin in BD contributes to post-partum disorders. Melatonin may also have some efficacy in the treatment of BD, especially in decreasing the side-effects associated with lithium and the neuroleptics. It is proposed that the optimization of melatonin levels, perhaps in conjunction with optimized vitamin D3 level, would decrease post-partum psychosis and depression associated with BD.

  3. Alcoholic fermentation induces melatonin synthesis in orange juice.

    PubMed

    Fernández-Pachón, M S; Medina, S; Herrero-Martín, G; Cerrillo, I; Berná, G; Escudero-López, B; Ferreres, F; Martín, F; García-Parrilla, M C; Gil-Izquierdo, A

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a molecule implicated in multiple biological functions. Its level decreases with age, and the intake of foods rich in melatonin has been considered an exogenous source of this important agent. Orange is a natural source of melatonin. Melatonin synthesis occurs during alcoholic fermentation of grapes, malt and pomegranate. The amino acid tryptophan is the precursor of all 5-methoxytryptamines. Indeed, melatonin appears in a shorter time in wines when tryptophan is added before fermentation. The aim of the study was to measure melatonin content during alcoholic fermentation of orange juice and to evaluate the role of the precursor tryptophan. Identification and quantification of melatonin during the alcoholic fermentation of orange juice was carried out by UHPLC-QqQ-MS/MS. Melatonin significantly increased throughout fermentation from day 0 (3.15 ng/mL) until day 15 (21.80 ng/mL) reaching larger amounts with respect to other foods. Melatonin isomer was also analysed, but its content remained stable ranging from 11.59 to 14.18 ng/mL. The enhancement of melatonin occurred mainly in the soluble fraction. Tryptophan levels significantly dropped from 13.80 mg/L (day 0) up to 3.19 mg/L (day 15) during fermentation. Melatonin was inversely and significantly correlated with tryptophan (r = 0.907). Therefore, the enhancement in melatonin could be due to both the occurrence of tryptophan and the new synthesis by yeast. In summary, the enhancement of melatonin in novel fermented orange beverage would improve the health benefits of orange juice by increasing this bioactive compound. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Melatonin concentrations in the sudden infant death syndrome

    NASA Technical Reports Server (NTRS)

    Sturner, W. Q.; Lynch, H. J.; Deng, M. H.; Gleason, R. E.; Wurtman, R. J.

    1990-01-01

    The melatonin levels in various body fluids of the sudden infant death syndrome (SIDS) infants are compared with those of infants of comparable age who died of other causes to examine a possible relationship between pineal function and SIDS. After adjusting for age differences, cerebrospinal fluid melatonin levels are found to be significantly lower in the SIDS infants. It is suggested that diminished melatonin production may be characteristic of SIDS and could represent an impairment in the maturation of physiologic circadian organization.

  5. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes.

    PubMed

    Wang, Lin; Zhao, Yu; Reiter, Russel J; He, Changjiu; Liu, Guoshi; Lei, Qiong; Zuo, Bixiao; Zheng, Xiao Dong; Li, Qingtian; Kong, Jin

    2014-03-01

    In animals, the melatonin biosynthesis pathway has been well defined after the isolation and identification of the four key genes that are involved in the conversion of tryptophan to melatonin. In plants, there are special alternative catalyzing steps, and plant genes share very low homology with the animal genes. It was of interest to examine the phenotype of transgenic Micro-Tom tomato plants overexpressing the homologous sheep oAANAT and oHIOMT genes responsible for the last two steps of melatonin synthesis. The oAANAT transgenic plants have higher melatonin levels and lower indoleacetic acid (IAA) contents than control due to the competition for tryptophan, the same precursor for both melatonin and IAA. Therefore, the oAANAT lines lose the 'apical dominance' inferring that melatonin likely lacks auxin activity. The significantly higher melatonin content in oHIOMT lines than oAANAT lines provides new proof for the important role of ASMT in plant melatonin synthesis. In addition, the enhanced drought tolerance of oHIOMT lines will also be an important contribution for plant engineering. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    PubMed

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Low maternal melatonin level increases autism spectrum disorder risk in children.

    PubMed

    Braam, Wiebe; Ehrhart, Friederike; Maas, Anneke P H M; Smits, Marcel G; Curfs, Leopold

    2018-02-28

    It is assumed that autism spectrum disorder (ASD) is caused by a combination of de novo inherited variation and common variation as well as environmental factors. It often co-occurs with intellectual disability (ID). Almost eight hundred potential causative genetic variations have been found in ASD patients. However, not one of them is responsible for more than 1% of ASD cases. Low melatonin levels are a frequent finding in ASD patients. Melatonin levels are negatively correlated with severity of autistic impairments, it is important for normal neurodevelopment and is highly effective in protecting DNA from oxidative damage. Melatonin deficiency could be a major factor, and well a common heritable variation, that increases the susceptibility to environmental risk factors for ASD. ASD is already present at birth. As the fetus does not produce melatonin, low maternal melatonin levels may be involved. We measured 6-sulfatoxymelatonin in urine of 60 mothers of a child with ASD and controls. 6-sulfatoxymelatonin levels were significantly lower in mothers with an ASD child than in controls (p = 0.012). Low parental melatonin levels could be one of the contributors to ASD and possibly ID etiology. Our findings need to be duplicated on a larger scale. If our hypothesis is correct, this could lead to policies to detect future parents who are at risk and to treatment strategies to ASD and intellectual disability risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Melatonin in Plants – Diversity of Levels and Multiplicity of Functions

    PubMed Central

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N1-acetyl-N2-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity. PMID:26925091

  10. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions.

    PubMed

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.

  11. Melatonin Treatment May Be Able to Restore Menstrual Cyclicity in Women With PCOS: A Pilot Study.

    PubMed

    Tagliaferri, Valeria; Romualdi, Daniela; Scarinci, Elisa; Cicco, Simona De; Florio, Christian Di; Immediata, Valentina; Tropea, Anna; Santarsiero, Carla Mariaflavia; Lanzone, Antonio; Apa, Rosanna

    2018-02-01

    The objective of the study was to investigate the effects of 6 months of melatonin administration on clinical, endocrine, and metabolic features of women affected by polycystic ovary syndrome (PCOS). This is a prospective cohort study including 40 normal-weight women with PCOS between January and September 2016, enrolled in an academic research environment. Ultrasonographic pelvic examinations, hirsutism score evaluation, hormonal profile assays, oral glucose tolerance test, and lipid profile at baseline and after 6 months of melatonin administration were performed. Melatonin treatment significantly decreased androgens levels (free androgen index: P < .05; testosterone: P < .01; 17 hydroxyprogesterone: P < .01). Follicle-stimulating hormone levels significantly raised ( P < .01), and anti-Mullerian hormone serum levels significantly dropped after 6 months of melatonin treatment ( P < .01). No significant changes occurred in glucoinsulinemic and lipid parameters after treatment except a significant decrease of low-density lipoprotein cholesterol. Almost 95% of participants experienced an amelioration of menstrual cycles. Until now, only few data have been published about the role of melatonin in women with PCOS. This is the first study focused on the effects of exogenous oral melatonin administration on the clinical, endocrine, and metabolic characteristics of patients with PCOS. After 6 months of treatment, melatonin seems to improve menstrual irregularities and biochemical hyperandrogenism in women with PCOS through a direct, insulin-independent effect on the ovary. Based on our results, melatonin could be considered a potential future therapeutic agent for women affected by PCOS.

  12. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective

    PubMed Central

    Liu, Jiabei; Clough, Shannon J.; Hutchinson, Anthony J.; Adamah-Biassi, Ekue B.; Popovska-Gorevski, Marina; Dubocovich, Margarita L.

    2016-01-01

    Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein–coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents. PMID:26514204

  13. Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    PubMed Central

    Weeda, Sarah; Zhang, Na; Zhao, Xiaolei; Ndip, Grace; Guo, Yangdong; Buck, Gregory A.; Fu, Conggui; Ren, Shuxin

    2014-01-01

    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways. PMID:24682084

  14. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation.

    PubMed

    Yu, Li-Ming; Di, Wen-Cheng; Dong, Xue; Li, Zhi; Zhang, Yong; Xue, Xiao-Dong; Xu, Yin-Li; Zhang, Jian; Xiao, Xiong; Han, Jin-Song; Liu, Yu; Yang, Yang; Wang, Hui-Shan

    2018-02-01

    It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT 2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT 2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus).

    PubMed

    Sarropoulou, Virginia; Dimassi-Theriou, Kortessa; Therios, Ioannis; Koukourikou-Petridou, Magdalene

    2012-12-01

    The present study, investigates the effects of melatonin (0, 0.05, 0.1, 0.5, 1, 5 and 10 μM) on the morphogenic and biochemical responses in the cherry rootstock PHL-C (Prunus avium L. × Prunus cerasus L.), from shoot tip explants. The incorporation of melatonin (0-10 μM) in the Murashige and Skoog (MS) medium, greatly influenced rooting either positively or negatively. Melatonin, irrespective of its concentration, had a negative effect concerning the number of roots. However, application of 0.5 μM melatonin significantly increased the root length; while 1 μM melatonin increased the root length by 2.5 times, and the fresh weight of the roots by 4 times, in comparison to the control. Although 0.05 μM melatonin increased rooting by 11.11%, 5 μM melatonin had a significant reduction on the number, the fresh weight of roots, and the rooting percentage. Melatonin concentration of 0.1 μM resulted in the greatest chlorophyll (a + b) content, and 5-10 μM reduced the chlorophyll concentration by 2 times, compared to the control. The high melatonin concentrations (5 and 10 μM), increased the levels of proline and carbohydrates in leaves by 3-4 times. In the roots, 0.5 μM of melatonin concentration increased the carbohydrate levels by 1.5 times, while 0.05, 0.1 and 1 μM melatonin concentration significantly reduced the proline content. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Effects of Sleep Quality on Melatonin Levels and Inflammatory Response after Major Abdominal Surgery in an Intensive Care Unit.

    PubMed

    Yaşar, Necdet Fatih; Badak, Bartu; Canik, Ağgül; Baş, Sema Şanal; Uslu, Sema; Öner, Setenay; Ateş, Ersin

    2017-09-12

    Disruption of nocturnal sleep in an intensive care unit may remarkably affect production of melatonin, which is also known to have anti-inflammatory properties. In the present study, we aimed to investigate the effect of sleep quality on melatonin levels and inflammation after surgery. Thus, we compared the patients, who were screened in the side-rooms where the lights were dimmed and noise levels were reduced, with the patients who received usual care. Preoperative and postoperative urine 6-sulphatoxymelatonin, serum interleukin-1 (IL-1), interleukin-6 (IL-6), and c-reactive protein (CRP) levels were measured and data on sleep quality was collected using the Richards-Campbell Sleep Questionnaire. Postoperative CRP and IL-6 levels were greater in the control group than in the experimental group, whereas postoperative 24 h melatonin levels were greater than preoperative levels and the difference was steeper in the experimental group in concordance with sleep quality scores. Thus, the regulation of light and noise in ICUs may help the recovery after major surgeries in patients, potentially by increasing melatonin production, which has anti-inflammatory properties.

  17. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders.

    PubMed

    Pagan, Cécile; Goubran-Botros, Hany; Delorme, Richard; Benabou, Marion; Lemière, Nathalie; Murray, Kerren; Amsellem, Frédérique; Callebert, Jacques; Chaste, Pauline; Jamain, Stéphane; Fauchereau, Fabien; Huguet, Guillaume; Maronde, Erik; Leboyer, Marion; Launay, Jean-Marie; Bourgeron, Thomas

    2017-05-18

    Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.

  18. Early metabolite changes after melatonin treatment in neonatal rats with hypoxic-ischemic brain injury studied by in-vivo 1H MR spectroscopy

    PubMed Central

    Nyman, Axel K. G.; Morken, Tora Sund; Vettukattil, Riyas; Brubakk, Ann-Mari; Widerøe, Marius

    2017-01-01

    Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain injury. We used in-vivo 1H magnetic resonance spectroscopy to investigate effects of melatonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with unilateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and contralateral hemisphere were acquired 1 day after HI. Our results showed that injured animals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels and lower lipid concentrations compared to DMSO treatment as well as higher macromolecule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower concentrations of glucose, creatine, phosphocholine and macromolecules compared to sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a more favorable metabolic profile including reduced lipid levels that likely represents reduced cell injury. Neuroprotective effects may also be related to the influence of melatonin on glutamate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral energy metabolism might have masked additional beneficial effects of melatonin. PMID:28934366

  19. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    PubMed

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  20. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants.

    PubMed

    Xu, Wen; Cai, Shu-Yu; Zhang, Yun; Wang, Yu; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Reiter, Russel J; Zhou, Jie

    2016-11-01

    Melatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C. Foliar pretreatment with an optimal dose of melatonin (10 μmol/L) or the overexpression of N-acetylserotonin methyltransferase (ASMT) gene effectively ameliorated heat-induced photoinhibition and electrolyte leakage in tomato plants. Both exogenous melatonin treatment and endogenous melatonin manipulation by overexpression of ASMT decreased the levels of insoluble and ubiquitinated proteins, but enhanced the expression of heat-shock proteins (HSPs) to refold denatured and unfolded proteins under heat stress. Meanwhile, melatonin also induced expression of several ATG genes and formation of autophagosomes to degrade aggregated proteins under the same stress. Proteomic profile analyses revealed that protein aggregates for a large number of biological processes accumulated in wild-type plants. However, exogenous melatonin treatment or overexpression of ASMT reduced the accumulation of aggregated proteins. Aggregation responsive proteins such as HSP70 and Rubisco activase were preferentially accumulated and ubiquitinated in wild-type plants under heat stress, while melatonin mitigated heat stress-induced accumulation and ubiquitination of aggregated proteins. These results suggest that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Relationships of salivary cortisol and melatonin rhythms to sleep quality, emotion, and fatigue levels in patients with newly diagnosed lung cancer.

    PubMed

    Chang, Wen-Pei; Lin, Chia-Chin

    2017-08-01

    After being diagnosed with lung cancer, patients often experience sleep disturbance, anxiety, depression, and fatigue. These symptoms may occur because of changes in neurotransmitter secretion caused by tumors. This study investigated the correlation of cortisol and melatonin rhythms with sleep quality, anxiety, depression, and fatigue levels in patients with newly diagnosed lung cancer. We conducted a case-control study and recruited 40 patients with newly diagnosed lung cancer and 40 healthy adults. The patient group had a lower salivary melatonin level and flatter slope (p < 0.001 and p < 0.001), higher salivary cortisol level and steeper slope (p < 0.001 and p < 0.001), higher sleep disturbance level (p = 0.004), and higher depression level (p < 0.001). The multivariate linear regression analysis indicated that the cortisol slope (p = 0.005) and fatigue score (p = 0.032) predicted the sleep quality score (p = 0.011). Overall, the patients with newly diagnosed lung cancer had poorer sleep quality, higher depression levels, lower salivary melatonin levels, higher cortisol levels, and flatter melatonin and cortisol slopes than did the controls. The fatigue level and cortisol slope significantly predicted sleep quality. Therefore, the assessment of cortisol and melatonin rhythms and levels could provide crucial information that may be beneficial for managing symptoms in patients with newly diagnosed lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Assessing the Dim Light Melatonin Onset in Adults with Autism Spectrum Disorder and No Comorbid Intellectual Disability

    ERIC Educational Resources Information Center

    Baker, Emma K.; Richdale, Amanda L.; Hazi, Agnes; Prendergast, Luke A.

    2017-01-01

    This study assessed melatonin levels and the dim light melatonin onset (DLMO) in adults with Autism Spectrum Disorder (ASD) and also investigated the relationships between melatonin and objectively measured sleep parameters. Sixteen adults with ASD (ASD-Only), 12 adults with ASD medicated for comorbid diagnoses of anxiety and/or depression…

  3. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Therapeutic perspectives for melatonin agonists and antagonists.

    PubMed

    Delagrange, P; Atkinson, J; Boutin, J A; Casteilla, L; Lesieur, D; Misslin, R; Pellissier, S; Pénicaud, L; Renard, P

    2003-04-01

    Melatonin is a neurohormone synthesized in the pineal gland during the dark period in all species, including humans. The diversity and differences in melatonin receptor distribution in the brain and extracerebral organs suggest multiple functional roles for melatonin. Administration of melatonin agonists reduces neophobia and treatment with a melatonin antagonist during the dark period reverses the anxiolytic-like effect of endogenous melatonin. Chronic treatment with agonists prevents various perturbations induced by chronic mild stress. Melatonin in vivo directly constricts cerebral arterioles in rats and decreases the lower limit of cerebral blood flow autoregulation, suggesting that melatonin may diminish the risk of hypoperfusion-induced cerebral ischemia. At the extracerebral level, melatonin regulates intestinal motility in rats. The intestinal postprandial motor response is shorter in the dark phase than in the light phase and this reduction is reversed in animals pretreated with a melatonin antagonist. Moreover, melatonin reduces the duration of cholecystokinin excitomotor effect. Endogenous melatonin may modulate intestinal motility to coordinate intestinal functions such as digestion and transit and control the metabolism of the animal. An adipocyte melatonin binding site may also participate in this control. Melatonin is involved in a wide range of physiological functions. The question remains as to whether evolution, adaptation and diurnal life have modified the physiological role of melatonin in humans. Moreover, the functional role of each of the receptor subtypes has to be characterized to design selective ligands to treat specific diseases.

  5. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes.

    PubMed

    Leonardo-Mendonça, Roberto C; Ocaña-Wilhelmi, Javier; de Haro, Tomás; de Teresa-Galván, Carlos; Guerra-Hernández, Eduardo; Rusanova, Iryna; Fernández-Ortiz, Marisol; Sayed, Ramy K A; Escames, Germaine; Acuña-Castroviejo, Darío

    2017-07-01

    Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day -1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH -1 and GPx·GRd -1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.

  6. [MELATONIN CONCENTRATION IN THE BLOOD OF VITILIGO PATIENTS WITH STRESS IN ANAMNESIS].

    PubMed

    Tsiskarishvili, N I; Katsitadze, A; Tsiskarishvili, N V; Tsiskarishvil, Ts; Chitanava, L

    2016-05-01

    In recent years, despite some progress in the study of vitiligo many aspects of pathogenesis and treatment of this dermatosis remain unsolved or are highly controversial. It is believed that progression of disease is associated with a genetic predisposition, autoimmune processes and oxidative stress, but the concrete role of stress on the processes having place in the organism of vitiligo patients so far is not investigated. As we know, epiphysis is the main regulator of adaptation of the individual to the environment. An important product of secretion of the pineal gland is the hormone melatonin - a universal regulator of vital functions and biorhythms of the body. Psychoses, neuroses, depression, immunopathology are aspects of disturbances in circadian, seasonal and annual rhythms of the synthesis of this hormone. Clinical and experimental studies indicate that the hormone melatonin, which is one of the links in a stress defense mechanism of the body, has antioxidant and immunomodulatory properties. The purpose of this study was to determine plasma level of melatonin in the blood of vitiligo patients (with stress in anamnesis), depending on the clinical form and duration of the disease. 41 patients with vitiligo (16 with segmental and 25 with non-segmental form) with stress in anamnesis and duration of disease from several months to 20 years were under observation. The level of melatonin in the blood plasma was determined by ELISA (IBL - international - reagent), the results were expressed in units of pg/ml. According to the results of our study, 8 patients with segmental vitiligo had the normal level of plasma melatonin concentration (in the range of 20.2-31.1 pg/ml), in 2 cases - the level was near the norm (19.2 pg/ml). In the group of patients with non-segmental vitiligo, the level of melatonin was below the norm (12.5 pg/ml) and in 2 cases, the content of melatonin was very low - 4.05 pg / ml. Correlation analysis of melatonin levels with duration of disease have shown direct correlation just in the group of patients with non-segmental vitiligo. For a complete analysis of our results concerning of melatonin levels in the blood of patients with stress in anamnesis and for getting of some principal conclusions that will allow outline the ways to effectively treat patients with this pathology, further research is needed.

  7. Effect of Daytime Blue-enriched LED Light on the Nighttime Circadian Melatonin Inhibition of Hepatoma 7288CTC Warburg Effect and Progression.

    PubMed

    Dauchy, Robert T; Wren-Dail, Melissa A; Dupepe, Lynell M; Hill, Steven M; Xiang, Shulin; Anbalagan, Muralidharan; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2018-06-06

    Liver cancer is the second leading cause of cancer death worldwide. Metabolic pathways within the liver and liver cancersare highly regulated by the central circadian clock in the suprachiasmatic nuclei (SCN). Daily light and dark cycles regulate the SCN-driven pineal production of the circadian anticancer hormone melatonin and temporally coordinate circadianrhythms of metabolism and physiology in mammals. In previous studies, we demonstrated that melatonin suppresses linoleicacid metabolism and the Warburg effect (aerobic glycolysis)in human breast cancer xenografts and that blue-enriched light(465-485 nm) from light-emitting diode lighting at daytime (bLAD) amplifies nighttime circadian melatonin levels in ratsby 7-fold over cool white fluorescent (CWF) lighting. Here we tested the hypothesis that daytime exposure of tissue-isolatedMorris hepatoma 7288CTC-bearing male rats to bLAD amplifies the nighttime melatonin signal to enhance the inhibition oftumor growth. Compared with rats housed under a 12:12-h light:dark cycle in CWF light, rats in bLAD light evinced a 7-fold higher peak plasma melatonin level at the mid-dark phase; in addition, high melatonin levels were prolonged until 4 h intothe light phase. After implantation of tissue-isolated hepatoma 7288CTC xenografts, tumor growth rates were markedly delayed,and tumor cAMP levels, LA metabolism, the Warburg effect, and growth signaling activities were decreased in rats inbLAD compared with CWF daytime lighting. These data show that the increased nighttime circadian melatonin levels dueto bLAD exposure decreases hepatoma metabolic, signaling, and proliferative activities beyond what occurs after normalmelatonin signaling under CWF light.

  8. Administration of melatonin protects against acetylsalicylic acid-induced impairment of male reproductive function in mice

    PubMed Central

    Emami, Niloufar Hedayati; Lafout, Farzaneh Mahmoudi; Mohammadghasemi, Fahimeh

    2018-01-01

    Objective(s): Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA). Materials and Methods: Male adult mice were divided into four treatment groups: control, ASA, melatonin, and ASA+melatonin. Mice were administered ASA (50 mg/kg, orally) and/or melatonin (10 mg/kg, intraperitoneally), or vehicle control, for 14 days. Sperm count, sperm motility, and sperm morphology were evaluated to assess fertility. A colorimetric assay was used to measure serum total antioxidant capacity (TAC). A sperm chromatin dispersion (SCD) test was used to assess sperm chromatin integrity. Sex hormone levels were measured by ELISA. Results: Compared to the control group, ASA treatment resulted in a significant decrease in sperm parameters (P<0.05), as well as a decrease in the integrity of sperm chromatin (P<0.01). ASA treatment also reduced serum testosterone and TAC levels (P<0.05). Co-administration of melatonin with ASA significantly improved epididymal sperm parameters and increased serum testosterone and TAC levels compared to the ASA-treated group. LH level was not different in the combined treatment group compared to control or ASA treatment. Conclusion: Short-term administration of ASA (50 mg/kg) has adverse effects on male reproductive function in mice. Co-administration of melatonin protects against ASA-induced impairment of male reproductive function by preventing the reduction in serum TAC and testosterone levels seen with ASA treatment alone. PMID:29456808

  9. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels.

    PubMed

    Singh, Sarika; Mani, Kumar Vyonkesh; Kapoor, Neeru

    2015-05-01

    To delineate the effect of chronic electromagnetic field (EMF) exposure from radar on plasma melatonin and serotonin levels in occupationally exposed military personnel. A total of 166 male military personnel participated in the study out of which only 155 joined for blood draw. They were divided into three sets: Control group (n = 68), exposure group I (n = 40) exposed to 8-12 GHz and exposure group II (n = 58) working with radar at 12.5-18 GHz frequency. The three groups were further split into two groups according to their years of service (up to 10 years and > 10 years) in order to investigate the effect of years of exposure from radar. Melatonin and serotonin levels were estimated by enzyme immunoassay in fasting blood samples collected from 06:00-07:00 h. EMF measurements were recorded at different locations using Satimo EME Guard 'Personal Exposure Meter' and Narda 'Broad Band Field Meter'. The group I exposed population registered a minor though not significant decrease in plasma melatonin concentration while the other group II exposed population registered statistically significant decline in melatonin concentration when compared with controls. Highly significant increase in plasma serotonin levels was found in exposure group II when compared to control whereas marginal non-significant rise was also registered in exposure group I in comparison to control. Exposure in terms of length of service up to 10 years did not produce any significant effect in the indoleamine levels in both the exposure groups when they were compared with their respective control groups. Whereas, length of service greater than 10 years was observed to decrease and increase respectively the melatonin and serotonin concentration significantly in exposure group II but not in exposure group I. However, correlation test did not yield any significant association between years of service and melatonin or serotonin levels respectively in both the exposure sets I and II. No significant association was observed between melatonin and serotonin levels as well. The study showed the EMF ability to influence plasma melatonin and serotonin concentration in radar workers, significantly in 12.5-18 GHz range with service period greater than 10 years.

  10. Association of urinary melatonin levels and aging-related outcomes in older men.

    PubMed

    Devore, Elizabeth E; Harrison, Stephanie L; Stone, Katie L; Holton, Kathleen F; Barrett-Connor, Elizabeth; Ancoli-Israel, Sonia; Yaffe, Kristine; Ensrud, Kristine; Cawthon, Peggy M; Redline, Susan; Orwoll, Eric; Schernhammer, Eva S

    2016-07-01

    Circadian disruptions can contribute to accelerated aging, and the circadian system regulates cognitive and physical functions; therefore, circadian markers (eg, melatonin) may be associated with key aspects of healthy aging and longevity. To evaluate urinary melatonin levels in relation to cognitive function, physical function, and mortality among 2,821 older men in the Osteoporotic Fractures in Men Study DESIGN: Cohort study. In 2003-2005, participants provided first-morning spot urine samples, which were assayed for 6-sulfatoxymelatonin (the primary melatonin metabolite in urine); cognitive and physical function assessments were completed twice, at baseline and an average of 6.5 years later. Participant deaths were confirmed by central review of death certificates over a mean of 9.2 years of follow up. In multivariable-adjusted regression models, we observed a significant trend of better Digit Vigilance Test scores (ie, decreased time to completion) at baseline across increasing melatonin quartiles (p-trend = 0.01); however, mean time-to-completion scores did not significantly differ comparing extreme quartiles (group means: 547.1 seconds (95% CI: 533.6, 560.6) versus 561.3 seconds (95% CI: 547.8, 574.9)), and there were no associations of urinary melatonin levels with other cognitive test scores, or any cognitive change scores over time. Furthermore, melatonin levels were not related to physical function scores (p-trends = 0.4 for walking speed, 0.7 for chair stands, and 0.6 for grip strength in fully-adjusted models) or mortality risk (p-trend = 0.3 in the fully-adjusted model). We found little evidence of associations between urinary melatonin levels and key measures of healthy aging and mortality in this cohort of older men. Further research should explore the relation of melatonin, particularly if assessed earlier in life, and other circadian markers with healthy aging outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women: Volume 1 -- Background and purpose, methods, results, discussion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaune, W.; Davis, S.; Stevens, R.

    Scientists have postulated a link between exposure to magnetic fields and reduced blood melatonin levels. This EPRI study was designed to supplement a National Cancer Institute study (NCI-BC) of magnetic fields, light-at-night, and the risk of breast cancer. By expanding the exposure assessment of the NCI-BC and collecting data on urine melatonin levels, this project provides new insight into a possible magnetic field-melatonin link. It has been proposed that exposure to 60-Hz (power frequency) magnetic fields may increase the risk of breast cancer by suppressing the normal nocturnal rise in melatonin production in the pineal gland. It remains unknown whethermore » the human pineal gland is reproducibly responsive or sensitive to magnetic field exposure, and whether such exposures could alter elements of the endogenous hormonal environment in women that might be important in the etiology of breast cancer. The objective of this research was to investigate whether exposure to power-frequency magnetic fields and/or light-at-night is associated with levels of the primary urinary melatonin metabolite in women without a history of breast cancer.« less

  12. Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women: Volume 2 -- Magnetic field exposure analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaune, W.; Davis, S.; Stevens, R.

    Scientists have postulated a link between exposure to magnetic fields and reduced blood melatonin levels. This EPRI study was designed to supplement a National Cancer Institute study (NCI-BC) of magnetic fields, light-at-night, and the risk of breast cancer. By expanding the exposure assessment of the NCI-BC and collecting data on urine melatonin levels, this project provides new insight into a possible magnetic field-melatonin link. It has been proposed that exposure to 60-Hz (power frequency) magnetic fields may increase the risk of breast cancer by suppressing the normal nocturnal rise in melatonin production in the pineal gland. It remains unknown whethermore » the human pineal gland is reproducibly responsive or sensitive to magnetic field exposure, and whether such exposures could alter elements of the endogenous hormonal environment in women that might be important in the etiology of breast cancer. The objective of this research was to investigate whether exposure to power-frequency magnetic fields and/or light-at-night is associated with levels of the primary urinary melatonin metabolite in women without a history of breast cancer.« less

  13. Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants.

    PubMed

    Lee, Kyungjin; Hwang, Ok Jin; Reiter, Russel J; Back, Kyoungwhan

    2018-05-31

    The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 μmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Brief report: circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism.

    PubMed

    Nir, I; Meir, D; Zilber, N; Knobler, H; Hadjez, J; Lerner, Y

    1995-12-01

    An abnormal circadian pattern of melatonin was found in a group of young adults with an extreme autism syndrome. Although not out of phase, the serum melatonin levels differed from normal in amplitude and mesor. Marginal changes in diurnal rhythms of serum TSH and possibly prolactin were also recorded. Subjects with seizures tended to have an abnormal pattern of melatonin correlated with EEG changes. In others, a parallel was evidenced between thyroid function and impairment in verbal communication. There appears to be a tendency for various types of neuroendocrinological abnormalities in autistics, and melatonin, as well as possibly TSH and perhaps prolactin, could serve as biochemical variables of the biological parameters of the disease.

  15. Circulating tumoral cells lack circadian-rhythm in hospitalized metastasic breast cancer patients.

    PubMed

    García-Sáenz, José Angel; Martín, Miguel; Maestro, Marisa; Vidaurreta, Marta; Veganzones, Silvia; Villalobos, Laura; Rodríguez-Lajusticia, Laura; Rafael, Sara; Sanz-Casla, María Teresa; Casado, Antonio; Sastre, Javier; Arroyo, Manuel; Díaz-Rubio, Eduardo

    2006-11-01

    The relationship between breast cancer and circadian rhythm variation has been extensively studied. Increased breast tumorigenesis has been reported in melatonin-suppressed experimental models and in observational studies. Circulating Tumor Cells (CTC) circadian- rhythm may optimize the timing of therapies. This is a prospective experimental study to ascertain the day-time and night-time CTC levels in hospitalized metastasic breast cancer (MBC) patients. CTC are isolated and enumerated from a 08:00 AM and 08:00 PM blood collections. 23 MBC and 23 healthy volunteers entered the study. 69 samples were collected (23 samples at 08:00 AM and 23 samples at 08:00 PM from MBC; 23 samples from healthy volunteers). Results from two patients were rejected due to sample processing errors. No CTC were isolated from healthy-volunteers. No-differences between daytime and night-time CTC were observed. Therefore, we could not ascertain CTC circadian-rhythm in hospitalized metastasic breast cancer patients.

  16. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    PubMed

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  17. Effects of melatonin on colonic anastomosis healing following chemotherapy in rats.

    PubMed

    Akyuz, Cebrail; Yasar, Necdet Fatih; Uzun, Orhan; Peker, Kıvanc Derya; Sunamak, Oguzhan; Duman, Mustafa; Sehirli, Ahmet Ozer; Yol, Sinan

    2018-03-19

    This study aimed to investigate the effect of melatonin on the healing of colon anastomosis following chemotherapy. 32 rats were randomised into four groups: (a) control group (Group 1), which underwent sigmoid colon transaction and primary anastomosis; (b) melatonin group (Group 2), which received melatonin daily following anastomosis; (c) 5-fluorouracil (5-FU) group (Group 3), which received 5-FU for five days prior to anastomosis; and (d) 5-FU+melatonin group (Group 4), which received 5-FU for five days prior to anastomosis and melatonin daily following anastomosis. Anastomotic bursting pressures of the rats, which were sacrificed on postoperative day 7, were measured. The anastomotic segment was extracted for hydroxyproline, luminol and lucigenin measurements, and histopathological examination. Blood samples were obtained from the vena cava for measurement of tumour necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) plasma levels. Bursting pressures of anastomosis and hydroxyproline levels were significantly higher in Groups 1 and 4 than in Group 3. Luminol and lucigenin levels were significantly lower in Groups 1 and 4 than in Group 3. In addition, TNF-α and IL-1β plasma levels were significantly lower in Groups 1 and 4 than in Group 3. Histopathological examination showed a significant decrease in inflammation and necrosis formation in Group 2 when compared to Group 1. The positive effect of melatonin was also seen in the rats that received 5-FU. Our study results showed that the adverse effects of chemotherapy on the mechanical, biochemical and histopathological parameters of anastomosis healing were attenuated through melatonin treatment.

  18. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue

    PubMed Central

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-01-01

    Background Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Methods Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Results Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. Conclusions These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit. PMID:28959107

  19. Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats

    PubMed Central

    Özdemir, G; Ergün, Y; Bakariş, S; Kılınç, M; Durdu, H; Ganiyusufoğlu, E

    2014-01-01

    Purpose To evaluate the role of melatonin, an antioxidant agent, in diabetic oxidative stress and vascular damage. Methods Diabetes was induced in 21 male Wistar rats by intraperitoneal (IP) administration of streptozotocin and then the rats were equally and randomly allocated to diabetic, melatonin, and vehicle groups. Seven healthy normal rats with similar features comprised the control group as the fourth group. All animals were followed for 12 weeks. The melatonin group received IP melatonin daily and the vehicle group received 2.5% ethanol IP at the last month. At the end of 12 weeks, the rats were killed and retinas were harvested. The retinas were investigated for the existence of hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor A (VEGF-A), and pigment epithelium-derived factor (PEDF) by ELISA. Retinal oxidative stress is quantitated by measuring nitrotyrosine and malondialdehyde levels. Retinal immunohistochemistry with antibody against CD31 antigen was carried out on retinal cross-sections. For statistics, ANOVA test was used for multiple comparisons. Results Hyperglycemia increased retinal oxidation as measured through levels of nitrotyrosine and malondialdehyde. Diabetic retinas are also associated with abnormal vascular changes such as dilatation and deformation. HIF-1α, VEGF-A, and PEDF were all increased because of diabetic injury. Melatonin showed a potential beneficial effect on retinopathy in diabetic rats. It decreased retinal nitrotyrosine and malondialdehyde levels, showing an antioxidative support. The vasculomodulator cytokines are decreased accordingly by melatonin therapy. Melatonin normalized retinal vascular changes as well. Conclusion Melatonin may show some advantage on diabetic vascular changes through decreasing oxidative stress and vessel-related cytokines. PMID:24924441

  20. [Effect of melatonin instillations on the clinical course of experimental uveitis and biochemical processes in tears and aqueous humor].

    PubMed

    Chesnokova, N B; Beznos, O V; Lozinskaya, N A; Beyshenova, G A; Nesterova, T V

    2016-01-01

    Acute immunogenic uveitis was modeled in rabbits via the subcutaneous and intravitreal injections of normal horse serum. We studied the effect of instillations of 0.1% melatonin solution on the clinical course of uveitis and biochemical parameters of tear fluid and aqueous humor: antioxi-dant activity, protein concentration and α(2)-macroglobulin level. Melatonin instillations decreased clinical manifestations of uveitis. We found that the antioxidant activity in tears of the rabbits treated with melatonin was substantially higher and the α(2)-macroglobulin level lower than in untreated animals. Antioxidant activity in aqueous humor taken on day 10 of uveitis was also twice higher while protein and α(2)-macroglobulin levels were 1.5-2 times lower than in untreated animals. These data indicate that instillations of melatonin increase the local antioxidant activity and decrease the acuity of inflammation and permeability of hematoophthalmic barrier in uveitis.

  1. The Influence of Red Light Exposure at Night on Circadian Metabolism and Physiology in Sprague–Dawley Rats

    PubMed Central

    Dauchy, Robert T; Wren, Melissa A; Dauchy, Erin M; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Jablonski, Michael R; Brainard, George C; Hill, Steven M; Mao, Lulu; Dobek, Georgina L; Dupepe, Lynell M; Blask, David E

    2015-01-01

    Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a ‘safelight’ emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physiologic parameters. Male Sprague–Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean ± 1 SD) were high in the dark phase (197.5 ± 4.6 pg/mL) and low in the light phase (2.6 ± 1.2 pg/mL) of control conditions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing. PMID:25651090

  2. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    PubMed

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    PubMed

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow < 0.37 × 10 -3 W/m 2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  4. Acute effects of bright light and caffeine on nighttime melatonin and temperature levels in women taking and not taking oral contraceptives

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Myers, B. L.; Plenzler, S. C.; Drake, C. L.; Badia, P.; Czeisler, C. A. (Principal Investigator)

    2000-01-01

    Caffeine and bright light effects on nighttime melatonin and temperature levels in women were tested during the luteal phase of the menstrual cycle (n=30) or the pseudo luteal phase for oral contraceptive users (n=32). Participants were randomly assigned to receive either bright (5000 lux) or dim room light (<88 lux) between 20:00 and 08:00 h under a modified constant routine protocol. Half the subjects in each lighting condition were administered either caffeine (100 mg) or placebo in a double-blind manner at 20:00, 23:00, 02:00 and 05:00 h. Results showed that the combination of bright light and caffeine enhanced nighttime temperature levels to a greater extent than did either caffeine or bright light alone. Both of the latter groups had higher temperature levels relative to the dim light placebo condition and the two groups did not differ. Temperature levels in the bright light caffeine condition were maintained at near peak circadian levels the entire night in the luteal and pseudo luteal phase. Melatonin levels were reduced throughout the duration of bright light exposure for all women. Caffeine reduced the onset of melatonin levels for women in the luteal phase, but it had little effect on melatonin levels for oral contraceptive users. The results for women in the luteal phase of the menstrual cycle are consistent with our previous findings in men. The results also suggest that oral contraceptives may alter the effects of caffeine on nighttime melatonin levels.

  5. A Phase II, Randomized, Double-Blind, Placebo Controlled, Dose-Response Trial of the Melatonin Effect on the Pain Threshold of Healthy Subjects

    PubMed Central

    Stefani, Luciana Cadore; Muller, Suzana; Torres, Iraci L. S.; Razzolini, Bruna; Rozisky, Joanna R.; Fregni, Felipe; Markus, Regina; Caumo, Wolnei

    2013-01-01

    Background Previous studies have suggested that melatonin may produce antinociception through peripheral and central mechanisms. Based on the preliminary encouraging results of studies of the effects of melatonin on pain modulation, the important question has been raised of whether there is a dose relationship in humans of melatonin on pain modulation. Objective The objective was to evaluate the analgesic dose response of the effects of melatonin on pressure and heat pain threshold and tolerance and the sedative effects. Methods Sixty-one healthy subjects aged 19 to 47 y were randomized into one of four groups: placebo, 0.05 mg/kg sublingual melatonin, 0.15 mg/kg sublingual melatonin or 0.25 mg/kg sublingual melatonin. We determine the pressure pain threshold (PPT) and the pressure pain tolerance (PPTo). Quantitative sensory testing (QST) was used to measure the heat pain threshold (HPT) and the heat pain tolerance (HPTo). Sedation was assessed with a visual analogue scale and bispectral analysis. Results Serum plasma melatonin levels were directly proportional to the melatonin doses given to each subject. We observed a significant effect associated with dose group. Post hoc analysis indicated significant differences between the placebo vs. the intermediate (0.15 mg/kg) and the highest (0.25 mg/kg) melatonin doses for all pain threshold and sedation level tests. A linear regression model indicated a significant association between the serum melatonin concentrations and changes in pain threshold and pain tolerance (R2 = 0.492 for HPT, R2 = 0.538 for PPT, R2 = 0.558 for HPTo and R2 = 0.584 for PPTo). Conclusions The present data indicate that sublingual melatonin exerts well-defined dose-dependent antinociceptive activity. There is a correlation between the plasma melatonin drug concentration and acute changes in the pain threshold. These results provide additional support for the investigation of melatonin as an analgesic agent. Brazilian Clinical Trials Registry (ReBec): (U1111-1123-5109). IRB: Research Ethics Committee at the Hospital de Clínicas de Porto Alegre. PMID:25947930

  6. A mathematical model of diurnal variations in human plasma melatonin levels

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Shanahan, T. L.; Czeisler, C. A.

    1997-01-01

    Studies in animals and humans suggest that the diurnal pattern in plasma melatonin levels is due to the hormone's rates of synthesis, circulatory infusion and clearance, circadian control of synthesis onset and offset, environmental lighting conditions, and error in the melatonin immunoassay. A two-dimensional linear differential equation model of the hormone is formulated and is used to analyze plasma melatonin levels in 18 normal healthy male subjects during a constant routine. Recently developed Bayesian statistical procedures are used to incorporate correctly the magnitude of the immunoassay error into the analysis. The estimated parameters [median (range)] were clearance half-life of 23.67 (14.79-59.93) min, synthesis onset time of 2206 (1940-0029), synthesis offset time of 0621 (0246-0817), and maximum N-acetyltransferase activity of 7.17(2.34-17.93) pmol x l(-1) x min(-1). All were in good agreement with values from previous reports. The difference between synthesis offset time and the phase of the core temperature minimum was 1 h 15 min (-4 h 38 min-2 h 43 min). The correlation between synthesis onset and the dim light melatonin onset was 0.93. Our model provides a more physiologically plausible estimate of the melatonin synthesis onset time than that given by the dim light melatonin onset and the first reliable means of estimating the phase of synthesis offset. Our analysis shows that the circadian and pharmacokinetics parameters of melatonin can be reliably estimated from a single model.

  7. A 15-minute light pulse during darkness prevents the antigonadotrophic action of afternoon melatonin injections in male hamsters

    NASA Astrophysics Data System (ADS)

    Reiter, R. J.; Hurlbut, E. C.; King, T. S.; Richardson, B. A.; Vaughan, M. K.; Kosub, K. Y.

    1982-12-01

    When adult male Syrian hamsters were maintained under 14 h light and 10 h darkness daily (lights on from 0600-2000 h), peak pineal melatonin levels (705 pg/gland) were attained at 0500 h. When the dark phase of the light:dark cycle was interrupted with a 15 min pulse of light from 2300 2315 h (3 h after lights out), the highest melatonin levels achieved was roughly 400 pg/gland. Finally, if the 15 min pulse of light was given at 0200 0215 h (6 h after lights out) the nocturnal rise in pineal melatonin was completely abolished. Having made these observations, a second experiment was designed to determine the ability of afternoon melatonin injections to inhibit reproduction in hamsters kept under an uninterrupted 14∶10 cycle or under the same lighting regimen where the dark phase was interrupted with a 15 min pulse of light (0200 0215 h). In the uninterrupted light:dark schedule the daily afternoon injection of 25 μg melatonin caused the testes and the accessory sex organs to atrophy within 11 weeks. Conversely, if the dark phase was interrupted with light between 0200 0215 h, afternoon melatonin injections were incapable of inhibiting the growth of the reproductive organs. The findings suggest that exogenously administered melatonin normally synergizes with endogenously produced melatonin to cause gonadal involution in hamsters.

  8. The hypothalamic-pituitary-thyroid axis and melatonin in humans: possible interactions in the control of body temperature.

    PubMed

    Mazzoccoli, G; Giuliani, A; Carughi, S; De Cata, A; Puzzolante, F; La Viola, M; Urbano, N; Perfetto, F; Tarquini, R

    2004-10-01

    Melatonin plays a role in the regulation of biological rhythms, body temperature presents circadian variations with lower levels during nighttime, when melatonin levels are very high, and thyroid hormones influence shiver independent thermogenesis. We have investigated on possible interactions between the hypothalamic-pituitary-thyroid axis and melatonin in the control of body temperature in humans. Peripheral blood samples for thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), free-thyroxine (FT4), melatonin levels determination and body temperature measurements were obtained every four hours for 24-hours starting at 0600 h in a controlled temperature and light-dark environment from ten healthy males, aged 38-65 (mean age +/-s.e. 57.4+/-3.03, mean body mass index +/-s.e. 25.5+/-0.75). We calculated fractional variation and correlation on single time point hormone serum levels and tested whether the time-qualified data series showed consistent pattern of circadian variation. A statistically significant difference was evidenced for the fractional variation of daytime TSH serum levels (0600 h-1000 h vs. 1000 h-1400 h, p=0.01, 1000 h-1400 h vs. 1400 h-1800 h, p=0.0001, 1400 h-1800 h vs. 1800 h-2200 h, p=0.001) and for the fractional variation of FT4 serum levels at 1800 h-2200 h vs. 2200 h-0200 h (p=0.02). FT4 serum levels correlated positively with TRH serum levels at 1000 h (r=0.67, P=0.03) and at 1400 h (r=0.63, p=0.04), negatively with TSH serum levels at 2200 h (r=-0.67, p=0.03), negatively with melatonin serum levels at 2200 h (r=-0.64, p=0.04) and at 0200 h (r=-0.73, p=0.01). TRH serum levels correlated positively with TSH serum levels at 0200 h (r=0.65, p=0.04) and at 0600 h (r=0.64, p=0.04). Body temperature correlated positively with FT4 serum levels at 1000 h (r=0.63, p=0.04) and negatively with melatonin serum levels at 0200 h (r=-0.64, p=0.04). A clear circadian rhythm was validated for body temperature (with acrophase in the morning) and melatonin, TRH and TSH secretion (with acrophase at night), while FT4 serum level changes presented ultradian periodicity (with acrophase in the morning). Changes of TSH serum levels are smaller and those of FT4 are greater at night, when melatonin levels are higher, so that the response of anterior pituitary to hypothalamic TRH and of thyroid to hypophyseal TSH may be influenced by the pineal hormone that may modulate the hypothalamic-pituitary-thyroid axis function and influence the circadian rhythm of body temperature.

  9. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.

    PubMed

    Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J

    2016-11-01

    Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identification of melatonin in Trichoderma spp. and detection of melatonin content under controlled-stress growth conditions from T. asperellum.

    PubMed

    Liu, Tong; Zhao, Fengzhou; Liu, Zhen; Zuo, Yuhu; Hou, Jumei; Wang, Yanjie

    2016-07-01

    T. koningii, T. harzianum, T. asperellum, T. longibrachiatum, and T. viride were analyzed using liquid chromatography-tandem mass spectrometry to determine whether melatonin is present. Results showed that there were abundant amounts of endogenous melatonin in five Trichoderma species, but no melatonin was found in any of the culture filtrates. T. asperellum had the highest amount of melatonin (27.588 ± 0.326 μg g(-1) dry mass), followed by T. koningii, T. harzianum, T. longibrachiatum, and T. viride. The endogenous melatonin content of T. asperellum in controlled-stress growth conditions was also detected. The data showed that chemical stressors (CdCl2 , CuSO4 , and H2 O2 ) provoked an increase in endogenous melatonin levels. CdCl2 had the highest stimulatory effect on melatonin production, as the product reached reaching up to three times the melatonin content of the control. NaCl stimulated a decrease of melatonin. Acidic conditions (pH 3 and pH 5) as well as slightly alkaline conditions (pH 9) resulted in an increase in the melatonin content, whereas pH11 resulted in a significant decrease in the melatonin content, only 12.276 ± 0.205 μg g(-1) dry mass. The current study is first to report melatonin content and the change of melatonin content under different stress situations in Trichoderma spp. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Melatonin: A Multifunctional Factor in Plants

    PubMed Central

    Fan, Jibiao; Zhang, Zaichao; Chen, Liang

    2018-01-01

    Melatonin (N-acetyl-5-methoxy-tryptamine) is a universal molecule that is present in animals and plants. It has been detected in different kinds of plants and organs in different levels. Melatonin in plants shares the same initial biosynthesis compound with auxin, and therefore functions as indole-3-acetic acid like hormones. Moreover, melatonin is involved in regulating plant growth and development, protecting plants against biotic and abiotic stresses, such as salt, drought, cold, heat and heavy metal stresses. Melatonin improves the stress tolerance of plants via a direct pathway, which scavenges reactive oxygen species directly, and indirect pathways, such as increasing antioxidate enzymes activity, photosynthetic efficiency and metabolites content. In addition, melatonin plays a role in regulating gene expression, and hence affects performance of plants. In this review, the biosynthesis pathway, growth and development regulation, and the environment stress response of melatonin in plants are summarized and future research directions and priorities of melatonin in plants are speculated. PMID:29883400

  12. Melatonin in children with autistic spectrum disorders: recent and practical data.

    PubMed

    Doyen, C; Mighiu, D; Kaye, K; Colineaux, C; Beaumanoir, C; Mouraeff, Y; Rieu, C; Paubel, P; Contejean, Y

    2011-05-01

    Over the last 20 years, melatonin, a pineal hormone synthesized from serotonin, has been implicated in various studies on the autism spectrum disorder (ASD) and altered melatonin levels were detected in subgroups of subjects with ASD. Its effect on sleep disturbances got the attention of clinicians and several investigations were carried out to determine the usefulness and safety of melatonin administration in this disorder. Hypotheses were also raised regarding the possibility that the dysfunctional synthesis and secretion of melatonin detected in subgroups of subjects with ASD may increase the risk as well the severity of ASD. The purpose of this paper is to review our pharmacokinetic knowledge on melatonin and present results from recent studies on sleep disorders in autism, their treatment with melatonin and the impact of melatonin prescription in children with ASD evaluated in a Diagnostic Center for Autism Spectrum Disorder in Paris, France.

  13. Melatonin: A Multifunctional Factor in Plants.

    PubMed

    Fan, Jibiao; Xie, Yan; Zhang, Zaichao; Chen, Liang

    2018-05-21

    Melatonin ( N -acetyl-5-methoxy-tryptamine) is a universal molecule that is present in animals and plants. It has been detected in different kinds of plants and organs in different levels. Melatonin in plants shares the same initial biosynthesis compound with auxin, and therefore functions as indole-3-acetic acid like hormones. Moreover, melatonin is involved in regulating plant growth and development, protecting plants against biotic and abiotic stresses, such as salt, drought, cold, heat and heavy metal stresses. Melatonin improves the stress tolerance of plants via a direct pathway, which scavenges reactive oxygen species directly, and indirect pathways, such as increasing antioxidate enzymes activity, photosynthetic efficiency and metabolites content. In addition, melatonin plays a role in regulating gene expression, and hence affects performance of plants. In this review, the biosynthesis pathway, growth and development regulation, and the environment stress response of melatonin in plants are summarized and future research directions and priorities of melatonin in plants are speculated.

  14. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    PubMed

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  15. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis

    PubMed Central

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-01-01

    N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. PMID:28475148

  16. [The influence of melatonin on human reproduction].

    PubMed

    Boczek-Leszczyk, Emilia; Juszczak, Marlena

    2007-08-01

    This paper reviews the possible participation of melatonin in the process of human reproduction. The results of several studies have shown the clear correlation between melatonin and gonadotropins and/or sexual steroids, which suggest that melatonin may be involved in the sexual maturation, ovulation or menopause. Decreased secretion of melatonin which coexists with increased fertility in the summer is specific for women living on the north hemisphere. Moreover, abnormal levels of melatonin in the blood are associated with several disorders of the hypothalamus-pituitary-gonads axis activity, i.e., precocious or delayed pubertas, hypogonadotrophic or hypergonadotrophic hypogonadism or amenorrhoea. Melatonin binding sites have been demonstrated in the central nervous system (mainly in the pars dystalis of the pituitary and hypothalamic suprachiasmatic nucleus) as well as in the reproductive organs, e.g., human granulosa cells, prostate and spermatozoa. Melatonin can, therefore, influence the gonadal function indirectly--via its effect on gonadotropin-releasing hormone and/or gonadotropins secretion. It may also act directly; several data show that melatonin can be synthesized in gonads.

  17. Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings

    PubMed Central

    Han, Qiao-Hong; Huang, Bo; Ding, Chun-Bang; Zhang, Zhong-Wei; Chen, Yang-Er; Hu, Chao; Zhou, Li-Jun; Huang, Yan; Liao, Jin-Qiu; Yuan, Shu; Yuan, Ming

    2017-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) plays important role in multiple plant developmental processes and stress responses. We investigated the possible mediatory role of melatonin in growth, photosynthesis, and the response to cold stress in rice by using three different experiments: soaking seed; immersing roots, and spraying to leaves with 0, 20, or 100 μM melatonin. After 6 days of cold stress, the growth of rice seedlings was significantly inhibited, but this inhibition was alleviated by exogenous melatonin. Furthermore, exogenous melatonin pretreatment alleviated the accumulation of reactive oxygen species, malondialdehyde and cell death induced by cold stress. Melatonin pretreatment also relieved the stress-induced inhibitions to photosynthesis and photosystem II activities. Further investigations showed that, antioxidant enzyme activities and non-enzymatic antioxidant levels were increased by melatonin pretreatments. The treatment methods of seed soaking and root immersion were more effective in improving cold stress resistance than the spraying method. The results also indicated the dose-dependent response of melatonin on rice physiological, biochemical, and photosynthetic parameters. PMID:28553310

  18. Protective effect of melatonin on experimental spinal cord ischemia.

    PubMed

    Erten, S F; Kocak, A; Ozdemir, I; Aydemir, S; Colak, A; Reeder, B S

    2003-10-01

    Experimental animal model to assess ischemic spinal cord injury following occlusion of the thoraco-abdominal aorta. To measure whether melatonin administered to rabbits before and after occlusion exerts an effect on the repair of ischemia-reperfusion (IR) injury. Medical Biology Laboratory, Inonu University, Malatya, Turkey. Rabbits were divided into three IR treatment groups and one sham-operated (ShOp) control group. The three treatment groups had their infrarenal aorta temporarily occluded for 25 min, while the ShOp group had laparotomy without aortic occlusion. Melatonin was administered either 10 min before aortic occlusion or 10 min after the clamp was removed. Physiologic saline was administered to the control animals. After treatment, the animals were euthanized and lumbosacral spinal cord tissue was removed for the determination of relevant enzyme activities. Malondialdehyde levels, indicating the extent of lipid peroxidation, were found to be significantly increased in the nonmelatonin treated (IR) group when compared to the ShOp group. Melatonin, whether given to pre- or post occlusion groups, suppressed malondialdehyde levels below that of the ShOp group. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were increased in the IR group compared to the ShOp group. Melatonin given preocclusion resulted in a significant decrease in both CAT and GSH-Px enzyme levels. The superoxide dismutase (SOD) enzyme activity was decreased in the ischemia-reperfusion treatment group. However, the melatonin treatment increased SOD enzyme activity to levels approximating that of the ShOp group. To our knowledge, this is the first study that shows the effects of melatonin administered both pre- and postischemia on induced oxidative damage to injured spinal cords. Our data also expands on reports that melatonin administration may significantly reduce the incidence of spinal cord injury following temporary aortic occlusion.

  19. Pre-treatment with melatonin decreases abamectin induced toxicity in a nocturnal insect Spodoptera litura (Lepidoptera: Noctuidae).

    PubMed

    Subala, Subramanian P; Zubero, Eduardo E; Alatorre-Jimenez, Moises A; Shivakumar, Muthugounder S

    2017-12-01

    Oxidative stress is an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate the time-dependent melatonin effects against abamectin-induced oxidative stress in a S.litura model. Larvae were divided into 5 different groups; (1) control group,(2) Melatonin group (4.3×10 -5 M/100ml diet), (3) Abamectin group 1.5ml/L, (4) Pre-melatonin treated group (PM) (4.3×10 -5 M/100ml diet) before abamectin exposure 1.5ml/L, (5) Post-melatonin treated group (TM) after abamectin exposure. Melatonin was supplemented via artificial diet in PM and TM animals during 24h. Midgut, fatbody, and hemolymph, were collected for the analysis of oxidative stress markers (Total ROS, GSH, nitrite, TBARS, LPO), antioxidant enzyme levels (SOD, GST, CAT, POX, APOX) in fifth instar larvae. Midgut damage was examined by using morphological analysis. Our results observed that ABA group showed significant changes (p<0.001) in the ROS and carbonyl content in midgut. The increase of antioxidant enzyme levels (SOD, CAT, POX, and APOX) in midgut was led by the continuous free radical scavenger cascade of melatonin. Significant (p<0.01) increases in CAT and APOX levels were seen in the fatbody of PM and TM treated insects. In conclusion, the results of the study revealed that abamectin toxicity generates oxidative stress in the insect, while pre-melatonin treatment reduces this damage due to its antioxidant properties, especially POX levels in midgut, fatbody, and hemolymph. Therefore, indoleamine can play a vital role curtailing the abamectin toxicity in time dependent manner in S.litura. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of melatonin on lipid peroxidation and anti-oxidant enzyme activity in rats with experimentally induced hyperthyroidism.

    PubMed

    Baydas, Burhanettin; Meral, Ismail

    2005-07-01

    1. The present study was designed to investigate the effects of high-dose melatonin on lipid peroxidation and anti-oxidant enzyme activity in rats with experimentally induced hyperthyroidism. 2. Twenty-four albino male rats, weighing 240-260 g, were randomly allotted into one of three experimental groups (control, hyperthyroid and hyperthyroid + melatonin treatment), with each group containing eight animals. Hyperthyroidism was induced by a daily with i.p. injection of 200 microg l-thyroxine for 30 days. In addition to l-thyroxin treatment, rats in the hyperthyroid + melatonin treatment group were also given daily i.p. injections of 10 mg/kg melatonin on the last 10 days of l-thyroxine treatment. Control animals received injections of an equivalent volume of saline solution. Rats received the last injection 24 h before being killed. 3. At the end of the experiment, rats in all three groups were fasted for 12 h and killed by cardiac puncture under ether anaesthesia. Blood samples were taken for the determination of malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) levels and concentrations of tri-iodothyronine (T(3)) and thyroxine (T(4)). 4. It was found that MDA and SOD levels and concentrations of T(3) and T(4) were higher and the GSH level was lower in rats with hyperthyroidism compared with controls. Melatonin treatment decreased the elevated MDA and SOD levels and increased the lowered GSH level to control levels in rats with hyperthyroidism, but did not ameliorate the concentrations of T(3) and T(4). 5. It was concluded that high-dose melatonin treatment may decrease the hyperthyroidism-induced disturbances of lipid peroxidation and anti-oxidant enzyme activity and oxidative damage.

  1. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: In vivo and in vitro studies.

    PubMed

    Zhai, Mengen; Liu, Zhenhua; Zhang, Bin; Jing, Lin; Li, Buying; Li, Kaifeng; Chen, Xiuju; Zhang, Meng; Yu, Bo; Ren, Kai; Yang, Yang; Yi, Wei; Yang, Jian; Liu, Jincheng; Yi, Dinghua; Liang, Hongliang; Jin, Zhenxiao; Reiter, Russel J; Duan, Weixun; Yu, Shiqiang

    2017-10-01

    Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload-induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8-week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α-myosin heavy chain, downregulated the expression level of β-myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator-activated receptor-gamma co-activator-1 beta (PGC-1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II-induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC-1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC-1β. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Relation of melatonin to sleep architecture in children with autism.

    PubMed

    Leu, Roberta M; Beyderman, Liya; Botzolakis, Emmanuel J; Surdyka, Kyla; Wang, Lily; Malow, Beth A

    2011-04-01

    Children with autism often suffer from sleep disturbances, and compared to age-matched controls, have decreased melatonin levels, as indicated by urine levels of the primary melatonin metabolite, 6-sulfatoxymelatonin (6-SM). We therefore investigated the relationship between 6-SM levels and sleep architecture in children with autism spectrum disorders (ASD). Twenty-three children, aged 4-10 years, completed two nights of polysomnography and one overnight urine collection for measurement of urinary 6-SM excretion rate. Parents completed the Children's Sleep Habits Questionnaire. We found that higher urinary 6-SM excretion rates were associated with increased N3 sleep, decreased N2 sleep, and decreased daytime sleepiness. The results warrant further examination to examine the effects of supplemental melatonin on sleep architecture and daytime sleepiness.

  3. Neurobiology, Pathophysiology, and Treatment of Melatonin Deficiency and Dysfunction

    PubMed Central

    Hardeland, Rüdiger

    2012-01-01

    Melatonin is a highly pleiotropic signaling molecule, which is released as a hormone of the pineal gland predominantly during night. Melatonin secretion decreases during aging. Reduced melatonin levels are also observed in various diseases, such as types of dementia, some mood disorders, severe pain, cancer, and diabetes type 2. Melatonin dysfunction is frequently related to deviations in amplitudes, phasing, and coupling of circadian rhythms. Gene polymorphisms of melatonin receptors and circadian oscillator proteins bear risks for several of the diseases mentioned. A common symptom of insufficient melatonin signaling is sleep disturbances. It is necessary to distinguish between symptoms that are curable by short melatonergic actions and others that require extended actions during night. Melatonin immediate release is already effective, at moderate doses, for reducing difficulties of falling asleep or improving symptoms associated with poorly coupled circadian rhythms, including seasonal affective and bipolar disorders. For purposes of a replacement therapy based on longer-lasting melatonergic actions, melatonin prolonged release and synthetic agonists have been developed. Therapies with melatonin or synthetic melatonergic drugs have to consider that these agents do not only act on the SCN, but also on numerous organs and cells in which melatonin receptors are also expressed. PMID:22629173

  4. Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans.

    PubMed Central

    Skene, D J; Bojkowski, C J; Arendt, J

    1994-01-01

    1. Acute administration of the specific serotonin uptake inhibitor, fluvoxamine (100 mg at 16.00 h), markedly increased nocturnal plasma melatonin concentrations, with high levels extending into the morning hours. 2. Acute administration of the noradrenaline uptake inhibitor, desipramine (DMI) (100 mg at 16.00 h), increased evening plasma melatonin concentrations. 3. Both drug treatments increased the duration of melatonin secretion, fluvoxamine significantly delaying the offset time and DMI significantly advancing the onset time. 4. The stimulatory effect of DMI on plasma melatonin was mirrored by increased urinary 6-sulphatoxymelatonin (aMT6s) excretion. 5. On the contrary, there was no correlation between plasma melatonin and urinary aMT6s concentrations following fluvoxamine treatment, suggesting that fluvoxamine may inhibit the metabolism of melatonin. 6. Treatment with DMI increased plasma cortisol concentrations in the evening and early morning, treatment with fluvoxamine increased plasma cortisol at 03.00 h, 10.00 h and 11.00 h. 7. The drug treatments affected different aspects of the nocturnal plasma melatonin profile suggesting that the amplitude of the melatonin rhythm may depend upon serotonin availability and/or melatonin metabolism whilst the onset of melatonin production depends upon noradrenaline availability. PMID:8186063

  5. Morphology and function: MR pineal volume and melatonin level in human saliva are correlated.

    PubMed

    Liebrich, Luisa-Sophie; Schredl, Michael; Findeisen, Peter; Groden, Christoph; Bumb, Jan Malte; Nölte, Ingo S

    2014-10-01

    To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue. © 2013 Wiley Periodicals, Inc.

  6. Melatonin effects on Plasmodium life cycle: new avenues for therapeutic approach.

    PubMed

    Srinivasan, Venkataramanujam; Ahmad, Asma H; Mohamed, Mahaneem; Zakaria, Rahimah

    2012-05-01

    Malaria remains a global health problem affecting more than 515 million people all over the world including Malaysia. It is on the rise, even within unknown regions that previous to this were free of malaria. Although malaria eradication programs carried out by vector control programs are still effective, anti-malarial drugs are also used extensively for curtailing this disease. But resistance to the use of anti-malarial drugs is also increasing on a daily basis. With an increased understanding of mechanisms that cause growth, differentiation and development of malarial parasites in rodents and humans, new avenues of therapeutic approaches for controlling the growth, synchronization and development of malarial parasites are essential. Within this context, the recent discoveries related to IP3 interconnected signalling pathways, the release of Ca2+ from intracellular stores of Plasmodium, ubiquitin protease systems as a signalling pathway, and melatonin influencing the growth and differentiation of malarial parasites by its effects on these signalling pathways have opened new therapeutic avenues for arresting the growth and differentiation of malarial parasites. Indeed, the use of melatonin antagonist, luzindole, has inhibited the melatonin's effect on these signalling pathways and thereby has effectively reduced the growth and differentiation of malarial parasites. As Plasmodium has effective sensors which detect the nocturnal plasma melatonin concentrations, suppression of plasma melatonin levels with the use of bright light during the night or by anti-melatonergic drugs and by using anti-kinase drugs will help in eradicating malaria on a global level. A number of patients have been admitted with regards to the control and management of malarial growth. Patents related to the discovery of serpentine receptors on Plasmodium, essential for modulating intra parasitic melatonin levels, procedures for effective delivery of bright light to suppress plasma melatonin levels and thereby arresting the growth and elimination of malarial parasites from the blood of the host are all cited in the paper. The purpose of the paper is to highlight the importance of melatonin acting as a cue for Plasmodium faciparum growth and to discuss the ways of curbing the effects of melatonin on Plasmodium growth and for arresting its life cycle, as a method of eliminating the parasite from the host.

  7. Mechanism of salutary effects of melatonin-mediated liver protection after trauma-hemorrhage: p38 MAPK-dependent iNOS/HIF-1α pathway.

    PubMed

    Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen

    2017-05-01

    Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.

  8. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    PubMed

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Therapeutic effect of perinatal exogenous melatonin on behavioral and histopathological changes and antioxidative enzymes in neonate mouse model of cortical malformation.

    PubMed

    Azizi, Maryam; Pasbakhsh, Parichehr; Nadji, Seyed Alireza; Pourabdollah, Mihan; Mokhtari, Tahmineh; Sadr, Makan; Omidi, Negar; Kashani, Iraj Ragerdi; Zendehdel, Adib

    2018-03-29

    Melatonin, which is an antioxidant and neuroprotective agent, can be an effective treatment for neurological disorders. We assessed the effect of melatonin administration on histological changes, antioxidant enzyme levels, and behavioral changes in a neonate mouse model of cortical malformation. Cortical malformation was induced by two injections of 15 mg/kg methylazoxymethanol (MAM) on gestational day 15 (E15). Pregnant Balb/c mice were randomly divided into the following six groups: Control (CO), Melatonin (MEL), Luzindole (LUZ), MAM, MEL + MAM1 (co-treatment), and MEL + MAM2 (pretreatment). Melatonin was intraperitoneally injected at a dose of 10 mg/kg daily (from E15 until delivery of from E6 for 20 days after delivery). On postnatal day 31, the activity and anxiety of mice were assessed by open field and elevated plus maze tests, respectively. Histopathological changes in the neonate cortex were studied using hematoxylin and eosin staining and neurofilament immunohistochemistry. Enzyme-linked immunosorbent assays were used to measure the activity of nitric oxide (NO), malondialdehyde (MDA), and antioxidant enzymes, including catalase (CAT), super oxide dismutase (SOD), and glutathione peroxidase (GPX). In the behavioral assessment of neonate mice, a significant increase in the crossing activity and decrease in anxiety were recorded in groups treated with MAM plus melatonin. In histological examination, heterotopic, dysmorphic, and ectopic cells, as well as dyslamination, were seen in the MAM and LUZ groups. However, these defects were attenuated in the MAM plus melatonin groups. Significant reductions were recorded in the SOD and GPX levels in the MAM and LUZ groups compared to the control, while the NO level was increased in these groups. Groups that received MAM plus melatonin showed significant increases in the levels of SOD and GPX and a significant decrease in the level of NO, compared to the MAM group. Melatonin increased the crossing activity and decreased the anxiety in the treated mice of the neonate mouse model of cortical malformation. Histologically, the administration of exogenous melatonin in pregnant mice and their neonates had a protective effect on the cerebral cortex of neonates. Also, this effect is elicited by decreasing NO and increasing antioxidative enzymes. Copyright © 2018 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were comparedmore » in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.« less

  11. The role of melatonin and cortisol circadian rhythms in the pathogenesis of infantile colic.

    PubMed

    İnce, Tolga; Akman, Hakkı; Çimrin, Dilek; Aydın, Adem

    2018-03-05

    Despite the high prevalence of infantile colic, the pathogenesis remains incompletely understood. Cortisol and melatonin hormones affect gastrointestinal system development in several ways, and interestingly, both cortisol and melatonin's circadian rhythms begin around the 3rd month in which infantile colic symptoms start to decrease. We hypothesized that infantile colic might associate with desynchronization of normal circadian rhythms of these hormones. In this study, we aimed to investigate the role of melatonin and cortisol in the pathogenesis of infantile colic. Patients who were diagnosed as infantile colic according to Wessel's "rule of three" were enrolled in the colic group. We measured the saliva melatonin and cortisol levels of colic group and control group infants. In both groups, the saliva samples were taken in mornings and at evenings, at the time of diagnosis and 6th month. Fifty-five infants finished the study. Melatonin circadian rhythm developed earlier in the control group than the infantile colic group in our study. We found no significant difference between the daily mean cortisol levels. However, infants with colic had flatter daily cortisol slope than controls which pointed out the probability that they had a less clearly defined cortisol rhythm than infants without colic. We found an association between melatonin levels and infantile colic. However, more research is needed to fully understand the role of hypothalamic-pituitary-adrenal axis and hormone's role on infantile colic physiopathology.

  12. Abnormal melatonin synthesis in autism spectrum disorders.

    PubMed

    Melke, J; Goubran Botros, H; Chaste, P; Betancur, C; Nygren, G; Anckarsäter, H; Rastam, M; Ståhlberg, O; Gillberg, I C; Delorme, R; Chabane, N; Mouren-Simeoni, M-C; Fauchereau, F; Durand, C M; Chevalier, F; Drouot, X; Collet, C; Launay, J-M; Leboyer, M; Gillberg, C; Bourgeron, T

    2008-01-01

    Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2 x 10(-10)). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2 x 10(-12)) and melatonin level (P=3 x 10(-11)) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.

  13. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep.

    PubMed

    González-Candia, Alejandro; Veliz, Marcelino; Araya, Claudio; Quezada, Sebastian; Ebensperger, Germán; Serón-Ferré, María; Reyes, Roberto V; Llanos, Aníbal J; Herrera, Emilio A

    2016-08-01

    Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus.

    PubMed

    Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar

    2016-09-01

    Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain, suggesting a novel therapeutic approach of melatonin for management of cognition and memory function in females under hyperthyroid condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure.

    PubMed

    Zhang, Lu; Zhang, Zhenzhen; Wang, Feng; Tian, Xiuzhi; Ji, Pengyun; Liu, Guoshi

    2017-10-02

    Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10 -2 , 10 -3 , 10 -4 , 10 -5  M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. Melatonin treatment (10 -4 ,10 -5  M) significantly increased litter sizes compared to untreated controls (12.9 ± 0.40 and 12.2 ± 1.01 vs. 11.5 ± 0.43; P < 0.05). The most effective concentration of melatonin (10 -4  M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17β-estradiol (E 2 ) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E 2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the microenvironment of the uterus and, thus, the outcomes of pregnancy.

  16. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial.

    PubMed

    Amstrup, Anne Kristine; Sikjaer, Tanja; Heickendorff, Lene; Mosekilde, Leif; Rejnmark, Lars

    2015-09-01

    Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling

    PubMed Central

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F′v/F′m) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by accelerating NPQ through the stimulation of VDE activity and the enhancement of de-epoxidation state of xanthophyll pigments. PMID:28265283

  18. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling.

    PubMed

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F'v/F'm) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by accelerating NPQ through the stimulation of VDE activity and the enhancement of de-epoxidation state of xanthophyll pigments.

  19. Melatonin: aeromedical, toxicopharmacological, and analytical aspects.

    PubMed

    Sanders, D C; Chaturvedi, A K; Hordinsky, J R

    1999-01-01

    Melatonin, a pineal hormone present in the blood of humans and other species, has a distinct diurnal variation in its biosynthesis and, therefore, in its concentration. This variation has suggested the possibility of a regulatory function in day/night-dependent physiological processes such as sleep and has led scientists to explore the effects of administered melatonin on the modulation of circadian rhythms. For the self-treatment of sleep disorders and other benefits, melatonin use has been extolled to the extent that 20 million new consumers were added to the U.S. retail market in 1995. Its principal aeromedical application has been in the experimental treatment of jet-lag effects. For aircraft passengers, melatonin administration at destination bedtime appears to improve sleep quality and to decrease the time required to reestablish normal circadian rhythms. For international aircrews that travel through multiple time zones without time to adapt to new environments, taking melatonin before arriving home may further impair already disturbed circadian rhythms. Its use to adjust to shiftwork changes by air traffic controllers, aircraft maintenance workers, and support personnel is even more controversial. Limited studies suggest that giving this hormone to shift workers should be done only under controlled conditions and that taking it at the wrong time may actually impair job performance. Because of its possible interaction with certain medications and the changes in its concentrations observed in some clinical conditions, the practitioner must exercise caution during the medical certification of airmen. The variations in the concentration of melatonin can be effectively determined by radioimmunoassay, high-performance liquid chromatography, and gas chromatography-mass spectroscopy analytical techniques. These techniques are capable of measuring the human daytime (10 pg/mL) and nighttime (30-120 pg/mL) melatonin in plasma/serum. Melatonin measurements in victims of accidental death may allow forensic scientists and accident investigators to use the relationship between its concentration and the time of day when death occurred. The most accurate estimations of the time of death result from analysis of melatonin content of the whole pineal body, whereas less accurate estimates are obtained from serum and urine analyses. Pineal levels of melatonin are unlikely to be altered by exogenous melatonin, but its blood and urine levels would change. High blood levels in a daytime crash victim would suggest exogenous supplementation. The possible interfering effects of postmortem biochemical processes on melatonin concentrations in whole blood and in other tissues are not well understood, and there is a need for the continuing research into melatonin's chronobiological properties to define its proper applications and limitations. The indiscriminate use of melatonin by aviation professionals may pose unacceptable safety risks for air travel.

  20. Endogenous melatonin and oxidatively damaged guanine in DNA

    PubMed Central

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-01-01

    Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of 8-oxoGua (p < 0.07), but not with 8-oxodG. Among the daughters, no relationship was found between melatonin levels and either 8-oxodG or 8-oxoGua levels. When the mother and father data were further analyzed using only subjects older than the oldest daughter, the associations became somewhat stronger. Conclusion Low levels of endogenous melatonin production among older individuals may lead to higher levels of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing. PMID:19835624

  1. Endogenous melatonin and oxidatively damaged guanine in DNA.

    PubMed

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-10-18

    A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of 8-oxoGua (p < 0.07), but not with 8-oxodG. Among the daughters, no relationship was found between melatonin levels and either 8-oxodG or 8-oxoGua levels. When the mother and father data were further analyzed using only subjects older than the oldest daughter, the associations became somewhat stronger. Low levels of endogenous melatonin production among older individuals may lead to higher levels of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing.

  2. Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses.

    PubMed

    Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L

    2013-01-01

    Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses’ ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect.

  3. Relation of Melatonin to Sleep Architecture in Children with Autism

    PubMed Central

    Leu, Roberta M.; Beyderman, Liya; Botzolakis, Emmanuel J.; Surdyka, Kyla; Wang, Lily; Malow, Beth A.

    2013-01-01

    Children with autism often suffer from sleep disturbances, and compared to age-matched controls, have decreased melatonin levels, as indicated by urine levels of the primary melatonin metabolite, 6-sulfatoxymelatonin (6-SM). We therefore investigated the relationship between 6-SM levels and sleep architecture in children with autism spectrum disorders (ASD). Twenty-three children, aged 4–10 years, completed two nights of polysomnography and one overnight urine collection for measurement of urinary 6-SM excretion rate. Parents completed the Children’s Sleep Habits Questionnaire. We found that higher urinary 6-SM excretion rates were associated with increased N3 sleep, decreased N2 sleep, and decreased daytime sleepiness. The results warrant further examination to examine the effects of supplemental melatonin on sleep architecture and daytime sleepiness. PMID:20683768

  4. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that supplementation with melatonin may have a protective effect on AP by modulating TLR4/NF-ĸB signaling in the pulp and in pulp cells. PMID:25755829

  5. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    PubMed

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Advances in the Research of Melatonin in Autism Spectrum Disorders: Literature Review and New Perspectives

    PubMed Central

    Tordjman, Sylvie; Najjar, Imen; Bellissant, Eric; Anderson, George M.; Barburoth, Marianne; Cohen, David; Jaafari, Nemat; Schischmanoff, Olivier; Fagard, Rémi; Lagdas, Enas; Kermarrec, Solenn; Ribardiere, Sophie; Botbol, Michel; Fougerou, Claire; Bronsard, Guillaume; Vernay-Leconte, Julie

    2013-01-01

    Abnormalities in melatonin physiology may be involved or closely linked to the pathophysiology and behavioral expression of autistic disorder, given its role in neurodevelopment and reports of sleep-wake rhythm disturbances, decreased nocturnal melatonin production, and beneficial therapeutic effects of melatonin in individuals with autism. In addition, melatonin, as a pineal gland hormone produced from serotonin, is of special interest in autistic disorder given reported alterations in central and peripheral serotonin neurobiology. More specifically, the role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators opens interesting perspectives to ascertain better the mechanisms underlying the significant relationship found between lower nocturnal melatonin excretion and increased severity of autistic social communication impairments, especially for verbal communication and social imitative play. In this article, first we review the studies on melatonin levels and the treatment studies of melatonin in autistic disorder. Then, we discuss the relationships between melatonin and autistic behavioral impairments with regard to social communication (verbal and non-verbal communication, social interaction), and repetitive behaviors or interests with difficulties adapting to change. In conclusion, we emphasize that randomized clinical trials in autism spectrum disorders are warranted to establish potential therapeutic efficacy of melatonin for social communication impairments and stereotyped behaviors or interests. PMID:24129182

  7. Melatonin attenuates postharvest physiological deterioration of cassava storage roots.

    PubMed

    Ma, Qiuxiang; Zhang, Ting; Zhang, Peng; Wang, Zhen-Yu

    2016-05-01

    Melatonin reportedly increases abiotic and biotic stress tolerance in plants, but information on its in vivo effects during postharvest physiological deterioration (PPD) in cassava is limited. In this study, we investigated the effect of melatonin in regulating cassava PPD. Treatment with 500 mg/L melatonin significantly delayed cassava PPD and reduced the accumulation of hydrogen peroxide (H2O2) while increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), but not ascorbate peroxidase (APX). Transcript analysis further showed that expression of copper/zinc SOD (MeCu/ZnSOD), MeCAT1, glutathione peroxidase (MeGPX), peroxidase 3 (MePX3), and glutathione S-transferases (MeGST) was higher in cassava roots sliced treated with 500 mg/L melatonin than in those not exposed to exogenous melatonin. These data demonstrate that melatonin delays cassava PPD by directly or indirectly maintaining homoeostasis of cellular reactive oxygen species (ROS). We also found that accumulation of endogenous melatonin and the transcript levels of melatonin biosynthesis genes changed dynamically during the PPD process. This finding suggested that endogenous melatonin acts as a signal modulator for maintaining cassava PPD progression and that manipulation of melatonin biosynthesis genes through genetic engineering might prevent cassava root deterioration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Melatonin Inhibits the Proliferation of Gastric Cancer Cells Through Regulating the miR-16-5p-Smad3 Pathway.

    PubMed

    Zhu, Chenyu; Huang, Qun; Zhu, Hongyu

    2018-03-01

    The incidence and mortality of gastric cancer is steadily increasing annually around the world, which required further investigation about alternative therapy strategies. Melatonin, an indoleamine synthesized in the pineal gland, has shown dramatic anticancer effect in several cancers, however, the function of melatonin in gastric cancer needs to be characterized. In this study, we found that melatonin inhibited the growth and induced apoptosis of gastric cancer cells. microRNAs (miRNAs) have been attractive targets for many anticancer drugs. To explore the underlying molecular mechanism by which melatonin attenuated the growth of cancer cells, miRNA microarray analysis was performed to screen the miRNAs, which significantly altered after melatonin treatment. The result showed that melatonin administration enhanced the expression of miR-16-5p. Further molecular mechanism research revealed that miR-16-5p targeted Smad3 and consequently negatively regulated the abundance of Smad3. Consistently, melatonin exposure decreased the level of Smad3 and overexpression of Smad3 attenuated the inhibitory effect of melatonin in gastric cancer cells. These results uncovered the anticancer effect of melatonin and highlighted the critical roles of miR-16-5p-Smad3 pathway in melatonin-induced growth defects of gastric cancers.

  9. Advances in the research of melatonin in autism spectrum disorders: literature review and new perspectives.

    PubMed

    Tordjman, Sylvie; Najjar, Imen; Bellissant, Eric; Anderson, George M; Barburoth, Marianne; Cohen, David; Jaafari, Nemat; Schischmanoff, Olivier; Fagard, Rémi; Lagdas, Enas; Kermarrec, Solenn; Ribardiere, Sophie; Botbol, Michel; Fougerou, Claire; Bronsard, Guillaume; Vernay-Leconte, Julie

    2013-10-14

    Abnormalities in melatonin physiology may be involved or closely linked to the pathophysiology and behavioral expression of autistic disorder, given its role in neurodevelopment and reports of sleep-wake rhythm disturbances, decreased nocturnal melatonin production, and beneficial therapeutic effects of melatonin in individuals with autism. In addition, melatonin, as a pineal gland hormone produced from serotonin, is of special interest in autistic disorder given reported alterations in central and peripheral serotonin neurobiology. More specifically, the role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators opens interesting perspectives to ascertain better the mechanisms underlying the significant relationship found between lower nocturnal melatonin excretion and increased severity of autistic social communication impairments, especially for verbal communication and social imitative play. In this article, first we review the studies on melatonin levels and the treatment studies of melatonin in autistic disorder. Then, we discuss the relationships between melatonin and autistic behavioral impairments with regard to social communication (verbal and non-verbal communication, social interaction), and repetitive behaviors or interests with difficulties adapting to change. In conclusion, we emphasize that randomized clinical trials in autism spectrum disorders are warranted to establish potential therapeutic efficacy of melatonin for social communication impairments and stereotyped behaviors or interests.

  10. Vaccination prepartum enhances the beneficial effects of melatonin on the immune response and reduces platelet responsiveness in sheep

    PubMed Central

    2012-01-01

    Background Melatonin regulates several physiological processes and its powerful action as antioxidant has been widely reported. Melatonin acts modulating the immune system, showing a protective effect on the cardiovascular system and improving vaccine administration as an adjuvant-like agent. Here, we have investigated the role of melatonin as an adjuvant of the Clostridium perfringens vaccine in prepartum sheep and whether melatonin modulates platelet physiology during peripartum. Results The experiments were carried out in peripartum sheep from a farm located in an area of Mediterranean-type ecosystem. Plasma melatonin levels were determined by ELISA and sheep platelet aggregation was monitored using an aggregometer. Here we demonstrated for the first time that plasma melatonin concentration were higher in pregnant (125 pg/mL) than in non-pregnant sheep (15 pg/mL; P < 0.05). Administration of melatonin prepartum did not significantly modify platelet function but significantly improved the immune response to vaccination against C. perfringens. Conclusion Administration of melatonin as an adjuvant provides a significant improvement in the immune response to vaccine administration prepartum against C. perfringens. PMID:22716226

  11. Presence of melanopsin in human crystalline lens epithelial cells and its role in melatonin synthesis.

    PubMed

    Alkozi, Hanan Awad; Wang, Xiaoyu; Perez de Lara, Maria J; Pintor, Jesus

    2017-01-01

    Melanopsin is a non-image forming photoreceptor known to be present in the retina and it is considered to have light regulated tasks among other functions. In the present work, melanopsin presence in human lens epithelial cells as well as in human lens tissue is described for the first time. Moreover, studying the concentration of melatonin and its synthesising enzyme AANAT proved a clear link between melanopsin activation and the suppression of melatonin synthesis. Melanopsin sensitivity to specific wavelength (465-480 nm, blue) was confirmed after making temporal studies incubating lens epithelial cells under light, red, green, blue and total darkness for 2, 4, 8, 12 h and analysing the concentration of both melatonin and its synthesising enzyme AANAT, discovering that melatonin levels after submitting cells to total darkness are significantly higher to ones submitted to white or specifically blue light (***p < 0.001, n = 6). The involvement of melanopsin in the regulation of melatonin was also determined by using a specific inhibitor AA92593 and by inhibiting melanopsin-induced phospholipase C activation. Under this situation neither AANAT nor melatonin levels changed under light conditions (n = 4, ***p < 0.001). The discovery of melanopsin in the lens opens the possibility of regulating melatonin synthesis with the corresponding implication as an antioxidant substance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness.

    PubMed

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.

  13. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness

    PubMed Central

    Ikegami, Taro; Maruyama, Yusuke; Doi, Hiroyuki; Hattori, Atsuhiko; Ando, Hironori

    2015-01-01

    Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel1a1.4, mel1a1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0–15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer. PMID:25688184

  14. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats.

    PubMed

    Paulis, Ludovit; Pechanova, Olga; Zicha, Josef; Krajcirovicova, Kristina; Barta, Andrej; Pelouch, Vaclav; Adamcova, Michaela; Simko, Fedor

    2009-08-01

    Melatonin was shown to reduce blood pressure, enhance nitric oxide availability and scavenge free radicals. There is, however, a shortage of data with respect to the effect of melatonin on pathological left ventricular remodelling associated with haemodynamic overload. We investigated whether melatonin was able to prevent left ventricular hypertrophy (LVH) and fibrosis associated with N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension. Four groups of male Wistar rats were investigated: control, L-NAME (50 mg/kg per day), melatonin (10 mg/kg per day) and L-NAME plus melatonin. Blood pressure was measured non-invasively each week. After 5 weeks of treatment the animals were killed and nitric oxide synthase (NOS) activity, endothelial and inducible NOS expression, the level of collagenous proteins, hydroxyproline and conjugated dienes in the left ventricle were determined. The administration of L-NAME inhibited NOS activity, increased conjugated dienes concentration, elevated blood pressure and induced LVH and fibrosis (indicated by increased collagenous proteins and hydroxyproline levels). The addition of melatonin to L-NAME treatment failed to prevent the attenuation of NOS activity and the development of LVH and prevented hypertension only partly. The administration of melatonin, however, completely prevented the increase in conjugated dienes concentration and the development of left ventricular fibrosis. NOS expression was not different among experimental groups. Melatonin prevented the development of left ventricular fibrosis and the increase in oxidative load in rats with L-NAME-induced hypertension. The antifibrotic effect of melatonin seems to be independent of its effects on NOS activity and might be linked to its antioxidant properties.

  15. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    PubMed

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  16. Melatonin and its relationship to plant hormones.

    PubMed

    Arnao, M B; Hernández-Ruiz, J

    2018-02-12

    Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis

    PubMed Central

    Reiter, Russel J.; Rosales-Corral, Sergio A.; Tan, Dun-Xian; Acuna-Castroviejo, Dario; Qin, Lilan; Yang, Shun-Fa; Xu, Kexin

    2017-01-01

    There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin’s co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients. PMID:28420185

  18. The Effects of Melatonin on Menstrual Characteristics, Prolactin and Premenstrual Syndrome-Like Symptoms During a Simulated Eastward Deployment

    DTIC Science & Technology

    1998-06-01

    shown to Tesynchronize circadian rhythms and induce sleep in humans (Arendt et al.51987; Dawson and Encel, 1993; Reiter, 1991; Wurtman, 1986), is...melatonin levels, in women experiencing amenorrhea , are more than double the normal levels observed in cycling women (Berga et al., 1988; Brzezinski...associated with the induction of amenorrhea . In females with normal menstrual cycles, a tenuous relationship between endogenous melatonin and basal LH has

  19. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats.

    PubMed

    Kim, Hye Sun; Paik, Man-Jeong; Lee, Yu Hee; Lee, Yun-Sil; Choi, Hyung Do; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan

    2015-01-01

    We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p < 0. 05). Our results suggest that nocturnal RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.

  20. Melatonin prevents radiation-induced oxidative stress and periodontal tissue breakdown in irradiated rats with experimental periodontitis.

    PubMed

    Köse, O; Arabaci, T; Kizildag, A; Erdemci, B; Özkal Eminoğlu, D; Gedikli, S; Özkanlar, S; Zihni, M; Albayrak, M; Kara, A; Kermen, E

    2017-06-01

    The aim of this study was to analyze the biochemical and histochemical effects of radiation therapy and protective melatonin administration on periodontal tissues in rats with experimental periodontitis. Sixty male Sprague Dawley rats were divided into six groups, as follows: control; experimental periodontitis (Ped); radiotherapy administration (Rt); experimental periodontitis and exposure to irradiation (Ped-Rt); radiotherapy and protective melatonin administration (Rt-Mel); and periodontitis, radiation therapy and protective melatonin administration (Ped-Rt-Mel). The rats were killed at the end of the experimental procedure, and the oxidative stress level and periodontal destruction were compared among the groups. The oxidative stress index and the levels of 8-hydroxy-2'-deoxyguanosine, malondialdehyde and C-terminal telopeptide of type I collagen were found to be significantly higher in the Ped-Rt group compared with the Ped group (p < 0.05), and the levels were lower in the Ped-Rt-Mel group than in the Ped-Rt group (p < 0.05). Alveolar bone destruction and attachment level were also significantly lower in the Ped-Rt-Mel group than in the Ped-Rt group (p < 0.05). It was found that radiotherapy increased oxidative stress, the periodontal attachment level and alveolar bone loss, and protective melatonin administration significantly reduced the oxidative parameters and prevented periodontal damage in irradiated rats with experimental periodontitis. Further research is needed regarding the use of systemic melatonin administration before radiation therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Role of the melatonin system in the control of sleep: therapeutic implications.

    PubMed

    Pandi-Perumal, Seithikurippu R; Srinivasan, Venkatramanujan; Spence, D Warren; Cardinali, Daniel P

    2007-01-01

    The circadian rhythm of pineal melatonin secretion, which is controlled by the suprachiasmatic nucleus (SCN), is reflective of mechanisms that are involved in the control of the sleep/wake cycle. Melatonin can influence sleep-promoting and sleep/wake rhythm-regulating actions through the specific activation of MT(1) (melatonin 1a) and MT(2) (melatonin 1b) receptors, the two major melatonin receptor subtypes found in mammals. Both receptors are highly concentrated in the SCN. In diurnal animals, exogenous melatonin induces sleep over a wide range of doses. In healthy humans, melatonin also induces sleep, although its maximum hypnotic effectiveness, as shown by studies of the timing of dose administration, is influenced by the circadian phase. In both young and elderly individuals with primary insomnia, nocturnal plasma melatonin levels tend to be lower than those in healthy controls. There are data indicating that, in affected individuals, melatonin therapy may be beneficial for ameliorating insomnia symptoms. Melatonin has been successfully used to treat insomnia in children with attention-deficit hyperactivity disorder or autism, as well as in other neurodevelopmental disorders in which sleep disturbance is commonly reported. In circadian rhythm sleep disorders, such as delayed sleep-phase syndrome, melatonin can significantly advance the phase of the sleep/wake rhythm. Similarly, among shift workers or individuals experiencing jet lag, melatonin is beneficial for promoting adjustment to work schedules and improving sleep quality. The hypnotic and rhythm-regulating properties of melatonin and its agonists (ramelteon, agomelatine) make them an important addition to the armamentarium of drugs for treating primary and secondary insomnia and circadian rhythm sleep disorders.

  2. Toxicology of melatonin.

    PubMed

    Guardiola-Lemaître, B

    1997-12-01

    Despite the fact that melatonin has been released for public use in the United States by the Food and Drug Administration and is available over the counter nationwide, there currently is a total lack of information on the toxicology of melatonin. In Europe, melatonin has a completely different status in that it is considered a "neurohormone" and cannot be sold over the counter. Even though administration of melatonin in humans, as well as in animals (even at supraphysiological doses), has not shown evidence of toxicological effects (i.e., no deaths), a drug toxicological file still would need to be prepared and approved by the regulatory authorities. Several features that are specific to this neurohormone need to be taken into consideration. Whatever the species concerned, melatonin is secreted during the night; it is the "hormone of darkness." It presents a circadian rhythm and a circannual rhythm (in photoperiodic species). The duration of these secretions could have an impact on the reproductive system, for example, showing the importance of the pharmacodynamics of melatonin. An inappropriate time schedule of melatonin administration could induce supraphysiological concentrations of the neurohormone and a desensitization of melatonin receptors. A long duration of exposure to melatonin also could mimic an "artificial darkness" condition when a circadian rhythm with a basal zero level during the day needs to be conserved for a physiological function. Furthermore, administration of large doses of melatonin could induce high concentrations of melatonin and of different metabolites that could have deleterious effects per se. Numerous books, magazines, and articles have praised melatonin as a "miraculous cure-all" for ailments ranging from sleeplessness, to aging, without any clinical evidence of efficacy (with the exception of its chronobiotic and resynchronizing effect). Very little attention has been paid to the possible side effects of melatonin. Nightmares, hypotension, sleep disorders, abdominal pain, etcetera, have been reported. In fact, analysis of the known pharmacological profile of melatonin and/or of its metabolites, based on scientific preclinical studies, constitutes a basis for prediction of adverse drug reactions or side effects. These include (1) the central nervous system, (2) the cardiovascular system and platelet aggregation, (3) glucose metabolism, (4) immunology, and (5) cancer. The knowledge of the fundamental mechanism of action of melatonin, including molecular biology, also needs to be taken into account for evaluation of possible side effects. Two types of melatonin receptors have been cloned (related to cyclic AMP), and the possibility of intracellular action of melatonin cannot be excluded. Melatonin receptors are present in the periphery and also at the level of the central nervous system, particularly on the suprachiasmatic nucleus that "drives" a circadian rhythm to many other areas on which it projects. Among those, the hypothalamus (which has melatonin receptors) plays a fundamental role in the hormonal homeostasis and modulation control of the organism. Special preclinical and pharmacological studies that take into account all these parameters need to be designed for safety evaluation and risk assessment of this specific neurohormone.

  3. Exogenous melatonin improves Malus resistance to Marssonina apple blotch.

    PubMed

    Yin, Lihua; Wang, Ping; Li, Mingjun; Ke, Xiwang; Li, Cuiying; Liang, Dong; Wu, Shan; Ma, Xinli; Li, Chao; Zou, Yangjun; Ma, Fengwang

    2013-05-01

    We examined whether exogenously applied melatonin could improve resistance to Marssonina apple blotch (Diplocarpon mali) by apple [Malus prunifolia (Willd.) Borkh. cv. Donghongguo]. This serious disease leads to premature defoliation in the main regions of apple production. When plants were pretreated with melatonin, resistance was increased in the leaves. We investigated the potential roles for melatonin in modulating levels of hydrogen peroxide (H2O2), as well the activities of antioxidant enzymes and pathogenesis-related proteins during these plant-pathogen interactions. Pretreatment enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhance the activities of plant defence-related enzymes, possibly improving disease resistance. Because melatonin is safe and beneficial to animals and humans, exogenous pretreatment might represent a promising cultivation strategy to protect plants against this pathogen infection. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 rain or less after follicular aspiration. All of the follicular fluids contained melatonim, in concentrations substantially higher than those in the corresponding serum. A positive correlation was found between follicular fluid and serum melatonin levels in each woman; these observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  5. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    PubMed

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  6. [The influence of melatonin and epithalon on blood leukocyte count and leukocyte alkaline phosphatase in rats under different lighting conditions during ontogenesis].

    PubMed

    Uzenbaeva, L B; Vinogradova, I A; Golubeva, A G; Niuppieva, M G; Iliukha, V A

    2008-01-01

    The effect of pineal body hormone melatonin and synthetic tetrapeptide epithalon (Ala-Glu-Asp-Gly) under different light conditions on leucocytes differential count in rats were investigated. It has been established that melatonin and epithalon decrease the level of blood leucocytes and relative content of band neutrophils in 12 months rats which was higher in the constant light more than in other photoperiod. The melatonin prevents age-specific decreasing blood lymphocytes level in standard photoperiod (12 h light/12 h darkness). Contrary to melatonin, epithalon significantly reduces the number of lymphocytes and increases the number of neutrophils in some age period. The leucocytes alkaline phosphatase activity was increased during aging. Constant light in compare with other light conditions promotes early increasing of alkaline phosphatase activity (at 12 months), associated with accelerated development of pathological process in organism. The melatonin and epithalon adjacency effect on increasing of alkaline phosphatase activity under the standard as well as natural light condition demonstrate homeostatic character of geroprotectors action furthermore depend on leucocytes functional status.

  7. Melatonin in Children with Autism Spectrum Disorders: How Does the Evidence Fit Together?

    PubMed

    Veatch, Olivia J; Goldman, Suzanne E; Adkins, Karen W; Malow, Beth A

    Autism spectrum disorders (ASD) are prevalent neurodevelopmental conditions, affecting 1 in 68 children in the United States alone. Sleep disturbance, particularly insomnia, is very common in children diagnosed with ASD, with evidence supporting overlapping neurobiological and genetic underpinnings. One of the most well studied mechanisms related to ASD and insomnia is dysregulation of the melatonin pathway, which has been observed in many individuals with ASD compared to typically developing controls. Furthermore, variation in genes whose products regulate endogenous melatonin modify sleep patterns in humans and have also been implicated in some cases of ASD. However, the relationship between comorbid insomnia, melatonin processing, and genes that regulate endogenous melatonin levels in ASD is complex and requires further study to fully elucidate. The aim of this review is to provide an overview of the current findings related to the effects of genetic variation in the melatonergic pathway on risk for expression of sleep disorders in children with ASD. In addition, functional findings related to endogenous levels of melatonin and pharmacokinetic profiles in this patient population are evaluated.

  8. Gut Melatonin in Vertebrates: Chronobiology and Physiology.

    PubMed

    Mukherjee, Sourav; Maitra, Saumen Kumar

    2015-01-01

    Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT) is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23 kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s) as its synchronizer. Based on mammalian findings, physiological significance of gut-derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini review is to summarize the existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  9. Effects of melatonin on biochemical factors and food and water consumption in diabetic rats

    PubMed Central

    Bibak, Bahram; Khalili, Monavareh; Rajaei, Ziba; Soukhtanloo, Mohammad; Hadjzadeh, Mousa-Al-Reza; Hayatdavoudi, Parichehr

    2014-01-01

    Background: Diabetic neuropathy is one of the serious problems due to microvessel vasculopathy in diabetes. It has been reported that hyperglycemia and hypertriglyceridemia are the underlying mechanisms in inducing and progression of diabetic neuropathy. The aim of the present study was to investigate the effects of melatonin on serum glucose and lipid levels, as well as food consumption and water intake in streptozotocin-induced diabetic rats. Materials and Methods: Eighty male Wistar rats were randomly assigned to six groups including; normal control group, diabetic control group and 4 diabetic experimental groups that received melatonin intraperitoneally at doses of 2.5, 5, 10, and 20 mg/kg at the end of sixth week after verification of neuropathy by means of evaluation of sciatic nerve conduction velocity (MNCV), for two weeks. Blood glucose and lipid levels, body weight, the amounts of food consumption, and water intake were determined in all groups at weeks 0 (before diabetes induction), 3, 6, and at the end of eighth week. Results: Treatment with melatonin reduced significantly the serum glucose (P < 0.001) and triglyceride (P < 0.05) levels, food consumption (P < 0.001), and water intake (P < 0.001) in diabetic rats at the end of eighth week. However, melatonin had no significant effect on body weight of diabetic animals. Conclusions: Treatment with melatonin could improve several signs of diabetes, including hyperglycemia, hypertriglyceridemia, polyphagia, and polydipsia. Therefore, melatonin may be used as an adjunct therapy in the treatment of diabetes. PMID:25250287

  10. Abnormal melatonin synthesis in autism spectrum disorders

    PubMed Central

    Melke, Jonas; Goubran-Botros, Hany; Chaste, Pauline; Betancur, Catalina; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Ståhlberg, Ola; Gillberg, I. Carina; Delorme, Richard; Chabane, Nadia; Mouren-Simeoni, Marie-Christine; Fauchereau, Fabien; Durand, Christelle M.; Chevalier, Fabien; Drouot, Xavier; Collet, Corinne; Launay, Jean-Marie; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas

    2008-01-01

    Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level was reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2×10−10). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2×10−12) and melatonin level (P=3×10−11) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior. PMID:17505466

  11. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

    PubMed

    Lee, Hyoung Yool; Back, Kyoungwhan

    2018-05-16

    In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen ( 1 O 2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O 2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O 2 - production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of photoperiods on glycemic and adrenal catecholaminergic responses to melatonin administrations in adult male roseringed parakeets, Psittacula krameri Neumann.

    PubMed

    Maitra, S K; Dey, M; Dey, R; Bhattacharya, S; Sengupta, A

    2000-11-01

    Effects of daily (one hour prior to onset of darkness) injection of melatonin (25 micrograms/100 g body wt. for 30 days) on concentrations of blood glucose and adrenal catecholamines were studied in adult male roseringed parakeets, P. krameri under both natural (NP; about 12L:12D) and artificial long (LP; 16L:8D; lights were available in between 0600 and 2200 hrs) or short (SP; 8L:16D; lights were available between 0600 and 1400 hrs) photoperiodic conditions. The results indicate that neither LP, nor SP as such exerts any significant effect on blood glucose titre of control (vehicle of hormone administered) birds. Treatment with melatonin, however, induced hyperglycemia in both NP and LP bird groups, but hypoglycemia in SP birds. Unlike glycemic levels, amount of epinephrine (E) and norepinephrine (NE) in adrenals of control birds exhibited significant changes under altered photoperiods. A decrease in E and an increase in NE were noted in adrenals of both LP and SP birds. Exogenous melatonin in NP birds also caused a decrease in E and concomittant rise in NE levels. On the other hand, treatment of melatonin in both LP and SP bird groups resulted in an increase in the quantity of both E and NE compared to respective values in adrenals of melatonin injected NP birds. However, relative to the amount of E and NE in adrenals of placebo treated LP and SP birds, significant effect of melatonin treatment was observed only in SP birds. The results suggest that influences of exogenous melatonin on the levels of both blood glucose and adrenal catecholamines are largely modulated by short rather than long photoperiods.

  14. Influences of graded dose of melatonin on the levels of blood glucose and adrenal catecholamines in male roseringed parakeets (Psittacula krameri ) under different photoperiods.

    PubMed

    Maitra, S K; Dey, M; Dutta, S; Bhattacharya, S; Dey, R; Sengupta, A

    2000-12-01

    Effects of daily evening (just before the onset of darkness in a 24 h light dark cycle) administration of graded doses (25, 50, or 100 microg/100 g body wt./day for 30 days) of melatonin on the concentrations of blood glucose and adrenal catecholamines were studied in sexually active male roseringed parakeets under natural (NP; approximately 12L: 12D) and artificial long (LP; 16L: 8D) and short (SP; 8L: 16D) photoperiods. Blood samples and adrenal glands were collected from each bird during the mid-day on the following day of the last treatment. The concentrations of glucose in blood and epinephrine (E) and norepinephrine (NE) in the adrenals were measured. The results of the study indicated that exogenous melatonin induces hypo- or hyperglycemia depending on the dose of hormone administered as well as to the length of photoperiod to which birds were exposed. The levels of E and NE in the adrenals were shown also to vary in relation to photoperiod and the dose of melatonin administered. But the nature of the influence of melatonin becomes different under altered photoperiodic conditions. It appears that short photoperiods are more effective than long photoperiods as a modulator of glycemic and adrenal catecholaminergic responses to exogenous melatonin. A statistically significant correlation between the levels of blood glucose and that of E and NE in the adrenals was found in the control birds, but not in the melatonin treated birds. The results suggested that the responses of blood glucose and adrenal catecholamines to the treatment with melatonin in the roseringed parakeets may not be dependent on each other.

  15. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  16. Can high maternal melatonin concentrations be responsible for inducing fetal pathologies, and can melatonin participate in immunohormonal homeostasis by determining prohormone convertase activity?--Hypothesis and facts.

    PubMed

    Ciesla, W

    1998-10-01

    The hypothesis proposed here presents a mechanism of melatonin action, which may explain the role of this neurohormone in the genesis of various human pathologies, including fetal abnormalities. It assumes that monomeric or dimeric forms of indoloderived compounds such as melatonin and precursors of melanin have the ability to selectively stimulate the synthesis of prohormone 1 convertase (PC1) or prohormone 2 convertase (PC2), in proportion to their concentrations in the body. Thus, the mean circadian level of melatonin, by determining the manner and rapidity of proopiomelanocortin (POMC) cleavage, would also determine the mean proopiomelanocortin (POMC) level, maintained in dynamic equilibrium as a result of the simultaneous influence of testosterone, estradiol and cortisol on the intensity of POMC mRNA synthesis. The correlative proportions between the activity of PC1 and PC2 would therefore shape the character of hormonal balance in the organism, and in particular the mean ACTH concentration that determines the level of cyclic adenosine monophosphate (cAMP) concentration in its cells. The hypothesis also suggests that melatonin, by influencing the concentration of ACTH and beta-endorphin and their relative proportion could determine the stimulation or suppression of the immune system, thereby confirming its role as an immunomodulator. A disturbance in the above model of immunohormonal equilibrium, resulting from, for example, decreased pineal efficiency, would lead to stimulation of an alternative mode of achieving homeostasis, i.e. increase in concentration of melanin monomers and dimers, with concomitant high activity of tyrosine kinase and high cyclic guanosine monophosphate (cGMP) concentration in the cells. According to the proposed hypothesis, the risk of bearing a developmentally handicapped child would be highest in a woman with a high circadian secretion of melatonin, i.e. with domination of melatonin dimers and high PC1 activity, a condition which may be additionally aggravated by the exposure of the mother to adverse environmental factors or by immunohormonal disturbances. The hypothetical break-up of maternal melatonin dimers when crossing placenta would be the cause of excessive concentration of melatonin monomers and high PC2 activity in the fetus, and thus it should be the reason for very low levels of vimentin filaments and cAMP concentration in embryonal cells, the latter being directly responsible for inducing fetal pathologies.

  17. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    PubMed Central

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. SLEEP 2014;37(9):1513-1523. PMID:25142572

  18. Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB.

    PubMed

    Nopparat, Chutikorn; Sinjanakhom, Puritat; Govitrapong, Piyarat

    2017-08-01

    Autophagy, a degradation mechanism that plays a major role in maintaining cellular homeostasis and diminishes in aging, is considered an aging characteristic. Melatonin is an important hormone that plays a wide range of physiological functions, including the anti-aging effect, potentially via the regulation of the Sirtuin1 (SIRT1) pathway. The deacetylation ability of SIRT1 is important for controlling the function of several transcription factors, including nuclear factor kappa B (NF-ĸB). Apart from inflammation, NF-ĸB can regulate autophagy by inhibiting Beclin1, an initiator of autophagy. Although numerous studies have revealed the role of melatonin in regulating autophagy, very limited experiments have shown that melatonin can increase autophagic activity via SIRT1 in a senescent model. This study focuses on the effect of melatonin on autophagy via the deacetylation activity of SIRT1 on RelA/p65, a subunit of NF-ĸB, to determine whether melatonin can attenuate the aging condition. SH-SY5Y cells were treated with H 2 O 2 to induce the senescent state. These results demonstrated that melatonin reduced a number of beta-galactosidase (SA-βgal)-positive cells, a senescent marker. In addition, melatonin increased the protein levels of SIRT1, Beclin1, and LC3-II, a hallmark protein of autophagy, and reduced the levels of acetylated-Lys310 in the p65 subunit of NF-ĸB in SH-SY5Y cells treated with H 2 O 2 . Furthermore, in the presence of SIRT1 inhibitor, melatonin failed to increase autophagic markers. The present data indicate that melatonin enhances autophagic activity via the SIRT1 signaling pathway. Taken together, we propose that in modulating autophagy, melatonin may provide a therapeutically beneficial role in the anti-aging processes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection.

    PubMed

    Brazão, Vânia; Santello, Fabricia H; Colato, Rafaela P; Mazotti, Tamires T; Tazinafo, Lucas F; Toldo, Míriam Paula A; do Vale, Gabriel T; Tirapelli, Carlos R; do Prado, José C

    2017-08-01

    The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4 + CD28-negative T cells (*P<.05) were detected in middle-aged control animals. Melatonin induced a significant reduction (***P<.001) in CD28-negative in CD4 + and CD8 + T cells in middle-aged control animals. Contrarily, the same group displayed upregulated CD4 + CD28 + T and CD8 + CD28 + T cells. Melatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy-associated TGFBIp through activation of endoplasmic reticulum-associated protein degradation.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Akuzum, Begum; Jeong, Jang Bin; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2017-10-01

    Endoplasmic reticulum (ER) stress is emerging as a factor for the pathogenesis of granular corneal dystrophy type 2 (GCD2). This study was designed to investigate the molecular mechanisms underlying the protective effects of melatonin on ER stress in GCD2. Our results showed that GCD2 corneal fibroblasts were more susceptible to ER stress-induced death than were wild-type cells. Melatonin significantly inhibited GCD2 corneal cell death, caspase-3 activation, and poly (ADP-ribose) polymerase 1 cleavage caused by the ER stress inducer, tunicamycin. Under ER stress, melatonin significantly suppressed the induction of immunoglobulin heavy-chain-binding protein (BiP) and activation of inositol-requiring enzyme 1α (IRE1α), and their downstream target, alternative splicing of X-box binding protein 1(XBP1). Notably, the reduction in BiP and IRE1α by melatonin was suppressed by the ubiquitin-proteasome inhibitor, MG132, but not by the autophagy inhibitor, bafilomycin A1, indicating involvement of the ER-associated protein degradation (ERAD) system. Melatonin treatment reduced the levels of transforming growth factor-β-induced protein (TGFBIp) significantly, and this reduction was suppressed by MG132. We also found reduced mRNA expression of the ERAD system components HRD1 and SEL1L, and a reduced level of SEL1L protein in GCD2 cells. Interestingly, melatonin treatments enhanced SEL1L levels and suppressed the inhibition of SEL1L N-glycosylation caused by tunicamycin. In conclusion, this study provides new insights into the mechanisms by which melatonin confers its protective actions during ER stress. The results also indicate that melatonin might have potential as a therapeutic agent for ER stress-related diseases including GCD2. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Melatonin Promotes Brain-Derived Neurotrophic Factor (BDNF) Expression and Anti-Apoptotic Effects in Neonatal Hemolytic Hyperbilirubinemia via a Phospholipase (PLC)-Mediated Mechanism

    PubMed Central

    Luo, Yong; Peng, Mei; Wei, Hong

    2017-01-01

    Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia by melatonin largely operates via a PLC-mediated mechanism. PMID:29247156

  2. High levels of melatonin generated during the brewing process.

    PubMed

    Garcia-Moreno, H; Calvo, J R; Maldonado, M D

    2013-08-01

    Beer is a beverage consumed worldwide. It is produced from cereals (barley or wheat) and contains a wide array of bioactive phytochemicals and nutraceutical compounds. Specifically, high melatonin concentrations have been found in beer. Beers with high alcohol content are those that present the greatest concentrations of melatonin and vice versa. In this study, gel filtration chromatography and ELISA were combined for melatonin determination. We brewed beer to determine, for the first time, the beer production steps in which melatonin appears. We conclude that the barley, which is malted and ground in the early process, and the yeast, during the second fermentation, are the largest contributors to the enrichment of the beer with melatonin. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury.

    PubMed

    Shen, Zhaoliang; Zhou, Zipeng; Gao, Shuang; Guo, Yue; Gao, Kai; Wang, Haoyu; Dang, Xiaoqian

    2017-08-01

    The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.

  4. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee.

    PubMed

    Hong, Yunkyung; Kim, Hyunsoo; Lee, Seunghoon; Jin, Yunho; Choi, Jeonghyun; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2017-11-14

    Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.

  5. [The assessment of selected personality traits, coping and melatonin nocturnal secretion in patients with functional dyspepsia].

    PubMed

    Grzyb, Joanna; Wrzesińiska, Magdalena; Harasiuk, Agnieszka; Chojnacki, Cezary; Kocur, Józef

    2007-01-01

    The main aim of the research was a characteristic of selected personality traits and coping as well as estimation of a level of melatonin in serum in patients with functional dyspepsia (FD). 36 patients with FD (14 men and 24 women) at age 19-43 (mean: 31.6) were examined. The control group consisted of 30 healthy persons at age 21-23 (mean: 37.2). CO-16 and CISS questionnaires were used to diagnose selected traits of personality and coping styles. Furthermore, melatonin concentration in serum was examined at 10 p.m., 2 a.m. and at 6 a.m. with the immunoenzymatic method (ELISA). Coping style focused on problems and emotions were the most frequent ones in the examined group. Cyclothymia, tendency towards neuroticism and depression, submission and sensitivity were these that characterised patients with FD well. It was also stated that the level of melatonin was higher than in healthy subjects. There are common personality traits and coping styles in the group of patients with FD. A level of melatonin in serum is increased.

  6. Current role of melatonin in pediatric neurology: clinical recommendations.

    PubMed

    Bruni, Oliviero; Alonso-Alconada, Daniel; Besag, Frank; Biran, Valerie; Braam, Wiebe; Cortese, Samuele; Moavero, Romina; Parisi, Pasquale; Smits, Marcel; Van der Heijden, Kristiaan; Curatolo, Paolo

    2015-03-01

    Melatonin, an indoleamine secreted by the pineal gland, plays a key role in regulating circadian rhythm. It has chronobiotic, antioxidant, anti-inflammatory and free radical scavenging properties. A conference in Rome in 2014 aimed to establish consensus on the roles of melatonin in children and on treatment guidelines. The best evidence for efficacy is in sleep onset insomnia and delayed sleep phase syndrome. It is most effective when administered 3-5 h before physiological dim light melatonin onset. There is no evidence that extended-release melatonin confers advantage over immediate release. Many children with developmental disorders, such as autism spectrum disorder, attention-deficit/hyperactivity disorder and intellectual disability have sleep disturbance and can benefit from melatonin treatment. Melatonin decreases sleep onset latency and increases total sleep time but does not decrease night awakenings. Decreased CYP 1A2 activity, genetically determined or from concomitant medication, can slow metabolism, with loss of variation in melatonin level and loss of effect. Decreasing the dose can remedy this. Animal work and limited human data suggest that melatonin does not exacerbate seizures and might decrease them. Melatonin has been used successfully in treating headache. Animal work has confirmed a neuroprotective effect of melatonin, suggesting a role in minimising neuronal damage from birth asphyxia; results from human studies are awaited. Melatonin can also be of value in the performance of sleep EEGs and as sedation for brainstem auditory evoked potential assessments. No serious adverse effects of melatonin in humans have been identified. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Low oxytocin and melatonin levels and their possible role in the diagnosis and prognosis in Iraqi autistic children.

    PubMed

    Abdulamir, Haidar A; Abdul-Rasheed, Omar F; Abdulghani, Emad A

    2016-01-01

      To test the possible association between oxytocin and melatonin levels with the severity of social and cognitive dysfunctions, and to study the correlation between these parameters in children with autism. A case-control study was carried out in the Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq. The study was performed on 60 male autistic patients recruited from the Pediatric Department of Al-Sader General Hospital, Baghdad, Iraq between November 2014 and April 2015. The levels of oxytocin and melatonin were measured in the serum of these autistic male patients, and categorized as mild, moderate, and severe (20 patients each), and was compared with 26 age- and gender-matched control subjects. The data indicated that the levels of oxytocin (44.72 ± 36.1 μIU/mL) and melatonin in patients (23.08 ± 10.41 pg/mL) were significantly lower (p less than 0.05) than that of age-matched (102.1 ± 34.31 μIU/mL) and gender-matched controls (53.05 ± 38.38 pg/mL). These parameters were remarkably associated with the severity of the disease that was indicated by the significant decrease in the levels of oxytocin (47 ± 25.47 μIU/mL) and melatonin in moderate (20 ± 6.14 pg/mL), and patients with severe oxytocin (27.92 ± 10.23 μIU/mL) and patients with severe melatonin (21.69 ± 7.02 pg/mL) when compared with mild autistic patients with oxytocin (59.22 ± 27.32 μIU/mL) and melatonin (27.55 ± 14.71 pg/mL). These 2 parameters showed a significant positive correlation with each other in moderate (r=0.513; p=0.021), and severe patients (r=0.598; p=0.005).  Receiver operating characteristic analysis revealed that oxytocin can be considered as a good diagnostic marker in severe autistic patients while melatonin can be considered as a good diagnostic marker in all autistic subgroups. This study proves the possibility of using oxytocin and melatonin in the diagnosis, and as markers of autism severity.

  8. Low oxytocin and melatonin levels and their possible role in the diagnosis and prognosis in Iraqi autistic children

    PubMed Central

    Abdulamir, Haidar A.; Abdul-Rasheed, Omar F.; Abdulghani, Emad A.

    2016-01-01

    Objectives: To test the possible association between oxytocin and melatonin levels with the severity of social and cognitive dysfunctions, and to study the correlation between these parameters in children with autism. Methods: A case-control study was carried out in the Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq. The study was performed on 60 male autistic patients recruited from the Pediatric Department of Al-Sader General Hospital, Baghdad, Iraq between November 2014 and April 2015. The levels of oxytocin and melatonin were measured in the serum of these autistic male patients, and categorized as mild, moderate, and severe (20 patients each), and was compared with 26 age- and gender-matched control subjects. Results: The data indicated that the levels of oxytocin (44.72 ± 36.1 µIU/mL) and melatonin in patients (23.08 ± 10.41 pg/mL) were significantly lower (p<0.05) than that of age-matched (102.1 ± 34.31 µIU/mL) and gender-matched controls (53.05 ± 38.38 pg/mL). These parameters were remarkably associated with the severity of the disease that was indicated by the significant decrease in the levels of oxytocin (47 ± 25.47 µIU/mL) and melatonin in moderate (20 ± 6.14 pg/mL), and patients with severe oxytocin (27.92 ± 10.23 µIU/mL) and patients with severe melatonin (21.69 ± 7.02 pg/mL) when compared with mild autistic patients with oxytocin (59.22 ± 27.32 µIU/mL) and melatonin (27.55 ± 14.71 pg/mL). These 2 parameters showed a significant positive correlation with each other in moderate (r=0.513; p=0.021), and severe patients (r=0.598; p=0.005). Conclusion: Receiver operating characteristic analysis revealed that oxytocin can be considered as a good diagnostic marker in severe autistic patients while melatonin can be considered as a good diagnostic marker in all autistic subgroups. This study proves the possibility of using oxytocin and melatonin in the diagnosis, and as markers of autism severity. PMID:26739971

  9. Peripheral Reproductive Organ Health and Melatonin: Ready for Prime Time

    PubMed Central

    Reiter, Russel J.; Rosales-Corral, Sergio A.; Manchester, Lucien C.; Tan, Dun-Xian

    2013-01-01

    Melatonin has a wide variety of beneficial actions at the level of the gonads and their adnexa. Some actions are mediated via its classic membrane melatonin receptors while others seem to be receptor-independent. This review summarizes many of the published reports which confirm that melatonin, which is produced in the ovary, aids in advancing follicular maturation and preserving the integrity of the ovum prior to and at the time of ovulation. Likewise, when ova are collected for in vitro fertilization-embryo transfer, treating them with melatonin improves implantation and pregnancy rates. Melatonin synthesis as well as its receptors have also been identified in the placenta. In this organ, melatonin seems to be of particular importance for the maintenance of the optimal turnover of cells in the villous trophoblast via its ability to regulate apoptosis. For male gametes, melatonin has also proven useful in protecting them from oxidative damage and preserving their viability. Incubation of ejaculated animal sperm improves their motility and prolongs their viability. For human sperm as well, melatonin is also a valuable agent for protecting them from free radical damage. In general, the direct actions of melatonin on the gonads and adnexa of mammals indicate it is an important agent for maintaining optimal reproductive physiology. PMID:23549263

  10. Why the dim light melatonin onset (DLMO) should be measured before treatment of patients with circadian rhythm sleep disorders.

    PubMed

    Keijzer, Henry; Smits, Marcel G; Duffy, Jeanne F; Curfs, Leopold M G

    2014-08-01

    Treatment of circadian rhythm sleep disorders (CRSD) may include light therapy, chronotherapy and melatonin. Exogenous melatonin is increasingly being used in patients with insomnia or CRSD. Although pharmacopoeias and the European food safety authority (EFSA) recommend administering melatonin 1-2 h before desired bedtime, several studies have shown that melatonin is not always effective if administered according to that recommendation. Crucial for optimal treatment of CRSD, melatonin and other treatments should be administered at a time related to individual circadian timing (typically assessed using the dim light melatonin onset (DLMO)). If not administered according to the individual patient's circadian timing, melatonin and other treatments may not only be ineffective, they may even result in contrary effects. Endogenous melatonin levels can be measured reliably in saliva collected at the patient's home. A clinically reliably DLMO can be calculated using a fixed threshold. Diary and polysomnographic sleep-onset time do not reliably predict DLMO or circadian timing in patients with CRSD. Knowing the patient's individual circadian timing by assessing DLMO can improve diagnosis and treatment of CRSD with melatonin as well as other therapies such as light or chronotherapy, and optimizing treatment timing will shorten the time required to achieve results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pharmacology and function of melatonin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubocovich, M.L.

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that ismore » pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.« less

  12. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    PubMed

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  13. Acute effects of oral melatonin administration on arterial distensibility, as determined by carotid-femoral pulse wave velocity, in healthy young men

    PubMed Central

    Yildiz, Mustafa; Sahin, Banu; Sahin, Alparslan

    2006-01-01

    The aim of the present study was to investigate the effects of melatonin administration on arterial distensibility by using carotid-femoral (aortic) pulse wave velocity (PWV) measurements in healthy young men. Ten men were studied (five men in the melatonin group and five men in the placebo group) by physicians. Carotid-femoral (aortic) PWV, blood pressure and plasma melatonin were measured in the supine position before and 60 min after oral administration of melatonin or placebo. Although carotid-femoral (aortic) PWV, systolic blood pressure and mean blood pressure were decreased, pulse wave propagation time and plasma melatonin levels were increased at 60 min after oral melatonin (1 mg) administration (P=0.04, P=0.04, P=0.04, P=0.04 and P=0.04, respectively). No significant differences were found between all parameters in the placebo group (P>0.05). In conclusion, these findings indicate that melatonin administration, compared with placebo, decreased carotid-femoral PWV and systolic blood pressure in the supine position in healthy young men. Administration of melatonin may have an inhibitory effect on sympathetic tone. PMID:18651024

  14. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model.

    PubMed

    Komninou, Eliza Rossi; Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Basso, Andrea Cristina; Jornada, Denise Soledade; Deschamps, João Carlos; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Bordignon, Vilceu; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago

    2016-01-01

    Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin against oxidative stress and cell apoptosis during in vitro embryo culture in bovine species.

  15. Melatonin Ameliorates The Production of COX-2, iNOS, and The Formation of 8-OHdG in Non-Targeted Lung Tissue after Pelvic Irradiation.

    PubMed

    Fardid, Reza; Salajegheh, Ashkan; Mosleh-Shirazi, Mohammad Amin; Sharifzadeh, Sedigheh; Okhovat, Mohammad Ali; Najafi, Masoud; Rezaeyan, Abolhasan; Abaszadeh, Akbar

    2017-01-01

    In this study, we evaluated the bystander effect of radiation on the regulation of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and 8-hydroxydeoxyguanosine (8-OHdG) in lung tissues of Sprague-Dawley rats with and without pre-administration of melatonin. A 2×2 cm 2 area of the pelvis of male Sprague-Dawley rats with and without pre-administration of melatonin (100 mg/kg) by oral and intraperitoneal injection was irradiated with a 3 Gy dose of 1.25 MeV γ-rays. Alterations in the levels of COX-2, iNOS, and 8-OHdG in the out-of-field lung areas of the animals were detected by enzyme immunoassay. The bystander effect significantly increased COX-2, iNOS, and 8-OHdG levels in non-targeted lung tissues (P<0.05). Melatonin ameliorated the bystander effect of radiation and significantly reduced the level of all examined biomarkers (P<0.05). The results indicated that the ameliorating effect of a pre-intraperitoneal (IP) injection of melatonin was noticeably greater compared to oral pre-administration. Our findings revealed that the bystander effect of radiation could induce oxidative DNA damage and increase the levels of imperative COX-2 and iNOS in non-targeted lung tissues. Interestingly, melatonin could modulate the indirect destructive effect of radiation and reduce DNA damage in non-targeted cells.

  16. Melatonin in human preovulatory follicular fluid

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.

    1987-01-01

    Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 min or less after follicular aspiration. All of the follicular fluids contained melatonin, in concentrations (35.6 plus or minus 4.8 (plus or minus SEM) pg/mL) substantially higher than those in the corresponding serum (10.0 plus or minus 1.4 pg/mL). A positive correlation was found between follicular fluid and serum melatonin levels in each woman (r = 0.770; P less than 0.001). These observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.

  17. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress.

    PubMed

    Alzoubi, Karem H; Mayyas, Fadia A; Mahafzah, Rania; Khabour, Omar F

    2018-01-15

    Consumption of high-fat diet (HFD) induces oxidative stress in the hippocampus that leads to memory impairment. Melatonin has antioxidant and neuroprotective effects. In this study, we hypothesized that chronic administration of melatonin can prevent memory impairment induced by consumption of HFD. Melatonin was administered to rats via oral gavage (100mg/kg/day) for 4 weeks. HFD was also instituted for the same duration. Behavioral studies were conducted to test spatial memory using the radial arm water maze. Additionally, oxidative stress biomarkers were assessed in the hippocampus. Results showed that HFD impaired both short- and long- term memory (P<0.05), while melatonin treatment prevented such effects. Furthermore, melatonin prevented HFD-induced reduction in levels of GSH, and ratio of GSH/GSSG, and increase in GSSG in the hippocampus. Melatonin also prevented reduction in the catalase activity in hippocampus of animals on HFD. In conclusion, HFD induced memory impairment and melatonin prevented this impairment probably by preventing alteration of oxidative stress in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Impact of treatment with melatonin on cerebral circulation in old rats

    PubMed Central

    Dupuis, François; Régrigny, Olivier; Atkinson, Jeffrey; Limiñana, Patrick; Delagrange, Philippe; Scalbert, Elizabeth; Chillon, Jean-Marc

    2004-01-01

    Melatonin deprival in young rats induces alterations in cerebral arteriolar wall similar to those observed during aging: atrophy and a decrease in distensibility. In this study, we examined the effects of melatonin treatment on cerebral arteriolar structure and distensibility and on the lower limit of cerebral blood flow autoregulation (LLCBF) in old rats. We measured cerebral blood flow (arbitrary unit, laser Doppler, open skull preparation) prior to and during stepwise hypotension (SH) in adult (12/13 months) and old (24/25 months) IcoWI and WAG/Rij male rats. Old rats were untreated or treated for 3 months with melatonin (0.39 (IcoWi) and 0.44 (Wag/Rij) mg kg−1 day−1, drinking water). Stress–strain relationships were determined using cross-sectional area (CSA, μm2, histometry) and values of arteriolar internal diameter (μm) obtained during a second SH following arteriolar deactivation (EDTA, 67 mmol l−1). Aging induced (a) atrophy of the arteriolar wall in IcoWI (616±20 vs 500±27 μm2, P<0.05) but not in WAG/Rij rats (328±25 vs 341±20 μm2), (b) a decrease in arteriolar wall distensibility and (c) an increase in the LLCBF in both strains (67±10 mmHg in 12-month-old vs 95±6 mmHg in 24-month-old IcoWi, P<0.05 and 53±2 mmHg in 13-month-old vs 67±6 mmHg in 25-month-old WAG/Rij). Melatonin treatment induced in IcoWI and WAG/Rij rats (a) hypertrophy of the arteriolar wall (643±34 and 435±25 μm2, respectively), (b) an increase in arteriolar wall distensibility and (c) a decrease in the LLCBF (64±6 and 45±4 mmHg, respectively). Melatonin treatment of old rats induced hypertrophy of the arteriolar wall, prevented the age-linked decrease in cerebral arteriolar distensibility and decreased the LLCBF. PMID:14718260

  19. Potency of Melatonin in Living Beings

    PubMed Central

    Choi, Donchan

    2013-01-01

    Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism. PMID:25949131

  20. Modulation of serine/threonine phosphatases by melatonin: therapeutic approaches in neurodegenerative diseases.

    PubMed

    Arribas, Raquel L; Romero, Alejandro; Egea, Javier; de Los Ríos, Cristóbal

    2018-05-20

    Melatonin is an endogenous hormone produced by the pineal gland as well as many other tissues and organs. The natural decline in melatonin levels with aging strongly contributes to the development of neurodegenerative disorders. Neurodegenerative diseases share common mechanisms of toxicity such as proteinopathy, mitochondrial dysfunction, metal dyshomeostasis, oxidative stress, neuroinflammation, and an imbalance in the phosphorylation/dephosphorylation ratio. Several reports have proved the usefulness of melatonin in counteracting the events that lead to a neurodegenerative scenario. In this review we have focused on highlighting the fact that melatonin could rectify the altered phosphorylation/dephosphorylation rate found in some neurodegenerative diseases by influencing the activity of phosphoprotein phosphatases. We analyze whether melatonin offers any protective activity towards these enzymes through a direct interaction. This article is protected by copyright. All rights reserved.

  1. [Melatonin secretion in women of advanced reproductive age].

    PubMed

    Ermolenko, K S; Rapoport, S I; Solov'eva, A V

    2013-01-01

    The patient's age is a key factor determining success of in vitro fertilization. The ovarian reserve and oocyte quality are known to decrease with age. Much attention has been given recently to the role of epiphysis and its hormone, melatonin, in synchronization of daily and seasonal biorhythms in anti-stress protection and neuroregulation of reproductive processes. The aim of our work was to study melatonin levels in infertile women of reproductive age. We also measured sex hormones, anti-Mullerian hormone, FSH, and LH in blood and melatonin sulfate in urine at 8 points (RIA). Women of advanced reproductive age showed markedly reduced melatonin secretion due to functional disorders in the hypothalamic-pituitary-gonadal axis. Results of the study suggest the necessity of prescription of exogenous melatonin to the patients included in assisted reproduction programs for the improvement of their efficacy.

  2. Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat.

    PubMed

    Chen, Yen-Ta; Chiang, Hsin-Ju; Chen, Chih-Hung; Sung, Pei-Hsun; Lee, Fan-Yen; Tsai, Tzu-Hsien; Chang, Chia-Lo; Chen, Hong-Hwa; Sun, Cheuk-Kwan; Leu, Steve; Chang, Hsueh-Wen; Yang, Chih-Chao; Yip, Hon-Kan

    2014-10-01

    This study tests the hypothesis that combined melatonin and adipose-derived mesenchymal stem cell (ADMSC, 1.2 × 10(6) given intravenously) treatment offer superior protection against cyclophosphamide (CYP 150 mg/kg)-induced acute interstitial cystitis (AIC) in rats. Male adult Sprague-Dawley rats were treated as follows: sham controls, AIC alone, AIC + melatonin, AIC + ADMSC, and AIC + melatonin +ADMSC. When melatonin was used, it was given as follows: 20 mg/kg at 30 min after CYP and 50 mg/kg at 6 and 18 hr after CYP. Twenty-four-hour urine volume, urine albumin level, and severity of hematuria were highest in AIC rats and lowest in the controls; likewise urine volume was higher in AIC + melatonin rats than in AIC + ADMSC and AIC + melatonin + ADMSC treated rats; in all cases, P < 0.001. The numbers of CD14+, CD74+, CD68+, MIP+, Cox-2+, substance P+, cells and protein expression of IL-6, IL-12, RANTES, TNF-α, NF-κB, MMP-9, iNOS (i.e. inflammatory biomarkers), glycosaminoglycan level, expression of oxidized protein, and protein expression of reactive oxygen species (NOX-1, NOX-2, NOX-4) in the bladder tissue exhibited an identical pattern compared with that of hematuria among the five groups (all P < 0.0001). The integrity of epithelial layer and area of collagen deposition displayed an opposite pattern compared to that of hematuria among all groups (P < 0.0001). The cellular expressions of antioxidants (GR, GPx, HO-1, NQO 1) showed a significant progressive increase form controls to AIC + melatonin + ADMSC (all P < 0.0001). Combined regimen of melatonin and ADMSC was superior to either alone in protecting against CYP-induced AIC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Melatonin prevents experimental preterm labor and increases offspring survival.

    PubMed

    Domínguez Rubio, Ana P; Sordelli, Micaela S; Salazar, Ana I; Aisemberg, Julieta; Bariani, María V; Cella, Maximiliano; Rosenstein, Ruth E; Franchi, Ana M

    2014-03-01

    Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that intra-amniotic infections may be a significant and potentially preventable cause of preterm birth. This work assessed the effect of melatonin in a murine model of inflammation-associated preterm delivery which mimics central features of preterm infection in humans. For this purpose, preterm labor was induced in BALB/c mice by intraperitoneal injections of bacterial lipopolysaccharide (LPS) at 10.00 hr (10 μg LPS) and 13.00 hr (20 μg LPS) on day 15 of pregnancy. On day 14 of pregnancy, a pellet of melatonin (25 mg) had been subcutaneously implanted into a group of animals. In the absence of melatonin, a 100% incidence of preterm birth was observed in LPS-treated animals, and the fetuses showed widespread damage. By comparison, treatment with melatonin prevented preterm birth in 50% of the cases, and all pups from melatonin-treated females were born alive and their body weight did not differ from control animals. Melatonin significantly prevented the LPS-induced rises in uterine prostaglandin (PG) E2 , PGF2α, and cyclooxygenase-2 protein levels. In addition, melatonin prevented the LPS-induced increase in uterine nitric oxide (NO) production, inducible NO synthase protein, and tumor necrosis factor-alpha (TNFα) levels. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent preterm labor and to increase offspring survival. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Influence of the pineal gland and melatonin on blood flow and evaporative water loss during heat stress in rats.

    PubMed

    Harlow, H J

    1987-01-01

    Plasma melatonin levels of laboratory rats were elevated both during acute heat exposure (43 degrees C for 40 min) and chronic exposure (33 degrees C for 17 days) suggesting a possible correlation between melatonin and thermoregulatory mechanisms. Pinealectomy reduced the nighttime elevation in oxygen consumption and evaporative water loss. In addition, pinealectomized animals exhibited a significantly lower cutaneous evaporative water loss both at night and during the day when exposed to an acute heat exposure of 38 degrees C for 45 min. Pinealectomy elevated the blood pressure over the control group whereas melatonin infusion depressed the blood pressure without altering the cardiac output. This relationship implies an action by melatonin on the peripheral vasculature. In support of this conclusion, melatonin pretreatment tended to dampen the vasopressive effect of infused norepinephrine. These data, therefore, suggest a role of the pineal gland and melatonin in thermoregulation through an influence on the cardiovascular system and evaporative water loss.

  5. Melatonin as potential inducer of Th17 cell differentiation.

    PubMed

    Kuklina, Elena M

    2014-09-01

    The subset of T lymphocytes producing IL-17 (Th17) plays a key role in the immune system. It has been implicated in host defense, inflammatory diseases, tumorigenesis, autoimmune diseases, and transplant rejection. Careful analysis of the data available holds that Th17 cell subpopulation should be under the direct control of pineal hormone melatonin: the key Th17 differentiation factor RORα serves in the meantime as a high-affinity melatonin receptor. Since the levels of melatonin have diurnal and seasonal variation, as well as substantial deviations in some physiological or pathological conditions, melatonin-dependent regulation of Th17 cells should implicate multiform manifestation, such as influencing the outcome of infectious challenge or determining predisposition, etiology and progression of immune-related morbidities. Another important reason to raise a point of the new melatonin effects is current considering the possibilities of its clinical trials. Especially, the differentiation of Th17 upon melatonin treatment must aggravate the current recession in autoimmune diseases or induce serious complications in pregnancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Melatonin and male reproduction.

    PubMed

    Li, Chunjin; Zhou, Xu

    2015-06-15

    Melatonin is a neurohormone secreted by the pineal gland whose concentrations in the body are regulated by both the dark-light and seasonal cycles. The reproductive function of seasonal breeding animals is clearly influenced by the circadian variation in melatonin levels. Moreover, a growing body of evidence indicates that melatonin has important effects in the reproduction of some non-seasonal breeding animals. In males, melatonin affects reproductive regulation in three main ways. First, it regulates the secretion of two key neurohormones, GnRH and LH. Second, it regulates testosterone synthesis and testicular maturation. Third, as a potent free radical scavenger that is both lipophilic and hydrophilic, it prevents testicular damage caused by environmental toxins or inflammation. This review summarizes the existing data on the possible biological roles of melatonin in male reproduction. Overall, the literature data indicate that melatonin affects the secretion of both gonadotropins and testosterone while also improving sperm quality. This implies that it has important effects on the regulation of testicular development and male reproduction. Copyright © 2015. Published by Elsevier B.V.

  7. Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions

    PubMed Central

    Tan, Dun-Xian; Zheng, Xiaodong; Kong, Jin; Manchester, Lucien C.; Hardeland, Ruediger; Kim, Seok Joong; Xu, Xiaoying; Reiter, Russel J.

    2014-01-01

    Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host’s system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT), indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity. PMID:25207599

  8. Metabolic syndrome, its pathophysiology and the role of melatonin.

    PubMed

    Srinivasan, Venkataramanujam; Ohta, Yoshiji; Espino, Javier; Pariente, Jose A; Rodriguez, Ana B; Mohamed, Mahaneem; Zakaria, Rahimah

    2013-01-01

    Metabolic syndrome (MetS) is characterised by symptoms of obesity, insulin resistance, hypertension, dyslipidemia and diabetes mellitus. The pathophysiological mechanisms involved in MetS are complex and involved dysregulation of many biochemical and physiological regulatory mechanisms of the body. Elevated levels of low density lipoproteins like VLDL, and LDL with reduction of HDL seen in patients with MetS contribute to atherogenic dyslipedemia. Melatonin has been suggested to be effective in improving MetS through its anti-hyperlipidemic action. Melatonin reduced both adiposity, and body weight in experimental animal studies and also attenuated weight gain and obesityinduced metabolic alterations and this effect of melatonin is attributed to its anti-oxidative effects. Melatonin administration has been shown to inhibit insulin release by acting through both MT1 and MT2 melatonin receptors present in pancreatic β-cells. Melatonin also increased insulin sensitivity and glucose tolerance in animals fed with either high fat or high sucrose diet. Melatonin exerts most of its beneficial actions by acting through MT1 and MT2 melatonin receptors present in various tissues of the body and some of the metabolic actions of melatonin have been blocked by melatonin antagonist like luzindole. Ramelteon, the newly available melatonin agonist will also have more promising role in the control of MetS. The numbers of patents are available with regard to treatment of MetS. Drug related to antidepressant fluoxetine is used for treatment of MetS (US Patent No. 2008001400450). Anti-oxidants like S-adenosyl-methionine, Vitamin E, and Vitamin C have been found beneficial in treating MetS (US Patent No. 8063024). Melatonin being a powerful Antioxidant will have a promising role in treating patients with metabolic syndrome.

  9. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    PubMed

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner retina.

  10. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells

    PubMed Central

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-01-01

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT2 receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT2 receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-β-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca2+]i was chelated by BAPTA, and melatonin induced no increase in [Ca2+]i. Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of Gi/o-coupled MT2 receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner retina. PMID:20519319

  11. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro.

    PubMed

    Iigo, Masayuki; Azuma, Teruo; Iwata, Munehico

    2007-01-01

    Melatonin profiles were determined in the plasma in vivo and in the pineal organ in vitro of the sockeye salmon (Oncorhynchus nerka) under various light conditions to test whether they are under circadian regulation. When serial blood samples were taken at 4-h intervals for 3 days via a cannula inserted into the dorsal aorta, plasma melatonin exhibited significant fluctuation under a light-dark cycle, with higher levels during the dark phase than during the light phase. No rhythmic fluctuations persisted under either constant dark or constant light, with constant low and high levels, respectively. Melatonin release from the pineal organ in flow-through culture exhibited a similar pattern in response to the change in light conditions, with high and low release associated with the dark and light phases, respectively. These results indicate that melatonin production in the sockeye salmon is driven by light and darkness but lacks circadian regulation.

  12. A novel and sensitive radioreceptor assay for serum melatonin levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenn, C.; Niles, L.

    A simple and sensitive radioreceptor assay (RRA) has been developed to measure melatonin levels in serum. The assay is based on competition between 2-({sup 125}I)iodomelatonin (({sup 125}I)MEL) and melatonin for binding to high-affinity binding sites in chick forebrain. To measure the amount of melatonin present in a serum sample, it was extracted with dichloromethane and added to the assay medium. The percentage inhibition of radioligand binding in the presence of the extracted serum was determined and compared to the percent displacement by known amounts of melatonin in a standard curve. There was little or no cross-reactivity with other structurally relatedmore » compounds. The sensitivity of the assay is {approximately}1.5pg/0.15 mL and the intra- and inter-assay variations are approximately 8%. Since the RRA results are comparable to that of an established radioimmunoassay (RIA), it provides a sensitive and rapid alternative to the more time consuming RIA.« less

  13. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass

    PubMed Central

    Fan, Jibiao; Hu, Zhengrong; Xie, Yan; Chan, Zhulong; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2015-01-01

    As a typical warm-season grass, Bermudagrass [Cynodon dactylon (L).Pers.] is widely applied in turf systems and animal husbandry. However, cold temperature is a key factor limiting resource utilization for Bermudagrass. Therefore, it is relevant to study the mechanisms by which Burmudagrass responds to cold. Melatonin is a crucial animal and plant hormone that is responsible for plant abiotic stress responses. The objective of this study was to investigate the role of melatonin in cold stress response of Bermudagrass. Wild Bermudagrass pre-treated with 100 μM melatonin was subjected to different cold stress treatments (−5°C for 8 h with or without cold acclimation). The results showed lower malondialdehyde (MDA) and electrolyte leakage (EL) values, higher levels of chlorophyll, and greater superoxide dismutase and peroxidase activities after melatonin treatment than those in non-melatonin treatment under cold stress. Analysis of chlorophyll a revealed that the chlorophyll fluorescence transient (OJIP) curves were higher after treatment with melatonin than that of non-melatonin treated plants under cold stress. The values of photosynthetic fluorescence parameters increased after treatment with melatonin under cold stress. The analysis of metabolism showed alterations in 46 metabolites in cold-stressed plants after melatonin treatment. Among the measured metabolites, five sugars (arabinose, mannose, glucopyranose, maltose, and turanose) and one organic acid (propanoic acid) were significantly increased. However, valine and threonic acid contents were reduced in melatonin-treated plants. In summary, melatonin maintained cell membrane stability, increased antioxidant enzymes activities, improved the process of photosystem II, and induced alterations in Bermudagrass metabolism under cold stress. PMID:26579171

  14. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    PubMed

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    PubMed

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  16. Distribution, function and physiological role of melatonin in the lower gut

    PubMed Central

    Chen, Chun-Qiu; Fichna, Jakub; Bashashati, Mohammad; Li, Yong-Yu; Storr, Martin

    2011-01-01

    Melatonin is a hormone with endocrine, paracrine and autocrine actions. It is involved in the regulation of multiple functions, including the control of the gastrointestinal (GI) system under physiological and pathophysiological conditions. Since the gut contains at least 400 times more melatonin than the pineal gland, a review of the functional importance of melatonin in the gut seems useful, especially in the context of recent clinical trials. Melatonin exerts its physiological effects through specific membrane receptors, named melatonin-1 receptor (MT1), MT2 and MT3. These receptors can be found in the gut and their involvement in the regulation of GI motility, inflammation and pain has been reported in numerous basic and clinical studies. Stable levels of melatonin in the lower gut that are unchanged following a pinealectomy suggest local synthesis and, furthermore, implicate physiological importance of endogenous melatonin in the GI tract. Presently, only a small number of human studies report possible beneficial and also possible harmful effects of melatonin in case reports and clinical trials. These human studies include patients with lower GI diseases, especially patients with irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. In this review, we summarize the presently available information on melatonin effects in the lower gut and discuss available in vitro and in vivo data. We furthermore aim to evaluate whether melatonin may be useful in future treatment of symptoms or diseases involving the lower gut. PMID:22025877

  17. Classical conditioning for preserving the effects of short melatonin treatment in children with delayed sleep: a pilot study.

    PubMed

    van Maanen, Annette; Meijer, Anne Marie; Smits, Marcel G; Oort, Frans J

    2017-01-01

    Melatonin treatment is effective in treating sleep onset problems in children with delayed melatonin onset, but effects usually disappear when treatment is discontinued. In this pilot study, we investigated whether classical conditioning might help in preserving treatment effects of melatonin in children with sleep onset problems, with and without comorbid attention deficit hyperactivity disorder (ADHD) or autism. After a baseline week, 16 children (mean age: 9.92 years, 31% ADHD/autism) received melatonin treatment for 3 weeks and then gradually discontinued the treatment. Classical conditioning was applied by having children drink organic lemonade while taking melatonin and by using a dim red light lamp that was turned on when children went to bed. Results were compared with a group of 41 children (mean age: 9.43 years, 34% ADHD/autism) who received melatonin without classical conditioning. Melatonin treatment was effective in advancing dim light melatonin onset and reducing sleep onset problems, and positive effects were found on health and behavior problems. After stopping melatonin, sleep returned to baseline levels. We found that for children without comorbidity in the experimental group, sleep latency and sleep start delayed less in the stop week, which suggests an effect of classical conditioning. However, classical conditioning seems counterproductive in children with ADHD or autism. Further research is needed to establish these results and to examine other ways to preserve melatonin treatment effects, for example, by applying morning light.

  18. The role of melatonin in pancreatic protection: could melatonin be used in the treatment of acute pancreatitis?

    PubMed

    Jaworek, Jolanta; Leja-Szpak, Anna; Kot, Michalina; Jaworek, Andrzej; Nawrot-Porbka, Katarzyna; Bonior, Joanna; Szklarczyk, Joanna

    2014-01-01

    Acute pancreatitis is a disease, which could be manifested as either a mild edematous form or a more severe necrotizing pancreatitis which has a poor prognosis. The etiology and pathogenesis of this ailment is not completely clear. Melatonin is an indoleamine which is produced from L-tryptophan in the pineal gland and in the other tissue including gastrointestinal tract. Both melatonin and its precursor have been demonstrated to protect the pancreas against acute pancreatitis and to attenuate pancreatic tissue damage. In the pancreas melatonin and L-tryptophan activate complex mechanisms which involve direct scavenging of the radical oxygen and nitrogen species, activation of antioxidant enzymes (catalase, superoxide dysmutase, glutation peroxidase), reduction of pro-inflammatory cytokines and prostaglandins, activation of heat shock protein, and a decrease of necrosis and increase of regeneration in the pancreas. There are several arguments for the idea that endogenous melatonin produced in the pineal gland and in the gastrointestinal system could be the part of a native mechanisms for protecting the pancreas against acute damage: 1/ the melatonin precursor L-tryptophan exerts similar protective effect as melatonin, 2/ application of the melatonin receptor antagonist, luzindole aggravates acute pancreatitis, 3/ pinealectomy results in the exacerbation of acute pancreatitis, 4/ low melatonin plasma levels are associated with an increased risk of severe acute pancreatitis. These observations leads to the idea that perhaps melatonin could be used in clinical trials as supportive therapy in acute pancreatitis.

  19. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  20. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.

    PubMed

    Anwar, M M; Moustafa, M A

    2001-05-01

    We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (P<0.05) reduction in antioxidant enzymes activities; superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and elevated (P<0.001) lipid peroxidation served as an index of cellular damage by free radicals. UV-radiation significantly (P<0.001) elevated calcium ions (Ca(2+)) and lactate dehydrogenase (LDH) activity in lenses. Depleting animals of their stores of important intracellular antioxidant and elevating lenticular Ca(2+) by UV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (P<0.05) lipid peroxidation, Ca(2+) and (P<0.001) for LDH. When melatonin was injected after radiation, SOD and GSH-Px enzyme activities increased significantly (P<0.01), and lipid peroxidation, Ca(2+) levels and LDH activities were reduced significantly. Melatonin injection after UV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.

  1. Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells.

    PubMed

    McMillan, Catherine R; Sharma, Rohita; Ottenhof, Tom; Niles, Lennard P

    2007-06-04

    We have previously reported in vivo preservation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, following treatment with physiological doses of melatonin, in a 6-hydroxydopamine model of Parkinson's disease. Based on these findings, we postulated that melatonin would similarly modulate the expression of TH in vitro. Therefore, using human SH-SY5Y neuroblastoma cells which can differentiate into dopaminergic neurons following treatment with retinoic acid, we first examined whether these cells express melatonin receptors. Subsequently, the physiological dose-dependent effects of melatonin on TH expression were examined in both undifferentiated and differentiated cells. The novel detection of the G protein-coupled melatonin MT(1) receptor in SH-SY5Y cells by RT-PCR was confirmed by sequencing and Western blotting. In addition, following treatment of SH-SY5Y cells with melatonin (0.1-100 nM) for 24h, Western analysis revealed a significant increase in TH protein levels. A biphasic response, with significant increases in TH protein at 0.5 and 1 nM melatonin and a reversal at higher doses was seen in undifferentiated cells; whereas in differentiated cells, melatonin was effective at doses of 1 and 100 nM. These findings suggest a physiological role for melatonin in modulating TH expression, possibly via the MT(1) receptor.

  2. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants.

    PubMed

    Li, Meng-Qi; Hasan, Md Kamrul; Li, Cai-Xia; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Reiter, Russel J; Yu, Jing-Quan; Xu, Ming-Xing; Zhou, Jie

    2016-10-01

    Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    PubMed

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  4. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

  5. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    PubMed Central

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Soto-Rodríguez, Sofía; González-Perez, Oscar

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  6. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes.

    PubMed

    Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-01-01

    With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. THE M-RNA, EXPRESSION OF SERCA2 AND NCX1 IN THE PROCESS OF PHARMACOLOGICAL CELL PROTECTION IN EXPERIMENTAL ACUTE PANCREATITIS INDUCED BY TAUROCHOLATE.

    PubMed

    Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro

    2018-06-21

    Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.

  8. Influence of age and splanchnic nerve on the action of melatonin in the adrenomedullary catecholamine content and blood glucose level in the avian group.

    PubMed

    Mahata, S K; Mandal, A; Ghosh, A

    1988-01-01

    A single intraperitoneal (IP) melatonin injection (0.5 mg/100 g body wt.) caused an increase in norepinephrine (NE) fluorescence and elevation of NE content in newly-hatched pigeons (Columba livia), but a reduction of NE fluorescence and depletion of NE content in the adrenal medulla of newly-hatched crows (Corvus splendens) after 0.5 h of treatment. In contrast, in adults melatonin caused increase in NE fluorescence and elevation of NE content only in the parakeet (Psittacula krameri). Half an hour of IP melatonin treatment (0.5 mg/100 g body wt.) induced release of epinephrine (E) from the adrenal medulla of newly-hatched pigeon and parakeet. In contrast, in the adults melatonin caused more than a two-fold increase in E in the pigeon, and a significant increase in the crow. Single IP melatonin injection (0.5 mg/100 g body wt.) caused hypoglycemia in the newly-hatched parakeet and adult pigeon, and hyperglycemia in newly-hatched pigeon after 0.5 h of treatment. Melatonin failed to regulate glucose homoeostasis in newly-hatched and adult crow. Splanchnic denervation of the left adrenal gland was performed in the adult pigeon. The right adrenal served as the innervated gland. Melatonin-induced modulation of catecholamines following a single IP injection (0.5 mg/100 g body wt.) revealed significant increases in NE fluorescence and NE content at 4 and 12 h after treatment in the denervated gland only, which gradually approached normal levels 9 days after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    PubMed

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.

    PubMed

    Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad

    2017-11-15

    Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Melatonin prevents possible radiotherapy-induced thyroid injury.

    PubMed

    Arıcıgil, Mitat; Dündar, Mehmet Akif; Yücel, Abitter; Eryılmaz, Mehmet Akif; Aktan, Meryem; Alan, Mehmet Akif; Fındık, Sıdıka; Kılınç, İbrahim

    2017-12-01

    We aimed to investigate the protective effect of melatonin in radiotherapy-induced thyroid gland injury in an experimental rat model. Thirty-two rats were divided into four groups: the control group, melatonin treatment group, radiotherapy group and melatonin plus radiotherapy group. The neck region of each rat was defined by simulation and radiated with 2 Gray (Gy) per min with 6-MV photon beams, for a total dose of 18 Gy. Melatonin was administered at a dose of 50 mg/kg through intraperitoneal injection, 15 min prior to radiation exposure. Thirty days after the beginning of the study, rats were decapitated and analyses of blood and thyroid tissue were performed. Tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05), whereas interleukin-10 (IL-10) and glutathione (GSH) values were higher in the melatonin plus radiotherapy group (p < .05). The infiltration of inflammatory cells and percentage of apoptosis in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05). Melatonin helped protect thyroid gland structure against the undesired cytotoxic effects of radiotherapy in rats.

  12. Abnormal secretion of melatonin and cortisol in relation to sleep disturbances in children with Williams syndrome.

    PubMed

    Sniecinska-Cooper, Anna Maria; Iles, Ray Kruse; Butler, Stephen Andrew; Jones, Huw; Bayford, Richard; Dimitriou, Dagmara

    2015-01-01

    A high rate of sleep disturbances has been reported in individuals with Williams syndrome (WS) but the underlying aetiology has yet to be identified. Melatonin and cortisol levels display circadian rhythmicity and are known to affect and regulate sleep/wake patterns. The current study examined the levels of these two endocrine markers and explored a possible relationship with sleep patterns in children with WS. Twenty-five children with WS and 27 typically developing age- and gender-matched comparison children were recruited. Saliva was collected from each child at three time points: 4-6 pm, before natural bedtime, and after awakening. The levels of salivary melatonin and cortisol were analysed by specific enzyme-linked immunoassays. Sleep patterns were examined using actigraphy and the Children's Sleep Habit Questionnaire. The WS group had shallower drops in cortisol and less pronounced increase in melatonin at bedtime compared to the controls. Furthermore, they also had significantly higher levels of cortisol before bedtime. Increased bedtime cortisol and less pronounced rise in melatonin levels before sleep may play a role in the occurrence of sleep disturbances, such as delayed sleep onset, observed in children with WS. As both markers play a significant role in our circadian rhythm and sleep/wake cycle, it is necessary to examine sleep using multi-system analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Profiles of gonadotropin-inhibitory hormone and melatonin during the sex change and maturation of cinnamon clownfish, Amphiprion melanopus.

    PubMed

    Choi, Young Jae; Habibi, Hamid R; Choi, Cheol Young

    2016-06-24

    The present study aimed to determine the relationship between melatonin and gonadotropin-inhibitory hormone (GnIH) and their effect on reproduction in cinnamon clownfish, Amphiprion melanopus. Accordingly, we investigated the expression pattern of GnIH, GnIH receptor (GnIH-R), and melatonin receptor (MT-R1) mRNA and protein, as well as the plasma levels of melatonin, during sex change in cinnamon clownfish. We found that GnIH and MT-R1 mRNA and melatonin activity were higher in fish with mature brain than in fish with developing gonads, and using double immunofluorescence staining, we found that both GnIH and MT-R1 proteins were co-expressed in the hypothalamus of cinnamon clownfish. These findings support the hypothesis that melatonin plays an important role in the negative regulation of maturation and GnIH regulation during reproduction. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Melatonin, mitochondria, and the metabolic syndrome.

    PubMed

    Cardinali, Daniel P; Vigo, Daniel E

    2017-11-01

    A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.

  15. The value of applying a melatonin antagonist (Luzindole) in improving the success rate of the bipedal rat scoliosis model.

    PubMed

    Yang, Shuo; Zheng, Chaojun; Jiang, Jianyuan; Lu, Feizhou; Xia, Xinlei; Zhu, Wei; Jin, Xiang; Ma, Xiaosheng

    2017-04-04

    An ideal animal model has always been the key to research the pathogenesis and treatment of adolescent idiopathic scoliosis (AIS), while available methods have obvious disadvantages. The deficiency of melatonin has been proved relating to AIS. In this research, we intended to apply Luzindole, the melatonin antagonist, in bipedal rat model, for the block of combination of melatonin and its receptor, to inhibit the melatonin effect, and then to understand whether this method can effectively improve the scoliosis rate of bipedal rat model, and investigate the role of melatonin in scoliosis. To investigate the feasibility of improving the success rate of bipedal rat scoliosis model via intraperitoneal injection of melatonin antagonist (Luzindole). A total of 60 3-weeks-old Sprague-Dawley rats were included in this study, and were divided into 3 groups (A, B and C). Each group included 20 rats. Osteotomy of the bilateral proximal humerus and proximal tailbone was performed in group A and group B; intraperitoneal injection of Luzindole (0.2 mg/kg) was performed in group A and group C. X-rays were taken before the surgery, 1 month after the surgery, 3 months after the surgery, and 6 months after the surgery, to calculate the Cobb's angle of the spine (>10° was considered scoliosis). The weight of every rat was also measured at the same time. Rats were euthanized 6 months after surgery to determine the calmodulin level in thrombocytes. The rate of scoliosis in group A (14/20) was significantly higher than those in group B (6/20) and group C (0/20) (P < 0.05). The differences in the weights of the 3 groups were non-significant; as were differences in the calmodulin level in thrombocytes. The application of the melatonin antagonist of Luzindole can improve the success rate of the bipedal rat scoliosis model. Meanwhile, this study indicates that a decreased melatonin level is not the primary cause of scoliosis, but that it may increase the likelihood and severity of scoliosis.

  16. Melatonin and the electron transport chain.

    PubMed

    Hardeland, Rüdiger

    2017-11-01

    Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO 2 , hydroxyl (·OH) and carbonate radicals (CO 3 · - ) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O 2 · - ). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT 1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.

  17. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity.

    PubMed

    Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming

    2017-09-01

    Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats.

    PubMed

    Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Adachi, Lauren Naomi Spezia; de Macedo, Isabel Cristina; Cioato, Stefania Giotti; de Freitas, Joice S; de Souza, Andressa; Quevedo, Alexandre; Caumo, Wolnei; Torres, Iraci Lucena da Silva

    2016-10-01

    Melatonin is a neuroendocrine hormone that presents a wide range of physiological functions including regulating circadian rhythms and sleep, enhancing immune function, sleep improvement, and antioxidant effects. In addition, melatonin has received special attention in pain treatment since it is effective and presents few adverse effects. In this study, we evaluated the effect of acute dose of melatonin upon hyperalgesia induced by complete Freund's adjuvant in a chronic orofacial pain model in Sprague-Dawley rats. Nociceptive behavior was assessed by facial Von Frey and the hot plate tests at baseline and thereafter 30, 60, and 120 min, 24 h, and 7 days after melatonin treatment. We demonstrated that acute melatonin administration alters mechanical and thermal hyperalgesia induced by an orofacial pain model (TMD), highlighting that the melatonin effect upon mechanical hyperalgesia remained until 7 days after its administration. Besides, we observed specific tissue profiles of neuroimmunomodulators linked to pain conditions and/or melatonin effect (brain-derived neurotrophic factor, nerve growth factor, and interleukins 6 and 10) in the brainstem levels, and its effects were state-dependent of the baseline of these animals.

  19. Exogenous Melatonin Alleviates Alkaline Stress in Malus hupehensis Rehd. by Regulating the Biosynthesis of Polyamines.

    PubMed

    Gong, Xiaoqing; Shi, Shuting; Dou, Fangfang; Song, Yi; Ma, Fengwang

    2017-09-13

    Since melatonin was identified in plants decades ago, much attention has been devoted to discovering its role in plant science. There is still a great deal to learn about the functional importance of melatonin, as well as its functional mode. In this paper, we examine the role of melatonin treatment in the response of Malus hupehensis Rehd. to alkaline conditions. Stressed seedlings showed chlorosis and suppressed growth. However, this phenotype was ameliorated when 5 µM melatonin was added to the irrigation solution. This supplementation was also associated with a reduction in cell membrane damage and maintenance of a normal root system architecture. Fewer reactive oxygen species (ROS) were accumulated due to the enhanced scavenging activity of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, alkaline-stressed seedlings that received the melatonin supplement accumulated more polyamines compared with untreated seedlings. Transcript levels of six genes involved in polyamine synthesis, including SAMDC1 , - 3 , and - 4 , and SPDS1 , - 3 , and - 5 , - 6 , were upregulated in response to melatonin application. All of these results demonstrate that melatonin has a positive function in plant tolerance to alkaline stress because it regulates enzyme activity and the biosynthesis of polyamines.

  20. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    PubMed

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  1. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1.

    PubMed

    Bai, Xiao-Zhi; He, Ting; Gao, Jian-Xin; Liu, Yang; Liu, Jia-Qi; Han, Shi-Chao; Li, Yan; Shi, Ji-Hong; Han, Jun-Tao; Tao, Ke; Xie, Song-Tao; Wang, Hong-Tao; Hu, Da-Hai

    2016-09-07

    Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling.

  2. Effects of melatonin on the acute inflammatory response associated with endoscopic retrograde cholangiopancreatography: A randomized, double-blind, placebo-controlled trial.

    PubMed

    Hernández-Velázquez, B; Camara-Lemarroy, C R; González-González, J A; García-Compean, D; Monreal-Robles, R; Cordero-Pérez, P; Muñoz-Espinosa, L E

    2016-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is associated with an acute inflammatory response and melatonin has a variety of immunomodulatory and antioxidant effects studied experimentally in pancreatobiliary pathology. The aim of our study was to evaluate the effects of peri-procedural administration of melatonin on the inflammatory response and lipid peroxidation associated with ERCP. In this proof-of-concept clinical trial, 37 patients with a high probability of choledocholithiasis were randomized to receive peri-procedure (ERCP) melatonin or placebo. We measured the serum concentration of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), lipid peroxidation, amylase, and liver function tests 24h before and after the procedure. We found no pre-procedure or post-procedure differences between the melatonin group or the placebo group (P>.05) in the serum concentrations of TNF-alpha (melatonin: 153.8 vs. 149.4ng/m; placebo: 103.5 vs. 107.3ng/ml), IL-6 (melatonin: 131.8 vs. 133.3ng/ml; placebo: 177.8 vs. 197.8ng/ml), or VEGF (melatonin: 157.3 vs. 157.8pg/ml; placebo: 97.3 vs. 97.8pg/ml), or in relation to lipid peroxidation (melatonin: 39.2 vs. 72.3μg/ml; placebo: 66.4 vs. 90.5μg/ml). After ERCP, a significant decrease in the AST, ALT, and total bilirubin levels was found only in the melatonin group (P<.05). The administration of melatonin was safe and tolerable. Melatonin is safe and tolerable in patients undergoing ERCP, but it does not appear to affect inflammatory cytokine concentrations or lipid peroxidation. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  3. The Cellular State Determines the Effect of Melatonin on the Survival of Mixed Cerebellar Cell Culture

    PubMed Central

    Franco, Daiane Gil; Markus, Regina P.

    2014-01-01

    The constitutive activation of nuclear factor-κB (NF-κB), a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS). The addition of melatonin (0.1 nM–1 µM) reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM) transiently (15 min) inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA) and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS) and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin. PMID:25184316

  4. Neuroendocrine effects of light

    NASA Astrophysics Data System (ADS)

    Reiter, Russel J.

    1991-09-01

    The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.

  5. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    PubMed

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  6. Cytoprotective effects of melatonin on zoledronic acid-treated human mesenchymal stem cells in vitro.

    PubMed

    Rodríguez-Lozano, Francisco Javier; García-Bernal, David; Ros-Roca, Maria de Los Ángeles; Algueró, Maria del Carmen; Oñate-Sánchez, Ricardo Elías; Camacho-Alonso, Fabio; Moraleda, Jose María

    2015-07-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a common clinical complication in patients receiving bisphosphonate therapy. Furthermore, melatonin has been proposed as a therapeutic drug for the oral cavity due to its antioxidant properties. This study aimed to evaluate the cytoprotective effects of melatonin on zoledronic acid (ZA)-treated human mesenchymal stem cells from periodontal ligament (PDLSCs) and bone marrow (BMMSCs). PDLSCs and BMMSCs were exposed to ZA, melatonin or ZA + melatonin for 72 h. Cell proliferation was measured by a colorimetric assay, whereas their mesenchymal phenotype was analyzed by flow cytometry. Proliferation assays showed that BMMSCs presented higher ZA resistance than PDLSCs, as well as a difference in response to the simultaneous treatment of ZA + melatonin. Using PDLSCs, high doses of melatonin significantly increased their proliferation, whereas lower concentrations were enough to enhance ZA-treated BMMSC proliferation. Moreover, PDLSCs displayed a CD90/CD105 downregulation and CD73 upregulation in response to ZA, which was more pronounced in response to melatonin. Furthermore, ZA or ZA + low doses of melatonin induced a decrease of expression of CD90/CD105/CD73 on BMMSCs, while a higher concentration recovered CD73 levels. These results suggest that melatonin has a cytoprotective effect on ZA-treated PDLSCs and BMMSCs. Thus, it could be used for BRONJ prevention. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Radioimmunoassay of Serum Concentrations of Melatonin in Sheep Exposed to Different Lighting Regimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROLLAG, M. D.; NISWENDER, G. D.

    1976-02-01

    A specific and sensitive double-antibody radioimmunoassay for melatonin (N-acetyl-5-methoxytryptamine) was developed. The least detectable concentration of melatonin standard was 10 pmolar (2.3 pg/tube) with 50 percent inhibition resulting when the concentration was 100 pmolar (23 pg/tube). Inhibition curves obtained with increasing quantities of melatonin or increasing quantities of chloroform extracts of ovine sera were parallel. Concentrations of melatonin could be accurately determined when 31 to 1000 pg were added to 1 ml ovine serum. Serum samples with melatonin concentrations of 1000 pg/ml, 500 pg/ml and 75 pg/ml had intra-assay coefficients of variation of 9.1 percent, 8.6 percent, and 17.4 percent,more » respectively. The respective inter-assay coefficients of variation were 22.7 percent, 18.1 percent, and 37.1 percent. Ewes exposed to a 12 h light:12 h dark lighting regimen demonstrated a circadian rhythm in serum concentrations of melatonin. Concentrations ranged from 10 to 30 pg/ml during periods of light to 100 to 300 pg/ml during periods of dark. During exposure to continuous light, the circadian rhythm was abolished and concentrations of melatonin were maintained at 10 to 50 pg/ml. When exposed to conditions of continuous dark the circadian rhythm persisted. A precipitous drop in serum concentrations of melatonin resulted when ewes experiencing peak melatonin concentrations were exposed to light. Concentrations returned to peak levels when the lights were turned off 3.5 h later. (auth)« less

  8. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    PubMed

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Influence of photoperiod on pineal melatonin synthesis, fur color, body weight, and reproductive function in the female Djungarian hamster, Phodopus sungorus.

    PubMed

    Lerchl, A; Schlatt, S

    1993-01-01

    In order to investigate female Djungarian hamsters' reactions to changes of the photoperiod, the following two experiments were performed. Experiment I: Age-matched female hamsters were exposed to either short (8L:16D) or long days (16L:8D) for 38 weeks. Initially, the short-day group showed a decline in body weight, associated with changes in gonadal function and fur color. This was not maintained by the short-day group which returned, on the most part, to long-day levels, thus becoming insensitive to this regressive lighting regimen. The time courses of these events compare well with those observed in males, which suggests a common mechanism. Experiment II: Two groups of female hamsters were exposed for 8 weeks to either long days or short days. At the end of the test period, the diurnal variations in pineal content of melatonin, serotonin, hydroxyindole acetic acid, and serum melatonin were estimated, revealing marked differences between the two groups. Not only was there a prolongation of melatonin synthesis observed in the short-day animals, but there was also a significant elevation of the melatonin levels when compared to the long-day animals. Together with recent findings in males, these findings lend support to the hypothesis that, in the Djungarian hamster, the elevation of nocturnal melatonin levels may be of additional significance, with respect to the physiological changes induced by short-day photoperiods.

  11. Molecular cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Kvetnoy, I M; Kvetnaia, T V; Polyakova, V O; Korf, H-W

    2012-06-01

    The effects of epithalone and vilone peptides on the synthesis of melatonin and factors involved in this process, arylalkylamine-N-acetyltransferase (AANAT) enzyme and pCREB transcription protein, were studied in rat pinealocyte culture. Epithalone stimulated AANAT and pCREB synthesis and increased melatonin level in culture medium. Simultaneous addition of norepinephrine and peptides into the culture potentiated the expression of AANAT and pCREB.

  12. Modification of light sources for appropriate biological action

    NASA Astrophysics Data System (ADS)

    Kozakov, R.; Schöpp, H.; Franke, St.; Stoll, C.; Kunz, D.

    2010-06-01

    The impact of the non-visual action of light on the design of novel light sources is discussed. Therefore possible modifications of lamps dealing with spectral tailoring and their action on melatonin suppression in usual life situations are investigated. The results of melatonin suppression by plasma lamps are presented. It is shown that even short-time exposure to usual light levels in working areas has an influence on the melatonin onset.

  13. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    PubMed

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  14. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    PubMed Central

    Sakuma, Hiroshi

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm. PMID:27213030

  15. Protective Effects of Thymoquinone and Melatonin on Intestinal Ischemia–reperfusion Injury

    PubMed Central

    Tas, Ufuk; Ayan, Murat; Sogut, Erkan; Kuloglu, Tuncay; Uysal, Murat; Tanriverdi, Halil I.; Senel, Ufuk; Ozyurt, Birsen; Sarsilmaz, Mustafa

    2015-01-01

    Background/Aim: In the present study, we aimed to compare the potential protective effects of thymoquinone and melatonin by using equivalent dose, on oxidative stress-induced ischemia–reperfusion (IR) injury in the intestinal tissue of rats. Materials and Methods: The study was performed using 32 male Wistar–Albino rats (weighing 180–200 g) randomly divided into four groups: Group I, sham group; Group II, IR group; Group III, IR with melatonin group; and Group IV, IR with thymoquinone group. After laparotomy, ischemia and reperfusion were performed for 60 and 120 min, respectively, on all the groups. Intestinal tissue sections were stained using routine histological methods and examined under the light microscope. In addition, the sections were immunohistochemically stained using the TUNEL method for determination of apoptosis. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) levels in the intestinal tissue were also measured. Results: The IR group had significantly elevated tissue SOD activity, GSH-Px activity, and MDA levels compared with the sham group. Administration of thymoquinone and melatonin efficiently reduced these increases. Statistically significant number of apoptotic cells was observed in the intestinal tissue of IR group rats compared with the sham group. Treatment with thymoquinone and melatonin markedly reduced the number of apoptotic cells. Conclusion The effects of melatonin and thymoquinone on IR-induced oxidative stress in rat intestines were similar. Our findings suggest that melatonin and thymoquinone protect against IR-induced injury to intestinal tissues. PMID:26458854

  16. Within-subject correlations between evening-related changes in body temperature and melatonin in the spinal cord injured.

    PubMed

    Jones, Helen; Eijsvogels, Thijs M H; Nyakayiru, Jean; Verheggen, Rebecca J H M; Thompson, Andrew; Groothuis, Jan T; Atkinson, Greg; Hopman, Maria T E; Thijssen, Dick H J

    2014-03-01

    Individuals with a spinal cord injury (SCI) demonstrate altered circadian variation in thermoregulatory control. Recently, we reported that tetraplegia is associated with a blunted release of melatonin in the evening. In order to examine whether this finding relates to circadian thermoregulation, we compared the correlations between evening changes in melatonin, core and skin temperature between thoracic and cervical SCI and able-bodied participants. In 10 able-bodied, 9 paraplegic and 8 tetraplegic participants, we measured, between 1900 and 2300 h, core temperature, proximal skin temperature (above and below the level of the lesion) and physical activity. Salivary melatonin was also sampled during this period and analyzed using enzyme linked immunosorbant assay. Between 1900 and 2300 h, core and upper limb skin temperature gradually decreased in all groups (p = 0.01). A significant group × time interaction was evident in lower body skin temperature (p = 0.03). Lower body skin temperature was significantly higher in able-bodied controls compared with tetraplegics between 1900 and 2000 h (p < 0.05). In able-bodied and paraplegic participants, the changes in melatonin and core temperature were inversely correlated (r = -0.44 and -0.54, respectively, both p = 0.01). Melatonin and mean skin temperature changes were also inversely correlated (able-bodied controls: r = -0.24; p = 0.05 and paraplegics: r = -0.30; p= 0.02). The inverse correlation between evening changes in melatonin and thermoregulation is of a similar magnitude in paraplegic and able-bodied controls. In contrast, changes in skin temperature, below the level of the lesion, are unrelated to changes in melatonin in tetraplegics.

  17. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  18. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress.

    PubMed

    Lin, Yu Wen; Chen, Tsung Ying; Hung, Chia Yang; Tai, Shih Huang; Huang, Sheng Yang; Chang, Che Chao; Hung, Hsin Yi; Lee, E Jian

    2018-07-01

    Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR‑like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10-100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.

  19. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep.

    PubMed

    Ma, Teng; Tao, Jingli; Yang, Minghui; He, Changjiu; Tian, Xiuzhi; Zhang, Xiaosheng; Zhang, Jinlong; Deng, Shoulong; Feng, Jianzhong; Zhang, Zhenzhen; Wang, Jing; Ji, Pengyun; Song, Yukun; He, Pingli; Han, Hongbing; Fu, Juncai; Lian, Zhengxing; Liu, Guoshi

    2017-08-01

    Melatonin as a potent antioxidant exhibits important nutritional and medicinal values. To produce melatonin-enriched milk will benefit the consumers. In this study, a sheep bioreactor which generates melatonin-enriched milk has been successfully developed by the technology that combined CRISPR/Cas9 system and microinjection. The AANAT and ASMT were cloned from pineal gland of Dorper sheep (Ovis aries). The in vitro studies found that AANAT and ASMT were successfully transferred to the mammary epithelial cell lines and significantly increased melatonin production in the culture medium compared to the nontransgenic cell lines. In addition, the Cas9 mRNA, sgRNA, and the linearized vectors pBC1-AANAT and pBC1-ASMT were co-injected into the cytoplasm of pronuclear embryos which were implanted into ewes by oviducts transferring. Thirty-four transgenic sheep were generated with the transgenic positive rate being roughly 35% which were identified by Southern blot and sequencing. Seven carried transgenic AANAT, two carried ASMT, and 25 carried both of AANAT and ASMT genes. RT-PCR and Western blot demonstrated that the lambs expressed these genes in their mammary epithelial cells and these animals produced melatonin-enriched milk. This is the first report to show a functional AANAT and ASMT transgenic animal model which produce significantly high levels of melatonin milk compared to their wild-type counterparts. The advanced technologies used in the study laid a foundation for generating large transgenic livestock, for example, the cows, which can produce high level of melatonin milk. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

    PubMed Central

    Zheng, Xiaodong; Tan, Dun X.; Allan, Andrew C.; Zuo, Bixiao; Zhao, Yu; Reiter, Russel J.; Wang, Lin; Wang, Zhi; Guo, Yan; Zhou, Jingzhe; Shan, Dongqian; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2017-01-01

    Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the Km and Vmax of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions. PMID:28145449

  1. Biological functions of melatonin in relation to pathogenesis of oral lichen planus.

    PubMed

    Chaiyarit, Ponlatham; Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda

    2017-07-01

    Oral lichen planus (OLP) is considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Accumulated data support the involvement of cell-mediated immune dysfunction in the development of OLP. However, the connection between neuroendocrine system and oral immune response in OLP patients has never been clarified. Melatonin is considered as a major chronobiotic hormone produced mainly by the pineal gland. This gland is recognized as a regulator of circadian rhythm and a sensor in the immune response through the NF-kB transduction pathway. It was suggested that pineal-derived melatonin and extra-pineal melatonin synthesized at the site of inflamed lesion might play a role in inflammatory response. According to our immunohistochemical study, expression of melatonin could be detected in human oral mucosa. In addition, increased levels of melatonin were observed in inflamed oral mucosa of OLP patients. We hypothesize that chronic inflammation possibly induces the local biosynthesis of melatonin in inflamed oral mucosa. We also speculate that melatonin in oral mucosa may play a cytoprotective role through its anti-oxidative and anti-inflammatory properties. Moreover, melatonin may play an immunomodulatory role in relation to pathogenesis of OLP. Our hypothesis provides a new implication for upcoming research on the connection between circadian neuroendocrine network and immune response in oral mucosal compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Melatonin and breast cancer: Evidences from preclinical and human studies.

    PubMed

    Kubatka, Peter; Zubor, Pavol; Busselberg, Dietrich; Kwon, Taeg Kyu; Adamek, Mariusz; Petrovic, Daniel; Opatrilova, Radka; Gazdikova, Katarina; Caprnda, Martin; Rodrigo, Luis; Danko, Jan; Kruzliak, Peter

    2018-02-01

    The breast cancer affects women with high mortality and morbidity worldwide. The risk is highest in the most developed world but also is markedly rising in the developing countries. It is well documented that melatonin has a significant anti-tumor activities demonstrated on various cancer types in a plethora of preclinical studies. In breast cancer, melatonin is capable to disrupt estrogen-dependent cell signaling, resulting in a reduction of estrogen-stimulated cells, moreover, it's obvious neuro-immunomodulatory effect in organism was described. Several prospective studies have demonstrated the inverse correlation between melatonin metabolites and the risk of breast cancer. This correlation was confirmed by observational studies that found lower melatonin levels in breast cancer patients. Moreover, clinical studies have showed that circadian disruption of melatonin synthesis, specifically night shift work, is linked to increased breast cancer risk. In this regard, proper light/dark exposure with more selective use of light at night along with oral supplementation of melatonin may have benefits for high-risk women. The results of current preclinical studies, the mechanism of action, and clinical efficacy of melatonin in breast cancer are reviewed in this paper. Melatonin alone or in combined administration seems to be appropriate drug for the treatment of early stages of breast cancer with documented low toxicity over a wide range of doses. These and other issues are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress.

    PubMed

    Wang, Lin; Feng, Chao; Zheng, Xiaodong; Guo, Yan; Zhou, Fangfang; Shan, Dongqian; Liu, Xuan; Kong, Jin

    2017-10-01

    Synthesis of melatonin in mitochondria was reported in animals. However, there is no report on whether plant mitochondria also produce melatonin. Herein, we show that plant mitochondria are a major site for melatonin synthesis. In an in vitro study, isolated apple mitochondria had the capacity to generate melatonin. Subcellular localization analysis documented that an apple SNAT isoform, MzSNAT5, was localized in the mitochondria of both Arabidopsis protoplasts and apple callus cells. The kinetic analysis revealed that the recombinant MzSNAT5 protein exhibited high enzymatic activity to catalyze serotonin to N-acetylserotonin with the K m and V max of 55 μmol/L and 0.909 pmol/min/mg protein at 35°C, respectively; this pathway functioned over a wide range of temperatures from 5 to 75°C. In an in vivo study, MzSNAT5 was drought inducible. The transgenic Arabidopsis ectopically expressing MzSNAT5 elevated the melatonin level and, hence, enhanced drought tolerance. The mechanistic study indicated that the ectopically expressing MzSNAT5 allows plant mitochondria to increase melatonin synthesis. As a potent free radical scavenger, melatonin reduces the oxidative stress caused by the elevated reactive oxygen species which are generated under drought stress in plants. Our findings provide evidence that engineered melatonin-enriched plants exhibit enhanced oxidative tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish

    PubMed Central

    Appelbaum, Lior; Wang, Gordon X.; Maro, Geraldine S.; Mori, Rotem; Tovin, Adi; Marin, Wilfredo; Yokogawa, Tohei; Kawakami, Koichi; Smith, Stephen J.; Gothilf, Yoav; Mignot, Emmanuel; Mourrain, Philippe

    2009-01-01

    In mammals, hypocretin/orexin (HCRT) neuropeptides are important sleep–wake regulators and HCRT deficiency causes narcolepsy. In addition to fragmented wakefulness, narcoleptic mammals also display sleep fragmentation, a less understood phenotype recapitulated in the zebrafish HCRT receptor mutant (hcrtr−/−). We therefore used zebrafish to study the potential mediators of HCRT-mediated sleep consolidation. Similar to mammals, zebrafish HCRT neurons express vesicular glutamate transporters indicating conservation of the excitatory phenotype. Visualization of the entire HCRT circuit in zebrafish stably expressing hcrt:EGFP revealed parallels with established mammalian HCRT neuroanatomy, including projections to the pineal gland, where hcrtr mRNA is expressed. As pineal-produced melatonin is a major sleep-inducing hormone in zebrafish, we further studied how the HCRT and melatonin systems interact functionally. mRNA level of arylalkylamine-N-acetyltransferase (AANAT2), a key enzyme of melatonin synthesis, is reduced in hcrtr−/− pineal gland during the night. Moreover, HCRT perfusion of cultured zebrafish pineal glands induces melatonin release. Together these data indicate that HCRT can modulate melatonin production at night. Furthermore, hcrtr−/− fish are hypersensitive to melatonin, but not other hypnotic compounds. Subthreshold doses of melatonin increased the amount of sleep and consolidated sleep in hcrtr−/− fish, but not in the wild-type siblings. These results demonstrate the existence of a functional HCRT neurons-pineal gland circuit able to modulate melatonin production and sleep consolidation. PMID:19966231

  5. Melatonin Modulates Prohibitin and Cytoskeleton in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Prigge, Cameron L; Elledge, Beth; He, Weilue; Offor, Johnpaul; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-07-01

    The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. β-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and β-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration.

  6. Melatonin Modulates Prohibitin and Cytoskeleton in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivas R.; Prigge, Cameron L.; Elledge, Beth; He, Weilue; Offor, Johnpaul; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. β-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and β-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration. PMID:28845390

  7. Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway.

    PubMed

    Song, Chao; Zhao, Jiamin; Fu, Beibei; Li, Dan; Mao, Tingchao; Peng, Wei; Wu, Haibo; Zhang, Yong

    2017-11-01

    Mitochondrial reactive oxygen species (ROS) production has been implicated in the pathogenesis of fluoride toxicity in liver. Melatonin, an indolamine synthesized in the pineal gland, was previously shown to protect against sodium fluoride (NaF)-induced hepatotoxicity. This study investigated the protective effects of melatonin pretreatment on NaF-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. Reducing mitochondrial ROS by melatonin substantially attenuated NaF-induced NADPH oxidase 4 (Nox4) upregulation and cytotoxicity in L-02 cells. Melatonin exerted its hepatoprotective effects by upregulating Sirtuin 3 (Sirt3) expression level and its activity. Melatonin increased the activity of manganese superoxide dismutase (SOD2) by promoting Sirt3-mediated deacetylation and promoted SOD2 expression through Sirt3-regulated DNA-binding activity of forkhead box O3 (FoxO3a), thus inhibiting the production of mitochondrial ROS induced by NaF. Notably, increased peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) by melatonin activated the Sirt3 expression, which was regulated by an estrogen-related receptor (ERR) binding element (ERRE) mapped to Sirt3 promoter region. Analysis of the cell signaling pathway profiling systems and specific pathway inhibition indicated that melatonin enhances PGC-1α expression by activating the PI3K/AKT signaling pathway. Importantly, inhibition of melatonin receptor (MT)-1 blocked the melatonin-activated PI3K/AKT-PGC-1α-Sirt3 signaling. Mechanistic study revealed that the protective effects of melatonin were associated with down-regulation of JNK1/2 phosphorylation. Our findings provided a theoretical basis that melatonin mitigated NaF-induced hepatotoxicity, which, in part, was mediated through the activation of the Sirt3 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Melatonin in autism spectrum disorders: a systematic review and meta-analysis.

    PubMed

    Rossignol, Daniel A; Frye, Richard E

    2011-09-01

    The aim of this study was to investigate melatonin-related findings in autism spectrum disorders (ASD), including autistic disorder, Asperger syndrome, Rett syndrome, and pervasive developmental disorders, not otherwise specified. Comprehensive searches were conducted in the PubMed, Google Scholar, CINAHL, EMBASE, Scopus, and ERIC databases from their inception to October 2010. Two reviewers independently assessed 35 studies that met the inclusion criteria. Of these, meta-analysis was performed on five randomized double-blind, placebo-controlled studies, and the quality of these trials was assessed using the Downs and Black checklist. Nine studies measured melatonin or melatonin metabolites in ASD and all reported at least one abnormality, including an abnormal melatonin circadian rhythm in four studies, below average physiological levels of melatonin and/or melatonin derivates in seven studies, and a positive correlation between these levels and autistic behaviors in four studies. Five studies reported gene abnormalities that could contribute to decreased melatonin production or adversely affect melatonin receptor function in a small percentage of children with ASD. Six studies reported improved daytime behavior with melatonin use. Eighteen studies on melatonin treatment in ASD were identified; these studies reported improvements in sleep duration, sleep onset latency, and night-time awakenings. Five of these studies were randomized double-blind, placebo-controlled crossover studies; two of the studies contained blended samples of children with ASD and other developmental disorders, but only data for children with ASD were used in the meta-analysis. The meta-analysis found significant improvements with large effect sizes in sleep duration (73 min compared with baseline, Hedge's g 1.97 [95% confidence interval {CI} CI 1.10-2.84], Glass's Δ 1.54 [95% CI 0.64-2.44]; 44 min compared with placebo, Hedge's g 1.07 [95% CI 0.49-1.65], Glass's Δ 0.93 [95% CI 0.33-1.53]) and sleep onset latency (66 min compared with baseline, Hedge's g-2.42 [95% CI -1.67 to -3.17], Glass's Δ-2.18 [95% CI -1.58 to -2.76]; 39 min compared with placebo, Hedge's g-2.46 [95% CI -1.96 to -2.98], Glass's Δ-1.28 [95% CI -0.67 to -1.89]) but not in night-time awakenings. The effect size varied significantly across studies but funnel plots did not indicate publication bias. The reported side effects of melatonin were minimal to none. Some studies were affected by limitations, including small sample sizes and variability in the protocols that measured changes in sleep parameters. Melatonin administration in ASD is associated with improved sleep parameters, better daytime behavior, and minimal side effects. Additional studies of melatonin would be helpful to confirm and expand on these findings. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  9. Abnormality of circadian rhythm of serum melatonin and other biochemical parameters in fibromyalgia syndrome.

    PubMed

    Mahdi, Abbas Ali; Fatima, Ghizal; Das, Siddhartha Kumar; Verma, Nar Singh

    2011-04-01

    Fibromyalgia syndrome (FMS) is a complex chronic condition causing widespread pain and variety of other symptoms. It produces pain in the soft tissues located around joints throughout the body. FMS has unknown etiology and its pathophysiology is not fully understood. However, abnormality in circadian rhythm of hormonal profiles and cytokines has been observed in this disorder. Moreover, there are reports of deficiency of serotonin, melatonin, cortisol and cytokines in FMS patients, which are fully regulated by circadian rhythm. Melatonin, the primary hormone of the pineal gland regulates the body's circadian rhythm and normally its levels begin to rise in the mid-to-late evening, remain high for most of the night, and then decrease in the early morning. FMS patients have lower melatonin secretion during the hours of darkness than the healthy subjects. This may contribute to impaired sleep at night, fatigue during the day and changed pain perception. Studies have shown blunting of normal diurnal cortisol rhythm, with elevated evening serum cortisol level in patients with FMS. Thus, due to perturbed level of cortisol secretion several symptoms of FMS may occur. Moreover, disturbed cytokine levels have also been reported in FMS patients. Therefore, circadian rhythm can be an important factor in the pathophysiology, diagnosis and treatment of FMS. This article explores the circadian pattern of abnormalities in FMS patients, as this may help in better understanding the role of variation in symptoms of FMS and its possible relationship with circadian variations of melatonin, cortisol, cytokines and serotonin levels.

  10. Daily variation in melatonin level, antioxidant activity and general immune response of peripheral blood mononuclear cells and lymphoid tissues of Indian goat Capra hircus during summer and winter.

    PubMed

    Singh, Amaresh Kumar; Ghosh, Somenath; Basu, Priyoneel; Haldar, Chandana

    2014-05-01

    Daily variation in circulatory melatonin level, during different seasons, has been reported to influence immune system and free-radical scavenging capacity in mammals, including human beings. Similar studies have not been carried out on small ruminant viz. goats that are susceptible to opportunistic infections, increased oxidative load and sickness during free-grazing activity and frequent exposure to agro-chemicals. Therefore, daily variation in immune status, antioxidant enzyme activity and its possible correlation with circulatory melatonin level during two different seasons, summer (long day) and winter (short day) were studied in the Indian goat, Capra hircus. The clinically important immune parameters, such as total leukocyte count, % lymphocyte count and % stimulation ratio of T-lymphocytes presented a day/night rhythm prominently in the winter. The oxidative load in terms of malonedialdehyde was always low during night while antioxidant enzymes superoxide dismutase, catalase and total antioxidant status were high during nighttime (1800 to 0600 hrs). Interestingly, the studied parameters were significantly higher during the winter in both the sexes. Rhythmometric analyses showed prominent rhythmicity in above parameters. The data presented strong positive correlation between high levels of nighttime melatonin levels and immune parameters during winter. It suggests that melatonin possesses immunoenhacing as well as antioxidative property during winter. This might be a necessity for maintenance of physiological harmony in goats to protect them from winter stress.

  11. Nocturnal serum melatonin levels in sulfur mustard exposed patients with sleep disorders.

    PubMed

    Mousavi, Seyyedeh Soghra; Vahedi, E; Shohrati, M; Panahi, Y; Parvin, S

    2017-12-01

    Sulfur mustard (SM) exposure causes respiratory disorders, progressive deterioration in lung function and mortality in injured victims and poor sleep quality is one of the most common problems among SM-exposed patients. Since melatonin has a critical role in regulation of sleep and awareness, this study aimed to evaluate the serum melatonin levels in SM-injured subjects. A total of 30 SM-exposed male patients and 10 controls was evaluated. Sleep quality was evaluated by the Pittsburgh Sleep Quality Index (PSQI); daytime sleepiness was measured by the Epworth Sleepiness Scale (ESS), and the risk of obstructive sleep apnoea was determined by the STOP-Bang questionnaire. Polysomnography (PSG) and pulmonary function tests (PFTs) were also available. Nocturnal serum melatonin levels were measured using an ELISA kit. The mean of PSQI, ESS and STOP-Bang scores in patients (11.76±3.56, 12.6±3.03 and 5.03±1.09, respectively) were significantly (p<0.01) higher than those in the controls (2.78±0.83, 4.69±1.15 and 1.18±0.82, respectively). PFTs also showed declined respiratory quality in SM-patients. There was a significant difference regarding the PSG results between patients and controls (p<0.01). The mean of nocturnal serum melatonin levels in patients (29.78±19.31 pg/mL) was significantly (p=0.005) lower than that in the controls (78.53±34.41 pg/mL). Reduced nocturnal serum melatonin and respiratory disorders can be the reasons for poor sleep quality among these patients. IRCT2015092924267N1, Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behaviour modification and oxidative damage in mice.

    PubMed

    Kumar, Anil; Singh, Anant

    2009-08-01

    Sleep is an important physiological process responsible for the maintenance of physical, mental and emotional health of a living being. Sleep deprivation is considered risky for several pathological diseases such as anxiety and motor and cognitive dysfunctions. Sleep deprivation has recently been reported to cause oxidative damage. This study has been designed to explore the possible involvement of the GABAergic mechanism in protective effects of melatonin against 72-h sleep deprivation-induced behaviour modification and oxidative damage in mice. Mice were sleep-deprived for a period of 72 h using the grid over water suspended method. Animals were divided into groups of 6-8 animals each. Melatonin (5 and 10 mg/kg), flumazenil (0.5 mg/kg), picrotoxin (0.5 mg/kg) and muscimol (0.05 mg/kg) were administered for 5 days starting 2 days before 72-h sleep deprivation. Various behavioural tests (plus maze, zero maze, mirror chamber, actophotometer) and body weight assessment followed by oxidative stress parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were carried out. The 72-h sleep deprivation caused significant anxiety-like behaviour, weight loss, impaired locomotor activity and oxidative damage as compared with naïve (without sleep deprivation). Treatment with melatonin (5 mg/kg and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared with control (sleep-deprived). Biochemically, melatonin treatment significantly restored reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared with control animals (72-h sleep-deprived). Flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) pretreatments with a lower dose of melatonin (5 mg/kg) significantly antagonized the protective effect of melatonin. However, muscimol (0.05 mg/kg) pretreatment with melatonin (5 mg/kg, ip) potentiated the protective effect of melatonin which was significant as compared with their effect per se. This study suggests that GABAergic modulation is involved in the protective action of melatonin against sleep deprivation-induced anxiety-like behaviour and associated oxidative damage.

  13. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model.

    PubMed

    Ali, Tahir; Badshah, Haroon; Kim, Tae Hyun; Kim, Myeong Ok

    2015-01-01

    Melatonin acts as a pleiotropic agent in various age-related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D-galactose-induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D-galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D-galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y-maze test) results revealed that chronic melatonin treatment alleviated D-galactose-induced memory impairment. Additionally, melatonin treatment reversed D-galactose-induced synaptic disorder via increasing the level of memory-related pre-and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D-galactose-treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D-galactose-induced neuroinflammation through inhibition of microgliosis (Iba-1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p-IKKβ, p-NF-K B65, COX2, NOS2, IL-1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p-JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase-9, caspase-3 and PARP-1, and prevent neurodegeneration. Hence, melatonin attenuated the D-galactose-induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF-K B/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age-related neurodegenerative diseases such as Alzheimer's disease (AD). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    PubMed

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1

    PubMed Central

    Bai, Xiao-Zhi; He, Ting; Gao, Jian-Xin; Liu, Yang; Liu, Jia-Qi; Han, Shi-Chao; Li, Yan; Shi, Ji-Hong; Han, Jun-Tao; Tao, Ke; Xie, Song-Tao; Wang, Hong-Tao; Hu, Da-Hai

    2016-01-01

    Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling. PMID:27599451

  16. Melatonin, mitochondria and hypertension.

    PubMed

    Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose

    2017-11-01

    Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.

  17. The reliability of melatonin synthesis as an indicator of the individual circadian phase position.

    PubMed

    Roemer, Hermann C; Griefahn, Barbara; Kuenemund, Christa; Blaszkewicz, Meinolf; Gerngross, Heinz

    2003-08-01

    Melatonin synthesis occurs earlier in the morning than in the evening types who strictly adhere to their individual time schedule. This study tested whether melatonin profiles still separate between diurnal types who vary their individual rhythm or who are submitted to prescribed time schedules. Male and female students were observed during a constant routine in the laboratory (24-26 hours bed rest, 20 degrees C, <30 lux, hourly isocaloric diet) and soldiers who spent several days in a military hospital were observed during 12 hours (bed rest, <30 lux, normal meals). Salivary melatonin levels were determined hourly. In both studies, melatonin profiles occurred earlier in the morning than in the evening types. The difference was smaller in soldiers, thus conditioning contributes to the actual phase position but does not mask morningness. As morningness is related to the ability to cope with shift work, the melatonin onset can be used as a criterion when assigning a person to shift work.

  18. The relevance of melatonin to sports medicine and science.

    PubMed

    Atkinson, Greg; Drust, Barry; Reilly, Thomas; Waterhouse, Jim

    2003-01-01

    The pineal hormone, melatonin, has widespread effects on the body. The aim of this review is to consider the specific interactions between melatonin and human physiological functions associated with sport and exercise medicine. Separate researchers have reported that melatonin concentrations increase, decrease and remain unaffected by bouts of exercise. Such conflicting findings may be explained by inter-study differences in lighting conditions and the time of day the study participants have exercised. Age and fitness status have also been identified as intervening factors in exercise-mediated changes in melatonin concentration. The administration of exogenous melatonin leads to hypnotic and hypothermic responses in humans, which can be linked to immediate reductions in short-term mental and physical performance. Depending on the dose of melatonin, these effects may still be apparent 3-5 hours after administration for some types of cognitive performance, but effects on physical performance seem more short-lived. The hypothesis that the hypothermic effects of melatonin lead to improved endurance performance in hot environments is not supported by evidence from studies involving military recruits who exercised at relatively low intensities. Nevertheless, no research group has examined such a hypothesis with athletes as study participants and with the associated more intense levels of exercise. The fact that melatonin has also been found to preserve muscle and liver glycogen in exercised rats adds weight to the notion that melatonin might affect endurance exercise in humans. Melatonin has been successfully used to alleviate jet lag symptoms of travellers and there is also a smaller amount of evidence that the hormone helps shiftworkers adjust to nocturnal regimens. Nevertheless, the symptoms of jet lag and shiftwork problems have primarily included sleep characteristics rather than performance variables. The few studies that have involved athletes and performance-related symptoms have produced equivocal results. Melatonin has also been found to be useful for treating some sleeping disorders, but interactions between sleep, melatonin and exercise have not been studied extensively with trained study participants. It is unknown whether melatonin plays a role in some exercise training-related problems such as amenorrhoea and over-training syndrome.

  19. Quantitation of Melatonin and N-acetylserotonin in Human Plasma by Nanoflow LC-MS/MS and Electrospray LC-MS/MS

    PubMed Central

    Carter, Melissa D.; Calcutt, M. Wade; Malow, Beth A.; Rose, Kristie L.; Hachey, David L.

    2012-01-01

    Melatonin (MEL) and its chemical precursor N-acetylserotonin (NAS) are believed to be potential biomarkers for sleep-related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability, and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC-MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1×100 mm, 3.5 μm) or on a polyimide-coated, fused-silica capillary self-packed with 17 cm AquaC18 (3 μm, 125 Å). Quantitation was done using the SRM transitions m/z 233→174 and m/z 219→160 for MEL and NAS, respectively. The analytical response ratio vs. concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). PMID:22431453

  20. Effect of exogenous melatonin and different photoperiods on oxidative status and antioxidant enzyme activity in Chhotanagpuri ewe.

    PubMed

    Choudhary, Pankaj Kumar; Ishwar, Ajay Kumar; Kumar, Rajesh; Niyogi, Debasish; Kumar, Mukesh

    2018-02-01

    The present study was conducted to evaluate the effect of exogenous melatonin under different photoperiods on oxidative status in Chhotanagpuri ewe. A total of 42 non-pregnant, non-lactating Chhotanagpuri ewe, having body weight ranging between 14.11±0.09 and 15.38±0.06 kg, were selected and were isolated from rams 2 months before melatonin administration. The selected animals were allocated randomly into seven groups, namely, Group I (normal control), Group II (long day [LD] control), Group III (LD+melatonin administration orally, 3 mg/day), Group IV (LD+melatonin administration subcutaneously, 1 mg/day), Group V (short day [SD] control), Group VI (SD+melatonin administration orally, 3 mg/day), and Group VII (SD+melatonin administration subcutaneously, 1 mg/day) comprising six animals in each group. Rams were then introduced into each group after completion of exogenous administration of melatonin. Blood samples with anticoagulant in vials were collected from each animal day before the start of the experiment and thereafter every month up to 5 th month. Hemolysate was prepared for estimation of oxidative stress parameters such as malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). It was observed that the level of MDA was significantly (p<0.05) higher in LD groups (Group II, III and IV) in comparison to control and SD groups (VI and VII) at 1 st month. MDA concentration after exogenous administration of melatonin was significantly (p<0.05) decreased in Group IV and VI in comparison to 1 st month. SOD was significantly (p<0.05) higher in SD groups (V, VI, and VII) at the 1 st month in comparison to 0 day. After exogenous administration of melatonin, SOD concentration was significantly (p<0.05) higher in Groups III and IV in comparison to 1 st month. CAT was significantly (p<0.05) higher in SD groups (V, VI, and VII) in comparison to control and LD groups. After exogenous administration of melatonin, CAT concentration was significantly (p<0.05) higher in Groups III, IV, VI, and VIII in comparison to Groups I, II, and V. At the 3 rd month, CAT concentration significantly (p<0.05) decreased in Groups III, IV, VI, and VII in comparison to 2 nd month of experiment. However, a decreasing trend of CAT was observed in all the groups from 3 rd to 5 th month. The present experiment revealed that exogenous melatonin was able to reduce significantly the level of MDA and increased the activity of SOD and CAT in Chhotanagpuri ewe.

  1. Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups.

    PubMed

    Bazrgar, Maryam; Goudarzi, Iran; Lashkarbolouki, Taghi; Elahdadi Salmani, Mahmoud

    2015-11-01

    During the particular period of cerebellum development, exposure to lead (Pb) decreases cerebellum growth and can result in selective loss of neurons. The detection and prevention of Pb toxicity is a major international public health priorities. This research study was conducted to evaluate the effects of melatonin, an effective antioxidant and free radical scavenger, on Pb induced neurotoxicity and oxidative stress in the cerebellum. Pb exposure was initiated on gestation day 5 with the addition of daily doses of 0.2% lead acetate to distilled drinking water and continues until weaning. Melatonin (10mg/kg) was given once daily at the same time. 21 days after birth, several antioxidant enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GPx) were assayed. Thiobarbituric acid reactive substance (TBARS) levels were measured as a marker of lipid peroxidation. Rotarod and locomotor activity tests were performed on postnatal days (PDs) 31-33 and a histological study was performed after completion of behavioral measurements on PD 33. The results of the present work demonstrated that Pb could induce lipid peroxidation, increase TBARS levels and decrease GPx and SOD activities in the rat cerebellum. We also observed that Pb impaired performance on the rotarod and locomotor activities of rats. However, treatment with melatonin significantly attenuated the motoric impairment and lipid peroxidation process and restored the levels of antioxidants. Histological analysis indicated that Pb could decrease Purkinje cell count and melatonin prevented this toxic effect. These results suggest that treatment with melatonin can improve motor deficits and oxidative stress by protecting the cerebellum against Pb toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Single Administration of Melatonin Modulates the Nitroxidergic System at the Peripheral Level and Reduces Thermal Nociceptive Hypersensitivity in Neuropathic Rats.

    PubMed

    Borsani, Elisa; Buffoli, Barbara; Bonazza, Veronica; Reiter, Russel J; Rezzani, Rita; Rodella, Luigi F

    2017-10-14

    Neuropathic pain is a severe condition with unsatisfactory treatments. Melatonin, an indolamine, seems to be a promising molecule suitable for this purpose due to its well-known anti-inflammatory, analgesic, and antioxidant effects, as well as its modulation of the nitroxidergic system. Nevertheless, the data on its mechanism of action and potentialities are currently insufficient in this pathology, especially at the peripheral level. Thus, this work evaluated the effect of a single administration of melatonin in an established mononeuropathy pain model that monitors the behaviour and the changes in the nitroxidergic system in dorsal root ganglia and skin, which are affected by nervous impairment. Experiments were carried out on Sprague Dawley rats subdivided into the sham operated (control) and the chronic constriction injured animals, a model of peripheral neuropathic pain on sciatic nerve. Single administrations of melatonin (5-10 mg/kg) or vehicle were injected intraperitoneally on the 14th day after surgery, when the mononeuropathy was established. The animals were behaviourally tested for thermal hyperalgesia. The dorsal root ganglia and the plantar skin of the hind-paws were removed and processed for the immunohistochemical detection of neuronal and inducible nitric oxide synthases. The behavioural results showed an increase of withdrawal latency during the plantar test as early as 30 min after melatonin administration. The immunohistochemical results indicated a modulation of the nitroxidergic system both at dorsal root ganglia and skin level, permitting speculate on a possible mechanism of action. We showed that melatonin may be a possible therapeutic strategy in neuropathic pain.

  3. Electric and magnetic fields and tumor progression. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keng, P.C.; Grota, L.J.; Michaelson, S.

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatoninmore » is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.« less

  4. Light at Night and Measures of Alertness and Performance: Implications for Shift Workers.

    PubMed

    Figueiro, Mariana G; Sahin, Levent; Wood, Brittany; Plitnick, Barbara

    2016-01-01

    Rotating-shift workers, particularly those working at night, are likely to experience sleepiness, decreased productivity, and impaired safety while on the job. Light at night has been shown to have acute alerting effects, reduce sleepiness, and improve performance. However, light at night can also suppress melatonin and induce circadian disruption, both of which have been linked to increased health risks. Previous studies have shown that long-wavelength (red) light exposure increases objective and subjective measures of alertness at night, without suppressing nocturnal melatonin. This study investigated whether exposure to red light at night would not only increase measures of alertness but also improve performance. It was hypothesized that exposure to both red (630 nm) and white (2,568 K) lights would improve performance but that only white light would significantly affect melatonin levels. Seventeen individuals participated in a 3-week, within-subjects, nighttime laboratory study. Compared to remaining in dim light, participants had significantly faster reaction times in the GO/NOGO test after exposure to both red light and white light. Compared to dim light exposure, power in the alpha and alpha-theta regions was significantly decreased after exposure to red light. Melatonin levels were significantly suppressed by white light only. Results show that not only can red light improve measures of alertness, but it can also improve certain types of performance at night without affecting melatonin levels. These findings could have significant practical applications for nurses; red light could help nurses working rotating shifts maintain nighttime alertness, without suppressing melatonin or changing their circadian phase. © The Author(s) 2015.

  5. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress.

    PubMed

    Zhang, Ruimin; Sun, Yunkuo; Liu, Zeyu; Jin, Wen; Sun, Yan

    2017-05-01

    In China, excessive use of nitrogen fertilizers in glasshouses leads to nitrate accumulations in soil and plants, which then limits productivity. Melatonin, an evolutionarily highly conserved molecule, has a wide range of functions in plants. We analyzed the effects of melatonin pretreatment on the growth, mineral nutrition, and nitrogen metabolism in cucumber (Cucumis sativus L. "Jin You No. 1") when seedlings were exposed to nitrate stress. An application of 0.1 mmol/L melatonin significantly improved the growth of plants and reduced their susceptibility to damage due to high nitrate levels (0.6 mol/L) during the ensuing period of stress treatment. Although excess nitrate led to an increase in the concentrations of nitrogen, potassium, and calcium, as well as a decrease in levels of phosphorus and magnesium, exogenous melatonin generally had the opposite effect except for a further rise in calcium concentrations. Pretreatment also significantly reduced the accumulations of nitrate nitrogen and ammonium nitrogen and enhanced the activities of enzymes involved in nitrogen metabolism. Expression of Cs-NR and Cs-GOGAT, two genes that function in that metabolism, was greatly down-regulated when plants were exposed to 0.6 mol/L nitrate, but was up-regulated in plants that had received the 0.1 mmol/L melatonin pretreatment. Our results are the first evidence that melatonin has an important role in modulating the composition of mineral elements and nitrogen metabolism, thereby alleviating the inhibitory effect on growth normally associated with nitrate stress. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reppert, S.M.; Perlow, M.J.; Ungerleider, L.G.

    The effects of lesions of the suprachiasmatic nucleus (SCN) on the circadian rhythms in melatonin and cortisol were examined in the rhesus monkey. The concentrations of the two hormones were monitored in cerebrospinal fluid (CSF) withdrawn from two sham-operated animals, two animals with complete bilateral SCN lesions, and two animals with partial SCN damage at 4 and 8 months after surgery. In the sham-operated animals, as in the intact animal, the daily melatonin rhythm was entrained to the daily light-dark cycle, was suppressed in constant light, and persisted in constant darkness. In contrast, neither animal with complete SCN ablation exhibitedmore » a daily pattern of CSF melatonin in diurnal lighting at 4 months after surgery nor were their melatonin levels at constant low values. Furthermore, CSF melatonin concentrations were not suppressed in either animal by constant light. Surprisingly, at 8 months after surgery, spectral analysis revealed a 24-hr component to the melatonin patterns for each animal with complete SCN ablation in both diurnal lighting and constant darkness. The two animals with partial SCN damage exhibited a daily melatonin rhythm in diurnal lighting, but constant light did not suppress CSF melatonin concentrations consistently. Daily rhythms persisted in both for a 6 1/2-d period of study in constant darkness. In contrast to the alterations in the melatonin rhythm after SCN damage, there was no apparent effect of either partial or complete SCN ablation on the daily CSF cortisol rhythm. These data indicate that, in the rhesus monkey, the SCN is important for the generation, photic entrainment, and photic suppression of the melatonin rhythm. However, circadian oscillators located outside of the SCN region may control the normal daily cortisol rhythm and perhaps the melatonin rhythm in the absence of the SCN.« less

  7. Optimization of Melatonin Dissolution from Extended Release Matrices Using Artificial Neural Networking.

    PubMed

    Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F

    2016-01-01

    Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.

  8. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  9. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  10. Sleep-wake Cycle Assessment in Type 2 Diabetes and Salivary Melatonin Correlates

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Paula Regina Aguiar

    The aim of this study was to analyze the sleep-wake cycle of T2DM subjects and compare it to healthy controls using the nonparametric approach and to assess the changes in the circadian and homeostatic control of the sleep-wake cycle in type 2 diabetic (T2DM) and correlate it with melatonin concentration. The sample consisted of 21 subjects with diagnosis of T2DM for more than a year and 21 healthy controls matched for gender and age. Subjects were assessed using the Beck's Depression Inventory (BDI), the Apnea Risk Evaluation System (ARES), hemoglobin A1c (HbA1c), actigraphy and melatonin levels. The findings revealed that T2DM subjects demonstrate lower IS (p=.03), higher IV (p=.046) and lower rhythm amplitude (p=.02) when compared to healthy controls. Mean melatonin concentrations collected at bed time were significantly lower in the diabetic subjects than that of controls (11.7+/-7.27 pg/ml vs. 24.13+/-10.80pg/ml; p<.01). Actigraphic analysis during the wake phase demonstrated that diabetic subjects showed lower levels of activity (p=.02). Additionally, there was a significant difference decrease in sleep duration (p=.03), efficiency (p=.02); and higher activity counts during the sleep phase (p=.02) in the diabetic group. Sleep efficiency was significantly correlated with melatonin collected two hours before bed time (rho=.61; p=.047). Additionally, there were significant inverse relationships between melatonin collected at two hours before bed time and latency (rho=-.87; p=.001), wake after sleep onset (rho=-.69; p=.02) and nocturnal activity (rho=-.67; p=.03). Latency was inversely correlated with melatonin collected at bed time (rho=-.69; p=.02). These findings suggest that T2DM presents disturbances in the homeostatic and circadian drives, mainly characterized by less consistency across days of the daily circadian signal, higher rhythm fragmentation and lower rhythm amplitude. In addition to the lower melatonin levels, the decrease in the amplitude of the activity rhythm may also be involved in circadian alterations of the sleep-wake cycle.

  11. Heritability of the melatonin synthesis variability in autism spectrum disorders.

    PubMed

    Benabou, Marion; Rolland, Thomas; Leblond, Claire S; Millot, Gaël A; Huguet, Guillaume; Delorme, Richard; Leboyer, Marion; Pagan, Cécile; Callebert, Jacques; Maronde, Erik; Bourgeron, Thomas

    2017-12-18

    Autism Spectrum Disorders (ASD) are heterogeneous neurodevelopmental disorders with a complex genetic architecture. They are characterized by impaired social communication, stereotyped behaviors and restricted interests and are frequently associated with comorbidities such as intellectual disability, epilepsy and severe sleep disorders. Hyperserotonemia and low melatonin levels are among the most replicated endophenotypes reported in ASD, but their genetic causes remain largely unknown. Based on the biochemical profile of 717 individuals including 213 children with ASD, 128 unaffected siblings and 376 parents and other relatives, we estimated the heritability of whole-blood serotonin, platelet N-acetylserotonin (NAS) and plasma melatonin levels, as well as the two enzymes arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT) activities measured in platelets. Overall, heritability was higher for NAS (0.72 ± 0.091) and ASMT (0.59 ± 0.097) compared with serotonin (0.31 ± 0.078), AANAT (0.34 ± 0.077) and melatonin (0.22 ± 0.071). Bivariate analyses showed high phenotypic and genetic correlations between traits of the second step of the metabolic pathway (NAS, ASMT and melatonin) indicating the contribution of shared genetic factors. A better knowledge of the heritability of the melatonin synthesis variability constitutes an important step to identify the factors that perturb this pathway in individuals with ASD.

  12. Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway.

    PubMed

    Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Shi, Jiawei; Tao, Yunxia; Wu, Xiexing; Hou, Zhenyang; Guo, Xiaobin; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun

    2017-03-15

    Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO. Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic differentiation. Meanwhile, the ability of melatonin to modulate the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin mediated by Wnt/β-catenin signaling pathway, thereby suppressing osteoclastogenesis, may be implicated in the protective effects of melatonin on titanium-particle-induced bone resorption. These results suggested that melatonin can be considered as a promising therapeutic agent for the prevention and treatment of peri-prosthetic osteolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Changes in serum cytokine levels, hepatic and intestinal morphology in aflatoxin B1-induced injury: modulatory roles of melatonin and flavonoid-rich fractions from Chromolena odorata.

    PubMed

    Akinrinmade, Fadeyemi Joseph; Akinrinde, Akinleye Stephen; Amid, Adetayo

    2016-05-01

    Aflatoxins are known to produce chronic carcinogenic, mutagenic, and teratogenic effects, as well as acute inflammatory effects, especially in the gastrointestinal tract. The potentials of the flavonoid-rich extract from Chromolena odorata (FCO) and melatonin (a standard anti-oxidant and anti-inflammatory agent) against aflatoxin B1 (AFB1)-induced alterations in pro-inflammatory cytokine levels and morphology of liver and small intestines were evaluated in this study. We utilized Wistar albino rats (200-230 g) randomly divided into five groups made up of group A, control rats; group B, rats given AFB1 (2.5 mg/kg, intraperitoneal) twice on days 5 and 7; rats in groups C, D, and E were treated with melatonin (10 mg/kg, intraperitoneal) or oral doses of FCO1 (50 mg/kg) and FCO2 (100 mg/kg) for 7 days, respectively, along with AFB1 injection on days 5 and 7. Serum levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were determined using commercial ELISA kits and histopathological evaluation of the liver, duodenum, and ileum were also carried out. We observed significant elevation (p < 0.05) in serum IL-1β correlating with hemorrhages and leucocytic and lymphocytic infiltration in the liver and intestines as evidences of an acute inflammatory response to AFB1 administration. All treatments yielded significant reduction (p < 0.05) in IL-1β levels, although TNF-α levels were not significantly altered in all rats that received AFB1, irrespective of the treatments. Melatonin and FCO2 produced considerable protection of hepatic tissues, although melatonin was not quite effective in protecting the intestinal lesions. Our findings suggest a modulation of cytokine expression that may, in part, be responsible for the abilities of C. odorata or melatonin in amelioration of hepatic and intestinal lesions associated with aflatoxin B1 injury.

  14. TRPV4 Stimulation Induced Melatonin Secretion by Increasing Arylalkymine N-acetyltransferase (AANAT) Protein Level.

    PubMed

    Alkozi, Hanan Awad; Perez de Lara, Maria J; Sánchez-Naves, Juan; Pintor, Jesús

    2017-04-01

    Melatonin is a molecule which has gained a great deal of interest in many areas of science; its synthesis was classically known to be in the pineal gland. However, many organs synthesize melatonin, such as several ocular structures. Melatonin is known to participate in many functions apart from its main action regulating the circadian rhythm. It is synthesized from serotonin in two steps, with a rate-limiting step carried out by arylalkymine N -acetyltransferase (AANAT). In this report, the role of TRPV4 channel present in human ciliary body epithelial cells in AANAT production was studied. Several experiments were undertaken to verify the adequate time to reach the maximal effect by using the TRPV4 agonist GSK1016790A, together with a dose-response study. An increase of 2.4 folds in AANAT was seen after 18 h of incubation with 10 nM of GSK1016790A ( p < 0.001, n = 6). This increment was verified by antagonist assays. In summary, AANAT levels and therefore melatonin synthesis change after TRPV4 channel stimulation. Using this cell model together with human ciliary body tissue it is possible to suggest that AANAT plays an important role in pathologies related to intraocular pressure.

  15. Secretion pathway of liver IGF-1 via JAK2/STAT3 in chick embryo under the monochromatic light.

    PubMed

    Wang, Tuanjie; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2016-02-01

    This study reveals mechanism of monochromatic light on the IGF-1 secretion of chick embryo liver. The chick embryos were incubated and exposed to continuous red, green, blue light or a dark environment. Compared to other light-treated groups, green light increased IGF-1 and melatonin concentrations both in plasma and liver, and Mel1a, Mel1b and Mel1c receptors expressions in liver but decreased p-JAK2, p-STAT3 and ROS in liver. IGF-1 had a positive correlation with melatonin, but a negative relevance with p-JAK2 and p-STAT3. In vitro, the IGF-1 level in the hepatocyte supernatant was enhanced by melatonin with lower p-JAK2/p-STAT3 and ROS levels, which was suppressed by Mel1c antagonist but not Mel1a/Mel1b or Mel1b antagonists. AG490 (JAK/STAT inhibitor) promoted role of melatonin-Mel1c modulated IGF-1 secretion. These results suggest the antioxidant effect of melatonin mediated the green light-enhanced IGF-1 secretion of chick embryo liver through Mel1c receptor to inhibit the JAK2/STAT3 pathway.

  16. Effect of Day and Night Desflurane Anaesthesia on Melatonin Levels in Rats.

    PubMed

    Özer, Figen Datlı; Öçmen, Elvan; Akan, Pınar; Erdost, Hale Aksu; Korkut, Sezen; Gökmen, Ali Necati

    2016-08-01

    The aim of this study is to investigate the effect of day and night administration of desflurane anaesthesia on melatonin levels in rats. Twenty-four 15-day-old rats were included in the study and were divided into four groups. The rats were anaesthetised between 19:00-01:00 (night group) and 07:00-13:00 (day group) with 5.7% desflurane concentration in 6 L min -1 100% oxygen. 6 L min -1 oxygen was administered to the control groups. At the end of 6 h of anaesthesia, blood samples were taken, and rats were sacrificed. Blood samples were centrifuged and melatonin levels from plasma samples were measured with radioimmunoassay. There was a statistically significant difference between the groups (p=0.007). Between group day control and group night control there was a statistically significant difference (p=0.042). Further, there was a significant difference between group day control and night desfluran as well (p=0.024). We could not find any difference between other groups. This study showed that 6 hours of 5.7% desflurane anaesthesia during day and night hours did not significantly change melatonin levels.

  17. Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin.

    PubMed

    Yang, Fan; Li, Yuan; Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei

    2017-05-09

    Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls' Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.

  18. Adrenal hormones mediate melatonin-induced increases in aggression in male Siberian hamsters (Phodopus sungorus).

    PubMed

    Demas, Gregory E; Polacek, Kelly M; Durazzo, Alfredo; Jasnow, Aaron M

    2004-12-01

    Among the suite of seasonal adaptations displayed by nontropical rodents, some species demonstrate increased territorial aggression in short compared with long day lengths despite basal levels of testosterone. The precise physiological mechanisms mediating seasonal changes in aggression, however, remain largely unknown. The goal of the present study was to examine the role of melatonin, as well as adrenal hormones, in the regulation of seasonal aggression in male Siberian hamsters (Phodopus sungorus). In Experiment 1, male Siberian hamsters received either daily (s.c.) injections of melatonin (15 microg/day) or saline 2 h before lights out for 10 consecutive days. In Experiment 2, hamsters received adrenal demedullations (ADMEDx), whereas in Experiment 3 animals received adrenalectomies (ADx); control animals in both experiments received sham surgeries. Animals in both experiments subsequently received daily injections of melatonin or vehicle as in Experiment 1. Animals in all experiments were tested using a resident-intruder model of aggression. In Experiment 1, exogenous melatonin treatment increased aggression compared with control hamsters. In Experiment 2, ADMEDx had no effect on melatonin-induced aggression. In Experiment 3, the melatonin-induced increase in aggression was significantly attenuated by ADx. Collectively, the results of the present study demonstrate that short day-like patterns of melatonin increase aggression in male Siberian hamsters and suggest that increased aggression is due, in part, to changes in adrenocortical steroids.

  19. Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin

    PubMed Central

    Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei

    2017-01-01

    Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways. PMID:28415572

  20. The effect of melatonin and vitamin C treatment on the experimentally induced tympanosclerosis: study in rats.

    PubMed

    Koc, Sema; Kıyıcı, Halil; Toker, Aysun; Soyalıç, Harun; Aslan, Huseyin; Kesici, Hakan; Karaca, Zafer I

    The ethiopathogenesis of tympanosclerosis has not been completely under- stood yet. Recent studies have shown that free oxygen radicals are important in the formation of tympanosclerosis. Melatonin and Vitamin C are known to be a powerful antioxidant, interacts directly with Reactive Oxygen Species and controls free radical-mediated tissue damage. To demonstrate the possible preventative effects of melatonin and Vitamin C on tympanosclerosis in rats by using histopathology and determination of total antioxidant status total antioxidant status. Standard myringotomy and standard injury were performed in the middle ear of 24 rats. The animals were divided into three groups: Group 1 received melatonin, Group 2 received vitamin C, and Group 3 received saline solution. The mean values of total antioxidant status were similar in the all study groups before the treatment period. The mean values of total antioxidant status were significantly higher in the melatonin and vitamin C groups compared to control group but vitamin C with melatonin groups were similar after the treatment period (p<0.001). Minimum and maximum wall thicknesses were lower in the melatonin and vitamin C groups compared to the control group but the differences were insignificant. Melatonin increases total antioxidant status level and might have some effect on tympanosclerosis that develops after myringotomy. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Urinary Excretion of Melatonin and Association with Breast Cancer: Meta-Analysis and Review of the Literature

    PubMed Central

    Basler, Michelle; Jetter, Alexander; Fink, Daniel; Seifert, Burkhardt; Kullak-Ublick, Gerd A.; Trojan, Andreas

    2014-01-01

    Summary Background Melatonin is an endocrine hormone secreted by the pineal gland during night hours that provides several biological functions in the circadian rhythm of humans. Due to anti-estrogenic properties, melatonin is considered to exhibit a protective role against the development of breast cancer (BC). Moreover, disruption of melatonin production through environmental influences, such as night work, is assumed to be a risk factor for BC. Materials and Methods We reviewed recent findings concerning biological effects of melatonin on BC and conducted a meta-analysis to evaluate the association between melatonin and BC incidence. In random and fixed effects statistical models, concentrations (tertiles, quartiles) of the primary urinary metabolite of melatonin, 6-sulfatoxymelatonin (aMT6s), were tested for the assumption that women with the highest values would exhibit a lower risk of BC. Results Statistical analysis of data from 5 prospective case-control studies indicates an inverse association between BC risk and the highest levels of urinary aMT6s. This effect seems to be influenced by lag intervals between aMT6s collection and the occurrence of BC, timing and methods of urine sampling, as well as genetic and environmental factors. Conclusion On the basis of the results of our meta-analysis, melatonin is likely to affect BC occurrence in women. However, methodological dissonances may require further studies. PMID:25177260

  2. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes.

    PubMed

    Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S

    2018-01-01

    The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diel changes in plasma melatonin and corticosterone concentrations in tropical Nazca boobies (Sula granti) in relation to moon phase and age.

    PubMed

    Tarlow, Elisa M; Hau, Michaela; Anderson, David J; Wikelski, Martin

    2003-10-01

    We investigated the effects of moon phases and age on diel rhythms of plasma melatonin and corticosterone in free-living Nazca boobies (Sula granti) on the Galápagos Islands, Ecuador. Melatonin and corticosterone secretion are regulated by the circadian system and the two hormones play a role in the control of locomotor activity and foraging, which can be influenced by moon phases. These seabirds have a long life span and in many vertebrates circadian function deteriorates with age. The functioning of the circadian system under different environmental conditions and changes related to age are poorly understood and hardly studied in wild birds. Nazca boobies had generally low plasma melatonin concentrations but showed a diel variation with higher concentrations at 00:00 and 16:00h. The diel variations in melatonin concentrations disappeared during full moon, suggesting that natural light levels at night can suppress melatonin secretion in Nazca boobies. Maximal melatonin concentrations tended to decline in older birds (10-19 years). Birds showed a clear diel variation in basal plasma corticosterone with a peak in the early morning, before the active period begins, and low concentrations throughout the day. As with melatonin, there were no diel variations in corticosterone at full moon, which may be due to different activity patterns in response to food availability or changes in the circadian system. While other studies have found a relationship between corticosterone and melatonin, we found no such correlation in Nazca boobies. The lunar cycle appears to affect the hormone titers of Nazca boobies both directly and indirectly. First, melatonin rhythms can be directly affected by the light intensity associated with full moon. Second, prey availability may change foraging patterns and can therefore indirectly alter corticosterone secretion in Nazca boobies.

  4. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generallymore » consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab.« less

  5. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.L.

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistentmore » with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.« less

  6. Melatonin and Ischemic Stroke: Mechanistic Roles and Action.

    PubMed

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  7. Melatonin and Ischemic Stroke: Mechanistic Roles and Action

    PubMed Central

    Andrabi, Syed Suhail; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca2+ level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke. PMID:26435711

  8. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    PubMed

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists

    PubMed Central

    Hardeland, Rüdiger

    2009-01-01

    Hypnotic effects of melatonin and melatoninergic drugs are mediated via MT1 and MT2 receptors, especially those in the circadian pacemaker, the suprachiasmatic nucleus, which acts on the hypothalamic sleep switch. Therefore, they differ fundamentally from GABAergic hypnotics. Melatoninergic agonists primarily favor sleep initiation and reset the circadian clock to phases allowing persistent sleep, as required in circadian rhythm sleep disorders. A major obstacle for the use of melatonin to support sleep maintenance in primary insomnia results from its short half-life in the circulation. Solutions to this problem have been sought by developing prolonged-release formulations of the natural hormone, or melatoninergic drugs of longer half-life, such as ramelteon, tasimelteon and agomelatine. With all these drugs, improvements of sleep are statistically demonstrable, but remain limited, especially in primary chronic insomnia, so that GABAergic drugs may be indicated. Melatoninergic agonists do not cause next-day hangover and withdrawal effects, or dependence. They do not induce behavioral changes, as sometimes observed with z-drugs. Despite otherwise good tolerability, the use of melatoninergic drugs in children, adolescents, and during pregnancy has been a matter of concern, and should be avoided in autoimmune diseases and Parkinsonism. Problems and limits of melatoninergic hypnotics are compared. PMID:19557144

  10. Night work, light exposure and melatonin on work days and days off.

    PubMed

    Daugaard, Stine; Garde, Anne Helene; Bonde, Jens Peter Ellekilde; Christoffersen, Jens; Hansen, Äse Marie; Markvart, Jakob; Schlünssen, Vivi; Skene, Debra J; Vistisen, Helene Tilma; Kolstad, Henrik A

    2017-01-01

    We aimed to examine the effects of night work on salivary melatonin concentration during and subsequent to night work and the mediating role of light. We included 254 day workers and 87 night workers who were followed during 322 work days and 301 days off work. Each day was defined as the 24 hour period starting from the beginning of a night shift or from waking in the mornings with day work and days off. Light levels were recorded and synchronized with diary information (start and end of sleep and work). On average, participants provided four saliva samples per day, and these were analyzed for melatonin concentration by liquid chromatography tandem mass spectrometry (LC-MS/MS). Differences between day and night workers on work days and days off were assessed with multilevel regression models with melatonin concentration as the primary outcome. All models were stratified or adjusted by time of day. For light exposure, we estimated the total, direct and indirect effects of night work on melatonin concentrations obtaining 95% confidence intervals through bootstrapping. On work days, night workers showed 15% lower salivary melatonin concentrations compared with day workers (-15.0%; 95% CI: -31.4%; 5.2%). During the night, light exposure mediated a melatonin suppression of approximately 6% (-5.9%, 95% CI: -10.2%; -1.5%). No mediating effect of light was seen during the day time. On days off, we observed no difference in melatonin concentrations between day and night workers. These findings are in accordance with a transient and partly light-mediated effect of night work on melatonin production.

  11. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats.

    PubMed

    Oliveira, Ariclecio Cunha de; Andreotti, Sandra; Sertie, Rogério António Laurato; Campana, Amanda Baron; de Proença, André Ricardo Gomes; Vasconcelos, Renata Prado; Oliveira, Keciany Alves de; Coelho-de-Souza, Andrelina Noronha; Donato-Junior, José; Lima, Fábio Bessa

    2018-04-15

    Melatonin treatment has been reported to be capable of ameliorating metabolic diabetes-related abnormalities but also to cause hypogonadism in rats. We investigated whether the combined treatment with melatonin and insulin can improve insulin resistance and other metabolic disorders in rats with streptozotocin-induced diabetes during neonatal period and the repercussion of this treatment on the hypothalamic-pituitary-gonadal axis. At the fourth week of age, diabetic animals started an 8-wk treatment with only melatonin (0.2 mg/kg body weight) added to drinking water at night or associated with insulin (NHP, 1.5 U/100 g/day) or only insulin. Animals were then euthanized, and the subcutaneous (SC), epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Hypothalamus was collected for gene expression and blood samples were collected for biochemical assays. The treatment with melatonin plus insulin (MI) was capable of maintaining glycemic control. In epididymal (EP) and subcutaneous (SC) adipocytes, the melatonin plus insulin (MI) treatment group recovered the insulin responsiveness. In the hypothalamus, melatonin treatment alone promoted a significant reduction in kisspeptin-1, neurokinin B and androgen receptor mRNA levels, in relation to control group. Combined treatment with melatonin and insulin promoted a better glycemic control, improving insulin sensitivity in white adipose tissue (WAT). Indeed, melatonin treatment reduced hypothalamic genes related to reproductive function. Copyright © 2017. Published by Elsevier Inc.

  12. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease.

    PubMed

    Ishigaki, Sayaka; Ohashi, Naro; Isobe, Shinsuke; Tsuji, Naoko; Iwakura, Takamasa; Ono, Masafumi; Sakao, Yukitoshi; Tsuji, Takayuki; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-12-01

    Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. The circadian rhythm of intrarenal RAS activation leads to renal damage and hypertension, which are associated with diurnal blood pressure (BP) variation. The activation of intrarenal RAS following reactive oxygen species (ROS) activation, sympathetic hyperactivity and nitric oxide (NO) inhibition leads to the development of renal damage. Melatonin is a hormone regulating the circadian rhythm, and has multiple functions such as anti-oxidant and anti-adrenergic effects and enhancement of NO bioavailability. Nocturnal melatonin concentrations are lower in CKD patients. However, it is not known if impaired endogenous melatonin secretion is related to BP, intrarenal RAS, or renal damage in CKD patients. We recruited 53 CKD patients and conducted 24-h ambulatory BP monitoring. urine was collected during the daytime and nighttime. We investigated the relationship among the melatonin metabolite urinary 6-sulphatoxymelatonin (U-aMT6s), BP, renal function, urinary angiotensinogen (U-AGT), and urinary albumin (U-Alb). Patients' U-aMT6s levels were significantly and negatively correlated with clinical parameters such as renal function, systolic BP, U-AGT, and U-Alb, during both day and night. Multiple regression analyses for U-aMT6s levels were performed using age, gender, renal function, and each parameter (BPs, U-AGT or U-Alb), at daytime and nighttime. U-aMT6s levels were significantly associated with U-AGT (β = -0.31, p = 0.044) and U-Alb (β = -0.25, p = 0.025) only at night. Impaired nighttime melatonin secretion may be associated with nighttime intrarenal RAS activation and renal damage in CKD patients.

  13. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  14. Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts.

    PubMed

    Leung, Michael; Tranmer, Joan; Hung, Eleanor; Korsiak, Jill; Day, Andrew G; Aronson, Kristan J

    2016-05-01

    Shift work-related carcinogenesis is hypothesized to be mediated by melatonin; however, few studies have considered the potential effect modification of this underlying pathway by chronotype or specific aspects of shift work such as the number of consecutive nights in a rotation. In this study, we examined melatonin patterns in relation to shift status, stratified by chronotype and number of consecutive night shifts, and cumulative lifetime exposure to shift work. Melatonin patterns of 261 female personnel (147 fixed-day and 114 on rotations, including nights) at Kingston General Hospital were analyzed using cosinor analysis. Urine samples were collected from all voids over a 48-hour specimen collection period for measurement of 6-sulfatoxymelatonin concentrations using the Buhlmann ELISA Kit. Chronotypes were assessed using mid-sleep time (MSF) derived from the Munich Chronotype Questionnaire (MCTQ). Sociodemographic, health, and occupational information were collected by questionnaire. Rotational shift nurses working nights had a lower mesor and an earlier time of peak melatonin production compared to day-only workers. More pronounced differences in mesor and acrophase were seen among later chronotypes, and shift workers working ≥3 consecutive nights. Among nurses, cumulative shift work was associated with a reduction in mesor. These results suggest that evening-types and/or shift workers working ≥3 consecutive nights are more susceptible to adverse light-at-night effects, whereas long-term shift work may also chronically reduce melatonin levels. Cumulative and current exposure to shift work, including nights, affects level and timing of melatonin production, which may be related to carcinogenesis and cancer risk. Cancer Epidemiol Biomarkers Prev; 25(5); 830-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Day-night and reproductive cycle profiles of melatonin receptor, kiss, and gnrh expression in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Chai, Ke; Liu, Xiaochun; Zhang, Yong; Lin, Haoran

    2013-07-01

    It is suggested that the MT1 melatonin receptor mediates the effects of melatonin on reproduction in rodents. Three melatonin receptor types, MT1, MT2, and Mel1c, have been identified in fish. To understand the potential roles of each type of melatonin receptor on reproduction, we explored the day-night and reproductive cycle profiles of melatonin receptor, kiss, and gnrh expression in the orange-spotted grouper (Epinephelus coioides). cDNAs encoding melatonin receptors (MT1, MT2, and Mel1c) were first isolated from the brain of the orange-spotted grouper. Quantitative real-time PCR analysis demonstrated that the expression levels of MT1 and MT2 were higher in most of the brain areas and pituitary, while mel1c mRNA was mainly distributed in some peripheral tissues and the pituitary. The expression levels of MT1 were much higher than those of MT2 and mel1c in most of the brain regions, and the day-night expression variations of MT1 were counter to those of kiss2 and gnrh1. Reproductive cycle variations in MT1 daytime expression were different from those for kiss2 and gnrh1, and contrary to ovarian fecundity. Our results suggest that MT1 may modulate gnrh1 expression through kiss2, or may directly influence it. Together, these signal cascades may regulate the seasonal breeding of the orange-spotted grouper. As the day-length variations were consistent with the ovarian fecundity variation observed during the reproductive cycle, we infer that photoperiod affects ovarian development of the orange-spotted grouper through MT1. Copyright © 2013 Wiley Periodicals, Inc.

  16. Protective effects of melatonin against 12C6+ beam irradiation-induced oxidative stress and DNA injury in the mouse brain

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Zhang, H.; Wang, X. Y.; Yang, R.; Liu, B.; Liu, Y.; Zhao, W. P.; Feng, H. Y.; Xue, L. G.; Hao, J. F.; Niu, B. T.; Wang, Z. H.

    2012-01-01

    The purpose of this experiment was to estimate the protective effects of melatonin against radiation-induced brain damages in mice induced by heavy ion beams. Kun-Ming mice were randomly divided into five groups: normal control group, irradiation control group, and three different doses of melatonin (5, 10, and 20 mg/kg, i.p.) treated groups. Apart from the normal control group, the other four groups were exposed to whole-body 4.0 Gy carbon ion beam irradiation (approximately 0.5 Gy/min) after i.p. administration of normal saline or melatonin 1 h before irradiation. The oxidative redox status of brain tissue was assessed by measurement of malondiadehyde (MDA) levels, total superoxide dismutase (T-SOD), cytosolic superoxide dismutase (Cu/ZnSOD, SOD1) and mitochondrial superoxide dismutase (MnSOD, SOD2) activities at 8 h after irradiation. DNA damages were determined using the Comet assay and apoptosis and cell cycle distribution were detected by flow cytometric analyses. A dramatic dose-dependent decrease in MDA levels, tail moment, rates of tailing cells, and apoptosis, and a dose-dependent increase in T-SOD and SOD2 activities, in brain tissues in the melatonin-treated groups were detected compared with the irradiation only group. Furthermore, flow cytometric analysis demonstrated that the percentage of brain cells in the G0/G1 phase decreased significantly, while those in the S and G2/M stage increased dramatically, with mice pretreated with melatonin compared to the irradiation control group. These data indicate that melatonin has protective effects against irradiation-induced brain injury, and that its underlying protective mechanisms may relate to modulation of oxidative stress induced by heavy ionirradiation.

  17. Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats.

    PubMed

    Wu, Haijian; Shao, Anwen; Zhao, Mingfei; Chen, Sheng; Yu, Jun; Zhou, Jingyi; Liang, Feng; Shi, Ligen; Dixon, Brandon J; Wang, Zhen; Ling, Chenhan; Hong, Yuan; Zhang, Jianmin

    2016-09-01

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. The neuron-specific K(+) -Cl(-) cotransporter-2 (KCC2), the principal Cl(-) extruder in adult neurons, plays an important role in Cl(-) homeostasis and neuronal function. This present study was designed to investigate the expression pattern of KCC2 following TBI and to evaluate whether or not melatonin is able to prevent neuronal apoptosis by modulating KCC2 expression in a Sprague Dawley rat controlled cortical impact model of TBI. The time course study showed decreased mRNA and protein expression of KCC2 in the ipsilateral peri-core parietal cortex after TBI. Double immunofluorescence staining demonstrated that KCC2 is located in the plasma membrane of neurons. In addition, melatonin (10 mg/kg) was injected intraperitoneally at 5 minutes and repeated at 1, 2, 3, and 4 hours after brain trauma, and brain samples were extracted 24 hours after TBI. Compared to the vehicle group, melatonin treatment altered the down-regulation of KCC2 expression in both mRNA and protein levels after TBI. Also, melatonin treatment increased the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated extracellular signal-regulated kinase (p-ERK). Simultaneously, melatonin administration ameliorated cortical neuronal apoptosis, reduced brain edema, and attenuated neurological deficits after TBI. In conclusion, our findings suggested that melatonin restores KCC2 expression, inhibits neuronal apoptosis and attenuates secondary brain injury after TBI, partially through activation of BDNF/ERK pathway. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Cloning and expression of melatonin receptors in the mudskipper Boleophthalmus pectinirostris: their role in synchronizing its semilunar spawning rhythm.

    PubMed

    Hong, Lu Yan; Hong, Wan Shu; Zhu, Wen Bo; Shi, Qiong; You, Xin Xin; Chen, Shi Xi

    2014-01-01

    The mudskipper Boleophthalmus pectinirostris, a burrow-dwelling fish inhabiting intertidal mudflats, spawns only once during the spawning season around either the first or last lunar quarters. To understand the molecular mechanisms regulating this semilunar spawning rhythm, we cloned all melatonin receptor subtypes (mtnr1a1.4, mtnr1a1.7, mtnr1b, and mtnr1c). Expression of three melatonin receptor subtypes (except mtnr1c) was found in the ovaries. In contrast, the expression of all receptor subtypes was found in the diencephalon and the pituitary. In the fully-grown follicles, only mtnr1a1.7 mRNA was detected in both the isolated follicle layers and denuded oocytes. Interestingly, the transcript levels of both mtnr1a1.4 in the diencephalon and mtnr1a1.7 in the ovary displayed two cycles within one lunar month, and peaked around the first and last lunar quarters. We used 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a maturation-inducing hormone, as a biomarker to examine the involvement of melatonin receptors in the control of the spawning cycle. Melatonin significantly increased the plasma DHP level 1h post intraperitoneal injection. Melatonin also directly stimulated ovarian fragments in vitro to produce a significantly higher amount of DHP. Taken together, these results provided the first evidence that melatonin receptors were involved in the synchronization of the semilunar spawning rhythm in the female mudskipper by acting through the HPG axis and/or directly on ovarian tissues to stimulate the production of DHP. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The pineal gland, but not melatonin, is associated with the termination of seasonal testicular activity in an annual reproductive cycle in roseringed parakeet Psittacula krameri.

    PubMed

    Sengupta, Anamika; Kumar Maitra, Saumen

    2006-01-01

    The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.

  20. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    PubMed

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    PubMed

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms.

  3. Comparison of Melatonin Profile and Alertness of Firefighters with Different Work Schedules

    PubMed Central

    Kazemi, Reza; Zare, Sajad

    2018-01-01

    Introduction: A two-shift work schedule with different rotations is common among firefighters in Iranian petrochemical companies. This study compared salivary melatonin and sleepiness on the last night before turning to day shift at 19:00, 23:00, 3:00, and 7:00 among petrochemical firefighters (PFFs) working seven and four consecutive night shifts. Methods: Sixty four PFFs working in the petrochemical industry were selected. To measure melatonin, saliva samples were taken, whereas the KSS index was used to assess sleepiness. Chi-square and independent samples t-test were carried out to analyze the data, and generalized linear model (GLM) was employed to determine the effect of confounding factors such as lighting and caffeine. Results: The levels of melatonin at 3:00 and 7:00, and the overall changes during the shift in the two shift patterns under the study were different (P < 0.05). Sleepiness was significantly different only at 3:00 in the two studied shift patterns, while the effects of lighting and caffeine on melatonin changes were not significant (P > 0.05). Conclusion: It seems that a slow shift rotation is better because it reduces the secretion of melatonin (hence reducing sleepiness during the night) and changes the peak of melatonin secretion to the daytime, which is a sign of adaptation.

  4. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion.

    PubMed

    Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim

    2015-03-08

    Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

  5. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens.

    PubMed

    Chen, Fuju; Reheman, Aikebaier; Cao, Jing; Wang, Zixu; Dong, Yulan; Zhang, Yuxian; Chen, Yaoxing

    2016-08-01

    A total of 360 post-hatching day 0 (P0) Arbor Acre male broilers, including intact, sham operation and pinealectomy groups, were exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) from a light-emitting diode (LED) system until for P14. We studied the effects of melatonin and its receptors on monochromatic light-induced T-lymphocyte proliferation in the thymus of broilers. The density of proliferating cell nuclear antigen (PCNA) cells and the proliferation of T-lymphocytes in response to Concanavalin A (ConA) in GL significantly increased both in vivo and in vitro (from 9.57% to 32.03% and from 34.30% to 50.53%, respectively) compared with other lights (p<0.005) and was strongly correlated with melatonin levels in plasma (p<0.005). Pinealectomy reduced the levels of circulatory melatonin and the proliferation of T-lymphocytes and eliminated the differences between GL and other lights (p<0.005). However, exogenous melatonin (10(-9)M) significantly increased the proliferative activity of T-lymphocyte by 9.64% (p=0.002). In addition, GL significantly increased mRNA expression levels of Mel1a, Mel1b and Mel1c receptors from 21.09% to 32.57%, and protein expression levels from 24.43% to 42.92% compared with RL (p<0.05). However, these effects were blocked after pinealectomy. Furthermore, 4P-PDOT (a selective Mel1b antagonist) and prazosin (a selective Mel1c antagonist) attenuated GL-induced T-lymphocyte proliferation in response to ConA (p=0.000). Luzindole (a nonselective Mel1a/Mel1b antagonist), however, did not induce these effects (p=0.334). These results suggest that melatonin may mediate GL-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors but not via the Mel1a receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Impressive Suppression of Colon Cancer Growth by Triple Combination SN38/EF24/Melatonin: "Oncogenic" Versus "Onco-Suppressive" Reactive Oxygen Species.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Shibata, Sayaka; Nikolova, Biliana; Aoki, Ichio; Higashi, Tatsuya

    2017-10-01

    The study aimed to investigate the effect of multi-targeted combinations (SN38/EF24; SN38/EF24/melatonin) on the growth of colon cancer in experimental animals and their impact on the ratio "oncogenic"/"onco-suppressive" reactive oxygen species (ROS) - a crucial factor for triggering carcinogenesis, as well as for development of effective therapeutic strategies. The experiments were conducted on colon cancer-grafted mice - non-treated, SN38/EF24-treated and SN38/EF24/melatonin-treated within 22 days. The balance between different types of ROS was measured in vivo by nitroxide-enhanced magnetic resonance imaging (MRI), as well as on isolated tissue specimens by conventional analytical tests. Both combinations significantly suppressed the tumor growth. Impressive anticancer effect was observed in SN38/EF24/melatonin-treated mice - almost complete destruction of the tumor. Both types of ROS (superoxide and hydroperoxides) were elevated in cancer, but the MRI data suggest that the ratio between them tends towards superoxide. SN38/EF24 decreased the level of superoxide, but did not affect the level of hydroperoxides in the cancerous tissue, while SN38/EF24/melatonin decreased the level of superoxide below the control and increased significantly the level of hydroperoxides. The most important observations are that: (i) colon cancer was characterized by a vicious cycle, that ensures a permanent domination of "oncogenic" ROS (as superoxide) over "onco-suppressive" ROS (as hydrogen peroxide); (ii) the anticancer effect of the triple combination EF24/SN38/melatonin was accompanied by decreasing "oncogenic" and increasing "onco-suppressive" ROS; (iii) the ratio between both types of ROS could be a new onco-target for combined therapy; and (iv) nitroxide-enhanced MRI is a valuable tool for analyzing of this ratio. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  9. Effects of tryptophan-rich breakfast and light exposure during the daytime on melatonin secretion at night.

    PubMed

    Fukushige, Haruna; Fukuda, Yumi; Tanaka, Mizuho; Inami, Kaoru; Wada, Kai; Tsumura, Yuki; Kondo, Masayuki; Harada, Tetsuo; Wakamura, Tomoko; Morita, Takeshi

    2014-11-19

    The purpose of the present study is to investigate effects of tryptophan intake and light exposure on melatonin secretion and sleep by modifying tryptophan ingestion at breakfast and light exposure during the daytime, and measuring sleep quality (by using actigraphy and the OSA sleep inventory) and melatonin secretion at night. Thirty three male University students (mean ± SD age: 22 ± 3.1 years) completed the experiments lasting 5 days and 4 nights. The subjects were randomly divided into four groups: Poor*Dim (n = 10), meaning a tryptophan-poor breakfast (55 mg/meal) in the morning and dim light environment (<50 lx) during the daytime; Rich*Dim (n = 7), tryptophan-rich breakfast (476 mg/meal) and dim light environment; Poor*Bright (n = 9), tryptophan-poor breakfast and bright light environment (>5,000 lx); and Rich*Bright (n = 7), tryptophan-rich breakfast and bright light. Saliva melatonin concentrations on the fourth day were significantly lower than on the first day in the Poor*Dim group, whereas they were higher on the fourth day in the Rich*Bright group. Creatinine-adjusted melatonin in urine showed the same direction as saliva melatonin concentrations. These results indicate that the combination of a tryptophan-rich breakfast and bright light exposure during the daytime could promote melatonin secretion at night; further, the observations that the Rich*Bright group had higher melatonin concentrations than the Rich*Dim group, despite no significant differences being observed between the Poor*Dim and Rich*Dim groups nor the Poor*Bright and Rich*Bright groups, suggest that bright light exposure in the daytime is an important contributor to raised melatonin levels in the evening. This study is the first to report the quantitative effects of changed tryptophan intake at breakfast combined with daytime light exposure on melatonin secretion and sleep quality. Evening saliva melatonin secretion changed significantly and indicated that a tryptophan-rich breakfast and bright light exposure during the daytime promoted melatonin secretion at this time.

  10. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology.

    PubMed

    Dauchy, Robert T; Wren-Dail, Melissa A; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2016-01-01

    Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465-485 nm), compared with standard broadspectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO 2 , pCO 2 , insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes.

  11. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology

    PubMed Central

    Dauchy, Robert T; Wren-Dail, Melissa A; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2016-01-01

    Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465–485 nm), compared with standard broad-spectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes. PMID:27780004

  12. Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Chang, Yanli; Lin, Daozhe; Reiter, Russel J; He, Chaozu; Shi, Haitao

    2018-03-12

    Melatonin is widely involved in growth, development, and stress responses in plants. Although the melatonin synthesis enzymes have been identified in various plants, their interacting proteins remain unknown. Herein, overexpression of tryptophan decarboxylase 2 (MeTDC2)-interacting proteins, N-acetylserotonin O-methyltransferase 2 (MeASMT2) interacting proteins, and N-acetylserotonin O-methyltransferase 3 (MeASMT3) in cassava leaf protoplasts resulted in more melatonin than when other enzymes were overexpressed. Through yeast two-hybrid, 14 MeTDC2-interacting proteins, 24 MeASMT2 interacting proteins, and 9 MeASMT3-interacting proteins were identified. Notably, we highlighted MeWRKY20 and MeWRKY75 as common interacting proteins of the 3 enzymes, as evidenced by yeast two-hybrid, and in vivo bimolecular fluorescence complementation (BiFC). Moreover, co-overexpression of MeTDC2/MeASMT2/3 with MeWRKY20/75 in cassava leaf protoplasts did not only activated the transcriptional activities of MeWRKY20 and MeWRKY75 on W-box, but also induced the effects of MeTDC2, MeASMT2/3 on endogenous melatonin levels. Taken together, 3 melatonin synthesis enzymes (MeTDC2, MeASMT2/3) interact with MeWRKY20/75 to form a protein complex in cassava. This information significantly extends the knowledge of the complex modulation of plant melatonin signaling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function.

    PubMed

    Mendivil-Perez, Miguel; Soto-Mercado, Viviana; Guerra-Librero, Ana; Fernandez-Gil, Beatriz I; Florido, Javier; Shen, Ying-Qiang; Tejada, Miguel A; Capilla-Gonzalez, Vivian; Rusanova, Iryna; Garcia-Verdugo, José M; Acuña-Castroviejo, Darío; López, Luis Carlos; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Ferrer, José M; Escames, Germaine

    2017-09-01

    Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons. Nevertheless, the possible involvement of mitochondria in the effects of melatonin during NSC differentiation has not yet been fully established. We therefore tested the impact of melatonin on NSC proliferation and differentiation in an attempt to determine whether these actions depend on modulating mitochondrial activity. We measured proliferation and differentiation markers, mitochondrial structural and functional parameters as well as oxidative stress indicators and also evaluated cell transplant engraftment. This enabled us to show that melatonin (25 μM) induces NSC differentiation into oligodendrocytes and neurons. These effects depend on increased mitochondrial mass/DNA/complexes, mitochondrial respiration, and membrane potential as well as ATP synthesis in NSCs. It is also interesting to note that melatonin prevented oxidative stress caused by high levels of mitochondrial activity. Finally, we found that melatonin enriches NSC engraftment in the ND mouse model following transplantation. We concluded that a combined therapy involving transplantation of NSCs pretreated with pharmacological doses of melatonin could efficiently restore neuronal cell populations in PD and AD mouse models depending on mitochondrial activity promotion. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Afternoon serum-melatonin in sleep disordered breathing.

    PubMed

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  15. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism.

    PubMed

    Tian, Yun; Yabuki, Yasushi; Moriguchi, Shigeki; Fukunaga, Kohji; Mao, Pei-Jiang; Hong, Ling-Juan; Lu, Ying-Mei; Wang, Rui; Ahmed, Muhammad Masood; Liao, Mei-Hua; Huang, Ji-Yun; Zhang, Rui-Ting; Zhou, Tian-Yi; Long, Sen; Han, Feng

    2014-01-01

    Lower global cognitive function scores are a common symptom of autism spectrum disorders (ASDs). This study investigates the effects of melatonin on hippocampal serine/threonine kinase signaling in an experimental ASD model. We found that chronic melatonin (1.0 or 5.0 mg/kg/day, 28 days) treatment significantly rescued valproic acid (VPA, 600 mg/kg)-induced decreases in CaMKII (Thr286), NMDAR1 (Ser896), and PKA (Thr197) phosphorylation in the hippocampus without affecting total protein levels. Compared with control rats, the immunostaining of pyramidal neurons in the hippocampus revealed a decrease in immunolabeling intensity for phospho-CaMKII (Thr286) in the hippocampus of VPA-treated rats, which was ameliorated by chronic melatonin treatment. Consistent with the elevation of CaMKII/PKA/PKC phosphorylation observed in melatonin-treated rat, long-term potentiation (LTP) was enhanced after chronic melatonin (5.0 mg/kg) treatment, as reflected by extracellular field potential slopes that increased from 56 to 60 min (133.4 ± 3.9% of the baseline, P < 0.01 versus VPA-treated rats) following high-frequency stimulation (HFS) in hippocampal slices. Accordingly, melatonin treatment also significantly improved social behavioral deficits at postnatal day 50 in VPA-treated rats. Taken together, the increased phosphorylation of CaMKII/PKA/PKC signaling might contribute to the beneficial effects of melatonin on autism symptoms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  17. Pre-Treatment with Melatonin Enhances Therapeutic Efficacy of Cardiac Progenitor Cells for Myocardial Infarction.

    PubMed

    Ma, Wenya; He, Fang; Ding, Fengzhi; Zhang, Lai; Huang, Qi; Bi, Chongwei; Wang, Xiuxiu; Hua, Bingjie; Yang, Fan; Yuan, Ye; Han, Zhenbo; Jin, Mengyu; Liu, Tianyi; Yu, Ying; Cai, Benzhi; Lu, Yanjie; Du, Zhimin

    2018-06-15

    Melatonin possesses many biological activities such as antioxidant and anti-aging. Cardiac progenitor cells (CPCs) have emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the low survival of transplanted CPCs in infarcted myocardium limits the successful use in treating MI. In the present study, we aimed to investigate if melatonin protects against oxidative stress-induced CPCs damage and enhances its therapeutic efficacy for MI. TUNEL assay and EdU assay were used to detect the effects of melatonin and miR-98 on H2O2-induced apoptosis and proliferation. MI model was used to evaluate the potential cardioprotective effects of melatonin and miR-98. Melatonin attenuated H2O2-induced the proliferation reduction and apoptosis of c-kit+ CPCs in vitro, and CPCs which pretreated with melatonin significantly improved the functions of post-infarct hearts compared with CPCs alone in vivo. Melatonin was capable to inhibit the increase of miR-98 level by H2O2 in CPCs. The proliferation reduction and apoptosis of CPCs induced by H2O2 was aggravated by miR-98. In vivo, transplantation of CPCs with miR-98 silencing caused the more significant improvement of cardiac functions in MI than CPCs. MiR-98 targets at the signal transducer and activator of the transcription 3 (STAT3), and thus aggravated H2O2-induced the reduction of Bcl-2 protein. Pre-treatment with melatonin protects c-kit+ CPCs against oxidative stress-induced damage via downregulation of miR-98 and thereby increasing STAT3, representing a potentially new strategy to improve CPC-based therapy for MI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants.

    PubMed

    Cai, Shu-Yu; Zhang, Yun; Xu, You-Ping; Qi, Zhen-Yu; Li, Meng-Qi; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Reiter, Russel J; Yu, Jing-Quan; Zhou, Jie

    2017-03-01

    Melatonin regulates broad aspects of plant responses to various biotic and abiotic stresses, but the upstream regulation of melatonin biosynthesis by these stresses remains largely unknown. Herein, we demonstrate that transcription factor heat-shock factor A1a (HsfA1a) conferred cadmium (Cd) tolerance to tomato plants, in part through its positive role in inducing melatonin biosynthesis under Cd stress. Analysis of leaf phenotype, chlorophyll content, and photosynthetic efficiency revealed that silencing of the HsfA1a gene decreased Cd tolerance, whereas its overexpression enhanced plant tolerance to Cd. HsfA1a-silenced plants exhibited reduced melatonin levels, and HsfA1a overexpression stimulated melatonin accumulation and the expression of the melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1) under Cd stress. Both an in vitro electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a binds to the COMT1 gene promoter. Meanwhile, Cd stress induced the expression of heat-shock proteins (HSPs), which was compromised in HsfA1a-silenced plants and more robustly induced in HsfA1a-overexpressing plants under Cd stress. COMT1 silencing reduced HsfA1a-induced Cd tolerance and melatonin accumulation in HsfA1a-overexpressing plants. Additionally, the HsfA1a-induced expression of HSPs was partially compromised in COMT1-silenced wild-type or HsfA1a-overexpressing plants under Cd stress. These results demonstrate that HsfA1a confers Cd tolerance by activating transcription of the COMT1 gene and inducing accumulation of melatonin that partially upregulates expression of HSPs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. CIRCADIAN REGULATION METABOLIC SIGNALING MECHANISMS OF HUMAN BREAST CANCER GROWTH BY THE NOCTURNAL MELATONIN SIGNAL AND THE CONSEQUENCES OF ITS DISRUPTION BY LIGHT AT NIGHT

    PubMed Central

    Blask, David E.; Hill, Steven M.; Dauchy, Robert T.; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A.

    2011-01-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light-at-night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT1-mediated suppression of cAMP leading to blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. PMID:21605163

  20. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer.

    PubMed

    Hill, Steven M; Blask, David E; Xiang, Shulin; Yuan, Lin; Mao, Lulu; Dauchy, Robert T; Dauchy, Erin M; Frasch, Tripp; Duplesis, Tamika

    2011-09-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1)-induced activation of G(αi2) signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT(1)-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.

  1. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    PubMed

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  2. Sleep deficits in the High Arctic summer in relation to light exposure and behaviour: use of melatonin as a countermeasure.

    PubMed

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Brett, Kaighley; McCreary, Donald R; Arendt, Josephine

    2015-03-01

    There are conflicting reports regarding seasonal sleep difficulties in polar regions. Herein we report differences in actigraphic sleep measures between two summer trials (collected at Canadian Forces Station Alert, 82.5°N, in 2012 and 2014) and evaluate exogenous melatonin for preventing/treating circadian phase delay due to nocturnal light exposure. Subjects wore actigraphs continuously to obtain sleep data. Following seven days of actigraphic recording the subjects filled out questionnaires regarding sleep difficulty and psychosocial parameters and subsequently remained in dim light conditions for 24 hours, during which saliva was collected bihourly to measure melatonin. During Trial 2, individuals who reported difficulty sleeping were prescribed melatonin, and a second saliva collection was conducted to evaluate the effect of melatonin on the circadian system. Trial 1 subjects collectively had late dim light melatonin onsets and difficulty sleeping; however, the Trial 2 subjects had normally timed melatonin rhythms, and obtained a good quantity of high-quality sleep. Nocturnal light exposure was significantly different between the trials, with Trial 1 subjects exposed to significantly more light between 2200 and 0200h. Melatonin treatment during Trial 2 led to an improvement in the subjective sleep difficulty between the pre- and post-treatment surveys; however there were no significant differences in the objective measures of sleep. The difference in sleep and melatonin rhythms between research participants in June 2012 and June 2014 is attributed to the higher levels of nocturnal light exposure in 2012. The avoidance of nocturnal light is likely to improve sleep during the Arctic summer. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis.

    PubMed

    MacEachern, Sarah J; Keenan, Catherine M; Papakonstantinou, Evangelia; Sharkey, Keith A; Patel, Bhavik Anil

    2018-05-01

    Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release. © 2018 The British Pharmacological Society.

  4. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin.

    PubMed

    Vinod, Ch; Jagota, Anita

    2016-11-01

    In mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep-wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes. Aging is associated with disruption of circadian timing system and decline in endogenous melatonin leading to several physiological disorders. Here we report the effect of aging on NO daily rhythms in various peripheral clocks such as kidney, intestine, liver, heart, lungs and testis. NO levels were measured at zeitgeber time (ZT) 0, 6, 12 and 18 in these tissues using Griess assay in male Wistar rats. Aging resulted in alteration of NO levels as well as phase of NO in both 12 and 24 months groups. Correlation analysis demonstrated loss of stoichiometric interaction between the various peripheral clocks with aging. Age induced alterations in NO daily rhythms were found to be most significant in liver and, interestingly least in lungs. Neurohormone melatonin, an endogenous synchroniser and an antiaging agent decreases with aging. We report further differential restoration with exogenous melatonin administration of age induced alterations in NO daily rhythms and mean levels in kidney, intestine and liver and the stoichiometric interactions between the various peripheral clocks.

  5. Effects of milking frequency in automatic milking systems on salivary cortisol, immunoglobulin A, somatic cell count and melatonin.

    PubMed

    Helmreich, S; Wechsler, B; Hauser, R; Gygax, L

    2016-03-01

    In barns with an automatic milking system (AMS), both the milking frequency and the number of nighttime milkings vary between cows. A low milking frequency might indicate problems in gaining access to the milking unit. Also, nighttime lighting in the waiting area of the AMS and in the milking unit increases exposure to light at night and could suppress nocturnal melatonin synthesis. These effects could result in increased stress, suppressed immune response, and poor udder health. A total of 125 cows (14-16/farm) on 8 farms with AMS were selected based on their average milking frequency. Eight to 10 saliva samples per cow were taken over the course of 4 days, and cortisol, IgA and melatonin concentrations were determined. Somatic cell counts (SCC) were determined in milk samples. Milking frequency had no significant relationship with mean cortisol and IgA levels, but a higher milking frequency tended to be associated with lower SCC levels. Nocturnal melatonin levels tended to be negatively associated with the number of nighttime milkings. In conclusion, no indication of increased stress or reduced immune defense was found in relation to milking frequency on farms with an AMS.

  6. Moderate alcohol consumption and 24-hour urinary levels of melatonin in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    Low overnight urinary melatonin metabolite concentrations have been associated with increased risk for breast cancer among postmenopausal women. The Postmenopausal Women's Alcohol Study was a controlled feeding study to test the effects of low to moderate alcohol intake on potential risk factors for...

  7. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison.

    PubMed

    Heo, Jung-Yoon; Kim, Kiwon; Fava, Maurizio; Mischoulon, David; Papakostas, George I; Kim, Min-Ji; Kim, Dong Jun; Chang, Kyung-Ah Judy; Oh, Yunhye; Yu, Bum-Hee; Jeon, Hong Jin

    2017-04-01

    Smartphones deliver light to users through Light Emitting Diode (LED) displays. Blue light is the most potent wavelength for sleep and mood. This study investigated the immediate effects of smartphone blue light LED on humans at night. We investigated changes in serum melatonin levels, cortisol levels, body temperature, and psychiatric measures with a randomized, double-blind, cross-over, placebo-controlled design of two 3-day admissions. Each subject played smartphone games with either conventional LED or suppressed blue light from 7:30 to 10:00PM (150 min). Then, they were readmitted and conducted the same procedure with the other type of smartphone. Serum melatonin levels were measured in 60-min intervals before, during and after use of the smartphones. Serum cortisol levels and body temperature were monitored every 120 min. The Profile of Mood States (POMS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and auditory and visual Continuous Performance Tests (CPTs) were administered. Among the 22 participants who were each admitted twice, use of blue light smartphones was associated with significantly decreased sleepiness (Cohen's d = 0.49, Z = 43.50, p = 0.04) and confusion-bewilderment (Cohen's d = 0.53, Z = 39.00, p = 0.02), and increased commission error (Cohen's d = -0.59, t = -2.64, p = 0.02). Also, users of blue light smartphones experienced a longer time to reach dim light melatonin onset 50% (2.94 vs. 2.70 h) and had increases in body temperature, serum melatonin levels, and cortisol levels, although these changes were not statistically significant. Use of blue light LED smartphones at night may negatively influence sleep and commission errors, while it may not be enough to lead to significant changes in serum melatonin and cortisol levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding

    NASA Astrophysics Data System (ADS)

    Temuryants, N. A.; Tumanyants, K. N.; Khusainov, D. R.; Cheretaev, I. V.; Tumanyants, E. N.

    2017-12-01

    It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3-4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.

  9. Melatonin in humans: Possible involvement in SIDS, and use in contraceptives

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.; Lynch, Harry J.; Sturner, William Q.

    1991-01-01

    Relatively few tools exist for assessing the possible involvement of melatonin in normal or abnormal physiologlcal and behavioral states. One cannot perform the classic ablation experiment of endocrinologists by cavalierly removing the human's pineal, nor derive the same effect pharmacologically by administering a drug which blocks the actions of the indole on its receptors (because no such drugs, demonstrated to work in humans, exist). About all that can be done is to administer the melatonin and see what happens, or measure its levels in a body fluid and determine whether its temporal patterns track those of the physiological or behavioral variable being examined. The clinical state of Sudden Infant Death Syndrome (SIDS) which apparently is associated with abnormalities in melatonin concentrations within body fluids obtained at autopsy is described. New data which suggest that exogenous melatonin has sufficient antigonadal potency to allow it to replace estrogen and, acting in combination with norethisterone, serve as a useful contraceptive agent is summarized.

  10. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate.

    PubMed

    Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H

    2002-10-01

    Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at < 30 lux, 18 degrees C, and < 50 dBA. In the experimental sessions, either light (1500 lux), magnetic field (16.7 Hz, 0.2 mT), or infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.

  11. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus.

    PubMed

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Kleiner, Wibke; Kloas, Werner

    2018-02-01

    In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.

  12. Melatonin and cortisol assessment of circadian shifts in astronauts before flight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Putcha, L.; Chen, Y. M.; Baker, E.

    1995-01-01

    Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.

  13. Melatonin and cortisol assessment of circadian shifts in astronauts before flight.

    PubMed

    Whitson, P A; Putcha, L; Chen, Y M; Baker, E

    1995-04-01

    Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.

  14. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.

    PubMed

    Khaldy, Hoda; Escames, Germaine; León, Josefa; Bikjdaouene, Leila; Acuña-Castroviejo, Darío

    2003-01-01

    Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.

  15. Melatonin inhibits the development of 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Kim, Tae-Ho; Jung, Jung-A; Kim, Gun-Dong; Jang, An-Hee; Ahn, Hyun-Jong; Park, Yong Seek; Park, Cheung-Seog

    2009-11-01

    Atopic dermatitis (AD) is a common disease in children, and epicutaneous treatment with a chemical hapten such as 2,4-dinitrofluorobenzene (DNFB) evokes an AD-like reaction in NC/Nga mice under specific pathogen-free conditions. Melatonin (N-acetyl-5-methoxytryptamine) is synthesized by the pineal gland, has several different physiologic functions, which include seasonal reproduction control, immune system modulation, free radical scavenging, and inflammatory suppression. In the present study, we investigated whether melatonin suppresses DNFB-induced AD-like skin lesions in NC/Nga mice. The topical administration of melatonin to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. Furthermore, interleukin (IL)-4 and interferon (IFN)-gamma secretion by activated CD4(+) T cells from the draining lymph nodes of DNFB-treated NC/Nga mice were significantly inhibited by melatonin, and total IgE levels in serum were reduced. Our findings suggest that melatonin suppresses the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing total IgE in serum, and IL-4 and IFN-gamma production by activated CD4(+) T cells.

  16. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    PubMed

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  17. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  18. The concept of the immune-pineal axis tested in patients undergoing an abdominal hysterectomy.

    PubMed

    de Oliveira Tatsch-Dias, Mirella; Levandovski, Rosa Maria; Custódio de Souza, Izabel Cristina; Gregianin Rocha, Marcelo; Magno Fernandes, Pedro Augusto Carlos; Torres, Iraci L S; Hidalgo, Maria Paz L; Markus, Regina P; Caumo, Wolnei

    2013-01-01

    Activation of the immune-pineal axis induces a transient reduction in nocturnal melatonin in the plasma during the proinflammatory phase of an innate immune response to allow the proper migration of leukocytes to the lesion site. This transient reduction should be regulated by inflammatory mediators, which are responsible for the fine-tuning of the process. In the present study, we measured the pre- and postoperative serum concentrations of melatonin, tumor necrosis factor (TNF) and cortisol in women who underwent an elective hysterectomy and correlated the variation in melatonin with postoperative pain. We evaluated 12 women who had an abdominal hysterectomy. Blood was collected at 10.00 and 22.00 h 1 week and 1 day before the surgery, on the 1st and 2nd days after the surgery and at 22.00 h on the day of the surgery. On the night after the surgery, there was no melatonin detected at 22.00 h. High TNF levels were accompanied by a lower nocturnal melatonin output, higher postoperative pain according to a visual analog scale and the request of higher doses of analgesics. In addition, low cortisol levels were accompanied by a lower nocturnal melatonin output. Our results confirm that the same antagonistic pattern between TNF and glucocorticoids observed in cultured pineal glands also occurs in humans. This integrative pattern suggests that the cross talk between the immune and endocrine system orchestrates longitudinal changes in pineal activity, reinforcing the hypothesis of an immune-pineal axis. Copyright © 2013 S. Karger AG, Basel.

  19. Melatonin Promotes Cheliped Regeneration, Digestive Enzyme Function, and Immunity Following Autotomy in the Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Zhang, Cong; Yang, Xiao-zhen; Xu, Min-jie; Huang, Gen-yong; Zhang, Qian; Cheng, Yong-xu; He, Long; Ren, Hong-yu

    2018-01-01

    In the pond culture of juvenile Eriocheir sinensis, a high limb-impairment rate seriously affects the culture success. Therefore, it is particularly important to artificially promote limb regeneration. This study evaluated the effects of melatonin on cheliped regeneration, digestive ability, and immunity, as well as its relationship with the eyestalk. It was found that the injection of melatonin significantly increased the limb regeneration rate compared with the saline group (P < 0.05). The qRT-PCR results of growth-related genes showed that the level of EcR-mRNA (ecdysteroid receptor) and Chi-mRNA (chitinase) expression was significantly increased following the melatonin injection, while the expression of MIH-mRNA (molt-inhibiting hormone) was significantly decreased (P < 0.05). Melatonin significantly increased lipase activity (P < 0.05). We observed that the survival rates of limb-impaired and unilateral eyestalk-ablated crabs were substantially improved following melatonin treatment, whereas the survival of the unilateral eyestalk-ablated crabs was significantly decreased compared with the control group (P < 0.05). Furthermore, the results of serum immune and antioxidant capacity revealed that melatonin significantly increased the total hemocyte counts (THC), hemocyanin content, total antioxidant capacity (T-AOC), acid phosphatase (ACP), and glutathione peroxidase activity (GSH-Px), whereas the immune-related parameters were significantly decreased in eyestalk-ablated crabs (P < 0.05). Therefore, these findings indicate that melatonin exerts a protective effect on organism injury, which could promote limb regeneration by up-regulating the expression of growth-related genes, improve digestive enzyme activity, and strengthen the immune response, particularly antioxidant capacity. PMID:29623051

  20. Pre- vs. post-treatment with melatonin in CCl4-induced liver damage: Oxidative stress inferred from biochemical and pathohistological studies.

    PubMed

    Ničković, Vanja P; Novaković, Tatjana; Lazarević, Slavica; Šulović, Ljiljana; Živković, Zorica; Živković, Jovan; Mladenović, Bojan; Stojanović, Nikola M; Petrović, Vladmir; Sokolović, Dušan T

    2018-06-01

    The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. Rats from two experimental groups were treated with melatonin before and after CCl 4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl 4 , respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. Both pre- and post-treatment with melatonin prevented a CCl 4 -induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl 4 -induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    PubMed

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The preventive and curative effects of melatonin against abdominal aortic aneurysm in rats.

    PubMed

    Tekin, Gözde; İsbir, Selim; Şener, Göksel; Çevik, Özge; Çetinel, Şule; Dericioğlu, Okan; Arsan, Sinan; Çobanoğlu, Adnan

    2018-05-01

    Oxygen free radicals are important components involved in the histopathologic tissue alterations observed during abdominal aortic aneurysms (AAAs). This study examined whether melatonin has protective or therapeutic effects against AAAs. Sprague-Dawley rats were divided into four groups. A CaCl 2 model was used to induce AAA. Starting on the operation day (Mel+AAA+Mel group) or 4 weeks after the operation (AAA+Mel group), the rats received intraperitoneal melatonin (10 mg/kg/day) for 6 and 2 weeks, respectively. The control and AAA groups received vehicle for 2 weeks after the sham operation and AAA induction, respectively. Angiographic measurements were recorded at the beginning, week 4, and week 6 of the study. After decapitation, aorta tissues were taken for the measurement of malondialdehyde, 8-hydroxy-2'-deoxyguanosine, glutathione levels, and myeloperoxidase and caspase-3 activity. Matrix metalloproteinase (MMP)-2, MMP-9, tumor necrosis factor-α, and inducible nitric oxide synthase protein expressions were analyzed by Western blot technique. Aortic tissues were also examined by light microscopy. CaCl 2 caused an inflammatory response and oxidative damage indicated by rises in malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. Myeloperoxidase and caspase-3 activities were increased, but glutathione levels were reduced. On the one hand, MMP-2, MMP-9, tumor necrosis factor-α, and inducible nitric oxide synthase protein expressions were increased in the vehicle-treated AAA group. On the other hand, melatonin treatment reversed all of these biochemical indices and histopathologic alterations. According to the data, although melatonin tended to reverse the biochemical parameters given on week 4, the preventive effect is more pronounced when given concomitantly with AAA induction because values were closer to the control levels. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus.

    PubMed

    Ali, Tahir; Kim, Myeong Ok

    2015-08-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of amyloid beta (Aβ) aggregation in the brain, and is considered to be the primary cause of cognitive dysfunction. Aβ aggregates lead to synaptic disorder, tau hyperphosphorylation, and neurodegeneration. In this study, the underlying neuroprotective mechanism of melatonin against Aβ1-42-induced neurotoxicity was investigated in the mice hippocampus. Intracerebroventricular (i.c.v.) Aβ1-42-injection triggered memory impairment, synaptic disorder, hyperphosphorylation of tau protein, and neurodegeneration in the mice hippocampus. After 24 hr of Aβ1-42 injection, the mice were treated with melatonin (10 mg/kg, intraperitonially) for 3 wks, reversed the Aβ1-42-induced synaptic disorder via increasing the level of presyanptic (Synaptophysin and SNAP-25) and postsynaptic protein [PSD95, p-GluR1 (Ser845), SNAP23, and p-CREB (Ser133)], respectively, and attenuated the Aβ1-42-induced memory impairment. Chronic melatonin treatment attenuated the hyperphosphorylation of tau protein via PI3K/Akt/GSK3β signaling by activating the p-PI3K, p-Akt (Ser 473) and p-GSK3β (Ser9) in the Aβ1-42-treated mice. Furthermore, melatonin decreased Aβ1-42 -induced apoptosis through decreasing the overexpression of caspase-9, caspase-3, and PARP-1 level. Additionally, the evaluation of immunohistochemical analysis of caspase-3, Fluorojade-B, and Nissl staining indicated that melatonin prevented neurodegeneration in Aβ1-42-treated mice. Our results demonstrated that melatonin has neuroprotective effect against Aβ1-42-induced neurotoxicity through decreasing memory impairment, synaptic disorder, tau hyperphosphorylation, and neurodegeneration via PI3K/Akt/GSK3β signaling in the Aβ1-42-treated mouse model of AD. On the basis of these results, we suggest that melatonin could be an effective, promising, and safe neuroprotective candidate for the treatment of progressive neurodegenerative disorders, such as AD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Trek2a regulates gnrh3 expression under control of melatonin receptor Mt1 and α2-adrenoceptor.

    PubMed

    Loganathan, Kavinash; Moriya, Shogo; Parhar, Ishwar S

    2018-02-12

    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K + ) channel-related K + (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α 2 -adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α 2 -adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α 2 -adrenoceptor. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The effect of orbital implantation on peripheral blood melatonin and sex hormone levels in child patients with congenital eyeball dysplasia.

    PubMed

    Ma, Junze; Liu, Tao; Qu, Jianqiang

    2017-09-01

    The aim of the study was to examine the effect of orbital implantation on peripheral blood melatonin and sex hormone levels in pediatric patients with congenital eyeball dysplasia. A total of 28 cases of pediatric patients with congenital eyeball dysplasia diagnosed in the Second Affiliated Hospital of Xi'an Jiaotong University from June 2014 to December 2014 were selected for the study. The patients included those that received orbital implantation, and the melatonin levels in the peripheral blood in patients before and after operation was observed. In addition, the sex hormone levels and T lymphocytes, plasma reactive oxygen species (ROS) and VEGF levels, urine 8-OHdG and 8-isoPGF2α levels in patients before and after treatment were detected, followed by statistical analysis. As a result, after 3 months of orbital implantation, the sex hormone levels in peripheral blood in child patients fluctuated significantly, and differences were not statistically significant (P>0.05). The peripheral blood T lymphocytes and ROS levels were significantly lower than those before treatment, and the differences were statistically significant (P<0.05). The correlation analysis revealed that the peripheral blood melatonin levels were negatively related to ROS levels; the correlation coefficient was rs = -0.481 and P<0.05. In conclusion, orbital implantation does not have significant impact on sex hormone levels in child patients with congenital eyeball dysplasia. The hydroxyapatite orbital implantation can achieve more satisfactory curative effects, and there are fewer postoperative complications. It does not affect the appearance of the eye, and therefore, it is suitable for patients with congenital eyeball dysplasia.

  6. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig.

    PubMed

    Wang, Fei; Zhou, Jiaqi; Lu, Yi; Chu, Renyuan

    2011-02-01

    To investigate (i) the effect of monochromatic light on inhibiting induction of light-induced melatonin and (ii) the roles of melanopsin and MT1 receptor in light-induced myopia in the guinea pig. Forty-eight guinea pigs were randomly distributed into three treatment groups: white-light (control), green-light (530 nm), and blue-light (480 nm) groups. Levels of pineal gland melatonin were measured twice daily--10:00 a.m. and 10:00 p.m.--10 days after initial light treatment. Thirty additional guinea pigs were also assigned to these groups and treated similarly. For these latter animals, refractive status, ocular length, and vitreous depth were measured before and after light treatment. Eight weeks after light treatment, retinal and sceral levels of melanopsin, melatonin receptor type (MT) 1, and mRNA protein were determined by Western blotting, real-time polymerase chain reaction (RT-PCR), and immunohistochemistry. The level of pineal gland melatonin in the green-light group was significantly higher than that in the blue-light group. Biometric measurements showed that guinea pigs in the green-light group had a somewhat myopic refractive status. Expressions of retinal melanopsin mRNA and protein were significantly higher in the blue-light group and lower in the green-light group when compared to controls. Conversely, expressions of MT1 receptor mRNA and protein in retina and sclera were significantly higher in the green-light group and lower in the blue-light group when compared to controls. Green light appears to suppress induction of melatonin production. In addition, 530 nm of green light is involved in the development of myopia. In the guinea pig, MT1 receptor and melanopsin appear to play roles in the development of myopia induced by 530 nm of light.

  7. Measuring Light at Night and Melatonin Levels in Shift Workers: A Review of the Literature.

    PubMed

    Hunter, Claudia M; Figueiro, Mariana G

    2017-07-01

    Shift work, especially that involving rotating and night shifts, is associated with an increased risk of diseases, including cancer. Attempts to explain the association between shift work and cancer in particular have focused on the processes of melatonin production and suppression. One hypothesis postulates that exposure to light at night (LAN) suppresses melatonin, whose production is known to slow the development of cancerous cells, while another proposes that circadian disruption associated with shift work, and not just LAN, increases health risks. This review focuses on six studies that employed quantitative measurement of LAN and melatonin levels to assess cancer risks in shift workers. These studies were identified via searching the PubMed database for peer-reviewed, English-language articles examining the links between shift work, LAN, and disease using the terms light at night, circadian disruption, health, risk, cancer, shift work, or rotating shift. While the results indicate a growing consensus on the relationship between disease risks (particularly cancer) and circadian disruption associated with shift work, the establishment of a direct link between LAN and disease has been impeded by contradictory studies and a lack of consistent, quantitative methods for measuring LAN in the research to date. Better protocols for assessing personal LAN exposure are required, particularly those employing calibrated devices that measure and sample exposure to workplace light conditions, to accurately assess LAN's effects on the circadian system and disease. Other methodologies, such as measuring circadian disruption and melatonin levels in the field, may also help to resolve discrepancies in the findings.

  8. Suppression of melatonin secretion by bright light in seasonal affective disorder.

    PubMed

    Partonen, T; Vakkuri, O; Lönnqvist, J

    1997-09-15

    Eleven patients with winter seasonal affective disorder and 10 healthy controls were exposed to light of 3300 lux for 5 min and for 1 hour respectively on consecutive evenings at 22:00 hours during winter and summer. In the winter, the measurements were undertaken both before and after the treatment with bright light for 2 weeks. In the summer, there was no treatment. Melatonin concentration in saliva and subjective sleepiness were measured at 22:00 and 23:00 hours on each test. There was no significant difference in the suppression of melatonin in response to the light tests between the patients and the controls. Exposure to light reduced the level of subjective sleepiness more among the patients compared to the control subjects. This reduction was not associated with the change in melatonin secretion nor the improvement in depressive symptoms.

  9. The association of body size in early to mid-life with adult urinary 6-sulfatoxymelatonin levels among night shift health care workers.

    PubMed

    Ramin, Cody A; Massa, Jennifer; Wegrzyn, Lani R; Brown, Susan B; Pierre-Paul, Jeffrey; Devore, Elizabeth E; Hankinson, Susan E; Schernhammer, Eva S

    2015-05-06

    Adult body mass index (BMI) has been associated with urinary melatonin levels in humans; however, whether earlier-life body size is associated with melatonin, particularly among night shift workers, remains unknown. We evaluated associations of birth weight, body shape (or somatotype) at ages 5 and 10, BMI at age 18 and adulthood, weight change since age 18, waist circumference, waist to hip ratio, and height with creatinine-adjusted morning urinary melatonin (6-sulfatoxymelatonin, aMT6s) levels among 1,343 healthy women (aged 32-53 at urine collection, 1996-1999) in the Nurses' Health Study (NHS) II cohort. Using multivariable linear regression, we computed least-square mean aMT6s levels across categories of body size, and evaluated whether these associations were modified by night shift work. Adult BMI was inversely associated with aMT6s levels (mean aMT6s levels = 34 vs. 50 ng/mg creatinine, comparing adult BMI ≥ 30 vs. <20 kg/m(2); P trend < 0.0001); however, other measures of body size were not related to aMT6s levels after accounting for adult BMI. Night shifts worked prior to urine collection, whether recent or cumulatively over time, did not modify the association between adult BMI and aMT6s levels (e.g., P interaction = 0.72 for night shifts worked within two weeks of urine collection). Our results suggest that adult BMI, but not earlier measures of body size, is associated with urinary aMT6s levels in adulthood. These observations did not vary by night shift work status, and suggest that adult BMI may be an important mechanism by which melatonin levels are altered and subsequently influence chronic disease risk.

  10. Melatonin accelerates maturation inducing hormone (MIH): induced oocyte maturation in carps.

    PubMed

    Chattoraj, Asamanja; Bhattacharyya, Sharmistha; Basu, Dipanjan; Bhattacharya, Shelley; Bhattacharya, Samir; Maitra, Saumen Kumar

    2005-02-01

    The present communication is an attempt to demonstrate the influence of melatonin on the action of maturation inducing hormone (MIH) on the maturation of oocytes in carps. The oocytes from gravid female major carp Labeo rohita were isolated and incubated separately in Medium 199 containing (a) only MIH (1 microg/ml), (b) only melatonin (at concentrations of 50, 100 or 500 pg/ml), and (c) both melatonin and MIH, but at different time intervals. In the latter group, melatonin was added to the incubating medium either (i) 4 h before addition of MIH, (ii) 2 h before addition of MIH, (iii) co-administered with MIH (0 h interval) or (iv) 2 h after addition of MIH. In each case, oocytes were further incubated for 4, 8, 12 or 16 h post- administration of MIH, and the effects of treatment on oocyte maturation were evaluated by considering the rate (%) of germinal vesicle breakdown (GVBD). Incubation of oocytes in a medium containing only melatonin did not result in GVBD of any oocyte. Nearly all the oocytes underwent GVBD when incubated with MIH for 16 h. Administration of melatonin along with MIH (at 0 h interval) or 2 h after addition of MIH did not result in any significant change in the rate of GVBD compared to that in a medium containing only MIH. However, it was quite interesting to observe that incubation of oocytes with melatonin especially 4 h prior to addition of MIH in the medium, led to an accelerated rate of GVBD in the oocytes. Experiments with the oocytes of another major carp Cyprinus carpio following an identical schedule depicted similar results except a difference in the optimum melatonin dose. In L. rohita, 50 pg/ml melatonin had maximum acceleratory effect on MIH-induced GVBD of oocytes, while it was 100 pg/ml in C. carpio. Further study revealed that pre-incubation with melatonin accelerates the action of MIH on the formation of a complex of two proteins (MPF), a regulatory component called cyclin B and the catalytic component protein kinase known as cyclin-dependent kinase, Cdk1. Densitometric analysis of the immunoblot data collected from the melatonin pre-treated MIH incubated oocytes showed that cyclin B level continued to increase even after 4 h of incubation, and reached the peak after 12 h. Moreover, determination of H1 kinase activity as an indicator of MPF activity in oocytes revealed that melatonin pre-incubation considerably increased MIH stimulation of histone H1 phosphorylation as compared to MIH alone. Thus, the present study demonstrates for the first time that prior incubation with melatonin accelerates the action of MIH on carp oocyte maturation.

  11. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model.

    PubMed

    Hussein, Mahmoud R; Ahmed, Omyma G; Hassan, Asmaa F; Ahmed, Marwa A

    2007-02-01

    Obesity and its associated metabolic pathologies are the most common and detrimental diseases, affecting over 50% of the adult population. Our knowledge about the protective effects of melatonin against high-fat diet (HFD)-induced obesity is still marginal. In this investigation, we hypothesized that melatonin can minimize the metabolic pathologies and morphological changes associated with obesity in animals receiving an HFD. To examine these effects, and to test our hypothesis, an animal model formed of male Boscat white rabbits was established. The animals were divided into three groups: (i) a control group fed regular diet; (ii) an obesity group fed an HFD for 12 weeks; and (iii) a treated group fed HFD for 12 weeks and then treated with melatonin for 4 weeks. The animals were killed and their serum and tissues were evaluated for: (i) lipid profile (cholesterol, triglycerides and low-density lipoprotein) and glucose; (ii) antioxidant enzyme (serum glutathione peroxidase, GSH-PX); and (iii) fatty changes (liver, kidney and blood vessels). Compared with the control group, intake of HFD (obesity group) was associated with: (i) a statistically significant increase in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) decreased level of GSH-PX and high-density lipoprotein (HDL); and (iii) fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. Compared with the obesity group, intake of melatonin (treated group) was associated with: (i) a statistically significant decrease in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) increased level of GSH-PX and HDL; and (iii) disappearance of fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. The administration of melatonin reduced the metabolic pathologies associated with the intake of HFD, suggesting a protective role. Although the underlying mechanisms are unclear, they may include its antioxidant and receptor-mediated effects. The clinical ramifications of these effects await further investigations.

  12. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation.

    PubMed

    Wang, Ping; Sun, Xun; Chang, Cong; Feng, Fengjuan; Liang, Dong; Cheng, Lailiang; Ma, Fengwang

    2013-11-01

    Melatonin has an important anti-aging role in plant physiology. We tested the effects of long-term melatonin exposure on metabolic status and protein degradation during natural leaf senescence in trees of Malus hupehensis Rehd. The 2-month regular supplement of 100 μm melatonin to the soil once every 6 days altered the metabolic status and delayed protein degradation. For example, leaves from treated plants had significantly higher photosynthetic activity, chlorophyll concentrations, and levels of three photosynthetic end products (sorbitol, sucrose, and starch) when compared with the control. The significant inhibition of hexose (fructose and glucose) accumulation possibly regulated the signaling of MdHXK1, a gene for which expression was also repressed by melatonin during senescence. The plants also exhibited better preservation of their nitrogen, total soluble protein, and Rubisco protein concentrations than the control. The slower process of protein degradation might be a result of melatonin-linked inhibition on the expression of apple autophagy-related genes (ATGs). Our results are the first to provide evidence for this delay in senescence based on the metabolic alteration and protein degradation. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Oral Supplementation of Melatonin Protects against Fibromyalgia-Related Skeletal Muscle Alterations in Reserpine-Induced Myalgia Rats.

    PubMed

    Favero, Gaia; Trapletti, Valentina; Bonomini, Francesca; Stacchiotti, Alessandra; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita

    2017-06-29

    Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.

  14. Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin

    PubMed Central

    García-Santos, G; Martin, V; Rodríguez-Blanco, J; Herrera, F; Casado-Zapico, S; Sánchez-Sánchez, A M; Antolín, I; Rodríguez, C

    2012-01-01

    Background: Despite recent advances in cancer therapy, the 5-year survival rate for Ewing's sarcoma is still very low, and new therapeutic approaches are necessary. It was found previously that melatonin induces cell death in the Ewing's sarcoma cell line, SK-N-MC, by activating the extrinsic apoptotic pathway. Methods: Melatonin actions were analysed by metabolic viability/survival cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein activation/expression and electrophoretic mobility shift assay for transcription factor activation. Results: Melatonin increases the expression of Fas and its ligand Fas L, this increase being responsible for cell death induced by the indolamine. Melatonin also produces a transient increase in intracellular oxidants and activation of the redox-regulated transcription factor Nuclear factor-kappaB. Inhibition of such activation prevents cell death and Fas/Fas L upregulation. Cytotoxic effect and Fas/Fas L regulation occur in all Ewing's cell lines studied, and do not occur in the other tumour cell lines studied where melatonin does not induce cell death. Conclusion: Our data offers new insights in the study of alternative therapeutic strategies in the treatment of Ewing's sarcoma. Further attention deserves to be given to the differences in the cellular biology of sensitive tumours that could explain the cytotoxic effect of melatonin and the increase in the level of free radicals caused by this molecule, in particular cancer types. PMID:22382690

  15. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system.

    PubMed

    Navid, Shadan; Abbasi, Mehdi; Hoshino, Yumi

    2017-10-17

    Melatonin is a pleiotropic hormone with powerful antioxidant activity both in vivo and in vitro. The present study aimed to investigate the effects of melatonin on the proliferation efficiency of neonatal mouse spermatogonial stem cells (SSCs) using a three-dimensional soft agar culture system (SACS) which has the capacity to induce development of SSCs similar to in vivo conditions. SSCs were isolated from testes of neonate mice and their purities were assessed by flow cytometry using PLZF antibody. Isolated testicular cells were cultured in the upper layer of the SACS in αMEM medium in the absence or presence of melatonin extract for 4 weeks. The identity of colonies was confirmed by alkaline phosphatase staining and immunocytochemistry using PLZF and α6 integrin antibodies. The number and diameter of colonies of SSCs in the upper layer were evaluated at days 14 and 28 of culture. The number and diameter of colonies of SSCs were significantly higher in the melatonin group compared with the control group. The levels of expression of ID-4 and Plzf, unlike c-kit, were significantly higher in the melatonin group than in the control group. Results of the present study show that supplementation of the culture medium (SACS) with 100 μM melatonin significantly decreased reactive oxygen species (ROS) production in the treated group compared with the control group, and increased SSC proliferation.

  16. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    PubMed

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome.

    PubMed

    Corrales, Andrea; Vidal, Rebeca; García, Susana; Vidal, Verónica; Martínez, Paula; García, Eva; Flórez, Jesús; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2014-01-01

    The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt.

    PubMed

    Wei, Yunxie; Hu, Wei; Wang, Qiannan; Zeng, Hongqiu; Li, Xiaolin; Yan, Yu; Reiter, Russel J; He, Chaozu; Shi, Haitao

    2017-01-01

    As one popular fresh fruit, banana (Musa acuminata) is cultivated in the world's subtropical and tropical areas. In recent years, pathogen Fusarium oxysporum f. sp. cubense (Foc) has been widely and rapidly spread to banana cultivated areas, causing substantial yield loss. However, the molecular mechanism of banana response to Foc remains unclear, and functional identification of disease-related genes is also very limited. In this study, nine 90 kDa heat-shock proteins (HSP90s) were genomewide identified. Moreover, the expression profile of them in different organs, developmental stages, and in response to abiotic and fungal pathogen Foc were systematically analyzed. Notably, we found that the transcripts of 9 MaHSP90s were commonly regulated by melatonin (N-acetyl-5-methoxytryptamine) and Foc infection. Further studies showed that exogenous application of melatonin improved banana resistance to Fusarium wilt, but the effect was lost when cotreated with HSP90 inhibitor (geldanamycin, GDA). Moreover, melatonin and GDA had opposite effect on auxin level in response to Foc4, while melatonin and GDA cotreated plants had no significant effect, suggesting the involvement of MaHSP90s in the cross talk of melatonin and auxin in response to fungal infection. Taken together, this study demonstrated that MaHSP90s are essential for melatonin-mediated plant response to Fusarium wilt, which extends our understanding the putative roles of MaHSP90s as well as melatonin in the biological control of banana Fusarium wilt. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology.

    PubMed

    Lane, Jacqueline M; Chang, Anne-Marie; Bjonnes, Andrew C; Aeschbach, Daniel; Anderson, Clare; Cade, Brian E; Cain, Sean W; Czeisler, Charles A; Gharib, Sina A; Gooley, Joshua J; Gottlieb, Daniel J; Grant, Struan F A; Klerman, Elizabeth B; Lauderdale, Diane S; Lockley, Steven W; Munch, Miriam; Patel, Sanjay; Punjabi, Naresh M; Rajaratnam, Shanthakumar M W; Rueger, Melanie; St Hilaire, Melissa A; Santhi, Nayantara; Scheuermaier, Karin; Van Reen, Eliza; Zee, Phyllis C; Shea, Steven A; Duffy, Jeanne F; Buxton, Orfeu M; Redline, Susan; Scheer, Frank A J L; Saxena, Richa

    2016-06-01

    The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation. A common genetic variant in a receptor for the circadian-regulated hormone melatonin (MTNR1B) is associated with increased fasting blood glucose and risk of T2D, but whether sleep or circadian disruption mediates this risk is unknown. We aimed to test if MTNR1B diabetes risk variant rs10830963 associates with measures of sleep or circadian physiology in intensive in-laboratory protocols (n = 58-96) or cross-sectional studies with sleep quantity and quality and timing measures from self-report (n = 4,307-10,332), actigraphy (n = 1,513), or polysomnography (n = 3,021). In the in-laboratory studies, we found a significant association with a substantially longer duration of elevated melatonin levels (41 min) and delayed circadian phase of dim-light melatonin offset (1.37 h), partially mediated through delayed offset of melatonin synthesis. Furthermore, increased T2D risk in MTNR1B risk allele carriers was more pronounced in early risers versus late risers as determined by 7 days of actigraphy. Our results provide the surprising insight that the MTNR1B risk allele influences dynamics of melatonin secretion, generating a novel hypothesis that the MTNR1B risk allele may extend the duration of endogenous melatonin production later into the morning and that early waking may magnify the diabetes risk conferred by the risk allele. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset

    PubMed Central

    2012-01-01

    Background A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band “green” light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects’ closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Findings Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. Conclusions These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders. PMID:22564396

  1. Melatonin synthesis in the human ciliary body triggered by TRPV4 activation: Involvement of AANAT phosphorylation.

    PubMed

    Alkozi, Hanan Awad; Perez de Lara, María J; Pintor, Jesús

    2017-09-01

    Melatonin is a substance synthesized in the pineal gland as well as in other organs. This substance is involved in many ocular functions, giving its synthesis in numerous eye structures. Melatonin is synthesized from serotonin through two enzymes, the first limiting step into the synthesis of melatonin being aralkylamine N-acetyltransferase (AANAT). In this current study, AANAT phosphorylation after the activation of TRPV4 was studied using human non-pigmented epithelial ciliary body cells. Firstly, it was necessary to determine the adequate time and dose of the TRPV4 agonist GSK1016790A to reach the maximal phosphorylation of AANAT. An increase of 72% was observed after 5 min incubation with 10 nM GSK (**p < 0.05, n = 6) with a concomitant rise in N-acetyl serotonin and melatonin synthesis. The involvement of a TRPV4 channel in melatonin synthesis was verified by antagonist and siRNA studies as a previous step to studying intracellular signalling. Studies performed on the second messengers involved in GSK induced AANAT phosphorylation were carried out by inhibiting several pathways. In conclusion, the activation of calmodulin and calmodulin-dependent protein kinase II was confirmed, as shown by the cascade seen in AANAT phosphorylation (***p < 0.001, n = 4). This mechanism was also established by measuring N-acetyl serotonin and melatonin levels. In conclusion, the activation of a TRPV4 present in human ciliary body epithelial cells produced an increase in AANAT phosphorylation and a further melatonin increase by a mechanism in which Ca-calmodulin and the calmodulin-dependent protein kinase II are involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Corrales, Andrea; Parisotto, Eduardo B; Vidal, Verónica; García-Cerro, Susana; Lantigua, Sara; Diego, Marian; Wilhem Filho, Danilo; Sanchez-Barceló, Emilio J; Martínez-Cué, Carmen; Rueda, Noemí

    2017-09-15

    Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2012-05-07

    A previous study reported a method for measuring the spectral transmittance of individual human eyelids. A prototype light mask using narrow-band "green" light (λmax = 527 nm) was used to deliver light through closed eyelids in two within-subjects studies. The first study investigated whether an individual-specific light dose could suppress melatonin by 40% through the closed eyelid without disrupting sleep. The light doses were delivered at three times during the night: 1) beginning (while subjects were awake), 2) middle (during rapid eye movement (REM) sleep), and 3) end (during non-REM sleep). The second study investigated whether two individual-specific light doses expected to suppress melatonin by 30% and 60% and delivered through subjects' closed eyelids before the time of their predicted minimum core body temperature would phase delay the timing of their dim light melatonin onset (DLMO). Compared to a dark control night, light delivered through eyelids suppressed melatonin by 36% (p = 0.01) after 60-minute light exposure at the beginning, 45% (p = 0.01) at the middle, and 56% (p < 0.0001) at the end of the night. In the second study, compared to a dark control night, melatonin was suppressed by 25% (p = 0.03) and by 45% (p = 0.009) and circadian phase, as measured by DLMO, was delayed by 17 minutes (p = 0.03) and 71 minutes (ns) after 60-minute exposures to light levels 1 and 2, respectively. These studies demonstrate that individual-specific doses of light delivered through closed eyelids can suppress melatonin and phase shift DLMO and may be used to treat circadian sleep disorders.

  4. Protective role of melatonin in progesterone production by human luteal cells.

    PubMed

    Taketani, Toshiaki; Tamura, Hiroshi; Takasaki, Akihisa; Lee, Lifa; Kizuka, Fumie; Tamura, Isao; Taniguchi, Ken; Maekawa, Ryo; Asada, Hiromi; Shimamura, Katsunori; Reiter, Russel J; Sugino, Norihiro

    2011-09-01

    This study investigated whether melatonin protects luteinized granulosa cells from reactive oxygen species (ROS) as an antioxidant to enhance progesterone production in the follicle during ovulation. Follicular fluid was sampled at the time of oocyte retrieval in women undergoing in vitro fertilization and embryo transfer (IVF-ET). Melatonin concentrations in the follicular fluid were positively correlated with progesterone concentrations (r = 0.342, P < 0.05) and negatively correlated with the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative stress marker (r = -0.342, P < 0.05). The progesterone and 8-OHdG concentrations were negatively correlated (r = -0.246, P < 0.05). Luteinized granulosa cells were obtained at the time of oocyte retrieval in women undergoing IVF-ET. Cells were incubated with H(2)O(2) (30, 50, 100 μm) in the presence or absence of melatonin (1, 10, 100 μg/mL). Progesterone production by luteinized granulosa cells was significantly inhibited by H(2)O(2). Melatonin treatment overcame the inhibitory effect of H(2) O(2) . Twenty-five patients who had luteal phase defect (serum progesterone concentrations <10 ng/mL during the mid-luteal phase) were divided into two groups during the next treatment cycle: 14 women were given melatonin (3 mg/day at 22:00 hr) throughout the luteal phase and 11 women were given no medication as a control. Melatonin treatment improved serum progesterone concentrations (>10 ng/mL during the mid-luteal phase) in nine of 14 women (64.3%), whereas only two of 11 women (18.1%) showed normal serum progesterone levels in the control group. In conclusion, melatonin protects granulosa cells undergoing luteinization from ROS in the follicle and contributes to luteinization for progesterone production during ovulation. © 2011 John Wiley & Sons A/S.

  5. Melatonin and vitamin C attenuates alcohol-induced oxidative stress in aorta.

    PubMed

    Sönmez, Mehmet Fatih; Narin, Figen; Balcioğlu, Esra

    2009-12-01

    Epidemiological studies have shown that low to moderate doses of alcohol consumption are beneficial to cardiac health. However, chronic high doses of alcohol ingestion cause cardiovascular complications. The aim of this study was to investigate both the effects of melatonin and vitamin C and expression of endothelial nitric oxide synthase in aorta of chronic alcoholic rats. Twenty-four adult male Wistar rats weighing 200-250 g were used in the study. Rats were divided into four equal groups. Group I (control): rats were not fed on alcohol; Group II: rats were fed on alcohol; Group III: rats were fed on alcohol and 40 mg/kg vitamin C were injected intraperitoneally and Group IV: rats were fed on alcohol and 4 mg/kg melatonin were injected intraperitoneally. At the end of the experiment, rats were killed and aorta tissues were removed. Some parts of the aorta tissues were used for biochemical analyses and the other parts were used at histological procedures. In the control group, endothelial nitric oxide synthase immunoreactivity was (++) in smooth muscle cells and endothelial cells. Expression of endothelial nitric oxide synthase in the alcohol group was stronger than control group. Chronic ethanol ingestion significantly increased (p < 0.05); and melatonin significantly decreased both the plasma and tissue malondialdehyde levels. The superoxide dismutase levels and catalase activity did not change significantly in the Vitamin C and melatonin groups (p > 0.05) compared to the control and alcohol groups. The present results indicate that chronic alcohol consumption increase lipid peroxidation and cause endothelial nitric oxide synthase expression in the aorta. However, melatonin and vitamin C administration provide partial protection against alcohol-induced damage.

  6. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics

    PubMed Central

    Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Forsyth, Christopher; Fogg, Louis; Burgess, Helen J.; Keshavarzian, Ali

    2015-01-01

    Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = −0.39, P = 0.03; urinary sucralose, r = −0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia. PMID:25907689

  7. Propionibacterium acnes Augments Antitumor, Anti-Angiogenesis and Immunomodulatory Effects of Melatonin on Breast Cancer Implanted in Mice

    PubMed Central

    Talib, Wamidh H.; Saleh, Suhair

    2015-01-01

    Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy. PMID:25919398

  8. [Possible role of the pineal gland in the pathogenesis of idiopathic scoliosis. Experimental and clinical studies].

    PubMed

    Dubousset, J; Machida, M

    2001-01-01

    The unexpected finding in 1959 by Marie-Jeanne Thillard that pinealectomy in young chickens gives way to spinal deformities was confirmed by the authors. In another experiment they found that injected melatonine to the chick at adequate dose and at the same time as surgery, lessen or even totally prevents the occurrence of deformities. On the other hand, at too low dose or delayed after pinealectomy melatonine injection, may not prevent the deformity which will be persisting or even increasing. In a subsequent series of experiments on the rat, pinealectomy results in decreasing the plasmatic amount of melatonine as well as giving way to spinal deformities. The nature of these deformities observed here is dependent on the stature between of the animal. The normal quadrupede rat develops after pinealectomy a standard scoliosis. Inversely the scoliotic deformity occurs when the animal has been forced to a bipede condition, which may be achieved by removing its forelimbs when baby, then forcing it to stand and remain in erect posture by high enough feeding. Melatonine depressing and erect position are in two conditions, when associated, likely to give way to experimental scoliosis. In human, a low nycthemeral level of plasmatic melatonine is correlated with progressive scoliosis. The level of platelets calmoduline, when is normally modulated by melatonine, has been proved by Kindsfater to be increased in progressive scoliosis. Then raises the hypothesis that human idiopathic scoliosis may be due to an inherited disorder of neuro-transmitters from neuro-hormonal origin, associated with bipedal condition, where an horizontal localized neuro-muscular imbalance starts and produces the scoliotic deformity of the fibro-elastic and bony structures axial spinal pilar.

  9. The phase shift hypothesis for the circadian component of winter depression

    PubMed Central

    Lewy, Alfred J.; Rough, Jennifer N.; Songer, Jeannine B.; Mishra, Neelam; Yuhas, Krista; Emens, Jonathan S.

    2007-01-01

    The finding that bright light can suppress melatonin production led to the study of two situations, indeed, models, of light deprivation: totally blind people and winterdepressives. The leading hypothesis for winter depression (seasonal affective disorder, or SAD) is the phase shift hypothesis (PSH). The PSH was recently established in a study in which SAD patients were given low-dose melatonin in the afternoon/evening to cause phase advances, or in the morning to cause phase delays, or placebo. The prototypical phase-delayed patient as well as the smaller subgroup of phase-advanced patients, optimally responded to melatonin given at the correct time. Symptom severity improved as circadian misalignment was corrected. Orcadian misalignment is best measured as the time interval between the dim light melatonin onset (DLMO) and mid-sleep. Using the operational definition of the plasma DLMO as the interpolated time when melatonin levels continuously rise above the threshold of 10 pglmL, the average interval between DLMO and mid-sleep in healthy controls is 6 hours, which is associated with optimal mood in SAD patients. PMID:17969866

  10. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease.

    PubMed

    Nie, Lulin; Wei, Gang; Peng, Shengming; Qu, Zhongsen; Yang, Ying; Yang, Qian; Huang, Xinfeng; Liu, Jianjun; Zhuang, Zhixiong; Yang, Xifei

    2017-07-08

    Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  11. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night.

    PubMed

    Blask, David E; Hill, Steven M; Dauchy, Robert T; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A

    2011-10-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary, and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light at night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1) -induced activation of G(αi2) signaling and reduction of 3',5'-cyclic adenosine monophosphate (cAMP) levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT(1) -mediated suppression of cAMP leading to blockade of linoleic acid uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. © 2011 John Wiley & Sons A/S.

  12. Effects of melatonin and dexpanthenol on antioxidant parameters when combined with estrogen treatment in ovariectomized rats.

    PubMed

    Turgut, Ozan; Ay, Aybala Agac; Turgut, Hulya; Ay, Ahmet; Kafkas, Samet; Dost, Turhan

    2013-12-01

    The purpose of the study was to assess whether it is possible to reduce the oxidative damage using antioxidant agents combined with hormone replacement therapy after menopause. In this prospective experimental study, 50 mature female Wistar albino rats weighing 270-310 g were used. Rats were divided into the following six groups: (1) Ovx group (n = 7): the animals underwent bilateral ovariectomy. No drug was administered following bilateral ovariectomy. (2) Ovx + E 2 group (n = 7): bilateral ovariectomy + 17β-estradiol (100 μg/kg/day); (3) Ovx + E 2 + MT5 group (n = 7): bilateral ovariectomy + 17β-estradiol (100 μg/kg/day) + melatonin (5 mg/kg/day); (4) Ovx + E 2 + MT20 group (n = 7): bilateral ovariectomy + 17β-estradiol (100 μg/kg/day) + melatonin (20 mg/kg/day); (5) Ovx + E 2 + Dxp250 group (n = 7): bilateral ovariectomy + 17β-estradiol (100 μg/kg/day) + dexpanthenol (250 mg/kg/day); (6) Ovx + E 2 + Dxp500 group (n = 7): bilateral ovariectomy + 17β-estradiol (100 μg/kg/day) + dexpanthenol (500 mg/kg/day), and the activity of these antioxidative enzymes and oxidative stress products were measured. Enzymatic activity levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase(GSH-Px), and glutathione reductase and levels of free radicals (malondialdehyde (MDA) and nitric oxide) were both analyzed. We observed an increase in the level of GSH activity, but no significant differences in levels of CAT, SOD, and GSH-Px enzymatic activity and in levels of free radical MDA following 17β-estradiol or additional antioxidant treatment (melatonin or dexpanthenol). Despite the present study indicating that the addition of melatonin and dexpanthenol into the hormone replacement therapy regimen may contribute to the antioxidant effect of estrogen, the existence of limited data in this field indicates that further studies are warranted.

  13. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes.

    PubMed

    Papantoniou, Kyriaki; Pozo, Oscar J; Espinosa, Ana; Marcos, Josep; Castaño-Vinyals, Gemma; Basagaña, Xavier; Ribas, Ferran Calduch; Mirabent, Joan; Martín, Jordi; Carenys, Gemma; Martín, Celia Reyes; Middleton, Benita; Skene, Debra J; Kogevinas, Manolis

    2014-07-01

    Light-at-night has been shown in experimental studies to disrupt melatonin production but this has only partly been confirmed in studies of night shift workers. In this cross-sectional study, we examined the circadian variation of melatonin in relation to shift status, individual levels of light-at-night exposure, and diurnal preference, an attribute reflecting personal preference for activity in the morning or evening. One hundred and seventeen workers (75 night and 42 day) of both sexes, ages 22 to 64 years, were recruited from four companies. Participants collected urine samples from all voids over 24 hours and wore a data logger continuously recording their light exposure. Sociodemographic, occupational, lifestyle, and diurnal preference information were collected by interview. Concentrations of urinary 6-sulfatoxymelatonin (aMT6s), the main melatonin metabolite, were measured. Mean aMT6s levels were lower in night [10.9 ng/mg creatinine/hour; 95% confidence interval (CI), 9.5-12.6] compared with day workers (15.4; 95% CI, 12.3-19.3). The lowest aMT6s levels were observed in night workers with morning preference (6.4; 95% CI, 3.0-13.6). Peak time of aMT6s production occurred 3 hours later in night (08:42 hour, 95% CI, 07:48-09:42) compared with day workers (05:36 hour, 95% CI, 05:06-06:12). Phase delay was stronger among subjects with higher light-at-night exposure and number of nights worked. Night shift workers had lower levels and a delay in peak time of aMT6s production over a 24-hour period. Differences were modified by diurnal preference and intensity of light-at-night exposure. Night shift work affects levels and timing of melatonin production and both parameters may relate to future cancer risk. ©2014 American Association for Cancer Research.

  14. Quantitation of melatonin and n-acetylserotonin in human plasma by nanoflow LC-MS/MS and electrospray LC-MS/MS.

    PubMed

    Carter, Melissa D; Calcutt, M Wade; Malow, Beth A; Rose, Kristie L; Hachey, David L

    2012-03-01

    Melatonin (MEL) and its chemical precursor N-acetylserotonin (NAS) are believed to be potential biomarkers for sleep-related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC-MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100  mm, 3.5 µm) or on a polyimide-coated, fused-silica capillary self-packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7-1165  pg/mL, LC: 1165-116,500  pg/mL) and for NAS (nanoflow LC: 11.0-1095  pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.

  15. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    PubMed

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  16. Melatonin as a chemical indicator of environmental light-dark cycle.

    PubMed

    Zawilska, J B

    1996-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an evolutionary highly conserved molecule that plays an important role in conveying the clock and calendar information to all living organisms, including man. Melatonin is synthesized in the rhythmic fashion, primarily by the pineal gland, and, to a lesser degree, by extrapineal tissues-namely the retina, the Harderian gland, and the gastrointestinal tract. The rhythm of the hormone production, with maximal levels occurring at night in darkness, is generated by an endogenous circadian clock(s) and is synchronized with the photoperiodic environment to which animals are exposed. This brief outline surveys data on the regulation of rhythmic melatonin biosynthesis by a circadian pacemaker and light (full spectrum white light and monochromatic lights with wavelengths both in the visible and invisible range). Additionally, possible applications of this chronobiotic compound in agriculture and in medicine in the treatment of circadian rhythm sleep disorders are discussed.

  17. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus).

    PubMed

    Hutton, Lisa C; Abbass, Mahila; Dickinson, Hayley; Ireland, Zoe; Walker, David W

    2009-01-01

    Birth asphyxia is associated with disturbed development of the neonatal brain. In this study, we determined if low-dose melatonin (0.1 mg/kg/day), administered to the mother over 7 days at the end of pregnancy, could protect against the effects of birth asphyxia in a precocial species - the spiny mouse (Acomys cahirinus). At 37 days of gestation (term is 38-39 days), pups were subjected to birth asphyxia (7.5 min uterine ischemia) and compared to Cesarean section-delivered controls. At 24 h of age, birth asphyxia had increased markers of CNS inflammation (microglia, macrophage infiltration) and apoptosis (activated caspase-3, fractin) in cortical gray matter, which were reduced to control levels by prior maternal melatonin treatment. Melatonin may be an effective prophylactic agent for use in late pregnancy to protect against hypoxic-ischemic brain injury at birth. (c) 2009 S. Karger AG, Basel.

  18. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release.

    PubMed

    Suofu, Yalikun; Li, Wei; Jean-Alphonse, Frédéric G; Jia, Jiaoying; Khattar, Nicolas K; Li, Jiatong; Baranov, Sergei V; Leronni, Daniela; Mihalik, Amanda C; He, Yanqing; Cecon, Erika; Wehbi, Vanessa L; Kim, JinHo; Heath, Brianna E; Baranova, Oxana V; Wang, Xiaomin; Gable, Matthew J; Kretz, Eric S; Di Benedetto, Giulietta; Lezon, Timothy R; Ferrando, Lisa M; Larkin, Timothy M; Sullivan, Mara; Yablonska, Svitlana; Wang, Jingjing; Minnigh, M Beth; Guillaumet, Gérald; Suzenet, Franck; Richardson, R Mark; Poloyac, Samuel M; Stolz, Donna B; Jockers, Ralf; Witt-Enderby, Paula A; Carlisle, Diane L; Vilardaga, Jean-Pierre; Friedlander, Robert M

    2017-09-19

    G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT 1 ), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT 1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT 1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.

  19. Regression of endometrial explants in a rat model of endometriosis treated with melatonin.

    PubMed

    Güney, Mehmet; Oral, Baha; Karahan, Nermin; Mungan, Tamer

    2008-04-01

    To determine the antioxidant, antiinflammatory, and immunomodulatory effects of melatonin on endometrial explants, the distribution of cyclooxygenase-2 (COX-2), the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and levels of malondialdehyde (MDA) in the rat endometriosis model. Prospective, placebo-controlled experimental study. Experimental surgery laboratory in a university department. Twenty-five rats with experimentally induced endometriosis. Endometriosis was surgically induced in 25 rats by transplanting an autologous fragment of endometrial tissue onto the inner surface of the abdominal wall. Four weeks later, three rats were killed and the remaining 22 rats given second-look laparotomies to identify and measure ectopic uterine tissue in three dimensions. After the second laparotomy, 4 weeks of vehicle and melatonin treatment were administered, then all of the rats were given a third laparotomy and killed. The volume and weight of the implants were measured. The remaining rats were randomly divided into two groups. In control group (group 1; n = 11) no medication was given. To the rats in melatonin-treated group (group 2; n = 11), 10 mg/kg a day of melatonin was administered intraperitoneally. Four weeks later, after the second laparotomy, the endometrial explants were reevaluated morphologically, and COX-2 expression was evaluated immunohistochemically and histologically. In addition, endometrial explants were analyzed for the antioxidant enzymes SOD, CAT, and MDA, a marker of lipid peroxidation. A scoring system was used to evaluate expression of COX-2 and preservation of epithelia. The pretreatment and posttreatment volumes within the control group were 135.9 +/- 31.5 and 129.4 +/- 28.7, respectively. The mean explant volume was 141.4 +/- 34.4 within the melatonin group before the treatment and 42.9 +/- 14.0 after 4 weeks of treatment. There was a statistically significant difference in spherical volumes (129.4 +/- 28.7 versus 42.9 +/- 14.0 mm(3)) of explant weights (155.8 +/- 27.1 versus 49.6 +/- 19.5 mg) and COX-2 positivity (91% versus 18.1%) between groups after the third laparotomy. In the melatonin-treated group, the endometrial explant levels of MDA statistically significantly decreased and activities of SOD and CAT significantly increased when compared with the control group. The epithelia showed statistically significantly better preservation in the control group when compared with the melatonin-treated group (2.54 +/- 0.52 versus 0.63 +/- 0.50). Melatonin causes regression and atrophy of the endometriotic lesions in rats.

  20. Effects of Exogenous Melatonin and Tryptophan on Fecal Shedding of E. Coli O157:H7 in Cattle

    USDA-ARS?s Scientific Manuscript database

    Fecal prevalence of Escherichia coli O157 in ruminants is highest in the summer decreasing to very low levels in the winter. We hypothesize that this seasonal variation is a result of physiological responses within the host animal to changing day-length. To determine the effects of melatonin (MEL) o...

  1. Melatonin concentrations in the sudden infant death syndrome

    NASA Technical Reports Server (NTRS)

    Sturner, W. Q.; Lynch, H. J.; Deng, M. H.; Gleason, R. E.; Wurtman, R. J.

    1990-01-01

    To examine a possible relationship between pineal function and the sudden infant death syndrome (SIDS), samples of whole blood, ventricular cerebrospinal fluid (CSF) and/or vitreous humor (VH) were obtained at autopsy from 68 infants (45 male, 23 female) whose deaths were attributed to either SIDS (n = 32, 0.5-5.0 months of age; mean plus or minus S.E.M., 2.6 plus or minus 0.2 months) or other causes (non-SIDS, n = 36, 0.3-8.0 months of age 4.3 plus or minus 0.3 months). The melatonin concentrations were measured by radioimmunoassay. A significant correlation was observed for melatonin levels in different body fluids from the same individual. After adjusting for age differences, CSF melatonin levels were significantly lower among the SIDS infants (91 plus or minus 29 pmol/l; n = 32) than among those dying from other causes (180 plus or minus 27; n = 35, P less than 0.05). A similar, but non-significant trend was also noted in blood (97 plus or minus 23, n = 30 vs. 144 plus or minus 22 pmol/l, n = 33) and vitreous humor (68 plus or minus 21, n = 10 vs. 81 plus or minus 17 pmol/l, n = 15). These differences do not appear to be explainable in terms of the interval between death and autopsy, gender, premortem infection, or therapeutic measures instituted prior to death. Diminished melatonin production may be characteristic of SIDS and could represent an impairment in the maturation of physiologic circadian organization.

  2. Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard

    2007-08-01

    Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.

  3. The melatonin action on stromal stem cells within pericryptal area in colon cancer model under constant light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannen, Vinicius, E-mail: kannen71@yahoo.com.br; Marini, Tassiana; Zanette, Dalila L.

    Research highlights: {yields} We investigated melatonin against the malignant effects of constant light. {yields} Melatonin supplementation increased its serum levels and its receptor expression. {yields} Melatonin decreased cancer stem cells and dysplastic injuries in colon tissue. {yields} Melatonin controlled proliferative process and apoptosis induction. -- Abstract: Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed andmore » MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL.« less

  4. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices.

    PubMed

    Rebai, Redouane; Jasmin, Luc; Boudah, Abdennacer

    2017-09-01

    In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no effect. These results suggest that antidepressants and antioxidants can counter the mood and oxidative disorders associated with diabetes. While these effects could result from a decreased production of reactive oxygen species (ROS) remains to be established. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats.

    PubMed

    Tök, Levent; Nazıroğlu, Mustafa; Doğan, Salih; Kahya, Mehmet Cemal; Tök, Ozlem

    2014-01-01

    Melatonin has been considered a potent antioxidant that detoxifies a variety of reactive oxygen species in many pathophysiological states of eye. The present study was designed to determine the effects of Wi-Fi exposure on the lens oxidant, antioxidant redox systems, as well as the possible protective effects of melatonin on the lens injury induced by electromagnetic radiation (EMR). Thirty-two rats were used in the current study and they were randomly divided into four equal groups as follows: First and second groups were cage-control and sham-control rats. Rats in third group were exposed to Wi-Fi (2.45 GHz) for duration of 60 min/day for 30 days. As in the third group, the fourth group was treated with melatonin. The one-hour exposure to irradiation in second, third and fourth took place at noon each day. Lipid peroxidation levels in the lens were slightly higher in third (Wi-Fi) group than in cage and sham control groups although their concentrations were significantly (P < 0.05) decreased by melatonin supplementation. Glutathione peroxidase (GSH-Px) activity was significantly (P < 0.05) lower in Wi-Fi group than in cage and sham control groups although GSH-Px (P < 0.01) and reduced glutathione (P < 0.05) values were significantly higher in Wi-Fi + melatonin group than in Wi-Fi group. There are poor oxidative toxic effects of one hour of Wi-Fi exposure on the lens in the animals. However, melatonin supplementation in the lens seems to have protective effects on the oxidant system by modulation of GSH-Px activity.

  6. Progressive decrease of melatonin production over consecutive days of simulated night work.

    PubMed

    Dumont, Marie; Paquet, Jean

    2014-12-01

    Decreased melatonin production, due to nighttime exposure to light, has been proposed as one of the physiological mechanisms increasing cancer risk in night workers. However, few studies measured melatonin production in night workers, and most of these studies did not measure melatonin over 24 h. One study compared total melatonin production between day and night shifts in rotating night workers and did not find significant differences. However, without baseline measures, it was not possible to exclude that melatonin production was reduced during both day and night work. Here, we used data collected in a simulation study of night work to determine the effect of night work on both nighttime and 24-h melatonin production, during three consecutive days of simulated night work. Thirty-eight healthy subjects (15 men, 23 women; 26.6 ± 4.2 years) participated in a 6-d laboratory study. Circadian phase assessments were made with salivary dim light melatonin onset (DLMO) on the first and last days. Simulated day work (09:00-17:00 h) occurred on the second day, followed by three consecutive days of simulated night work (00:00-08:00 h). Light intensity at eye level was set at 50 lux during both simulated day and night work. The subjects were divided into three matched groups exposed to specific daytime light profiles that produced various degrees of circadian phase delays and phase advances. Melatonin production was estimated with the excretion of urinary 6-sulfatoxymelatonin (aMT6s). For the entire protocol, urine was collected every 2 h, except for the sleep episodes when the interval was 8 h. The aMT6s concentration in each sample was multiplied by the urine volume and then added to obtain total aMT6s excretion during nighttime (00:00-08:00 h) and during each 24-h day (00:00-00:00 h). The results showed that melatonin production progressively decreased over consecutive days of simulated night work, both during nighttime and over the 24 h. This decrease was larger in women using oral contraceptives. There was no difference between the three groups, and the magnitude of the decrease in melatonin production for nighttime and for the 24 h was not associated with the magnitude of the absolute circadian phase shift. As light intensity was relatively low and because the decrease in melatonin production was progressive, direct suppression by nighttime light exposure was probably not a significant factor. However, according to previous experimental observations, the decrease in melatonin production most likely reflects the circadian disruption associated with the process of re-entrainment. It remains to be determined whether reduced melatonin production can be harmful by itself, but long-term and repeated circadian disruption most probably is.

  7. Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

    PubMed

    Xie, Wensheng; Gao, Qin; Wang, Dan; Wang, Wei; Yuan, Jie; Guo, Zhenhu; Yan, Hao; Wang, Xiumei; Sun, Xiaodan; Zhao, Lingyun

    2017-01-01

    With the wide recognition of oncostatic effect of melatonin, the current study proposes a potential breast cancer target multimodality treatment based on melatonin-loaded magnetic nanocomposite particles (Melatonin-MNPs). Melatonin-MNPs were fabricated by the single emulsion solvent extraction/evaporation method. Based on the facilitated transport of melatonin by the GLUT overexpressed on the cell membrane, such Melatonin-MNPs can be more favorably uptaken by MCF-7 cells compared with the melatonin-free nanocomposite particles, which indicates the cancer targeting ability of melatonin molecule. Inductive heating can be generated by exposure to the Melatonin-MNPs internalized within cancer cells under alternative magnetic field, so as to achieve the "inside-out" magnetic nano-thermotherapy. In addition to demonstrating the superior cytotoxic effect of such nano-thermotherapy over the conventional exogenous heating by metal bath, more importantly, the sustainable release of melatonin from the Melatonin-MNPs can be greatly promoted upon responsive to the magnetic heating. The multimodality treatment based on Melatonin-MNPs can lead to more significant decrease in cell viability than any single treatment, suggesting the potentiated effect of melatonin on the cytotoxic response to nano-thermotherapy. This study is the first to fabricate the precisely engineered melatonin-loaded multifunctional nanocomposite particles and demonstrate the potential in breast cancer target multimodality treatment.

  8. Seasonal Patterns of Melatonin, Cortisol, and Progesterone Secretion in Female Lambs Raised Beneath a 500-kV Transmission Line.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jack M.

    Although several kinds of biological effects of electric and magnetic fields have been reported from laboratory studies, few have been independently replicated. When this study was being planned, the suppression of nighttime melatonin in rodents was thought to represent one of the strongest known effects of these fields. The effect had been replicated by a single laboratory for 60-Hz electric fields, and by multiple laboratories for d-c magnetic fields. The primary objective of this study was to determine whether the effect of electric and magnetic fields on melatonin would also occur in sheep exposed to a high voltage transmission line.more » The specific hypothesis tested by this experiment was as follows: The electrical environment produced by a 60-Hz, 500-kV transmission line causes a depression in nocturnal melatonin in chronically exposed female lambs. This may mimic effects of pinealectomy or constant long-day photoperiods, thus delaying the onset of reproductive cycles. Results of the study do not provide evidence to support the hypothesis. Melatonin concentrations in the sheep exposed to the transmission line showed the normal pattern of low daytime and high nighttime serum levels. As compared to the control group, there were no statistically significant group differences in the mean amplitude, phase, or duration of the nighttime melatonin elevation.« less

  9. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function.

    PubMed

    Kwon, K J; Lee, E J; Kim, M K; Jeon, S J; Choi, Y Y; Shin, C Y; Han, S-H

    2015-08-20

    While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. Our experimental results revealed that sleep-deprived animals exhibited spatial memory impairment in the Morris water maze tasks compared with the control groups. Furthermore, there was an increased glial activation most prominent in the hippocampal region of the SD group compared to the normal control (NC) group. Additionally, markers of oxidative stress such as 4-hydroxynonenal (4-HNE) and 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG) were significantly increased, while fragile X-mental retardation protein (FMRP) expression was decreased in the SD group. Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Melatonin prevents hypochlorous acid-mediated cyanocobalamin destruction and cyanogen chloride generation.

    PubMed

    Jeelani, Roohi; Maitra, Dhiman; Chatzicharalampous, Charalampos; Najeemuddin, Syed; Morris, Robert T; Abu-Soud, Husam M

    2018-04-01

    Hypochlorous acid (HOCl) is a potent cytotoxic oxidant generated by the enzyme myeloperoxidase (MPO) in the presence of hydrogen peroxide (H 2 O 2 ) and chloride (Cl - ). Elevated levels of HOCl play an important role in various pathological conditions through oxidative modification of several biomolecules. Recently, we have highlighted the ability of HOCl to mediate the destruction of the metal-ion derivatives of tetrapyrrole macrocyclic rings such as hemoproteins and vitamin B 12 (VB 12 ) derivatives. Destruction of cyanocobalamin, a common pharmacological form of VB 12 mediated by HOCl, results in the generation of toxic molecular products such as chlorinated derivatives, corrin ring cleavage products, the toxic blood agents cyanide (CN - ) and cyanogen chloride (CNCl), and redox-active free cobalt. Here, we show that melatonin prevents HOCl-mediated cyanocobalamin destruction, using a combination of UV-Vis spectrophotometry, high-performance liquid chromatography analysis, and colorimetric CNCl assay. Identification of several melatonin oxidation products suggests that the protective role of melatonin against HOCl-mediated cyanocobalamin destruction and subsequent CNCl generation is at the expense of melatonin oxidation. Collectively, this work highlights that, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also prevent VB 12 deficiency in inflammatory conditions such as cardiovascular and neurodegenerative diseases, among many others. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Circadian rhythm and menopause.

    PubMed

    Pines, A

    2016-12-01

    Circadian rhythm is an internal biological clock which initiates and monitors various physiological processes with a fixed time-related schedule. The master circadian pacemaker is located in the suprachiasmatic nucleus in the hypothalamus. The circadian clock undergoes significant changes throughout the life span, at both the physiological and molecular levels. This cyclical physiological process, which is very complex and multifactorial, may be associated with metabolic alterations, atherosclerosis, impaired cognition, mood disturbances and even development of cancer. Sex differences do exist, and the well-known sleep disturbances associated with menopause are a good example. Circadian rhythm was detected in the daily pattern of hot flushes, with a peak in the afternoons. Endogenous secretion of melatonin decreases with aging across genders, and, among women, menopause is associated with a significant reduction of melatonin levels, affecting sleep. Although it might seem that hot flushes and melatonin secretion are likely related, there are not enough data to support such a hypothesis.

  12. Shift work and quality of sleep: effect of working in designed dynamic light.

    PubMed

    Jensen, Hanne Irene; Markvart, Jakob; Holst, René; Thomsen, Tina Damgaard; Larsen, Jette West; Eg, Dorthe Maria; Nielsen, Lisa Seest

    2016-01-01

    To examine the effect of designed dynamic light on staff's quality of sleep with regard to sleep efficiency, level of melatonin in saliva, and subjective perceptions of quality of sleep. An intervention group working in designed dynamic light was compared with a control group working in ordinary institutional light at two comparable intensive care units (ICUs). The study included examining (1) melatonin profiles obtained from saliva samples, (2) quality of sleep in terms of sleep efficiency, number of awakenings and subjective assessment of sleep through the use of sleep monitors and sleep diaries, and (3) subjective perceptions of well-being, health, and sleep quality using a questionnaire. Light conditions were measured at both locations. A total of 113 nurses (88 %) participated. There were no significant differences between the two groups regarding personal characteristics, and no significant differences in total sleep efficiency or melatonin level were found. The intervention group felt more rested (OR 2.03, p = 0.003) and assessed their condition on awakening as better than the control group (OR 2.35, p = 0.001). Intervention-ICU nurses received far more light both during day and evening shifts compared to the control-ICU. The study found no significant differences in monitored sleep efficiency and melatonin level. Nurses from the intervention-ICU subjectively assessed their sleep as more effective than participants from the control-ICU.

  13. Melatonin receptors in a pleuronectiform species, Solea senegalensis: Cloning, tissue expression, day-night and seasonal variations.

    PubMed

    Confente, Francesca; Rendón, María Carmen; Besseau, Laurence; Falcón, Jack; Muñoz-Cueto, José A

    2010-06-01

    Melatonin receptors are expressed in neural and peripheral tissues and mediate melatonin actions on the synchronization of circadian and circannual rhythms. In this study we have cloned three melatonin receptor subtypes (MT1, MT2 and Mel1c) in the Senegalese sole and analyzed their central and peripheral tissue distribution. The full-length MT1 (1452 nt), MT2 (1728 nt) and Mel1c (1980 nt) cDNAs encode different proteins of 345, 373, 355 amino acids, respectively. They were mainly expressed in retina, brain and pituitary, but MT1 was also expressed in gill, liver, intestine, kidney, spleen, heart and skin. At peripheral level, MT2 expression was only evident in gill, kidney and skin whereas Mel1c expression was restricted to the muscle and skin. This pattern of expression was not markedly different between sexes or among the times of day analyzed. The real-time quantitative PCR analyses showed that MT1 displayed higher expression at night than during the day in the retina and optic tectum. Seasonal MT1 expression was characterized by higher mRNA levels in spring and autumn equinoxes for the retina, and in winter and summer solstices for the optic tectum. An almost similar expression profile was found for MT2, but differences were less conspicuous. No day-night differences in MT1 and MT2 expression were observed in the pituitary but a seasonal variation was detected, being mRNA levels higher in summer for both receptors. Mel1c expression did not exhibit significant day-night variation in retina and optic tectum but showed seasonal variations, with higher transcript levels in summer (optic tectum) and autumn (retina). Our results suggest that day-night and seasonal variations in melatonin receptor expression could also be mediating circadian and circannual rhythms in sole. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Update on melatonin receptors: IUPHAR Review 20.

    PubMed

    Jockers, Ralf; Delagrange, Philippe; Dubocovich, Margarita L; Markus, Regina P; Renault, Nicolas; Tosini, Gianluca; Cecon, Erika; Zlotos, Darius P

    2016-09-01

    Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed. © 2016 The British Pharmacological Society.

  15. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    PubMed Central

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  16. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    PubMed

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  17. Seasonal Patterns of Melatonin, Cortisol, and Progesterone Secretion in Female Lambs Raised Beneath a 500-KV Transmission Line

    NASA Astrophysics Data System (ADS)

    Lee, Jack Monroe, Jr.

    There is ongoing controversy about the possibility of adverse biological effects from environmental exposures to electric and magnetic fields. These fields are produced by all electrical equipment and appliances including electrical transmission lines. The objective of this environmental science study was to investigate the possible effects of a high voltage transmission line on domestic sheep (Ovis aries L.), a species that can often be found near such lines. The study was primarily designed to determine whether a specific effect of electric and magnetic fields found in laboratory animals also occurs in livestock under natural environmental conditions. The effect is the ability of fields, at levels found in the environment, to significantly depress the normally high nocturnal concentrations of the pineal hormone-melatonin. Ten female Suffolk lambs were penned for 10 months directly beneath a 500-kV transmission line near Estacada, Oregon. Ten other lambs of the same type were penned in a control area away from the transmission line where electric and magnetic fields were at ambient levels. Serum melatonin was analyzed by radioimmunoassay (RIA) from 6618 blood samples collected at 0.5 to 3-hour intervals over eight 48-hour periods. Serum progesterone was analyzed by RIA from blood samples collected twice weekly. Serum cortisol was also assayed by RIA from the blood samples collected during the 48-hour samples. Results showed that lambs in both the control and line groups had the typical pattern of melatonin secretion consisting of low daytime and high nighttime serum concentrations. There were no statistically significant differences between groups in melatonin levels, or in the phase or duration of the nighttime melatonin elevation. Age at puberty and number of reproductive cycles also did not differ between groups. Serum cortisol showed a circadian rhythm with highest concentrations during the day. There were, however, no differences in cortisol concentrations between groups. Statistical analyses on other biological parameters revealed no differences between groups for body weight gain, wool growth, or behavior.

  18. Effects and mechanisms of melatonin on the proliferation and neural differentiation of PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yumei; Zhang, Ziqiang; Lv, Qiongxia

    Melatonin, a lipophilic molecule that is mainly synthesized in the pineal gland, performs various neuroprotective functions. However, the detailed role and mechanisms of promoting neuronal differentiation remains limited. This study demonstrated that 10 μM melatonin led to significant increases in the proliferation and neurite outgrowth of PC12 cells. Increased expression of microtubule-associated protein 2 (MAP2, a neuron-specific protein) was also observed. However, luzindole (melatonin receptor antagonist) and PD98059 (MEK inhibitor) attenuated these increases. LY294002 (AKT inhibitor) inhibited melatonin-mediated proliferation in PC12 cells and did not affect melatonin-induced neural differentiation. The expression of p-ERK1/2/ERK1/2 was increased by melatonin treatment for 14 days in PC12 cells,more » whereas luzindole or PD98059 reduced the melatonin-induced increase. These results suggest that the activation of both the MEK/ERK and PI3K/AKT signaling pathways could potentially contribute to melatonin-mediated proliferation, but that only the MEK/ERK pathway participates in the melatonin-induced neural differentiation of PC12 cells. Altogether, our study demonstrates for the first time that melatonin may exert a positive effect on neural differentiation via melatonin receptor signalling and that the MEK/ERK1/2 signalling may act down stream from the melatonin pathway. - Highlights: • Melatonin improves the proliferation of PC12 cells. • Melatonin induces neural differentiation of PC12 cells. • Melatonin-mediated proliferation in PC12 cells relies on the ERK and AKT pathways. • Activation of ERK is essential for melatonin-induced neural differentiation of PC12.« less

  19. Effects of exogenous melatonin on in vivo embryo viability and oocyte competence of undernourished ewes after weaning during the seasonal anestrus.

    PubMed

    Vázquez, M I; Abecia, J A; Forcada, F; Casao, A

    2010-09-01

    This study investigated the effects of exogenous melatonin on embryo viability and oocyte competence in post-partum undernourished ewes during the seasonal anestrus. At parturition (mid-Feb), 36 adult Rasa Aragonesa ewes were assigned to one of two groups: treated (+MEL) or not treated (-MEL) with a subcutaneous implant of melatonin (Melovine(R), CEVA) on the day of lambing. After 45 d of suckling, lambs were weaned, ewes were synchronized using intravaginal pessaries, and fed to provide 1.5x (Control, C) or 0.5x (Low, L) times daily maintenance requirements. Thus, ewes were divided into four groups: C-MEL, C+MEL, L-MEL, and L+MEL. At estrus (Day=0), ewes were mated. At Day 5 after estrus, embryos were recovered by mid-ventral laparotomy and classified based on their developmental stage and morphology. After embryo collection, ovaries were recovered and oocytes were classified and selected for use in in vitro fertilization (IVF). Neither diet nor melatonin treatment had a significant effect on ovulation rate and on the number of ova recovered per ewe. Melatonin treatment significantly improved the number of fertilized embryos/corpus luteum (CL) (-MEL: 0.35 +/- 0.1, +MEL: 0.62 +/- 0.1; P = 0.08), number of viable embryos/CL (-MEL: 0.23 +/- 0.1, +MEL: 0.62 +/- 0.1; P < 0.01), viability rate (-MEL: 46.6%, +MEL: 83.9%; P < 0.05), and pregnancy rate (-MEL: 26.3%, +MEL: 76.5%; P < 0.05). In particular, exogenous melatonin improved embryo viability in undernourished ewes (L-MEL: 40%, L+MEL: 100%, P < 0.01). Neither nutrition nor exogenous melatonin treatments significantly influenced the competence of oocytes during IVF. Treatment groups did not differ significantly in the number of healthy oocytes used for IVF, number of cleaved embryos, or number of blastocysts and, consequently, the groups had similar cleavage and blastocyst rates. In conclusion, melatonin treatments improved ovine embryo viability during anestrus, particularly in undernourished post-partum ewes, although the effects of melatonin did not appear to be mediated at the oocyte competence level. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland

    PubMed Central

    Torres-Farfan, Claudia; Valenzuela, Francisco J; Mondaca, Mauricio; Valenzuela, Guillermo J; Krause, Bernardo; Herrera, Emilio A; Riquelme, Raquel; Llanos, Anibal J; Seron-Ferre, Maria

    2008-01-01

    Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (Kd values: MCA 64 ± 1 pm, BAT 98.44 ± 2.12 pm and adrenal 4.123 ± 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life. PMID:18599539

  1. Plasma melatonin circadian rhythms during the menstrual cycle and after light therapy in premenstrual dysphoric disorder and normal control subjects.

    PubMed

    Parry, B L; Berga, S L; Mostofi, N; Klauber, M R; Resnick, A

    1997-02-01

    The aim of this study was to replicate and extend previous work in which the authors observed lower, shorter, and advanced nocturnal melatonin secretion patterns in premenstrually depressed patients compared to those in healthy control women. The authors also sought to test the hypothesis that the therapeutic effect of bright light in patients was associated with corrective effects on the phase, duration, and amplitude of melatonin rhythms. In 21 subjects with premenstrual dysphoric disorder (PMDD) and 11 normal control (NC) subjects, the authors measured the circadian profile of melatonin during follicular and luteal menstrual cycle phases and after 1 week of light therapy administered daily, in a randomized crossover design. During three separate luteal phases, the treatments were either (1) bright (> 2,500 lux) white morning (AM; 06:30 to 08:30 h), (2) bright white evening (PM; 19:00 to 21:00 h), or (3) dim (< 10 lux) red evening light (RED). In PMDD subjects, during the luteal phase compared to the follicular menstrual cycle phase, melatonin onset time was delayed, duration was compressed, and area under the curve, amplitude, and mean levels were decreased. In NC subjects, melatonin rhythms did not change significantly during the menstrual cycle. After AM light in PMDD subjects, onset and offset times were advanced and both duration and midpoint concentration were decreased as compared to RED light. After PM light in PMDD subjects, onset and offset times were delayed, midpoint concentration was increased, and duration was decreased as compared to RED light. By contrast, after light therapy in NC subjects, duration did not change; onset, offset, and midpoint concentration changed as they did in PMDD subjects. When the magnitude of advance and delay phase shifts in onset versus offset time with AM, PM, or RED light were compared, the authors found that in PMDD subjects light shifted offset time more than onset time and that AM light had a greater effect on shifting melatonin offset time (measured the following night in RED light), whereas PM light had a greater effect in shifting melatonin onset time. These findings replicate the authors' previous observation that nocturnal melatonin concentrations are decreased in women with PMDD and suggest specific effects of light therapy on melatonin circadian rhythms that are associated with mood changes in patient versus control groups. The differential changes in onset and offset times during the menstrual cycle, and in response to AM and PM bright light compared with RED light, support a two-oscillator (complex) model of melatonin regulation in humans.

  2. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

    PubMed

    Alagbonsi, Isiaka A; Olayaki, Luqman A; Salman, Toyin M

    2016-05-01

    The mechanisms involved in the spermatotoxic effect of Cannabis sativa are inconclusive. The involvement of oxidative stress in male factor infertility has been well documented, and the antioxidative potential of melatonin and vitamin C in many oxidative stress conditions has been well reported. This study sought to investigate whether melatonin and vitamin C will ameliorate C. sativa-induced spermatotoxicity or not. Fifty-five (55) male albino rats (250-300 g) were randomly divided in a blinded fashion into five oral treatment groups as follows: group I (control, n=5) received 1 mL/kg of 10% ethanol for 30 days; groups IIa, IIb, and IIc (n=5 each) received 2 mg/kg C. sativa for 20, 30, and 40 days, respectively; groups IIIa, IIIb, and IIIc (n=5 each) received a combination of 2 mg/kg C. sativa and 4 mg/kg melatonin for 20, 30, and 40 days, respectively; groups IVa, IVb, and IVc (n=5 each) received a combination of 2 mg/kg C. sativa and 1.25 g/kg vitamin C for 20, 30, and 40 days, respectively; group V (n=5) received a combination of 2 mg/kg C. sativa, 4 mg/kg melatonin, and 1.25 g/kg vitamin C for 30 days. Cannabis treatments reduced the Johnsen score, sperm count, motility, morphology, paired testicular/body weight ratio, and total antioxidant capacity, but increased lactate dehydrogenase activity. In addition, supplementation of cannabis-treated rats with either melatonin or vitamin C exacerbates the effect of cannabis on those parameters, whereas combination of melatonin and vitamin C reversed the trend to the level comparable to control. This study further showed the gonadotoxic effect of C. sativa, which could be mediated by oxidative stress. It also showed that melatonin and vitamin C exacerbate C. sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

  3. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, B.; Sutherland, B.; Bennett, P. V.

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF)more » followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.« less

  4. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins.

    PubMed

    Atanasova, Milena; Petkova, Zlatina; Pechlivanova, Daniela; Dragomirova, Petya; Blazhev, Alexander; Tchekalarova, Jana

    2013-10-01

    Oxidative stress is implicated in the pathogenesis of both hypertension and epileptogenesis, therefore it could be used as a tool for studying co-morbidity of hypertension and epilepsy. Clinical data suggest that melatonin is a potent antioxidant that is effective in the adjunctive therapy of hypertension and neurodegenerative diseases. The present study aimed to explore and compare the efficacy of chronic pretreatment with melatonin infused via subcutaneous osmotic mini-pumps for 14 days (10 mg/kg per day) on kainic acid (KA)-induced status epilepticus, oxidative stress and expression of heat shock protein (HSP) 72 in spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. SHRs showed higher lipid peroxidation (LP) in the frontal cortex and hippocampus and decreased cytosolic superoxide dismutase (SOD/CuZn) production in the frontal cortex compared to Wistar rats. Status epilepticus (SE) induced by KA (12 mg/kg, i.p.) was accompanied by increased LP and expression of HSP 72 in the hippocampus of the two strains and increased SOD/CuZn production in the frontal cortex of SHRs. Melatonin failed to suppress seizure incidence and intensity though the latency for seizure onset was significantly increased in SHRs. Melatonin attenuated the KA-induced increase in the level of LP in the hippocampus both in SHRs and Wistar rats. However, an increased activity in SOD/CuZn and mitochondrial SOD Mn as well as reduced expression of HSP 72 in the hippocampus was observed only in Wistar rats pretreated with melatonin. Taken together, the observed strain differences in the efficacy of chronic melatonin exposure before SE suggest a lack of a direct link between the seizure activity and the markers of oxidative stress and neurotoxicity. © 2013.

  6. Changes in crevicular cytokines after application of melatonin in patients with periodontal disease

    PubMed Central

    Montero, Javier; López-Valverde, Nansi; Ferrera, María-José

    2017-01-01

    Background A clinical trial was designed to evaluate the effects of topical application of melatonin on the crevicular fluid levels of interleukins and prostaglandins and to evaluate changes in clinical parameters. Material and Methods A consecutive sample of 90 patients were recruited from the Health Centre of Pinos Puente in Granada, Spain and divided into 3 groups: 30 patients with diabetes and periodontal disease, who were given melatonin; 30 patients with diabetes and periodontal disease, who were given a placebo, and 30 healthy individuals with no history of systemic disease or clinical signs of periodontal disease, who were also given a placebo. The 30 patients with diabetes and periodontitis were treated with topical application of melatonin (1% orabase cream formula) for 20 days by. The rest of the patients with diabetes and periodontitis and healthy subjects were treated with a placebo of orabase cream. We measured the gingival index by exploring the percentage of standing teeth bleeding on probing. The periodontogram was performed with a Florida Probe. Results In the diabetic patients who were given topical melatonin, there was a statistically significant decrease in the two clinical parameters. By contrast, in diabetic patients who were given the topical placebo, there was no statistically significant variation. Conclusions In patients with diabetes and periodontal disease, treatment with topical melatonin was associated with a significant improvement in the gingival index and in pocket depth, and a statistically significant reduction in concentrations of interleukin-1β, interleukin-6 and prostaglandin E2 in gingival crevicular fluid. Key words:Melatonin, periodontal disease, diabetes mellitus, interleukin-1β, interleukin-6, prostaglandin E2. PMID:29075409

  7. Evaluating The Effect of Melatonin on HAS2, and PGR expression, as well as Cumulus Expansion, and Fertility Potential in Mice.

    PubMed

    Ezzati, Maryam; Roshangar, Leila; Soleimani Rad, Jafar; Karimian, Nahid

    2018-04-01

    Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 μM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR. Copyright© by Royan Institute. All rights reserved.

  8. Exogenous daytime melatonin modulates response of adolescent mice in a repeated unpredictable stress paradigm.

    PubMed

    Onaolapo, Adejoke Yetunde; Adebayo, Ajibola Nurudeen; Onaolapo, Olakunle James

    2017-02-01

    The immediate and short-term behavioural and physiological implications of exposure to stressful scenarios in the adolescent period are largely unknown; however, increases in occurrence of stress-related physiological and psychological disorders during puberty highlight the need to study substances that may modulate stress reactivity during a crucial stage of maturation. Seven groups of mice (12-15 g each) were administered distilled water (DW) (non-stressed and stressed controls), sertraline (10 mg/kg), diazepam (2 mg/kg) or one of three doses of melatonin (5, 10 and 15 mg/kg). Mice were exposed to 30 min of chronic mild stress (25 min of cage shaking, cage tilting, handling and 5 min of forced swimming in tepid warm water at 25 °C, in a random order) after administration of DW or drugs, daily for 21 days. Behavioural assessments were conducted on day 1 and day 21 (after which mice were sacrificed, blood taken for estimation of corticosterone levels and brain homogenates used for estimation of antioxidant activities). Administration of melatonin resulted in an increase in horizontal locomotion and self-grooming, while rearing showed a time-dependent increase, compared to non-stress and stress controls. Working memory improved with increasing doses of melatonin (compared to controls and diazepam); in comparison to setraline however, working memory decreased. A dose-related anxiolytic effect is seen when melatonin is compared to non-stressed and stressed controls. Melatonin administration reduced the systemic/oxidant response to repeated stress. Administration of melatonin in repeatedly stressed adolescent mice was associated with improved central excitation, enhancement of working memory, anxiolysis and reduced systemic response to stress.

  9. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  10. Melatonin prevents secondary intra-abdominal hypertension in rats possibly through inhibition of the p38 MAPK pathway.

    PubMed

    Chang, Mingtao; Li, Yang; Liu, Dong; Zhang, Lianyang; Zhang, Hongguang; Tang, Hao; Zhang, Huayu

    2016-08-01

    Exogenous administration of melatonin has been demonstrated to down-regulate inflammatory responses and attenuate organ damage in various models. However, the salutary effect of melatonin against secondary intra-abdominal hypertension (IAH) remains unclear. This study sought to test the influence of melatonin on secondary IAH in a pathophysiological rat model and the underlying mechanisms involved. Before resuscitation, male rats underwent a combination of induced portal hypertension, applying an abdominal restraint device, and hemorrhaging to mean arterial pressure (MAP) of 40mmHg for 2h. After blood reinfusion, the rats were treated with lactated Ringer solution (LR) (30mL/h), melatonin (50mg/kg) +LR, and SB-203580 (10μmol/kg)+LR. LR was continuously infused for 6h. MAP, the inferior vena cava pressure and urine output were monitored. Histopathological examination, immunofluorescence of tight junction proteins, and transmission electron microscopy were administered. Intestinal permeability, myeloperoxidase activity, malondialdehyde, glutathione peroxidase, and levels of TNF-a, IL-2, and IL-6, were assessed. The expression of extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase, translocation of nuclear factor kappa B subunit, signal transducers and activators of transcription and tight junction proteins were detected by Western blot. We found that melatonin inhibited the inflammatory responses, decreased expression of p38 MAPK, attenuated intestinal injury, and prevented secondary IAH. Moreover, administration of SB203580 abolished the increase in p38 MAPK and also attenuated intestinal injury. These data indicate that melatonin exerts a protective effect in intestine in secondary IAH primarily by attenuating the inflammatory responses which are in part attributable to p38 MAPK inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats

    PubMed Central

    Tök, Levent; Nazıroğlu, Mustafa; Doğan, Salih; Kahya, Mehmet Cemal; Tök, Özlem

    2014-01-01

    Introduction: Melatonin has been considered a potent antioxidant that detoxifies a variety of reactive oxygen species in many pathophysiological states of eye. The present study was designed to determine the effects of Wi-Fi exposure on the lens oxidant, antioxidant redox systems, as well as the possible protective effects of melatonin on the lens injury induced by electromagnetic radiation (EMR). Materials and Methods: Thirty-two rats were used in the current study and they were randomly divided into four equal groups as follows: First and second groups were cage-control and sham-control rats. Rats in third group were exposed to Wi-Fi (2.45 GHz) for duration of 60 min/day for 30 days. As in the third group, the fourth group was treated with melatonin. The one-hour exposure to irradiation in second, third and fourth took place at noon each day. Results: Lipid peroxidation levels in the lens were slightly higher in third (Wi-Fi) group than in cage and sham control groups although their concentrations were significantly (P < 0.05) decreased by melatonin supplementation. Glutathione peroxidase (GSH-Px) activity was significantly (P < 0.05) lower in Wi-Fi group than in cage and sham control groups although GSH-Px (P < 0.01) and reduced glutathione (P < 0.05) values were significantly higher in Wi-Fi + melatonin group than in Wi-Fi group. Conclusions: There are poor oxidative toxic effects of one hour of Wi-Fi exposure on the lens in the animals. However, melatonin supplementation in the lens seems to have protective effects on the oxidant system by modulation of GSH-Px activity. PMID:24492496

  12. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function.

    PubMed

    Sharif, Rojin; Aghsami, Mehdi; Gharghabi, Mehdi; Sanati, Mehdi; Khorshidahmad, Tina; Vakilzadeh, Gelareh; Mehdizadeh, Hajar; Gholizadeh, Shervin; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play indispensable role in memory and learning impairment. Growing evidences have shed light on anti-oxidative role for melatonin in memory deficit. We have previously reported that inhibition of protein kinase A by H-89 can induce memory impairment. Here, we investigated the effect of melatonin on H-89 induced spatial memory deficit and pursued their interactive consequences on oxidative stress and mitochondrial function in Morris Water Maze model. Rats received melatonin (50 and 100μg/kg/side) and H-89(10μM) intra-hippocampally 30min before each day of training. Animals were trained for 4 consecutive days, each containing one block from four trials. Oxidative stress indices, including thiobarbituric acid (TBARS), reactive oxygen species (ROS), thiol groups, and ferric reducing antioxidant power (FRAP) were assessed using spectrophotometer. Mitochondrial function was evaluated through measuring ROS production, mitochondrial membrane potential (MMP), swelling, outer membrane damage, and cytochrome c release. As expected from our previous report, H-89 remarkably impaired memory by increasing the escape latency and traveled distance. Intriguingly, H-89 significantly augmented TBARS and ROS levels, caused mitochondrial ROS production, swelling, outer membrane damage, and cytochrome c release. Moreover, H-89 lowered thiol, FRAP, and MMP values. Intriguingly, melatonin pre-treatment not only effectively hampered H-89-mediated spatial memory deficit at both doses, but also reversed the H-89 effects on mitochondrial and biochemical indices upon higher dose. Collectively, these findings highlight a protective role for melatonin against H-89-induced memory impairment and indicate that melatonin may play a therapeutic role in the treatment of oxidative- related neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril.

    PubMed

    Simko, Fedor; Pechanova, Olga; Pelouch, Vaclav; Krajcirovicova, Kristina; Celec, Peter; Palffy, Roland; Bednarova, Kristina; Vrankova, Stanislava; Adamcova, Michaela; Paulis, Ludovit

    2010-09-01

    Blood pressure enhancement induced by continuous light exposure represents an attractive but rarely investigated model of experimental hypertension. The aim of this study was to show whether the combination of continuous light (24 h/day) exposure and chronic N-nitro-L-arginine-methyl ester (L-NAME) treatment induces remodelling of the left ventricle and whether captopril or melatonin can modify these potential alterations. Six groups of 3-month-old Wistar rats (nine per group) were treated for 6 weeks: control (untreated), L-NAME (40 mg/kg per day), exposed to continuous light, L-NAME treated and exposed to continuous light (L24), L24 rats treated with either captopril 100 mg/kg per day, or melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP), relative weights of the left ventricle, endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) expression in tissues, malondialdehyde and advanced oxidation protein product concentrations in the plasma and hydroxyproline levels in collagenous protein fractions were measured. The continuous light and L-NAME treatment led to hypertension, left ventricular hypertrophy (LVH) and fibrosis. An increase in SBP was completely prevented by captopril and partly by melatonin in the L24 group. Both drugs reduced oxidative damage and attenuated enhanced expression of ACE in the myocardium. Neither of the drugs prevented the attenuation of eNOS expression in the combined hypertensive model. Only captopril reduced LVH development in L24, whereas captopril and melatonin reduced left ventricular hydroxyproline concentrations in soluble and insoluble collagen, respectively. The total hydroxyproline concentration was reduced only by melatonin. In hypertension induced by a combination of continuous light and L-NAME treatment, melatonin and captopril protect the heart against pathological left ventricular remodelling differently.

  14. Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

    PubMed

    Horton, William J; Gissel, Hannah J; Saboy, Jennifer E; Wright, Kenneth P; Stitzel, Jerry A

    2015-07-01

    While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic explanations.

  15. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention.

    PubMed

    Blask, David E; Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Hill, Steven M; Greene, Michael W; Belancio, Victoria P; Sauer, Leonard A; Davidson, Leslie

    2014-01-01

    The central circadian clock within the suprachiasmatic nucleus (SCN) plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect) and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN)-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.

  16. Dietary Sources and Bioactivities of Melatonin

    PubMed Central

    Meng, Xiao; Li, Ya; Li, Sha; Zhou, Yue; Gan, Ren-You; Xu, Dong-Ping; Li, Hua-Bin

    2017-01-01

    Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action. PMID:28387721

  17. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    PubMed Central

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  19. Melatonin in autism spectrum disorders.

    PubMed

    Rossignol, Daniel A; Frye, Richard E

    2014-01-01

    Melatonin is an endogenous neurohormone produced predominantly in the pineal gland. Recent studies have implicated abnormalities in melatonin physiology and the circadian rhythm in individuals with autism spectrum disorders (ASD). These physiological abnormalities include lower nighttime melatonin or melatonin metabolite concentrations in ASD compared to controls. These abnormalities in melatonin concentrations may be directly attributed to variations in melatonin pathway physiology as both functional and genetic variations in this pathway have been reported in children with ASD. Four studies have observed a correlation between abnormal melatonin concentrations and the severity of autistic behaviors. Twenty clinical studies have reported improvements in sleep parameters with exogenous melatonin supplementation in ASD, including longer sleep duration, less nighttime awakenings and quicker sleep onset. A recent meta-analysis of five randomized, double-blind, placebo-controlled crossover trials examining exogenous melatonin supplementation in ASD reported significant improvements with large effect sizes in total sleep duration and sleep onset latency compared to both baseline and placebo. Six studies reported that the nighttime administration of exogenous melatonin was associated with better daytime behaviors. Four studies reported improvements with exogenous melatonin supplementation when other sleep medications had previously failed. Adverse effects of melatonin were minimal to none in the twenty treatment studies. These studies indicate that the administration of exogenous melatonin for abnormal sleep parameters in ASD is evidence-based. Further studies examining optimal effective dosing and timing of dosing are warranted.

  20. Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.; Florio, Gina M.; Clarkson, Jasper R.; Longarte, Asier; Zwier, Timothy S.

    2004-05-01

    The conformational isomerization dynamics of melatonin and 5-methoxy N-acetyltryptophan methyl amide (5-methoxy NATMA) have been studied using the methods of IR-UV hole-filling spectroscopy and IR-induced population transfer spectroscopy. Using these techniques, single conformers of melatonin were excited via a well-defined NH stretch fundamental with an IR pump laser. This excess energy was used to drive conformational isomerization. By carrying out the infrared excitation early in a supersonic expansion, the excited molecules were re-cooled into their zero-point levels, partially re-filling the hole created in the ground state population of the excited conformer, and creating gains in population of the other conformers. These changes in population were detected using laser-induced fluorescence downstream in the expansion via an UV probe laser. The isomerization quantum yields for melatonin show some conformation specificity but no hint of vibrational mode specificity. In 5-methoxy NATMA, no isomerization was observed out of the single conformational well populated in the expansion in the absence of the infrared excitation. In order to study the dependence of the isomerization on the cooling rate, the experimental arrangement was modified so that faster cooling conditions could be studied. In this arrangement, the pump and probe lasers were overlapped in space in the high density region of the expansion, and the time dependence of the zero-point level populations of the conformers was probed following selective excitation of a single conformation. The analysis needed to extract isomerization quantum yields from the timing scans was developed and applied to the melatonin timing scans. Comparison between the frequency and time domain isomerization quantum yields under identical experimental conditions produced similar results. Under fast cooling conditions, the product quantum yields were shifted from their values under standard conditions. The results for melatonin are compared with those for N-acetyl tryptophan methyl amide.

Top